Subwavelength Grating Double Slot Waveguide Racetrack Ring Resonator for Refractive Index Sensing Application
<p>Schematic of (<b>a</b>) Single slot waveguide, (<b>b</b>) Double slot waveguide (<b>c</b>) Subwavelength grating single slot waveguide, (<b>d</b>) Subwavelength grating double slot waveguide.</p> "> Figure 2
<p>The transmission spectrum of GDSWG which is divided into two regions—photonic bandgap and subwavelength region. Inset of the figure shows the E<sub>z</sub> plot of a WG in both the regions.</p> "> Figure 3
<p>(<b>a</b>) Real part of the effective refractive index of SSWG and DSWG, (<b>b</b>) Mode sensitivity analysis, (<b>c</b>) E-field distribution in SSWG and DSWG at W<sub>rail</sub> = 200 and 400 nm.</p> "> Figure 4
<p>E-field distribution in the cross-sectional view, top view and line cut profile of electric field intensity of (<b>a</b>) SSWG, (<b>b</b>) DSWG, (<b>c</b>) GSSWG, (<b>d</b>)GDSWG.</p> "> Figure 5
<p>Variation of (<b>a</b>) Γ<sub>slot</sub> + Γ<sub>gap</sub>, (<b>b</b>) <span class="html-italic">Γ<sub>c</sub></span>, (<b>c</b>) Transmission (dB), on the WG width (<span class="html-italic">W<sub>rail</sub></span>).</p> "> Figure 6
<p>Schematic of race track resonator based on (<b>a</b>) SSWG, <b>(b)</b> DSWG, (<b>c</b>) GSSWG, (<b>d</b>) GDSWG.</p> "> Figure 7
<p>Determination of resonance wavelength of (<b>a</b>) SSWG and DSWG, (<b>b</b>) GSSWG and GDSWG. Extinction ratio (<span class="html-italic">ER</span>) of (<b>c</b>) SSWG and DSWG, (<b>d</b>) GSSWG and GDSWG.</p> "> Figure 8
<p>E-field distribution in (<b>a</b>) SSWG resonator, (<b>b</b>) DSWG resonator, (<b>c</b>) GSSWG resonator, (<b>d</b>)GDSWG resonator. The inset shows the zoomed section of the ring resonator at <span class="html-italic">λ<sub>res</sub></span>.</p> "> Figure 9
<p>(<b>a</b>) Sensitivity, (<b>b</b>) <span class="html-italic">FOM</span>, (<b>c</b>) <span class="html-italic">Q-factor</span> of all four designs.</p> ">
Abstract
:1. Introduction
2. SWG Slot WG Geometry and Theory
3. Mode Sensitivity Analysis of Single and Double Slot WG
- For SSWG and DSWG, the slot region/s between silicon grating segment with a volume of and , respectively, whereas for GSSWG and GDSWG, the slot region/s between two silicon segments (Γslot and Γslots) with a volume of and 2 (, respectively.
- For GSSWG, the gap region between the periodic silicon segments (Γgap) with a volume of . In the case of GDSWG, it is calculated as .
- The remaining upper cladding medium (Γuc).
