Upper Bound of the Third Hankel Determinant for a Subclass of Close-to-Convex Functions Associated with the Lemniscate of Bernoulli
Abstract
:1. Introduction
2. A Set of Lemmas
3. Main Results and Their Demonstrations
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Duren, P.L. Univalent Functions; Grundlehren der Mathematischen Wissenschaften, Band 259; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983. [Google Scholar]
- Goodman, A.W.; Saff, E.B. Functions that are convex in one direction. Proc. Am. Math. Soc. 1979, 73, 183–187. [Google Scholar] [CrossRef]
- Sokół, J.; Stankiewicz, J. Radius of convexity of some subclasses of strongly starlike functions. Zeszyty Nauk. Politech. Rzeszowskiej Mat. 1996, 19, 101–105. [Google Scholar]
- Ali, R.M.; Cho, N.E.; Ravichandran, V.; Kumar, S.S. Differential subordination for functions associated with the lemniscate of Bernoulli. Taiwan J. Math. 2012, 16, 1017–1026. [Google Scholar] [CrossRef]
- Raza, M.; Malik, S.N. Upper bound of the third Hankel determinant for a class of analytic functions related with lemniscate of Bernoulli. J. Inequal. Appl. 2013, 2013, 412. [Google Scholar] [CrossRef] [Green Version]
- Sokół, J. Coefficient estimates in a class of strongly starlike functions. Kyungpook Math. J. 2009, 49, 349–353. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential subordination and univalent functions. Mich. Math. J. 1981, 28, 157–171. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential Subordination: Theory and Applications; Series on Monographs and Textbooks in Pure and Applied Mathematics, No. 225; Marcel Dekker Incorporated: New York, NY, USA; Basel, Switzerland, 2000. [Google Scholar]
- Srivastava, H.M.; Tahir, M.; Khan, B.; Ahmad, Q.Z.; Khan, N. Some general classes of q-starlike functions associated with the Janowski functions. Symmetry 2019, 11, 292. [Google Scholar] [CrossRef]
- Aldweby, H.; Darus, M. On Fekete-Szegö problems for certain subclasses defined by q-derivative. J. Funct. Spaces 2017, 2017, 7156738. [Google Scholar] [CrossRef]
- Noor, K.I.; Khan, N.; Darus, M.; Ahmad, Q.Z.; Khan, B. Some properties of analytic functions associated with conic type regions. Intern. J. Anal. Appl. 2018, 16, 689–701. [Google Scholar]
- Hussain, S.; Khan, S.; Zaighum, M.A.; Darus, M. Applications of a q-Sălăgean type operator on multivalent functions. J. Inequal. Appl. 2018, 2018, 301. [Google Scholar] [CrossRef]
- Kanas, S.; Srivastava, H.M. Linear operators associated with k-uniformly convex functions. Integral Transforms Spec. Funct. 2000, 9, 121–132. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Eker, S.S. Some applications of a subordination theorem for a class of analytic functions. Appl. Math. Lett. 2008, 21, 394–399. [Google Scholar] [CrossRef]
- Rasheed, A.; Hussain, S.; Zaighum, M.A.; Darus, M. Class of analytic function related with uniformly convex and Janowski’s functions. J. Funct. Spaces 2018, 2018, 4679857. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Owa, S. Current Topics in Analytic Function Theory; World Scientific Publishing: Hackensack, NJ, USA, 1992. [Google Scholar]
- Dienes, P. The Taylor Series: An Introduction to the Theory of Functions of a Complex Variable; New York-Dover Publishing Company: Mineola, NY, USA, 1957. [Google Scholar]
- Cantor, D.G. Power series with integral coefficients. Bull. Am. Math. Soc. 1963, 69, 362–366. [Google Scholar] [CrossRef] [Green Version]
- Edrei, A. Sur les determinants recurrents et less singularities d’une fonction donee por son developpement de Taylor. Comput. Math. 1940, 7, 20–88. [Google Scholar]
- Pólya, G.; Schoenberg, I.J. Remarks on de la Vallée Poussin means and convex conformal maps of the circle. Pac. J. Math. 1958, 8, 259–334. [Google Scholar] [CrossRef]
