Nothing Special   »   [go: up one dir, main page]

WO2024201738A1 - Electric motor and air conditioner - Google Patents

Electric motor and air conditioner Download PDF

Info

Publication number
WO2024201738A1
WO2024201738A1 PCT/JP2023/012616 JP2023012616W WO2024201738A1 WO 2024201738 A1 WO2024201738 A1 WO 2024201738A1 JP 2023012616 W JP2023012616 W JP 2023012616W WO 2024201738 A1 WO2024201738 A1 WO 2024201738A1
Authority
WO
WIPO (PCT)
Prior art keywords
built
electric motor
substrate
adhesion layer
control board
Prior art date
Application number
PCT/JP2023/012616
Other languages
French (fr)
Japanese (ja)
Inventor
隼一郎 尾屋
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2023/012616 priority Critical patent/WO2024201738A1/en
Publication of WO2024201738A1 publication Critical patent/WO2024201738A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/08Insulating casings

Definitions

  • This disclosure relates to an electric motor and an air conditioner that have a molded resin integrally molded with a control board.
  • Patent Document 1 discloses a molded motor that includes a motor frame with a built-in stator, a rotor that is provided inside the motor frame, and a bearing that supports the rotor so that it can rotate freely.
  • the motor frame has a structure in which the stator and a donut-shaped control board that is provided on the opposite output side of the stator and has a Hall IC surface-mounted on the pad, which is an electrode layer, are housed inside a mold and integrally molded with molded resin.
  • silk with a first pattern, a second pattern, and a third pattern is arranged around the arrangement position of the Hall IC.
  • the first pattern is arranged to surround the entire Hall IC so that the rough position of the Hall IC can be determined and when the pin, which is an electrode, is soldered to the pad, the solder flows out to parts other than the first pattern and prevents a short circuit with other components.
  • the second pattern is arranged to position the Hall IC on the control board and is arranged to surround the periphery of the body except for the pin connected to the pad.
  • the third pattern is arranged in the area between the pads.
  • Hall ICs not only Hall ICs but also other surface mount elements such as power ICs are mounted on the control board of the motor frame.
  • the surface area of the body of the Hall IC facing the control board is about 1 mm2
  • the surface area of the body of the power IC facing the control board is 12 mm2 or more.
  • the degree of adhesion between the molded resin and the control board is not so high. For this reason, in a surface mount element larger in size than the Hall IC, a gap is generated between the control board around the surface mount element and the molded resin due to repeated thermal expansion and contraction caused by heat shock.
  • the surface mount element When a gap is generated, the surface mount element is no longer fixed between the control board and the molded resin, and the repeated thermal expansion and contraction cause solder cracks in the solder connecting the pads and pins, which reduces the heat shock resistance and may result in the heat shock test not satisfying the standard.
  • the present disclosure has been made in consideration of the above, and aims to obtain an electric motor that can reduce the occurrence of cracks due to heat shock in the solder that connects the electrode layer of the control board molded with molded resin and the electrodes of the surface-mounted elements, more than ever before.
  • the electric motor according to the present disclosure comprises a rotor, a stator provided on the outer periphery of the rotor, a control board that controls the drive of the rotor and on which surface-mounted elements are mounted, and a molded resin integrally molded with the control board.
  • the control board has an adhesion layer that is disposed between the control board and the molded resin so as to surround the surface-mounted elements.
  • the area of the adhesion layer is equal to or greater than the total area of the electrode layers that are disposed in the element mounting area, which is the area in which the surface-mounted elements are mounted, and are connected to the electrodes of the surface-mounted elements via solder.
  • the electric motor disclosed herein has the advantage of being able to suppress the occurrence of cracks due to heat shock in the solder connecting the electrode layer of the control board molded with molded resin and the electrodes of the surface-mounted elements, more than ever before.
  • FIG. 13 is a cross-sectional view showing an example of a state of a chip resistor when a gap occurs between the built-in substrate and the mold resin;
  • FIG. 13 is a top view showing another example of a state in which elements are mounted on a built-in substrate constituting the electric motor according to the first embodiment;
  • FIG. 13 is a top view showing another example of a state in which elements are not mounted on the built-in substrate constituting the electric motor according to the first embodiment;
  • FIG. 11 is a cross-sectional view showing a schematic example of a configuration of an electric motor according to a second embodiment;
  • FIG. 11 is a schematic diagram illustrating an example of the configuration of an air conditioner according to a third embodiment.
  • the electric motor 1 is a brushless DC (Direct Current) motor.
  • a portion of the electric motor 1 is shown in cross section to explain the configuration of the electric motor 1.
