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Abstract: In the current article, we consider certain subfamilies S∗e and Ce of univalent functions
associated with exponential functions which are symmetric along real axis in the region of open unit
disk. For these classes our aim is to find the bounds of Hankel determinant of order three. Further,
the estimate of third Hankel determinant for the family S∗e in this work improve the bounds which
was investigated recently. Moreover, the same bounds have been investigated for 2-fold symmetric
and 3-fold symmetric functions.
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1. Introduction and Definitions

Let the collection of functions f that are holomorphic in ∆ = {z ∈ C : |z| < 1} and normalized
by conditions f (0) = f ′ (0)− 1 = 0 be denoted by the symbol A. Equivalently; if f ∈ A, then the
Taylor-Maclaurin series representation has the form:

f (z) = z +
∞

∑
k=2

ak zk (z ∈ ∆) . (1)

Further, let we name by the notation S the most basic sub-collection of the setA that are univalent
in ∆. The familiar coefficient conjecture for the function f ∈ S of the form (1) was first presented
by Bieberbach [1] in 1916 and proved by de-Branges [2] in 1985. In 1916-1985, many mathematicians
struggled to prove or disprove this conjecture and as result they defined several subfamilies of the
set S of univalent functions connected with different image domains. Now we mention some of
them, that is; let the notations S∗, C and K, shows the families of starlike, convex and close-to-convex
functions respectively and are defined as:

Symmetry 2019, 11, 598; doi:10.3390/sym11050598 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0003-3079-9944
https://orcid.org/0000-0002-9277-8092
https://orcid.org/0000-0003-1484-7643
https://orcid.org/0000-0001-6417-1181
http://www.mdpi.com/2073-8994/11/5/598?type=check_update&version=1
http://dx.doi.org/10.3390/sym11050598
http://www.mdpi.com/journal/symmetry


Symmetry 2019, 11, 598 2 of 14

S∗ =

{
f ∈ S :

z f ′ (z)
f (z)

≺ 1 + z
1− z

, (z ∈ ∆)
}

,

C =

{
f ∈ S :

(z f ′ (z))′

f ′ (z)
≺ 1 + z

1− z
, (z ∈ ∆)

}
,

K =

{
f ∈ S :

f ′ (z)
g′ (z)

≺ 1 + z
1− z

, for g (z) ∈ C, (z ∈ ∆)
}

,

where the symbol “ ≺ ” denotes the familiar subordinations between analytic functions and is define
as; the function h1 is subordinate to a function h2, symbolically written as h1 ≺ h2 or h1 (z) ≺ h2 (z),
if we can find a function w, which is holomorphic in ∆ with w (0) = 0 & |w(z)| < 1 such that
h1 (z) = h2 (w (z)) (z ∈ ∆) . Thus, h1(z) ≺ h2(z) implies h1(∆) ⊂ h2(∆). In case of univalency of h1 in
∆, then the following relation holds:

h1(z) ≺ h2(z) (z ∈ ∆) ⇐⇒ h1(0) = h2(0) and h1(∆) ⊂ h2(∆).

In [3], Padmanabhan and Parvatham in 1985 defined a unified families of starlike and
convex functions using familiar convolution with the function z/ (1− z)a, for all a ∈ R. Later on,
Shanmugam [4] generalized the idea of paper [3] and introduced the set

S∗h (φ) =

{
f ∈ A :

z ( f ∗ h)′

( f ∗ h)
≺ φ (z) , (z ∈ ∆)

}
,

where “∗” stands for the familiar convolution, φ is a convex and h is a fixed function in A. We obtain
the families S∗ (φ) and C (φ) when taking z/ (1− z) and z/ (1− z)2 instead of h in S∗h (φ) respectively.
In 1992, Ma and Minda [5] reduced the restriction to a weaker supposition that φ is a function, with
Reφ > 0 in ∆, whose image domain is symmetric about the real axis and starlike with respect to
φ(0) = 1 with φ′(0) > 0 and discussed some properties. The set S∗ (φ) generalizes various subfamilies
of the set A, for example:

1. If φ(z) = 1+Az
1+Bz with −1 ≤ B < A ≤ 1, then S∗[A, B] := S∗

(
1+Az
1+Bz

)
is the set of Janowski starlike

functions, see [6]. Further, if A = 1− 2α and B = −1 with 0 ≤ α < 1, then we get the set S∗(α) of
starlike functions of order α.

