Numerical and Machine Learning Approach for Fe3O4-Au/Blood Hybrid Nanofluid Flow in a Melting/Non-Melting Heat Transfer Surface with Entropy Generation
<p>Coordinate system and model.</p> "> Figure 2
<p>Diagrammatic representation of neural network backpropagation.</p> "> Figure 3
<p>Schematic representation of a multi-layer ANN model.</p> "> Figure 4
<p>Pictorial illustration of skin friction.</p> "> Figure 5
<p>Pictorial illustration of the Nusselt number.</p> "> Figure 6
<p>Effects of <math display="inline"><semantics><mrow><msub><mi>β</mi><mi>f</mi></msub></mrow></semantics></math> on <math display="inline"><semantics><mrow><msup><mi>f</mi><mo>′</mo></msup><mfenced><mi>η</mi></mfenced></mrow></semantics></math>.</p> "> Figure 7
<p>Effects of <math display="inline"><semantics><mo>∈</mo></semantics></math> on <math display="inline"><semantics><mrow><msup><mi>f</mi><mo>′</mo></msup><mfenced><mi>η</mi></mfenced></mrow></semantics></math>.</p> "> Figure 8
<p>Effects of <math display="inline"><semantics><mrow><msub><mi>F</mi><mi>s</mi></msub></mrow></semantics></math> on <math display="inline"><semantics><mrow><msup><mi>f</mi><mo>′</mo></msup><mfenced><mi>η</mi></mfenced></mrow></semantics></math>.</p> "> Figure 9
<p>Effects of <math display="inline"><semantics><mi>K</mi></semantics></math> on <math display="inline"><semantics><mrow><msup><mi>f</mi><mo>′</mo></msup><mfenced><mi>η</mi></mfenced></mrow></semantics></math>.</p> "> Figure 10
<p>Effects of <math display="inline"><semantics><mi>Q</mi></semantics></math> on <math display="inline"><semantics><mrow><msub><mi>θ</mi><mn>1</mn></msub><mfenced><mi>η</mi></mfenced></mrow></semantics></math>.</p> "> Figure 11
<p>Effects of <math display="inline"><semantics><mi>ϕ</mi></semantics></math> on <math display="inline"><semantics><mrow><msub><mi>θ</mi><mn>1</mn></msub><mfenced><mi>η</mi></mfenced></mrow></semantics></math>.</p> "> Figure 12
<p>Effects of <math display="inline"><semantics><mi>λ</mi></semantics></math> on <math display="inline"><semantics><mrow><msub><mi>θ</mi><mn>1</mn></msub><mfenced><mi>η</mi></mfenced></mrow></semantics></math>.</p> "> Figure 13
<p>Effects of <math display="inline"><semantics><mrow><mi>E</mi><mi>c</mi></mrow></semantics></math> on <math display="inline"><semantics><mrow><msub><mi>θ</mi><mn>1</mn></msub><mfenced><mi>η</mi></mfenced></mrow></semantics></math>.</p> "> Figure 14
<p>Effects of <math display="inline"><semantics><mrow><msub><mi>β</mi><mi>e</mi></msub></mrow></semantics></math> on <math display="inline"><semantics><mrow><msub><mi>θ</mi><mn>1</mn></msub><mfenced><mi>η</mi></mfenced></mrow></semantics></math>.</p> "> Figure 15
<p>Effects of <math display="inline"><semantics><mi>R</mi></semantics></math> on <math display="inline"><semantics><mrow><msub><mi>θ</mi><mn>1</mn></msub><mfenced><mi>η</mi></mfenced></mrow></semantics></math>.</p> "> Figure 16
<p>Effects of <math display="inline"><semantics><mi>λ</mi></semantics></math> on <math display="inline"><semantics><mrow><msub><mi>N</mi><mi>G</mi></msub></mrow></semantics></math>.</p> "> Figure 17
<p>Effects of <math display="inline"><semantics><mi>ε</mi></semantics></math> on <math display="inline"><semantics><mrow><msub><mi>N</mi><mi>G</mi></msub></mrow></semantics></math>.</p> "> Figure 18
<p>Effects of <math display="inline"><semantics><mi>R</mi></semantics></math> on <math display="inline"><semantics><mrow><msub><mi>N</mi><mi>G</mi></msub></mrow></semantics></math>.</p> "> Figure 19
<p>Effects of <math display="inline"><semantics><mi>λ</mi></semantics></math> on <math display="inline"><semantics><mrow><mi>B</mi><mi>e</mi></mrow></semantics></math>.</p> "> Figure 20