  • the electric motor 1 comprises a rotor 30, a stator 20, a built-in board 11 that is a control board, and molded resin 12.
  • a rotating shaft 31 is inserted into the rotor 30.
  • the stator 20 is provided on the outer periphery of the rotor 30.
  • the built-in board 11 has a board circuit that is a circuit that controls the drive of the rotor 30.
  • the stator 20, the built-in substrate 11, and the molded resin 12 are fixed by the molded stator 10.
  • the molded stator 10 is formed by integrally molding the stator 20 and the built-in substrate 11. That is, the stator 20 and the built-in substrate 11 are fixed by the molded stator 10 so as to be integrated.
  • the molded stator 10 also has a recess formed therein that is capable of accommodating the rotor 30.
  • the stator 20 and the built-in substrate 11 may be integrally molded separately. In this case, the integrally molded stator 20 and the integrally molded built-in substrate 11 are joined. This improves the heat dissipation of the power IC and the like, and makes it possible to suppress temperature rise.
  • the built-in board 11 is disposed perpendicular to the axial direction of the rotating shaft 31 between the output bearing 33 and the stator 20, and is fixed to the insulator 23.
  • the power IC of the built-in board 11 and the windings of the winding group 22 are connected via winding terminals.
  • the built-in board 11 has a lead outlet 14 from which lead wires 13 are drawn out to connect to a higher-level system such as a board on the unit side of an air conditioner.
  • the higher-level system is a system in which the electric motor 1 is mounted.
  • the lead wires 13 are connected to a board on the unit side of an air conditioner such as the indoor unit board 211.
  • the built-in board 11 also has components such as operational amplifiers, comparators, regulators, diodes, resistors, capacitors, inductors, and fuses.
  • the magnet 40 has, in the axial direction of the rotating shaft 31, a sensor magnet portion which is the portion close to the magnetic sensor 50, and a main magnet portion which is the portion other than the sensor magnet portion.
  • the sensor magnet portion allows the magnetic sensor 50 to detect the position of the rotor 30.
  • the main magnet portion generates a rotational force in the rotor 30 according to the magnetic flux generated by the winding group 22.
  • the outer diameter of the magnet 40 on the magnetic sensor 50 side of the built-in board 11 is smaller than the outer diameter of the other parts. That is, the outer diameter of the sensor magnet part of the magnet 40 is smaller than the outer shape of the main magnet part. This shape of the magnet 40 makes it easier for magnetic flux to flow into the magnetic sensor 50 mounted on the built-in board 11.
  • the magnetic sensor 50 is positioned far from the winding group 22, that is, close to the rotating shaft 31, to minimize the influence of the magnetic flux generated from the winding group 22 of the stator 20.
  • FIG. 1 shows a case in which the main magnet section and the sensor magnet section are configured from a single magnet 40, the main magnet section and the sensor magnet section may be configured from separate magnets.
  • the magnetic sensor 50 may be configured using a Hall IC whose output signal is a digital signal, or may be configured using a Hall element whose output signal is an analog signal.
  • the magnetic sensor 50 may be a type that detects the position of the rotor 30 using a Hall IC, or a type that detects the position of the rotor 30 using a Hall element.
  • the Hall IC may be a first-type Hall IC that detects the position of the rotor 30 using a first method described below, or a second-type Hall IC that detects the position of the rotor 30 using a second method described below.
  • the sensor section and amplifier section are composed of separate semiconductor chips.
  • the sensor section is composed of a semiconductor other than silicon, and the amplifier section is composed of silicon.
  • the first type Hall IC will be referred to as a non-silicon type Hall IC.
  • the sensor section and amplifier section are composed of a single silicon semiconductor chip.
  • FIG. 2 is a diagram showing an example of the circuit configuration of the built-in board provided in the electric motor according to the first embodiment.
  • FIG. 2 shows the built-in board 11, the winding group 22, and the magnetic sensor 50.
  • the built-in board 11 includes an overcurrent detection resistor 75, a control unit 70, and a power IC 80.
  • the control unit 70 is connected to the host system, the gate drive circuit 82, the ground 79A, and the magnetic sensor 50.
  • the control unit 70 is also connected to a low-voltage power supply 78.
  • the power IC 80 includes a gate drive circuit 82 and a power transistor 81.
  • the power IC 80 is also called an Intelligent Power Module (IPM).
  • the gate drive circuit 82 is connected to a low-voltage power supply 78 and a high-voltage power supply 77.
  • the low-voltage power supply 78 outputs a lower voltage than the high-voltage power supply 77.