2. The class S∗L := S∗(
√

1 + z) was introduced by Sokól and Stankiewicz [7], consisting of functions
f ∈ A such that z f ′(z)/ f (z) lies in the region bounded by the right-half of the lemniscate of
Bernoulli given by |w2 − 1| < 1.

3. For φ(z) = 1 + sin z, the class S∗(φ) lead to the class S∗sin, introduced in [8].
4. The family S∗e := S∗ (ez) was introduced by Mediratta et al. [9] given as:

S∗e =

{
f ∈ S :

z f ′(z)
f (z)

≺ ez, (z ∈ ∆)
}

, (2)

or, equivalently

S∗e =

{
f ∈ S :

∣∣∣∣log
z f ′(z)
f (z)

∣∣∣∣ < 1, (z ∈ ∆)
}

. (3)

They investigated some interesting properties and also links these classes to the familiar
subfamilies of the set S . In [9], the authors choose the function f (z) = z + 1

4 z2 (Figure 1) and
then sketch the following figure of the function class S∗e by using the form (3) as:
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Figure 1. The figure of the function class S∗1 for f (z) = z + 1
4 z2.

Similarly, by using Alexandar type relation in [9], we have;

Ce =

{
f ∈ S :

(z f ′(z))′

f ′ (z)
≺ ez, (z ∈ ∆)

}
. (4)

From the above discussion, we conclude that the families S∗e and Ce considered in this paper are
symmetric about the real axis.

For given parameters q, n ∈ N = {1, 2, . . .}, the Hankel determinant Hq,n ( f ) was defined by
Pommerenke [10,11] for a function f ∈ S of the form (1) as follows:

Hq,n ( f ) =

∣∣∣∣∣∣∣∣∣∣
an an+1 . . . an+q−1

an+1 an+2 . . . an+q
...

... . . .
...

an+q−1 an+q . . . an+2q−2

∣∣∣∣∣∣∣∣∣∣
. (5)

The concept of Hankel determinant is very useful in the theory of singularities [12] and in the
study of power series with integral coefficients. For deep insight, the reader is invited to read [13–15].
Specifically, the absolute sharp bound of the functional H2,2 ( f ) = a2a4 − a2

3 for each of the sets S∗
and C were proved by Janteng et al. [16,17] while the exact estimate of this determinant for the family
of close-to-convex functions is still unknown (see, [18]). On the other side for the set of Bazilevič
functions, the sharp estimate of |H2,2 ( f )| was given by Krishna et al. [19]. Recently, Srivastava and his
coauthors [20] found the estimate of second Hankel determinant for bi-univalent functions involving
symmetric q-derivative operator while in [21], the authors discussed Hankel and Toeplitz determinants
for subfamilies of q-starlike functions connected with a general form of conic domain. For more
literature see [22–29]. The determinant with entries from (1)

H3,1 ( f ) =

∣∣∣∣∣∣∣
1 a2 a3

a2 a3 a4

a3 a4 a5

∣∣∣∣∣∣∣
is known as Hankel determinant of order three and the estimation of this determinant |H3,1 ( f )| is very
hard as compared to derive the bound of |H2,2 ( f )|. The very first paper on H3,1 ( f ) visible in 2010 by
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Babalola [30] in which he got the upper bound of H3,1 ( f ) for the families of S∗ and C. Later on, many
authors published their work regarding |H3,1 ( f )| for different sub-collections of univalent functions,
see [8,31–36]. In 2017, Zaprawa [37] upgraded the results of Babalola [30] by giving

