Entropy Generation Due to Magneto-Convection of a Hybrid Nanofluid in the Presence of a Wavy Conducting Wall
<p>Configuration of the flow, problem geometry and coordinates. <b>B</b> = <math display="inline"><semantics> <mrow> <mo>〈</mo> <msub> <mi>B</mi> <mn>0</mn> </msub> <mo form="prefix">cos</mo> <mi>γ</mi> <mo>,</mo> <msub> <mi>B</mi> <mn>0</mn> </msub> <mo form="prefix">sin</mo> <mi>γ</mi> <mo>,</mo> <mn>0</mn> <mo>〉</mo> </mrow> </semantics></math>.</p> "> Figure 2
<p>Comparison of total entropy contours in a NC flow problem. (<b>a</b>–<b>c</b>) Reference [<a href="#B26-mathematics-10-04663" class="html-bibr">26</a>] (the left); (<b>d</b>–<b>f</b>) Present (the right with <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>51</mn> </mrow> </semantics></math>).</p> "> Figure 3
<p>Design of grid distribution. The (<b>left</b>) is for Case 1, the (<b>middle</b>) is for Case 2 and the (<b>right</b>) is for Case 3.</p> "> Figure 4
<p>Variation in <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> </mrow> </semantics></math> when <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>a</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>5</mn> </msup> <mo>,</mo> <mspace width="0.166667em"/> <mi>k</mi> <mi>r</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>γ</mi> <mo>=</mo> <msup> <mn>0</mn> <mo>∘</mo> </msup> <mo>,</mo> <mspace width="0.166667em"/> <mi>A</mi> <mo>=</mo> <mn>0.05</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>n</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>. Streamlines and isotherms at the (<b>top</b>) is for case 1, at the (<b>middle</b>) is for case 2 and the at (<b>bottom</b>) is for case 3.</p> "> Figure 4 Cont.
<p>Variation in <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> </mrow> </semantics></math> when <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>a</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>5</mn> </msup> <mo>,</mo> <mspace width="0.166667em"/> <mi>k</mi> <mi>r</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>γ</mi> <mo>=</mo> <msup> <mn>0</mn> <mo>∘</mo> </msup> <mo>,</mo> <mspace width="0.166667em"/> <mi>A</mi> <mo>=</mo> <mn>0.05</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>n</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>. Streamlines and isotherms at the (<b>top</b>) is for case 1, at the (<b>middle</b>) is for case 2 and the at (<b>bottom</b>) is for case 3.</p> "> Figure 5
<p>Variation in <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>a</mi> </mrow> </semantics></math> when <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>25</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>k</mi> <mi>r</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>γ</mi> <mo>=</mo> <msup> <mn>0</mn> <mo>∘</mo> </msup> <mo>,</mo> <mspace width="0.166667em"/> <mi>A</mi> <mo>=</mo> <mn>0.05</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>n</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>. Streamlines and isotherms at the (<b>top</b>) is for case 1, at the (<b>middle</b>) is for case 2 and the at (<b>bottom</b>) is for case 3.</p> "> Figure 5 Cont.
<p>Variation in <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>a</mi> </mrow> </semantics></math> when <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>25</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>k</mi> <mi>r</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>γ</mi> <mo>=</mo> <msup> <mn>0</mn> <mo>∘</mo> </msup> <mo>,</mo> <mspace width="0.166667em"/> <mi>A</mi> <mo>=</mo> <mn>0.05</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>n</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>. Streamlines and isotherms at the (<b>top</b>) is for case 1, at the (<b>middle</b>) is for case 2 and the at (<b>bottom</b>) is for case 3.</p> "> Figure 6
<p>Variation in <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>r</mi> </mrow> </semantics></math> when <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>a</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>5</mn> </msup> <mo>,</mo> <mspace width="0.166667em"/> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>25</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>γ</mi> <mo>=</mo> <msup> <mn>0</mn> <mo>∘</mo> </msup> <mo>,</mo> <mspace width="0.166667em"/> <mi>A</mi> <mo>=</mo> <mn>0.05</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>n</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>. Streamlines and isotherms at the (<b>top</b>) is for case 1, at the (<b>middle</b>) is for case 2 and the at (<b>bottom</b>) is for case 3.</p> "> Figure 6 Cont.