  • the high-voltage power supply 77 is a bus power supply.
  • the gate drive circuit 82 is also connected to the power transistor 81 and ground 79B.
  • the gate drive circuit 82 has a protection circuit 85.
  • the protection circuit 85 is connected to the connection point 41. That is, the protection circuit 85 is connected to ground 79C via the connection point 41 and the overcurrent detection resistor 75.
  • the power transistor 81 is connected to the winding group 22 of the stator 20 and supplies current to the winding group 22 of the stator 20.
  • the power transistor 81 is also connected to ground 79C via the connection point 41 and the overcurrent detection resistor 75.
  • Grounds 79A-79C are a common ground of the same potential.
  • the power transistor 81 includes six power transistors 81A-81F.
  • the six power transistors 81A-81F are configured separately.
  • the six power transistors 81A-81F are each configured as a chip, which is a separate component.
  • the gate drive circuit 82 may be configured as one IC, or may be configured as three separate ICs for three phases.
  • the gate drive circuit 82 and the control unit 70 may be configured as one IC.
  • the control unit 70 may be configured as one IC.
  • the control unit 70 may be configured as a control IC, which is a dedicated IC that does not require software, or may be configured as a microcomputer or the like.
  • the microcomputer is referred to as a microcomputer.
  • the six power transistors 81A-81F, the gate drive circuit 82, the protection circuit 85, and the control unit 70 may be configured as one IC, or the gate drive circuit 82, the protection circuit 85, and the control unit 70 may be configured as one IC.
  • the power transistors 81A-81F are composed of superjunction MOSFETs (Metal Oxide Semiconductor Field Effect Transistors), planar MOSFETs, IGBTs (Insulated Gate Bipolar Transistors), etc. Since a large current flows through the power transistors 81A-81F, they generate a lot of heat, which can cause problems with heat dissipation.
  • superjunction MOSFETs Metal Oxide Semiconductor Field Effect Transistors
  • planar MOSFETs planar MOSFETs
  • IGBTs Insulated Gate Bipolar Transistors
  • the magnetic sensor 50 detects the magnetic pole position of the rotor 30 corresponding to the magnetic flux position
  • the built-in board 11 controls the electric motor 1 based on the magnetic pole position.
  • the built-in board 11 may perform sensorless control of the electric motor 1 while estimating the magnetic pole position from the current flowing through the winding group 22 and the voltage applied to and generated by the winding group 22.
  • the built-in board 11 may also amplify a current signal obtained by using a shunt resistor and a current sensor for current detection using an operational amplifier or the like.
  • the built-in board 11 may use a comparator to generate a signal to the control unit 70 for overcurrent protection from this current signal.
  • the voltage that drives the gates of the power transistors 81A-81F may differ from the microcomputer power supply voltage that drives the control unit 70 such as a microcomputer, for example 5V.
  • the motor 1 uses a regulator to generate one power supply from another power supply supplied from the outside.
  • a 15V power supply is supplied to the built-in board 11 from the outside, and the regulator generates a 5V power supply and supplies it to the built-in board 11.
  • This regulator may be built into the gate drive circuit 82, the control unit 70 which is a control IC, or the power IC 80.
  • the power transistor 81 converts the input DC voltage into a three-phase AC voltage consisting of U-phase, V-phase, and W-phase, and supplies it to the winding group 22 of the stator 20.
  • Power transistor 81A is a U-phase upper arm power transistor
  • power transistor 81B is a V-phase upper arm power transistor
  • power transistor 81C is a W-phase upper arm power transistor.
  • Power transistor 81D is a U-phase lower arm power transistor
  • power transistor 81E is a V-phase lower arm power transistor
  • power transistor 81F is a W-phase lower arm power transistor.
  • power transistor 81A is the power transistor of the upper arm of U phase
  • power transistor 81B is the power transistor of the upper arm of V phase
  • power transistor 81C is the power transistor of the upper arm of W phase
  • power transistor 81D is the power transistor of the lower arm of U phase
  • power transistor 81E is the power transistor of the lower arm of V phase
  • power transistor 81F is the power transistor of the lower arm of W phase.
  • the power transistor 81 has multiple power transistors 81A-81C in the upper arm and multiple power transistors 81D-81F in the lower arm.
  • the power transistors in the upper arm and lower arm that switch more frequently are distributed and arranged on the top surface of the built-in substrate 11 and the bottom surface opposite the top surface.
  • the power transistor in the upper arm and lower arm that switches less frequently is arranged on the top surface of the built-in substrate 11.
  • the motor 1 has a U-phase winding 22U, a V-phase winding 22V, and a W-phase winding 22W as windings included in the winding group 22.
