A New Technique to Uniquely Identify the Edges of a Graph
<p>A graph with the <math display="inline"><semantics> <mrow> <mi>m</mi> <mi>d</mi> <mo>(</mo> <mi>G</mi> <mo>)</mo> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>.</p> "> Figure 2
<p>Diagram for the multiset and edge-multiset dimension.</p> "> Figure 3
<p>The kayak paddle graph <math display="inline"><semantics> <mrow> <mi>K</mi> <mi>P</mi> <mo>(</mo> <mn>12</mn> <mo>,</mo> <mn>8</mn> <mo>,</mo> <mn>5</mn> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure 4
<p>The dragon graph <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mrow> <mn>8</mn> <mo>,</mo> <mn>5</mn> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 5
<p>The comb product of <math display="inline"><semantics> <msub> <mi>P</mi> <mn>5</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>P</mi> <mn>4</mn> </msub> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>P</mi> <mn>5</mn> </msub> <msub> <mo>⊳</mo> <mo>∘</mo> </msub> <msub> <mi>P</mi> <mn>4</mn> </msub> </mrow> </semantics></math>.</p> "> Figure 6
<p>The graph <math display="inline"><semantics> <mi mathvariant="sans-serif">Γ</mi> </semantics></math>.</p> "> Figure 7
<p>The graph <math display="inline"><semantics> <mi mathvariant="sans-serif">Γ</mi> </semantics></math>.</p> "> Figure 8
<p>The graph <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>(</mo> <msub> <mi>T</mi> <mrow> <mn>7</mn> <mo>,</mo> <mn>3</mn> </mrow> </msub> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure 9
<p>The graph <math display="inline"><semantics> <mi mathvariant="sans-serif">Γ</mi> </semantics></math>.</p> "> Figure 10
<p>The graph <math display="inline"><semantics> <mi mathvariant="sans-serif">Γ</mi> </semantics></math>.</p> "> Figure 11
<p>Caterpillar graph <math display="inline"><semantics> <mrow> <mi>C</mi> <msub> <mi>T</mi> <mn>7</mn> </msub> </mrow> </semantics></math> with <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <mo>{</mo> <mn>2</mn> <mo>,</mo> <mn>4</mn> <mo>,</mo> <mn>6</mn> <mo>}</mo> </mrow> </semantics></math>.</p> "> Figure 12
<p>Lobster graph <math display="inline"><semantics> <msub> <mi>L</mi> <mn>7</mn> </msub> </semantics></math> with <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <mo>{</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> <mo>,</mo> <mn>5</mn> <mo>}</mo> </mrow> </semantics></math>.</p> "> Figure 13
<p>Three cases of graph <math display="inline"><semantics> <msub> <mi>T</mi> <mi>n</mi> </msub> </semantics></math> with diameter 3.</p> "> Figure 14
<p>Caterpillar graph <math display="inline"><semantics> <mrow> <mi>C</mi> <msub> <mi>T</mi> <mn>6</mn> </msub> </mrow> </semantics></math> with <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <mo>{</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> <mo>}</mo> </mrow> </semantics></math>.</p> "> Figure 15
<p>Lobster graph <math display="inline"><semantics> <msub> <mi>L</mi> <mn>6</mn> </msub> </semantics></math> with <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <mo>{</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> <mo>}</mo> </mrow> </semantics></math>.</p> "> Figure 16
<p>Complete 2-ary tree graph with <math display="inline"><semantics> <mrow> <mi>h</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>.</p> "> Figure 17
<p>The graph <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Γ</mi> </mrow> </semantics></math>.</p> "> Figure 18
<p>The graph <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Γ</mi> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Literature Review
Multiset and Edge-Multiset Dimensions of Graphs
3. Methodology
4. Results on the Multiset and Edge-Multiset Dimensions of Graphs
4.1. Kayak Paddle Graph
4.2. Dragon Graph
4.3. Comb Products Graph
4.4. Results on the Edge-Multiset Dimension of Graphs
- (i)
- there are two edges incident to a or to b;
- (ii)
- there is one edge incident to a and one edge incident to b.
4.5. Graphs Having an Infinite Edge-Multiset Dimension
4.6. Graphs Having a Constant Edge-Multiset Dimension
4.7. Caterpillar Graph
4.8. Lobster Graph
4.9. Graphs Having Dependent Edge-Multiset Dimension on Their Order
- If , then and ;
- If and . Let and . Then we have as an edge-multiset resolving set for , which means ;
- If . Let and . Then we do not have an edge-multiset resolving set for , which means .
4.10. Complete r-ary Tree Graph
- The edges f and g are in different levels, say p and q, respectively, where :
- The edges f and g are in the same level (the edges f and g are linked the vertices of levels and p), say p, where :
5. Discussion on the Multiset and Edge-Multiset Dimensions of Graphs
5.1. Graphs G with
- If is an edge-multiset resolving set, then which is in contradiction to our supposition.
