Sharp Coefficient Bounds for a New Subclass of q-Starlike Functions Associated with q-Analogue of the Hyperbolic Tangent Function
Abstract
:1. Introduction
- (i)
- For and we obtain the Fekete–Szego functional, that is,
- (ii)
- Janteng [13] gave the following form of a second Hankel determinant and then a number of researchers studied it for some new classes of analytic functions
- (iii)
- For and we have the following form of the third Hankel determinant:
2. A Set of Lemmas
3. Main Results
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Miller, S.S. Differential inequalities and Carathéodory functions. Bull. Am. Math. Soc. 1975, 81, 79–81. [Google Scholar] [CrossRef] [Green Version]
- Bieberbach, L. Über die koeffizienten derjenigen potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln. Sitz. Ber. Preuss. Akad. Wiss. 1916, 138, 940–955. [Google Scholar]
- De Branges, L. A proof of the Bieberbach conjecture. Acta Math. 1985, 154, 137–152. [Google Scholar] [CrossRef]
- Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis, Tianjin, China, 19–22 June 1992; Li, Z., Ren, F., Yang, L., Zhang, S., Eds.; Conference Proceedings and Lecture Notes in Analysis. International Press: Cambridge, UK, 1994; Volume I, pp. 157–169. [Google Scholar]
- Janowski, W. Extremal problems for a family of functions with positive real part and for some related families. Ann. Pol. Math. 1970, 23, 159–177. [Google Scholar] [CrossRef] [Green Version]
- Sokół, J.; Stankiewicz, J. Radius of convexity of some subclasses of strongly starlike functions. Zesz. Nauk. Politech. Rzesz. Mat. Fiz. 1996, 19, 101–105. [Google Scholar]
- Cho, N.E.; Kumar, V.; Kumar, S.S.; Ravichandran, V. Radius problems for starlike functions associated with the sine function. Bull. Iran. Math. Soc. 2019, 45, 213–232. [Google Scholar] [CrossRef]
- Bano, K.; Raza, M. Starlike functions associated with cosine function. Bull. Iran. Math. Soc. 2021, 47, 1513–1532. [Google Scholar] [CrossRef]
- Alotaibi, A.; Arif, M.; Alghamdi, M.A.; Hussain, S. Starlikness associated with cosine hyperbolic function. Mathematics 2020, 8, 1118. [Google Scholar] [CrossRef]
- Kumar, S.S.; Arora, K. Starlike functions associated with a petal shaped domain. Bull. Korean Math. Soc. 2022, 59, 993–1010. [Google Scholar]
- Barukab, O.; Arif, M.; Abbas, M.; Khan, S.K. Sharp bounds of the coefficient results for the family of bounded turning functions associated with petal shaped domain. J. Funct. Spaces 2021, 2021, 5535629. [Google Scholar] [CrossRef]
- Karthikeyan, K.R.; Murugusundaramoorthy, G.; Purohit, S.D.; Suthar, D.L. Certain class of analytic functions with respect to symmetric points defined by q-calculus. J. Math. 2021, 2021, 8298848. [Google Scholar] [CrossRef]
- Janteng, A.; Halim, A.S.; Darus, M. Hankel determinant for starlike and convex functions. Int. J. Math. 2007, 1, 619–625. [Google Scholar]
- Pommerenke, C. On starlike and close-to-convex functions. Proc. Lond. Math. Soc. 1963, 3, 290–304. [Google Scholar] [CrossRef]
- Noor, K.I. On subclasses of close-to-convex functionsof higher order. Int. J. Math. Math. Sci. 1983, 6, 327–334. [Google Scholar] [CrossRef]
- Ehrenborg, R. The Hankel determinant of exponential polynomials. Am. Math. Mon. 2000, 107, 557–560. [Google Scholar] [CrossRef]
- Cho, N.E.; Kowalczyk, B.; Kwon, O.S.; Lecko, A.; Sim, Y.J. The bounds of some determinants for starlike functions of order alpha. Bull. Malays. Math. Sci. Soc. 2018, 41, 523–535. [Google Scholar] [CrossRef]
- Zaprawa, P. Third Hankel determinants for subclasses of univalent functions. Mediterr. J. Math. 2017, 14, 19. [Google Scholar] [CrossRef] [Green Version]
- Kwon, O.S.; Lecko, A.; Sim, Y.J. The bound of the Hankel determinant of the third kind for starlike functions. Bull. Malays. Math. Sci. Soc. 2019, 42, 767–780. [Google Scholar] [CrossRef] [Green Version]
- Zaprawa, P.; Obradovic, M.; Tuneski, N. Third Hankel determinant for univalent starlike functions. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2021, 115, 9. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-functions and a certain difference operator. Trans. R. Soc. Edinb. 1908, 46, 253–281. [Google Scholar] [CrossRef]
- Ismail, M.E.H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Mahmood, S.; Srivastava, H.M.; Khan, N.; Ahmad, Q.Z.; Khan, B.; Ali, I. Upper bound of the third Hankel determinant for a subclass of q-starlike functions. Symmetry 2019, 11, 347. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.V.; Ahmad, Q.Z.; Darus, M.; Khan, N.; Khan, B.; Zaman, N.; Shah, H.H. Upper bound of the third Hankel determinant for a subclass of close-to-convex functions associated with the Lemniscate of Bernoulli. Mathematics 2019, 7, 848. [Google Scholar] [CrossRef] [Green Version]