<p>Variation in <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>r</mi> </mrow> </semantics></math> when <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>a</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>5</mn> </msup> <mo>,</mo> <mspace width="0.166667em"/> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>25</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>γ</mi> <mo>=</mo> <msup> <mn>0</mn> <mo>∘</mo> </msup> <mo>,</mo> <mspace width="0.166667em"/> <mi>A</mi> <mo>=</mo> <mn>0.05</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>n</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>. Streamlines and isotherms at the (<b>top</b>) is for case 1, at the (<b>middle</b>) is for case 2 and the at (<b>bottom</b>) is for case 3.</p> "> Figure 7
<p>Variation in <span class="html-italic">A</span> when <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>a</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>5</mn> </msup> <mo>,</mo> <mspace width="0.166667em"/> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>25</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>k</mi> <mi>r</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>γ</mi> <mo>=</mo> <msup> <mn>0</mn> <mo>∘</mo> </msup> <mo>,</mo> <mspace width="0.166667em"/> <mi>n</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>. Streamlines and isotherms at the (<b>top</b>) is for case 1, at the (<b>middle</b>) is for case 2 and the at (<b>bottom</b>) is for case 3.</p> "> Figure 8
<p>Variation in <span class="html-italic">n</span> when <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>a</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>5</mn> </msup> <mo>,</mo> <mspace width="0.166667em"/> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>25</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>k</mi> <mi>r</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>γ</mi> <mo>=</mo> <msup> <mn>0</mn> <mo>∘</mo> </msup> <mo>,</mo> <mspace width="0.166667em"/> <mi>A</mi> <mo>=</mo> <mn>0.05</mn> </mrow> </semantics></math>. Streamlines and isotherms at the (<b>top</b>) is for case 1, at the (<b>middle</b>) is for case 2 and the at (<b>bottom</b>) is for case 3.</p> "> Figure 9
<p>Variation in <math display="inline"><semantics> <mi>γ</mi> </semantics></math> when <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>a</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>5</mn> </msup> <mo>,</mo> <mspace width="0.166667em"/> <mi>H</mi> <mi>a</mi> <mo>=</mo> <mn>25</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>k</mi> <mi>r</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>A</mi> <mo>=</mo> <mn>0.05</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>n</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>. Streamlines and isotherms at the (<b>top</b>) is for case 1, at the (<b>middle</b>) is for case 2 and the at (<b>bottom</b>) is for case 3.</p> "> Figure 10
<p><math display="inline"><semantics> <mrow> <msub> <mover> <mrow> <mi>N</mi> <mi>u</mi> </mrow> <mo>¯</mo> </mover> <mi>i</mi> </msub> <mo>,</mo> <mspace width="0.166667em"/> <mi>a</mi> <mi>v</mi> <mi>g</mi> <mrow> <mo>(</mo> <msubsup> <mi>S</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>c</mi> </mrow> <mrow> <mi>t</mi> <mi>o</mi> <mi>t</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>,</mo> <mspace width="0.166667em"/> <mi>a</mi> <mi>v</mi> <mi>g</mi> <mrow> <mo>(</mo> <mi>B</mi> <msub> <mi>e</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>c</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math> graphs in different variations.</p> "> Figure 10 Cont.