- If is an edge-multiset resolving set, then which is in contradiction to our supposition.
- If is an edge-multiset resolving set, then which is in contradiction to our supposition.
- If is an edge-multiset resolving set, then for , and which is in contradiction to our supposition.
5.2. Graphs G with
- If is a multiset resolving set, then , which is a contradiction to our supposition.
- If is a multiset resolving set, then , , , , , and , which is a contradiction to our supposition.
- If is a multiset resolving set, then , which is a contradiction to our supposition.
- If is a multiset resolving set, then , and , which is a contradiction to our supposition.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Slater, P.J. Leaves of trees. Congr. Numer. 1975, 14, 549–559. [Google Scholar]
- Harary, F.; Melter, R.A. On the metric dimension of a graph. Ars Comb. 1976, 2, 191–195. [Google Scholar]
- Blumenthal, L.M. Theory and Applications of Distance Geometry; Oxford University Press: Oxford, UK, 1953. [Google Scholar]
- Geneson, J. Metric dimension and pattern avoidance in graphs. Discret. Appl. Math. 2020, 284, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Hussain, Z.; Munir, M.; Ahmad, A.; Chaudhary, M.; Khan, J.A.; Ahmed, I. Metric basis and metric dimension of 1-pentagonal carbon nanocone graphs. Sci. Rep. 2020, 10, 19687. [Google Scholar] [CrossRef]
- Sedlar, J.; skrekovski, R. Bounds on metric dimensions of graphs with edge disjoint cycles. Appl. Math. Comput. 2021, 396, 125908. [Google Scholar] [CrossRef]
- Nadjafi-Arani, M.J.; Mirzargar, M.; Emmert-Streib, F.; Dehmer, M. Partition and Colored Distances in Graphs Induced to Subsets of Vertices and Some of Its Applications. Symmetry 2020, 12, 2027. [Google Scholar] [CrossRef]
- Alhevaz, A.; Baghipur, M.; Ganie, H.A.; Shang, Y. Bounds for the Generalized Distance Eigenvalues of a Graph. Symmetry 2019, 11, 1529. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Pryadko, L.P. Distance Bounds for Generalized Bicycle Codes. Symmetry 2022, 14, 1348. [Google Scholar] [CrossRef]
- Nadeem, A.; Kashif, A.; Zafar, S.; Aljaedi, A.; Akanbi, O. Fault Tolerant Addressing Scheme for Oxide Interconnection Networks. Symmetry 2022, 14, 1740. [Google Scholar] [CrossRef]
- Chartrand, G.; Salehi, E.; Zhang, P. The partition dimension of a graph. Aequationes Math. 2000, 59, 45–54. [Google Scholar] [CrossRef]
- Sebo, A.; Tannier, E. On metric generators of graphs. Math. Oper. Res. 2004, 29, 383–393. [Google Scholar] [CrossRef]
- Estrada-Moreno, A.; Rodríguez-Velázquez, J.A.; Yero, I.G. The k-metric dimension of a graph. Appl. Math. Inf. Sci. 2015, 9, 2829–2840. [Google Scholar]
- Karpovsky, M.G.; Chakrabarty, K.; Levitin, L.B. On a new class of codes for identifying vertices in graphs. IEEE Trans. Inf. Theory 1998, 44, 599–611. [Google Scholar] [CrossRef] [Green Version]
- Trujillo-Rasua, R.; Yero, I.G. k-metric antidimension: A privacy measure for social graphs. Inf. Sci. 2016, 328, 403–417. [Google Scholar] [CrossRef] [Green Version]
- Okamoto, F.; Phinezy, B.; Zhang, P. The local metric dimension of a graph. Math. Bohem. 2010, 135, 239–255. [Google Scholar] [CrossRef]
- Kelenc, A.; Tratnik, N.; Yero, I.G. Uniquely identifying the edges of a graph: The edge metric dimension. Discret. Appl. Math. 2018, 251, 204–220. [Google Scholar] [CrossRef] [Green Version]
- Simanjuntak, R.; Siagian, P.; Vetrik, T. The multiset dimension of graphs. arXiv 2017, arXiv:1711.00225. [Google Scholar]
- Gil-Pons, R.; Ramírez-Cruz, Y.; Trujillo-Rasua, R.; Yero, I.G. Distance-based vertex identification in graphs: The outer multiset dimension. Appl. Math. Comput. 2019, 363, 124612. [Google Scholar] [CrossRef]
- Estrada-Moreno, A. On the k-partition dimension of graphs. Theor. Comput. Sci. 2020, 806, 42–52. [Google Scholar] [CrossRef] [Green Version]
