Performance Analysis and Optimization for Irreversible Combined Carnot Heat Engine Working with Ideal Quantum Gases
<p>Schematic diagram of two types of combined HE.</p> "> Figure 2
<p>The temperature–entropy diagram of two-stage combined Carnot HE with quantum gas.</p> "> Figure 3
<p>The constraint functions (the shadow area in the figure is the feasible temperature range for normal operation).</p> "> Figure 4
<p>The output power of combined HE working with Fermi gas.</p> "> Figure 5
<p>The thermal efficiency of the combined HE working with Fermi gas.</p> "> Figure 6
<p>The optimal output power versus thermal efficiency of the combined HE with different quantum WM.</p> ">
Abstract
:1. Introduction
2. Theoretical Model for Heat Engine with Quantum Gas
2.1. The Physical Characteristics for Quantum Gas
2.2. The Model of Combined Carnot Cycle with Quantum Gas
3. The Output Performance of Combined Heat Engine
4. The General Performance of Power Output and Thermal Efficiency
4.1. The General Combined Cycle for Multi-Stage Endoreversible Carnot QHE
4.2. The Optimal Power Output and Thermal Efficiency
5. Discussions
5.1. The Weak Degeneracy Condition
5.2. The Strong Degeneracy Condition
6. Conclusions
- (1)
- According to the exhausting heat of the top sub-cycle, the operating range of the bottom sub-cycle is constrained, and the operating conditions of the bottom sub-cycle can be determined by the WM temperature and the thermal conductivity distribution of the top sub-cycle.
- (2)
- There is a set of optimal temperatures (,) that makes output power maximize. When there is heat leakage loss, there is also a set of optimal temperatures (,) that makes thermal efficiency maximize.
- (3)
- When there is no heat leakage loss (), the characteristic curve of power and thermal efficiency is a parabolic-like one. When there is heat leakage loss (), the characteristic curve of power and thermal efficiency is a loop-shaped one. The internal irreversibility makes both power and thermal efficiency decrease. The heat leakage loss weakens the thermal efficiency of the combined HE, but does not affect the power.
- (4)
- Under the assumption that the entropy ratios of the four irreversible processes of the combined Carnot cycle were equal, the optimal power and optimal efficiency of the combined Fermi HE is superior to that of the combined Bose HE. When two types of quantum gases are selected for the WM, the combined HE working with Fermi–Bose gas obtains the highest output power.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
heat transfer area, | |
heat leakage coefficient, | |
correction factor | |
internal irreversibility | |
number of possible spin orientations of a gas particle | |
Planck’s constant, | |
Boltzmann’s constant, | |
Lagrangian function | |
rest mass of a gas particle, | |
number density of gas particles, | |
total number of particles | |
power output, | |
gas pressure, | |
amount of heat exchange, | |
rate of heat flow, | |
entropy, | |
heat transfer time, | |
temperature, | |
internal energy, | |
volume of gas, | |
average volume that an ideal quantum gas particle occupies, | |
work, | |
simplified factor | |
fugacity of gas | |
Greek Letters | |
heat transfer coefficient, | |
entropy ratio | |
gamma function | |