<p>Effects of <math display="inline"><semantics><mi>ε</mi></semantics></math> on <math display="inline"><semantics><mrow><mi>B</mi><mi>e</mi></mrow></semantics></math>.</p> "> Figure 21
<p>Effects of <math display="inline"><semantics><mi>R</mi></semantics></math> on <math display="inline"><semantics><mrow><mi>B</mi><mi>e</mi></mrow></semantics></math>.</p> "> Figure 22
<p>Effects of <math display="inline"><semantics><mrow><mi>M</mi><mi>e</mi><mo> </mo><mo> </mo><mo> </mo><mi>and</mi><mo> </mo><mo> </mo><mi>E</mi><mi>c</mi></mrow></semantics></math> on <math display="inline"><semantics><mrow><msub><mi>C</mi><mi>f</mi></msub><msubsup><mrow><mi>Re</mi></mrow><mi>x</mi><mrow><mfrac bevelled="true"><mrow><mfrac bevelled="true"><mn>1</mn><mn>2</mn></mfrac></mrow><mn>2</mn></mfrac></mrow></msubsup></mrow></semantics></math>.</p> "> Figure 23
<p>Effects of <math display="inline"><semantics><mrow><mi>M</mi><mi>e</mi><mo> </mo><mo> </mo><mo> </mo><mi>and</mi><mo> </mo><mo> </mo><mi>ε</mi></mrow></semantics></math> on <math display="inline"><semantics><mrow><msub><mi>C</mi><mi>f</mi></msub><msubsup><mrow><mi>Re</mi></mrow><mi>x</mi><mrow><mfrac bevelled="true"><mrow><mfrac bevelled="true"><mn>1</mn><mn>2</mn></mfrac></mrow><mn>2</mn></mfrac></mrow></msubsup></mrow></semantics></math>.</p> "> Figure 24
<p>Effects of <math display="inline"><semantics><mrow><mi>M</mi><mi>e</mi><mo> </mo><mo> </mo><mo> </mo><mi>and</mi><mo> </mo><mo> </mo><mi>E</mi><mi>c</mi></mrow></semantics></math> on <math display="inline"><semantics><mrow><mo>−</mo><mi>N</mi><msub><mi>u</mi><mi>x</mi></msub><msubsup><mrow><mi>Re</mi></mrow><mi>x</mi><mrow><mo>−</mo><mfrac bevelled="true"><mn>1</mn><mn>2</mn></mfrac></mrow></msubsup><msup><mi>x</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math>.</p> "> Figure 25
<p>Effects of <math display="inline"><semantics><mrow><mi>M</mi><mi>e</mi><mo> </mo><mo> </mo><mo> </mo><mi>and</mi><mo> </mo><mo> </mo><mi>ϕ</mi></mrow></semantics></math> on <math display="inline"><semantics><mrow><mo>−</mo><mi>N</mi><msub><mi>u</mi><mi>x</mi></msub><msubsup><mrow><mi>Re</mi></mrow><mi>x</mi><mrow><mo>−</mo><mfrac bevelled="true"><mn>1</mn><mn>2</mn></mfrac></mrow></msubsup><msup><mi>x</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math>.</p> "> Figure 26
<p>Effects of <math display="inline"><semantics><mrow><mi>M</mi><mi>e</mi><mo> </mo><mo> </mo><mo> </mo><mi>and</mi><mo> </mo><mo> </mo><msub><mi>β</mi><mi>e</mi></msub></mrow></semantics></math> on <math display="inline"><semantics><mrow><mo>−</mo><mi>N</mi><msub><mi>u</mi><mi>x</mi></msub><msubsup><mrow><mi>Re</mi></mrow><mi>x</mi><mrow><mo>−</mo><mfrac bevelled="true"><mn>1</mn><mn>2</mn></mfrac></mrow></msubsup><msup><mi>x</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math>.</p> ">
Abstract
:1. Introduction
2. Mathematical Formulation
3. Modeling of Entropy
4. Numerical Method
5. ANN Modeling
- The ANN has demonstrated impressive performance and efficiency even when deployed on a limited hardware infrastructure.
- The use of ANN surprisingly simplifies the intricate process of class-distributed mapping.
- The input vector determines the appropriate results in the training set.
- The weights that signify the results are acquired through iterative training.
6. Results and Discussion
7. Conclusions
- The artificial neural network model exhibits the advantageous properties of not necessitating linearization, exhibiting rapid convergence, and incurring a diminished processing cost.
- The velocity describes the rising nature by upgrading the fluid parameter.
- The temperature increased due to the boosting of the values of the Eckert number.
- The temperature decreased due to the boosting of the thermal relaxation parameter.
- The Nusselt number increased due to an improvement in the values of the nanoparticle volume fraction.