|H3,1 ( f )| ≤
{

1, for f ∈ S∗,
49

540 , for f ∈ C,

and claimed that these bounds are still not best possible. Further for the sharpness, he examined the
subfamilies of S∗ and C consisting of functions with m-fold symmetry and obtained the sharp bounds.
Moreover this determinant was further improved by Kwon et al. [38] and proved |H3,1 ( f )| ≤ 8/9 for
f ∈ S∗, yet not best possible. The authors in [39–41] contributed in similar direction by generalizing
different classes of univalent functions with respect to symmetric points. In 2018, Kowalczyk et al. [42]
and Lecko et al. [43] got the sharp inequalities

|H3,1 ( f )| ≤ 4/135, and |H3,1 ( f )| ≤ 1/9,

for the recognizable setsK and S∗ (1/2) respectively, where the symbol S∗ (1/2) indicates to the family
of starlike functions of order 1/2. Also we would like to cite the work done by Mahmood et al. [44]
in which they studied third Hankel determinant for a subset of starlike functions in q-analogue.
Additionally Zhang et al. [45] studied this determinant for the set S∗e and obtained the bound
|H3,1 ( f )| ≤ 0.565.

In the present article, our aim is to investigate the estimate of |H3,1 ( f )| for both the above defined
classes S∗e and Ce. Moreover, we also study this problem for m-fold symmetric starlike and convex
functions associated with exponential function.

2. A Set of Lemmas

Let P denote the family of all functions p that are analytic in D with <(p(z)) > 0 and has the
following series representation

p(z) = 1 +
∞

∑
n=1

cnzn (z∈∆) . (6)

Lemma 1. If p ∈ P and has the form , then

|cn| ≤ 2 for n ≥ 1, (7)

|cn+k − µcnck| < 2, for 0 ≤ µ ≤ 1, (8)

|cmcn − ckcl | ≤ 4 for m + n = k + l, (9)∣∣∣cn+2k − µcnc2
k

∣∣∣ ≤ 2(1 + 2µ); for µ ∈ R, (10)∣∣∣∣∣c2 −
c2

1
2

∣∣∣∣∣ ≤ 2− |c1|2

2
, (11)

and for complex number λ, we have ∣∣∣c2 − λc2
1

∣∣∣ ≤ 2 max {1, |2λ− 1|} . (12)

For the inequalities (7), (11), (8), (10), (9) see [46] and (12) is given in [47].

3. Improved Bound of |H3,1 ( f )| for the Set S∗e
Theorem 1. If f belongs to S∗e , then

|H3,1 ( f )| ≤ 0.50047781.
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Proof. Let f ∈ S∗e . Then we can write (2), in terms of Schwarz function as

z f ′ (z)
f (z)

= ew(z).

If h ∈ P , then it can be written in form of Schwarz function as

h (z) =
1 + w (z)
1− w (z)

= 1 + c1z + c2z2 + · · · .

From above, we can get

w (z) =
h (z)− 1
h (z) + 1

=
c1z + c2z2 + c3z3 + · · ·

2 + c1z + c2z2 + c3z3 + · · · .

z f ′ (z)
f (z)

= 1 + a2z +
(

2a3 − a2
2

)
z2 +

(
3a4 − 3a2a3 + a3

2

)
z3

+
(

4a5 − 2a2
3 − 4a2a4 + 4a2

2a3 − a4
2

)
z4 = 1 + p1z + p2z2 + · · · . (13)

and from the series expansion of w along with some calculations, we have

ew(z) = 1 + w (z) +
(w (z))2

2!
+

(w (z))3

3!
+

(w (z))4

4!
+

(w (z))5

5!
+ · · · .

After some computations and rearranging, it yields

ew(z) = 1 +
1
2

c1z +

(
c2

2
−

c2
1

8

)
z2 +

(
c3

1
48

+
c3

2
− c1c2

4

)
z3

+

(
1

384
c4

1 +
1
2

c4 −
1
8

c2
2 +

1
16

c2
1c2 −

1
4

c1c3

)
z4 + · · · . (14)

Comparing (13) and (14), we have

a2 =
c1

2
, (15)

a3 =
1
4

(
c2 +

c2
1

4

)
, (16)

a4 =
1
6

(
c3 +

c1c2

4
−

c3
1

48

)
, (17)

a5 =
1
4

(
c4

1
288

+
c4

2
+

c1c3

12
−

c2
1c2

24

)
. (18)

From (5), the Third Hankel determinant can be written as

H3,1 ( f ) = −a2
2a5 + 2a2a3a4 − a3

3 + a3a5 − a2
4.

