Interaction of Variable Fluid Properties with Electrokinetically Modulated Peristaltic Flow of Reactive Nanofluid: A Thermodynamical Analysis
<p>Geometric representation of the problem.</p> "> Figure 2
<p>(<b>a</b>–<b>g</b>): Temperature profile against different parameters.</p> "> Figure 2 Cont.
<p>(<b>a</b>–<b>g</b>): Temperature profile against different parameters.</p> "> Figure 3
<p>(<b>a</b>–<b>e</b>): Effects of different relevant parameters on heat transfer rate at the channel wall −<span class="html-italic">θ</span>′(<span class="html-italic">h</span>).</p> "> Figure 3 Cont.
<p>(<b>a</b>–<b>e</b>): Effects of different relevant parameters on heat transfer rate at the channel wall −<span class="html-italic">θ</span>′(<span class="html-italic">h</span>).</p> "> Figure 3 Cont.
<p>(<b>a</b>–<b>e</b>): Effects of different relevant parameters on heat transfer rate at the channel wall −<span class="html-italic">θ</span>′(<span class="html-italic">h</span>).</p> "> Figure 4
<p>(<b>a</b>–<b>d</b>): Effects of different relevant parameters on entropy generation.</p> "> Figure 4 Cont.
<p>(<b>a</b>–<b>d</b>): Effects of different relevant parameters on entropy generation.</p> "> Figure 5
<p>(<b>a</b>–<b>c</b>): Effects of different relevant parameters on Bejan number.</p> "> Figure 5 Cont.
<p>(<b>a</b>–<b>c</b>): Effects of different relevant parameters on Bejan number.</p> "> Figure 6
<p>(<b>a</b>–<b>d</b>): Effects of different parameters on concentration profile.</p> "> Figure 6 Cont.
<p>(<b>a</b>–<b>d</b>): Effects of different parameters on concentration profile.</p> "> Figure 7
<p>(<b>a</b>–<b>e</b>): Effects of different pertinent parameters on velocity profile.</p> ">
Abstract
:1. Introduction
2. Problem Description
3. Entropy Generation
4. Results and Discussion
4.1. Temperature Profile
4.2. Heat Transfer Rate at the Wall
4.3. Entropy Analysis
4.4. Bejan Number
4.5. Nanoparticles Concentration
4.6. Rate of Mass Transfer at the Boundary
4.7. Velocity Profile
5. Conclusions
- More energy is contributed to the nanofluid system in response of the Joule heating parameter.
- An inclining change in heat transfer rate at the wall associated with the larger Electroosmotic parameter is exhibited.
- It is noticed that the temperature of water is comparatively lower than that of kerosene.
- Entropy generation suppresses for higher variable thermal conductivity parameter.
- The process of irreversibility is even more intensified in the presence of mixed convection.
- The magnitude of Bejan number is enhanced by increasing electroosmotic parameter.
- A substantial decrease in nanoparticles concentration is perceived when chemical reaction parameter is being augmented.
- A significant increase in mass transfer rate at the wall is found at a higher Schmidt number.
- A positively oriented external electric field contributes to the velocity of nanofluid.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
(, ): | Coordinates in wave frame |
(, ): | Velocity components in lab frame |
(, ): | Velocity components in wave frame |
n0: | Concentration of ions at the bulk |
e: | Electronic charge |
c: | Speed of peristaltic wave |
: | Current density |
: | Applied magnetic field |
KB: | Boltzmann constant |
: | Applied electric field |
Cf: | Specific heat of fluid |
μf: | Viscosity of fluid |
T: | Dimensional temperature |
δ: | Wave number |
z: | Charge balance |
: | Electric conductivity of fluid |
g: | Acceleration due to gravity |
(, ): | Coordinates in lab frame |
P: | Dimensional pressure |
Tw: | Temperature at channel wall |
p: | Dimensionless pressure |
T0: | Temperature of wall |
F: | Dimensionless flow rate in wave frame |
θ: | Dimensionless temperature |
ψ: | Stream function |
η: | Dimensionless flow rate in laboratory frame |
Pr: | Prandtl number |
Kf: | Thermal conductivity of fluid |
Re: | Reynolds number |
Br: | Brinkman number |
Tav: | Average temperature of the electrolytic solution |
Ec: | Eckert number |