- Adawiyah, R.; Alfarisi, R.; Prihandini, R.M.; Agustin, I.H.; Venkatachalam, M. The local edge metric dimension of graph. J. Phys. Conf. Ser. 2020, 1543, 012009. [Google Scholar] [CrossRef]
- Zhu, E.; Taranenko, A.; Shao, Z.; Xu, J. On graphs with the maximum edge metric dimension. Discret. Appl. Math. 2019, 257, 317–324. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, S. On the edge metric dimension of convex polytopes and its related graphs. J. Comb. Optim. 2020, 39, 334–350. [Google Scholar] [CrossRef]
- Filipović, V.; Kartelj, A.; Kratica, J. Edge metric dimension of some generalized petersen graphs. Results Math. 2019, 74, 182. [Google Scholar] [CrossRef] [Green Version]
- Klavžar, S.; Tavakoli, M. Edge metric dimensions via hierarchical product and integer linear programming. Optim. Lett. 2021, 15, 1993–2003. [Google Scholar]
- Peterin, I.; Yero, I.G. Edge metric dimension of some graph operations. Bull. Malays. Math. Sci. Soc. 2020, 43, 2465–2477. [Google Scholar] [CrossRef] [Green Version]
- Ikhlaq, H.M.; Siddiqui, H.M.A.; Imran, M. A Comparative Study of Three Resolving Parameters of Graphs. Complexity 2021, 2021, 1927181. [Google Scholar] [CrossRef]
- Knor, M.; Majstorovic, S.; Toshi, A.T.M.; Skrekovski, R.; Yero, I.G. Graphs with the edge metric dimension smaller than the metric dimension. Appl. Math. Comput. 2020, 401, 126076. [Google Scholar] [CrossRef]
- Huang, Y.; Hou, B.; Liu, W.; Wu, L.; Rainwater, S.; Gao, S. On approximation algorithm for the edge metric dimension problem. Theor. Comput. Sci. 2021, 853, 2–6. [Google Scholar] [CrossRef]
- Alfarisi, R.; Lin, Y.; Ryan, J.; Dafik, D.; Agustin, I.H. A note on multiset dimension and local multiset dimension of graphs. Stat. Optim. Inf. Comput. 2020, 8, 890–901. [Google Scholar] [CrossRef]
- Alfarisi, R.; Susilowati, L.; Dafik, D.; Prabhu, S. Local Multiset Dimension of Amalgamation Graphs. F1000Research 2023, 12, 95. [Google Scholar] [CrossRef]
- Khemmani, V.; Isariyapalakul, S. The multiresolving sets of graphs with prescribed multisimilar equivalence classes. Int. J. Math. Math. Sci. 2018, 2018, 8978193. [Google Scholar] [CrossRef]
- Hafidh, Y.; Kurniawan, R.; Saputro, S.; Simanjuntak, R.; Tanujaya, S.; Uttunggadewa, S. Multiset dimensions of trees. arXiv 2019, arXiv:1908.05879. [Google Scholar]
- Godsil, C.D.; McKay, B.D. A new graph product and its spectrum. Bull. Aust. Math. Soc. 1978, 18, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Barrière, L.; Dalfó, C.; Fiol, M.A.; Mitjana, M. The generalized hierarchical product of graphs. Discret. Math. 2009, 309, 3871–3881. [Google Scholar] [CrossRef] [Green Version]
- Imran, S.; Siddiqui, M.K.; Imran, M.; Hussain, M. On metric dimensions of symmetric graphs obtained by rooted product. Mathematics 2018, 6, 191. [Google Scholar] [CrossRef] [Green Version]
- Klavžar, S.; Tavakoli, M. Local metric dimension of graphs: Generalized hierarchical products and some applications. Appl. Math. Comput. 2020, 364, 124676. [Google Scholar] [CrossRef]
Edges | a | b | c | d |
Edges | e | f | g | h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ikhlaq, H.M.; Ismail, R.; Siddiqui, H.M.A.; Nadeem, M.F. A New Technique to Uniquely Identify the Edges of a Graph. Symmetry 2023, 15, 762. https://doi.org/10.3390/sym15030762
Ikhlaq HM, Ismail R, Siddiqui HMA, Nadeem MF. A New Technique to Uniquely Identify the Edges of a Graph. Symmetry. 2023; 15(3):762. https://doi.org/10.3390/sym15030762
Chicago/Turabian StyleIkhlaq, Hafiz Muhammad, Rashad Ismail, Hafiz Muhammad Afzal Siddiqui, and Muhammad Faisal Nadeem. 2023. "A New Technique to Uniquely Identify the Edges of a Graph" Symmetry 15, no. 3: 762. https://doi.org/10.3390/sym15030762
APA StyleIkhlaq, H. M., Ismail, R., Siddiqui, H. M. A., & Nadeem, M. F. (2023). A New Technique to Uniquely Identify the Edges of a Graph. Symmetry, 15(3), 762. https://doi.org/10.3390/sym15030762