Nothing Special   »   [go: up one dir, main page]

William Stallings Computer Organization and Architecture

Download as ppt, pdf, or txt
Download as ppt, pdf, or txt
You are on page 1of 41

William Stallings

Computer Organization
and Architecture

Chapter 2
Computer Evolution and
Performance
ENIAC - background
• Electronic Numerical Integrator And
Computer
• Eckert and Mauchly
• University of Pennsylvania
• Trajectory tables for weapons
• Started 1943
• Finished 1946
—Too late for war effort
• Used until 1955
ENIAC - details
• Decimal (not binary)
• 20 accumulators of 10 digits
• Programmed manually by switches
• 18,000 vacuum tubes
• 30 tons
• 15,000 square feet
• 140 kW power consumption
• 5,000 additions per second
von Neumann/Turing
• Stored Program concept
• Main memory storing programs and data
• ALU operating on binary data
• Control unit interpreting instructions from
memory and executing
• Input and output equipment operated by
control unit
• Princeton Institute for Advanced Studies
—IAS
• Completed 1952
Structure of von Neumann machine
IAS - details
• 1000 x 40 bit words
—Binary number
—2 x 20 bit instructions
• Set of registers (storage in CPU)
—Memory Buffer Register
—Memory Address Register
—Instruction Register
—Instruction Buffer Register
—Program Counter
—Accumulator
—Multiplier Quotient
Structure
of IAS –
detail
IBM
• Punched-card processing equipment
• 1953 - the 701
—IBM’s first stored program computer
—Scientific calculations
• 1955 - the 702
—Business applications
• Lead to 700/7000 series
Transistors
• Replaced vacuum tubes
• Smaller
• Cheaper
• Less heat dissipation
• Solid State device
• Made from Silicon (Sand)
• Invented 1947 at Bell Labs
• William Shockley et al.
Transistor Based Computers
• Second generation machines
• NCR & RCA produced small transistor
machines
• IBM 7000
• DEC - 1957
—Produced PDP-1
Microelectronics
• Literally - “small electronics”
• A computer is made up of gates, memory
cells and interconnections
• These can be manufactured on a
semiconductor
• e.g. silicon wafer
Generations of Computer
• Vacuum tube - 1946-1957
• Transistor - 1958-1964
• Small scale integration - 1965 on
—Up to 100 devices on a chip
• Medium scale integration - to 1971
—100-3,000 devices on a chip
• Large scale integration - 1971-1977
—3,000 - 100,000 devices on a chip
• Very large scale integration - 1978 -1991
—100,000 - 100,000,000 devices on a chip
• Ultra large scale integration – 1991 -
—Over 100,000,000 devices on a chip
Moore’s Law
• Increased density of components on chip
• Gordon Moore – co-founder of Intel
• Number of transistors on a chip will double every
year
• Since 1970’s development has slowed a little
— Number of transistors doubles every 18 months
• Cost of a chip has remained almost unchanged
• Higher packing density means shorter electrical
paths, giving higher performance
• Smaller size gives increased flexibility
• Reduced power and cooling requirements
• Fewer interconnections increases reliability
Growth in CPU Transistor Count
IBM 360 series
• 1964
• Replaced (& not compatible with) 7000
series
• First planned “family” of computers
—Similar or identical instruction sets
—Similar or identical O/S
—Increasing speed
—Increasing number of I/O ports (i.e. more
terminals)
—Increased memory size
—Increased cost
• Multiplexed switch structure
DEC PDP-8
• 1964
• First minicomputer
• Did not need air conditioned room
• Small enough to sit on a lab bench
• $16,000
—$100k+ for IBM 360
• Embedded applications & OEM
• BUS STRUCTURE
DEC - PDP-8 Bus Structure
Semiconductor Memory
• 1970
• Fairchild
• Size of a single core
—i.e. 1 bit of magnetic core storage
• Holds 256 bits
• Non-destructive read
• Much faster than core
• Capacity approximately doubles each year
Intel
• 1971
—4004
—First microprocessor
—All CPU components on a single chip
—4 bit
• Followed in 1972
— 8008
—8 bit
—Both designed for specific applications
• 1974
—8080
—Intel’s first general purpose microprocessor
Speeding it up
• Pipelining
• On board cache
• On board L1 & L2 cache
• Branch prediction
• Data flow analysis
• Speculative execution
Performance Balance
• Processor speed increased
• Memory capacity increased
• Memory speed lags behind processor
speed
Login and Memory Performance Gap
Solutions
• Increase number of bits retrieved at one
time
—Make DRAM “wider” rather than “deeper”
• Change DRAM interface
—Cache
• Reduce frequency of memory access
—More complex cache and cache on chip
• Increase interconnection bandwidth
—High speed buses
—Hierarchy of buses
I/O Devices
• Peripherals with intensive I/O demands
• Large data throughput demands
• Processors can handle this
• Problem moving data
• Solutions:
—Caching
—Buffering
—Higher-speed interconnection buses
—More elaborate bus structures
—Multiple-processor configurations
Typical I/O Device Data Rates
Key is Balance
• Processor components
• Main memory