Using (15), (16), (17) and (18), we get

H3,1 ( f ) =
35

27648
c4

1c2 +
53

6912
c3

1c3 +
c2c4

32
+

19
576

c1c2c3 −
211

331776
c6

1 −
c3

2
64
− 3

128
c2

1c4 −
13

2304
c2

1c2
2 −

c2
3

36
.
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After rearranging, it yields

H3,1 ( f ) =
211

165888
c4

1

(
c2 −

c2
1

2

)
+

3
64

c4

(
c2 −

c2
1

2

)
− c1c3

96

(
c2 −

c2
1

2

)
+

1
165888

c3
1 (c3 − c1c2)

+
407

165888
c2

1

(
c1c3 − c2

2

)
− c3

36
(c3 − c1c2)−

c2

64
(c4 − c1c3)−

529
165888

c2
1c2

2 −
c3

2
64

.

Using triangle inequality along with (7), (11), (8) and (9), provide us

|H3,1 ( f )| ≤ 211
165888

|c1|4
(

2− |c1|2

2

)
+

3
32

(
2− |c1|2

2

)
+
|c1|
48

(
2− |c1|2

2

)
+

1
82944

|c1|3

+
407

41472
|c1|2 +

1
9
+

1
16

+
529

41472
|c1|2 +

1
8

.

If we substitute |c1| = x ∈ [0, 2], we obtain a function of variable x. Therefore, we can write

|H3,1 ( f )| ≤ 211
165888

x4
(

2− x2

2

)
+

3
32

(
2− x2

2

)
+

x
48

(
2− x2

2

)
+

1
82944

x3

+
407

41472
x2 +

1
9
+

1
16

+
529

41472
x2 +

1
8

.

The above function attains its maximum value at x = 0.64036035, which is

|H3,1 ( f )| ≤ 0.50047781.

Thus, the proof is completed.

4. Bound of |H3,1 ( f )| for the Set Ce

Theorem 2. Let f has the form (1) and belongs to Ce. Then

|a2| ≤
1
2

, (19)

|a3| ≤
1
4

, (20)

|a4| ≤
17

144
, (21)

|a5| ≤
7

96
. (22)

The first three inequalities are sharp.

Proof. If f ∈ Ce, then we can write (4), in form of Schwarz function as

1 +
z f ′′ (z)
f ′ (z)

= ew(z).

From (1), we can write

1 +
z f ′′ (z)
f ′ (z)

= 1 + 2a2z +
(

6a3 − 4a2
2

)
z2 +

(
12a4 − 18a2a3 + 8a3

2

)
z3

+
(

20a5 − 18a2
3 − 32a2a4 + 48a2

2a3 − 16a4
2

)
z4 + · · · . (23)
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By comparing (23) and (14), we get

a2 =
c1

4
, (24)

a3 =
1

12

(
c2 +

c2
1

4

)
, (25)

a4 =
1

24

(
c1c2

4
+ c3 −

c3
1

48

)
, (26)

a5 =
1

20

(
c4

1
288

+
c4

2
+

c1c3

12
−

c2
1c2

24

)
. (27)

Implementing (7), in (24) and (25), we have

|a2| ≤ 1
2 and |a3| ≤ 1

4 .

Reshuffling (26), we have

|a4| =
1
24

∣∣∣∣∣ 5
24

c1c2 +
c1

24

(
c2 −

c2
1

2

)
+ c3

∣∣∣∣∣ .

Application of triangle inequality and (7) and (11) leads us to

|a4| ≤
1

24

{
5

12
|c1|+

|c1|
24

(
2− |c1|2

2

)
+ 2

}
.

If we insert |c1| = x ∈ [0, 2], then we get

|a4| ≤
1
24

{
5

12
x +

x
24

(
2− x2

2

)
+ 2
}

.

The overhead function has a maximum value at x = 2, thus

|a4| ≤
17

144
.

