Entropy Production Analysis in an Octagonal Cavity with an Inner Cold Cylinder: A Thermodynamic Aspect
<p>Illustration depicting the model’s structure.</p> "> Figure 2
<p>Comparison of the present streamlines and isotherms profiles with Saha et al. [<a href="#B35-energies-16-05487" class="html-bibr">35</a>] for (<b>a</b>) <math display="inline"><semantics><mrow><mi>R</mi><mi>a</mi></mrow></semantics></math> = 10<sup>5</sup> and (<b>b</b>) <math display="inline"><semantics><mrow><mi>R</mi><mi>a</mi></mrow></semantics></math> = 10<sup>6</sup> with <math display="inline"><semantics><mrow><mi>P</mi><mi>r</mi></mrow></semantics></math> = 0.71.</p> "> Figure 3
<p>Comparison of the Isotherm between the present results, Mussa et al. [<a href="#B37-energies-16-05487" class="html-bibr">37</a>] and the experimental results of Corvaro et al. [<a href="#B38-energies-16-05487" class="html-bibr">38</a>] for <math display="inline"><semantics><mrow><mi>R</mi><mi>a</mi></mrow></semantics></math> = 2.02 × 10<sup>5</sup>.</p> "> Figure 4
<p>Comparison of the <span class="html-italic">S<sub>l,h</sub></span>, <span class="html-italic">S<sub>l,f</sub></span>, <span class="html-italic">E<sub>l,t</sub></span>, and <span class="html-italic">Be<sub>l</sub></span> between the (<b>a</b>) Ilis et al. [<a href="#B36-energies-16-05487" class="html-bibr">36</a>] and the (<b>b</b>) present results.</p> "> Figure 5
<p>Comparison of the average Nu obtained from the present numerical simulation with the experimental results of Ho et al. [<a href="#B42-energies-16-05487" class="html-bibr">42</a>] for <math display="inline"><semantics><mrow><mi>χ</mi><mo>=</mo><mn>3</mn><mo>%</mo></mrow></semantics></math> and <math display="inline"><semantics><mrow><mi>χ</mi><mo>=</mo><mn>4</mn><mo>%</mo></mrow></semantics></math>.</p> "> Figure 6
<p>Distribution of streamlines and isotherms for (<b>a</b>) <math display="inline"><semantics><mrow><mi>R</mi><mi>a</mi></mrow></semantics></math> = 10<sup>3</sup>, (<b>b</b>) <math display="inline"><semantics><mrow><mi>R</mi><mi>a</mi></mrow></semantics></math> = 10<sup>4</sup>, (<b>c</b>) <math display="inline"><semantics><mrow><mi>R</mi><mi>a</mi></mrow></semantics></math> = 10<sup>5</sup>, and (<b>d</b>) <math display="inline"><semantics><mrow><mi>R</mi><mi>a</mi></mrow></semantics></math> = 10<sup>6</sup> at <math display="inline"><semantics><mrow><mi>P</mi><mi>r</mi></mrow></semantics></math> = 0.71 for air and <math display="inline"><semantics><mrow><mi>P</mi><mi>r</mi></mrow></semantics></math> = 7.0 for water using IBC.</p> "> Figure 7
<p>Distribution of local <span class="html-italic">E<sub>gen</sub></span> due to temperature gradient, viscous dissipation, local <span class="html-italic">E<sub>gen</sub></span>, and local <span class="html-italic">B<sub>el</sub></span> for (<b>a</b>) air and (<b>b</b>) water while <math display="inline"><semantics><mrow><mi>R</mi><mi>a</mi><mo> </mo></mrow></semantics></math>= 10<sup>6</sup> using IBC.</p> "> Figure 8
<p>Distribution of streamlines, isotherms, <span class="html-italic">E<sub>gen</sub></span> due to temperature gradient, viscous dissipation, local <span class="html-italic">E<sub>gen</sub></span>, and local <math display="inline"><semantics><mrow><mi>B</mi><mi>e</mi><mo> </mo></mrow></semantics></math> while <math display="inline"><semantics><mrow><mi>R</mi><mi>a</mi><mo> </mo></mrow></semantics></math>= 10<sup>6</sup> using HFBC for (<b>a</b>) air and (<b>b</b>) water.</p> "> Figure 9
<p>Variation of streamlines, isotherms, local <span class="html-italic">E<sub>gen</sub></span><sub>,</sub> and <span class="html-italic">Be<sub>l</sub></span> for (<b>a</b>) <math display="inline"><semantics><mrow><mi>R</mi><mi>a</mi></mrow></semantics></math> = 10<sup>3</sup>, (<b>b</b>) <math display="inline"><semantics><mrow><mi>R</mi><mi>a</mi></mrow></semantics></math> = 10<sup>4</sup>, (<b>c</b>) <math display="inline"><semantics><mrow><mo> </mo><mi>R</mi><mi>a</mi><mo> </mo><mtext> </mtext></mrow></semantics></math>= 10<sup>5</sup>, and (<b>d</b>) <math display="inline"><semantics><mrow><mi>R</mi><mi>a</mi></mrow></semantics></math> = 10<sup>6</sup> at <math display="inline"><semantics><mi>χ</mi></semantics></math> = 5%.</p> "> Figure 9 Cont.