<p><math display="inline"><semantics> <mrow> <msub> <mover> <mrow> <mi>N</mi> <mi>u</mi> </mrow> <mo>¯</mo> </mover> <mi>i</mi> </msub> <mo>,</mo> <mspace width="0.166667em"/> <mi>a</mi> <mi>v</mi> <mi>g</mi> <mrow> <mo>(</mo> <msubsup> <mi>S</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>c</mi> </mrow> <mrow> <mi>t</mi> <mi>o</mi> <mi>t</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>,</mo> <mspace width="0.166667em"/> <mi>a</mi> <mi>v</mi> <mi>g</mi> <mrow> <mo>(</mo> <mi>B</mi> <msub> <mi>e</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>c</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math> graphs in different variations.</p> ">
Abstract
:1. Introduction
2. Problem Formulation
3. Solution Method
- Nodes lying in a stencil centered at a node are determined. Let these nodes be denoted by .
- In stencil, using a polyharmonic spline RBF, , and cubic augmented polynomial terms matrix, is built.
- or (for x-derivatives) or (for y-derivatives) or (for Laplacian)) is found, and its first terms are saved. Note that scaling also affects and . Therefore, the differentiation matrices and are constructed by the first terms of .
4. Numerical Outputs
4.1. Validation
4.2. Grid Independency
4.3. Discussion on the Current Problem
5. Conclusions
- The rise in the Lorentz force results in a reduction inthe fluid velocity, CHT, and total entropy. If is changed from 10 to 100, 71.58% reduction in total EG, and 49.16% reduction in are found, while number increases bt 146.3% in Case 1.
- The more the buoyancy force exists, the faster the fluid flows and the more CHT improves. From to , the greatest increase in occurs in Case 1 as 74.5%, and an almost 100% reduction in in each cases is observed.
- With large values of , CHT is more pronounced in the fluid part. Total EG and number also ascends with the rise in .
- The amplitude of waviness has a reducing effect on and total EG in Case 2 and an increasing impact in Cases 1 and 3.
- In Case 1 and 3, the increment in the number of undulations is directly proportional to .
- If the angle of uniform MF is changed from to , rises 8.79% in Case 1, 7.73% in Case 2, and 7.58% in Case 3. Total EG initially increases from angle to , and then it decreases from to . number is not significantly affected by this angle.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Choi, S.U.S. Enhancing thermal conductivity of fluids with nanoparticles. In Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, CA, USA, 12–17 November 1995; Volume 66, pp. 99–105. [Google Scholar]
- Kasaeipoor, A.; Malekshah, E.H.; Kolsi, L. Free convection heat transfer and entropy generation analysis of MWCNT-MgO (15%–85%)/Water nanofluid using Lattice Boltzmann method in cavity with refrigerant solid body-Experimental thermo-physical properties. Powder Technol. 2017, 322, 9–23. [Google Scholar] [CrossRef]
- Huminic, G.; Huminic, A. Hybrid nanofluids for heat transfer applications—A state-of-the-art review. Int. J. Heat Mass Transf. 2018, 125, 82–103. [Google Scholar] [CrossRef]
- Muneeshwaran, M.; Srinivasan, G.; Muthukumar, P.; Wang, C.C. Role of hybrid-nanofluid in heat transfer enhancement—A review. Int. Commun. Heat Mass Transf. 2021, 125, 105341. [Google Scholar] [CrossRef]
- Dutta, S.; Bhattacharyya, S.; Pop, I. Effect of hybrid nanoparticles on conjugate mixed convection of a viscoplastic fluid in a ventilated enclosure with wall mounted heated block. Alex. Eng. J. 2023, 62, 99–111. [Google Scholar] [CrossRef]
- Zhang, K.Z.; Shah, N.A.; Vieru, D.; El-Zahar, E.R. Memory effects on conjugate buoyant convective transport of nanofluids in annular geometry: A generalized Cattaneo law of thermal flux. Int. Commun. Heat Mass Transf. 2022, 135, 106138. [Google Scholar] [CrossRef]