Reordering (27), we have

|a5| =
1

20

∣∣∣∣∣12
(

c4 −
c2

1c2

48

)
−

c2
1

96

(
c2 −

c2
1

3

)
+

c1

12

(
c3 −

c1c2

4

)∣∣∣∣∣ .

By using triangle inequality along with (7), and (8), we get

|a5| ≤
7

96
.

Equalities are obtain if we take

f (z) =
∫ z

0
eJ(t)dt = z +

1
2

z2 +
1
4

z3 +
17

144
z4 +

19
360

z5 + · · · (28)

where

J(t) =
∫ t

0

ex − 1
x

dx.
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Theorem 3. If f is of the form (1) belongs to Ce, then∣∣∣a3 − γa2
2

∣∣∣ ≤ 1
6

max
{

1,
3
2
|γ− 1|

}
, (29)

where γ is a complex number.

Proof. From (24) and (25), we get

∣∣∣a3 − γa2
2

∣∣∣ = ∣∣∣∣∣ c2

12
+

c2
1

48
− γ

16
c2

1

∣∣∣∣∣ .

By reshuffling it, provides ∣∣∣a3 − γa2
2

∣∣∣ = 1
12

∣∣∣∣(c2 −
1
2

(
3γ− 1

2

)
c2

1

)∣∣∣∣ .

Application of (12), leads us to ∣∣∣a3 − γa2
2

∣∣∣ ≤ max
{

1
6

,
1
12
|3γ− 3|

}
.

Substituting γ = 1, we obtain the following inequality.

Corollary 1. If f ∈ Ce and has the series represntaion (1), then∣∣∣a3 − a2
2

∣∣∣ ≤ 1
6

. (30)

Theorem 4. If f has the form (1) belongs to Ce, then

|a2a3 − a4| ≤
31

288
. (31)

Proof. Using (24), (25) and (26), we have

|a2a3 − a4| =
∣∣∣∣ c1c2

96
+

7
1152

c3
1 −

c3

24

∣∣∣∣ .

By rearranging it, gives

|a2a3 − a4| =
∣∣∣∣− 1

48

(
c3 −

c1c2

2

)
− 1

48

(
c3 −

7
24

c3
1

)∣∣∣∣ .

By applying triangle inequality plus (8) and (10), we get

|a2a3 − a4| ≤
{

1
24

+
19
288

}
=

31
288

.

Theorem 5. Let f ∈ Ce be of the form (1). Then∣∣∣a2a4 − a2
3

∣∣∣ ≤ 3
64

. (32)
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Proof. From (24), (25) and (26), we have

∣∣∣a2a4 − a2
3

∣∣∣ = ∣∣∣∣∣ c1c3

96
−

c4
1

1536
−

c2
1c2

1152
−

c2
2

144

∣∣∣∣∣ .

By reordering it, yields∣∣∣a2a4 − a2
3

∣∣∣ = ∣∣∣∣ c1

576

(
c3 −

c1c2

2

)
+

c1

576

(
c3 −

3
8

c3
1

)
+

1
144

(
c1c3 − c2

2

)∣∣∣∣ .

Application of triangle inequality plus (7), (11), (10) and (9), we obtain∣∣∣a2a4 − a2
3

∣∣∣ ≤ 4
576

+
7

576
+

4
144

=
3
64

.

Theorem 6. If f ∈ Ce and has the form (1), then

|H3,1 ( f )| ≤ 0.0234598.

Proof. Using (5), the Hankel determinant of order three can be formed as;

H3,1 ( f ) = −a2
2a5 + 2a2a3a4 − a3

3 + a3a5 − a2
4.

Using (24), (25), (26) and (27), gives us

H3,1 ( f ) =
7

5760
c1c2c3 −

c2
3

576
−

c3
2

1728
− 173

6635520
c6

1 +
23

276480
c4

1c2 +
c2c4

480
− 13

46980
c2

1c2
2 −

c2
1c4

960
+

23
69120

c3
1c3.

