Abstract
The theory of q-analysis has many applications in various subfields of mathematics and quantum physics. Research work in connection with function theory and q-theory together was first introduced by Ismail et al. [6]. Till now only non-significant interest in this area was shown although it deserves more attention. Exploiting this, we aim to introduce a new class of analytic functions that are closely related to the domains bounded by conic sections. The authors hope this article will motivate future researchers to work in the area of q-calculus which can find many applications in the theory of hypergeometric series and quantum theory.
Similar content being viewed by others
References
C. R. Adams, On the linear partial q-difference equation of general type, Trans. Amer. Math. Soc., 31 (1929), 360–371.
R. Aghalari and S. R. Kulkarni, Certain properties of parabolic starlike and convex functions of order ρ, Bull. Malays. Math. Sci. Soc., 26 (2003), 153–162.
G. E. Andrews, G. E. Askey and R. Roy, Special Functions, Cambridge University Press (Cambridge, 1999).
R. D. Carmichael, The general theory of linear q-difference equations, Amer. J. Math., 34 (1912), 147–168.
A. W. Goodman, On uniformly convex functions, Ann. Polon. Math., 56 (1991) 87–92.
M. E. H. Ismail, E. Merkes and D. Styer, A generalization of starlike functions, Complex Variables Theory Appl., 14 (1990), 77–84.
F. H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math., 41(15) (1910), 193–203.
S. Kanas and A. Wiśniowska, Conic regions and k-uniform convexity. II, Zeszyty Nauk. Politech. Rzeszowskiej Mat., 170 (1998), 65–78.
S. Kanas and A. Wiśniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math., 105 (1999), 327–336.
S. Kanas, Alternative characterization of the class k-UCV and related classes of univalent functions, Serdica Math. J., 25 (1999), 341–350.
S. Kanas, Uniformly alpha convex functions, Int. J. Appl. Math., 1 (1999), 305–310.
S. Kanas and H. M. Srivastava, Linear operators associated with k-uniformly convex functions, Integral Transform. Spec. Funct., 9 (2000) 121–132.
S. Kanas and A. Wiśniowska, Conic regions and k-starlike functions, Rev. Roumaine Math. Pures Appl., 45 (2000), 647–657.
S. Kanas, Integral operators in classes k-uniformly convex and k-starlike functions, Mathematica, 43 (2001), 77–87.
S. Kanas and T. Yaguchi, Subclasses of k-uniformly convex functions and starlike functions defined by generalized derivative. I, Indian J. Pure Appl. Math., 32 (2001), 1275–1282.
S. Kanas, Coefficient estimates in subclass of the Carathéodory class related to conical domains, Acta Math. Univ. Comenian. (N.S.), 74 (2005) 149–161.
S. Kanas and D. Răducanu, Some class of analytic functions related to conic domains, Math. Slovaca, 64 (2014), 1183–1196.
W. Ma and D. Minda, Uniformly convex functions, Ann. Polon. Math., 57 (1992), 165–175.
W. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in:Proceedings of the Conference on Complex Analysis (Tianjin, 1992) (Z. Li, F. Y. Ren, L. Yang, S. Y. Zhang, eds.), Conf. Proc. Lecture Notes Anal., Vol. 1, Int. Press (Cambridge, MA, 1994), 157–169.
T. E. Mason, On properties of the solution of linear q-difference equations with entire fucntion coefficients, Amer. J. Math., 37 (1915), 439–444.
A. K. Mishra and P. Gochhayat, A coefficient for a subclass of the Carathéodory functions defined using conical domains, Comput. Math. Appl., 61 (2011), 2816–2820.
C. Ramachandran, S. Annamalai and S. Sivasubramanian, Inclusion relations for Bessel functions for domains bounded by conical domains, Adv. Difference Equ., 288 (2014), 1–12.
W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc., 48 (1943), 48–82.
F. Rønning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., 118 (1993), 189–196.
F. Rønning, On starlike functions associated with parabolic regions, Ann. Univ. Mariae Curie-Skodowska Sect., 45 (1991), 117–122.
G. S. S˜al˜agean, Subclasses of univalent functions, in: Complex Analysis, fifth Romanian–Finnish Seminar, Part 1 (Bucharest, 1981), Lecture Notes in Mathematics, 1013, Springer (Berlin, 1983), 362–372.
W. J. Trjitzinsky, Analytic theory of linear q-difference equations, Acta Math., 61 (1933), 1–38.
Author information
Authors and Affiliations
Corresponding author
Additional information
The work of the authors was supported by a grant from the Department of Science and Technology, Government of India vide ref: SR/FTP/MS-022/2012 under fast track scheme.
Rights and permissions
About this article
Cite this article
Govindaraj, M., Sivasubramanian, S. On a class of analytic functions related to conic domains involving q-calculus. Anal Math 43, 475–487 (2017). https://doi.org/10.1007/s10476-017-0206-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10476-017-0206-5