- Priam, S.S.; Ikram, M.M.; Saha, S.; Saha, S.C. Conjugate natural convection in a vertically divided square enclosure by a corrugated the solid partition into air and water regions. Therm. Sci. Eng. Prog. 2021, 25, 101036. [Google Scholar] [CrossRef]
- Rodríguez-Núñez, K.; Tabilo, E.; Moraga, N.O. Conjugate unsteady natural heat convection of air and non-Newtonian fluid in thick walled cylindrical enclosure partially filled with a porous media. Int. Commun. Heat Mass Transf. 2019, 108, 104304. [Google Scholar] [CrossRef]
- Tayebi, T.; Chamkha, A.J.; Melaibari, A.A.; Raouache, E. Effect of internal heat generation or absorption on conjugate thermal-free convection of a suspension of hybrid nanofluid in a partitioned circular annulus. Int. Commun. Heat Mass Transf. 2021, 126, 105397. [Google Scholar] [CrossRef]
- Oztop, H.F.; Al-Salem, K. A review on entropy generation in natural and mixed convection heat transfer for energy systems. Renew. Sustain. Energy Rev. 2012, 16, 911–920. [Google Scholar] [CrossRef]
- Mondal, P.; Mahapatra, T.R. MHD double-diffusive mixed convection and entropy generation of nanofluid in a trapezoidal cavity. Int. J. Mech. Sci. 2021, 208, 106665. [Google Scholar] [CrossRef]
- Korei, Z.; Benissaad, S.; Berrahil, F.; Filali, A. MHD mixed convection and irreversibility analysis of hybrid nanofluids in a partially heated lid-driven cavity chamfered from the bottom side. Int. Commun. Heat Mass Transf. 2022, 132, 105895. [Google Scholar] [CrossRef]
- Tayebi, T.; Oztop, H.F.; Chamkha, A.J. Natural convection and entropy production in hybrid nanofluid filled-annular elliptical cavity with internal heat generation or absorption. Therm. Sci. Eng. Prog. 2020, 19, 100605. [Google Scholar] [CrossRef]
- Ahrar, A.J.; Djavareshkian, M.H.; Ahrar, A.R. Numerical simulation of Al2O3-water nanofluid heat transfer and entropy generation in a cavity using a novel TVD hybrid LB method under the influence of an external magnetic field source. Therm. Sci. Eng. Prog. 2019, 14, 100416. [Google Scholar] [CrossRef]
- Majeed, A.H.; Mahmood, R.; Shahzad, H.; Pasha, A.A.; Islam, N.; Rahman, M.M. Numerical simulation of thermal flows and entropy generation of magnetized hybrid nanomaterials filled in a hexagonal cavity. Case Stud. Therm. Eng. 2022, 39, 102293. [Google Scholar] [CrossRef]
- Priyadharsini, S.; Sivaraj, C. Numerical simulation of thermo-magnetic convection and entropy production in a ferrofluid filled square chamber with effects of heat generating solid body. Int. Commun. Heat Mass Transf. 2022, 131, 105753. [Google Scholar] [CrossRef]
- Sáchica, D.; Treviño, C.; Martínez-Suástegui, L. Numerical study of magnetohydrodynamic mixed convection and entropy generation of Al2O3-water nanofluid in a channel with two facing cavities with discrete heating. Int. J. Heat Fluid Flow 2020, 86, 108713. [Google Scholar] [CrossRef]
- Priam, S.S.; Nasrin, R. Oriented magneto-conjugate heat transfer and entropy generation in an inclined domain having wavy partition. Int. Commun. Heat Mass Transf. 2021, 126, 105430. [Google Scholar] [CrossRef]
- Alsarraf, J.; Shahsavar, A.; Babaei Mahani, R.; Talebizadehsardari, P. Turbulent forced convection and entropy production of a nanofluid in a solar collector considering various shapes for nanoparticles. Int. Commun. Heat Mass Transf. 2020, 117, 104804. [Google Scholar] [CrossRef]
- Varol, Y.; Oztop, H.F.; Koca, A. Entropy generation due to conjugate natural convection in enclosures bounded by vertical solid walls with different thicknesses. Int. Commun. Heat Mass Transf. 2008, 35, 648–656. [Google Scholar] [CrossRef]