4. Towards Highly Sensitive SWG Racetrack Ring Resonator Design
5. Sensor Performance
6. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Almeida, R.V.; Xu, Q.; Barrios, C.A.; Lipson, M. Guiding and confining light in void nanostructure. Opt. Lett. 2004, 29, 1209–1211. [Google Scholar] [CrossRef] [PubMed]
- Degtyarev, S.A.; Butt, M.A.; Khonina, S.N.; Skidanov, R.V. Modelling of TiO2 based slot waveguides with high optical confinement in sharp bends. In Proceedings of the International Conference on Computing, Electronic and Electrical Engineering (ICECube), Quetta, Pakistan, 11–12 April 2016; pp. 10–13. [Google Scholar] [CrossRef]
- Robinson, J.T.; Chen, L.; Lipson, M. On-chip gas detection in silicon optical microcavities. Opt. Express 2008, 16, 4296–4301. [Google Scholar] [CrossRef] [PubMed]
- Khonina, S.N.; Kazanskiy, N.L.; Butt, M.A. Evanescent field ratio enhancement of a modified ridge waveguide structure for methane gas sensing application. IEEE Sens. J. 2020. [Google Scholar] [CrossRef]
- Claes, T.; Molera, J.G.; De Vos, K.; Schacht, E.; Baets, R.; Bienstman, P. Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator. IEEE Photonics J. 2009, 1, 197–204. [Google Scholar] [CrossRef]
- Rytov, S.M. Electromagnetic properties of a finely stratified medium. Sov. Phys. JETP 1956, 2, 466–475. [Google Scholar]
- Kanamori, Y.; Roy, E.; Chen, Y. Antireflection sub-wavelength gratings fabricated by spin-coating replication. Microelectron. Eng. 2005, 78–79, 287–293. [Google Scholar] [CrossRef]
- Czyszanowski, T.; Gebski, M.; Dems, M.; Wasiak, M.; Sarzala, R.; Panajotov, K. Subwavelength grating as both emission mirror and electrical contact for VSCELs in any material system. Sci. Rep. 2017, 7, 40348. [Google Scholar] [CrossRef] [Green Version]
- Mateus, C.F.R.; Huang, M.C.Y.; Chen, L.; Chang-Hasnain, C.J.; Suzuki, Y. Broad-band mirror (1.12–1.62 µm) using a subwavelength grating. IEEE Photonics Technol. Lett. 2004, 16, 1676–1678. [Google Scholar] [CrossRef]
- Nambiar, S.; Selvaraja, S.K. Subwavelength grating fiber chip coupler in SOI with enhanced bandwidth and efficiency. In Proceedings of the 12th International Conference on Fiber Optics and Photonics, Kharagpur, India, 13–16 December 2014. [Google Scholar] [CrossRef]
- Nambiar, S.; Sethi, P.; Selvaraja, S.K. Grating-Assisted fiber to chip coupling for SOI photonic circuits. Appl. Sci. 2018, 8, 1142. [Google Scholar] [CrossRef] [Green Version]
- Yan, H.; Xu, X.; Chung, C.-J.; Subbaraman, H.; Pan, Z.; Chakravarty, S.; Chen, R.T. One dimensional photonic crystal slot waveguide for silicon-organic hybrid electro-optic modulators. Opt. Lett. 2016, 41, 5466–5469. [Google Scholar] [CrossRef]
- Hogan, B.; Lewis, L.; McAuliffe, M.; Hegarty, S.P. Mid-infrared optical sensing using sub-wavelength gratings. Opt. Express 2019, 27, 3169–3179. [Google Scholar] [CrossRef] [PubMed]
- Butt, M.A.; Kazanskiy, N.L.; Khonina, S.N. Model characteristics of refractive index engineered hybrid plasmonic waveguide. IEEE Sens. J. 2020. [Google Scholar] [CrossRef]
- Yan, H.; Huang, L.; Xu, X.; Chakravarty, S.; Tang, N.; Tian, H.; Chen, R.T. Unique surface sensing property and enhanced sensitivity in microring resonator biosensors based on subwavelength grating waveguides. Opt. Express 2016, 24, 29724–29733. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Chen, X.; Wong, C.Y.; Xu, K.; Tsang, H.K. Apodized focusing subwavelength grating couplers for suspended membrane waveguides. Appl. Phys. Lett. 2012, 101, 101104. [Google Scholar] [CrossRef]
