Grating-Assisted Fiber to Chip Coupling for SOI Photonic Circuits
<p>Schematic of edge coupler using inverse-tapers. The fundamental Gaussian mode in lensed fiber with a mode field diameter (MFD) of 3 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m roughly matches the size of the fundamental waveguide mode at the cleaved end of the overlay region.</p> "> Figure 2
<p>(<b>a</b>) Three dimensional (3-D) schematic of a Silicon-on-Insulator (SOI) based fiber to chip surface grating coupler with adiabatic tapers; (<b>b</b>) <span class="html-italic">k</span>-<math display="inline"><semantics> <mrow> <mi>s</mi> <mi>p</mi> <mi>a</mi> <mi>c</mi> <mi>e</mi> </mrow> </semantics></math> representation of the grating phase matching condition. <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mrow> <mi>f</mi> <mi>r</mi> </mrow> </msub> <msub> <mi>n</mi> <mrow> <mi>s</mi> <mi>u</mi> <mi>p</mi> </mrow> </msub> </mrow> </semantics></math> corresponds propagation constant of superstrate and <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mrow> <mi>f</mi> <mi>r</mi> </mrow> </msub> <msub> <mi>n</mi> <mrow> <mi>s</mi> <mi>u</mi> <mi>b</mi> </mrow> </msub> </mrow> </semantics></math> of substrate and <span class="html-italic">G</span> is the grating reciprocal lattice.</p> "> Figure 3
<p>Illustration of different loss channels associated with a generic grating coupler.</p> "> Figure 4
<p>Two prominent means of suppressing substrate leakage (<b>a</b>) surface gratings with a distributed Bragg reflector (DBR) composed of alternating layers of <math display="inline"><semantics> <mrow> <mi>S</mi> <mi>i</mi> </mrow> </semantics></math>/<math display="inline"><semantics> <mrow> <mi>S</mi> <mi>i</mi> <msub> <mi>O</mi> <mn>2</mn> </msub> </mrow> </semantics></math> and (<b>b</b>) with overlay gratings. In (<b>c</b>), the diffracted electric field intensity profile in log scale is plotted from 2-D FDTD simulations, in which the grating coupler is excited from fundamental mode in slab waveguide, in the three cases of <math display="inline"><semantics> <mrow> <mi>S</mi> <mi>i</mi> </mrow> </semantics></math>-substrate, DBR substrate and <math display="inline"><semantics> <mrow> <mi>S</mi> <mi>i</mi> </mrow> </semantics></math> overlays.</p> "> Figure 5
<p>A typical highly efficient conventional non-uniform grating coupler. The gratings consisting of partially etched grooves with a variable fill-factor leads to maximal mode field overlap with the Gaussian fiber mode, while the underneath bottom DBR stack ensures a high directionality.</p> "> Figure 6
<p>(<b>a</b>) A typical subwavelength grating (<math display="inline"><semantics> <mrow> <mi>S</mi> <mi>W</mi> <mi>G</mi> </mrow> </semantics></math>) layout. The subwavelength index is decided by the period width <math display="inline"><semantics> <msub> <mi mathvariant="sans-serif">Λ</mi> <mi>y</mi> </msub> </semantics></math> and the dark blue trench width <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>y</mi> </msub> <msub> <mi mathvariant="sans-serif">Λ</mi> <mi>y</mi> </msub> </mrow> </semantics></math> (<b>b</b>) the side view cross-section of an <math display="inline"><semantics> <mrow> <mi>a</mi> <mi>i</mi> <mi>r</mi> </mrow> </semantics></math>-<math display="inline"><semantics> <mrow> <mi>S</mi> <mi>i</mi> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <mi>S</mi> <mi>W</mi> <mi>G</mi> </mrow> </semantics></math> grating on SOI. (<b>c</b>) Variation of <math display="inline"><semantics> <mrow> <mi>S</mi> <mi>W</mi> <mi>G</mi> </mrow> </semantics></math> index with fill factor of air on a 220 nm thick SOI.</p> "> Figure 7