efficiency | |
chemical potential, | |
cycle period, | |
Subscripts | |
Bose gas | |
Fermi gas | |
hot side | |
heat leakage | |
cold side | |
ideal quantum gas | |
condensed state | |
cycle states | |
Superscripts | |
′ | The irreversible process |
Abbreviations | |
EMP | efficiency at the maximum power |
HE | heat engine |
MPO | maximum power output |
QHE | quantum heat engine |
WM | working medium |
References
- Andresen, B.; Salamon, P.; Berry, R.S. Thermodynamics in finite time: Extremals for imperfect heat engines. J. Chem. Phys. 1977, 66, 1571–1577. [Google Scholar] [CrossRef]
- Andresen, B.; Berry, R.S.; Ondrechen, M.J. Thermodynamics for processes in finite time. Acc. Chem. Res. 1984, 17, 266–271. [Google Scholar] [CrossRef]
- Chen, L.G.; Wu, C.; Sun, F.R. Finite Time Thermodynamic Optimization or Entropy Generation Minimization of Energy Systems. J. Non-Equilib. Thermodyn. 1999, 22, 327–359. [Google Scholar] [CrossRef]
- Andresen, B. Current Trends in Finite-Time Thermodynamics. Angew. Chem. Int. Ed. 2011, 50, 2690–2704. [Google Scholar] [CrossRef]
- Hoffmann, K.H.; Burzler, J.; Fischer, A.; Schaller, M.; Schubert, S. Optimal Process Paths for Endoreversible Systems. J. Non-Equilib. Thermodyn. 2003, 28, 233–268. [Google Scholar] [CrossRef]
- Chen, L.G.; Tang, C.Q.; Feng, H.J.; Ge, Y.L. Power, efficiency, power density and ecological function optimizations for an irreversible modified closed variable-temperature reservoir regenerative Brayton cycle with one isothermal heating process. Energies 2020, 13, 5133. [Google Scholar] [CrossRef]
- Masser, R.; Hoffmann, K.H. Endoreversible modeling of a hydraulic recuperation system. Entropy 2020, 22, 383. [Google Scholar] [CrossRef] [Green Version]
- Tang, C.Q.; Chen, L.G.; Feng, H.J.; Wang, W.H.; Ge, Y.L. Power optimization of a closed binary Brayton cycle with isothermal heating processes and coupled to variable-temperature reservoirs. Energies 2020, 13, 3212. [Google Scholar] [CrossRef]
- Masser, R.; Khodja, A.; Scheunert, M.; Schwalbe, K.; Fischer, A.; Paul, R.; Hoffmann, K.H. Optimized piston motion for an alpha-type Stirling engine. Entropy 2020, 22, 700. [Google Scholar] [CrossRef]
- Chen, L.G.; Ma, K.; Ge, Y.L.; Feng, H.J. Re-optimization of expansion work of a heated working fluid with generalized radiative heat transfer law. Entropy 2020, 22, 720. [Google Scholar] [CrossRef] [PubMed]
- Tsirlin, A.; Gagarina, L. Finite-time thermodynamics in economics. Entropy 2020, 22, 891. [Google Scholar] [CrossRef]
- Tsirlin, A.; Sukin, I. Averaged optimization and finite-time thermodynamics. Entropy 2020, 22, 912. [Google Scholar] [CrossRef]
- Muschik, W.; Hoffmann, K.H. Modeling, simulation, and reconstruction of 2-reservoir heat-to-power processes in finite-time thermodynamics. Entropy 2020, 22, 997. [Google Scholar] [CrossRef] [PubMed]
- Andresen, B.; Essex, C. Thermodynamics at very long time and space scales. Entropy 2020, 22, 1090. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.S.; Ge, Y.L.; Chen, L.G.; Feng, F.J. Four objective optimization of irreversible Atkinson cycle based on NSGA-II. Entropy 2020, 22, 1150. [Google Scholar] [CrossRef]
- Chen, L.G.; Ma, K.; Feng, H.J.; Ge, Y.L. Optimal configuration of a gas expansion process in a piston-type cylinder with generalized convective heat transfer law. Energies 2020, 13, 3229. [Google Scholar] [CrossRef]
