Nothing Special   »   [go: up one dir, main page]

You seem to have javascript disabled. Please note that many of the page functionalities won't work as expected without javascript enabled.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (95)

Search Parameters:
Keywords = Bejan number

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 479 KiB  
Article
Thermal Stability and Entropy Generation Analysis for Combustible Third-Grade Fluid Flow Through a Slant Channel: A Spectral Study
by Kgomotshwana Frans Thosago, Peace Oluwalonimi Banjo, Lazarus Rundora and Samuel Olumide Adesanya
Appl. Sci. 2024, 14(24), 11491; https://doi.org/10.3390/app142411491 - 10 Dec 2024
Viewed by 345
Abstract
This paper addresses the mixed convective flow and heat transfer in combustible third-grade fluids through a slant porous channel filled with permeable materials. The fluid layer in contact with the channel wall is exposed to asymmetrical slippage and isothermal conditions. We employ the [...] Read more.
This paper addresses the mixed convective flow and heat transfer in combustible third-grade fluids through a slant porous channel filled with permeable materials. The fluid layer in contact with the channel wall is exposed to asymmetrical slippage and isothermal conditions. We employ the spectral Chebyshev collocation method (SCCM) to the coupled nonlinear flow governing equations and validate using the Shooting–Runge–Kutta method (RK4). Fluid velocity and temperature profiles, local entropy generation, and irreversibility ratio are computed and analyzed quantitatively and qualitatively. The convergence of the numerical method was demonstrated. The flow and thermal effects results, entropy generation rate, and Bejan number revealed fascinating manifestations that have profound implications in the design of thermo-mechanical systems. In particular, the thermal analysis results are pertinent to optimal system designs that achieve efficient energy utilization. Full article
(This article belongs to the Special Issue Research on Heat Transfer Analysis in Fluid Dynamics)
Show Figures

Figure 1

Figure 1
<p>Schematic diagram of the problem.</p>
Full article ">Figure 2
<p>Variation of the velocity profile with a variable viscosity parameter.</p>
Full article ">Figure 3
<p>Variation of the velocity profile with a viscous heating parameter.</p>
Full article ">Figure 4
<p>Variation of the velocity profile with the activation energy parameter.</p>
Full article ">Figure 5
<p>Variation of the velocity profile with the Grashof number.</p>
Full article ">Figure 6
<p>Variation of the velocity profile with the Frank-Kamenetskii parameter.</p>
Full article ">Figure 7
<p>Variation of the velocity profile with the third-grade material parameter.</p>
Full article ">Figure 8
<p>Variation of the shape factor parameter velocity profile with porous medium.</p>
Full article ">Figure 9
<p>Variation of the temperature distribution with a variable viscosity parameter.</p>
Full article ">Figure 10
<p>Variation of the temperature distribution with the viscous heating parameter.</p>
Full article ">Figure 11
<p>Variation of the temperature distribution with the activation energy parameter.</p>
Full article ">Figure 12
<p>Variation of the temperature distribution with the Grashof number.</p>
Full article ">Figure 13
<p>Variation of the temperature distribution with the Frank-Kamenetskii parameter.</p>
Full article ">Figure 14
<p>Variation of the temperature distribution with the third-grade material parameter.</p>
Full article ">Figure 15
<p>Variation of the temperature distribution with the porous-medium shape parameter.</p>
Full article ">Figure 16
<p>Variation of the entropy generation with a variable viscosity parameter.</p>
Full article ">Figure 17
<p>Variation of the entropy generation with the viscous heating parameter.</p>
Full article ">Figure 18
<p>Variation of the entropy generation with the activation energy parameter.</p>
Full article ">Figure 19
<p>Variation of the entropy generation with the Grashof number.</p>
Full article ">Figure 20
<p>Variation of the entropy generation with the Frank-Kamenetsikii parameter.</p>
Full article ">Figure 21
<p>Variation of the entropy generation with the third-grade material parameter.</p>
Full article ">Figure 22
<p>Variation of the entropy generation with the porous-medium shape parameter.</p>
Full article ">Figure 23
<p>Variation of the Bejan number with a variable viscosity parameter.</p>
Full article ">Figure 24
<p>Variation of the Bejan number with the viscous heating parameter.</p>
Full article ">Figure 25
<p>Variation of the Bejan number with the activation energy.</p>
Full article ">Figure 26
<p>Variation of the Bejan number with the Grashof number.</p>
Full article ">Figure 27
<p>Variation of the Bejan number with the Frank-Kamenetsikii parameter.</p>
Full article ">Figure 28
<p>Variation of the Bejan number with the third-grade material parameter.</p>
Full article ">Figure 29
<p>Variation of the Bejan number with the porous-medium shape factor parameter.</p>
Full article ">Figure 30
<p>Thermal criticality bifurcation plot.</p>
Full article ">
32 pages, 10224 KiB  
Article
Economic and Exergy Analysis of TiO2 + SiO2 Ethylene-Glycol-Based Hybrid Nanofluid in Plate Heat Exchange System of Solar Installation
by Sylwia Wciślik and Dawid Taler
Energies 2024, 17(13), 3107; https://doi.org/10.3390/en17133107 - 24 Jun 2024
Cited by 1 | Viewed by 743
Abstract
This paper concerns an economic and exergetic efficiency analysis of a plate heat exchanger placed in a solar installation with TiO2:SiO2/DI:EG nanofluid. This device separates the primary circuit—with the solar fluid—and the secondary circuit—in which domestic hot water flows [...] Read more.
This paper concerns an economic and exergetic efficiency analysis of a plate heat exchanger placed in a solar installation with TiO2:SiO2/DI:EG nanofluid. This device separates the primary circuit—with the solar fluid—and the secondary circuit—in which domestic hot water flows (DHW). The solar fluid is TiO2:SiO2 nanofluid with a concentration in the range of 0.5–1.5%vol. and T = 60 °C. Its flow is maintained at a constant level of 3 dm3/min. The heat-receiving medium is domestic water with an initial temperature of 30 °C. This work records a DHW flow of V˙DHW,in = 3–6(12) dm3/min. In order to calculate the exergy efficiency of the system, first, the total exergy destruction, the entropy generation number Ns, and the Bejan number Be are determined. Only for a comparable solar fluid flow, DHW V˙nf=V˙DHW 3 dm3/min, and concentrations of 0 and 0.5%vol. is there no significant improvement in the exergy efficiency. In other cases, the presence of nanoparticles significantly improves the heat transfer. The TiO2:SiO2/DI:EG nanofluid is even a 13 to 26% more effective working fluid than the traditional solar fluid; at Re = 329, the exergy efficiency is ηexergy = 37.29%, with a nanoparticle concentration of 0% and ηexergy(1.5%vol.) = 50.56%; with Re = 430, ηexergy(0%) = 57.03% and ηexergy(1.5%) = 65.9%. Full article
Show Figures

Figure 1

Figure 1
<p>Number of all publications registered in the Scopus database for the entry (<b>a</b>) ‘nanofluids’ + ‘heat exchangers’ from 1998 to 16 January 2024 and (<b>b</b>) ‘hybrid nanofluids’ + ‘heat exchangers’ from 1999 to 26 January 2024.</p>
Full article ">Figure 2
<p>Growth rate of publications registered in the Scopus database for the entry ‘nanofluids’/‘hybrid nanofluids’ + ‘heat exchangers’ from 2003 to 31 December 2023.</p>
Full article ">Figure 3
<p>The most common variations of plate heat exchangers (PHEs) and their corrugations: (<b>a</b>) washboard, (<b>b</b>) zigzag, (<b>c</b>) chevron or herringbone, (<b>d</b>) protrusions and depressions, (<b>e</b>) washboard with secondary corrugations, and (<b>f</b>) oblique washboard [<a href="#B8-energies-17-03107" class="html-bibr">8</a>,<a href="#B9-energies-17-03107" class="html-bibr">9</a>].</p>
Full article ">Figure 4
<p>Density of TiO<sub>2</sub> + SiO<sub>2</sub>/DI:EG hybrid nanofluid as a function of its concentration in comparison with literature [<a href="#B38-energies-17-03107" class="html-bibr">38</a>].</p>
Full article ">Figure 5
<p>Specific heat of TiO<sub>2</sub>:SiO<sub>2</sub>/DI:EG hybrid nanofluid as a function of the concentration concentration in comparison with literature [<a href="#B38-energies-17-03107" class="html-bibr">38</a>].</p>
Full article ">Figure 6
<p>Dynamic viscosity of TiO<sub>2</sub>:SiO<sub>2</sub>/DI:EG hybrid nanofluid versus its concentration in comparison with literature [<a href="#B38-energies-17-03107" class="html-bibr">38</a>,<a href="#B45-energies-17-03107" class="html-bibr">45</a>].</p>
Full article ">Figure 7
<p>Thermal conductivity of TiO<sub>2</sub>:SiO<sub>2</sub>/DI:EG hybrid nanofluid (<b>a</b>) versus its concentration in comparison with literature data and (<b>b</b>) with error analysis in comparison with literature [<a href="#B29-energies-17-03107" class="html-bibr">29</a>,<a href="#B38-energies-17-03107" class="html-bibr">38</a>].</p>
Full article ">Figure 8
<p>Initial conditions of the solar system and basic dimensions of a chevron-type PHE with its cross-sectional dimensions normal to the direction of troughs.</p>
Full article ">Figure 9
<p>Schematic test stand of a solar system with flat-plate collectors and TiO<sub>2</sub>:SiO<sub>2</sub>/DI:EG hybrid nanofluid as a working fluid: 1—flat-plate collectors, 2—pump unit, 3—a chevron-type PHE, 4—domestic hot water tank, 5—reversible valve, and 6—a pump.</p>
Full article ">Figure 10
<p>Analysis of a counter-flow heat exchanger.</p>
Full article ">Figure 11
<p>Nusselt number of (<b>a</b>) studied TiO<sub>2</sub>:SiO<sub>2</sub>/water ethylene glycol 60:40—hybrid nanofluid and (<b>b</b>,<b>c</b>) [<a href="#B36-energies-17-03107" class="html-bibr">36</a>,<a href="#B50-energies-17-03107" class="html-bibr">50</a>,<a href="#B60-energies-17-03107" class="html-bibr">60</a>] other nanofluids according to worldwide researchers versus low Reynold number.</p>
Full article ">Figure 12
<p>Nusselt number validation of DHW during the flow through PHE system versus Reynolds number. (<b>a</b>) own research; (<b>b</b>) in comparison with literature [<a href="#B49-energies-17-03107" class="html-bibr">49</a>].</p>
Full article ">Figure 13
<p>Reynolds number versus DHW flow.</p>
Full article ">Figure 14
<p>Friction factor calculated in present study in comparison with the literature (<b>a</b>) for deionized water and [<a href="#B50-energies-17-03107" class="html-bibr">50</a>] (<b>b</b>) nanofluids [<a href="#B50-energies-17-03107" class="html-bibr">50</a>,<a href="#B61-energies-17-03107" class="html-bibr">61</a>].</p>
Full article ">Figure 15
<p>Entropy generation number versus Reynolds numbers and volume concentrations of TiO<sub>2</sub>:SiO<sub>2</sub>/DI:EG hybrid nanofluid and different DHW flow from (<b>a</b>) 3 dm<sup>3</sup>/min, through (<b>b</b>) 4 dm<sup>3</sup>/min, (<b>c</b>) 5 dm<sup>3</sup>/min, (<b>d</b>) 6 dm<sup>3</sup>/min, up to (<b>e</b>) 12 dm<sup>3</sup>/min.</p>
Full article ">Figure 16
<p>Bejan number variation with volumetric flow of nanofluid and concentration.</p>
Full article ">Figure 17
<p>The exergy efficiency of PHE with working fluids of different concentration versus Reynolds number and DHW flow of (<b>a</b>) 3 dm<sup>3</sup>/min; (<b>b</b>) 4 dm<sup>3</sup>/min; (<b>c</b>) 5 dm<sup>3</sup>/min; (<b>d</b>) 6 dm<sup>3</sup>/min; (<b>e</b>) 12 dm<sup>3</sup>/min.</p>
Full article ">Figure 18
<p>The overall heat transfer coefficient of the hybrid nanofluid versus it % vol. concentration and DHW flow [<a href="#B14-energies-17-03107" class="html-bibr">14</a>].</p>
Full article ">Figure 19
<p>The heat transfer coefficient of TiO<sub>2</sub>:SiO<sub>2</sub>/DI:EG hybrid nanofluid with Reynolds number.</p>
Full article ">Figure 20
<p>The effectiveness of PHE versus Reynolds number and volume concentrations of TiO<sub>2</sub>:SiO<sub>2</sub>/DI:EG hybrid nanofluid and different DHW flow from (<b>a</b>) 3 dm<sup>3</sup>/min, through (<b>b</b>) 4 dm<sup>3</sup>/min, (<b>c</b>) 5 dm<sup>3</sup>/min, (<b>d</b>) 6 dm<sup>3</sup>/min, up to (<b>e</b>) 12 dm<sup>3</sup>/min.</p>
Full article ">Figure 21
<p>The comparison of effectiveness of PHE with available literature data [<a href="#B14-energies-17-03107" class="html-bibr">14</a>].</p>
Full article ">Figure 22
<p>The number of transfer units of PHE using TiO<sub>2</sub>:SiO<sub>2</sub>/DI:EG hybrid nanofluid hybrid nanofluid as a function of Reynolds number and different DHW flow from (<b>a</b>) 3 dm<sup>3</sup>/min, through (<b>b</b>) 4 dm<sup>3</sup>/min, (<b>c</b>) 5 dm<sup>3</sup>/min, (<b>d</b>) 6 dm<sup>3</sup>/min, up to (<b>e</b>) 12 dm<sup>3</sup>/min.</p>
Full article ">Figure 23
<p>An average number of transfer units of PHE using TiO<sub>2</sub>:SiO<sub>2</sub>/DI:EG hybrid nanofluid as a function of DHW and Reynolds number [<a href="#B2-energies-17-03107" class="html-bibr">2</a>].</p>
Full article ">Figure 24
<p><span class="html-italic">THPI</span> of TiO<sub>2</sub>:SiO<sub>2</sub>/DI:EG hybrid nanofluid at different <span class="html-italic">Re</span> and concentration.</p>
Full article ">Figure 25
<p>Heat transfer enhancement ratios of TiO<sub>2</sub>:SiO<sub>2</sub>/DI:EG hybrid nanofluid versus Reynolds number.</p>
Full article ">Figure 26
<p>The pumping power requirement of TiO<sub>2</sub>:SiO<sub>2</sub>/DI:EG hybrid nanofluid versus its concentration.</p>
Full article ">
32 pages, 6823 KiB  
Article
Numerical and Machine Learning Approach for Fe3O4-Au/Blood Hybrid Nanofluid Flow in a Melting/Non-Melting Heat Transfer Surface with Entropy Generation
by Shaik Jakeer, Sathishkumar Veerappampalayam Easwaramoorthy, Seethi Reddy Reddisekhar Reddy and Hayath Thameem Basha
Symmetry 2023, 15(8), 1503; https://doi.org/10.3390/sym15081503 - 28 Jul 2023
Cited by 4 | Viewed by 1689
Abstract
The physiological system loses thermal energy to nearby cells via the bloodstream. Such energy loss can result in sudden death, severe hypothermia, anemia, high or low blood pressure, and heart surgery. Gold and iron oxide nanoparticles are significant in cancer treatment. Thus, there [...] Read more.
The physiological system loses thermal energy to nearby cells via the bloodstream. Such energy loss can result in sudden death, severe hypothermia, anemia, high or low blood pressure, and heart surgery. Gold and iron oxide nanoparticles are significant in cancer treatment. Thus, there is a growing interest among biomedical engineers and clinicians in the study of entropy production as a means of quantifying energy dissipation in biological systems. The present study provides a novel implementation of an intelligent numerical computing solver based on an MLP feed-forward backpropagation ANN with the Levenberg–Marquard algorithm to interpret the Cattaneo–Christov heat flux model and demonstrate the effect of entropy production and melting heat transfer on the ferrohydrodynamic flow of the Fe3O4-Au/blood Powell–Eyring hybrid nanofluid. Similarity transformation studies symmetry and simplifies PDEs to ODEs. The MATLAB program bvp4c is used to solve the nonlinear coupled ordinary differential equations. Graphs illustrate the impact of a wide range of physical factors on variables, including velocity, temperature, entropy generation, local skin friction coefficient, and heat transfer rate. The artificial neural network model engages in a process of data selection, network construction, training, and evaluation through the use of mean square error. The ferromagnetic parameter, porosity parameter, distance from origin to magnetic dipole, inertia coefficient, dimensionless Curie temperature ratio, fluid parameters, Eckert number, thermal radiation, heat source, thermal relaxation parameter, and latent heat of the fluid parameter are taken as input data, and the skin friction coefficient and heat transfer rate are taken as output data. A total of sixty data collections were used for the purpose of testing, certifying, and training the ANN model. From the results, it is found that the fluid temperature declines when the thermal relaxation parameter is improved. The latent heat of the fluid parameter impacts the entropy generation and Bejan number. There is a less significant impact on the heat transfer rate of the hybrid nanofluid over the sheet on the melting heat transfer parameter. Full article
(This article belongs to the Special Issue Advances in Heat and Mass Transfer with Symmetry)
Show Figures