<p>Variation of streamlines, isotherms, local <span class="html-italic">E<sub>gen</sub></span><sub>,</sub> and <span class="html-italic">Be<sub>l</sub></span> for (<b>a</b>) <math display="inline"><semantics><mrow><mi>R</mi><mi>a</mi></mrow></semantics></math> = 10<sup>3</sup>, (<b>b</b>) <math display="inline"><semantics><mrow><mi>R</mi><mi>a</mi></mrow></semantics></math> = 10<sup>4</sup>, (<b>c</b>) <math display="inline"><semantics><mrow><mo> </mo><mi>R</mi><mi>a</mi><mo> </mo><mtext> </mtext></mrow></semantics></math>= 10<sup>5</sup>, and (<b>d</b>) <math display="inline"><semantics><mrow><mi>R</mi><mi>a</mi></mrow></semantics></math> = 10<sup>6</sup> at <math display="inline"><semantics><mi>χ</mi></semantics></math> = 5%.</p> "> Figure 10
<p>Distribution of <span class="html-italic">E<sub>gen</sub></span> due to temperature gradient, viscous dissipation, local <span class="html-italic">E<sub>gen</sub></span>, and local <math display="inline"><semantics><mrow><mi>B</mi><mi>e</mi></mrow></semantics></math> for (<b>a</b>) <math display="inline"><semantics><mrow><mi>χ</mi><mo>=</mo><mn>1</mn><mo>%</mo><mo>,</mo><mtext> </mtext><mfenced><mi mathvariant="bold">b</mi></mfenced><mrow><mtext> </mtext><mi>χ</mi></mrow><mo>=</mo><mn>3</mn><mo>%</mo><mo>,</mo><mrow><mtext> </mtext><mi>and</mi></mrow><mfenced><mi mathvariant="bold">c</mi></mfenced><mrow><mtext> </mtext><mi>χ</mi></mrow><mo>=</mo><mn>5</mn><mo>%</mo><mo>,</mo><mtext> </mtext></mrow></semantics></math>at <math display="inline"><semantics><mrow><mi>R</mi><mi>a</mi></mrow></semantics></math> = 10<sup>6</sup>.</p> "> Figure 10 Cont.