<p>Scanning electron microscope (SEM) image of four different kinds of <math display="inline"><semantics> <mrow> <mi>S</mi> <mi>W</mi> <mi>G</mi> </mrow> </semantics></math> couplers fabricated on SOI (inset shows magnified image). (<b>a</b>) Uniform <math display="inline"><semantics> <mrow> <mi>S</mi> <mi>i</mi> </mrow> </semantics></math>-<math display="inline"><semantics> <mrow> <mi>S</mi> <mi>W</mi> <mi>G</mi> </mrow> </semantics></math>; (<b>b</b>) Uniform <math display="inline"><semantics> <mrow> <mi>d</mi> <mi>u</mi> <mi>a</mi> <mi>l</mi> </mrow> </semantics></math>-<math display="inline"><semantics> <mrow> <mi>S</mi> <mi>W</mi> <mi>G</mi> </mrow> </semantics></math>; (<b>c</b>) Non-uniform <math display="inline"><semantics> <mrow> <mi>S</mi> <mi>i</mi> </mrow> </semantics></math>-<math display="inline"><semantics> <mrow> <mi>S</mi> <mi>W</mi> <mi>G</mi> </mrow> </semantics></math> and (<b>d</b>) Non-uniform <math display="inline"><semantics> <mrow> <mi>d</mi> <mi>u</mi> <mi>a</mi> <mi>l</mi> </mrow> </semantics></math>-<math display="inline"><semantics> <mrow> <mi>S</mi> <mi>W</mi> <mi>G</mi> </mrow> </semantics></math>.</p> "> Figure 8
<p>Highly efficient grating with an aluminium bottom reflector with a coupling efficiency of -0.58 (Image reprinted with permission from [<a href="#B25-applsci-08-01142" class="html-bibr">25</a>]).</p> "> Figure 9
<p>Top down SEM image fabricated of focusing gratings for (<b>a</b>) transverse electric (TE) (<b>b</b>) transverse magnetic (TM) fundamental mode coupling.</p> "> Figure 10
<p>Simulated and characterization results for (<b>a</b>) TE gratings with 640 nm period. Experimental results are for 24 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m focal length and (<b>b</b>) TM couplers with 980 nm period with optimum focal length of gratings used in experiments being 20 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m.</p> "> Figure 11
<p>SEM image of a compact taper along a linear grating coupler for 1.55 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m TE polarization for (<b>a</b>) SOI ridge waveguide (<b>b</b>) SOI wire waveguide.</p> "> Figure 12
<p>Optical intensity profiles of the compact taper at length = 14.5 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m for (<b>a</b>) various <span class="html-italic">a</span>, <span class="html-italic">b</span>, <span class="html-italic">c</span> values and (<b>b</b>) Optimized Value (95% efficiency) and 3-D Mode Profile along the length (L) of a Compact Taper on SOI Platform.</p> "> Figure 13
<p>Variation in Transmission Efficiency of Compact Taper with the Width of the Waveguide for the (<b>a</b>) C + L (1.53–1.63 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m) band and (<b>b</b>) O-band (1.26–1.36 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m), (<b>c</b>) Variation in transmission efficiency for different <span class="html-italic">b</span> values. Experimental coupling efficiency of the adiabatic (long), focusing grating and compact taper configurations of GC on SOI Platform for (<b>d</b>) C + L and (<b>e</b>) O band, (<b>f</b>) Alignment tolerance of the focusing and linear grating coupler.</p> "> Figure 14
<p>(<b>a</b>) Phase matching in <span class="html-italic">k</span>-<math display="inline"><semantics> <mrow> <mi>s</mi> <mi>p</mi> <mi>a</mi> <mi>c</mi> <mi>e</mi> </mrow> </semantics></math> for 1D polarization splitting grating coupler. (<b>b</b>) Design schematic of mode of operation. Polarization splitting results in contra-directional coupling of the fundamental modes. (<b>c</b>) Measured coupling efficiency for the two polarization states (reprinted with permission from [<a href="#B50-applsci-08-01142" class="html-bibr">50</a>]).</p> "> Figure 15