ρf: | Density of fluid |
Gt: | Temperature Grashoff number |
M: | Hartman number |
λ: | Wavelength |
d1: | Half width of the channel |
n+ and n−: | Number of densities of cations and anions |
References
- Latham, T.W. Fluid Motions in a Peristaltic Pump. Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1966. [Google Scholar]
- Shapiro, A.H.; Jaffrin, M.Y.; Weinberg, S.L. Peristaltic pumping with long wavelengths at low Reynolds number. J. Fluid Mech. 1969, 37, 799–825. [Google Scholar] [CrossRef]
- Srinivas, S.; Gayathri, R.; Kothandapani, M. The influence of slip conditions, wall properties and heat transfer on MHD peristaltic transport. Comput. Phys. Commun. 2009, 180, 2115–2122. [Google Scholar] [CrossRef]
- Khan, A.A.; Usman, H.; Vafai, K.; Ellahi, R. Study of peristaltic flow of magnetohydrodynamics Walter’s B fluid with slip and heat transfer. Sci. Iran. 2016, 23, 2650–2662. [Google Scholar] [CrossRef] [Green Version]
- Tanveer, A.; Khan, M.; Salahuddin, T.; Malik, M.Y.; Khan, F. Theoretical investigation of peristaltic activity in MHD based blood flow of non-Newtonian material. Comput. Methods Programs Biomed. 2020, 187, 105225. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.U.; Eastman, J.A. Enhancing Thermal Conductivity of Fluids with Nanoparticles; (No. ANL/MSD/CP-84938; CONF-951135–29); Argonne National Lab (ANL): Argonne, IL, USA, 1995. [Google Scholar]
- Eastman, J.A.; Choi, U.S.; Li, S.; Thompson, L.J.; Lee, S. Enhanced thermal conductivity through the development of nanofluids. MRS Online Proc. Libr. OPL 1996, 457, 3. [Google Scholar] [CrossRef] [Green Version]
- Shehzad, S.A.; Abbasi, F.M.; Hayat, T.; Alsaadi, F. MHD mixed convective peristaltic motion of nanofluid with Joule heating and thermophoresis effects. PLoS ONE 2014, 9, e111417. [Google Scholar] [CrossRef] [PubMed]
- Prakash, J.; Sharma, A.; Tripathi, D. Convective heat transfer and double diffusive convection in ionic nanofluids flow driven by peristalsis and electromagnetohydrodynamics. Pramana 2020, 94, 4. [Google Scholar] [CrossRef]
- Eldabe, N.T.; Abouzeid, M.; Shawky, H.A. MHD peristaltic transport of Bingham blood fluid with heat and mass transfer through a non-uniform channel. J. Adv. Res. Fluid Mech. Therm. Sci. 2021, 77, 145–159. [Google Scholar] [CrossRef]
- Abbasi, F.M.; Hayat, T.; Alsaadi, F.; Dobai, A.M.; Gao, H. MHD peristaltic transport of spherical and cylindrical magneto-nanoparticles suspended in water. AIP Adv. 2015, 5, 077104. [Google Scholar] [CrossRef]
- Sajid, T.; Tanveer, S.; Munsab, M.; Sabir, Z. Impact of oxytactic microorganisms and variable species diffusivity on blood-gold Reiner–Philippoff nanofluid. Appl. Nanosci. 2021, 11, 321–333. [Google Scholar] [CrossRef]
- Gasmi, H.; Khan, U.; Zaib, A.; Ishak, A.; Eldin, S.M.; Raizah, Z. Analysis of Mixed Convection on Two-Phase Nanofluid Flow Past a Vertical Plate in Brinkman-Extended Darcy Porous Medium with Nield Conditions. Mathematics 2022, 10, 3918. [Google Scholar] [CrossRef]
- Darcy, H. Les Fontaines Publiques de la Volle de Dijon; Vector Dalmont: Paris, France, 1856. [Google Scholar]
- Alazmi, K.; Vafai, K. Analysis of variants within the porous transport models. J. Heat Transf. 2004, 122, 303–326. [Google Scholar] [CrossRef]
- Alazmi, K.; Vafai, K. Analysis of variable porosity, thermal dispersion and local thermal non-equilibrium on free surface flows through porous media. J. Heat Transf. 2004, 126, 389–399. [Google Scholar] [CrossRef]
- Pal, D.; Mondal, H. Radiation effects on combined convection over a vertical flat plate embedded in a porous medium of variable porosity. Meccanica 2009, 44, 133–144. [Google Scholar] [CrossRef]
- Kuznetsov, A.V.; Nield, D.A. The Cheng—Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid: A revised model. Int. J. Heat Mass Transf. 2013, 65, 682–685. [Google Scholar] [CrossRef]
- Asghar, Z.; Ali, N. Mixed convective heat transfer analysis for the peristaltic transport of viscoplastic fluid: Perturbation and numerical study. AIP Adv. 2019, 9, 095001. [Google Scholar] [CrossRef] [Green Version]