- The skin friction factor increases for growing values of the fluid parameter.
- Higher values of the radiation parameter enhance entropy generation and decrease the Bejan number.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature:
magnetization (A/m) | |
temperature of the fluid (K) | |
permeability of the porous medium | |
temperature of the ambient fluid (K) | |
magnetic permeability | |
magnetic field | |
heat capacity of the solid surface (J/K) | |
local Reynolds number | |
heat generation/absorption coefficient | |
magnetic permeability | |
Me | melting parameter |
specific heat at constant pressure (Jkg−1K−1) | |
K | the porosity parameter |
mean absorption coefficient (m−1) | |
thermal conductivity | |
Forchheimer parameter | |
Nusselt number | |
skin friction coefficient | |
u & v | velocity components (m/s) |
x & y | Cartesian coordinates (m) |
dimensionless Curie temperature ratio | |
heat source parameter | |
R | radiation parameter |
Ec | Eckert number |
Pr | Prandtl number |
inertia coefficient | |
Greek symbols | |
density (kg m−3) | |
volume fraction of nanoparticle | |
temperature difference parameter | |
dimensionless temperature | |
dynamic viscosity (kg m−1 s−1) | |
similarity variable | |
kinematic viscosity (m2s−1) | |
distance from origin to magnetic dipole | |
latent heat of the fluid parameter | |
thermal relaxation parameter | |
ferromagnetic parameter | |
Subscripts | |
f | fluid |
bf | base fluid |
hnf | hybrid nanofluid |
Superscript | |
′ | differentiation with respect to |
References
- Powell, R.E.; Eyring, H. Mechanisms for the relaxation theory of viscosity. Nature 1944, 154, 427–428. [Google Scholar] [CrossRef]
- Asha, S.K.; Sunitha, G. Effect of joule heating and MHD on peristaltic blood flow of Eyring–Powell nanofluid in a non-uniform channel. J. Taibah Univ. Sci. 2019, 13, 155–168. [Google Scholar] [CrossRef] [Green Version]
- Jafarimoghaddam, A. On the Homotopy Analysis Method (HAM) and Homotopy Perturbation Method (HPM) for a nonlinearly stretching sheet flow of Eyring-Powell fluids. Eng. Sci. Technol. Int. J. 2019, 22, 439–451. [Google Scholar] [CrossRef]
- Patil, V.S.; Patil, A.B.; Ganesh, S.; Humane, P.P.; Patil, N.S. Unsteady MHD flow of a nano powell-eyring fluid near stagnation point past a convectively heated stretching sheet in the existence of chemical reaction with thermal radiation. Mater. Today Proc. 2021, 44, 3767–3776. [Google Scholar] [CrossRef]
- Farooq, M.; Anjum, A.; Rehman, S.; Malik, M.Y. Entropy analysis in thermally stratified Powell-Eyring magnesium-blood nanofluid convection past a stretching surface. Int. Commun. Heat Mass Transf. 2022, 138, 106375. [Google Scholar] [CrossRef]
- Bejan, A. A study of entropy generation in fundamental convective heat transfer. J. Heat Transfer 1979, 101, 718–725. [Google Scholar] [CrossRef]
- Jakeer, S.; Reddy, P.B.A. Entropy generation on the variable magnetic field and magnetohydrodynamic stagnation point flow of Eyring–Powell hybrid dusty nanofluid: Solar thermal application. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2022, 236, 7442–7455. [Google Scholar] [CrossRef]
- Soomro, F.A.; Alamir, M.A.; El-Sapa, S.; Haq, R.U.; Soomro, M.A. Artificial neural network modeling of MHD slip-flow over a permeable stretching surface. Arch. Appl. Mech. 2022, 92, 2179–2189. [Google Scholar] [CrossRef]
- Stephen, P.S. Low Viscosity Magnetic Fluid Obtained By the Culloidal Suspension of Magnetic Particles. U.S. Patent 3,215,572, 2 November 1965. [Google Scholar]
- Hayat, T.; Rashid, M.; Imtiaz, M.; Alsaedi, A. Nanofluid flow due to rotating disk with variable thickness and homogeneous-heterogeneous reactions. Int. J. Heat Mass Transf. 2017, 113, 96–105. [Google Scholar] [CrossRef]
- Badfar, H.; Motlagh, S.Y.; Sharifi, A. Study of blood flow inside the stenosis vessel under the effect of solenoid magnetic field using ferrohydrodynamics principles. Eur. Phys. J. Plus 2017, 132, 440. [Google Scholar] [CrossRef]
- Nasir, S.; Sirisubtawee, S.; Juntharee, P.; Berrouk, A.S.; Mukhtar, S.; Gul, T. Heat transport study of ternary hybrid nanofluid flow under magnetic dipole together with nonlinear thermal radiation. Appl. Nanosci. 2022, 12, 2777–2788. [Google Scholar] [CrossRef]
- Madhura, K.R.; Babitha; Iyengar, S.S. Impact of heat and mass transfer on mixed convective flow of nanofluid through porous medium. Int. J. Appl. Comput. Math. 2017, 3, 1361–1384. [Google Scholar] [CrossRef]
- Madhura, K.R.; Atiwale, B.; Iyengar, S.S. Influence of nanoparticle shapes on natural convection flow with heat and mass transfer rates of fractional nanofluids. Authorea Prepr. 2020, 46, 8089–8105. [Google Scholar] [CrossRef]
