Bound on Efficiency of Heat Engine from Uncertainty Relation Viewpoint
<p>The variation of sum uncertainty relation (Equation (<a href="#FD10-entropy-23-00439" class="html-disp-formula">10</a>)) for different temperatures. The dotted line is for lower and the solid line is for higher temperature.</p> "> Figure 2
<p>Similarly, this shows variation for different values of <span class="html-italic">n</span>.</p> "> Figure 3
<p>The bound of uncertainty relation (Equations (<a href="#FD12-entropy-23-00439" class="html-disp-formula">12</a>) and (<a href="#FD16-entropy-23-00439" class="html-disp-formula">16</a>)) for a particular temperature for different values of <span class="html-italic">n</span> from a thermodynamic standpoint.</p> "> Figure 4
<p>The variation of entropy (Equation (19)) for different values of temperature. The scattered plot is for higher temperature and solid line is for lower temperature.</p> "> Figure 5
<p>The figure shows the four stages (two isothermal and two isochoric processes) of the Stirling cycle modeled using the potential well.</p> "> Figure 6
<p>The bounds on the efficiency by heat engine in terms of the uncertainty relation. The dotted line represents the upper bound and the solid line represents the lower bound of the efficiency.</p> ">
Abstract
:1. Introduction
2. Thermal Uncertainty Relation
3. Bound on Sum Uncertainty for the One-Dimension Potential Well
4. Connection of Thermodynamic Quantities with Uncertainty
5. Stirling Cycle and Bound on Efficiency
6. Discussion
- (a)
- Every quantum thermodynamic variable has a direct connection with the uncertainty relation. Helmholtz free energy shows the dependence of the internal energy of the thermodynamic system with the uncertainty relation of the incompatible observables. The detailed analysis of entropy with the uncertainty relation shows that entropy increases when the uncertainty of any one of the observables increases for a definite temperature. The rate of increase is different for different temperatures (Figure 4).
- (b)
- The total work and the efficiency depends on the position and momentum of the particle. The change in the uncertainty of the position and the momentum has a direct impact on the efficiency rate and the work of the engine. The lower bound of the efficiency of the engine drops gradually when the uncertainty of the observable increases (Figure 6). The upper bound of the efficiency (Figure 6) shows a small variation for higher uncertainty relation, which conveys that the conversion rate of work input to output is near-constant for higher uncertainty.
- (c)
- The uncertainty relation, which is the fundamental principle of quantum mechanics, is able to predict the efficiency and the total work of the engine without performing any measurement. So, the measurement cost for the system gets reduced if we are able to model the system under study with a quantum model for which we can develop the uncertainty relation.
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hawking, S.W. Black holes and thermodynamics. Phys. Rev. D 1976, 13, 191. [Google Scholar] [CrossRef]
- Padmanabhan, T. Gravity and the thermodynamics of horizons. Phys. Rep. 2005, 406, 49–125. [Google Scholar] [CrossRef] [Green Version]
- Gürsoy, U.; Kiritsis, E.; Mazzanti, L.; Nitti, F. Holography and thermodynamics of 5D dilaton-gravity. J. High Energy Phys. 2009, 2009, 033. [Google Scholar] [CrossRef] [Green Version]
- Alicki, R. The Quantum Open System as a Model of the Heat Engine. J. Phys. A 1979, 12, L103. [Google Scholar] [CrossRef]
- Uzdin, R.; Levy, A.; Kosloff, R. Equivalence of quantum heat machines, and quantum-thermodynamic signatures. Phys. Rev. X 2015, 5, 031044. [Google Scholar] [CrossRef] [Green Version]
- Kosloff, R. A Quantum Mechanical Open System as a Model of a Heat Engine. J. Chem. Phys. 1984, 80, 1625. [Google Scholar] [CrossRef]
- Kosloff, R.; Levy, A. Quantum Heat Engines and Refrigerators: Continuous Devices. Annu. Rev. Phys. Chem. 2014, 65, 365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skrzypczyk, P.; Short, A.J.; Popescu, S. Work Extraction and Thermodynamics for Individual Quantum Systems. Nat. Commun. 2014, 5, 4185. [Google Scholar] [CrossRef] [Green Version]