- Scheunert, M.; Masser, R.; Khodja, A.; Paul, R.; Schwalbe, K.; Fischer, A.; Hoffmann, K.H. Power-optimized sinusoidal piston motion and its performance gain for an Alpha-type Stirling engine with limited regeneration. Energies 2020, 13, 4564. [Google Scholar] [CrossRef]
- Boykov, S.Y.; Andresen, B.; Akhremenkov, A.A.; Tsirlin, A.M. Evaluation of Irreversibility and Optimal Organization of an Integrated Multi-Stream Heat Exchange System. J. Non-Equilib. Thermodyn. 2020, 45, 155–171. [Google Scholar] [CrossRef]
- Chen, L.G.; Feng, H.J.; Ge, Y.L. Maximum energy output chemical pump configuration with an infinite-low- and a finite-high-chemical potential mass reservoirs. Energy Convers. Manag. 2020, 223, 113261. [Google Scholar] [CrossRef]
- Hoffmann, K.H.; Burzler, J.M.; Schubert, S. Endoreversible thermodynamics. J. Non-Equilib. Thermodyn. 1997, 22, 311–355. [Google Scholar]
- Schwalbe, K.; Hoffmann, K.H. Stochastic Novikov engine with Fourier heat transport. J. Non-Equilib. Thermodyn. 2019, 44, 417–424. [Google Scholar] [CrossRef]
- Yasunaga, T.; Ikegami, Y. Finite-time thermodynamic model for evaluating heat engines in ocean thermal energy conversion. Entropy 2020, 22, 211. [Google Scholar] [CrossRef] [Green Version]
- Feidt, M. Carnot cycle and heat engine: Fundamentals and applications. Entropy 2020, 22, 348. [Google Scholar] [CrossRef] [Green Version]
- Feidt, M.; Costea, M. Effect of machine entropy production on the optimal performance of a refrigerator. Entropy 2020, 22, 913. [Google Scholar] [CrossRef]
- Ma, Y.-H. Effect of finite-size heat source’s heat capacity on the efficiency of heat engine. Entropy 2020, 22, 1002. [Google Scholar] [CrossRef]
- Qiu, S.S.; Ding, Z.M.; Chen, L.G. Performance evaluation and parametric optimum design of irreversible thermionic generators based on van der Waals heterostructures. Energy Convers. Manag. 2020, 225, 113360. [Google Scholar] [CrossRef]
- Guo, H.; Xu, Y.J.; Zhang, X.J.; Zhu, Y.L.; Chen, H.S. Finite-time thermodynamics modeling and analysis on compressed air energy storage systems with thermal storage. Renew. Sustain. Energy Rev. 2021, 138, 110656. [Google Scholar] [CrossRef]
- Smith, Z.; Pal, P.S.; Deffner, S. Endoreversible Otto engines at maximal power. J. Non-Equilib. Thermodyn. 2020, 45, 305–310. [Google Scholar] [CrossRef]
- Chen, L.G.; Shen, J.F.; Ge, Y.L.; Wu, Z.X.; Wang, W.H.; Zhu, F.L.; Feng, H.J. Power and efficiency optimization of open Maisotsenko-Brayton cycle and performance comparison with traditional open regenerated Brayton cycle. Energy Convers. Manag. 2020, 217, 113001. [Google Scholar] [CrossRef]
- Liu, H.T.; Zhai, R.R.; Patchigolla, K.; Turner, P.; Yang, Y.P. Analysis of integration method in multi-heat-source power generation systems based on finite-time thermodynamics. Energy Convers. Manag. 2020, 220, 113069. [Google Scholar] [CrossRef]
- Feng, H.J.; Qin, W.X.; Chen, L.G.; Cai, C.G.; Ge, Y.L.; Xia, S.J. Power output, thermal efficiency and exergy-based ecological performance optimizations of an irreversible KCS-34 coupled to variable temperature heat reservoirs. Energy Convers. Manag. 2020, 205, 112424. [Google Scholar] [CrossRef]