<p>(<b>a</b>) Complex scatterers for better polarization tolerance. (<b>b</b>) Experimental results for coupling fundamental TE mode in either waveguide for the two polarization states (Images reprinted with permission from [<a href="#B54-applsci-08-01142" class="html-bibr">54</a>]).</p> "> Figure 16
<p>(<b>a</b>) Design layout of one dimensional dual band coupler with Si overlays. Blue arrow corresponds to O-band and red arrow to C-band. (<b>b</b>) Simulated coupling efficiency for optimized device at two bands (Images reprinted with permission from [<a href="#B57-applsci-08-01142" class="html-bibr">57</a>]).</p> "> Figure 17
<p>(<b>a</b>) Illustration of a 2-D focusing PSGC dual band coupler, where the fiber is oriented along the bisector axis. (<b>b</b>) Experimental results for the two bands at different polarization states (Images reprinted with permission from [<a href="#B58-applsci-08-01142" class="html-bibr">58</a>]).</p> "> Figure 18
<p>Two prominent fiber-chip packaging schemes. (<b>a</b>) Vertically mounted rigid fiber array coupling from g-pack, a packaging service offered by ePIXpack ( image reprinted with permission from [<a href="#B65-applsci-08-01142" class="html-bibr">65</a>]). (<b>b</b>) Multiarrayed fiber packaging with quasi-planar coupler at input and output ends of a photonic integrated circuit (Image courtesy of Tyndall National Institute).</p> ">
Abstract
:1. Introduction
2. Coupling through Gratings: Theory and Fundamentals
3. Factors Affecting Grating Loss
3.1. Directionality
3.2. Mode Overlap
3.3. Bandwidth Scaling
4. Subwavelength Gratings
5. Lowering Footprint
5.1. Focusing Gratings
5.2. Linear Grating Based Compact Tapers
6. Polarization Splitting Grating Couplers (PSGC)
7. Dual Band Grating Couplers
8. Packaging and Testing
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
SOI | Silicon-on-Insulator |
DBR | distributed Bragg reflector |
PSGC | polarization splitting grating coupler |
PDL | polarization dependent loss |
TE | transverse electric |
TM | transverse magnetic |
SWG | subwavelength grating |
References
- Atabaki, A.H.; Moazeni, S.; Pavanello, F.; Gevorgyan, H.; Notaros, J.; Alloatti, L.; Wade, M.T.; Sun, C.; Kruger, S.A.; Meng, H.; et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip. Nature 2018, 556, 349. [Google Scholar] [CrossRef] [PubMed]
- Absil, P.P.; Verheyen, P.; De Heyn, P.; Pantouvaki, M.; Lepage, G.; De Coster, J.; Van Campenhout, J. Silicon photonics integrated circuits: A manufacturing platform for high density, low power optical I/O’s. Opt. Express 2015, 23, 9369. [Google Scholar] [CrossRef] [PubMed]
- Shankar Kumar, M.G.; Milenin, A.; Delvaux, C.; Ong, P.; Pathak, S.; Vermeulen, D.; Sterckx, G.; Winroth, G.; Verheyen, P.; Lepage, G.; et al. Advanced 300-mm waferscale patterning for silicon photonics devices with record low loss and phase errors. In Proceedings of the 17th Opto-Electronics and Communications Conference (OECC-2012), Busan, Korea, 2–6 July 2012; pp. 15–16. [Google Scholar]
- Wang, J.; Paesani, S.; Ding, Y.; Santagati, R.; Skrzypczyk, P.; Salavrakos, A.; Tura, J.; Augusiak, R.; Mančinska, L.; Bacco, D.; et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 2018, 360, 285–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alloatti, L.; Palmer, R.; Diebold, S.; Pahl, K.P.; Chen, B.; Dinu, R.; Fournier, M.; Fedeli, J.M.; Zwick, T.; Freude, W.; et al. 100 GHz silicon–organic hybrid modulator. Light Sci. Appl. 2014, 3, e173. [Google Scholar] [CrossRef]