  • the U-phase winding 22U is connected to power transistors 81A and 81D.
  • the V-phase winding 22V is connected to power transistors 81B and 81E.
  • the W-phase winding 22W is connected to power transistors 81C and 81F.
  • the gate drive circuit 82 controls the on and off of the power transistors 81A-81F according to the switching signal received from the control unit 70.
  • Overcurrent detection resistor 75 is connected to the lower arm switches of power transistors 81D-81F, and is part of protection circuit 85.
  • Protection circuit 85 is a circuit that performs overcurrent protection, overheat protection, and power supply overvoltage and constant voltage protection. Protection circuit 85 monitors the voltage of overcurrent detection resistor 75, and when the voltage of overcurrent detection resistor 75 reaches or exceeds a specific value, it forcibly turns off power transistors 81A-81F to prevent overcurrent from flowing through winding group 22, thereby realizing overcurrent protection.
  • Overcurrent detection resistor 75 which is an overcurrent detection unit, may be built into control unit 70 or gate drive circuit 82.
  • the built-in board 11 may also be equipped with a temperature sensor (not shown). In this case, when the control unit 70 receives a signal from the temperature sensor indicating an abnormal temperature, it forcibly turns off the power transistors 81A-81F to achieve overheat protection.
  • the control unit 70 performs pulse width modulation (PWM) control on the power transistors 81A-81F by outputting a switching signal to the gate drive circuit 82.
  • PWM pulse width modulation
  • the control unit 70 estimates the magnetic pole position of the rotor 30 based on the magnetic pole position signal input from the magnetic sensor 50, and calculates the rotation speed of the rotor 30 from the estimated magnetic pole position.
  • the control unit 70 outputs a rotation speed signal indicating the calculated rotation speed to a higher-level system.
  • the electric motor 1 which is a brushless DC motor, obtains rotational power by switching six power transistors 81A-81F (in the case of a three-phase motor) at appropriate timing according to the magnetic pole position of the magnet 40 of the rotor 30.
  • the switching signal used for this switching is generated by the control unit 70. The operating principle of this electric motor 1 will be explained below.
  • the control unit 70 estimates the magnetic pole position of the rotor 30 based on the magnetic pole position signal from the magnetic sensor 50 or the current value of the current flowing through the winding group 22.
  • the control unit 70 generates switching signals for switching the power transistors 81A-81F according to the magnetic pole position of the rotor 30 and the speed command signal output from the higher-level system.
  • the gate drive circuit 82 switches the power transistors 81A-81F on and off according to the switching signals generated by the control unit 70.
  • the energization methods used by the motor 1 include 120° energization control, 150° energization control, and sine wave energization control.
  • the control unit 70 can be configured as a combinational circuit that does not require a clock.
  • control unit 70 is composed of complex digital circuits including a clock.
  • the timing between each rising and falling edge of the detection signals from three Hall ICs is precisely estimated.
  • Sensorless control is control that does not use a magnetic sensor 50.
  • the magnetic pole position is estimated from the current value detected by a current detection resistor, a current detection transformer, etc., and control is performed.
  • the signal detected by the current detection resistor, current detection transformer, etc. may be amplified using an operational amplifier, etc., as necessary.
  • control unit 70 adjusts the voltage applied to the winding group 22 by PWM control of the power transistors 81A-81F.
  • the motor 1 may switch only one of the upper and lower arms.
  • the above-mentioned power IC 80, Hall IC, Hall element, operational amplifier, comparator, regulator, diode, and other elements are configured as surface-mounted ICs to reduce the cost of individual components by miniaturizing the components and to reduce the cost of mounting on the board.
  • Surface-mounted ICs are an example of surface-mounted elements.
  • the molded stator 10 is formed by insert molding the stator 20 and the built-in substrate 11 into one body using molded resin 12.
  • the built-in substrate 11, on which elements including surface-mounted ICs are mounted, is in close contact with the molded resin 12.
  • the heat shock resistance of the surface-mounted IC is lowered and may not satisfy the standards of the heat shock test.
  • an insert-mount type IC such as an SIP (Single Inline Package) or DIP (Dual Inline Package) in which lead wires inserted into through holes are soldered
  • the heat shock resistance of the surface-mounted IC is lowered and may not satisfy the standards of the heat shock test.
  • the heat shock resistance is lowered. The gap occurs between the built-in substrate 11 and the molded resin 12 because the adhesion between the built-in substrate 11 and the molded resin 12 is weak.
  • the gap occurs between the built-in substrate 11 and the molded resin 12 around a large-sized element or around a chip resistor in many cases.