<p>Distribution of <span class="html-italic">E<sub>gen</sub></span> due to temperature gradient, viscous dissipation, local <span class="html-italic">E<sub>gen</sub></span>, and local <math display="inline"><semantics><mrow><mi>B</mi><mi>e</mi></mrow></semantics></math> for (<b>a</b>) <math display="inline"><semantics><mrow><mi>χ</mi><mo>=</mo><mn>1</mn><mo>%</mo><mo>,</mo><mtext> </mtext><mfenced><mi mathvariant="bold">b</mi></mfenced><mrow><mtext> </mtext><mi>χ</mi></mrow><mo>=</mo><mn>3</mn><mo>%</mo><mo>,</mo><mrow><mtext> </mtext><mi>and</mi></mrow><mfenced><mi mathvariant="bold">c</mi></mfenced><mrow><mtext> </mtext><mi>χ</mi></mrow><mo>=</mo><mn>5</mn><mo>%</mo><mo>,</mo><mtext> </mtext></mrow></semantics></math>at <math display="inline"><semantics><mrow><mi>R</mi><mi>a</mi></mrow></semantics></math> = 10<sup>6</sup>.</p> "> Figure 11
<p>Comparison between actual values and predicted values for <span class="html-italic">Nu<sub>avg</sub></span>.</p> ">
Abstract
:1. Introduction
2. Physical and Mathematical Model
- For horizontal walls,
- For vertical walls,
- For cylindrical surfaces,
- For inclined walls,
- For isothermal conditions:
- For heat flux conditions:
3. Numerical Modelling
4. Meshing and Validation
5. Use of Corcione [34] Empirical Correlation Model: A Justification
6. Findings and Analysis
6.1. Variation of Streamline and Isotherm Profiles for Air/Water Case
6.2. Variation of Different Entropy Production for Air/Water Cases
6.3. Variation of Streamline, Isotherm, Local Egen, and Be for Al2O3-H2O Nanofluid Subject to Different
6.4. Variation of Entropy for Different
6.5. Proposed Correlation for Nuavg
7. Conclusions
- The presence of a cold cylinder within the cavity significantly impacts the system’s heat transfer characteristics, increasing heat transfer;
- Using HFBC for air and water results in a higher Nuavg and lower Eavg than IBC;
- At lower ( = 103), Nuavg increases the most for air and water when HFBC is applied;
- The addition of nanoparticles enhances HT, and as increases, the rate of HT also increases;
- The average Egen rises with an increase in Ra, and at higher values of , such as = 106, the average Egen is higher;
- Increasing in a fluid leads to improved energy efficiency and reduced environmental impact;
- The rise in from 103 to 106 results in a reduction in energy efficiency and an increased environmental impact.
- The study is focused on the natural convection flow and heat transfer phenomenon and does not account for forced convection;
- is limited to the range of 103 to 106 for laminar flow in this study, but higher values of could be considered in future research;
- The investigation is limited to specific parameters for fluid flow and heat transfer characteristics. Other factors, such as cylinder shape, size, and cavity orientation, could impact the system’s behavior and should be studied in future research;
- The study only considers the Al2O3-H2O nanofluid, and other types of nanofluids with different properties and characteristics may exhibit different behavior under similar conditions;
- In future research, the possibility of investigating the effects of moving the fixed cold cylinder towards the walls of the cavity could provide valuable insights into the system’s thermal behavior;