- Varol, Y.; Oztop, H.F.; Koca, A. Entropy production due to free convection in partially heated isosceles triangular enclosures. Appl. Therm. Eng. 2008, 28, 1502–1513. [Google Scholar] [CrossRef]
- Varol, Y.; Oztop, H.F.; Pop, I. Entropy analysis due to conjugate-buoyant flow in a right-angle trapezoidal enclosure filled with a porous medium bounded by a solid vertical wall. Int. J. Therm. Sci. 2009, 48, 1161–1175. [Google Scholar] [CrossRef]
- Pekmen Geridonmez, B.; Oztop, H.F. Conjugate natural convection flow of a nanofluid with oxytactic bacteria under the effect of a periodic magnetic field. J. Magn. Magn. Mater. 2022, 564, 170135. [Google Scholar] [CrossRef]
- Mebarek-Oudina, F.; Fares, R.; Aissa, A.; Lewis, R.W.; Abu-Hamdeh, N.H. Entropy and convection effect on magnetized hybrid nano-liquid flow inside a trapezoidal cavity with zigzagged wall. Int. Commun. Heat Mass Transf. 2021, 125, 105279. [Google Scholar] [CrossRef]
- Ghalambaz, M.; Mehryan, S.A.M.; Mozaffari, M.; Hajjar, A.; El Kadri, M.; Rachedi, N.; Sheremet, M.; Younis, O.; Nadeem, S. Entropy generation and natural convection flow of a suspension containing nano-encapsulated phase change particles in a semi-annular cavity. J. Energy Storage 2020, 32, 101834. [Google Scholar] [CrossRef]
- Magherbi, M.; Abbassi, H.; Ben Brahim, A. Entropy generation at the onset of natural convection. Int. J. Heat Mass Transf. 2003, 6, 3441–3450. [Google Scholar] [CrossRef]
- Ilis, G.G.; Mobedi, M.; Sunden, B. Effect of aspect ratio on entropy generation in a rectangular cavity with differentially heated vertical walls. Int. Commun. Heat Mass Transf. 2008, 35, 696–703. [Google Scholar] [CrossRef] [Green Version]
- Oliveski, R.C.; Macagnan, M.H.; Copetti, J.B. Entropy generation and natural convection in rectangular cavities. Appl. Therm. Eng. 2009, 29, 1417–1425. [Google Scholar] [CrossRef]
- Parvin, S.; Chamkha, A.J. An analysis on free convection flow, heat transfer and entropy generation in an odd-shaped cavity filled with nanofluid. Int. Commun. Heat Mass Transf. 2014, 54, 8–17. [Google Scholar] [CrossRef]
- Pordanjani, A.H.; Aghakhani, S.; Karimipour, A.; Afrand, M.; Goodarzi, M. Investigation of free convection heat transfer and entropy generation of nanofluid flow inside a cavity affected by magnetic field and thermal radiation. J. Therm. Anal. Calorim. 2019, 137, 997–1019. [Google Scholar] [CrossRef]
- Brinkman, H.C. The viscosity of concentrated suspensions and solutions. J. Chem. Phys. 1952, 3, 571–581. [Google Scholar] [CrossRef]
- Maxwell-Garnett, J.C. Colors in metal glasses and in metallic films. Phil. Trans. R. Soc. A 1904, 203, 385–420. [Google Scholar]
- Zahan, I.; Nasrin, R.; Alim, M.A. Mixed Convective Hybrid Nanofluid Flow in Lid-Driven Undulated Cavity: Effect of MHD and Joule Heating. J. Nav. Archit. Mar. Eng. 2019, 16, 109–126. [Google Scholar] [CrossRef]
- Buyuk Ogut, E.; Akyol, M.; Arici, M. Natural Convection of Nanofluids in an inclined square cavity with side wavy walls. J. Therm. Sci. Technol. 2017, 37, 139–150. [Google Scholar]
- Fasshauer, G.E. Meshfree Approximation Methods with Matlab; World Scientific Publications: Singapore, 2007. [Google Scholar]
- Fasshauer, G.E.; McCourt, M. Kernel-Based Approximation Methods Using MATLAB; World Scientific Publications: Singapore, 2015. [Google Scholar]
- Flyer, N.; Barnett, G.A.; Wicker, L.J. Enhancing finite differences with radial basis functions: Experiments on the Navier-Stokes equations. J. Comput. Phys. 2016, 316, 39–62. [Google Scholar] [CrossRef] [Green Version]
- An Example of Rbf-Fd Implementation. Available online: https://github.com/IgorTo/rbf-fd (accessed on 15 March 2022).