- Almeida, V.R.; Panepucci, R.R.; Lipson, M. Nanotaper for compact mode conversion. Opt. Lett. 2003, 28, 1302–1304. [Google Scholar] [CrossRef] [PubMed]
- Bakir, B.B.; de Gyves, A.V.; Orobtchouk, R.; Lyan, P.; Porzier, C.; Roman, A.; Fedeli, J.M. Low-Loss (<1 dB) and Polarization-Insensitive Edge Fiber Couplers Fabricated on 200-mm Silicon-on-Insulator Wafers. IEEE Photonics Technol. Lett. 2010, 22, 739–741. [Google Scholar]
- Pu, M.; Liu, L.; Ou, H.; Yvind, K.; Hvam, J.M. Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide. Opt. Commun. 2010, 283, 3678–3682. [Google Scholar] [CrossRef]
- Yariv, A.; Yeh, P. Photonics: Optical Electronics in Modern Communications (The Oxford Series in Electrical and Computer Engineering); Oxford University Press, Inc.: New York, NY, USA, 2006. [Google Scholar]
- Kopp, C.; Augendre, E.; Orobtchouk, R.; Lemonnier, O.; Fedeli, J.M. Enhanced fiber grating coupler integrated by wafer-to-wafer bonding. J. Light. Technol. 2011, 29, 1847–1851. [Google Scholar] [CrossRef]
- Selvaraja, S.K.; Vermeulen, D.; Schaekers, M.; Sleeckx, E.; Bogaerts, W.; Roelkens, G.; Dumon, P.; Thourhout, D.V.; Baets, R. Highly efficient grating coupler between optical fiber and silicon photonic circuit. In Proceedings of the 2009 European Conference on Lasers and Electro-Optics, Munich, Germany, 14–19 June 2009; pp. 1–2. [Google Scholar]
- Siddharth, R.; Nambiar, S.K.S. High-efficiency broad-bandwidth subwavelength grating-based fiber-chip coupler in silicon-on-insulator. Opt. Eng. 2018, 57, 017115. [Google Scholar]
- Zaoui, W.S.; Kunze, A.; Vogel, W.; Berroth, M.; Butschke, J.; Letzkus, F.; Burghartz, J. Bridging the gap between optical fibers and silicon photonic integrated circuits. Opt. Express 2014, 22, 1277–1286. [Google Scholar] [CrossRef] [PubMed]
- Zaoui, W.S.; Rosa, M.F.; Vogel, W.; Berroth, M.; Butschke, J.; Letzkus, F. Cost-effective CMOS-compatible grating couplers with backside metal mirror and 69% coupling efficiency. Opt. Express 2012, 20, B238–B243. [Google Scholar] [CrossRef] [PubMed]
- Vermeulen, D.; Selvaraja, S.; Verheyen, P.; Lepage, G.; Bogaerts, W.; Absil, P.; Van Thourhout, D.; Roelkens, G. High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-On-Insulator platform. Opt. Express 2010, 18, 18278–18283. [Google Scholar] [CrossRef] [PubMed]
- Taillaert, D.; Bienstman, P.; Baets, R. Compact efficient broadband grating coupler for silicon-on-insulator waveguides. Opt. Lett. 2004, 29, 2749–2751. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Wang, Z.; Wosinski, L.; Westergren, U.; He, S. Highly efficient nonuniform grating coupler for silicon-on-insulator nanophotonic circuits. Opt. Lett. 2010, 35, 1290–1292. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, C.; Fung, C.K.Y.; Lo, S.M.G.; Tsang, H.K. Apodized Waveguide Grating Couplers for Efficient Coupling to Optical Fibers. IEEE Photonics Technol. Lett. 2010, 22, 1156–1158. [Google Scholar] [CrossRef]
- Benedikovic, D.; Cheben, P.; Schmid, J.H.; Xu, D.X.; Lapointe, J.; Wang, S.; Halir, R.; Ortega-Moñux, A.; Janz, S.; Dado, M. High-efficiency single etch step apodized surface grating coupler using subwavelength structure. Laser Photonics Rev. 2014, 8, L93–L97. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Xu, K.; Cheng, Z.; Fung, C.K.Y.; Tsang, H.K. Wideband subwavelength gratings for coupling between silicon-on-insulator waveguides and optical fibers. Opt. Lett. 2012, 37, 3483–3485. [Google Scholar] [CrossRef] [PubMed]
- Halir, R.; Ortega-Moñux, A.; Schmid, J.H.; Alonso-Ramos, C.; Lapointe, J.; Xu, D.X.; Wangüemert-Pérez, J.G.; Molina-Fernández, Í.; Janz, S. Recent Advances in Silicon Waveguide Devices Using Sub-Wavelength Gratings. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 279–291. [Google Scholar] [CrossRef]