Now, rearranging it provides

H3,1 ( f ) =
173

3317760
c4

1

(
c2 −

c2
1

2

)
− 103

1658880
c2

1c2

(
c2 −

c2
1

2

)
+

c4

480

(
c2 −

c2
1

2

)

+
11

17280
c1c2

(
c3 −

365
1056

c1c2

)
+

c2

1728

(
c1c3 − c2

2

)
− c3

576

(
c3 −

23
120

c3
1

)
.

Application of triangle inequality plus (7), (11), (8), (10) and (9), leads us to

|H3,1 ( f )| ≤ 173
3317760

|c1|4
(

2− |c1|2

2

)
+

103
829440

|c1|2
(

2− |c1|2

2

)
+

1
4320

|c1|+
83

8640
+

1
216

.

Now, replacing |c1| = x ∈ [0, 2], then, we can write

|H3,1 ( f )| ≤ 173
3317760

x4
(

2− x2

2

)
+

103
829440

x2
(

2− x2

2

)
+

1
240

(
2− x2

2

)
+

11
4320

x +
41

2880
.

The above function gets its maximum at x = 0.7024858, Therefore, we have

|H3,1 ( f )| ≤ 0.02345979.

Thus the proof is completed.
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5. Bounds of |H3,1 ( f )| for 2-Fold and 3-Fold Functions

Let m ∈ N = {1, 2, . . .} . If a rotation 4 about the origin through an angle 2π/m carries 4 on
itself, then such a domain 4 is called m-fold symmetric. An analytic function f is m-fold symmetric in
∆, if

f
(

e2πi/mz
)
= e2πi/m f (z) , (z ∈ ∆) .

By S (m), we define the set of m-fold univalent functions having the following Taylor series form

f (z) = z +
∞

∑
k=1

amk+1zmk+1, (z ∈ ∆) . (33)

The sub-families S∗(m)
e and C(m)

e of S (m) are the sets of m-fold symmetric starlike and convex
functions respectively associated with exponential functions. More intuitively, an analytic function f
of the form (33), belongs to the families S∗(m)

e and C(m)
e , if and only if

z f ′(z)
f (z)

= exp
(

p (z)− 1
p (z) + 1

)
, p ∈ P (m), (34)

1 +
z f ′′ (z)
f ′ (z)

= exp
(

p (z)− 1
p (z) + 1

)
, p ∈ P (m). (35)

where the set P (m) is defined by

P (m) =

{
p ∈ P : p (z) = 1 +

∞

∑
k=1

cmkzmk, (z ∈ ∆)

}
. (36)

Here we prove some theorems related to 2-fold and 3-fold symmetric functions.

Theorem 7. If f ∈ S∗(2)e and has the form (33), then

|H3,1 ( f )| ≤ 1
8

.

Proof. Let f ∈ S∗(2)e . Then, there exists a function p ∈ P (2), such that

z f ′(z)
f (z)

= exp
(

p (z)− 1
p (z) + 1

)
.

Using the series form (33) and (36), when m = 2 in the above relation, we can get

a3 =
c2

4
, (37)

a5 =
c4

8
. (38)

Now,
H3 ( f ) = a3a5 − a3

3.

Utilizing (37) and (38), we get

H3,1 ( f ) = −
c3

2
64

+
c2c4

32
.

By rearranging, it yields

H3,1 ( f ) =
c2

32

(
c4 −

c2
2

2

)
.



Symmetry 2019, 11, 598 11 of 14

Using triangle inequality long with (8) and (7), gives us

|H3,1 ( f )| ≤ 1
8

.

Hence, the proof is done.

Theorem 8. If f ∈ S∗(3)e and has the series form (33), then

|H3,1 ( f )| ≤ 1
9

.

This result is sharp for the function

f (z) = exp

(∫ z

0

ex3

x
dx

)
= z +

1
3

z4 +
5
36

z7 + · · · (39)

Proof. As, f ∈ S∗(3)e , therefore there exists a function p ∈ P (3), such that

z f ′(z)
f (z)

= exp
(

p (z)− 1
p (z) + 1

)
.

Utilizing the series form (33) and (36), when m = 3 in the above relation, we can obtain

a4 =
c3

6
.

Then,

H3,1 ( f ) = −a2
4 = −

c2
3

36
.