Figure 1

Figure 1
<p>Coordinate system and model.</p>
Full article ">Figure 2
<p>Diagrammatic representation of neural network backpropagation.</p>
Full article ">Figure 3
<p>Schematic representation of a multi-layer ANN model.</p>
Full article ">Figure 4
<p>Pictorial illustration of skin friction.</p>
Full article ">Figure 5
<p>Pictorial illustration of the Nusselt number.</p>
Full article ">Figure 6
<p>Effects of <math display="inline"><semantics><mrow><msub><mi>β</mi><mi>f</mi></msub></mrow></semantics></math> on <math display="inline"><semantics><mrow><msup><mi>f</mi><mo>′</mo></msup><mfenced><mi>η</mi></mfenced></mrow></semantics></math>.</p>
Full article ">Figure 7
<p>Effects of <math display="inline"><semantics><mo>∈</mo></semantics></math> on <math display="inline"><semantics><mrow><msup><mi>f</mi><mo>′</mo></msup><mfenced><mi>η</mi></mfenced></mrow></semantics></math>.</p>
Full article ">Figure 8
<p>Effects of <math display="inline"><semantics><mrow><msub><mi>F</mi><mi>s</mi></msub></mrow></semantics></math> on <math display="inline"><semantics><mrow><msup><mi>f</mi><mo>′</mo></msup><mfenced><mi>η</mi></mfenced></mrow></semantics></math>.</p>
Full article ">Figure 9
<p>Effects of <math display="inline"><semantics><mi>K</mi></semantics></math> on <math display="inline"><semantics><mrow><msup><mi>f</mi><mo>′</mo></msup><mfenced><mi>η</mi></mfenced></mrow></semantics></math>.</p>
Full article ">Figure 10
<p>Effects of <math display="inline"><semantics><mi>Q</mi></semantics></math> on <math display="inline"><semantics><mrow><msub><mi>θ</mi><mn>1</mn></msub><mfenced><mi>η</mi></mfenced></mrow></semantics></math>.</p>
Full article ">Figure 11
<p>Effects of <math display="inline"><semantics><mi>ϕ</mi></semantics></math> on <math display="inline"><semantics><mrow><msub><mi>θ</mi><mn>1</mn></msub><mfenced><mi>η</mi></mfenced></mrow></semantics></math>.</p>
Full article ">Figure 12
<p>Effects of <math display="inline"><semantics><mi>λ</mi></semantics></math> on <math display="inline"><semantics><mrow><msub><mi>θ</mi><mn>1</mn></msub><mfenced><mi>η</mi></mfenced></mrow></semantics></math>.</p>
Full article ">Figure 13
<p>Effects of <math display="inline"><semantics><mrow><mi>E</mi><mi>c</mi></mrow></semantics></math> on <math display="inline"><semantics><mrow><msub><mi>θ</mi><mn>1</mn></msub><mfenced><mi>η</mi></mfenced></mrow></semantics></math>.</p>
Full article ">Figure 14
<p>Effects of <math display="inline"><semantics><mrow><msub><mi>β</mi><mi>e</mi></msub></mrow></semantics></math> on <math display="inline"><semantics><mrow><msub><mi>θ</mi><mn>1</mn></msub><mfenced><mi>η</mi></mfenced></mrow></semantics></math>.</p>
Full article ">Figure 15
<p>Effects of <math display="inline"><semantics><mi>R</mi></semantics></math> on <math display="inline"><semantics><mrow><msub><mi>θ</mi><mn>1</mn></msub><mfenced><mi>η</mi></mfenced></mrow></semantics></math>.</p>
Full article ">Figure 16
<p>Effects of <math display="inline"><semantics><mi>λ</mi></semantics></math> on <math display="inline"><semantics><mrow><msub><mi>N</mi><mi>G</mi></msub></mrow></semantics></math>.</p>
Full article ">Figure 17
<p>Effects of <math display="inline"><semantics><mi>ε</mi></semantics></math> on <math display="inline"><semantics><mrow><msub><mi>N</mi><mi>G</mi></msub></mrow></semantics></math>.</p>
Full article ">Figure 18
<p>Effects of <math display="inline"><semantics><mi>R</mi></semantics></math> on <math display="inline"><semantics><mrow><msub><mi>N</mi><mi>G</mi></msub></mrow></semantics></math>.</p>
Full article ">Figure 19
<p>Effects of <math display="inline"><semantics><mi>λ</mi></semantics></math> on <math display="inline"><semantics><mrow><mi>B</mi><mi>e</mi></mrow></semantics></math>.</p>
Full article ">Figure 20
<p>Effects of <math display="inline"><semantics><mi>ε</mi></semantics></math> on <math display="inline"><semantics><mrow><mi>B</mi><mi>e</mi></mrow></semantics></math>.</p>
Full article ">Figure 21
<p>Effects of <math display="inline"><semantics><mi>R</mi></semantics></math> on <math display="inline"><semantics><mrow><mi>B</mi><mi>e</mi></mrow></semantics></math>.</p>
Full article ">Figure 22
<p>Effects of <math display="inline"><semantics><mrow><mi>M</mi><mi>e</mi><mo> </mo><mo> </mo><mo> </mo><mi>and</mi><mo> </mo><mo> </mo><mi>E</mi><mi>c</mi></mrow></semantics></math> on <math display="inline"><semantics><mrow><msub><mi>C</mi><mi>f</mi></msub><msubsup><mrow><mi>Re</mi></mrow><mi>x</mi><mrow><mfrac bevelled="true"><mrow><mfrac bevelled="true"><mn>1</mn><mn>2</mn></mfrac></mrow><mn>2</mn></mfrac></mrow></msubsup></mrow></semantics></math>.</p>
Full article ">Figure 23
<p>Effects of <math display="inline"><semantics><mrow><mi>M</mi><mi>e</mi><mo> </mo><mo> </mo><mo> </mo><mi>and</mi><mo> </mo><mo> </mo><mi>ε</mi></mrow></semantics></math> on <math display="inline"><semantics><mrow><msub><mi>C</mi><mi>f</mi></msub><msubsup><mrow><mi>Re</mi></mrow><mi>x</mi><mrow><mfrac bevelled="true"><mrow><mfrac bevelled="true"><mn>1</mn><mn>2</mn></mfrac></mrow><mn>2</mn></mfrac></mrow></msubsup></mrow></semantics></math>.</p>
Full article ">Figure 24
<p>Effects of <math display="inline"><semantics><mrow><mi>M</mi><mi>e</mi><mo> </mo><mo> </mo><mo> </mo><mi>and</mi><mo> </mo><mo> </mo><mi>E</mi><mi>c</mi></mrow></semantics></math> on <math display="inline"><semantics><mrow><mo>−</mo><mi>N</mi><msub><mi>u</mi><mi>x</mi></msub><msubsup><mrow><mi>Re</mi></mrow><mi>x</mi><mrow><mo>−</mo><mfrac bevelled="true"><mn>1</mn><mn>2</mn></mfrac></mrow></msubsup><msup><mi>x</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math>.</p>
Full article ">Figure 25
<p>Effects of <math display="inline"><semantics><mrow><mi>M</mi><mi>e</mi><mo> </mo><mo> </mo><mo> </mo><mi>and</mi><mo> </mo><mo> </mo><mi>ϕ</mi></mrow></semantics></math> on <math display="inline"><semantics><mrow><mo>−</mo><mi>N</mi><msub><mi>u</mi><mi>x</mi></msub><msubsup><mrow><mi>Re</mi></mrow><mi>x</mi><mrow><mo>−</mo><mfrac bevelled="true"><mn>1</mn><mn>2</mn></mfrac></mrow></msubsup><msup><mi>x</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math>.</p>
Full article ">Figure 26
<p>Effects of <math display="inline"><semantics><mrow><mi>M</mi><mi>e</mi><mo> </mo><mo> </mo><mo> </mo><mi>and</mi><mo> </mo><mo> </mo><msub><mi>β</mi><mi>e</mi></msub></mrow></semantics></math> on <math display="inline"><semantics><mrow><mo>−</mo><mi>N</mi><msub><mi>u</mi><mi>x</mi></msub><msubsup><mrow><mi>Re</mi></mrow><mi>x</mi><mrow><mo>−</mo><mfrac bevelled="true"><mn>1</mn><mn>2</mn></mfrac></mrow></msubsup><msup><mi>x</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math>.</p>
Full article ">
25 pages, 12330 KiB  
Article
Entropy Production Analysis in an Octagonal Cavity with an Inner Cold Cylinder: A Thermodynamic Aspect
by Jiaul Haque Saboj, Preetom Nag, Goutam Saha and Suvash C. Saha
Energies 2023, 16(14), 5487; https://doi.org/10.3390/en16145487 - 19 Jul 2023
Cited by 10 | Viewed by 2604
Abstract
Understanding fluid dynamics and heat transfer is crucial for designing and improving various engineering systems. This study examines the heat transfer characteristics of a buoyancy-driven natural convection flow that is laminar and incompressible. The investigation also considers entropy generation (Egen) [...] Read more.
Understanding fluid dynamics and heat transfer is crucial for designing and improving various engineering systems. This study examines the heat transfer characteristics of a buoyancy-driven natural convection flow that is laminar and incompressible. The investigation also considers entropy generation (Egen) within an octagonal cavity subject to a cold cylinder inside the cavity. The dimensionless version of the governing equations and their corresponding boundary conditions have been solved numerically using the finite element method, employing triangular mesh elements for discretization. The findings indicated that incorporating a cold cylinder inside the octagonal cavity resulted in a higher heat transfer (HT) rate than in the absence of a cold cylinder. Furthermore, using the heat flux condition led to a higher average Nusselt number (Nuavg) and a lower Bejan number (Be) than the isothermal boundary condition. The results also showed that HT and Egen were more significant in the Al2O3-H2O nanofluid than the basic fluids such as air and water, and HT increased as χ increased. The current research demonstrates that employing the heat flux condition and incorporating nanoparticles can enhance the rate of HT and Egen. Furthermore, the thermo-fluid system should be operated at low Ra to achieve greater HT effectiveness for nanofluid concerns. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

