NMOS Fundamentals
NMOS Fundamentals
NMOS Fundamentals
Professor A. K. Majumdar
MOS-SLIDES-AKM
MOS-SLIDES-AKM
MOS-SLIDES-AKM
MOS-SLIDES-AKM
MOS-SLIDES-AKM
IDS = n(VGS Vth VDS/2)VDS for VGS > Vth and VGS Vth VDS (linear) n = (nox/tox).W/L
where n is the mobility of electron, ox is the permittivity of the oxide material, and tox is the thickness of the oxide.
MOS-SLIDES-AKM 10
Velocity Saturation
Electron mobility cannot be considered to be constant with increasing electric field For short channel devices velocity saturates
MOS-SLIDES-AKM
13
where, Vdep is the voltage across the depletion layer at the oxide silicon boundary Channel inversion occurs when Vdep = 2F where the Fermi potential F = kT/q ln( NA/ ni) F -0.3 V for nMOS
MOS-SLIDES-AKM 15
Threshold Voltage
At strong inversion depletion layer charge density:
MOS-SLIDES-AKM
16
Threshold Voltage
Threshold voltage with non-zero substrate bias
V =V 0 + | 2F +V | | 2F | th th SB
MOS-SLIDES-AKM
17
ISe
q / kT ( AVGS + BVDS )
Slope factor: S - rate of decline of the current with respect to VGS below Vth in mv/ decade( 2.3 kT/Aq). With A =1, S evaluates to 60mV/decade (i.e. current drops by a factor of ten for a reduction of VGS by 60mv) usually A<1 and current falls at a reduced rate e.g 90mV/decade
MOS-SLIDES-AKM 19
p+
p+
V - dd
IDL = JS A
A JS(e
qVbias/kT
1)
MOS-SLIDES-AKM
20
MOSFET Capacitances
Oxide related (Gate ) capacitances: CGS, CGD, CGB Junction capacitances : CSB, CDB - due to source / drain diffusion regions in the substrate
MOS-SLIDES-AKM
22
Cutoff Linear Saturation CoxW Leff 0 0 Cox W Ld CoxW Ld + CoxW Leff CoxW Ld + 2/3 CoxW Leff Cox W Ld CoxW Ld + CoxW Leff CoxW Ld
MOS-SLIDES-AKM
23
NMOS Inverter
MOS-SLIDES-AKM
24
MOS-SLIDES-AKM
25
MOS-SLIDES-AKM
26
NMOS Inverter
The points of intersection of the pull up (for Vgs =0 ) and pull down curves give points on the transfer characteristics for the inverter As Vin exceeds VTpd (pull down transistor threshold) current will flow and Vout falls. Further increase in Vin will cause pull down transistor to be out of saturation and will behave as resistor Pull up device is initially resistive when pull down is turned on The point at which Vin = Vout is called Vinv Vinv can be shifted by variation of ratios of pull up and down resistances determined by the length to width ratio of the transistor.
MOS-SLIDES-AKM 27
NMOS Inverter
With NMOS Depletion Mode transistor High Dissipation: When VIN is high current flows through both the devices. Output switching: occurs when Vin exceeds Vthpd During fall 1 0 transition, pull up offers lower resistance to charge capacitive load. Degrades 0 value : Low output value is determined by pull down resistance.
MOS-SLIDES-AKM 28
CMOS INVERTER
MOS-SLIDES-AKM
29
CMOS Inverter
N Well VDD 2
PMOS
Contacts
In
Out Metal 1
NMOS
Polysilicon
NMOS GND
MOS-SLIDES-AKM
30
CMOS Fabrication
MOS-SLIDES-AKM
31
CMOS Fabrication
MOS-SLIDES-AKM
32
MOS-SLIDES-AKM
33
MOS-SLIDES-AKM
34
MOS-SLIDES-AKM
35
MOS-SLIDES-AKM
36
Linear (Vin Vthn Vout) : IDS = n(VGSn Vthn VDSn/2)VDSn Saturation ( Vthn Vin, Vout > Vin Vthn): IDS = n/2(VGSn Vthn)2
MOS-SLIDES-AKM 37
Linear (Vin VDD - |Vthp|) and (Vout >Vin +|Vthn|) : IDS = n(VGSp |Vthp| VDSp/2)VDSp Saturation (Vin VDD - |Vthp|) and (Vout Vin +|Vthp|) :IDS = p/2(VGSn |Vthp|)2
MOS-SLIDES-AKM
38
MOS-SLIDES-AKM
40
NOISE MARGINS