- Saleem, K.B.; Al-Kouz, W.; Chamkha, A. Numerical analysis of rarefied gaseous flows in a square partially heated two-sided wavy cavity with internal heat generation. J. Therm. Anal. Calorim. 2021, 146, 311–323. [Google Scholar] [CrossRef]
- Kheioon, I.A.; Saleem, K.B.; Sultan, H.S. Analysis of natural convection and radiation from a solid rod under vacuum conditions with the aiding of ANFIS. Exp. Tech. 2023, 47, 139–152. [Google Scholar] [CrossRef]
- Saleem, K.B.; Marafie, A.H.; Al-Farhany, K.; Hussam, W.K.; Sheard, G.J. Natural convection heat transfer in a nanofluid filled l-shaped enclosure with time-periodic temperature boundary and magnetic field. Alex. Eng. J. 2023, 69, 177–191. [Google Scholar] [CrossRef]
- Keerthi, M.L.; Gireesha, B.J. Analysis of entropy generation in a fully wet porous moving longitudinal fin exposed to convection and radiation: Homogeneous and functionally graded materials. J. Therm. Anal. Calorim. 2023, 148, 6945–6957. [Google Scholar] [CrossRef]
- Ali, B.; Siddique, I.; Khan, I.; Masood, B.; Hussain, S. Magnetic dipole and thermal radiation effects on hybrid base micropolar CNTs flow over a stretching sheet: Finite element method approach. Results Phys. 2021, 25, 104145. [Google Scholar] [CrossRef]
- Padmavathi, R.; Dhruvathara, B.S.; Rashmi, K.; Ganesh Kumar, K. Two-phase hydromagnetic Eyring-Powell fluid flow over a stretching sheet suspended to a dusty particle. Int. J. Model. Simul. 2023, 1–11. [Google Scholar] [CrossRef]
- Javed, M.; Alderremy, A.A.; Farooq, M.; Anjum, A.; Ahmad, S.; Malik, M.Y. Analysis of activation energy and melting heat transfer in MHD flow with chemical reaction. Eur. Phys. J. Plus 2019, 134, 256. [Google Scholar] [CrossRef]
- Nabwey, H.A.; Mahdy, A. Transient flow of micropolar dusty hybrid nanofluid loaded with Fe3O4-Ag nanoparticles through a porous stretching sheet. Results Phys. 2021, 21, 103777. [Google Scholar] [CrossRef]
- Waqas, H.; Farooq, U.; Naseem, R.; Hussain, S.; Alghamdi, M. Impact of MHD radiative flow of hybrid nanofluid over a rotating disk. Case Stud. Therm. Eng. 2021, 26, 101015. [Google Scholar] [CrossRef]
- Ishak, A.; Nazar, R.; Pop, I. Mixed convection on the stagnation point flow toward a vertical, continuously stretching sheet. J. Heat Transfer 2007, 129, 1087–1090. [Google Scholar] [CrossRef]
- Pal, D. Buoyancy-driven radiative unsteady magnetohydrodynamic heat transfer over a stretching sheet with non-uniform heat source/sink. J. Appl. Fluid Mech. 2016, 9, 1997–2007. [Google Scholar] [CrossRef]
Physical Properties | Pr | |||
---|---|---|---|---|
Blood | 1050 | 3617 | 0.52 | 21 |
5200 | 670 | 6 | - | |
Au | 19,300 | 129 | 318 | - |
Error | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NM | ANN | |||||||||||||
1 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.14629 | −2.14693 | 6.39 |
1.5 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.15761 | −2.15757 | 3.89 |
2 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.16858 | −2.16858 | 3.46 |
2.5 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.17920 | −2.17813 | 1.08 |
1.6 | 0.7 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.05934 | −2.05772 | 1.61 |
1.6 | 0.9 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.12691 | −2.12527 | 1.63 |
1.6 | 1.1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.19223 | −2.19220 | 2.70 |
1.6 | 1.3 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.25552 | −2.25553 | 1.71 |
1.6 | 1 | 1.4 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.23333 | −2.23325 | 8.69 |
1.6 | 1 | 1.8 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.17433 | −2.17491 | 5.85 |
1.6 | 1 | 2.2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.15013 | −2.15015 | 1.76 |
1.6 | 1 | 2.6 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.13867 | −2.13875 | 8.61 |
1.6 | 1 | 2 | 0.2 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.15493 | −2.15498 | 5.05 |
1.6 | 1 | 2 | 0.3 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.14993 | −2.15001 | 8.15 |
1.6 | 1 | 2 | 0.4 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.14482 | −2.14486 | 4.30 |
1.6 | 1 | 2 | 0.5 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.13959 | −2.13953 | 6.29 |
1.6 | 1 | 2 | 0.1 | 0.7 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.07261 | −2.07273 | 1.18 |
1.6 | 1 | 2 | 0.1 | 0.9 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.13114 | −2.13070 | 4.47 |
1.6 | 1 | 2 | 0.1 | 1.1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.18816 | −2.18772 | 4.39 |
1.6 | 1 | 2 | 0.1 | 1.3 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.24376 | −2.24381 | 4.89 |
1.6 | 1 | 2 | 0.1 | 1 | 0.2 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.24119 | −2.24138 | 1.87 |