- Rice, C.L.; Whitehead, R. Electrokinetic flow in a narrow cylindrical capillary. J. Phys. Chem. 1965, 69, 4017–4024. [Google Scholar] [CrossRef]
- Tang, G.H.; Li, X.F.; He, Y.L.; Tao, W.Q. Electroosmotic flow of non-Newtonian fluid in microchannels. J. Non-Newton. Fluid Mech. 2009, 157, 133–137. [Google Scholar] [CrossRef]
- Akbar, Y.; Alotaibi, H. Electroosmosis-Optimized Thermal Model for Peristaltic Transportation of Thermally Radiative Magnetized Liquid with Nonlinear Convection. Entropy 2022, 24, 530. [Google Scholar] [CrossRef]
- Siryk, S.V.; Bendandi, A.; Diaspro, A.; Rocchia, W. Charged dielectric spheres interacting in electrolytic solution: A linearized Poisson–Boltzmann equation model. J. Chem. Phys. 2021, 155, 114114. [Google Scholar] [CrossRef]
- Obolensky, O.I.; Doerr, T.P.; Yu, Y.K. Rigorous treatment of pairwise and many-body electrostatic interactions among dielectric spheres at the Debye–Hückel level. Eur. Phys. J. E 2021, 44, 129. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Wang, J.; Akbar, Y.; Shah, R. Enhanced thermal effectiveness for electroosmosis modulated peristaltic flow of modified hybrid nanofluid with chemical reactions. Sci. Rep. 2022, 12, 13756. [Google Scholar] [CrossRef] [PubMed]
- Bejan, A. A study of entropy generation in fundamental convective heat transfer. ASME J. Heat Transf. 1979, 101, 718–725. [Google Scholar] [CrossRef]
- Rashidi, M.; Bhatti, M.; Abbas, M.; Ali, M. Entropy generation on MHD blood flow of nanofluid due to peristaltic waves. Entropy 2016, 18, 117. [Google Scholar] [CrossRef] [Green Version]
- Akbar, Y.; Shanakhat, I.; Abbasi, F.M.; Shehzad, S.A. Entropy generation analysis for radiative peristaltic motion of silver-water nanomaterial with temperature dependent heat sink/source. Phys. Scr. 2020, 95, 115201. [Google Scholar] [CrossRef]
- Akbar, Y.; Abbasi, F.M. Impact of variable viscosity on peristaltic motion with entropy generation. Int. Commun. Heat Mass Transf. 2020, 118, 104826. [Google Scholar] [CrossRef]
- Sneha, K.N.; Mahabaleshwar, U.S.; Sharifpur, M.; Ahmadi, M.H.; Al-Bahrani, M. Entropy Analysis in MHD CNTS Flow Due to a Stretching Surface with Thermal Radiation and Heat Source/Sink. Mathematics 2022, 10, 3404. [Google Scholar] [CrossRef]
- Akbar, Y.; Huang, S. Enhanced Thermal Effectiveness for Electrokinetically Driven Peristaltic Flow of Motile Gyrotactic Microorganisms in a Thermally Radiative Powell Eyring Nanofluid Flow with Mass Transfer. Chem. Phys. Lett. 2022, 808, 140120. [Google Scholar] [CrossRef]
Sc | γc | Nb | Nt | |
---|---|---|---|---|
0.1 | 1.0 | 0.03 | 0.5 | 3.6417 |
0.2 | 4.1224 | |||
0.3 | 4.7646 | |||
0.2 | 0.0 | 3.2667 | ||
0.5 | 3.6417 | |||
1.0 | 4.1224 | |||
0.1 | 21.3819 | |||
0.2 | 9.8702 | |||
0.3 | 6.6527 | |||
0.1 | 0.7094 | |||
0.2 | 1.4692 | |||
0.3 | 2.2861 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akbar, Y.; Huang, S.; Alotaibi, H. Interaction of Variable Fluid Properties with Electrokinetically Modulated Peristaltic Flow of Reactive Nanofluid: A Thermodynamical Analysis. Mathematics 2022, 10, 4452. https://doi.org/10.3390/math10234452
Akbar Y, Huang S, Alotaibi H. Interaction of Variable Fluid Properties with Electrokinetically Modulated Peristaltic Flow of Reactive Nanofluid: A Thermodynamical Analysis. Mathematics. 2022; 10(23):4452. https://doi.org/10.3390/math10234452
Chicago/Turabian StyleAkbar, Yasir, Shiping Huang, and Hammad Alotaibi. 2022. "Interaction of Variable Fluid Properties with Electrokinetically Modulated Peristaltic Flow of Reactive Nanofluid: A Thermodynamical Analysis" Mathematics 10, no. 23: 4452. https://doi.org/10.3390/math10234452
APA StyleAkbar, Y., Huang, S., & Alotaibi, H. (2022). Interaction of Variable Fluid Properties with Electrokinetically Modulated Peristaltic Flow of Reactive Nanofluid: A Thermodynamical Analysis. Mathematics, 10(23), 4452. https://doi.org/10.3390/math10234452