- Arif, M.; Raza, M.; Tang, H.; Hussain, S.; Khan, H. Hankel determinant of order three for familiar subsets of analytic functions related with sine function. Open Math. 2019, 17, 1615–1630. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Tang, H. A study of fourth-order Hankel determinants for starlike functions connected with the sine function. J. Funct. Spaces 2021, 2021, 9991460. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Ahmad, Q.Z.; Khan, N.; Khan, N.; Khan, B. Hankel and Toeplitz determinants for a subclass of q-starlike functions associated with a generalized conic Domain. Mathematics 2019, 7, 181. [Google Scholar] [CrossRef] [Green Version]
- Raza, M.; Riaz, A.; Xin, Q.; Malik, S.N. Hankel determinants and coefficient estimates for starlike functions related to symmetric booth lemniscate. Symmetry 2022, 14, 1366. [Google Scholar] [CrossRef]
- Shi, L.; Srivastava, H.M.; Arif, M.; Hussain, S.; Khan, H. An investigation of the third Hankel determinant problem forcertain subfamilies of univalent functions involving the exponential function. Symmetry 2019, 11, 598. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.Y.; Srivastava, R.; Tang, H. Third-order Hankel and Toeplitz determinants for starlike functions connected with the sine function. Mathematics 2019, 7, 404. [Google Scholar] [CrossRef] [Green Version]
- Govindaraj, M.; Sivasubramanian, S. On a class of analytic functions related to conic domains involving q-calculus. Anal. Math. 2017, 43, 475–487. [Google Scholar] [CrossRef]
- Sãlaãgean, G.S. Subclasses of univalent functions. In Complex Analysis, Fifth Romanian—Finnish Seminar, Part 1 (Bucharest, 1981); Lecture Notes in Mathematics, 1013; Springer: Berlin, Germany, 1983; pp. 362–372. [Google Scholar]
- Taj, Y.; Zainab, S.; Xin, Q.; Tawfiq, M.O.; Raza, M.; Malik, S.N. Certain coefficient problems for q-starlike functions associated with q-analogue of sine function. Symmetry 2022, 14, 2200. [Google Scholar] [CrossRef]
- Ullah, K.; Zainab, S.; Arif, M.; Darus, M.; Shutaywi, M. Radius problems for starlike functions associated with the tan hyperbolic function. J. Funct. Spaces 2021, 2021, 9967640. [Google Scholar] [CrossRef]
- Duren, P.L. Univalent Functions. In Grundlehren der Mathematischen Wissenschaften; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Iapan, 1983; Volume 259. [Google Scholar]
- Ravichandran, V.; Verma, S. Bound for the fifth coefficient of certain starlike functions. Comptes Rendus Math. Acad. Sci. 2015, 353, 505–510. [Google Scholar] [CrossRef]
- Ullah, K.; Srivastava, H.M.; Rafiq, A.; Arif, M.; Arjika, S. A study of sharp coefficient bounds for a new subfamily of starlike functions. J. Inequalities Appl. 2021, 2021, 194. [Google Scholar] [CrossRef]
- Ma, W. Generalized Zalcman conjecture for starlike and typically real functions. J. Math. Anal. Appl. 1999, 234, 328–339. [Google Scholar] [CrossRef] [Green Version]
- Murugusundaramoorthy, G. Fekete–Szego inequalities for certain subclasses of analytic functions related with nephroid domain. J. Contemp. Math. Anal. 2022, 57, 56–69. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G.; Khan, M.G.; Ahmad, B.; Ahmad, B.; Abdeljawad, T.; Salleh, Z. Coefficient functionals for a class of bounded turning functions connected to three leaf function. J. Math. Comput. Sci. 2022, 28, 213–223. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Swarup, C. Sharp Coefficient Bounds for a New Subclass of q-Starlike Functions Associated with q-Analogue of the Hyperbolic Tangent Function. Symmetry 2023, 15, 763. https://doi.org/10.3390/sym15030763
Swarup C. Sharp Coefficient Bounds for a New Subclass of q-Starlike Functions Associated with q-Analogue of the Hyperbolic Tangent Function. Symmetry. 2023; 15(3):763. https://doi.org/10.3390/sym15030763
Chicago/Turabian StyleSwarup, Chetan. 2023. "Sharp Coefficient Bounds for a New Subclass of q-Starlike Functions Associated with q-Analogue of the Hyperbolic Tangent Function" Symmetry 15, no. 3: 763. https://doi.org/10.3390/sym15030763
APA StyleSwarup, C. (2023). Sharp Coefficient Bounds for a New Subclass of q-Starlike Functions Associated with q-Analogue of the Hyperbolic Tangent Function. Symmetry, 15(3), 763. https://doi.org/10.3390/sym15030763