- Future research can explore the clustering effects and mass transport of particles to gain a deeper understanding of their impact on the system.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Cp | Specific heat capacity (J/kg K) |
D | Einstein diffusion coefficient (J/K) |
df | Fluid molecular diameter (nm) |
dp | Diameter of nanoparticle (nm) |
Egen | Entropy generation |
L | Length (m) |
M | Molecular weight of the base fluid (kg/mole) |
N | Avogadro number |
Nuavg | Average Nusselt number |
p | Pressure (N/m2) |
Pr | Prandtl number |
Be | Bejan number |
Ra | Rayleigh number |
Re | Reynolds number |
k | Thermal conductivity (W/m K) |
U | Dimensionless horizontal velocity component |
V | Dimensionless vertical velocity component |
X | Dimensionless horizontal coordinate |
Y | Dimensionless vertical coordinate |
P | Dimensionless pressure |
Heat flux (W/m2) | |
Outward normal vector | |
Reference temperature (K) | |
r | Radius of the cylinder (m) |
T | Temperature (K) |
Tfr | Freezing point of the base fluid (K) |
Th | High temperature (K) |
Tc | Cold temperature (K) |
Nanoparticle mean Brownian velocity (m/s) | |
Boltzmann constant (J/K) | |
v | Velocity (m/s) |
x, y | Cartesian coordinates (m) |
g | Gravitational acceleration (ms−2) |
Sl,h | Entropy generation due to temperature gradient |
Sl,f | Entropy generation due to viscous dissipation |
El,t | Local entropy generation |
Eavg | Average entropy generation |
Bel | Local Bejan number |
Greek symbols | |
Density (kg/m3) | |
pi | |
Thermal diffusivity (m2/s) | |
Kinematic viscosity (m2/s) | |
Dynamic viscosity (kg/m s) | |
Thermal expansion coefficient (K−1) | |
Non-dimensional temperature | |
Irreversibility factor | |
Nanoparticles volume concentration | |
Time (s) | |
Subscripts | |
f | Base fluid |
nf | Nanofluid |
p | Particle |
avg | Average |
References
- Alsabery, A.I.; Ishak, M.S.; Chamkha, A.J.; Hashim, I. Entropy generation analysis and natural convection in a nanofluid-filled square cavity with a concentric solid insert and different temperature distributions. Entropy 2018, 20, 336. [Google Scholar] [CrossRef] [Green Version]
- Ismail, F.; Hasan, M.N.; Saha, S.C. Numerical study of turbulent fluid flow and heat transfer in lateral perforated extended surfaces. Energy 2014, 64, 632–639. [Google Scholar] [CrossRef]
- Sheremet, M.A.; Oztop, H.F.; Pop, I.; Abu-Hamdeh, N. Analysis of entropy generation in natural convection of nanofluid inside a square cavity having hot solid block: Tiwari and Das’ Model. Entropy 2015, 18, 9. [Google Scholar] [CrossRef] [Green Version]
- Selimefendigil, F.; Öztop, H.F. Natural convection and entropy generation of nanofluid filled cavity having different shaped obstacles under the influence of magnetic field and internal heat generation. J. Taiwan Inst. Chem. Eng. 2015, 56, 42–56. [Google Scholar] [CrossRef]
- Selimefendigil, F.; Öztop, H.F. MHD mixed convection and entropy generation of power law fluids in a cavity with a partial heater under the effect of a rotating cylinder. Int. J. Heat Mass Transf. 2016, 98, 40–51. [Google Scholar] [CrossRef]
- Siavashi, M.; Bordbar, V.; Rahnama, P. Heat transfer and entropy generation study of non-Darcy double-diffusive natural convection in inclined porous enclosures with different source configurations. Appl. Therm. Eng. 2017, 110, 1462–1475. [Google Scholar] [CrossRef]