Figure 1
<p>Illustration depicting the model’s structure.</p>
Full article ">Figure 2
<p>Comparison of the present streamlines and isotherms profiles with Saha et al. [<a href="#B35-energies-16-05487" class="html-bibr">35</a>] for (<b>a</b>) <math display="inline"><semantics><mrow><mi>R</mi><mi>a</mi></mrow></semantics></math> = 10<sup>5</sup> and (<b>b</b>) <math display="inline"><semantics><mrow><mi>R</mi><mi>a</mi></mrow></semantics></math> = 10<sup>6</sup> with <math display="inline"><semantics><mrow><mi>P</mi><mi>r</mi></mrow></semantics></math> = 0.71.</p>
Full article ">Figure 3
<p>Comparison of the Isotherm between the present results, Mussa et al. [<a href="#B37-energies-16-05487" class="html-bibr">37</a>] and the experimental results of Corvaro et al. [<a href="#B38-energies-16-05487" class="html-bibr">38</a>] for <math display="inline"><semantics><mrow><mi>R</mi><mi>a</mi></mrow></semantics></math> = 2.02 × 10<sup>5</sup>.</p>
Full article ">Figure 4
<p>Comparison of the <span class="html-italic">S<sub>l,h</sub></span>, <span class="html-italic">S<sub>l,f</sub></span>, <span class="html-italic">E<sub>l,t</sub></span>, and <span class="html-italic">Be<sub>l</sub></span> between the (<b>a</b>) Ilis et al. [<a href="#B36-energies-16-05487" class="html-bibr">36</a>] and the (<b>b</b>) present results.</p>
Full article ">Figure 5
<p>Comparison of the average Nu obtained from the present numerical simulation with the experimental results of Ho et al. [<a href="#B42-energies-16-05487" class="html-bibr">42</a>] for <math display="inline"><semantics><mrow><mi>χ</mi><mo>=</mo><mn>3</mn><mo>%</mo></mrow></semantics></math> and <math display="inline"><semantics><mrow><mi>χ</mi><mo>=</mo><mn>4</mn><mo>%</mo></mrow></semantics></math>.</p>
Full article ">Figure 6
<p>Distribution of streamlines and isotherms for (<b>a</b>) <math display="inline"><semantics><mrow><mi>R</mi><mi>a</mi></mrow></semantics></math> = 10<sup>3</sup>, (<b>b</b>) <math display="inline"><semantics><mrow><mi>R</mi><mi>a</mi></mrow></semantics></math> = 10<sup>4</sup>, (<b>c</b>) <math display="inline"><semantics><mrow><mi>R</mi><mi>a</mi></mrow></semantics></math> = 10<sup>5</sup>, and (<b>d</b>) <math display="inline"><semantics><mrow><mi>R</mi><mi>a</mi></mrow></semantics></math> = 10<sup>6</sup> at <math display="inline"><semantics><mrow><mi>P</mi><mi>r</mi></mrow></semantics></math> = 0.71 for air and <math display="inline"><semantics><mrow><mi>P</mi><mi>r</mi></mrow></semantics></math> = 7.0 for water using IBC.</p>
Full article ">Figure 7
<p>Distribution of local <span class="html-italic">E<sub>gen</sub></span> due to temperature gradient, viscous dissipation, local <span class="html-italic">E<sub>gen</sub></span>, and local <span class="html-italic">B<sub>el</sub></span> for (<b>a</b>) air and (<b>b</b>) water while <math display="inline"><semantics><mrow><mi>R</mi><mi>a</mi><mo> </mo></mrow></semantics></math>= 10<sup>6</sup> using IBC.</p>
Full article ">Figure 8
<p>Distribution of streamlines, isotherms, <span class="html-italic">E<sub>gen</sub></span> due to temperature gradient, viscous dissipation, local <span class="html-italic">E<sub>gen</sub></span>, and local <math display="inline"><semantics><mrow><mi>B</mi><mi>e</mi><mo> </mo></mrow></semantics></math> while <math display="inline"><semantics><mrow><mi>R</mi><mi>a</mi><mo> </mo></mrow></semantics></math>= 10<sup>6</sup> using HFBC for (<b>a</b>) air and (<b>b</b>) water.</p>
Full article ">Figure 9
<p>Variation of streamlines, isotherms, local <span class="html-italic">E<sub>gen</sub></span><sub>,</sub> and <span class="html-italic">Be<sub>l</sub></span> for (<b>a</b>) <math display="inline"><semantics><mrow><mi>R</mi><mi>a</mi></mrow></semantics></math> = 10<sup>3</sup>, (<b>b</b>) <math display="inline"><semantics><mrow><mi>R</mi><mi>a</mi></mrow></semantics></math> = 10<sup>4</sup>, (<b>c</b>) <math display="inline"><semantics><mrow><mo> </mo><mi>R</mi><mi>a</mi><mo> </mo><mtext> </mtext></mrow></semantics></math>= 10<sup>5</sup>, and (<b>d</b>) <math display="inline"><semantics><mrow><mi>R</mi><mi>a</mi></mrow></semantics></math> = 10<sup>6</sup> at <math display="inline"><semantics><mi>χ</mi></semantics></math> = 5%.</p>
Full article ">Figure 9 Cont.
<p>Variation of streamlines, isotherms, local <span class="html-italic">E<sub>gen</sub></span><sub>,</sub> and <span class="html-italic">Be<sub>l</sub></span> for (<b>a</b>) <math display="inline"><semantics><mrow><mi>R</mi><mi>a</mi></mrow></semantics></math> = 10<sup>3</sup>, (<b>b</b>) <math display="inline"><semantics><mrow><mi>R</mi><mi>a</mi></mrow></semantics></math> = 10<sup>4</sup>, (<b>c</b>) <math display="inline"><semantics><mrow><mo> </mo><mi>R</mi><mi>a</mi><mo> </mo><mtext> </mtext></mrow></semantics></math>= 10<sup>5</sup>, and (<b>d</b>) <math display="inline"><semantics><mrow><mi>R</mi><mi>a</mi></mrow></semantics></math> = 10<sup>6</sup> at <math display="inline"><semantics><mi>χ</mi></semantics></math> = 5%.</p>
Full article ">Figure 10
<p>Distribution of <span class="html-italic">E<sub>gen</sub></span> due to temperature gradient, viscous dissipation, local <span class="html-italic">E<sub>gen</sub></span>, and local <math display="inline"><semantics><mrow><mi>B</mi><mi>e</mi></mrow></semantics></math> for (<b>a</b>) <math display="inline"><semantics><mrow><mi>χ</mi><mo>=</mo><mn>1</mn><mo>%</mo><mo>,</mo><mtext> </mtext><mfenced><mi mathvariant="bold">b</mi></mfenced><mrow><mtext> </mtext><mi>χ</mi></mrow><mo>=</mo><mn>3</mn><mo>%</mo><mo>,</mo><mrow><mtext> </mtext><mi>and</mi></mrow><mfenced><mi mathvariant="bold">c</mi></mfenced><mrow><mtext> </mtext><mi>χ</mi></mrow><mo>=</mo><mn>5</mn><mo>%</mo><mo>,</mo><mtext> </mtext></mrow></semantics></math>at <math display="inline"><semantics><mrow><mi>R</mi><mi>a</mi></mrow></semantics></math> = 10<sup>6</sup>.</p>
Full article ">Figure 10 Cont.
<p>Distribution of <span class="html-italic">E<sub>gen</sub></span> due to temperature gradient, viscous dissipation, local <span class="html-italic">E<sub>gen</sub></span>, and local <math display="inline"><semantics><mrow><mi>B</mi><mi>e</mi></mrow></semantics></math> for (<b>a</b>) <math display="inline"><semantics><mrow><mi>χ</mi><mo>=</mo><mn>1</mn><mo>%</mo><mo>,</mo><mtext> </mtext><mfenced><mi mathvariant="bold">b</mi></mfenced><mrow><mtext> </mtext><mi>χ</mi></mrow><mo>=</mo><mn>3</mn><mo>%</mo><mo>,</mo><mrow><mtext> </mtext><mi>and</mi></mrow><mfenced><mi mathvariant="bold">c</mi></mfenced><mrow><mtext> </mtext><mi>χ</mi></mrow><mo>=</mo><mn>5</mn><mo>%</mo><mo>,</mo><mtext> </mtext></mrow></semantics></math>at <math display="inline"><semantics><mrow><mi>R</mi><mi>a</mi></mrow></semantics></math> = 10<sup>6</sup>.</p>
Full article ">Figure 11
<p>Comparison between actual values and predicted values for <span class="html-italic">Nu<sub>avg</sub></span>.</p>
Full article ">
39 pages, 6645 KiB  
Article
MHD Mixed Convection of Non-Newtonian Bingham Nanofluid in a Wavy Enclosure with Temperature-Dependent Thermophysical Properties: A Sensitivity Analysis by Response Surface Methodology
by Amzad Hossain, Md. Mamun Molla, Md. Kamrujjaman, Muhammad Mohebujjaman and Suvash C. Saha
Energies 2023, 16(11), 4408; https://doi.org/10.3390/en16114408 - 30 May 2023
Cited by 24 | Viewed by 2771
Abstract
The numerical investigation of magneto-hydrodynamic (MHD) mixed convection flow and entropy formation of non-Newtonian Bingham fluid in a lid-driven wavy square cavity filled with nanofluid was investigated by the finite volume method (FVM). The numerical data-based temperature and nanoparticle size-dependent correlations for the [...] Read more.
The numerical investigation of magneto-hydrodynamic (MHD) mixed convection flow and entropy formation of non-Newtonian Bingham fluid in a lid-driven wavy square cavity filled with nanofluid was investigated by the finite volume method (FVM). The numerical data-based temperature and nanoparticle size-dependent correlations for the Al2O3-water nanofluids are used here. The physical model is a two-dimensional wavy square cavity with thermally adiabatic horizontal boundaries, while the right and left vertical walls maintain a temperature of TC and TH, respectively. The top wall has a steady speed of u=u0. Pertinent non-dimensional parameters such as Reynolds number (Re=10,100,200,400), Hartmann number (Ha=0,10,20), Bingham number (Bn=0,2,5,10,50,100,200), nanoparticle volume fraction (ϕ=0,0.02,0.04), and Prandtl number (Pr=6.2) have been simulated numerically. The Richardson number Ri is calculated by combining the values of Re with a fixed value of Gr, which is the governing factor for the mixed convective flow. Using the Response Surface Methodology (RSM) method, the correlation equations are obtained using the input parameters for the average Nusselt number (Nu¯), total entropy generation (Es)t, and Bejan number (Beavg). The interactive effects of the pertinent parameters on the heat transfer rate are presented by plotting the response surfaces and the contours obtained from the RSM. The sensitivity of the output response to the input parameters is also tested. According to the findings, the mean Nusselt numbers (Nu¯) drop when Ha and Bn are increased and grow when Re and ϕ are augmented. It is found that (Es)t is reduced by raising Ha, but (Es)t rises with the augmentation of ϕ and Re. It is also found that the ϕ and Re numbers have a positive sensitivity to the Nu¯, while the sensitivity of the Ha and Bn numbers is negative. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

Figure 1
<p>(<b>a</b>) Schematic model and coordinate system, (<b>b</b>) Mesh Composition.</p>
Full article ">Figure 2
<p>A control volumne of the computational domain.</p>
Full article ">Figure 3
<p>Comparison of present results with Syrakos et al. [<a href="#B35-energies-16-04408" class="html-bibr">35</a>] in terms of <span class="html-italic">u</span>-velocity along vertical centerline at <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>1000</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>n</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 4
<p><span class="html-italic">u</span>-Velocity distributions for various <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>n</mi> </mrow> </semantics></math> when (<b>A</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, (<b>B</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math>, (<b>C</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>200</mn> </mrow> </semantics></math>, (<b>D</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>400</mn> </mrow> </semantics></math>, and (<b>a</b>–<b>d</b>) <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, (<b>e</b>–<b>h</b>) <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math> and (<b>i</b>–<b>l</b>) <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math> while <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>=</mo> <mn>0.04</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 5
<p>Temperature distributions for various <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>n</mi> </mrow> </semantics></math> when (<b>A</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, (<b>B</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math>, (<b>C</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>200</mn> </mrow> </semantics></math>, (<b>D</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>400</mn> </mrow> </semantics></math> and Hartmann number (<b>a</b>–<b>d</b>) <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, (<b>e</b>–<b>h</b>) <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math> and (<b>i</b>–<b>l</b>) <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math> while <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>=</mo> <mn>0.04</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 6
<p>Temperature distributions for various <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> </mrow> </semantics></math> at (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>n</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>n</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>, (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>n</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, (<b>e</b>) <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>n</mi> <mo>=</mo> <mn>50</mn> </mrow> </semantics></math>, and (<b>f</b>) <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>n</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math>; and <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>0.04</mn> </mrow> </semantics></math> while <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 7
<p>Streamlines for (<b>A</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math> (<b>B</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math> (<b>C</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>200</mn> </mrow> </semantics></math> (<b>D</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>400</mn> </mrow> </semantics></math>, and (<b>a</b>–<b>d</b>) <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, (<b>e</b>–<b>h</b>) <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math> and (<b>i</b>–<b>l</b>) <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math> while <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>0.04</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 8
<p>Streamlines (<b>A</b>) <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> (<b>B</b>) <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>n</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, (<b>C</b>) <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>n</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>, (<b>D</b>) <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>n</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, and (<b>E</b>) <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>n</mi> <mo>=</mo> <mn>50</mn> </mrow> </semantics></math>; where (<b>a</b>–<b>e</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, (<b>f</b>–<b>j</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math>, (<b>k</b>–<b>o</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>200</mn> </mrow> </semantics></math>, and (<b>p</b>–<b>t</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>400</mn> </mrow> </semantics></math>, while (<math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>0.04</mn> </mrow> </semantics></math>), and <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 9
<p>Isotherms for (<b>A</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math> (<b>B</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math> (<b>C</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>200</mn> </mrow> </semantics></math> (<b>D</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>400</mn> </mrow> </semantics></math>, and (<b>a</b>–<b>d</b>) <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, (<b>e</b>–<b>h</b>) <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math> and (<b>i</b>–<b>l</b>) <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math> while <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>0.04</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 10
<p>Isotherms for (<b>A</b>) <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> (<b>B</b>) <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>n</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, (<b>C</b>) <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>n</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>, (<b>D</b>) <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>n</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, and (<b>E</b>) <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>n</mi> <mo>=</mo> <mn>50</mn> </mrow> </semantics></math>; where (<b>a</b>–<b>e</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, (<b>f</b>–<b>j</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math>, (<b>k</b>–<b>o</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>200</mn> </mrow> </semantics></math>, and (<b>p</b>–<b>t</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>400</mn> </mrow> </semantics></math>, while (<math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>0.04</mn> </mrow> </semantics></math>), and <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 11
<p>Unyielded region for (<b>a</b>,<b>e</b>) <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, (<b>b</b>,<b>f</b>) <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>n</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>, (<b>c</b>,<b>g</b>) <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>n</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, and (<b>d,h</b>) <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>n</mi> <mo>=</mo> <mn>50</mn> </mrow> </semantics></math>, while (<b>A</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>200</mn> </mrow> </semantics></math>, (<b>B</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>400</mn> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>=</mo> <mn>0.04</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 12
<p>Local Nusselt number (<math display="inline"><semantics> <mrow> <mi>N</mi> <mi>u</mi> </mrow> </semantics></math>) for (<b>a</b>–<b>d</b>) <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, (<b>e</b>–<b>h</b>) <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, (<b>i</b>–<b>l</b>) <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1.4</mn> </mrow> </semantics></math> and (<b>A</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, (<b>B</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math>, (<b>C</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>200</mn> </mrow> </semantics></math>, and (<b>D</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>400</mn> </mrow> </semantics></math> across different <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>n</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>50</mn> <mo>,</mo> <mo> </mo> <mi>and</mi> <mo> </mo> <mn>100</mn> </mrow> </semantics></math> while <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> (solid line), and <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>=</mo> <mn>0.04</mn> </mrow> </semantics></math> (dashed line).</p>
Full article ">Figure 13
<p>Average Nusselt number (<math display="inline"><semantics> <mover> <mrow> <mi>N</mi> <mi>u</mi> </mrow> <mo>¯</mo> </mover> </semantics></math>) vs. <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>n</mi> </mrow> </semantics></math> for (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>200</mn> </mrow> </semantics></math>, and (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>400</mn> </mrow> </semantics></math> across different <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>10</mn> <mo>,</mo> <mn>20</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>0.04</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 14
<p>Average Nusselt number (<math display="inline"><semantics> <mover> <mrow> <mi>N</mi> <mi>u</mi> </mrow> <mo>¯</mo> </mover> </semantics></math>) for the different <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> </mrow> </semantics></math> at (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>n</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>n</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>, (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>n</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, (<b>e</b>) <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>n</mi> <mo>=</mo> <mn>50</mn> </mrow> </semantics></math>, and (<b>f</b>) <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>n</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math> across different <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>10</mn> <mo>,</mo> <mn>20</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>0.04</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 15
<p>Response surface (2D and 3D) of <math display="inline"><semantics> <msub> <mrow> <mo>(</mo> <msub> <mi>E</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> <mi>t</mi> </msub> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> </mrow> </semantics></math> vs. <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> </mrow> </semantics></math>, where (<b>a</b>,<b>b</b>) <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, (<b>c</b>,<b>d</b>) <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>=</mo> <mn>0.02</mn> </mrow> </semantics></math>, and (<b>e</b>,<b>f</b>) <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>=</mo> <mn>0.04</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 16
<p>Response surface (2D and 3D) of <math display="inline"><semantics> <mover> <mrow> <mi>N</mi> <mi>u</mi> </mrow> <mo>¯</mo> </mover> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> </mrow> </semantics></math> vs. <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> </mrow> </semantics></math>, where (<b>a</b>,<b>b</b>) <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, (<b>c</b>,<b>d</b>) <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>n</mi> <mo>=</mo> <mn>50</mn> </mrow> </semantics></math>, and (<b>e</b>,<b>f</b>) <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>n</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 17
<p>Response surface (2D and 3D) of <math display="inline"><semantics> <mover> <mrow> <mi>N</mi> <mi>u</mi> </mrow> <mo>¯</mo> </mover> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> </mrow> </semantics></math> vs. <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>n</mi> </mrow> </semantics></math>, where (<b>a</b>,<b>b</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, (<b>c</b>,<b>d</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>200</mn> </mrow> </semantics></math>, and (<b>e</b>,<b>f</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>400</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 18
<p>Response surface (2D and 3D) of <math display="inline"><semantics> <mover> <mrow> <mi>N</mi> <mi>u</mi> </mrow> <mo>¯</mo> </mover> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> </mrow> </semantics></math> vs. <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> </mrow> </semantics></math>, where (<b>a</b>,<b>b</b>) <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, (<b>c</b>,<b>d</b>) <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>=</mo> <mn>0.02</mn> </mrow> </semantics></math>, and (<b>e</b>,<b>f</b>) <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>=</mo> <mn>0.04</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 19
<p>The residual plots for the <math display="inline"><semantics> <mover> <mrow> <mi>N</mi> <mi>u</mi> </mrow> <mo>¯</mo> </mover> </semantics></math>, (<b>a</b>) predicted vs. actual and (<b>b</b>) the normal probability plot.</p>
Full article ">Figure 20
<p>The standard error plot for the <math display="inline"><semantics> <mover> <mrow> <mi>N</mi> <mi>u</mi> </mrow> <mo>¯</mo> </mover> </semantics></math> at (<b>a</b>,<b>b</b>) <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> (<b>c</b>,<b>d</b>) <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>n</mi> <mo>=</mo> <mn>50</mn> </mrow> </semantics></math>, and (<b>e</b>,<b>f</b>) <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>n</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 21
<p>Sensitivity analysis of <math display="inline"><semantics> <mover> <mrow> <mi>N</mi> <mi>u</mi> </mrow> <mo>¯</mo> </mover> </semantics></math> at (<b>a</b>) different coded levels of <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>n</mi> </mrow> </semantics></math> (low, medium, high), and (<b>b</b>) different coded levels of <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> </mrow> </semantics></math> (low, medium, high).</p>
Full article ">
16 pages, 4085 KiB  
Article
Numerical Analysis of the Influence of Inner Tubes Arrangement on the Thermal Performance of Thermal Energy Storage Unit
by Obai Younis, Laouedj Samir, Abdeldjalil Belazreg and Naef A. A. Qasem
Energies 2023, 16(9), 3663; https://doi.org/10.3390/en16093663 - 24 Apr 2023
Cited by 2 | Viewed by 1265
Abstract
The container shape and arrangement of the thermal storage systems (TES) play a vital role in enhancing thermal performance. In the current investigation, the impact of inner tube dimensions and arrangements of TES on the thermal performance of a PCM-based triplex-tube latent heat [...] Read more.
The container shape and arrangement of the thermal storage systems (TES) play a vital role in enhancing thermal performance. In the current investigation, the impact of inner tube dimensions and arrangements of TES on the thermal performance of a PCM-based triplex-tube latent heat storage exchanger (TTHX) is numerically analyzed. COMSOL Multiphysics commercial software was employed to obtain the numerical solution of the governing equations. Eight different cases with the same volume of PCM and various configurations of the inner tubes were investigated. The results of the current study were presented in terms of temperature contours, liquid fraction, Bejan number, average temperature, and average Nusslet number. The shortest melting time was 48 min, which was achieved by a single inner tube configuration with a quicker melting time of >62% compared to other cases. While for multi-tubes, the shortest time was 78 min, which was achieved by the configuration of three tubes (two horizontal and the third placed at the lower section) with an enhancement of melting time reduction of >12% compared to other cases, except for a single inner tube configuration. Regarding the entropy generation, the single tube configuration achieved the lower Bejan number. Therefore, single tube configuration was found to be the best option for maximizing the thermal performance of the studied TTHX. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