- Chen, L.G.; Meng, F.K.; Ge, Y.L.; Feng, H.J.; Xia, S.J. Performance optimization of a class of combined thermoelectric heating devices. Sci. China Technol. Sci. 2020, 63, 2640–2648. [Google Scholar] [CrossRef]
- Ge, Y.L.; Chen, L.G.; Feng, H.J. Ecological optimization of an irreversible Diesel cycle. Eur. Phys. J. Plus 2021, 136, 198. [Google Scholar] [CrossRef]
- Feng, H.J.; Wu, Z.X.; Chen, L.G.; Ge, Y.L. Constructal thermodynamic optimization for dual-pressure organic Rankine cycle in waste heat utilization system. Energy Convers. Manag. 2021, 227, 113585. [Google Scholar] [CrossRef]
- Wang, R.B.; Ge, Y.L.; Chen, L.G.; Feng, H.J.; Wu, Z.X. Power and thermal efficiency optimization of an irreversible steady flow Lenoir cycle. Entropy 2021, 23, 425. [Google Scholar] [CrossRef]
- Chen, L.G.; Meng, F.K.; Ge, Y.L.; Feng, H.J. Performance optimization for a multielement thermoelectric refrigerator with another linear heat transfer law. J. Non-Equilib. Thermodyn. 2021, 46, 149–162. [Google Scholar] [CrossRef]
- Berry, R.S.; Salamon, P.; Andresen, B. How it all began. Entropy 2020, 22, 908. [Google Scholar] [CrossRef]
- Rubin, M.H.; Andresen, B. Optimal staging of endoreversible heat engines. J. Appl. Phys. 1982, 53, 1–7. [Google Scholar] [CrossRef]
- Chen, J.C.; Yan, Z.J. Analysis of finite time thermodynamics on a combined power cycle. J. Xiamen Univ. (Nat. Sci.) 1988, 3, 289–293. (In Chinese) [Google Scholar]
- Wu, C. Power performance of a cascade endoreversible cycle. Energy Convers. Manag. 1990, 30, 261–266. [Google Scholar] [CrossRef]
- Wu, C.; Karpouzian, G.; Kiang, R.L. The optimal power performance of an endo-reversible combined cycle. J. Inst. Energy 1992, 65, 41–45. [Google Scholar]
- Chen, J.C. A universal model of an irreversible combined Carnot cycle system and its general performance characteristics. J. Phys. A Math. Gen. 1998, 31, 3383–3394. [Google Scholar] [CrossRef]
- Ozkaynak, S. The theoretical efficiency limits for a combined cycle under the condition of maximum power output. J. Phys. D Appl. Phys. 1995, 28, 2024–2028. [Google Scholar] [CrossRef]
- Şahiïn, B.; Kodal, A. Steady-state thermodynamic analysis of a combined Carnot cycle with internal irreversibility. Energy 1995, 20, 1285–1289. [Google Scholar] [CrossRef]
- De Vos, A.; Chen, J.C. Andresen, B. Analysis of combined systems of two endoreversible engines. Open Syst. Inf. Dyn. 1997, 4, 3–13. [Google Scholar] [CrossRef]
- Assad, M.E.H. Finite-Time Thermodynamic Analysis of Combined Heat Engines. Int. J. Mech. Eng. Educ. 1997, 25, 281–289. [Google Scholar] [CrossRef]
- Lewins, J.D. Optimizing cascades of endo-reversible heat engines. Int. J. Mech. Eng. Educ. 1999, 27, 91–101. [Google Scholar] [CrossRef]
- Cheng, X.T.; Liang, X.G. Optimization of combined endoreversible Carnot heat engines with different objectives. Chin. Phys. B 2015, 24, 60510. [Google Scholar] [CrossRef]
- Wu, J. A new approach to determining the intermediate temperatures of endoreversible combined cycle power plant corresponding to maximum power. Int. J. Heat Mass Transf. 2015, 91, 150–161. [Google Scholar] [CrossRef]
- Iyyappan, I.; Johal, R.S. Efficiency of a two-stage heat engine at optimal power. EPL 2019, 128, 50004. [Google Scholar] [CrossRef] [Green Version]