- Wang, T.; Huang, Z.; Xi, G. Entropy generation for mixed convection in a square cavity containing a rotating circular cylinder using a local radial basis function method. Int. J. Heat Mass Transf. 2017, 106, 1063–1073. [Google Scholar] [CrossRef]
- Rahimi, A.; Kasaeipoor, A.; Malekshah, E.H.; Kolsi, L. Natural convection analysis by entropy generation and heatline visualization using lattice Boltzmann method in nanofluid filled cavity included with internal heaters- Empirical thermo-physical properties. Int. J. Mech. Sci. 2017, 133, 199–216. [Google Scholar] [CrossRef]
- Rahimi, A.; Kasaeipoor, A.; Malekshah, E.H.; Palizian, M.; Kolsi, L. Lattice Boltzmann numerical method for natural convection and entropy generation in cavity with refrigerant rigid body filled with DWCNTs-water nanofluid-experimental thermo-physical properties. Therm. Sci. Eng. Prog. 2018, 5, 372–387. [Google Scholar] [CrossRef]
- Kefayati, G.; Tang, H. MHD thermosolutal natural convection and entropy generation of Carreau fluid in a heated enclosure with two inner circular cold cylinders, using LBM. Int. J. Heat Mass Transf. 2018, 126, 508–530. [Google Scholar] [CrossRef]
- Arun, S.; Satheesh, A. Mesoscopic analysis of MHD double diffusive natural convection and entropy generation in an enclosure filled with liquid metal. J. Taiwan Inst. Chem. Eng. 2019, 95, 155–173. [Google Scholar] [CrossRef]
- Bozorg, M.V.; Siavashi, M. Two-phase mixed convection heat transfer and entropy generation analysis of a non-Newtonian nanofluid inside a cavity with internal rotating heater and cooler. Int. J. Mech. Sci. 2019, 151, 842–857. [Google Scholar] [CrossRef]
- Alsabery, A.I.; Gedik, E.; Chamkha, A.J.; Hashim, I. Impacts of heated rotating inner cylinder and two-phase nanofluid model on entropy generation and mixed convection in a square cavity. Heat Mass Transf. 2019, 56, 321–338. [Google Scholar] [CrossRef]
- Alsabery, A.; Selimefendigil, F.; Hashim, I.; Chamkha, A.; Ghalambaz, M. Fluid-structure interaction analysis of entropy generation and mixed convection inside a cavity with flexible right wall and heated rotating cylinder. Int. J. Heat Mass Transf. 2019, 140, 331–345. [Google Scholar] [CrossRef]
- Ahrar, A.J.; Djavareshkian, M.H.; Ahrar, A. Numerical simulation of Al2O3-water nanofluid heat transfer and entropy generation in a cavity using a novel TVD hybrid LB method under the influence of an external magnetic field source. Therm. Sci. Eng. Prog. 2019, 14, 100416. [Google Scholar] [CrossRef]
- Tayebi, T.; Chamkha, A.J. Entropy generation analysis due to MHD natural convection flow in a cavity occupied with hybrid nanofluid and equipped with a conducting hollow cylinder. J. Therm. Anal. Calorim. 2019, 139, 2165–2179. [Google Scholar] [CrossRef]
- Tasmin, M.; Nag, P.; Hoque, Z.T.; Molla, M. Non-Newtonian effect on heat transfer and entropy generation of natural convection nanofluid flow inside a vertical wavy porous cavity. SN Appl. Sci. 2021, 3, 299. [Google Scholar] [CrossRef]
- Li, Z.; Hussein, A.K.; Younis, O.; Afrand, M.; Feng, S. Natural convection and entropy generation of a nanofluid around a circular baffle inside an inclined square cavity under thermal radiation and magnetic field effects. Int. Commun. Heat Mass Transf. 2020, 116, 104650. [Google Scholar] [CrossRef]