Figure 1
<p>Schematic of a household water heater supplied with an HX and PCM.</p>
Full article ">Figure 2
<p>The physical domain: (<bold>a</bold>) TTHX geometry, (<bold>b</bold>) 2D TTHX with boundary conditions, (<bold>c</bold>) 2D TTHX mesh.</p>
Full article ">Figure 3
<p>The meshing of a selected case.</p>
Full article ">Figure 4
<p>(<bold>A</bold>) Comparison of numerical results with [<xref ref-type="bibr" rid="B33-energies-16-03663">33</xref>]. (<bold>B</bold>) Melted fraction as a function of time for the three meshes studied.</p>
Full article ">Figure 5
<p>The effect of tube distribution on the temperature over different times.</p>
Full article ">Figure 5 Cont.
<p>The effect of tube distribution on the temperature over different times.</p>
Full article ">Figure 6
<p>The effect of tube distribution: (<bold>a</bold>) average temperature and (<bold>b</bold>) average Nusselt number.</p>
Full article ">Figure 7
<p>The effect of tube distribution on the PCM melting process over different times.</p>
Full article ">Figure 7 Cont.
<p>The effect of tube distribution on the PCM melting process over different times.</p>
Full article ">Figure 8
<p>The impact of tube distribution inside on the liquid fraction.</p>
Full article ">Figure 9
<p>The effect of tube distribution on the Bejan number.</p>
Full article ">Figure 9 Cont.
<p>The effect of tube distribution on the Bejan number.</p>
Full article ">Figure 10
<p>The effect of tube distribution on Bejan number.</p>
Full article ">
26 pages, 12135 KiB  
Article
Analysis of Homogeneous/Heterogeneous Reactions in an Electrohydrodynamic Environment Utilizing the Second Law
by Farida Aslam, Saima Noreen, Muhammad Idrees Afridi and Muhammad Qasim
Micromachines 2023, 14(4), 821; https://doi.org/10.3390/mi14040821 - 6 Apr 2023
Cited by 2 | Viewed by 1464
Abstract
In this study, we investigate what happens to entropy in the presence of electrokinetic phenomena. It is speculated that the microchannel has an asymmetrical and slanted configuration. The presence of fluid friction, mixed convection, Joule heating, presence and absence of homogeneity, and a [...] Read more.
In this study, we investigate what happens to entropy in the presence of electrokinetic phenomena. It is speculated that the microchannel has an asymmetrical and slanted configuration. The presence of fluid friction, mixed convection, Joule heating, presence and absence of homogeneity, and a magnetic field are modelled mathematically. It is also emphasized that the diffusion factors of the autocatalyst and the reactants are equal. The governing flow equations are linearized using the Debye–Huckel and lubrication assumptions. The resulting nonlinear couple differential equations are solved using the program’s integrated numerical solver, Mathematica. We take a graphical look at the results of homogeneous and heterogeneous reactions and talk about what we see. It has been demonstrated that homogeneous and heterogeneous reaction parameters affect concentration distribution f in different ways. The Eyring–Powell fluid parameters B1 and B2 display an opposite relation with the velocity, temperature, entropy generation number, and Bejan number. The mass Grashof number, the Joule heating parameter, and the viscous dissipation parameter all contribute to the overall increase in fluid temperature and entropy. Full article
(This article belongs to the Special Issue Soft Micro/Nanochannels: Fundamentals and Applications)
Show Figures

Figure 1

Figure 1
<p>Geometry of the flow problem.</p>
Full article ">Figure 2
<p>(<b>a</b>): Effects of <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mi>e</mi> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>u</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.9</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.8</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.9</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. (<b>b</b>): Effects of <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>u</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. (<b>c</b>): Effects of <math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>t</mi> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>u</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.8</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. (<b>d</b>): Effects of <math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>a</mi> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>u</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. (<b>e</b>): Effects of <math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>1</mn> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>u</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. (<b>f</b>): Effects of <math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>2</mn> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>u</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.8</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 2 Cont.
<p>(<b>a</b>): Effects of <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mi>e</mi> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>u</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.9</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.8</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.9</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. (<b>b</b>): Effects of <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>u</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. (<b>c</b>): Effects of <math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>t</mi> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>u</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.8</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. (<b>d</b>): Effects of <math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>a</mi> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>u</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. (<b>e</b>): Effects of <math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>1</mn> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>u</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. (<b>f</b>): Effects of <math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>2</mn> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>u</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.8</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 2 Cont.
<p>(<b>a</b>): Effects of <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mi>e</mi> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>u</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.9</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.8</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.9</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. (<b>b</b>): Effects of <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>u</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. (<b>c</b>): Effects of <math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>t</mi> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>u</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.8</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. (<b>d</b>): Effects of <math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>a</mi> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>u</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. (<b>e</b>): Effects of <math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>1</mn> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>u</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. (<b>f</b>): Effects of <math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>2</mn> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>u</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.8</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>(<b>a</b>): Effects of <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mi>e</mi> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>θ</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.9</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.8</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.9</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. (<b>b</b>): Effects of <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>θ</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>,<math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. (<b>c</b>): Effects of <math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>t</mi> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>θ</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.8</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. (<b>d</b>): Effects of <math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>a</mi> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>θ</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1.5</mn> </mrow> </semantics></math>,<math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. (<b>e</b>): Effects of <math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>1</mn> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>θ</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. (<b>f</b>): Effects of <math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>2</mn> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>θ</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>,<math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.8</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. (<b>g</b>): Effects of <math display="inline"><semantics> <mi>γ</mi> </semantics></math> on <math display="inline"><semantics> <mi>θ</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>,<math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.8</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. (<b>h</b>): Effects of <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>r</mi> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>θ</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.8</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 3 Cont.
<p>(<b>a</b>): Effects of <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mi>e</mi> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>θ</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.9</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.8</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.9</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. (<b>b</b>): Effects of <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>θ</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>,<math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. (<b>c</b>): Effects of <math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>t</mi> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>θ</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.8</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. (<b>d</b>): Effects of <math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>a</mi> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>θ</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1.5</mn> </mrow> </semantics></math>,<math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. (<b>e</b>): Effects of <math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>1</mn> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>θ</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. (<b>f</b>): Effects of <math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>2</mn> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>θ</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>,<math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.8</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. (<b>g</b>): Effects of <math display="inline"><semantics> <mi>γ</mi> </semantics></math> on <math display="inline"><semantics> <mi>θ</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>,<math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.8</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. (<b>h</b>): Effects of <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>r</mi> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>θ</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.8</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 3 Cont.
<p>(<b>a</b>): Effects of <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mi>e</mi> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>θ</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.9</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.8</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.9</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. (<b>b</b>): Effects of <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>θ</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>,<math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. (<b>c</b>): Effects of <math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>t</mi> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>θ</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.8</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. (<b>d</b>): Effects of <math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>a</mi> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>θ</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1.5</mn> </mrow> </semantics></math>,<math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. (<b>e</b>): Effects of <math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>1</mn> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>θ</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. (<b>f</b>): Effects of <math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>2</mn> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>θ</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>,<math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.8</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. (<b>g</b>): Effects of <math display="inline"><semantics> <mi>γ</mi> </semantics></math> on <math display="inline"><semantics> <mi>θ</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>,<math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.8</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. (<b>h</b>): Effects of <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>r</mi> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>θ</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.8</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 3 Cont.
<p>(<b>a</b>): Effects of <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mi>e</mi> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>θ</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.9</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.8</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.9</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. (<b>b</b>): Effects of <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>θ</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>,<math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. (<b>c</b>): Effects of <math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>t</mi> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>θ</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.8</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. (<b>d</b>): Effects of <math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>a</mi> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>θ</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1.5</mn> </mrow> </semantics></math>,<math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. (<b>e</b>): Effects of <math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>1</mn> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>θ</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. (<b>f</b>): Effects of <math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>2</mn> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>θ</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>,<math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.8</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. (<b>g</b>): Effects of <math display="inline"><semantics> <mi>γ</mi> </semantics></math> on <math display="inline"><semantics> <mi>θ</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>,<math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.8</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. (<b>h</b>): Effects of <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>r</mi> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>θ</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.8</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 4
<p>(<b>a</b>): Effects of <math display="inline"><semantics> <mrow> <mi>S</mi> <mi>c</mi> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>f</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.8</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. (<b>b</b>): Effects of <math display="inline"><semantics> <mrow> <msub> <mi>M</mi> <mn>1</mn> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>f</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> </mrow> </semantics></math>,<math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.8</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. (<b>c</b>): Effects of <math display="inline"><semantics> <mrow> <msub> <mi>M</mi> <mn>2</mn> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>f</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.8</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 4 Cont.
<p>(<b>a</b>): Effects of <math display="inline"><semantics> <mrow> <mi>S</mi> <mi>c</mi> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>f</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.8</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. (<b>b</b>): Effects of <math display="inline"><semantics> <mrow> <msub> <mi>M</mi> <mn>1</mn> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>f</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> </mrow> </semantics></math>,<math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.8</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. (<b>c</b>): Effects of <math display="inline"><semantics> <mrow> <msub> <mi>M</mi> <mn>2</mn> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mi>f</mi> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.8</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 5
<p>(<b>a</b>): Effects of <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>s</mi> </msub> </mrow> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>ϱ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. (<b>b</b>): Effects of <math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>1</mn> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>s</mi> </msub> </mrow> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>ϱ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. (<b>c</b>): Effects of <math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>2</mn> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>s</mi> </msub> </mrow> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>,<math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.8</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>ϱ</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>. (<b>d</b>): Effects of <math display="inline"><semantics> <mi>ϱ</mi> </semantics></math> on <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>s</mi> </msub> </mrow> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>,<math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.8</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> </mrow> </semantics></math>. (<b>e</b>): Effects of <math display="inline"><semantics> <mi>γ</mi> </semantics></math> on <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>s</mi> </msub> </mrow> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>,<math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>ϱ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. (<b>f</b>): Effects of <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>r</mi> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>s</mi> </msub> </mrow> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <mi>ϱ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 5 Cont.
<p>(<b>a</b>): Effects of <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>s</mi> </msub> </mrow> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>ϱ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. (<b>b</b>): Effects of <math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>1</mn> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>s</mi> </msub> </mrow> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>ϱ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. (<b>c</b>): Effects of <math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>2</mn> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>s</mi> </msub> </mrow> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>,<math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.8</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>ϱ</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>. (<b>d</b>): Effects of <math display="inline"><semantics> <mi>ϱ</mi> </semantics></math> on <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>s</mi> </msub> </mrow> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>,<math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.8</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> </mrow> </semantics></math>. (<b>e</b>): Effects of <math display="inline"><semantics> <mi>γ</mi> </semantics></math> on <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>s</mi> </msub> </mrow> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>,<math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>ϱ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. (<b>f</b>): Effects of <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>r</mi> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>s</mi> </msub> </mrow> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <mi>ϱ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 5 Cont.
<p>(<b>a</b>): Effects of <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>s</mi> </msub> </mrow> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>ϱ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. (<b>b</b>): Effects of <math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>1</mn> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>s</mi> </msub> </mrow> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>ϱ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. (<b>c</b>): Effects of <math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>2</mn> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>s</mi> </msub> </mrow> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>,<math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.8</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>ϱ</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>. (<b>d</b>): Effects of <math display="inline"><semantics> <mi>ϱ</mi> </semantics></math> on <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>s</mi> </msub> </mrow> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>,<math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.8</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> </mrow> </semantics></math>. (<b>e</b>): Effects of <math display="inline"><semantics> <mi>γ</mi> </semantics></math> on <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>s</mi> </msub> </mrow> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>,<math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>ϱ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. (<b>f</b>): Effects of <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>r</mi> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>s</mi> </msub> </mrow> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <mi>ϱ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 6
<p>(<b>a</b>): Effects of <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>e</mi> </mrow> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>,<math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>ϱ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. (<b>b</b>): Effects of <math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>1</mn> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>e</mi> </mrow> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.12</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>ϱ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. (<b>c</b>): Effects of <math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>2</mn> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>e</mi> </mrow> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>,<math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>ϱ</mi> <mo>=</mo> <mn>6</mn> </mrow> </semantics></math>. (<b>d</b>): Effects of <math display="inline"><semantics> <mi>ϱ</mi> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>e</mi> </mrow> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.8</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> </mrow> </semantics></math>. (<b>e</b>): Effects of <math display="inline"><semantics> <mi>γ</mi> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>e</mi> </mrow> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>,<math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>ϱ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. (<b>f</b>): Effects of <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>r</mi> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>e</mi> </mrow> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <mi>ϱ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 6 Cont.
<p>(<b>a</b>): Effects of <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>e</mi> </mrow> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>,<math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>ϱ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. (<b>b</b>): Effects of <math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>1</mn> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>e</mi> </mrow> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.12</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>ϱ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. (<b>c</b>): Effects of <math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>2</mn> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>e</mi> </mrow> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>,<math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>ϱ</mi> <mo>=</mo> <mn>6</mn> </mrow> </semantics></math>. (<b>d</b>): Effects of <math display="inline"><semantics> <mi>ϱ</mi> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>e</mi> </mrow> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.8</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> </mrow> </semantics></math>. (<b>e</b>): Effects of <math display="inline"><semantics> <mi>γ</mi> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>e</mi> </mrow> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>,<math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>ϱ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. (<b>f</b>): Effects of <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>r</mi> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>e</mi> </mrow> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <mi>ϱ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 6 Cont.
<p>(<b>a</b>): Effects of <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>e</mi> </mrow> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>,<math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>ϱ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. (<b>b</b>): Effects of <math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>1</mn> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>e</mi> </mrow> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.12</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>ϱ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. (<b>c</b>): Effects of <math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>2</mn> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>e</mi> </mrow> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>,<math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>ϱ</mi> <mo>=</mo> <mn>6</mn> </mrow> </semantics></math>. (<b>d</b>): Effects of <math display="inline"><semantics> <mi>ϱ</mi> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>e</mi> </mrow> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.8</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> </mrow> </semantics></math>. (<b>e</b>): Effects of <math display="inline"><semantics> <mi>γ</mi> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>e</mi> </mrow> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>,<math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>ϱ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. (<b>f</b>): Effects of <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>r</mi> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>e</mi> </mrow> </semantics></math>, while other parameters are <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ζ</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ζ</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>U</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>Θ</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mrow> <mo> </mo> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mo> </mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>G</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>G</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>S</mi> <mi>c</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mo> </mo> <mi>ϱ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p>
Full article ">
25 pages, 7638 KiB  
Article
Entropy Generation Optimization in Couple Stress Fluid Flow with Variable Viscosity and Aligned Magnetic Field
by Geetika Saini, B. N. Hanumagowda, Hasan Mulki, S. Suresh Kumar Raju, S. V. K. Varma, Kamal Barghout, Nimer Murshid and Wael Al-Kouz
Sustainability 2023, 15(3), 2493; https://doi.org/10.3390/su15032493 - 30 Jan 2023
Cited by 19 | Viewed by 2143
Abstract
This study explores the influence of an inclined magnetic field and variable viscosity on the entropy generation in steady flow of a couple stress fluid in an inclined channel. The walls of the channel are stationary and non-isothermal. The fluid flow is driven [...] Read more.
This study explores the influence of an inclined magnetic field and variable viscosity on the entropy generation in steady flow of a couple stress fluid in an inclined channel. The walls of the channel are stationary and non-isothermal. The fluid flow is driven due to pressure gradient and gravitational force. Reynold’s model for temperature-dependent viscosity was used. The dimensionless, non-linear coupled equations of momentum and energy was solved, and we obtained an analytical solution for the velocity and temperature fields. The entropy generation and Bejan number were evaluated. The variation of pertinent parameters on flow quantities was discussed graphically. The rate of volume flow, skin friction coefficient, and Nusselt number at the surfaces of the channel were calculated and their variations were discussed through surface graphs. From the results, it is noticed that the entropy generation rate can be minimized by increasing the magnetic field and the temperature difference parameters. The findings of the current study in some special cases are in precise agreement with the previous investigation. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