1.6 | 1 | 2 | 0.1 | 1 | 0.3 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.32018 | −2.32011 | 6.60 |
1.6 | 1 | 2 | 0.1 | 1 | 0.4 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.39694 | −2.39694 | 5.52 |
1.6 | 1 | 2 | 0.1 | 1 | 0.5 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.47161 | −2.43942 | 3.22 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 3 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.16066 | −2.16068 | 2.24 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 3.4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.16033 | −2.16027 | 5.63 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 3.8 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.16000 | −2.15992 | 7.61 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4.2 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.15967 | −2.15964 | 2.82 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.002 | 0.1 | 0.01 | 0.01 | 2 | −2.15987 | −2.15984 | 3.37 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.003 | 0.1 | 0.01 | 0.01 | 2 | −2.15991 | −2.15994 | 2.05 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.004 | 0.1 | 0.01 | 0.01 | 2 | −2.15996 | −2.16000 | 4.62 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.005 | 0.1 | 0.01 | 0.01 | 2 | −2.16000 | −2.15996 | 3.73 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.2 | 0.01 | 0.01 | 2 | −2.15882 | −2.15878 | 3.65 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.3 | 0.01 | 0.01 | 2 | −2.15788 | −2.15786 | 1.57 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.4 | 0.01 | 0.01 | 2 | −2.15701 | −2.15703 | 1.61 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.5 | 0.01 | 0.01 | 2 | −2.15621 | −2.15628 | 7.14 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.02 | 0.01 | 2 | −2.17153 | −2.16959 | 1.95 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.03 | 0.01 | 2 | −2.18749 | −2.18737 | 1.22 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.04 | 0.01 | 2 | −2.21017 | −2.21418 | 4.01 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.05 | 0.01 | 2 | −2.24532 | −2.24534 | 1.76 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.02 | 2 | −2.15978 | −2.15978 | 3.12 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.03 | 2 | −2.15973 | −2.15978 | 5.15 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.04 | 2 | −2.15968 | −2.15974 | 5.59 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.05 | 2 | −2.15963 | −2.15958 | 5.49 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 1 | −2.16100 | −2.16100 | 9.01 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 1.4 | −2.16054 | −2.16054 | 6.13 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 1.8 | −2.16007 | −2.16002 | 5.04 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2.2 | −2.15960 | −2.15955 | 4.52 |
Error | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NM | ANN | |||||||||||||
1 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.07988 | −2.08102 | 1.14 |
1.5 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.09074 | −2.09097 | 2.28 |
2 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.10138 | −2.10139 | 4.32 |
2.5 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.11181 | −2.11256 | 7.49 |
1.6 | 0.7 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −1.99306 | −1.99095 | 2.12 |
1.6 | 0.9 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.06017 | −2.05865 | 1.52 |
1.6 | 1.1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.12507 | −2.12511 | 3.84 |
1.6 | 1.3 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.18797 | −2.18796 | 6.75 |
1.6 | 1 | 1.4 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.16018 | −2.16012 | 5.66 |
1.6 | 1 | 1.8 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.10618 | −2.10667 | 4.87 |
1.6 | 1 | 2.2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.08394 | −2.08420 | 2.59 |
1.6 | 1 | 2.6 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.07330 | −2.07332 | 2.71 |
1.6 | 1 | 2 | 0.2 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.08825 | −2.08824 | 1.33 |
1.6 | 1 | 2 | 0.3 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.08354 | −2.08343 | 1.08 |
1.6 | 1 | 2 | 0.4 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.07873 | −2.07864 | 9.23 |
1.6 | 1 | 2 | 0.5 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.07382 | −2.07394 | 1.14 |
1.6 | 1 | 2 | 0.1 | 0.7 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.00482 | −2.00479 | 2.88 |
1.6 | 1 | 2 | 0.1 | 0.9 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.06393 | −2.06365 | 2.79 |
1.6 | 1 | 2 | 0.1 | 1.1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.12146 | −2.12110 | 3.60 |