- Mahmood, S.; Srivastava, H.M.; Khan, N.; Ahmad, Q.Z.; Khan, B.; Ali, I. Upper bound of the third Hankel determinant for a subclass of q-starlike functions. Symmetry 2019, 11, 347. [Google Scholar] [CrossRef]
- Janteng, A.; Abdulhalirn, S.; Darus, M. Coefficient inequality for a function whose derivative has positive real part. J. Inequal. Pure Appl. Math. 2006, 50, 1–5. [Google Scholar]
- Mishra, A.K.; Gochhayat, P. Second Hankel determinant for a class of analytic functions defined by fractional derivative. Int. J. Math. Math. Sci. 2008, 2008, 153280. [Google Scholar] [CrossRef]
- Singh, G.; Singh, G. On the second Hankel determinant for a new subclass of analytic functions. J. Math. Sci. Appl. 2014, 2, 1–3. [Google Scholar]
- Srivastava, H.M.; Ahmad, Q.Z.; Khan, N.; Khan, N.; Khan, B. Hankel and Toeplitz determinants for a subclass of q-starlike functions associated with a general conic domain. Mathematics 2019, 7, 181. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, B.; Khan, N.; Ahmad, Q.Z. Coefficient inequalities for q-starlike functions associated with the Janowski functions. Hokkaido Math. J. 2019, 48, 407–425. [Google Scholar] [CrossRef]
- Shi, L.; Srivastava, H.M.; Arif, M.; Hussain, S.; Khan, H. An investigation of the third hankel determinant problem for certain subfamilies of univalent functions involving the exponential function. Symmetry 2019, 11, 598. [Google Scholar] [CrossRef]
- Güney, H.Ö.; Murugusundaramoorthy, G.; Srivastava, H.M. The second hankel determinant for a certain class of bi-close-to-convex function. Results Math. 2019, 74, 93. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Z.-G.; Rasila, A. On Hankel determinants for subclasses of analytic functions and close-to-convex harmonic mapping. arXiv 2017, arXiv:1703.09485. [Google Scholar] [CrossRef]
- Babalola, K.O. On H3 (1) Hankel determinant for some classes of univalent functions. Inequal. Theory Appl. 2007, 6, 1–7. [Google Scholar]
- Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis; Li, Z., Ren, F., Yang, L., Zhang, S., Eds.; International Press: Cambridge, UK, 1994; pp. 157–169. [Google Scholar]
- Libera, R.J.; Zlotkiewicz, E.J. Early coefficient of the inverse of a regular convex function. Proc. Am. Math. Soc. 1982, 85, 225–230. [Google Scholar] [CrossRef]
- Libera, R.J.; Zlotkiewicz, E.J. Coefficient bounds for the inverse of a function with derivative in . Proc. Am. Math. Soc. 1983, 87, 251–257. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srivastava, H.M.; Ahmad, Q.Z.; Darus, M.; Khan, N.; Khan, B.; Zaman, N.; Shah, H.H. Upper Bound of the Third Hankel Determinant for a Subclass of Close-to-Convex Functions Associated with the Lemniscate of Bernoulli. Mathematics 2019, 7, 848. https://doi.org/10.3390/math7090848
Srivastava HM, Ahmad QZ, Darus M, Khan N, Khan B, Zaman N, Shah HH. Upper Bound of the Third Hankel Determinant for a Subclass of Close-to-Convex Functions Associated with the Lemniscate of Bernoulli. Mathematics. 2019; 7(9):848. https://doi.org/10.3390/math7090848
Chicago/Turabian StyleSrivastava, Hari M., Qazi Zahoor Ahmad, Maslina Darus, Nazar Khan, Bilal Khan, Naveed Zaman, and Hasrat Hussain Shah. 2019. "Upper Bound of the Third Hankel Determinant for a Subclass of Close-to-Convex Functions Associated with the Lemniscate of Bernoulli" Mathematics 7, no. 9: 848. https://doi.org/10.3390/math7090848
APA StyleSrivastava, H. M., Ahmad, Q. Z., Darus, M., Khan, N., Khan, B., Zaman, N., & Shah, H. H. (2019). Upper Bound of the Third Hankel Determinant for a Subclass of Close-to-Convex Functions Associated with the Lemniscate of Bernoulli. Mathematics, 7(9), 848. https://doi.org/10.3390/math7090848