- Halir, R.; Bock, P.J.; Cheben, P.; Ortega-Moñux, A.; Alonso-Ramos, C.; Schmid, J.H.; Lapointe, J.; Xu, D.X.; Wangüemert-Pérez, J.G.; Molina-Fernández, Í.; Janz, S. Waveguide sub-wavelength structures: A review of principles and applications. Laser Photonics Rev. 2015, 9, 25–49. [Google Scholar] [CrossRef]
- Donzella, V.; Sherwali, A.; Flueckiger, J.; Grist, S.M.; Fard, S.T.; Chrostowski, L. Design and fabrication of SOI micro-ring resonators based on sub-wavelength grating waveguides. Opt. Express 2015, 23, 4791–4803. [Google Scholar] [CrossRef] [PubMed]
- Raguin, D.H.; Morris, G.M. Antireflection structured surfaces for the infrared spectral region. Appl. Opt. 1993, 32, 1154–1167. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Peucheret, C.; Ou, H.; Yvind, K. Fully etched apodized grating coupler on the SOI platform with -0.58 dB coupling efficiency. Opt. Lett. 2014, 39, 5348–5350. [Google Scholar] [CrossRef] [PubMed]
- Na, N.; Frish, H.; Hsieh, I.W.; Harel, O.; George, R.; Barkai, A.; Rong, H. Efficient broadband silicon-on-insulator grating coupler with low backreflection. Opt. Lett. 2011, 36, 2101–2103. [Google Scholar] [CrossRef] [PubMed]
- Shi, R.; Guan, H.; Novack, A.; Streshinsky, M.; Lim, A.E.J.; Lo, G.Q.; Baehr-Jones, T.; Hochberg, M. High-efficiency grating couplers near 1310 nm fabricated by 248-nm DUV lithography. IEEE Photonics Technol. Lett. 2014, 26, 1569–1572. [Google Scholar]
- Chen, X.; Thomson, D.J.; Crudginton, L.; Khokhar, A.Z.; Reed, G.T. Dual-etch apodised grating couplers for efficient fibre-chip coupling near 1310 nm wavelength. Opt. Express 2017, 25, 17864–17871. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Sun, J.H.; Xiao, X.; Sun, W.M.; Zhang, X.J.; Chu, T.; Yu, J.Z.; Yu, Y.D. High efficiency grating coupler for coupling between single-mode fiber and soi waveguides. Chin. Phys. Lett. 2013, 30, 8–12. [Google Scholar] [CrossRef]
- Benedikovic, D.; Alonso-Ramos, C.; Cheben, P.; Schmid, J.H.; Wang, S.; Halir, R.; Ortega-Moñux, A.; Xu, D.X.; Vivien, L.; Lapointe, J.; et al. Single-etch subwavelength engineered fiber-chip grating couplers for 1.3 μm datacom wavelength band. Opt. Express 2016, 24, 12893–12904. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yun, H.; Lu, Z.; Bojko, R.; Shi, W.; Wang, X.; Flueckiger, J.; Zhang, F.; Caverley, M.; Jaeger, N.A.; et al. Apodized focusing fully etched subwavelength grating couplers. IEEE Photonics J. 2015, 7, 1–10. [Google Scholar] [CrossRef]
- Waldhäusl, R.; Schnabel, B.; Dannberg, P.; Kley, E.B.; Bräuer, A.; Karthe, W. Efficient Coupling into Polymer Waveguides by Gratings. Appl. Opt. 1997, 36, 9383–9390. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Wade, M.T.; Lee, Y.; Orcutt, J.S.; Alloatti, L.; Georgas, M.S.; Waterman, A.S.; Shainline, J.M.; Avizienis, R.R.; Lin, S.; et al. Single-chip microprocessor that communicates directly using light. Nature 2015, 528, 534–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez, D.; Gasulla, I.; Crudgington, L.; Thomson, D.J.; Khokhar, A.Z.; Li, K.; Cao, W.; Mashanovich, G.Z.; Capmany, J. Multipurpose silicon photonics signal processor core. Nat. Commun. 2017, 8, 636. [Google Scholar] [CrossRef] [PubMed]
- Moss, D.J.; Morandotti, R.; Gaeta, A.L.; Lipson, M. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photonics 2013, 7, 597–607. [Google Scholar] [CrossRef] [Green Version]