- Kolář, M.; Gelbwaser-Klimovsky, D.; Alicki, R.; Kurizki, G. Quantum Bath Refrigeration Towards Absolute Zero: Challenging the Unattainability Principle. Phys. Rev. Lett. 2012, 109, 090601. [Google Scholar] [CrossRef] [Green Version]
- Quan, H.T.; Liu, Y.X.; Sun, C.P.; Nori, F. Quantum Thermodynamic Cycles and Quantum Heat Engines. Phys. Rev. E 2007, 76, 031105. [Google Scholar] [CrossRef] [Green Version]
- Roßnagel, J.; Abah, O.; Schmidt-Kaler, F.; Singer, K.; Lutz, E. Nanoscale Heat Engine Beyond the Carnot Limit. Phys. Rev. Lett. 2014, 112, 030602. [Google Scholar] [CrossRef] [PubMed]
- Correa, L.A.; Palao, J.P.; Alonso, D.; Adesso, G. Quantum-Enhanced Absorption Refrigerators. Sci. Rep. 2014, 4, 3949. [Google Scholar] [CrossRef] [Green Version]
- Dorner, R.; Clark, S.R.; Heaney, L.; Fazio, R.; Goold, J.; Vedral, V. Extracting Quantum Work Statistics and Fluctuation Theorems by Single-Qubit Interferometry. Phys. Rev. Lett. 2013, 110, 230601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riera, A.; Gogolin, C.; Eisert, J. Thermalization in Nature and on a Quantum Computer. Phys. Rev. Lett. 2012, 108, 080402. [Google Scholar] [CrossRef]
- Abah, O.; Roßnagel, J.; Jacob, G.; Deffner, S.; Schmidt Kaler, F.; Singer, K.; Lutz, E. Single-Ion Heat Engine at Maximum Power. Phys. Rev. Lett. 2012, 109, 203006. [Google Scholar] [CrossRef]
- Dechant, A.; Kiesel, N.; Lutz, E. All-Optical Nano-mechanical Heat Engine. Phys. Rev. Lett. 2015, 114, 183602. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Bariani, F.; Meystre, P. Quantum Opto-mechanical Heat Engine. Phys. Rev. Lett. 2014, 112, 150602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mari, A.; Eisert, J. Cooling by Heating: Very Hot Thermal Light Can Significantly Cool Quantum Systems. Phys. Rev. Lett. 2012, 108, 120602. [Google Scholar] [CrossRef] [PubMed]
- Zurek, W.H. Maxwell’s demon, Szilard’s engine and quantum measurements. arXiv 2003, arXiv:quant-ph/0301076. [Google Scholar]
- Szilard, L. Über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen. Z. Phys. 1929, 53, 840–856. [Google Scholar] [CrossRef]
- Kim, S.W.; Sagawa, T.; De Liberato, S.; Ueda, M. Quantum Szilard engine. Phys. Rev. Lett. 2011, 106, 070401. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Zou, J.; Li, J.-G.; Shao, B.; Wu, L.-A. Revisiting the quantum Szilard engine with fully quantum considerations. Ann. Phys. 2012, 327, 2955. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.H.; Kim, S.W. Szilard’s information heat engines in the deep quantum regime. J. Korean Phys. Soc. 2012, 61, 1187. [Google Scholar] [CrossRef]
- Cai, C.Y.; Dong, H.; Sun, C.P. Multiparticle quantum Szilard engine with optimal cycles assisted by a Maxwell’s demon. Phys. Rev. E 2012, 85, 031114. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, Z.; Liang, S.D. Quantum Szilard engines with arbitrary spin. Phys. Rev. E 2014, 90, 052117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bengtsson, J.; Nilsson Tengstrand, M.; Wacker, A.; Samuelsson, P.; Ueda, M.; Linke, H.; Reimann, S.M. Supremacy of the quantum many-body Szilard engine with attractive bosons. arXiv 2017, arXiv:1701.08138. [Google Scholar]
- Kosloff, R.; Rezek, Y. The quantum harmonic Otto cycle. Entropy 2017, 19, 136. [Google Scholar] [CrossRef] [Green Version]
- Deffner, S. Efficiency of harmonic quantum Otto engines at maximal power. Entropy 2018, 20, 875. [Google Scholar] [CrossRef] [Green Version]
- Bustos-Marún, R.A.; Calvo, H.L. Thermodynamics and steady state of quantum motors and pumps far from equilibrium. Entropy 2019, 21, 824. [Google Scholar] [CrossRef] [Green Version]
- Meng, Z.; Chen, L.; Wu, F. Optimal power and efficiency of multi-stage endoreversible quantum Carnot heat engine with harmonic oscillators at the classical limit. Entropy 2020, 22, 457. [Google Scholar] [CrossRef] [Green Version]
- Insinga, A.R. The quantum friction and optimal finite-time performance of the quantum Otto cycle. Entropy 2020, 22, 1060. [Google Scholar] [CrossRef] [PubMed]