- Kashyap, D.; Dass, A.K.; Oztop, H.F.; Abu-Hamdeh, N. Multiple-relaxation-time lattice Boltzmann analysis of entropy generation in a hot-block-inserted square cavity for different Prandtl numbers. Int. J. Therm. Sci. 2021, 165, 106948. [Google Scholar] [CrossRef]
- Hamzah, H.; Canpolat, C.; Jasim, L.M.; Sahin, B. Hydrothermal index and entropy generation of a heated cylinder placed between two oppositely rotating cylinders in a vented cavity. Int. J. Mech. Sci. 2021, 201, 106465. [Google Scholar] [CrossRef]
- Ahlawat, A.; Sharma, M.K. Effects of heated block comprised porous stratum and micropolar hybrid nanofluid on convective heat transfer and entropy generation in a square enclosure. Heat Transf. 2022, 51, 5320–5347. [Google Scholar] [CrossRef]
- Majeed, A.H.; Mahmood, R.; Shahzad, H.; Pasha, A.A.; Islam, N.; Rahman, M.M. Numerical simulation of thermal flows and entropy generation of magnetized hybrid nanomaterials filled in a hexagonal cavity. Case Stud. Therm. Eng. 2022, 39, 102293. [Google Scholar] [CrossRef]
- Acharya, N. On the hydrothermal behavior and entropy analysis of buoyancy-driven magnetohydrodynamic hybrid nanofluid flow within an octagonal enclosure fitted with fins: Application to thermal energy storage. J. Energy Storage 2022, 53, 105198. [Google Scholar] [CrossRef]
- Ikram, M.M.; Saha, G.; Saha, S.C. Conjugate forced convection transient flow and heat transfer analysis in a hexagonal, partitioned, air-filled cavity with dynamic modulator. Int. J. Heat Mass Transf. 2021, 167, 120786. [Google Scholar] [CrossRef]
- Ikram, M.M.; Saha, G.; Saha, S.C. Unsteady conjugate heat transfer characteristics in hexagonal cavity equipped with a multi-blade dynamic modulator. Int. J. Heat Mass Transf. 2023, 200, 123527. [Google Scholar] [CrossRef]
- Saha, G.; Al-Waaly, A.A.; Paul, M.C.; Saha, S.C. Heat transfer in cavities: Configurative systematic review. Energies 2023, 16, 2338. [Google Scholar] [CrossRef]
- Sharma, B.K.; Kumar, A.; Gandhi, R.; Bhatti, M.M.; Mishra, N.K. Entropy generation and thermal radiation analysis of EMHD Jeffrey nanofluid flow: Applications in solar energy. Nanomaterials 2023, 13, 544. [Google Scholar] [CrossRef]
- Almuhtady, A.; Alhazmi, M.; Al-Kouz, W.; Raizah, Z.A.S.; Ahmed, S.E. Entropy generation and MHD convection within an inclined trapezoidal heated by triangular fin and filled by a variable porous media. Appl. Sci. 2021, 11, 1951. [Google Scholar] [CrossRef]
- Ahmed, S.E.; Rashed, Z.Z. MHD natural convection in a heat generating porous medium-filled wavy enclosures using Buongiorno’s nanofluid model. Case Stud. Therm. Eng. 2019, 1, 100430. [Google Scholar] [CrossRef]
- Ahmed, S.E.; Raizah, Z.A. FEM treatments for MHD radiative convective flow of MWCNTs C2H6O2 nanofluids between inclined hexagonal/hexagonal or hexagonal/cylinder. Ain Shams Eng. J. 2022, 13, 101549. [Google Scholar] [CrossRef]
- Raizah, Z.A.S.; Alsabery, A.I.; Aly, A.M.; Hashim, I. Energy and entropy production of nanofluid within an annulus partly saturated by a porous region. Entropy 2021, 23, 1237. [Google Scholar] [CrossRef] [PubMed]