1.6 | 1 | 2 | 0.1 | 1.3 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.17754 | −2.17758 | 3.53 |
1.6 | 1 | 2 | 0.1 | 1 | 0.2 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.17467 | −2.17453 | 1.42 |
1.6 | 1 | 2 | 0.1 | 1 | 0.3 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.25400 | −2.25404 | 4.17 |
1.6 | 1 | 2 | 0.1 | 1 | 0.4 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.33104 | −2.33104 | 1.07 |
1.6 | 1 | 2 | 0.1 | 1 | 0.5 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.40594 | −2.37111 | 3.48 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 3 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.09243 | −2.09248 | 4.99 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 3.4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.09261 | −2.09254 | 6.80 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 3.8 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.09279 | −2.09280 | 4.96 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4.2 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −2.09298 | −2.09327 | 2.95 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.002 | 0.1 | 0.01 | 0.01 | 2 | −2.09273 | −2.09271 | 1.44 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.003 | 0.1 | 0.01 | 0.01 | 2 | −2.09257 | −2.09249 | 7.43 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.004 | 0.1 | 0.01 | 0.01 | 2 | −2.09241 | −2.09236 | 4.96 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.005 | 0.1 | 0.01 | 0.01 | 2 | −2.09225 | −2.09232 | 7.08 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.2 | 0.01 | 0.01 | 2 | −2.09400 | −2.09391 | 9.21 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.3 | 0.01 | 0.01 | 2 | −2.09506 | −2.09495 | 1.13 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.4 | 0.01 | 0.01 | 2 | −2.09607 | −2.09614 | 7.37 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.5 | 0.01 | 0.01 | 2 | −2.09701 | −2.09749 | 4.84 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.02 | 0.01 | 2 | −2.08759 | −2.08934 | 1.76 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.03 | 0.01 | 2 | −2.08300 | −2.08313 | 1.34 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.04 | 0.01 | 2 | −2.08369 | −2.07403 | 9.66 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.05 | 0.01 | 2 | −2.06357 | −2.06354 | 2.55 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.02 | 2 | −2.09293 | −2.09290 | 2.99 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.03 | 2 | −2.09297 | −2.09288 | 9.26 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.04 | 2 | −2.09301 | −2.09296 | 5.65 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.05 | 2 | −2.09306 | −2.09315 | 8.98 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 1 | −2.09226 | −2.09227 | 1.30 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 1.4 | −2.09250 | −2.09254 | 3.04 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 1.8 | −2.09276 | −2.09284 | 8.32 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2.2 | −2.09301 | −2.09318 | 1.67 |
Error | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NM | ANN | |||||||||||||
1 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −4.46089 | −4.44791 | 1.30 |
1.5 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −4.36548 | −4.36510 | 3.80 |
2 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −4.27002 | −4.27390 | 3.88 |
2.5 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −4.17453 | −4.17302 | 1.51 |
1.6 | 0.7 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −4.31002 | −4.31532 | 5.30 |
1.6 | 0.9 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −4.33456 | −4.33673 | 2.17 |
1.6 | 1.1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −4.35796 | −4.35851 | 5.53 |
1.6 | 1.3 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −4.38036 | −4.38067 | 3.10 |
1.6 | 1 | 1.4 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −4.06652 | −4.12323 | 5.67 |
1.6 | 1 | 1.8 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −4.28092 | −4.28388 | 2.97 |
1.6 | 1 | 2.2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −4.39588 | −4.40198 | 6.10 |
1.6 | 1 | 2.6 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −4.46448 | −4.48764 | 2.32 |
1.6 | 1 | 2 | 0.2 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −4.34602 | −4.34650 | 4.72 |
1.6 | 1 | 2 | 0.3 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −4.34563 | −4.34545 | 1.80 |
1.6 | 1 | 2 | 0.4 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −4.34520 | −4.34445 | 7.53 |
1.6 | 1 | 2 | 0.5 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −4.34474 | −4.34353 | 1.21 |
1.6 | 1 | 2 | 0.1 | 0.7 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −4.34153 | −4.34260 | 1.07 |