Utilizing (7) and triangle inequality, we have

|H3,1 ( f )| ≤ 1
9

.

Thus the proof is ended.

Theorem 9. Let f ∈ C(2)e and has the form given in (33) . Then

|H3,1 ( f )| ≤ 1
120

.

Proof. As, f ∈ C(2)e , then there exists a function p ∈ P (2), such that

1 +
z f ′′(z)
f ′(z)

= exp
(

p (z)− 1
p (z) + 1

)
.

Utilizing the series form (33) and (36), when m = 2 in the above relation, we can obtain

a3 =
c2

12
, (40)

a5 =
c4

40
. (41)

H3,1 ( f ) = a3a5 − a3
3.
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Using (40) and (41), we have

H3,1 ( f ) = −
c3

2
1728

+
c2c4

480
.

Now, reordering the above equation, we obtain

H3 ( f ) =
c2

480

(
c4 −

5
18

c2
2

)
.

Application of (7), (8) and triangle inequality, leads us to

|H3,1 ( f )| ≤ 1
120

.

Thus, the required result is completed.

Theorem 10. If f ∈ C(3)e and has the form given in (33), then

|H3,1 ( f )| ≤ 1
144

. (42)

This result is sharp for the function

f (z) =
∫ z

0
eI(t)dt = z +

1
12

z4 +
5

252
z7 + · · · (43)

where

I (t) =
∫ t

0

ex3 − 1
x

dx.

Proof. Let, f ∈ C(3)e . Then there exists a function p ∈ P (3), such that

1 +
z f ′′(z)
f ′(z)

= exp
(

p (z)− 1
p (z) + 1

)
.

Utilizing the series form (33) and (36), when m = 3 in the above relation, we can obtain

a4 =
c3

24
.

Then,

H3,1 ( f ) = −
c2

3
576

.

Implementing (7) and triangle inequality, we have

|H3,1 ( f )| ≤ 1
144

.

Hence, the proof is done.

6. Conclusions

In this article, we studied Hankel determinant H3,1 ( f ) for the families S∗e and Ce whose image
domain are symmetric about the real axis. Furthermore, we improve the bound of third Hankel
determinant for the family S∗e . These bounds are also discussed for 2-fold symmetric and 3-fold
symmetric functions.
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8. Cho, N.E.; Kumar, V.; Kumar, S.S.; Ravichandran, V. Radius problems for starlike functions associated with

the sine function. Bull. Iran. Math. Soc. 2019, 45, 213–232. [CrossRef]
9. Mendiratta, R.; Nagpal, S.; Ravichandran, V. On a subclass of strongly starlike functions associated with

exponential function. Bull. Malays. Math. Sci. Soc. 2015, 38, 365–386. [CrossRef]
10. Pommerenke, C. On the coefficients and Hankel determinants of univalent functions. J. Lond. Math. Soc.

1966, 1, 111–122. [CrossRef]
11. Pommerenke, C. On the Hankel determinants of univalent functions. Mathematika 1967, 14, 108–112.

[CrossRef]
12. Dienes, P. The Taylor Series: An Introduction to the Theory of Functions of a Complex Variable; NewYork-Dover:

Mineola, NY, USA, 1957.
13. Cantor, D. G. Power series with integral coefficients. Bull. Am. Math. Soc.. 1963, 69, 362–366. [CrossRef]
14. Edrei, A. Sur les determinants recurrents et less singularities d’une fonction donee por son developpement

de Taylor. Comput. Math. 1940, 7, 20–88.
15. Polya, G.; Schoenberg, I.J. Remarks on de la Vallee Poussin means and convex conformal maps of the circle.

Pac. J. Math. 1958, 8, 259–334. [CrossRef]
16. Janteng, A.; Halim, S.A.; Darus, M. Coefficient inequality for a function whose derivative has a positive real

part. J. Inequal. Pure Appl. Math. 2006, 7, 1–5.
17. Janteng, A.; Halim, S.A.; Darus, M. Hankel determinant for starlike and convex functions. Int. J. Math. Anal.

2007, 1, 619–625.
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