Figure 1
<p>Flow model of the problem.</p>
Full article ">Figure 2
<p>(<b>a</b>) Velocity; (<b>b</b>) Temperature; (<b>c</b>) Entropy; and (<b>d</b>) Bejan number profiles affected by Brinkman number.</p>
Full article ">Figure 3
<p>(<b>a</b>) Velocity; (<b>b</b>) Temperature; (<b>c</b>) Entropy; and (<b>d</b>) Bejan number profiles affected by Hartmann number.</p>
Full article ">Figure 4
<p>(<b>a</b>) Velocity; (<b>b</b>) Temperature; (<b>c</b>) Entropy; and (<b>d</b>) Bejan number profiles affected by couple stress parameter.</p>
Full article ">Figure 5
<p>(<b>a</b>) Velocity; (<b>b</b>) Temperature; (<b>c</b>) Entropy; and (<b>d</b>) Bejan number profiles affected by viscosity parameter.</p>
Full article ">Figure 6
<p>(<b>a</b>) Velocity; (<b>b</b>) Temperature; (<b>c</b>) Entropy; and (<b>d</b>) Bejan number profiles affected by angle of inclined channel.</p>
Full article ">Figure 7
<p>(<b>a</b>) Velocity; (<b>b</b>) Temperature; (<b>c</b>) Entropy; and (<b>d</b>) Bejan number profiles affected by pressure gradient parameter.</p>
Full article ">Figure 8
<p>(<b>a</b>) Velocity; (<b>b</b>) Temperature; (<b>c</b>) Entropy; and (<b>d</b>) Bejan number profiles affected by angle of inclined magnetic field.</p>
Full article ">Figure 9
<p>(<b>a</b>) Entropy and (<b>b</b>) Bejan number profiles affected by temperature difference parameter.</p>
Full article ">Figure 10
<p>Comparison between present study and O D Makinde [<a href="#B32-sustainability-15-02493" class="html-bibr">32</a>] for (<b>a</b>) velocity and (<b>b</b>) temperature profiles on the non-dimensional viscosity parameter <span class="html-italic">m</span>.</p>
Full article ">Figure 11
<p>Comparison between present study and O D Makinde [<a href="#B32-sustainability-15-02493" class="html-bibr">32</a>] for (<b>a</b>) velocity and (<b>b</b>) temperature profiles on pressure gradient parameter <span class="html-italic">G</span><sub>1</sub>.</p>
Full article ">Figure 12
<p>Surface graph for volume flux.</p>
Full article ">Figure 13
<p>Surface graph for skin friction at the (<b>a</b>) lower and (<b>b</b>) upper wall of the channel.</p>
Full article ">Figure 14
<p>Surface graph for Nusselt number at the (<b>a</b>) lower and (<b>b</b>) upper plate of the channel.</p>
Full article ">
23 pages, 6199 KiB  
Article
Entropy Generation and Thermal Radiation Analysis of EMHD Jeffrey Nanofluid Flow: Applications in Solar Energy
by Bhupendra Kumar Sharma, Anup Kumar, Rishu Gandhi, Muhammad Mubashir Bhatti and Nidhish Kumar Mishra
Nanomaterials 2023, 13(3), 544; https://doi.org/10.3390/nano13030544 - 29 Jan 2023
Cited by 61 | Viewed by 3193
Abstract
This article examines the effects of entropy generation, heat transmission, and mass transfer on the flow of Jeffrey fluid under the influence of solar radiation in the presence of copper nanoparticles and gyrotactic microorganisms, with polyvinyl alcohol–water serving as the base fluid. The [...] Read more.
This article examines the effects of entropy generation, heat transmission, and mass transfer on the flow of Jeffrey fluid under the influence of solar radiation in the presence of copper nanoparticles and gyrotactic microorganisms, with polyvinyl alcohol–water serving as the base fluid. The impact of source terms such as Joule heating, viscous dissipation, and the exponential heat source is analyzed via a nonlinear elongating surface of nonuniform thickness. The development of an efficient numerical model describing the flow and thermal characteristics of a parabolic trough solar collector (PTSC) installed on a solar plate is underway as the use of solar plates in various devices continues to increase. Governing PDEs are first converted into ODEs using a suitable similarity transformation. The resulting higher-order coupled ODEs are converted into a system of first-order ODEs and then solved using the RK 4th-order method with shooting technique. The remarkable impacts of pertinent parameters such as Deborah number, magnetic field parameter, electric field parameter, Grashof number, solutal Grashof number, Prandtl number, Eckert number, exponential heat source parameter, Lewis number, chemical reaction parameter, bioconvection Lewis number, and Peclet number associated with the flow properties are discussed graphically. The increase in the radiation parameter and volume fraction of the nanoparticles enhances the temperature profile. The Bejan number and entropy generation rate increase with the rise in diffusion parameter and bioconvection diffusion parameter. The novelty of the present work is analyzing the entropy generation and solar radiation effects in the presence of motile gyrotactic microorganisms and copper nanoparticles with polyvinyl alcohol–water as the base fluid under the influence of the source terms, such as viscous dissipation, Ohmic heating, exponential heat source, and chemical reaction of the electromagnetohydrodynamic (EMHD) Jeffrey fluid flow. The non-Newtonian nanofluids have proven their great potential for heat transfer processes, which have various applications in cooling microchips, solar energy systems, and thermal energy technologies. Full article
(This article belongs to the Special Issue The Role of Nanofluids in Renewable Energy Engineering)
Show Figures

Figure 1

Figure 1
<p>An illustration of the mathematical model.</p>
Full article ">Figure 2
<p>Flowchart presenting numerical methodology.</p>
Full article ">Figure 3
<p>Comparative analysis of (<b>a</b>) velocity profile <math display="inline"><semantics> <mrow> <msup> <mi>G</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>ζ</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>G</mi> <mi>c</mi> </mrow> </semantics></math>=1 and (<b>b</b>) temperature profile <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>(</mo> <mi>ζ</mi> <mo>)</mo> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>r</mi> <mo>=</mo> <mn>7</mn> </mrow> </semantics></math>. Sharma et al. [<a href="#B27-nanomaterials-13-00544" class="html-bibr">27</a>].</p>
Full article ">Figure 4
<p>Nondimensional velocity profiles for different values of influential parameters. (<b>a</b>) Velocity profile against <math display="inline"><semantics> <msub> <mi>β</mi> <mn>1</mn> </msub> </semantics></math>; (<b>b</b>) velocity profile against <math display="inline"><semantics> <msub> <mi>β</mi> <mn>2</mn> </msub> </semantics></math>; (<b>c</b>) velocity profile against <span class="html-italic">M</span>; (<b>d</b>) velocity profile against <math display="inline"><semantics> <msub> <mi>E</mi> <mn>1</mn> </msub> </semantics></math>; (<b>e</b>) velocity profile against <math display="inline"><semantics> <mi>α</mi> </semantics></math>; (<b>f</b>) velocity profile against <math display="inline"><semantics> <mrow> <mi>G</mi> <mi>r</mi> </mrow> </semantics></math>; (<b>g</b>) velocity profile against <math display="inline"><semantics> <mrow> <mi>G</mi> <mi>c</mi> </mrow> </semantics></math>; and (<b>h</b>) velocity profile against <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>c</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 5
<p>Nondimensional temperature profiles for different values of influential parameters. (<b>a</b>) Temperature profile against <span class="html-italic">M</span>; (<b>b</b>) temperature profile against <math display="inline"><semantics> <msub> <mi>E</mi> <mn>1</mn> </msub> </semantics></math>; (<b>c</b>) temperature profile against <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>r</mi> </mrow> </semantics></math>; (<b>d</b>) temperature profile against <math display="inline"><semantics> <mrow> <mi>E</mi> <mi>c</mi> </mrow> </semantics></math>; (<b>e</b>) temperature profile against <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>t</mi> </mrow> </semantics></math>; (<b>f</b>) temperature profile against <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>b</mi> </mrow> </semantics></math>; (<b>g</b>) temperature profile against <math display="inline"><semantics> <msub> <mi>Q</mi> <mi>e</mi> </msub> </semantics></math>; (<b>h</b>) temperature profile against <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>r</mi> </mrow> </semantics></math>; and (<b>i</b>) temperature profile against <math display="inline"><semantics> <mi>φ</mi> </semantics></math>.</p>
Full article ">Figure 5 Cont.
<p>Nondimensional temperature profiles for different values of influential parameters. (<b>a</b>) Temperature profile against <span class="html-italic">M</span>; (<b>b</b>) temperature profile against <math display="inline"><semantics> <msub> <mi>E</mi> <mn>1</mn> </msub> </semantics></math>; (<b>c</b>) temperature profile against <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>r</mi> </mrow> </semantics></math>; (<b>d</b>) temperature profile against <math display="inline"><semantics> <mrow> <mi>E</mi> <mi>c</mi> </mrow> </semantics></math>; (<b>e</b>) temperature profile against <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>t</mi> </mrow> </semantics></math>; (<b>f</b>) temperature profile against <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>b</mi> </mrow> </semantics></math>; (<b>g</b>) temperature profile against <math display="inline"><semantics> <msub> <mi>Q</mi> <mi>e</mi> </msub> </semantics></math>; (<b>h</b>) temperature profile against <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>r</mi> </mrow> </semantics></math>; and (<b>i</b>) temperature profile against <math display="inline"><semantics> <mi>φ</mi> </semantics></math>.</p>
Full article ">Figure 6
<p>Nondimensional concentration profiles for flow parameters. (<b>a</b>) Concentration profile against <math display="inline"><semantics> <mrow> <mi>L</mi> <mi>e</mi> </mrow> </semantics></math> and (<b>b</b>) concentration profile against <span class="html-italic">K</span>.</p>
Full article ">Figure 7
<p>Distribution of microorganisms for different flow parameters. (<b>a</b>) Microorganism distribution for <math display="inline"><semantics> <mrow> <mi>L</mi> <mi>b</mi> </mrow> </semantics></math>; (<b>b</b>) Microorganism distribution for <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>e</mi> </mrow> </semantics></math>; (<b>c</b>) Microorganism distribution for <math display="inline"><semantics> <msub> <mi>δ</mi> <mi>N</mi> </msub> </semantics></math>.</p>
Full article ">Figure 8
<p>Variation in entropy for different flow parameters. (<b>a</b>) Entropy versus <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>r</mi> </mrow> </semantics></math>; (<b>b</b>) entropy versus <math display="inline"><semantics> <mrow> <mi>E</mi> <mi>c</mi> </mrow> </semantics></math>; (<b>c</b>) entropy versus <span class="html-italic">L</span>; and (<b>d</b>) entropy versus <math display="inline"><semantics> <msup> <mi>L</mi> <mo>*</mo> </msup> </semantics></math>.</p>
Full article ">Figure 9
<p>Bejan number profiles for different influential parameters. (<b>a</b>) Bejan number versus <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>r</mi> </mrow> </semantics></math>; (<b>b</b>) Bejan number versus <math display="inline"><semantics> <mrow> <mi>E</mi> <mi>c</mi> </mrow> </semantics></math>; (<b>c</b>) Bejan number versus <span class="html-italic">L</span>; and (<b>d</b>) Bejan number versus <math display="inline"><semantics> <msup> <mi>L</mi> <mo>*</mo> </msup> </semantics></math>.</p>
Full article ">Figure 9 Cont.
<p>Bejan number profiles for different influential parameters. (<b>a</b>) Bejan number versus <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>r</mi> </mrow> </semantics></math>; (<b>b</b>) Bejan number versus <math display="inline"><semantics> <mrow> <mi>E</mi> <mi>c</mi> </mrow> </semantics></math>; (<b>c</b>) Bejan number versus <span class="html-italic">L</span>; and (<b>d</b>) Bejan number versus <math display="inline"><semantics> <msup> <mi>L</mi> <mo>*</mo> </msup> </semantics></math>.</p>
Full article ">Figure 10
<p>Contour plots illustrating the effect of various influential parameters on entropy generation and Bejan number. (<b>a</b>) Entropy via <math display="inline"><semantics> <msub> <mi>β</mi> <mn>1</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>β</mi> <mn>2</mn> </msub> </semantics></math>; (<b>b</b>) entropy via <span class="html-italic">M</span> and <math display="inline"><semantics> <msub> <mi>E</mi> <mn>1</mn> </msub> </semantics></math>; (<b>c</b>) entropy via <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>t</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>b</mi> </mrow> </semantics></math>; (<b>d</b>) entropy via <span class="html-italic">K</span> and <math display="inline"><semantics> <mrow> <mi>L</mi> <mi>e</mi> </mrow> </semantics></math>; (<b>e</b>) entropy via <math display="inline"><semantics> <msub> <mi>δ</mi> <mi>N</mi> </msub> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>L</mi> <mi>b</mi> </mrow> </semantics></math>; (<b>f</b>) entropy via <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>r</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>Q</mi> <mi>e</mi> </mrow> </semantics></math>; (<b>g</b>) Bejan number via <math display="inline"><semantics> <msub> <mi>β</mi> <mn>1</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>β</mi> <mn>2</mn> </msub> </semantics></math>; (<b>h</b>) Bejan number via <span class="html-italic">M</span> and <math display="inline"><semantics> <msub> <mi>E</mi> <mn>1</mn> </msub> </semantics></math>; (<b>i</b>) Bejan number via <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>t</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>b</mi> </mrow> </semantics></math>; (<b>j</b>) Bejan number via <span class="html-italic">K</span> and <math display="inline"><semantics> <mrow> <mi>L</mi> <mi>e</mi> </mrow> </semantics></math>; (<b>k</b>) Bejan number via <math display="inline"><semantics> <msub> <mi>δ</mi> <mi>N</mi> </msub> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>L</mi> <mi>b</mi> </mrow> </semantics></math>; and (<b>l</b>) Bejan number via <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>r</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>Q</mi> <mi>e</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 10 Cont.
<p>Contour plots illustrating the effect of various influential parameters on entropy generation and Bejan number. (<b>a</b>) Entropy via <math display="inline"><semantics> <msub> <mi>β</mi> <mn>1</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>β</mi> <mn>2</mn> </msub> </semantics></math>; (<b>b</b>) entropy via <span class="html-italic">M</span> and <math display="inline"><semantics> <msub> <mi>E</mi> <mn>1</mn> </msub> </semantics></math>; (<b>c</b>) entropy via <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>t</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>b</mi> </mrow> </semantics></math>; (<b>d</b>) entropy via <span class="html-italic">K</span> and <math display="inline"><semantics> <mrow> <mi>L</mi> <mi>e</mi> </mrow> </semantics></math>; (<b>e</b>) entropy via <math display="inline"><semantics> <msub> <mi>δ</mi> <mi>N</mi> </msub> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>L</mi> <mi>b</mi> </mrow> </semantics></math>; (<b>f</b>) entropy via <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>r</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>Q</mi> <mi>e</mi> </mrow> </semantics></math>; (<b>g</b>) Bejan number via <math display="inline"><semantics> <msub> <mi>β</mi> <mn>1</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>β</mi> <mn>2</mn> </msub> </semantics></math>; (<b>h</b>) Bejan number via <span class="html-italic">M</span> and <math display="inline"><semantics> <msub> <mi>E</mi> <mn>1</mn> </msub> </semantics></math>; (<b>i</b>) Bejan number via <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>t</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>b</mi> </mrow> </semantics></math>; (<b>j</b>) Bejan number via <span class="html-italic">K</span> and <math display="inline"><semantics> <mrow> <mi>L</mi> <mi>e</mi> </mrow> </semantics></math>; (<b>k</b>) Bejan number via <math display="inline"><semantics> <msub> <mi>δ</mi> <mi>N</mi> </msub> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>L</mi> <mi>b</mi> </mrow> </semantics></math>; and (<b>l</b>) Bejan number via <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>r</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>Q</mi> <mi>e</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 11
<p>Surface plots displaying the effects of various influence parameters on <math display="inline"><semantics> <msub> <mi>C</mi> <mi>f</mi> </msub> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>N</mi> <msub> <mi>u</mi> <mi>x</mi> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>S</mi> <msub> <mi>h</mi> <mi>x</mi> </msub> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>N</mi> <msub> <mi>n</mi> <mi>x</mi> </msub> </mrow> </semantics></math>. (<b>a</b>) <math display="inline"><semantics> <msub> <mi>C</mi> <mi>f</mi> </msub> </semantics></math> versus <span class="html-italic">M</span> and <math display="inline"><semantics> <msub> <mi>β</mi> <mn>1</mn> </msub> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <msub> <mi>C</mi> <mi>f</mi> </msub> </semantics></math> versus <math display="inline"><semantics> <msub> <mi>E</mi> <mn>1</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>β</mi> <mn>2</mn> </msub> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>N</mi> <msub> <mi>u</mi> <mi>x</mi> </msub> </mrow> </semantics></math> versus <math display="inline"><semantics> <msub> <mi>β</mi> <mn>1</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>β</mi> <mn>2</mn> </msub> </semantics></math>; (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>N</mi> <msub> <mi>u</mi> <mi>x</mi> </msub> </mrow> </semantics></math> versus <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>t</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>b</mi> </mrow> </semantics></math>; (<b>e</b>) <math display="inline"><semantics> <mrow> <mi>N</mi> <msub> <mi>u</mi> <mi>x</mi> </msub> </mrow> </semantics></math> versus <span class="html-italic">M</span> and <math display="inline"><semantics> <mrow> <mi>Q</mi> <mi>e</mi> </mrow> </semantics></math>; (<b>f</b>) <math display="inline"><semantics> <mrow> <mi>S</mi> <msub> <mi>h</mi> <mi>x</mi> </msub> </mrow> </semantics></math> versus <math display="inline"><semantics> <mi>δ</mi> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>L</mi> <mi>e</mi> </mrow> </semantics></math>; (<b>g</b>) <math display="inline"><semantics> <mrow> <mi>S</mi> <msub> <mi>h</mi> <mi>x</mi> </msub> </mrow> </semantics></math> versus <span class="html-italic">K</span> and <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>b</mi> </mrow> </semantics></math>; (<b>h</b>) <math display="inline"><semantics> <mrow> <mi>N</mi> <msub> <mi>n</mi> <mi>x</mi> </msub> </mrow> </semantics></math> versus <math display="inline"><semantics> <mi>δ</mi> </semantics></math> and <math display="inline"><semantics> <msub> <mi>δ</mi> <mi>N</mi> </msub> </semantics></math>; and (<b>i</b>) <math display="inline"><semantics> <mrow> <mi>N</mi> <msub> <mi>n</mi> <mi>x</mi> </msub> </mrow> </semantics></math> versus <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>e</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>L</mi> <mi>b</mi> </mrow> </semantics></math>.</p>
Full article ">
35 pages, 12354 KiB  
Article
Numerical Calculation of the Irreversible Entropy Production of Additively Manufacturable Off-Set Strip Fin Heat-Transferring Structures
by Marco Fuchs, Nico Lubos and Stephan Kabelac
Entropy 2023, 25(1), 162; https://doi.org/10.3390/e25010162 - 13 Jan 2023
Cited by 4 | Viewed by 1942
Abstract
In this manuscript, off-set strip fin structures are presented which are adapted to the possibilities of additive manufacturing. For this purpose, the geometric parameters, including fin height, fin spacing, fin length, and fin longitudinal displacement, are varied, and the Colburn j-factor and the [...] Read more.
In this manuscript, off-set strip fin structures are presented which are adapted to the possibilities of additive manufacturing. For this purpose, the geometric parameters, including fin height, fin spacing, fin length, and fin longitudinal displacement, are varied, and the Colburn j-factor and the Fanning friction factor are numerically calculated in the Reynolds number range of 80–920. The structures are classified with respect to their entropy production number according to Bejan. This method is compared with the results from partial differential equations for the calculation of the irreversible entropy production rate due to shear stresses and heat conduction. This study reveals that the chosen temperature difference leads to deviation in terms of entropy production due to heat conduction, whereas the dissipation by shear stresses shows only small deviations of less than 2%. It is further shown that the variation in fin height and fin spacing has only a small influence on heat transfer and pressure drop, while a variation in fin length and fin longitudinal displacement shows a larger influence. With respect to the entropy production number, short and long fins, as well as large fin spacing and fin longitudinal displacement, are shown to be beneficial. A detailed examination of a single structure shows that the entropy production rate due to heat conduction is dominated by the entropy production rate in the wall, while the fluid has only a minor influence. Full article
(This article belongs to the Special Issue Applications of CFD in Heat and Fluid Flow Processes)
Show Figures