- Asfaw, M.; Bekele, M. Current, maximum power and optimized efficiency of a Brownian heat engine. Eur. Phys. J. B 2004, 38, 457–461. [Google Scholar] [CrossRef]
- Tutu, H.; Ouchi, K.; Horita, T. Performance optimization in two-dimensional Brownian rotary ratchet models. Phys. Rev. E 2017, 95, 062103. [Google Scholar] [CrossRef] [Green Version]
- Nie, W.J.; Liao, Q.H.; Zhang, C.Q.; He, J.Z. Micro-/nanoscaled irreversible Otto engine cycle with friction loss and boundary effects and its performance characteristics. Energy 2010, 35, 4658–4662. [Google Scholar] [CrossRef]
- Nie, W.J.; He, J.Z. Quantum boundary effect on the work output of a micro-/nanoscaled Carnot cycle. J. Appl. Phys. 2009, 105, 054903. [Google Scholar] [CrossRef]
- Kosloff, R. A quantum mechanical open system as a model of a heat engine. J. Chem. Phys. 1984, 80, 1625–1631. [Google Scholar] [CrossRef]
- Geva, E.; Kosloff, R. On the classical limit of quantum thermodynamics in finite time. J. Chem. Phys. 1992, 97, 4398–4412. [Google Scholar] [CrossRef] [Green Version]
- Geva, E.; Kosloff, R. A quantum-mechanical heat engine operating in finite time. A model consisting of spin-1/2 systems as the working fluid. J. Chem. Phys. 1992, 96, 3054–3067. [Google Scholar] [CrossRef] [Green Version]
- Sisman, A.; Saygin, H. On the power cycles working with ideal quantum gases: I. The Ericsson cycle. J. Phys. D: Appl. Phys. 1999, 32, 664–670. [Google Scholar] [CrossRef]
- Şişman, A.; Saygin, H. The improvement effect of quantum degeneracy on the work from a Carnot cycle. Appl. Energy 2001, 68, 367–376. [Google Scholar] [CrossRef]
- Saygın, H.; Şişman, A. Quantum degeneracy effect on the work output from a Stirling cycle. J. Appl. Phys. 2001, 90, 3086–3089. [Google Scholar] [CrossRef]
- Sisman, A.; Saygın, H. Re-Optimisation of Otto Power Cycles Working with Ideal Quantum Gases. Phys. Scr. 2001, 64, 108–112. [Google Scholar] [CrossRef]
- Lin, B.H.; Chen, J.C. The influence of quantum degeneracy on the performance of a Fermi Brayton engine. Open Syst. Inf. Dyn. 2004, 11, 87–99. [Google Scholar] [CrossRef]
- Wang, H.; Liu, S.Q.; He, J.Z. Performance analysis and parametric optimum criteria of an irreversible Bose-Otto engine. J. Appl. Phys. 2009, 105, 083534. [Google Scholar] [CrossRef]
- Wang, H.; Wu, G.X. Optimization criteria of a Bose Brayton heat engine. Chin. Phys. B 2012, 21, 010505. [Google Scholar] [CrossRef]
- Wang, H.; Liu, S.Q.; He, J.Z. Performance analysis and parametric optimum criteria of a quantum Otto heat engine with heat transfer effects. Appl. Therm. Eng. 2009, 29, 706–711. [Google Scholar] [CrossRef]
- Açıkkalp, E.; Caner, N. Application of exergetic sustainability index to a nano-scale irreversible Brayton cycle operating with ideal Bose and Fermi gasses. Phys. Lett. A 2015, 379, 1990–1997. [Google Scholar] [CrossRef]
- Acıkkalp, E.; Caner, N. Determining of the optimum performance of a nano scale irreversible Dual cycle with quantum gases as working fluid by using different methods. Phys. A Stat. Mech. Appl. 2015, 433, 247–258. [Google Scholar] [CrossRef]
- Bender, C.M.; Brody, D.C.; Meister, B.K. Quantum mechanical Carnot engine. J. Phys. A Math. Gen. 2000, 33, 4427. [Google Scholar] [CrossRef] [Green Version]