- Manolatou, C.; Haus, H. Compact mode-size converters for efficient coupling between fibers and integrated optical waveguides. In Proceedings of the 2001 Digest of LEOS Summer Topical Meetings: Advanced Semiconductor Lasers and Applications/Ultraviolet and Blue Lasers and Their Applications/Ultralong Haul DWDM Transmission and Networking/WDM Compo, Copper Mountain, CO, USA, 30 July–1 August 2001; Volume 3, p. 2. [Google Scholar]
- Shoji, T.; Tsuchizawa, T.; Watanabe, K.Y.; Morita, H. Low loss mode size converter from 0.3pm square Si wire waveguides to singlemode fibres. Electron. Lett. 2002, 38, 1669–1670. [Google Scholar] [CrossRef]
- Cheben, P.; Bock, P.J.; Schmid, J.H.; Lapointe, J.; Janz, S.; Xu, D.X.; Densmore, A.; Delâge, A.; Lamontagne, B.; Hall, T.J. Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers. Opt. Lett. 2010, 35, 2526–2528. [Google Scholar] [CrossRef] [PubMed]
- Van Laere, F.; Roelkens, G.; Ayre, M.; Schrauwen, J.; Taillaert, D.; Van Thourhout, D.; Krauss, T.F.; Baets, R. Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides. J. Light. Technol. 2007, 25, 151–156. [Google Scholar] [CrossRef]
- Wu, J.; Shi, B.; Kong, M. Exponentially Tapered Multi-Mode Interference Couplers. Chin. Opt. Lett. 2006, 4, 167–169. [Google Scholar]
- Ye, T.; Fu, Y.; Qiao, L.; Chu, T. Low-crosstalk Si arrayed waveguide grating with parabolic tapers. Opt. Express 2014, 22, 31899–31906. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Ye, T.; Tang, W.; Chu, T. Efficient adiabatic silicon-on-insulator waveguide taper. Photonics Res. 2014, 2, A41. [Google Scholar] [CrossRef]
- Luyssaert, B. A versatile spot-size converter design. In Proceedings of the Proceedings Symposium IEEE/LEOS Benelux Chapter, Ghent, Belgium, 2–3 December 2004; pp. 2–5. [Google Scholar]
- Van Acoleyen, K.; Baets, R. Compact lens-assisted focusing tapers fabricated on silicon-on-insulator. In Proceedings of the 8th IEEE International Conference on Group IV Photonics, London, UK, 14–16 September 2011; pp. 157–159. [Google Scholar]
- Vermeulen, D.; Van Acoleyen, K.; Ghosh, S. Efficient tapering to the fundamental quasi-TM mode in asymmetrical waveguides. In Proceedings of the 15th European Conference on Integrated Optics (ECIO 2010), Cambridge, UK, 7–9 April 2010; pp. 2–3. [Google Scholar]
- Sethi, P.; Haldar, A.; Selvaraja, S.K. Compact tapers for silicon grating fibre-chip couplers in O, C and L band. In Proceedings of the 2017 Conference on Lasers and Electro-Optics Europe European Quantum Electronics Conference (CLEO/Europe-EQEC), Munich, Germany, 25–29 June 2017; p. 1. [Google Scholar]
- Sethi, P.; Haldar, A.; Selvaraja, S.K. Ultra-compact low-loss broadband waveguide taper in silicon-on-insulator. Opt. Express 2017, 25, 10196–10203. [Google Scholar] [CrossRef]
- Sethi, P.; Haldar, A.; Selvaraja, S.K.; Kallega, R. Compact broadband taper for low-loss coupling to a silicon nitride photonic wire. In Integrated Optics: Devices, Materials, and Technologies XXII; International Society for Optics and Photonics: Washington, DC, USA, 2018; p. 75. [Google Scholar]
- Tang, Y.; Dai, D.; He, S. Proposal for a grating waveguide serving as both a polarization splitter and an efficient coupler for silicon-on-insulator nanophotonic circuits. IEEE Photonics Technol. Lett. 2009, 21, 242–244. [Google Scholar] [CrossRef]
- Zaoui, W.S.; Kunze, A.; Vogel, W.; Berroth, M. CMOS-compatible polarization splitting grating couplers with a backside metal mirror. IEEE Photonics Technol. Lett. 2013, 25, 1395–1397. [Google Scholar] [CrossRef]
- Zou, J.; Yu, Y.; Zhang, X. Single step etched two dimensional grating coupler based on the SOI platform. Opt. Express 2015, 23, 32490–32495. [Google Scholar] [CrossRef] [PubMed]
- Taillaert, D.; Chong, H.; Borel, P.I.; Frandsen, L.H.; De La Rue, R.M.; Baets, R. A compact two-dimensional grating coupler used as a polarization splitter. IEEE Photonics Technol. Lett. 2003, 15, 1249–1251. [Google Scholar] [CrossRef] [Green Version]