Figure 1

Figure 1
<p><b>Left</b>: schematic 3D model of the structures investigated with geometric parameters, and <b>right</b>: schematic 3D model of the internal fin arrangement of the investigated section.</p>
Full article ">Figure 2
<p>Three-dimensional model of the complete calculation domain with boundary conditions. Periodic conditions are also applied on the top grey fin and side wall areas. Evaluation of the in- and outlet temperatures and pressure drop is carried out at the coloured inlet and outlet locations.</p>
Full article ">Figure 3
<p>Schematic of the internal structures (hot or cold side) with locations for the wall and fluid temperatures for the determination of the heat transfer coefficient.</p>
Full article ">Figure 4
<p><b>Left</b>: three-dimensional model of the validation case with boundary conditions, and <b>right</b>: location of the fluid and wall temperatures for the determination of the heat transfer coefficient.</p>
Full article ">Figure 5
<p><b>Left</b>: infinitesimal fluid element for equation 27, <b>right</b>: simplified cross section of <a href="#entropy-25-00162-f002" class="html-fig">Figure 2</a> with the corresponding temperatures according to <a href="#entropy-25-00162-f003" class="html-fig">Figure 3</a>. For simplification, the heat flow rate over the periodic boundary condition (dotted line) is added to the overall heat flow rate <math display="inline"><semantics> <mover accent="true"> <mi>Q</mi> <mo>˙</mo> </mover> </semantics></math>.</p>
Full article ">Figure 6
<p>Colburn j-factor and Fanning f-factor for rectangular off-set strip fins (hot and cold sides). Comparison with values from correlations (Equations (16)–(21)) from Manglik and Bergles [<a href="#B36-entropy-25-00162" class="html-bibr">36</a>], Chennu [<a href="#B39-entropy-25-00162" class="html-bibr">39</a>], and Joshi and Webb [<a href="#B37-entropy-25-00162" class="html-bibr">37</a>].</p>
Full article ">Figure 7
<p>Comparison of the irreversible entropy production rate for the entire domain using the calculation method of Bejan [<a href="#B8-entropy-25-00162" class="html-bibr">8</a>], the 2nd law of thermodynamics [<a href="#B44-entropy-25-00162" class="html-bibr">44</a>], and differential equation [<a href="#B7-entropy-25-00162" class="html-bibr">7</a>,<a href="#B17-entropy-25-00162" class="html-bibr">17</a>].</p>
Full article ">Figure 8
<p>Comparison of the entropy production rate by heat conduction and shear stresses in the cold (<b>left</b>) and hot (<b>right</b>) fluids, using the method of Bejan [<a href="#B8-entropy-25-00162" class="html-bibr">8</a>] and the differential equations [<a href="#B17-entropy-25-00162" class="html-bibr">17</a>].</p>
Full article ">Figure 9
<p><b>Left:</b> Entropy production rate by heat conduction in the hot/cold fluid, the wall/fins, and overall entropy production rate by heat conduction, and <b>right</b>: relative proportions of the entropy generation by heat conduction of the hot/cold fluid and the wall. For the total entropy production rate and the entropy production rate in the wall and fins, the mean Reynolds number of the hot and cold sides is used.</p>
Full article ">Figure 10
<p>Relative proportions of the molecular and fluctuating irreversible entropy production rate by heat conduction (<b>left</b>) and shear stresses (<b>right</b>) for the hot and cold fluids.</p>
Full article ">Figure 11
<p><b>Left:</b> Entropy production rate by heat conduction and shear stresses in the fluid and the wall, and <b>right</b>: relative share of the fluid and wall entropy production rates compared to the overall entropy production rate. For the entropy production rate in the wall, the mean Reynolds number of the hot and cold sides is used.</p>
Full article ">Figure 12
<p>Bejan number for the hot and cold fluids.</p>
Full article ">Figure 13
<p>Local volumetric entropy production rate by shear stress (mean values and fluctuation) at Re = 110 (<b>left</b>) and at Re = 713 (<b>right</b>) for the cold fluid side (flow direction: bottom to top). Slicing plane for the contour plot.</p>
Full article ">Figure 14
<p>Local volumetric entropy production rate by heat conduction (mean values and fluctuating values) at Re = 110 (<b>left</b>) and at Re = 713 (<b>right</b>) for the cold fluid side.</p>
Full article ">Figure 15
<p>Cross-sectional view of the local volumetric entropy production rate by shear stress at Re = 110 (<b>left</b>) and at Re = 713 (<b>right</b>) for the cold fluid side. Slicing plane for the contour plot.</p>
Full article ">Figure 16
<p>Cross-sectional view of the local volumetric entropy production rate by heat conduction at Re = 110 (<b>left</b>) and at Re = 713 (<b>right</b>) for the cold fluid side.</p>
Full article ">Figure 17
<p>(<b>a</b>) Entropy production number due to shear stresses for the cold side, (<b>b</b>) entropy production number due to shear stresses for the hot side for different fin heights, (<b>c</b>) entropy production number due to heat conduction in the hot/cold fluid and the walls/fins, (<b>d</b>) overall entropy production number for different fin heights, and (<b>e</b>,<b>f</b>) j-factor, f-factor, and Nusselt number of the hot/cold side for different fin heights.</p>
Full article ">Figure 18
<p>(<b>a</b>) Entropy production number due to shear stresses for the cold side. (<b>b</b>) Entropy production number due to shear stresses for the hot side for different fin spacings<b>.</b> (<b>c</b>) Entropy production number due to heat conduction in the hot/cold fluid and the walls/fins. (<b>d</b>) Overall entropy production number for different fin spacings. (<b>e</b>,<b>f</b>) j-factor, f-factor, and Nusselt number of the hot/cold side for different fin spacings.</p>
Full article ">Figure 18 Cont.
<p>(<b>a</b>) Entropy production number due to shear stresses for the cold side. (<b>b</b>) Entropy production number due to shear stresses for the hot side for different fin spacings<b>.</b> (<b>c</b>) Entropy production number due to heat conduction in the hot/cold fluid and the walls/fins. (<b>d</b>) Overall entropy production number for different fin spacings. (<b>e</b>,<b>f</b>) j-factor, f-factor, and Nusselt number of the hot/cold side for different fin spacings.</p>
Full article ">Figure 19
<p>(<b>a</b>) Entropy production number due to shear stresses for the cold side. (<b>b</b>) Entropy production number due to shear stresses for the hot side for different fin lengths. (<b>c</b>) Entropy production number due to heat conduction in the hot/cold fluid and the walls/fins. (<b>d</b>) Overall entropy production number for different fin lengths. (<b>e</b>,<b>f</b>) j-factor, f-factor, and Nu number of the hot/cold side for different fin lengths.</p>
Full article ">Figure 19 Cont.
<p>(<b>a</b>) Entropy production number due to shear stresses for the cold side. (<b>b</b>) Entropy production number due to shear stresses for the hot side for different fin lengths. (<b>c</b>) Entropy production number due to heat conduction in the hot/cold fluid and the walls/fins. (<b>d</b>) Overall entropy production number for different fin lengths. (<b>e</b>,<b>f</b>) j-factor, f-factor, and Nu number of the hot/cold side for different fin lengths.</p>
Full article ">Figure 20
<p>(<b>a</b>) Entropy production number due to shear stresses for the cold side. (<b>b</b>) Entropy production number due to shear stresses for the hot side for different longitudinal fin displacement. (<b>c</b>) Entropy production number due to heat conduction in the hot/cold fluid and the walls/fins. (<b>d</b>) Overall entropy production number for different longitudinal fin displacement. (<b>e</b>,<b>f</b>) j-factor, f-factor, and Nusselt number of the hot/cold side for different longitudinal fin displacement.</p>
Full article ">Figure 20 Cont.
<p>(<b>a</b>) Entropy production number due to shear stresses for the cold side. (<b>b</b>) Entropy production number due to shear stresses for the hot side for different longitudinal fin displacement. (<b>c</b>) Entropy production number due to heat conduction in the hot/cold fluid and the walls/fins. (<b>d</b>) Overall entropy production number for different longitudinal fin displacement. (<b>e</b>,<b>f</b>) j-factor, f-factor, and Nusselt number of the hot/cold side for different longitudinal fin displacement.</p>
Full article ">
20 pages, 3669 KiB  
Article
Thermal Behavior of the Time-Dependent Radiative Flow of Water-Based CNTs/Au Nanoparticles Past a Riga Plate with Entropy Optimization and Multiple Slip Conditions
by K. Rajupillai, Nazek Alessa, S. Eswaramoorthi and Karuppusamy Loganathan
Entropy 2023, 25(1), 76; https://doi.org/10.3390/e25010076 - 30 Dec 2022
Cited by 3 | Viewed by 1525
Abstract
This communication deliberates the time-reliant and Darcy–Forchheimer flow of water-based CNTs/gold nanoparticles past a Riga plate. In addition, nonlinear radiation, heat consumption and multiple slip conditions are considered. Entropy generation is computed through various flow parameters. A suitable transformation with symmetry variables is [...] Read more.
This communication deliberates the time-reliant and Darcy–Forchheimer flow of water-based CNTs/gold nanoparticles past a Riga plate. In addition, nonlinear radiation, heat consumption and multiple slip conditions are considered. Entropy generation is computed through various flow parameters. A suitable transformation with symmetry variables is invoked to remodel the governing mathematical flow models into the ODE equations. The homotopy analysis scheme and MATLAB bvp4c method are imposed to solve the reduced ODE equations analytically and numerically. The impact of sundry flow variables on nanofluid velocity, nanofluid temperature, skin friction coefficient, local Nusselt number, entropy profile and Bejan number are computed and analyzed through graphs and tables. It is found that the nanofluid velocity is reduced by greater porosity and slip factors. The thickness of the thermal boundary layer increases with increasing radiation, temperature ratio, and heat consumption/generation parameters. The surface drag force is reduced when there is a higher Forchheimer number, unsteadiness parameter and porosity parameter. The amount of entropy created is proportional to the radiation parameter, porosity parameter and Reynolds number. The Bejan number profile increases with radiation parameter, heat consumption/generation parameter and the Forchheimer number. Full article
Show Figures