- Abe, S. Maximum-power quantum-mechanical Carnot engine. Phys. Rev. E 2011, 83, 041117. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.G.; Liu, X.W.; Ge, Y.L.; Wu, F.; Feng, H.J.; Xia, S.J. Power and efficiency optimization of an irreversible quantum Carnot heat engine working with harmonic oscillators. Phys. A Stat. Mech. Appl. 2020, 550, 124140. [Google Scholar] [CrossRef]
- Chen, J.F.; Dong, H.; Sun, C.P. Bose-Fermi duality in a quantum Otto heat engine with trapped repulsive bosons. Phys. Rev. E 2018, 98, 062119. [Google Scholar] [CrossRef] [Green Version]
- Kosloff, R.; Rezek, Y. The quantum harmonic otto cycle. Entropy 2017, 19, 136. [Google Scholar] [CrossRef] [Green Version]
- Uzdin, R.; Kosloff, R. Universal features in the efficiency at maximal work of hot quantum Otto engines. EPL 2014, 108, 40001. [Google Scholar] [CrossRef] [Green Version]
- Insinga, A.R. The Quantum Friction and Optimal Finite-Time Performance of the Quantum Otto Cycle. Entropy 2020, 22, 1060. [Google Scholar] [CrossRef] [PubMed]
- Insinga, A.; Andresen, B.; Salamon, P.; Kosloff, R. Quantum heat engines: Limit cycles and exceptional points. Phys. Rev. E 2018, 97, 062153. [Google Scholar] [CrossRef] [Green Version]
- Lin, B.H.; Chen, J.C. Performance analysis of an irreversible quantum heat engine working with harmonic oscillators. Phys. Rev. E 2003, 67, 046105. [Google Scholar] [CrossRef] [PubMed]
- Kosloff, R. Quantum thermodynamics: A dynamical viewpoint. Entropy 2013, 15, 2100–2128. [Google Scholar] [CrossRef] [Green Version]
- Alicki, R.; Kosloff, R. Chapter 1. Introduction to Quantum Thermodynamics: History and Prospects. In Thermodynamics in the Quantum Regime, Fundamental Theories of Physics; Binder, F., Correa, L., Gogolin, C., Anders, J., Adesso, G., Eds.; Springer: Cham, Switzerland, 2018; Volume 195, pp. 1–33. [Google Scholar]
- Kosloff, R.; Levy, A. Quantum heat engines and refrigerators: Continuous devices. Annu. Rev. Phys. Chem. 2014, 65, 365–393. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, K.H.; Salamon, P. Finite-time availability in a quantum system. EPL 2015, 109, 40004. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, K.H.; Schmidt, K.; Salamon, P. Quantum finite time availability for parametric oscillators. J. Non-Equilib. Thermodyn. 2015, 40, 121–129. [Google Scholar] [CrossRef]
- Kosloff, R.; Hoffmann, K.H.; Salamon, P.; Schmidt, K. Quantum finite-time availability. Atti della Accad. Peloritana dei Pericolanti 2019, 150, 204105. [Google Scholar]
- Kosloff, R. Quantum thermodynamics and open-systems modeling. J. Chem. Phys. 2019, 150, 204105. [Google Scholar] [CrossRef] [PubMed]
- Dann, R.; Kosloff, R.; Salamon, P. Quantum finite time thermodynamics: Insight from a single qubit engine. Entropy 2020, 22, 1255. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.G.; Liu, X.W.; Wu, F.; Xia, S.J.; Feng, H.J. Exergy-based ecological optimization of an irreversible quantum Carnot heat pump with harmonic oscillators. Phys. A Stat. Mech. Appl. 2020, 537, 122597. [Google Scholar] [CrossRef]
- Liu, X.W.; Chen, L.G.; Wei, S.H.; Meng, F.K. Optimal ecological performance investigation of a quantum harmonic oscillator Brayton refrigerator. Trans. ASME, J. Thermal Sci. Eng. Appl. 2020, 12, 011007. [Google Scholar] [CrossRef]