- Shahane, S.; Radhakrishnan, A.; Vanka, S.P. A high-order accurate meshless method for solution of incompressible fluid flow problems. J. Comput. Phys. 2021, 445, 110623. [Google Scholar] [CrossRef]
- Aghakhani, S.; Pordanjani, A.H.; Afrand, M.; Sharifpur, M.; Meyer, J.P. Natural convective heat transfer and entropy generation of alumina/water nanofluid in a tilted enclosure with an elliptic constant temperature: Applying magnetic field and radiation effects. Int. J. Mech. Sci. 2020, 174, 105470. [Google Scholar] [CrossRef]
- de vahl Davis, G. Natural convection of air in a square cavity: A bench mark numerical solution. Int. J. Numer. Methods Fluids 1983, 3, 249–264. [Google Scholar] [CrossRef]
Physical Property | Water | Cu | TiO2 |
---|---|---|---|
997.1 | 8933 | 4250 | |
4179 | 385 | 686.2 | |
0.6 | 401 | 8.9538 | |
21 | 0.9 | ||
0.05 |
Present | Ref. [41] | |
---|---|---|
1.1181 | 1.118 | |
2.2440 | 2.243 | |
4.5123 | 4.519 |
N | Case 1 | Case 2 | Case 3 |
---|---|---|---|
29 | 2.5238 | 1.7815 | 2.0733 |
33 | 2.5081 | 1.7842 | 2.0846 |
37 | 2.4960 | 1.7842 | 2.0950 |
41 | 2.4919 | 1.7866 | 2.0945 |
45 | 2.4855 | 1.7925 | 2.1014 |
49 | 2.4845 | 1.7900 | 2.1065 |
53 | 2.4800 | 1.7874 | 2.1050 |
57 | 2.4792 | 1.7894 | 2.1039 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pekmen Geridonmez, B.; Oztop, H.F. Entropy Generation Due to Magneto-Convection of a Hybrid Nanofluid in the Presence of a Wavy Conducting Wall. Mathematics 2022, 10, 4663. https://doi.org/10.3390/math10244663
Pekmen Geridonmez B, Oztop HF. Entropy Generation Due to Magneto-Convection of a Hybrid Nanofluid in the Presence of a Wavy Conducting Wall. Mathematics. 2022; 10(24):4663. https://doi.org/10.3390/math10244663
Chicago/Turabian StylePekmen Geridonmez, Bengisen, and Hakan F. Oztop. 2022. "Entropy Generation Due to Magneto-Convection of a Hybrid Nanofluid in the Presence of a Wavy Conducting Wall" Mathematics 10, no. 24: 4663. https://doi.org/10.3390/math10244663
APA StylePekmen Geridonmez, B., & Oztop, H. F. (2022). Entropy Generation Due to Magneto-Convection of a Hybrid Nanofluid in the Presence of a Wavy Conducting Wall. Mathematics, 10(24), 4663. https://doi.org/10.3390/math10244663