- Masuda, H.; Ebata, A.; Teramae, K.; Hishinuma, N. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Dispersion of Al2O3, SiO2 and TiO2 Ultra-Fine Particles. Netsu Bussei 1993, 7, 227–233. [Google Scholar] [CrossRef] [Green Version]
- Nag, P.; Molla, M. Double-diffusive natural convection of non-Newtonian nanofluid considering thermal dispersion of nanoparticles in a vertical wavy enclosure. AIP Adv. 2021, 11, 095219. [Google Scholar] [CrossRef]
- Corcione, M. Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers. Manag. 2011, 52, 789–793. [Google Scholar] [CrossRef]
- Saha, G.; Saha, S.; Hasan, M.N.; Islam, M.Q. Natural convection heat transfer within octagonal cavity. Int. J. Eng. Trans. A Basics 2010, 23, 1–10. [Google Scholar]
- Ilis, G.G.; Mobedi, M.; Sunden, B. Effect of aspect ratio on entropy generation in a rectangular cavity with differentially heated vertical walls. Int. Commun. Heat Mass Transf. 2008, 35, 696–703. [Google Scholar] [CrossRef] [Green Version]
- Mussa, M.; Abdullah, S.; Azwadi, C.N.; Muhamad, N. Simulation of natural convection heat transfer in an enclosure by the lattice-Boltzmann method. Comput. Fluids 2011, 44, 162–168. [Google Scholar] [CrossRef]
- Corvaro, F.; Paroncini, M. A numerical and experimental analysis on the natural convective heat transfer of a small heating strip located on the floor of a square cavity. Appl. Therm. Eng. 2008, 28, 25–35. [Google Scholar] [CrossRef]
- Corcione, M.; Cianfrini, M.; Quintino, A. Two-phase mixture modeling of natural convection of nanofluids with temperature-dependent properties. Int. J. Therm. Sci. 2013, 71, 182–195. [Google Scholar] [CrossRef]
- Cianfrini, M.; Corcione, M.; Quintino, A. Natural convection in square enclosures differentially heated at sides using alumina-water nanofluids with temperature-dependent physical properties. Therm. Sci. 2015, 19, 591–608. [Google Scholar] [CrossRef]
- Corcione, M.; Grignaffini, S.; Quintino, A.; Ricci, E.; Vallati, A. Buoyancy-Induced Convection of Alumina-Water Nanofluids in Laterally Heated Vertical Slender Cavities. Heat Transf. Eng. 2018, 39, 1103–1116. [Google Scholar] [CrossRef]
- Ho, C.; Liu, W.; Chang, Y.; Lin, C. Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: An experimental study. Int. J. Therm. Sci. 2010, 49, 1345–1353. [Google Scholar] [CrossRef]
Physical Properties | H2O | Al2O3 |
---|---|---|
Cp [J/kgK] | 4179 | 773 |
[kg/m3] | 997.1 | 3880 |
k [W/mK] | 0.613 | 36 |
× 10−5 [1/K] | 21 | 0.85 |
IBC | HFBC | ||||
---|---|---|---|---|---|
Elements | = 0.71 (Air) | = 7.00 (Water) | = 0.71 (Air) | = 7.00 (Water) | = 7.30 (χ = 0.05) Al2O3-H2O Nanofluid |
11,960 | 19.69 | 21.18 | 25.01 | 26.11 | 39.32 |
15,132 | 19.78 | 21.23 | 25.05 | 26.14 | 39.39 |
16,990 | 19.80 | 21.18 | 25.14 | 26.21 | 39.34 |
20,452 | 19.92 | 21.25 | 25.17 | 26.30 | 39.33 |
20,462 | 20.03 | 21.32 | 25.18 | 26.34 | 39.31 |
24,474 | 20.08 | 21.36 | 25.20 | 26.39 | 39.34 |
29,704 | 20.22 | 21.39 | 25.22 | 26.46 | 39.57 |
57,116 | 20.23 | 21.40 | 25.23 | 26.48 | 39.58 |
Without Cylinder | With Cylinder | ||||||
---|---|---|---|---|---|---|---|
Air | Pr = 0.71 | ||||||
Nuavg | Eavg | Be | Nuavg | Eavg | Be | % Increase of Nuavg | |
103 | 2.42 | 2.62 | 0.95 | 3.43 | 3.73 | 0.94 | 41.88 |
104 | 4.20 | 7.38 | 0.58 | 6.70 | 11.18 | 0.61 | 59.70 |
105 | 6.81 | 58.75 | 0.12 | 11.42 | 88.32 | 0.13 | 67.61 |