- Dann, R.; Kosloff, R. Quantum signatures in the quantum Carnot cycle. New J. Phys. 2020, 22, 13055. [Google Scholar] [CrossRef]
- Liu, X.W.; Chen, L.G.; Ge, Y.L.; Feng, H.J.; Wu, F.; Lorenzini, G. Exergy-based ecological optimization of an irreversible quantum Carnot heat pump with spin-1/2 systems. J. Non-Equilib. Thermodyn. 2021, 46, 61–76. [Google Scholar] [CrossRef]
- Roßnagel, J.; Dawkins, S.T.; Tolazzi, K.N.; Abah, O.; Lutz, E.; Schmidt-Kaler, F.; Singer, K. A single-atom heat engine. Science 2016, 352, 325–329. [Google Scholar] [CrossRef] [Green Version]
- Barontini, G.; Paternostro, M. Ultra-cold single-atom quantum heat engines. New J. Phys. 2019, 21, 63019. [Google Scholar] [CrossRef] [Green Version]
- Peterson, J.S.; Batalhão, T.B.; Herrera, M.; Souza, A.M.; Sarthour, R.; Oliveira, I.S.; Serra, R.M. Experimental characterization of a spin quantum heat engine. Phys. Rev. Lett. 2019, 123, 240601. [Google Scholar] [CrossRef] [Green Version]
- Gelbwaser-Klimovsky, D.; Bylinskii, A.; Gangloff, D.; Islam, R.; Aspuru-Guzik, A.; Vuletić, V. Single-atom heat machines enabled by energy quantization. Phys. Rev. Lett. 2018, 120, 170601. [Google Scholar] [CrossRef] [Green Version]
- Meng, Z.W.; Chen, L.G.; Wu, F. Optimal power and efficiency of multi-stage endoreversible quantum Carnot heat engine with harmonic oscillators at the classical limit. Entropy 2020, 22, 457. [Google Scholar] [CrossRef] [Green Version]
- Qi, C.Z.; Ding, Z.M.; Chen, L.G.; Ge, Y.L.; Feng, H.J. Modeling and performance optimization of an irreversible two-stage combined thermal Brownian heat engine. Entropy 2021, 23, 419. [Google Scholar] [CrossRef] [PubMed]
- Qi, C.Z.; Ding, Z.M.; Chen, L.G.; Ge, Y.L.; Feng, H.J. Modelling of irreversible two-stage combined thermal Brownian refrigerators and their optimal performance. J. Non-Equilibr. Thermodyn. 2021, 46, 175–189. [Google Scholar] [CrossRef]
- Schwabl, F. Ideal Quantum Gases. In Statistical Mechanics; Advanced Texts in Physics; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Lin, B.H.; Chen, J.C. Optimum performance analysis of an irreversible quantum cryogenic refrigeration cycle working with an ideal Bose or Fermi gas. Phys. Scr. 2008, 77, 055005. [Google Scholar] [CrossRef]
Fermi Gas | Bose Gas | Fermi–Bose Gas | Bose–Fermi Gas | |
---|---|---|---|---|
1 | 0.997 | 1.004 | 1.001 | |
0.884 | 0.877 | 0.878 | 0.883 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Meng, Z.; Ge, Y.; Wu, F. Performance Analysis and Optimization for Irreversible Combined Carnot Heat Engine Working with Ideal Quantum Gases. Entropy 2021, 23, 536. https://doi.org/10.3390/e23050536
Chen L, Meng Z, Ge Y, Wu F. Performance Analysis and Optimization for Irreversible Combined Carnot Heat Engine Working with Ideal Quantum Gases. Entropy. 2021; 23(5):536. https://doi.org/10.3390/e23050536
Chicago/Turabian StyleChen, Lingen, Zewei Meng, Yanlin Ge, and Feng Wu. 2021. "Performance Analysis and Optimization for Irreversible Combined Carnot Heat Engine Working with Ideal Quantum Gases" Entropy 23, no. 5: 536. https://doi.org/10.3390/e23050536
APA StyleChen, L., Meng, Z., Ge, Y., & Wu, F. (2021). Performance Analysis and Optimization for Irreversible Combined Carnot Heat Engine Working with Ideal Quantum Gases. Entropy, 23(5), 536. https://doi.org/10.3390/e23050536