1.6 | 1 | 2 | 0.1 | 0.9 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −4.34477 | −4.34593 | 1.16 |
1.6 | 1 | 2 | 0.1 | 1.1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −4.34801 | −4.34920 | 1.19 |
1.6 | 1 | 2 | 0.1 | 1.3 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −4.35124 | −4.35240 | 1.16 |
1.6 | 1 | 2 | 0.1 | 1 | 0.2 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −4.32180 | −4.32562 | 3.82 |
1.6 | 1 | 2 | 0.1 | 1 | 0.3 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −4.30032 | −4.30375 | 3.43 |
1.6 | 1 | 2 | 0.1 | 1 | 0.4 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −4.28137 | −4.28204 | 6.70 |
1.6 | 1 | 2 | 0.1 | 1 | 0.5 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −4.26451 | −4.26063 | 3.88 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 3 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −4.46625 | −4.46469 | 1.56 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 3.4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −4.41831 | −4.41871 | 4.10 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 3.8 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −4.37036 | −4.37163 | 1.27 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4.2 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −4.32242 | −4.32313 | 7.07 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.002 | 0.1 | 0.01 | 0.01 | 2 | −4.36086 | −4.36031 | 5.53 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.003 | 0.1 | 0.01 | 0.01 | 2 | −4.37533 | −4.37336 | 1.97 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.004 | 0.1 | 0.01 | 0.01 | 2 | −4.38980 | −4.38699 | 2.81 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.005 | 0.1 | 0.01 | 0.01 | 2 | −4.40427 | −4.40186 | 2.41 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.2 | 0.01 | 0.01 | 2 | −4.53531 | −4.52760 | 7.71 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.3 | 0.01 | 0.01 | 2 | −4.71261 | −4.70877 | 3.84 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.4 | 0.01 | 0.01 | 2 | −4.87976 | −4.87325 | 6.51 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.5 | 0.01 | 0.01 | 2 | −5.03796 | −5.04091 | 2.94 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.02 | 0.01 | 2 | −5.77414 | −5.77091 | 3.23 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.03 | 0.01 | 2 | −7.72720 | −7.69848 | 2.87 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.04 | 0.01 | 2 | −10.50691 | −10.51817 | 1.13 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.05 | 0.01 | 2 | −14.80148 | −14.79289 | 8.59 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.02 | 2 | −4.33180 | −4.33348 | 1.68 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.03 | 2 | −4.31720 | −4.31861 | 1.42 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.04 | 2 | −4.30259 | −4.30294 | 3.50 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.05 | 2 | −4.28796 | −4.28642 | 1.55 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 1 | −4.51998 | −4.51681 | 3.16 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 1.4 | −4.45083 | −4.45203 | 1.19 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 1.8 | −4.38130 | −4.38344 | 2.14 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2.2 | −4.31138 | −4.31057 | 8.12 |
Error | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NM | ANN | |||||||||||||
1 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −3.20072 | −3.19661 | 1.30 |
1.5 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −3.16211 | −3.16133 | 3.80 |
2 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −3.12310 | −3.12346 | 3.88 |
2.5 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −3.08368 | −3.08257 | 1.51 |
1.6 | 0.7 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −3.13264 | −3.13369 | 5.30 |
1.6 | 0.9 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −3.14724 | −3.14715 | 2.17 |
1.6 | 1.1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −3.16133 | −3.16087 | 5.53 |
1.6 | 1.3 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −3.17500 | −3.17482 | 3.10 |
1.6 | 1 | 1.4 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −3.05836 | −3.08342 | 5.67 |
1.6 | 1 | 1.8 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −3.13077 | −3.13409 | 2.97 |
1.6 | 1 | 2.2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −3.17264 | −3.17082 | 6.10 |
1.6 | 1 | 2.6 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −3.19874 | −3.19692 | 2.32 |
1.6 | 1 | 2 | 0.2 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −3.15385 | −3.15368 | 4.72 |
1.6 | 1 | 2 | 0.3 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −3.15333 | −3.15341 | 1.80 |
1.6 | 1 | 2 | 0.4 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −3.15279 | −3.15321 | 7.53 |