- Laere, F.V.; Bogaerts, W.; Dumon, P.; Roelkens, G.; Thourhout, D.V.; Baets, R. Focusing Polarization Diversity Grating Couplers in Silicon-on-Insulator. J. Light. Technol. 2009, 27, 612–618. [Google Scholar] [CrossRef] [Green Version]
- Mekis, A.; Gloeckner, S.; Masini, G.; Narasimha, A.; Pinguet, T.; Sahni, S.; Dobbelaere, P.D. A grating-coupler-enabled CMOS photonics platform. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 597–608. [Google Scholar] [CrossRef]
- Roelkens, G.; Vermeulen, D.; Selvaraja, S.; Halir, R.; Bogaerts, W.; Thourhout, D.V. Grating-Based Optical Fiber Interfaces for Silicon-on-Insulator Photonic Integrated Circuits. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 571–580. [Google Scholar] [CrossRef] [Green Version]
- Halir, R.; Vermeulen, D.; Roelkens, G. Reducing polarization-dependent loss of silicon-on-insulator fiber to chip grating couplers. IEEE Photonics Technol. Lett. 2010, 22, 389–391. [Google Scholar] [CrossRef] [Green Version]
- Roelkens, G.; Thourhout, D.V.; Baets, R. Silicon-on-insulator ultra-compact duplexer based on a diffractive grating structure. Opt. Express 2007, 15, 10091–10096. [Google Scholar] [CrossRef] [PubMed]
- Streshinsky, M.; Shi, R.; Novack, A.; Cher, R.T.P.; Lim, A.E.J.; Lo, P.G.Q.; Baehr-Jones, T.; Hochberg, M. A compact bi-wavelength polarization splitting grating coupler fabricated in a 220 nm SOI platform. Opt. Express 2013, 21, 31019–31028. [Google Scholar] [CrossRef] [PubMed]
- Vermeulen, D.; Roelkens, G.; Van Thourhout, D.; Baets, R. SOI 1D and 2D photonic crystal structures for polarization independent fiber-to-chip coupling and duplexing operation. In Proceedings of the 8th International Photonic and Electromagnetic Crystal Structures Meeting (PECS), Sydney, Australia, 5–9 April 2009; p. N-919. [Google Scholar]
- Xu, L.; Chen, X.; Li, C.; Tsang, H.K. Bi-wavelength two dimensional chirped grating couplers for low cost WDM PON transceivers. Opt. Commun. 2011, 284, 2242–2244. [Google Scholar] [CrossRef]
- Carroll, L.; Lee, J.S.; Scarcella, C.; Gradkowski, K.; Duperron, M.; Lu, H.; Zhao, Y.; Eason, C.; Morrissey, P.; Rensing, M.; et al. Photonic Packaging: Transforming Silicon Photonic Integrated Circuits into Photonic Devices. Appl. Sci. 2016, 6, 426. [Google Scholar] [CrossRef]
- Dangel, R.; Hofrichter, J.; Horst, F.; Jubin, D.; La Porta, A.; Meier, N.; Soganci, I.M.; Weiss, J.; Offrein, B.J. Polymer waveguides for electro-optical integration in data centers and high-performance computers. Opt. Express 2015, 23, 4736–4750. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, L.; Schröder, H.; Dumon, P.; Bogaerts, W.; Tekin, T. ePIXpack—Advanced Smart Packaging Solutions for Silicon Photonics. In Proceedings of the 14th European Conference on Integrated Optics, Nice, France, 24–27 June 2008; pp. 33–36. [Google Scholar]
- Zimmermann, L.; Preve, G.B.; Tekin, T.; Rosin, T.; Landles, K. Packaging and assembly for integrated photonics—A review of the ePIXpack photonics packaging platform. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 645–651. [Google Scholar] [CrossRef]
- Kopp, C.; Bernabé, S.; Bakir, B.B.; Fedeli, J.M.; Orobtchouk, R.; Schrank, F.; Porte, H.; Zimmermann, L.; Tekin, T. Silicon photonic circuits: On-CMOS integration, fiber optical coupling, and packaging. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 498–509. [Google Scholar] [CrossRef]
- Snyder, B.; O’Brien, P. Planar Fiber Packaging Method for Silicon Photonic Integrated Circuits. In Proceedings of the Optical Fiber Communication Conference, Los Angeles, CA, USA, 4–8 March 2012; p. OM2E.5. [Google Scholar]
