Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

On a class of analytic functions related to conic domains involving q-calculus

  • Published:
Analysis Mathematica Aims and scope Submit manuscript

Abstract

The theory of q-analysis has many applications in various subfields of mathematics and quantum physics. Research work in connection with function theory and q-theory together was first introduced by Ismail et al. [6]. Till now only non-significant interest in this area was shown although it deserves more attention. Exploiting this, we aim to introduce a new class of analytic functions that are closely related to the domains bounded by conic sections. The authors hope this article will motivate future researchers to work in the area of q-calculus which can find many applications in the theory of hypergeometric series and quantum theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. R. Adams, On the linear partial q-difference equation of general type, Trans. Amer. Math. Soc., 31 (1929), 360–371.

    MathSciNet  MATH  Google Scholar 

  2. R. Aghalari and S. R. Kulkarni, Certain properties of parabolic starlike and convex functions of order ρ, Bull. Malays. Math. Sci. Soc., 26 (2003), 153–162.

    MathSciNet  Google Scholar 

  3. G. E. Andrews, G. E. Askey and R. Roy, Special Functions, Cambridge University Press (Cambridge, 1999).

    Book  MATH  Google Scholar 

  4. R. D. Carmichael, The general theory of linear q-difference equations, Amer. J. Math., 34 (1912), 147–168.

    Article  MathSciNet  MATH  Google Scholar 

  5. A. W. Goodman, On uniformly convex functions, Ann. Polon. Math., 56 (1991) 87–92.

    MathSciNet  MATH  Google Scholar 

  6. M. E. H. Ismail, E. Merkes and D. Styer, A generalization of starlike functions, Complex Variables Theory Appl., 14 (1990), 77–84.

    Article  MathSciNet  MATH  Google Scholar 

  7. F. H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math., 41(15) (1910), 193–203.

    MATH  Google Scholar 

  8. S. Kanas and A. Wiśniowska, Conic regions and k-uniform convexity. II, Zeszyty Nauk. Politech. Rzeszowskiej Mat., 170 (1998), 65–78.

    MathSciNet  MATH  Google Scholar 

  9. S. Kanas and A. Wiśniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math., 105 (1999), 327–336.

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Kanas, Alternative characterization of the class k-UCV and related classes of univalent functions, Serdica Math. J., 25 (1999), 341–350.

    MathSciNet  MATH  Google Scholar 

  11. S. Kanas, Uniformly alpha convex functions, Int. J. Appl. Math., 1 (1999), 305–310.

    MathSciNet  MATH  Google Scholar 

  12. S. Kanas and H. M. Srivastava, Linear operators associated with k-uniformly convex functions, Integral Transform. Spec. Funct., 9 (2000) 121–132.

    Article  MathSciNet  MATH  Google Scholar 

  13. S. Kanas and A. Wiśniowska, Conic regions and k-starlike functions, Rev. Roumaine Math. Pures Appl., 45 (2000), 647–657.

    MathSciNet  MATH  Google Scholar 

  14. S. Kanas, Integral operators in classes k-uniformly convex and k-starlike functions, Mathematica, 43 (2001), 77–87.

    MathSciNet  MATH  Google Scholar 

  15. S. Kanas and T. Yaguchi, Subclasses of k-uniformly convex functions and starlike functions defined by generalized derivative. I, Indian J. Pure Appl. Math., 32 (2001), 1275–1282.

    MathSciNet  MATH  Google Scholar 

  16. S. Kanas, Coefficient estimates in subclass of the Carathéodory class related to conical domains, Acta Math. Univ. Comenian. (N.S.), 74 (2005) 149–161.

    MathSciNet  MATH  Google Scholar 

  17. S. Kanas and D. Răducanu, Some class of analytic functions related to conic domains, Math. Slovaca, 64 (2014), 1183–1196.

    Article  MathSciNet  MATH  Google Scholar 

  18. W. Ma and D. Minda, Uniformly convex functions, Ann. Polon. Math., 57 (1992), 165–175.

    MathSciNet  MATH  Google Scholar 

  19. W. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in:Proceedings of the Conference on Complex Analysis (Tianjin, 1992) (Z. Li, F. Y. Ren, L. Yang, S. Y. Zhang, eds.), Conf. Proc. Lecture Notes Anal., Vol. 1, Int. Press (Cambridge, MA, 1994), 157–169.

    Google Scholar 

  20. T. E. Mason, On properties of the solution of linear q-difference equations with entire fucntion coefficients, Amer. J. Math., 37 (1915), 439–444.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. K. Mishra and P. Gochhayat, A coefficient for a subclass of the Carathéodory functions defined using conical domains, Comput. Math. Appl., 61 (2011), 2816–2820.

    Article  MathSciNet  MATH  Google Scholar 

  22. C. Ramachandran, S. Annamalai and S. Sivasubramanian, Inclusion relations for Bessel functions for domains bounded by conical domains, Adv. Difference Equ., 288 (2014), 1–12.

    MathSciNet  MATH  Google Scholar 

  23. W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc., 48 (1943), 48–82.

    MathSciNet  MATH  Google Scholar 

  24. F. Rønning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., 118 (1993), 189–196.

    Article  MathSciNet  MATH  Google Scholar 

  25. F. Rønning, On starlike functions associated with parabolic regions, Ann. Univ. Mariae Curie-Skodowska Sect., 45 (1991), 117–122.

    MathSciNet  MATH  Google Scholar 

  26. G. S. S˜al˜agean, Subclasses of univalent functions, in: Complex Analysis, fifth Romanian–Finnish Seminar, Part 1 (Bucharest, 1981), Lecture Notes in Mathematics, 1013, Springer (Berlin, 1983), 362–372.

    Chapter  Google Scholar 

  27. W. J. Trjitzinsky, Analytic theory of linear q-difference equations, Acta Math., 61 (1933), 1–38.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sivasubramanian.

Additional information

The work of the authors was supported by a grant from the Department of Science and Technology, Government of India vide ref: SR/FTP/MS-022/2012 under fast track scheme.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Govindaraj, M., Sivasubramanian, S. On a class of analytic functions related to conic domains involving q-calculus. Anal Math 43, 475–487 (2017). https://doi.org/10.1007/s10476-017-0206-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10476-017-0206-5

Key words and phrases

Mathematics Subject Classification

Navigation