- Huang, X.; Chen, G.; Zhou, W.; Huang, X. Cm-level photonic-crystal-like subwavelength waveguide platform with high integration density. Appl. Sci. 2019, 9, 3410. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Bai, P.; Zhou, X.; Akimov, Y.; Png, C.E.; Ang, L.-K.; Knoll, W.; Wu, L. Optical refractive index sensors with plasmonic and photonic structures: Promising and inconvenient truth. Adv. Opt. Mater. 2019, 7, 1801433. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Khonina, S.N.; Butt, M.A. Plasmonic sensors based on Metal-insulator-metal waveguides for refractive index sensing applications: A brief review. Physica. E 2020, 117, 113798. [Google Scholar] [CrossRef]
- Li, C.; Qiu, J.; Ou, J.-Y.; Liu, Q.H.; Zhu, J. High-sensitivity refractive index sensors using coherent perfect absorption on graphene in the Vis-NIR region. ACS Appl. Nano Mater. 2019, 2, 3231–3237. [Google Scholar] [CrossRef]
- Gerislioglu, B.; Dong, L.; Ahmadivand, A.; Hu, H.; Nordlander, P.; Halas, N.J. Monolithic Metal Dimer-on-Film structure: New plasmonic properties introduced by the underlying metal. Nano Lett. 2020, 20, 2087–2093. [Google Scholar] [CrossRef]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. Modelling of rib channel waveguides based on silicon-on-sapphire at 4.67 µm wavelength for evanescent field gas absorption sensor. Optik 2018, 168, 692–697. [Google Scholar] [CrossRef]
- Butt, M.A.; Degtyarev, S.A.; Khonina, S.N.; Kazanskiy, N.L. An evanescent field absorption gas sensor at mid-IR 3.39 µm wavelength. J. Mod. Opt. 2017, 64, 1892–1897. [Google Scholar] [CrossRef]
- Fard, S.T.; Donzella, V.; Schmidt, S.A.; Flueckiger, J.; Grist, S.M.; Fard, P.T.; Wu, Y.; Bojko, R.J.; Kwok, E.; Jaeger, N.A.; et al. Performance of ultra-thin SOI-based resonators for sensing applications. Opt. Express 2014, 22, 14166–14179. [Google Scholar] [CrossRef]
- Weissman, Z.; Hendel, I. Analysis of periodically segmented waveguide mode expanders. J. Lightw. Technol. 1995, 13, 2053–2058. [Google Scholar] [CrossRef]
- Barrios, C.A. Optical slot-waveguide based biochemical sensors. Sensors 2009, 9, 4751–4765. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, S.; Flueckiger, J.; Wu, W.; Grist, S.M.; Fard, S.T.; Donzella, V.; Khumwan, P.; Thompson, E.R.; Wang, Q.; Kulik, P.; et al. Improving the performance of silicon photonic rings, disks, and Bragg gratings for use in label-free biosensing. SPIE Proc. 2014, 9166, 91660M. [Google Scholar]
- Flueckiger, J.; Schmidt, S.; Donzella, V.; Sherwali, A.; Ratner, D.M.; Chrostowski, L.; Cheung, K.C. Sub-wavelength grating for enhanced ring resonator biosensor. Opt. Express 2016, 24, 15672–15686. [Google Scholar] [CrossRef]
- Chrostowski, L.; Grist, S.; Flueckiger, J.; Shi, W.; Wang, X.; Ouellet, E.; Yun, H.; Webb, M.; Nie, B.; Liang, Z.; et al. Silicon photonic resonator sensors and devices. In Proceedings of the Presented at SPIE LASE (International Society for Optics and Photonics), San Francisco, CA, USA, 21–26 January 2012; p. 823620. [Google Scholar]
- Wang, X.; Flueckiger, J.; Schmidt, S.; Grist, S.; Fard, S.T.; Kirk, J.; Doerfler, M.; Cheung, K.C.; Ratner, D.M.; Chrostowski, L.; et al. A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide. J. Biophotonics 2013, 6, 821–828. [Google Scholar]
- Caroselli, R.; Ponce-Alcántara, S.; Quilez, F.P.; Sánchez, D.M.; Morán, L.T.; Barres, A.G.; Bellieres, L.; Bandarenka, H.; Girel, K.; Bondarenko, V.; et al. Experimental study of the sensitivity of a porous silicon ring resonator sensor using continuous in-flow measurements. Opt. Express 2017, 25, 31651–31659. [Google Scholar] [CrossRef] [PubMed]
- Barrios, C.A.; Gylfason, K.B.; Sánchez, B.; Griol, A.; Sohlström, H.; Holgado, M.; Casquel, R. Slot waveguide biochemical sensor. Opt. Lett. 2007, 32, 3080–3082. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gao, B.; Zhang, K.; Yuan, K.; Wan, Y.; Xie, Z.; Xu, X.; Zhang, H.; Song, Q.; Yao, L.; et al. Refractive index sensor based on leaky resonant scattering of single semiconductor nanowire. ACS Photonics 2017, 4, 688–694. [Google Scholar] [CrossRef]