- Snyder, B.; O’Brien, P. Packaging Process for Grating-Coupled Silicon Photonic Waveguides Using Angle-Polished Fibers. IEEE Trans. Compon. Packag. Manuf. Technol. 2013, 3, 954–959. [Google Scholar] [CrossRef]
- Li, C.; Chee, K.S.; Tao, J.; Zhang, H.; Yu, M.; Lo, G.Q. Silicon photonics packaging with lateral fiber coupling to apodized grating coupler embedded circuit. Opt. Express 2014, 22, 24235–24240. [Google Scholar] [CrossRef] [PubMed]
- Pavarelli, N.; Lee, J.S.; Rensing, M.; Eason, C.; O’Brien, P.A. Optical and electronic packaging process for silicon photonic systems. J. Light. Technol. 2014, 33, 991–997. [Google Scholar] [CrossRef]
SOI Coupler | Max CE (-dB) | Bandwidth 3 dB (nm) | (m) | Uniform (U)/Apodized (A) | Fiber Tilt Angle () | Etch Type | Bottom Reflector |
---|---|---|---|---|---|---|---|
Ref [26] | 3 | 58 | 1.31 | U | 12 | Shallow | N |
Ref [27] | 2 | 50 | 1.302 | A | 17 | Double-etch | N |
Ref [28] | 1.9 | 23 (1 dB) | 1.31 | A | 10 | Double-etch | N |
Ref [29] | 1.05 | 50 | 1.551 | A | 8 | Shallow | N |
Ref [11] | 1.6 | 63 | 1.515 | U | 10 | Shallow | Y |
Ref [10] | 1.6 | 60 | 1.54 | U | - | Shallow | Y |
Ref [15] | 1.6 | 80 | 1.53 | U | 13 | Shallow | N |
Ref [17] | 1.9 | 43 (1 dB) | 1.524 | A | 15 | Shallow | N |
Ref [18] | 1.2 | 45 | 1.533 | A | 10 | Shallow | N |
Ref [13] | 1.08 | 42 (1 dB) | 1.551 | U | 9 | Shallow | Y |
Ref [13] | 0.62 | 40 (1 dB) | 1.531 | A | 11 | Shallow | Y |
Ref [30] | 2.5 | - | 1.325 | A | 33 | Full | N |
Ref [31] | 3.2 | 36 (1 dB) | 1.59 | A | -31 | Full | N |
Ref [19] | 2.16 | 64 | 1.543 | A | 27 | Full | N |
Ref [25] | 0.58 | 71 | 1.56 | A | 13 | Full | Y |
Taper Designs | Length (m) | Initial Width (m)-Final Width (m) | Coupling Efficiency Theoretical | Remarks | |
---|---|---|---|---|---|
Adiabatic Taper | Linear [39] | 150–500 | 10–0.5 | 65%–99% | Tradeoff between the taper length and coupling efficiency due to the adiabatic transition |
Exponential [40] | 200 | 10–0.5 | 70% | ||
Parabolic [41] | 200 | 10–0.5 | 80% | ||
Efficient Adiabatic [42] | 120 | 10–0.5 | 98.3% | ||
Non-Adiabatic | Complex Non-adiabatic [43] | 15.4 | 10–0.56 | 70% | Complexity in Fabrication |
Lens-assisted [44] | 20 | 10–0.45 | -1 dB (TE) -5 dB (TM) Expt. | ||
Discontinuous [45] | - | 10–0.45 | 90% | ||
Compact Taper [46,47,48] | 15 | 10–0.5 | 92% | Robust to Fabrication errors, Broadband, Efficient |
SOI Coupler | Max CE (-dB) | Polarization 1 () (m) | Polarization 2 () (m) | Type (1D,2D) Focusing/Non-Focusing | PDL (-dB) |
---|---|---|---|---|---|
Ref [50] | 2 | (1.559) | (1.551) | 1D Non-focusing | High |
Ref [51] | 5.8 | (1.54) | (1.535) | 2D Non-focusing | 0.2 |
Ref [53] | 5.6 | (1.54) | (1.53) | 2D Focusing | 0.4 |
Ref [54] | 3.2 | (1.492) | (1.492) | 2D Focusing | 0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nambiar, S.; Sethi, P.; Selvaraja, S.K. Grating-Assisted Fiber to Chip Coupling for SOI Photonic Circuits. Appl. Sci. 2018, 8, 1142. https://doi.org/10.3390/app8071142
Nambiar S, Sethi P, Selvaraja SK. Grating-Assisted Fiber to Chip Coupling for SOI Photonic Circuits. Applied Sciences. 2018; 8(7):1142. https://doi.org/10.3390/app8071142
Chicago/Turabian StyleNambiar, Siddharth, Purnima Sethi, and Shankar Kumar Selvaraja. 2018. "Grating-Assisted Fiber to Chip Coupling for SOI Photonic Circuits" Applied Sciences 8, no. 7: 1142. https://doi.org/10.3390/app8071142
APA StyleNambiar, S., Sethi, P., & Selvaraja, S. K. (2018). Grating-Assisted Fiber to Chip Coupling for SOI Photonic Circuits. Applied Sciences, 8(7), 1142. https://doi.org/10.3390/app8071142