MOS-SLIDES-AKM
41
MOS-SLIDES-AKM
43
MOS-SLIDES-AKM
44
CMOS inverter equivalent circuit during high-to-low and low-to-high output transitions
MOS-SLIDES-AKM
45
46
MOS-SLIDES-AKM
47
Typical input - output and load capacitor current waveforms in a CMOS inverter
MOS-SLIDES-AKM
48
Leakage
Leaking diodes and transistors
MOS-SLIDES-AKM
49
E-charge = CL VDD2 E-discharge = CL VDD2 Average Power dissipation PAvg= 1/T CL VDD2 = CL VDD2 f
MOS-SLIDES-AKM 50
MOS-SLIDES-AKM
52
MOS-SLIDES-AKM
53
MOS-SLIDES-AKM
54
MOS-SLIDES-AKM
55
Technology Scaling
Full Scaling (Constant Field Scaling) Constant Voltage Scaling
Parameter Channel Length (L) Channel Width (W) Gate oxide thickness (tox) Supply voltage VDD Junction depth (Xj) Threshold voltage (Vth) Doping densities ND (NA) Full Scaling Constant-Voltage Scaling L/ L/ W/ W/ tox / tox / VDD / Xj / Vth/ ND (NA) VDD Xj / Vth ND (NA )
57
2 2
MOS-SLIDES-AKM
Cox Cg/
E IDS/ 2 P/ PD /
MOS-SLIDES-AKM
58
MOS-SLIDES-AKM
59
Threshold Reduction
By well engineering : changing doping profile in the channel (e.g halo doping). Aims to minimize leakage currents while maximizing linear and saturated currents. Multiple threshold CMOC circuits Variable threshold circuits
MOS-SLIDES-AKM
61
SPICE SIMULATION
Active/ passive devices used in the circuit under simulation are represented by suitable models. Uses Kirchoff laws for analysis of circuit behavior Circuit voltage and current signals are represented as continuous waveforms. During simulation continuous variables are approximated by floating point numbers with suitable increment steps specified. SPICE supports different modes of analysis of active circuits : DC analysis, transient analysis, small signal analysis, etc. Different versions of SPICE: PSPICE, HSPICE, T-SPICE
MOS-SLIDES-AKM 62
MOSFET MODEL
SPICE syntax for MOSFET device is .model <name> nmos | pmos level = 1| 2| 3 (parameters) Some of the parameters are gate oxide thickness (TOX), channel length (L), channel width (W), drain area (AD), source area (AS), drain resistance (RD), source resistance (RS), etc.
MOS-SLIDES-AKM 63
MODEL FILE
.model nmos nmos Level=1 + Vto=2.0 Kp=3.0E-5 Gamma=0.35 + Phi=0.65 Lambda=0.002 Tox=0.1u + Nsub=1.0E+15 Nss=1.0E+10 Ld=0.8u + Tpg=1.00 Uo=700.0 Af=1.2 + Kf=1.0E-26 Is=1.0E-15 Js=1.0E-8 + Pb=0.75 Cj=2.0E-4 Mj=0.5 + Cjsw=1.00E-9 Mjsw=0.33 Fc=0.5 + Cgbo=2.0E-10 Cgdo=4.00E-11 Cgso=4.00E-11 + Rd=10.0 Rs=10.0 Rsh=30.0 .model pmos pmos Level=1 + Vto=-2.0 Kp=3.0E-5 Gamma=0.35 + Phi=0.65 Lambda=0.002 Tox=0.1u + Nsub=1.0E+15 Nss=1.0E+10 Ld=0.8u + Tpg=1.00 Uo=700.0 Af=1.2 + Kf=1.0E-26 Is=1.0E-15 Js=1.0E-8 + Pb=0.75 Cj=2.0E-4 Mj=0.5 + Cjsw=1.00E-9 Mjsw=0.33 Fc=0.5 + Cgbo=2.0E-10 Cgdo=4.00E-11 Cgso=4.00E-11 + Rd=10.0 Rs=10.0 Rsh=30.0
MOS-SLIDES-AKM
64
DC ANALYSIS RESULT
MOS-SLIDES-AKM
66
AC ANALYSIS RESULT
MOS-SLIDES-AKM
67
Declaration of model file 2 .model nmos nmos Level=1 + Vto=1.0 Kp=3.0E-5 .model pmos pmos Level=1 + Vto=-1.0 Kp=3.0E-5 Gamma=0.35 Gamma=0.35
MOS-SLIDES-AKM
68
RESULT COMPARISON
REFERENCES
1. 2. 3. Rabaey J. M.,Chandrakasan A., and Nikolic B., Digital Integrated Circuits, Prentice- Hall of India, 2003. Kang, Sung-Mo and Leblebici, Y.: CMOS Digital Integrated Circuits, McGraw Hill Pub., 2003 Weste N.H.E and Eshraghlan, K: Principles of CMOS VLSI Design, Pearson Education, 2004.
MOS-SLIDES-AKM
70
MOS-SLIDES-AKM
71