- Xu, D.X.; Vachon, M.; Densmore, A.; Ma, R.; Janz, S.; Delâge, A.; Lapointe, J.; Cheben, P.; Schmid, J.H.; Post, E.; et al. Real-time cancellation of temperature induced resonance shifts in SOI wire waveguide ring resonator label-free biosensor arrays. Opt. Express 2010, 18, 22867–22879. [Google Scholar] [CrossRef] [PubMed]
- TalebiFard, S.; Schmidt, S.; Shi, W.; Wu, W.; Jaeger, N.A.; Kwok, E.; Ratner, D.M.; Chrostowski, L. Optimized sensitivity of silicon-on-insulator (SOI) strip waveguide resonator sensor. Biomed. Opt. Express 2017, 8, 500–511. [Google Scholar] [CrossRef] [PubMed]
- Hoste, J.-W.; Werquin, S.; Claes, T.; Bienstman, P. Conformational analysis of proteins with a dual polarisation silicon microring. Opt. Express 2014, 22, 2807–2820. [Google Scholar]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. A highly sensitive design of subwavelength grating double-slot waveguide microring resonator. Laser Phys. Lett. 2020, 17, 076201. [Google Scholar] [CrossRef]
For All Four WG Schemes | SSWG and GSSWG | For All Four WG Schemes | DSWG and GDSWG | GSSWG and GDSWG | GSSWG and GDSWG | DSWG and GDSWG |
---|---|---|---|---|---|---|
Hrail (nm) | Wrail (nm) | s (nm) | Wrail (nm) | lgrat (nm) | d (nm) | Winter (nm) |
220 | 200–400 | 50 | 200–400 | 250 | 50–100 | 150 |
WG Type | w (nm) | g (nm) | Wrail (nm) | s (nm) | Slot Displacement (nm) | Winter (nm) | cl (nm) | lgrat (nm) | d (nm) | r (nm) |
---|---|---|---|---|---|---|---|---|---|---|
SSWG | 400 | 100 | 200 | 50 | 0–100 | - | 3000 | - | - | 5000 |
DSWG | 400 | 100 | 200 | 50 | 0–100 | 150 | 3000 | - | - | 5000 |
GSSWG | 400 | 100 | 200 | 50 | 0–100 | - | 3000 | 250 | 50 | 5000 |
GDSWG | 400 | 100 | 200 | 50 | 0–100 | 150 | 3000 | 250 | 50 | 5000 |
No. | Resonator Designs | Sensitivity (nm/RIU) | Reference |
---|---|---|---|
1 | Strip WG ring resonator | 100 | 24 |
2 | SWG strip WG ring resonator | 400–500 | 28 |
3 | Bragg grating slot WG | 340 | 30 |
4 | Strip WG ring resonator | 439 | 31 |
5 | Slot WG ring resonator | 212.1 | 32 |
6 | Single semiconductor nanowire | 235 | 33 |
7 | Wire WG ring resonator | 135 | 34 |
8 | Strip WG ring resonator | 270 | 35 |
9 | Silicon microring | 222 | 36 |
10 | SWG double slot microring | 840 | 37 |
11 | Slot WG ring resonator | 298 | 5 |
12 | SSWG racetrack ring resonator | 380 | This work |
13 | DSWG racetrack ring resonator | 500 | This work |
14 | GSSWG racetrack ring resonator | 700–760 | This work |
15 | GDSWG racetrack ring resonator | 1000 | This work |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kazanskiy, N.L.; Khonina, S.N.; Butt, M.A. Subwavelength Grating Double Slot Waveguide Racetrack Ring Resonator for Refractive Index Sensing Application. Sensors 2020, 20, 3416. https://doi.org/10.3390/s20123416
Kazanskiy NL, Khonina SN, Butt MA. Subwavelength Grating Double Slot Waveguide Racetrack Ring Resonator for Refractive Index Sensing Application. Sensors. 2020; 20(12):3416. https://doi.org/10.3390/s20123416
Chicago/Turabian StyleKazanskiy, Nikolay Lvovich, Svetlana Nikolaevna Khonina, and Muhammad Ali Butt. 2020. "Subwavelength Grating Double Slot Waveguide Racetrack Ring Resonator for Refractive Index Sensing Application" Sensors 20, no. 12: 3416. https://doi.org/10.3390/s20123416
APA StyleKazanskiy, N. L., Khonina, S. N., & Butt, M. A. (2020). Subwavelength Grating Double Slot Waveguide Racetrack Ring Resonator for Refractive Index Sensing Application. Sensors, 20(12), 3416. https://doi.org/10.3390/s20123416