- Dann, R.; Kosloff, R.; Salamon, P. Quantum finite-time thermodynamics: Insight from a single qubit engine. Entropy 2020, 22, 1255. [Google Scholar] [CrossRef] [PubMed]
- Kosloff, R. Quantum thermodynamics and open-systems modeling. J. Chem. Phys. 2019, 150, 204105. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Liu, X.; Wu, F.; Xia, S.; Feng, H. Exergy-based ecological optimization of an irreversible quantum Carnot heat pump with harmonic oscillators. Phys. A Stat. Mech. Appl. 2020, 537, 122597. [Google Scholar] [CrossRef]
- Diaz, G.A.; Forero, J.D.; Garcia, J.; Rincon, A.; Fontalvo, A.; Bula, A.; Padilla, R.V. Maximum power from fluid flow by applying the first and second laws of thermodynamics. J. Energy Resour. Technol. 2017, 139, 3. [Google Scholar] [CrossRef]
- Del Campo, A.; Boshier, M.G. Shortcuts to adiabaticity in a time-dependent box. Sci. Rep. 2012, 2, 1–6. [Google Scholar]
- Stefanatos, D. Optimal shortcuts to adiabaticity for a quantum piston. Automatica 2013, 49, 3079–3083. [Google Scholar] [CrossRef] [Green Version]
- Stefanatos, D. Exponential bound in the quest for absolute zero. Phys. Rev. E 2017, 96, 042103. [Google Scholar] [CrossRef] [Green Version]
- Chattopadhyay, P.; Paul, G. Relativistic quantum heat engine from uncertainty relation standpoint. Sci. Rep. 2019, 9, 16967. [Google Scholar] [CrossRef]
- Fuchs, C.A.; Peres, A. Quantum-state disturbance versus information gain: Uncertainty relations for quantum information. Phys. Rev. A 1996, 53, 2038. [Google Scholar] [CrossRef] [Green Version]
- Koashi, M. Unconditional security of quantum key distribution and the uncertainty principle. J. Phys. Conf. Ser. 2006, 36, 16. [Google Scholar] [CrossRef]
- Koashi, M. Simple security proof of quantum key distribution via uncertainty principle. arXiv 2005, arXiv:0505108. [Google Scholar]
- Hofmann, H.F.; Takeuchi, S. Violation of local uncertainty relations as a signature of entanglement. Phys. Rev. A 2003, 68, 032103. [Google Scholar] [CrossRef] [Green Version]
- Osterloh, A. Entanglement and its facets in condensed matter systems. arXiv 2008, arXiv:0810.1240. [Google Scholar]
- Marty, O.; Epping, M.; Kampermann, H.; Bruß, D.; Plenio, M.B.; Cramer, M. Quantifying entanglement with scattering experiments. Phys. Rev. B 2014, 89, 125117. [Google Scholar] [CrossRef] [Green Version]
- Gühne, O. Characterizing entanglement via uncertainty relations. Phys. Rev. Lett. 2004, 9, 117903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giovannetti, V.; Lloyd, S.; Maccone, L. Advances in quantum metrology. Nat. Photonics 2011, 5, 222. [Google Scholar] [CrossRef]
- Mondal, D.; Datta, C.; Sazim, S.K. Quantum coherence sets the quantum speed limit for mixed states. Phys. Lett. A 2016, 380, 689–695. [Google Scholar] [CrossRef] [Green Version]
- Marvian, I.; Spekkens, R.W.; Zanardi, P. Quantum speed limits, coherence, and asymmetry. Phys. Rev. A 2016, 93, 052331. [Google Scholar] [CrossRef] [Green Version]
- Deffner, S.; Campbell, S. Quantum speed limits: From Heisenberg’s uncertainty principle to optimal quantum control. J. Phys. A 2017, 50, 453001. [Google Scholar] [CrossRef]
- Pires, D.P.; Cianciaruso, M.; Céleri, L.C.; Adesso, G.; Soares-Pinto, D.O. Generalized geometric quantum speed limits. Phys. Rev. X 2016, 6, 021031. [Google Scholar] [CrossRef] [Green Version]
- Xiao, L. Experimental test of uncertainty relations for general unitary operators. Opt. Express 2017, 25, 17904–17910. [Google Scholar] [CrossRef]
- Ma, W. Experimental test of Heisenberg’s measurement uncertainty relation based on statistical distances. Phys. Rev. Lett. 2016, 116, 160405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baek, S.Y.; Kaneda, F.; Ozawa, M.; Edamatsu, K. Experimental violation and reformulation of the Heisenberg’s error disturbance uncertainty relation. Sci. Rep. 2013, 3, 2221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mondal, D.; Bagchi, S.; Pati, A.K. Tighter uncertainty and reverse uncertainty relations. Phys. Rev. A 2017, 95, 052117. [Google Scholar] [CrossRef] [Green Version]