Figure 1

Figure 1
<p>Riga plate (<b>a</b>) and physical configuration of the flow model (<b>b</b>).</p>
Full article ">Figure 2
<p>The <math display="inline"><semantics> <mrow> <mi>h</mi> </mrow> </semantics></math>–curves of <math display="inline"><semantics> <mrow> <msup> <mi mathvariant="script">F</mi> <mo>″</mo> </msup> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> (<b>a</b>) and <math display="inline"><semantics> <mrow> <msup> <mi>θ</mi> <mo>′</mo> </msup> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> (<b>b</b>).</p>
Full article ">Figure 3
<p>NF velocity profiles for varied assays of <span class="html-italic">A</span> (<b>a</b>), <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> </mrow> </semantics></math> (<b>b</b>), <math display="inline"><semantics> <msub> <mi>K</mi> <mn>1</mn> </msub> </semantics></math> (<b>c</b>) and <math display="inline"><semantics> <mi>λ</mi> </semantics></math> (<b>d</b>) for SWCNTs (solid line), MWCNTs (dashed line) and gold nanoparticles (dotted line).</p>
Full article ">Figure 4
<p>The NF temperature profile for varied assays of <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> </mrow> </semantics></math> (<b>a</b>), <math display="inline"><semantics> <msub> <mi>K</mi> <mn>2</mn> </msub> </semantics></math> (<b>b</b>), <math display="inline"><semantics> <mi>ϕ</mi> </semantics></math> (<b>c</b>) and <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>g</mi> </mrow> </semantics></math> (<b>d</b>) for SWCNTs (solid line), MWCNTs (dashed line) and gold nanoparticles (dotted line).</p>
Full article ">Figure 5
<p>The NF temperature profile for varied assays of <span class="html-italic">R</span> (<b>a</b>) and <math display="inline"><semantics> <mi mathvariant="normal">Λ</mi> </semantics></math> (<b>b</b>) for SWCNTs (solid line), MWCNTs (dashed line) and gold nanoparticles (dotted line).</p>
Full article ">Figure 6
<p>The changes to SFC versus <span class="html-italic">A</span> and <math display="inline"><semantics> <mi>λ</mi> </semantics></math> (<b>a</b>) and <math display="inline"><semantics> <mrow> <mi>F</mi> <mi>r</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> </mrow> </semantics></math> (<b>b</b>) for SWCNTs (solid line), MWCNTs (dashed line) and gold nanoparticles (dotted line).</p>
Full article ">Figure 7
<p>The changes to LNN versus <span class="html-italic">A</span> and <math display="inline"><semantics> <mi>λ</mi> </semantics></math> (<b>a</b>), <math display="inline"><semantics> <mrow> <mi>F</mi> <mi>r</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> </mrow> </semantics></math> (<b>b</b>), <span class="html-italic">R</span> and <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>g</mi> </mrow> </semantics></math> (<b>c</b>) and <span class="html-italic">R</span> and <math display="inline"><semantics> <mi mathvariant="normal">Λ</mi> </semantics></math> (<b>d</b>) for SWCNTs (solid line), MWCNTs (dashed line) and gold nanoparticles (dotted line).</p>
Full article ">Figure 8
<p>The changes to entropy profile versus <span class="html-italic">R</span> (<b>a</b>), <math display="inline"><semantics> <mi>λ</mi> </semantics></math> (<b>b</b>), <span class="html-italic">A</span> (<b>c</b>) and <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> </mrow> </semantics></math> (<b>d</b>) for SWCNTs (solid line), MWCNTs (dashed line) and gold nanoparticles (dotted line).</p>
Full article ">Figure 9
<p>The changes to Bejan number versus <span class="html-italic">R</span> (<b>a</b>), <math display="inline"><semantics> <mrow> <mi>F</mi> <mi>r</mi> </mrow> </semantics></math> (<b>b</b>), <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> </mrow> </semantics></math> (<b>c</b>) and <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>g</mi> </mrow> </semantics></math> (<b>d</b>) for SWCNTs (solid line), MWCNTs (dashed line) and gold nanoparticles (dotted line).</p>
Full article ">Figure 10
<p>The increase/decrease percent of SFC for <span class="html-italic">A</span> (<b>a</b>), <math display="inline"><semantics> <msub> <mi>K</mi> <mn>1</mn> </msub> </semantics></math> (<b>b</b>), <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> </mrow> </semantics></math> (<b>c</b>) and <math display="inline"><semantics> <mi>λ</mi> </semantics></math> (<b>d</b>) for SWCNTs, MWCNTs and gold nanoparticles.</p>
Full article ">Figure 11
<p>The decline percent of SFC for <math display="inline"><semantics> <mrow> <mi>F</mi> <mi>r</mi> </mrow> </semantics></math> (<b>a</b>) and <math display="inline"><semantics> <mi>ϕ</mi> </semantics></math> (<b>b</b>) and LNN for <math display="inline"><semantics> <mrow> <mi>F</mi> <mi>r</mi> </mrow> </semantics></math> (<b>c</b>) and <math display="inline"><semantics> <mi>ϕ</mi> </semantics></math> (<b>d</b>) for SWCNTs, MWCNTs and gold nanoparticles.</p>
Full article ">Figure 12
<p>The increase/decrease percent of LNN for <span class="html-italic">R</span> (<b>a</b>), <math display="inline"><semantics> <mrow> <msub> <mi>K</mi> <mn>2</mn> </msub> <mrow/> </mrow> </semantics></math>(<b>b</b>), <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>g</mi> </mrow> </semantics></math> (<b>c</b>) and <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> </mrow> </semantics></math> (<b>d</b>) for SWCNTs, MWCNTs and gold nanoparticles.</p>
Full article ">
12 pages, 4380 KiB  
Article
Entropy Generation and Mixed Convection of a Nanofluid in a 3D Wave Tank with Rotating Inner Cylinder
by Ammar I. Alsabery, Mohammed J. Alshukri, Nasr A. Jabbar, Adel A. Eidan and Ishak Hashim
Energies 2023, 16(1), 244; https://doi.org/10.3390/en16010244 - 26 Dec 2022
Cited by 4 | Viewed by 1441
Abstract
The generation of entropy and mixed convection in a nanofluid-filled 3D wavy tank containing a rotating cylinder is investigated. The top wavy surface of the tank is heated and all vertical surfaces are assumed to be adiabatic, while the bottom horizontal surface remains [...] Read more.
The generation of entropy and mixed convection in a nanofluid-filled 3D wavy tank containing a rotating cylinder is investigated. The top wavy surface of the tank is heated and all vertical surfaces are assumed to be adiabatic, while the bottom horizontal surface remains isothermally cold. The tank contains a solid cylinder and is saturated with an Al2O3–water nanofluid. The numerical simulations using the FEM are performed for the Richardson number (0.01Ri100), nanoparticle volume fraction (0ϕ0.04) and number of oscillations (0N4). The numerical results of the present work are given in terms of 3D streamlines, isotherms and local entropy generation, as well as average heat transfer and Bejan number. The results show that for low values of the Richardson number and oscillation, heat transfer enhancement can be achieved by increasing the nanoparticle volume fraction. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

Figure 1
<p>(<b>a</b>) 2D schematic representation in the plane (<span class="html-italic">X</span> and <span class="html-italic">Y</span> axes); (<b>b</b>) 3D schematic representation of the physical design.</p>
Full article ">Figure 2
<p>Grid-point distributions (<b>a</b>) 2D on <span class="html-italic">XY</span>-plane and (<b>b</b>) 3D.</p>
Full article ">Figure 3
<p>Flowchart of the solution method.</p>
Full article ">Figure 4
<p>(left) Costa and Raimundo [<a href="#B13-energies-16-00244" class="html-bibr">13</a>] and (right) the present work: (<b>a</b>) streamlines and (<b>b</b>) isotherms for <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Ω</mi> <mo>=</mo> <mn>500</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>Pr</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 5
<p>(<b>left</b>) 3D streamlines, (<b>centre</b>) isotherms and (<b>right</b>) isentropic lines: (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>i</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>i</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math> and (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>i</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>=</mo> <mn>0.02</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 6
<p>(<b>left</b>) 3D streamlines, (<b>centre</b>) isotherms and (<b>right</b>) isentropic lines: (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math> and (<b>e</b>) <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>i</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>=</mo> <mn>0.02</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 7
<p><math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <mi>N</mi> <mi>u</mi> </mrow> <mo stretchy="true">¯</mo> </mover> </mrow> </semantics></math> vs. <span class="html-italic">Ri</span> for various <span class="html-italic">N</span> and <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>=</mo> <mn>0.02</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 8
<p><span class="html-italic">Be</span> vs. <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>i</mi> </mrow> </semantics></math> for different <math display="inline"><semantics> <mi>N</mi> </semantics></math> at <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>=</mo> <mn>0.02</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 9
<p><math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <mi>N</mi> <mi>u</mi> </mrow> <mo stretchy="true">¯</mo> </mover> </mrow> </semantics></math> vs. <span class="html-italic">Ri</span> for various <math display="inline"><semantics> <mi>ϕ</mi> </semantics></math> at <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 10
<p><span class="html-italic">Be</span> vs. <span class="html-italic">Ri</span> for various <math display="inline"><semantics> <mi>ϕ</mi> </semantics></math> at <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>.</p>
Full article ">
19 pages, 9268 KiB  
Article
Entropy Generation Due to Magneto-Convection of a Hybrid Nanofluid in the Presence of a Wavy Conducting Wall
by Bengisen Pekmen Geridonmez and Hakan F. Oztop
Mathematics 2022, 10(24), 4663; https://doi.org/10.3390/math10244663 - 8 Dec 2022
Cited by 5 | Viewed by 1521
Abstract
The two-dimensional, time-independent conjugate natural convection flow and entropy generation are numerically investigated in three different cases of a wavy conducting solid block attached to the left wall of a square cavity. A hybrid nanofluid with titania (TiO2) and copper (Cu) [...] Read more.
The two-dimensional, time-independent conjugate natural convection flow and entropy generation are numerically investigated in three different cases of a wavy conducting solid block attached to the left wall of a square cavity. A hybrid nanofluid with titania (TiO2) and copper (Cu) nanoparticles and base fluid water in the fluid part is considered in the presence of a uniform inclined magnetic field. The leftmost wall of the cavity is the hot one and the rightmost one is the cold one. Radial-basis-function-based finite difference (RBF-FD) is performed on an appropriate designed grid distribution. Numerical results in view of streamlines and isotherms, as well as average Nusselt number in an interface and total entropy generation are presented. The related parameters such as Hartmann number, Rayleigh number, conductivity ratio, amplitude in wavy wall, number of waviness, and inclination angle of magnetic field are observed. Convective heat transfer in the fluid part is an increasing function of kr,Ra,γ, while it deflates with the rise in Ha in each case. Total entropy generation increases with the increase in Ra and kr but it decreases with Ha values. Average Bejan number ascends with the rise in Ha and descends with the rise in Ra. Full article
(This article belongs to the Special Issue Mathematics and Its Applications in Science and Engineering II)
Show Figures