106 | 11.22 | 1085.94 | 0.01 | 20.22 | 1373.95 | 0.015 | 80.16 |
Water | Pr = 7.0 | ||||||
Nuavg | Eavg | Be | Nuavg | Eavg | Be | % Increase of Nuavg | |
103 | 2.44 | 2.65 | 0.94 | 3.44 | 3.74 | 0.94 | 40.95 |
104 | 4.52 | 8.78 | 0.53 | 6.87 | 12.26 | 0.57 | 51.91 |
105 | 7.43 | 84.26 | 0.09 | 12.21 | 103.29 | 0.12 | 64.32 |
106 | 12.18 | 1370.57 | 0.01 | 21.39 | 1570.48 | 0.01 | 75.58 |
IBC | HFBC | ||||||
---|---|---|---|---|---|---|---|
Air | Pr = 0.71 | ||||||
Nuavg | Eavg | Be | Nuavg | Eavg | Be | % Increase of Nuavg | |
103 | 3.43 | 3.73 | 0.94 | 5.90 | 0.37 | 0.92 | 72.11 |
104 | 6.70 | 11.25 | 0.61 | 9.78 | 0.84 | 0.25 | 45.97 |
105 | 11.42 | 88.32 | 0.13 | 16.00 | 6.18 | 0.021 | 40.13 |
106 | 20.22 | 1373.95 | 0.015 | 25.22 | 58.67 | 0.001 | 24.75 |
Water | Pr = 7.0 | ||||||
Nuavg | Eavg | Be | Nuavg | Eavg | Be | % Increase of Nuavg | |
103 | 3.44 | 3.74 | 0.94 | 5.91 | 0.37 | 0.92 | 71.75 |
104 | 6.87 | 12.26 | 0.57 | 9.92 | 0.85 | 0.25 | 44.32 |
105 | 12.21 | 103.29 | 0.12 | 16.63 | 6.81 | 0.018 | 36.26 |
106 | 21.39 | 1570.48 | 0.014 | 26.46 | 65.22 | 0.0012 | 23.70 |
Ra = 103 | Ra = 104 | Ra = 105 | Ra = 106 | |||||
---|---|---|---|---|---|---|---|---|
Nuavg | E (%) | Nuavg | E (%) | Nuavg | E (%) | Nuavg | E (%) | |
= 1% | 6.34 | 7.38 | 10.64 | 7.25 | 18.08 | 8.69 | 28.69 | 8.45 |
= 2% | 6.85 | 16.01 | 11.03 | 11.17 | 18.79 | 13.00 | 29.80 | 12.64 |
= 3% | 7.20 | 21.85 | 11.13 | 12.18 | 19.22 | 15.54 | 30.57 | 15.54 |
= 4% | 7.37 | 24.72 | 11.25 | 13.40 | 19.64 | 18.11 | 31.29 | 18.28 |
= 5% | 7.77 | 31.57 | 11.29 | 13.78 | 19.86 | 19.42 | 31.89 | 20.56 |
= 1% | 0.93396 | 0.24515 | 0.01722 | 0.00114 |
= 2% | 0.94602 | 0.25493 | 0.01724 | 0.00114 |
= 3% | 0.95657 | 0.27131 | 0.01738 | 0.00115 |
= 4% | 0.96666 | 0.29741 | 0.01778 | 0.00116 |
= 5% | 0.97569 | 0.35121 | 0.01890 | 0.00131 |
= 1% | 0.3811 | 0.8437 | 6.6832 | 64.7459 |
= 2% | 0.3503 | 0.8274 | 6.6609 | 64.3995 |
= 3% | 0.3370 | 0.8236 | 6.5913 | 64.1616 |
= 4% | 0.3308 | 0.8073 | 6.4776 | 63.1396 |
= 5% | 0.3208 | 0.7976 | 6.3161 | 61.7198 |
Ra = 103 | Ra = 104 | Ra = 105 | Ra = 106 | |
---|---|---|---|---|
= 1% | 16.6405 | 12.7796 | 2.6997 | 0.4431 |
= 2% | 19.5577 | 13.6847 | 2.8410 | 0.4627 |
= 3% | 21.3561 | 13.6978 | 2.8787 | 0.4764 |
= 4% | 21.6150 | 14.0579 | 3.0077 | 0.4956 |
= 5% | 24.2235 | 14.2051 | 3.0283 | 0.5168 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saboj, J.H.; Nag, P.; Saha, G.; Saha, S.C. Entropy Production Analysis in an Octagonal Cavity with an Inner Cold Cylinder: A Thermodynamic Aspect. Energies 2023, 16, 5487. https://doi.org/10.3390/en16145487
Saboj JH, Nag P, Saha G, Saha SC. Entropy Production Analysis in an Octagonal Cavity with an Inner Cold Cylinder: A Thermodynamic Aspect. Energies. 2023; 16(14):5487. https://doi.org/10.3390/en16145487
Chicago/Turabian StyleSaboj, Jiaul Haque, Preetom Nag, Goutam Saha, and Suvash C. Saha. 2023. "Entropy Production Analysis in an Octagonal Cavity with an Inner Cold Cylinder: A Thermodynamic Aspect" Energies 16, no. 14: 5487. https://doi.org/10.3390/en16145487
APA StyleSaboj, J. H., Nag, P., Saha, G., & Saha, S. C. (2023). Entropy Production Analysis in an Octagonal Cavity with an Inner Cold Cylinder: A Thermodynamic Aspect. Energies, 16(14), 5487. https://doi.org/10.3390/en16145487