• I/O devices
• Interconnection structures
Improvements in Chip Organization and
Architecture
• Increase hardware speed of processor
—Fundamentally due to shrinking logic gate size
– More gates, packed more tightly, increasing clock
rate
– Propagation time for signals reduced
• Increase size and speed of caches
—Dedicating part of processor chip
– Cache access times drop significantly
• Change processor organization and
architecture
—Increase effective speed of execution
—Parallelism
Problems with Clock Speed and Login
Density
• Power
— Power density increases with density of logic and clock
speed
— Dissipating heat
• RC delay
— Speed at which electrons flow limited by resistance and
capacitance of metal wires connecting them
— Delay increases as RC product increases
— Wire interconnects thinner, increasing resistance
— Wires closer together, increasing capacitance
• Memory latency
— Memory speeds lag processor speeds
• Solution:
— More emphasis on organizational and architectural
approaches
Intel Microprocessor Performance
Increased Cache Capacity
• Typically two or three levels of cache
between processor and main memory
• Chip density increased
—More cache memory on chip
– Faster cache access
• Pentium chip devoted about 10% of chip
area to cache
• Pentium 4 devotes about 50%
More Complex Execution Logic
• Enable parallel execution of instructions
• Pipeline works like assembly line
—Different stages of execution of different
instructions at same time along pipeline
• Superscalar allows multiple pipelines
within single processor
—Instructions that do not depend on one
another can be executed in parallel
Diminishing Returns
• Internal organization of processors
complex
—Can get a great deal of parallelism
—Further significant increases likely to be
relatively modest
• Benefits from cache are reaching limit
• Increasing clock rate runs into power
dissipation problem
—Some fundamental physical limits are being
reached
New Approach – Multiple Cores
• Multiple processors on single chip
— Large shared cache
• Within a processor, increase in performance
proportional to square root of increase in
complexity
• If software can use multiple processors, doubling
number of processors almost doubles
performance
• So, use two simpler processors on the chip rather
than one more complex processor
• With two processors, larger caches are justified
— Power consumption of memory logic less than
processing logic
• Example: IBM POWER4
— Two cores based on PowerPC
POWER4 Chip Organization
Pentium Evolution (1)
• 8080
— first general purpose microprocessor
— 8 bit data path
— Used in first personal computer – Altair
• 8086
— much more powerful
— 16 bit
— instruction cache, prefetch few instructions
— 8088 (8 bit external bus) used in first IBM PC
• 80286
— 16 Mbyte memory addressable
— up from 1Mb
• 80386
— 32 bit
— Support for multitasking
Pentium Evolution (2)
• 80486
—sophisticated powerful cache and instruction
pipelining
—built in maths co-processor
• Pentium
—Superscalar
—Multiple instructions executed in parallel
• Pentium Pro
—Increased superscalar organization
—Aggressive register renaming
—branch prediction
—data flow analysis
—speculative execution
Pentium Evolution (3)
• Pentium II
— MMX technology
— graphics, video & audio processing
• Pentium III
— Additional floating point instructions for 3D graphics
• Pentium 4
— Note Arabic rather than Roman numerals
— Further floating point and multimedia enhancements
• Itanium
— 64 bit
— see chapter 15
• Itanium 2
— Hardware enhancements to increase speed
• See Intel web pages for detailed information on
processors
PowerPC
• 1975, 801 minicomputer project (IBM) RISC
• Berkeley RISC I processor
• 1986, IBM commercial RISC workstation product, RT PC.
— Not commercial success
— Many rivals with comparable or better performance
• 1990, IBM RISC System/6000
— RISC-like superscalar machine
— POWER architecture
• IBM alliance with Motorola (68000 microprocessors), and
Apple, (used 68000 in Macintosh)
• Result is PowerPC architecture
— Derived from the POWER architecture
— Superscalar RISC
— Apple Macintosh
— Embedded chip applications
PowerPC Family (1)
• 601:
— Quickly to market. 32-bit machine
• 603:
— Low-end desktop and portable
— 32-bit
— Comparable performance with 601
— Lower cost and more efficient implementation
• 604:
— Desktop and low-end servers
— 32-bit machine
— Much more advanced superscalar design
— Greater performance
• 620:
— High-end servers
— 64-bit architecture
PowerPC Family (2)
• 740/750:
—Also known as G3
—Two levels of cache on chip
• G4:
—Increases parallelism and internal speed
• G5:
—Improvements in parallelism and internal
speed
—64-bit organization
Internet Resources
• http://www.intel.com/
—Search for the Intel Museum
• http://www.ibm.com
• http://www.dec.com
• Charles Babbage Institute
• PowerPC
• Intel Developer Home

You might also like