Figure 1

Figure 1
<p>Configuration of the flow, problem geometry and coordinates. <b>B</b> = <math display="inline"><semantics> <mrow> <mo>〈</mo> <msub> <mi>B</mi> <mn>0</mn> </msub> <mo form="prefix">cos</mo> <mi>γ</mi> <mo>,</mo> <msub> <mi>B</mi> <mn>0</mn> </msub> <mo form="prefix">sin</mo> <mi>γ</mi> <mo>,</mo> <mn>0</mn> <mo>〉</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 2
<p>Comparison of total entropy contours in a NC flow problem. (<b>a</b>–<b>c</b>) Reference [<a href="#B26-mathematics-10-04663" class="html-bibr">26</a>] (the left); (<b>d</b>–<b>f</b>) Present (the right with <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>51</mn> </mrow> </semantics></math>).</p>
Full article ">Figure 3
<p>Design of grid distribution. The (<b>left</b>) is for Case 1, the (<b>middle</b>) is for Case 2 and the (<b>right</b>) is for Case 3.</p>
Full article ">Figure 4
<p>Variation in <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> </mrow> </semantics></math> when <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>a</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>5</mn> </msup> <mo>,</mo> <mspace width="0.166667em"/> <mi>k</mi> <mi>r</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>γ</mi> <mo>=</mo> <msup> <mn>0</mn> <mo>∘</mo> </msup> <mo>,</mo> <mspace width="0.166667em"/> <mi>A</mi> <mo>=</mo> <mn>0.05</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>n</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>. Streamlines and isotherms at the (<b>top</b>) is for case 1, at the (<b>middle</b>) is for case 2 and the at (<b>bottom</b>) is for case 3.</p>
Full article ">Figure 4 Cont.
<p>Variation in <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> </mrow> </semantics></math> when <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>a</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>5</mn> </msup> <mo>,</mo> <mspace width="0.166667em"/> <mi>k</mi> <mi>r</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>γ</mi> <mo>=</mo> <msup> <mn>0</mn> <mo>∘</mo> </msup> <mo>,</mo> <mspace width="0.166667em"/> <mi>A</mi> <mo>=</mo> <mn>0.05</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>n</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>. Streamlines and isotherms at the (<b>top</b>) is for case 1, at the (<b>middle</b>) is for case 2 and the at (<b>bottom</b>) is for case 3.</p>
Full article ">Figure 5
<p>Variation in <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>a</mi> </mrow> </semantics></math> when <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>25</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>k</mi> <mi>r</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>γ</mi> <mo>=</mo> <msup> <mn>0</mn> <mo>∘</mo> </msup> <mo>,</mo> <mspace width="0.166667em"/> <mi>A</mi> <mo>=</mo> <mn>0.05</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>n</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>. Streamlines and isotherms at the (<b>top</b>) is for case 1, at the (<b>middle</b>) is for case 2 and the at (<b>bottom</b>) is for case 3.</p>
Full article ">Figure 5 Cont.
<p>Variation in <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>a</mi> </mrow> </semantics></math> when <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>25</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>k</mi> <mi>r</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>γ</mi> <mo>=</mo> <msup> <mn>0</mn> <mo>∘</mo> </msup> <mo>,</mo> <mspace width="0.166667em"/> <mi>A</mi> <mo>=</mo> <mn>0.05</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>n</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>. Streamlines and isotherms at the (<b>top</b>) is for case 1, at the (<b>middle</b>) is for case 2 and the at (<b>bottom</b>) is for case 3.</p>
Full article ">Figure 6
<p>Variation in <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>r</mi> </mrow> </semantics></math> when <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>a</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>5</mn> </msup> <mo>,</mo> <mspace width="0.166667em"/> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>25</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>γ</mi> <mo>=</mo> <msup> <mn>0</mn> <mo>∘</mo> </msup> <mo>,</mo> <mspace width="0.166667em"/> <mi>A</mi> <mo>=</mo> <mn>0.05</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>n</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>. Streamlines and isotherms at the (<b>top</b>) is for case 1, at the (<b>middle</b>) is for case 2 and the at (<b>bottom</b>) is for case 3.</p>
Full article ">Figure 6 Cont.
<p>Variation in <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>r</mi> </mrow> </semantics></math> when <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>a</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>5</mn> </msup> <mo>,</mo> <mspace width="0.166667em"/> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>25</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>γ</mi> <mo>=</mo> <msup> <mn>0</mn> <mo>∘</mo> </msup> <mo>,</mo> <mspace width="0.166667em"/> <mi>A</mi> <mo>=</mo> <mn>0.05</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>n</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>. Streamlines and isotherms at the (<b>top</b>) is for case 1, at the (<b>middle</b>) is for case 2 and the at (<b>bottom</b>) is for case 3.</p>
Full article ">Figure 7
<p>Variation in <span class="html-italic">A</span> when <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>a</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>5</mn> </msup> <mo>,</mo> <mspace width="0.166667em"/> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>25</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>k</mi> <mi>r</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>γ</mi> <mo>=</mo> <msup> <mn>0</mn> <mo>∘</mo> </msup> <mo>,</mo> <mspace width="0.166667em"/> <mi>n</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>. Streamlines and isotherms at the (<b>top</b>) is for case 1, at the (<b>middle</b>) is for case 2 and the at (<b>bottom</b>) is for case 3.</p>
Full article ">Figure 8
<p>Variation in <span class="html-italic">n</span> when <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>a</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>5</mn> </msup> <mo>,</mo> <mspace width="0.166667em"/> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>25</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>k</mi> <mi>r</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>γ</mi> <mo>=</mo> <msup> <mn>0</mn> <mo>∘</mo> </msup> <mo>,</mo> <mspace width="0.166667em"/> <mi>A</mi> <mo>=</mo> <mn>0.05</mn> </mrow> </semantics></math>. Streamlines and isotherms at the (<b>top</b>) is for case 1, at the (<b>middle</b>) is for case 2 and the at (<b>bottom</b>) is for case 3.</p>
Full article ">Figure 9
<p>Variation in <math display="inline"><semantics> <mi>γ</mi> </semantics></math> when <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>a</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>5</mn> </msup> <mo>,</mo> <mspace width="0.166667em"/> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>25</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>k</mi> <mi>r</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>A</mi> <mo>=</mo> <mn>0.05</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>n</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>. Streamlines and isotherms at the (<b>top</b>) is for case 1, at the (<b>middle</b>) is for case 2 and the at (<b>bottom</b>) is for case 3.</p>
Full article ">Figure 10
<p><math display="inline"><semantics> <mrow> <msub> <mover> <mrow> <mi>N</mi> <mi>u</mi> </mrow> <mo>¯</mo> </mover> <mi>i</mi> </msub> <mo>,</mo> <mspace width="0.166667em"/> <mi>a</mi> <mi>v</mi> <mi>g</mi> <mrow> <mo>(</mo> <msubsup> <mi>S</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>c</mi> </mrow> <mrow> <mi>t</mi> <mi>o</mi> <mi>t</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>,</mo> <mspace width="0.166667em"/> <mi>a</mi> <mi>v</mi> <mi>g</mi> <mrow> <mo>(</mo> <mi>B</mi> <msub> <mi>e</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>c</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math> graphs in different variations.</p>
Full article ">Figure 10 Cont.
<p><math display="inline"><semantics> <mrow> <msub> <mover> <mrow> <mi>N</mi> <mi>u</mi> </mrow> <mo>¯</mo> </mover> <mi>i</mi> </msub> <mo>,</mo> <mspace width="0.166667em"/> <mi>a</mi> <mi>v</mi> <mi>g</mi> <mrow> <mo>(</mo> <msubsup> <mi>S</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>c</mi> </mrow> <mrow> <mi>t</mi> <mi>o</mi> <mi>t</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>,</mo> <mspace width="0.166667em"/> <mi>a</mi> <mi>v</mi> <mi>g</mi> <mrow> <mo>(</mo> <mi>B</mi> <msub> <mi>e</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>c</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math> graphs in different variations.</p>
Full article ">
21 pages, 9452 KiB  
Article
Entropy Analysis of Magnetized Carbon Nanofluid over Axially Rotating Stretching Disk
by Hossam A. Nabwey, Uzma Sultana, Muhammad Mushtaq, Muhammad Ashraf, Ahmed M. Rashad, Sumayyah I. Alshber and Miad Abu Hawsah
Materials 2022, 15(23), 8550; https://doi.org/10.3390/ma15238550 - 30 Nov 2022
Cited by 3 | Viewed by 1040
Abstract
Nanofluids receive recognition from researchers and scientists because of their high thermal transfer rates. They have impactful industrial and technological modules in daily activities. In recent times, the heat transfer rate has been strengthened even more by a certain type of nanofluid known [...] Read more.
Nanofluids receive recognition from researchers and scientists because of their high thermal transfer rates. They have impactful industrial and technological modules in daily activities. In recent times, the heat transfer rate has been strengthened even more by a certain type of nanofluid known as “carbon nanotubes”. The water-based magnetohydrodynamic flow with the nanoparticles MWCNT and SWCNT over an axially rotating stretching disk is highlighted in this article. In addition, the perspectives of viscous dissipation and MHD were taken into consideration. In order to formulate the physical problem, Xue’s model is considered with the thermophysical properties and characteristics of carbon nanofluid. The current modeled system of partial differential equations is transformed into an ordinary differential equation system by the suggesting of the best similarity technique. Later, the transformed system of ordinary differential equations is solved numerically by using the Keller box method and the shooting method. Figures and charts are used to study and elaborate the physical behavior of the key subjective flow field parameters. The saturation in the base fluid is considered in both kinds of carbon nanotubes, the single-wall (SWCNTs) and the multiwall (MWCNTs). It is noted that the heat transfer mechanism shows some delaying behavior due to the increase in the Eckert number and the volume fraction elevation values. For the larger volume fraction values and the magnetic parameter, the skin friction increases. In addition, while the temperature profile increases with the Biot numbers, it falls for the increasing values of the Prandtl number. Furthermore, it is noted that the irreversibility of the thermal energy is influenced by the Biot number, temperature difference, Brinkmann number, and magnetic field, which all have dynamic effects on the entropy and the Bejan number. Full article
Show Figures

Figure 1

Figure 1
<p>Geometry and coordinates of model.</p>
Full article ">Figure 2
<p>Magnetic parameter verses velocity <math display="inline"><semantics> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>η</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>Magnetic parameter verses velocity <math display="inline"><semantics> <mrow> <mi>g</mi> <mrow> <mo>(</mo> <mi>η</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p>
Full article ">Figure 4
<p>Volume fraction verses velocity <math display="inline"><semantics> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>η</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p>
Full article ">Figure 5
<p>Volume fraction verses velocity <math display="inline"><semantics> <mrow> <mi>g</mi> <mrow> <mo>(</mo> <mi>η</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p>
Full article ">Figure 6
<p>Rotation S verses velocity <math display="inline"><semantics> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>η</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p>
Full article ">Figure 7
<p>Rotation S verses velocity <math display="inline"><semantics> <mrow> <mi>g</mi> <mrow> <mo>(</mo> <mi>η</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p>
Full article ">Figure 8
<p>Prandtl (Pr) verses <math display="inline"><semantics> <mrow> <mi>θ</mi> <mrow> <mo>(</mo> <mi>η</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p>
Full article ">Figure 9
<p>Solid volume <math display="inline"><semantics> <mi>ϕ</mi> </semantics></math> verses <math display="inline"><semantics> <mrow> <mi>θ</mi> <mrow> <mo>(</mo> <mi>η</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p>
Full article ">Figure 10
<p><math display="inline"><semantics> <mi>σ</mi> </semantics></math> verses <math display="inline"><semantics> <mrow> <mi>θ</mi> <mrow> <mo>(</mo> <mi>η</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p>
Full article ">Figure 11
<p><math display="inline"><semantics> <mrow> <msup> <mi>M</mi> <mn>2</mn> </msup> </mrow> </semantics></math> verses <math display="inline"><semantics> <mrow> <mi>θ</mi> <mrow> <mo>(</mo> <mi>η</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p>
Full article ">Figure 12
<p><math display="inline"><semantics> <mrow> <mi>E</mi> <mi>c</mi> <mi>k</mi> <mi>e</mi> <mi>r</mi> <mi>t</mi> </mrow> </semantics></math> verses <math display="inline"><semantics> <mrow> <mi>θ</mi> <mi>η</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 13
<p><math display="inline"><semantics> <mrow> <mi>E</mi> <mi>c</mi> <mi>k</mi> <mi>e</mi> <mi>r</mi> <mi>t</mi> </mrow> </semantics></math> verses <math display="inline"><semantics> <mrow> <mi>θ</mi> <mrow> <mo>(</mo> <mi>η</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p>
Full article ">Figure 14
<p>Rotation verses <math display="inline"><semantics> <mrow> <mi>θ</mi> <mrow> <mo>(</mo> <mi>η</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p>
Full article ">Figure 15
<p><math display="inline"><semantics> <mrow> <msup> <mi>M</mi> <mn>2</mn> </msup> </mrow> </semantics></math> verses Prandtl and <math display="inline"><semantics> <mrow> <mi>R</mi> <msup> <mi>e</mi> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msup> <msub> <mi>C</mi> <mi>f</mi> </msub> </mrow> </semantics></math>.</p>
Full article ">Figure 16
<p>S verses <math display="inline"><semantics> <mrow> <mi>R</mi> <msup> <mi>e</mi> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msup> <msub> <mi>C</mi> <mi>f</mi> </msub> </mrow> </semantics></math>.</p>
Full article ">Figure 17
<p><math display="inline"><semantics> <mrow> <msup> <mi>M</mi> <mn>2</mn> </msup> </mrow> </semantics></math> verses <math display="inline"><semantics> <mrow> <mi>R</mi> <msup> <mi>e</mi> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msup> <msub> <mi>C</mi> <mi>f</mi> </msub> </mrow> </semantics></math>.</p>
Full article ">Figure 18
<p>Prandtl verses <math display="inline"><semantics> <mrow> <mi>R</mi> <msup> <mi>e</mi> <mrow> <mo>−</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msup> <mi>N</mi> <mi>u</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 19
<p><math display="inline"><semantics> <mrow> <msup> <mi>M</mi> <mn>2</mn> </msup> </mrow> </semantics></math> verses <math display="inline"><semantics> <mrow> <mi>R</mi> <msup> <mi>e</mi> <mrow> <mo>−</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msup> <mi>N</mi> <mi>u</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 20
<p>Rotation verses <math display="inline"><semantics> <mrow> <mi>R</mi> <msup> <mi>e</mi> <mrow> <mo>−</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msup> <mi>N</mi> <mi>u</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 21
<p>Eckert verses <math display="inline"><semantics> <mrow> <mi>R</mi> <msup> <mi>e</mi> <mrow> <mo>−</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msup> <mi>N</mi> <mi>u</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 22
<p>(<b>a</b>) <math display="inline"><semantics> <mrow> <mrow> <mi mathvariant="sans-serif">Λ</mi> </mrow> </mrow> </semantics></math> verses entropy <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>G</mi> </msub> </mrow> </semantics></math>. (<b>b</b>) <math display="inline"><semantics> <mi mathvariant="sans-serif">Λ</mi> </semantics></math> verses Bejan (Be).</p>
Full article ">Figure 23
<p>(<b>a</b>) Brickman verses entropy <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>G</mi> </msub> </mrow> </semantics></math>. (<b>b</b>) Brickman verses Bejan (Be).</p>
Full article ">Figure 24
<p>(<b>a</b>) Biot verses entropy <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>G</mi> </msub> </mrow> </semantics></math>. (<b>b</b>) Biot verses Bejan (Be).</p>
Full article ">Figure 25
<p>(<b>a</b>) Rotation verses entropy <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>G</mi> </msub> </mrow> </semantics></math>. (<b>b</b>) Rotation verses Bejan (Be).</p>
Full article ">Figure 26
<p>(<b>a</b>) Hartmann verses entropy <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>G</mi> </msub> </mrow> </semantics></math>. (<b>b</b>) Hartmann verses Bejan (Be).</p>
Full article ">
19 pages, 6434 KiB  
Article
Interaction of Variable Fluid Properties with Electrokinetically Modulated Peristaltic Flow of Reactive Nanofluid: A Thermodynamical Analysis
by Yasir Akbar, Shiping Huang and Hammad Alotaibi
Mathematics 2022, 10(23), 4452; https://doi.org/10.3390/math10234452 - 25 Nov 2022
Cited by 2 | Viewed by 1534
Abstract
In the present study, the interaction of variable fluid properties with electrokinetically regulated peristaltic transportation of a reactive nanofluid embedded in a porous space is studied. The nanofluid saturates the porous space/medium with inhomogeneous porosity, which changes with distance from the channel boundary. [...] Read more.
In the present study, the interaction of variable fluid properties with electrokinetically regulated peristaltic transportation of a reactive nanofluid embedded in a porous space is studied. The nanofluid saturates the porous space/medium with inhomogeneous porosity, which changes with distance from the channel boundary. It is assumed that nanofluids are accompanied by variable thermal conductivity and viscosity. The impacts of magnetic field, Brownian motion, electric field, viscous dissipation, chemical reaction, mixed convection, and thermophoresis are incorporated. Moreover, the contribution of zero mass flux boundary condition is executed. The complexity of the equations describing the flow of a nanofluid is reduced by applying the lubrication theory. The fully non-linear equations are solved by utilizing a numerical technique. Particular attention is paid to the analysis of entropy optimization, since its minimization is the best measure to enhance the efficiency of thermal systems. These results demonstrate that a positively oriented external electric field contributes to an increase in nanofluid velocity. Temperature of nanofluid increases more rapidly due to an augmentation in Joule heating parameter. It is noticed that the temperature of water is comparatively lower than that of kerosene. The system’s energy loss can be reduced when the thermal conductivity parameter enhance. The magnitude of Bejan number is enhanced by increasing electroosmotic parameter. Further, a substantial decrement in concentration profile is perceived when the Schmidt number is augmented. Full article
Show Figures

Figure 1

Figure 1
<p>Geometric representation of the problem.</p>
Full article ">Figure 2
<p>(<b>a</b>–<b>g</b>): Temperature profile against different parameters.</p>
Full article ">Figure 2 Cont.
<p>(<b>a</b>–<b>g</b>): Temperature profile against different parameters.</p>
Full article ">Figure 3
<p>(<b>a</b>–<b>e</b>): Effects of different relevant parameters on heat transfer rate at the channel wall −<span class="html-italic">θ</span>′(<span class="html-italic">h</span>).</p>
Full article ">Figure 3 Cont.
<p>(<b>a</b>–<b>e</b>): Effects of different relevant parameters on heat transfer rate at the channel wall −<span class="html-italic">θ</span>′(<span class="html-italic">h</span>).</p>
Full article ">Figure 3 Cont.
<p>(<b>a</b>–<b>e</b>): Effects of different relevant parameters on heat transfer rate at the channel wall −<span class="html-italic">θ</span>′(<span class="html-italic">h</span>).</p>
Full article ">Figure 4
<p>(<b>a</b>–<b>d</b>): Effects of different relevant parameters on entropy generation.</p>
Full article ">Figure 4 Cont.
<p>(<b>a</b>–<b>d</b>): Effects of different relevant parameters on entropy generation.</p>
Full article ">Figure 5
<p>(<b>a</b>–<b>c</b>): Effects of different relevant parameters on Bejan number.</p>
Full article ">Figure 5 Cont.
<p>(<b>a</b>–<b>c</b>): Effects of different relevant parameters on Bejan number.</p>
Full article ">Figure 6
<p>(<b>a</b>–<b>d</b>): Effects of different parameters on concentration profile.</p>
Full article ">Figure 6 Cont.
<p>(<b>a</b>–<b>d</b>): Effects of different parameters on concentration profile.</p>
Full article ">Figure 7
<p>(<b>a</b>–<b>e</b>): Effects of different pertinent parameters on velocity profile.</p>
Full article ">
Back to TopTop