- Schiff, L. Quantum Mechanics, International Series in Pure and Applied Physics; McGraw-Hill: New York, NY, USA, 1955. [Google Scholar]
- Griffiths, D.J. Introduction to Quantum Mechanics; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2005. [Google Scholar]
- Reif, F. Fundamentals of Statistical and Thermal Physics; Waveland Press: Long Grove, IL, USA, 2009. [Google Scholar]
- Maccone, L.; Pati, A.K. Stronger uncertainty relations for all incompatible observables. Phys. Rev. Lett. 2014, 113, 260401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chattopadhyay, P.; Mitra, A.; Paul, G. Probing Uncertainty Relations in Non-Commutative Space. Int. J. Theor. Phys. 2019, 58, 2619–2631. [Google Scholar] [CrossRef] [Green Version]
- Cerone, P.; Dragomir, S.S. Mathematical Inequalities; Chapman and Hall/CRC: London, UK, 2011; pp. 241–313. [Google Scholar]
- Saha, M.; Srivastava, B.N. Treatise on Heat; Longman, Rees, Orme, Brown, Green & Longman: New York, NY, USA, 1935. [Google Scholar]
- Saygin, H.; Şişman, A. Quantum degeneracy effect on the work output from a Stirling cycle. J. Appl. Phys. 2001, 90, 3086–3089. [Google Scholar] [CrossRef]
- Agarwal, G.S.; Chaturvedi, S. Quantum dynamical framework for Brownian heat engines. Phys. Rev. E 2013, 88, 012130. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.L.; Niu, X.Y.; Xiu, X.M.; Yi, X.X. Quantum Stirling heat engine and refrigerator with single and coupled spin systems. Eur. Phys. J. D 2014, 68, 32. [Google Scholar] [CrossRef]
- Blickle, V.; Bechinger, C. Realization of a micrometre-sized stochastic heat engine. Nat. Phys. 2011, 8, 143. [Google Scholar] [CrossRef] [Green Version]
- Thomas, G.; Das, D.; Ghosh, S. Quantum heat engine based on level degeneracy. Phys. Rev. E 2019, 100, 012123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niedenzu, W.; Mukherjee, V.; Ghosh, A.; Kofman, A.G.; Kurizki, G. Quantum engine efficiency bound beyond the second law of thermodynamics. Nat. Commun. 2018, 9, 165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plenio, M.B.; Virmani, S. An introduction to entanglement measures. In Quantum Information and Coherence; Springer: Cham, Switzerland, 2014; pp. 173–209. [Google Scholar]
- Alberto, P.; Fiolhais, C.; Gil, V.M.S. Relativistic particle in a box. Eur. J. Phys. 1996, 17, 19. [Google Scholar] [CrossRef]
- Ryu, S.; Takayanagi, T. Holographic derivation of entanglement entropy from the anti–de sitter space/conformal field theory correspondence. Phys. Rev. Lett. 2006, 96, 181602. [Google Scholar] [CrossRef] [Green Version]
- Kempf, A.; Mangano, G.; Mann, R.B. Hilbert space representation of the minimal length uncertainty relation. Phys. Rev. D 1995, 52, 1108. [Google Scholar] [CrossRef] [Green Version]
- Quesne, C.; Tkachuk, V.M. Composite system in deformed space with minimal length. Phys. Rev. A 2010, 81, 012106. [Google Scholar] [CrossRef] [Green Version]
- Meljanac, S.; Krešić-Jurić, S. Noncommutative differential forms on the kappa-deformed space. J. Phys. A 2009, 42, 365204. [Google Scholar] [CrossRef]
- Rezek, Y.; Kosloff, R. Irreversible performance of a quantum harmonic heat engine. New J. Phys. 2006, 8, 83. [Google Scholar] [CrossRef]
Parameter | Values |
---|---|
1, 2 | |
Length (L) | 0–5 nm |
Hot bath () | 320 K |
Cold bath () | 80 K |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chattopadhyay, P.; Mitra, A.; Paul, G.; Zarikas, V. Bound on Efficiency of Heat Engine from Uncertainty Relation Viewpoint. Entropy 2021, 23, 439. https://doi.org/10.3390/e23040439
Chattopadhyay P, Mitra A, Paul G, Zarikas V. Bound on Efficiency of Heat Engine from Uncertainty Relation Viewpoint. Entropy. 2021; 23(4):439. https://doi.org/10.3390/e23040439
Chicago/Turabian StyleChattopadhyay, Pritam, Ayan Mitra, Goutam Paul, and Vasilios Zarikas. 2021. "Bound on Efficiency of Heat Engine from Uncertainty Relation Viewpoint" Entropy 23, no. 4: 439. https://doi.org/10.3390/e23040439
APA StyleChattopadhyay, P., Mitra, A., Paul, G., & Zarikas, V. (2021). Bound on Efficiency of Heat Engine from Uncertainty Relation Viewpoint. Entropy, 23(4), 439. https://doi.org/10.3390/e23040439