1.6 | 1 | 2 | 0.5 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −3.15222 | −3.15313 | 1.21 |
1.6 | 1 | 2 | 0.1 | 0.7 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −3.15358 | −3.15319 | 1.07 |
1.6 | 1 | 2 | 0.1 | 0.9 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −3.15407 | −3.15372 | 1.16 |
1.6 | 1 | 2 | 0.1 | 1.1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −3.15463 | −3.15423 | 1.19 |
1.6 | 1 | 2 | 0.1 | 1.3 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −3.15525 | −3.15472 | 1.16 |
1.6 | 1 | 2 | 0.1 | 1 | 0.2 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −3.14099 | −3.14250 | 3.82 |
1.6 | 1 | 2 | 0.1 | 1 | 0.3 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −3.12958 | −3.13117 | 3.43 |
1.6 | 1 | 2 | 0.1 | 1 | 0.4 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −3.11970 | −3.12007 | 6.70 |
1.6 | 1 | 2 | 0.1 | 1 | 0.5 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −3.11107 | −3.10940 | 3.88 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 3 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −3.20773 | −3.20859 | 1.56 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 3.4 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −3.18650 | −3.18675 | 4.10 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 3.8 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −3.16511 | −3.16496 | 1.27 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4.2 | 0.001 | 0.1 | 0.01 | 0.01 | 2 | −3.14354 | −3.14291 | 7.07 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.002 | 0.1 | 0.01 | 0.01 | 2 | −3.16387 | −3.16478 | 5.53 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.003 | 0.1 | 0.01 | 0.01 | 2 | −3.17339 | −3.17595 | 1.97 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.004 | 0.1 | 0.01 | 0.01 | 2 | −3.18290 | −3.18785 | 2.81 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.005 | 0.1 | 0.01 | 0.01 | 2 | −3.19241 | −3.20137 | 2.41 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.2 | 0.01 | 0.01 | 2 | −3.37827 | −3.33465 | 7.71 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.3 | 0.01 | 0.01 | 2 | −3.58902 | −3.55032 | 3.84 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.4 | 0.01 | 0.01 | 2 | −3.78802 | −3.79790 | 6.51 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.5 | 0.01 | 0.01 | 2 | −3.97645 | −3.97821 | 2.94 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.02 | 0.01 | 2 | −3.97780 | −3.95129 | 3.23 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.03 | 0.01 | 2 | −5.06543 | −5.14094 | 2.87 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.04 | 0.01 | 2 | −6.89639 | −6.85484 | 1.13 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.05 | 0.01 | 2 | −7.10072 | −7.09668 | 8.59 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.02 | 2 | −3.15050 | −3.15059 | 1.68 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.03 | 2 | −3.14662 | −3.14695 | 1.42 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.04 | 2 | −3.14272 | −3.14305 | 3.50 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.05 | 2 | −3.13878 | −3.13888 | 1.55 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 1 | −3.22881 | −3.23008 | 3.16 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 1.4 | −3.19942 | −3.20047 | 1.19 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 1.8 | −3.16950 | −3.16978 | 2.14 |
1.6 | 1 | 2 | 0.1 | 1 | 0.1 | 4 | 0.001 | 0.1 | 0.01 | 0.01 | 2.2 | −3.13905 | −3.13785 | 8.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakeer, S.; Easwaramoorthy, S.V.; Reddy, S.R.R.; Basha, H.T. Numerical and Machine Learning Approach for Fe3O4-Au/Blood Hybrid Nanofluid Flow in a Melting/Non-Melting Heat Transfer Surface with Entropy Generation. Symmetry 2023, 15, 1503. https://doi.org/10.3390/sym15081503
Jakeer S, Easwaramoorthy SV, Reddy SRR, Basha HT. Numerical and Machine Learning Approach for Fe3O4-Au/Blood Hybrid Nanofluid Flow in a Melting/Non-Melting Heat Transfer Surface with Entropy Generation. Symmetry. 2023; 15(8):1503. https://doi.org/10.3390/sym15081503
Chicago/Turabian StyleJakeer, Shaik, Sathishkumar Veerappampalayam Easwaramoorthy, Seethi Reddy Reddisekhar Reddy, and Hayath Thameem Basha. 2023. "Numerical and Machine Learning Approach for Fe3O4-Au/Blood Hybrid Nanofluid Flow in a Melting/Non-Melting Heat Transfer Surface with Entropy Generation" Symmetry 15, no. 8: 1503. https://doi.org/10.3390/sym15081503
APA StyleJakeer, S., Easwaramoorthy, S. V., Reddy, S. R. R., & Basha, H. T. (2023). Numerical and Machine Learning Approach for Fe3O4-Au/Blood Hybrid Nanofluid Flow in a Melting/Non-Melting Heat Transfer Surface with Entropy Generation. Symmetry, 15(8), 1503. https://doi.org/10.3390/sym15081503