  • a large-sized element refers to an element whose surface area facing the built-in substrate 11 of the body of the surface-mounted IC is 12 mm 2 or more.
  • an element whose surface area of the surface of the body of the surface-mounted IC facing the built-in substrate 11 is less than 12 mm 2 is called a small-sized element.
  • the adhesion layer 2 is provided in a region longer than the length of the side of the body 831 where the pins 832 are not provided, with a width at least 1.5 times the width of the footprint 112. In this way, in the first embodiment, the adhesion layer 2 is disposed without any gaps in the region around the surface mount IC 83 excluding the body 831 and footprint 112 of the surface mount IC 83.
  • the adhesion layer 2 is provided around the surface mount elements, but may be provided around all surface mount ICs 83, or may be provided around surface mount ICs 83 that have a body 831 of a specified size or larger. As described above, heat shock is not a major problem for small surface mount ICs 83, so the adhesion layer 2 may not be provided around small surface mount ICs 83, and may be provided around large surface mount ICs 83.
  • the spacing between adjacent pins may be as wide as 1 mm or more in one example. In this case, it is more effective to apply adhesion layer 2 to the area between adjacent pins 832 as in the surface mount IC 83 in Figure 3.
  • the pin spacing is wide, the number of pins 832 is small relative to the body 831, so the absolute value of thermal expansion and thermal contraction of each pin 832 becomes large, and the stress on the solder connecting the pin 832 and the footprint 112 becomes large.
  • surface mount ICs 83 with a wide spacing between adjacent pins of 1 mm or more tend to have reduced heat shock resistance.
  • FIG. 4 is a diagram showing an example of a state in which a surface-mounted IC is mounted on a built-in substrate constituting an electric motor according to the first embodiment.
  • FIG. 4 shows an example in which a surface-mounted IC 83A is mounted on a built-in substrate 11, in which the adjacent pin interval of the pins 832a arranged on one side of the body 831a is less than 1 mm, and the adjacent pin interval of the pins 832b arranged on the other side is 1 mm or more.
  • the adjacent pin interval is less than 1 mm, due to manufacturing constraints such as the minimum width at which the adhesion layer 2 can be formed, it is not possible to form an adhesion layer 2 between adjacent pins 832a.
  • the adjacent pin interval is 1 mm or more, due to manufacturing constraints, it is possible to form an adhesion layer 2, so an adhesion layer 2A is also formed between adjacent pins 832b.
  • the stress applied to the solder (not shown) connecting each pin 832a with an adjacent pin interval of less than 1 mm to the footprint 112 is smaller than the stress applied to the solder connecting each pin 832b with an adjacent pin interval of 1 mm or more to the footprint 112. Therefore, even if the adhesion layer 2 is not formed between the adjacent pins 832a, the built-in substrate 11 and the molded resin 12 are firmly fixed by the adhesion layer 2 arranged around the surface-mounted IC 83A near the pin 832b. Therefore, the heat shock resistance can be made to a desired value or more.
  • the adhesion layer 2 may also be disposed between the footprint 112 and the portion facing the body 831a of the surface-mounted IC 83A.
  • the surface mount element may be not only a surface mount IC 83 but also a chip resistor 84.
  • FIG. 5 is a cross-sectional view showing an example of the structure of a chip resistor.
  • the chip resistor 84 has a plate-shaped ceramic substrate 841 extending in one direction, a resistor 842 provided on the upper surface of the ceramic substrate 841, and a pair of electrodes 843 provided at both ends in the longitudinal direction, which is the extension direction of the ceramic substrate 841.
  • FIG. 6 is a cross-sectional view showing an example of the state of a chip resistor when a gap occurs between the built-in substrate and the molded resin.
  • FIG. 6 is a cross-sectional view showing an enlarged view of region A in FIG. 5.
  • a gap 845 may be formed between the resistor 842 and the electrode 843 on the upper surface of the chip resistor 84.
  • the molded resin 12 enters the gap 845.
  • the molded resin 12 that has entered the gap 845 between the resistor 842 and the electrode 843 of the chip resistor 84 is lifted up by thermal expansion and contraction of the heat shock.
  • the molded resin 12 that has entered the gap 845 becomes caught by the electrode 843, and the electrode 843 is also lifted up, causing it to peel off from the resistor 842, and the resistor may become electrically open.
  • the electrodes 843 tend to peel off easily as the chip resistor 84 becomes smaller, and this tendency is particularly strong in chip resistors 84 that are smaller than the so-called 1005 size, which has a long side of 1.0 mm and a short side of 0.5 mm. For this reason, in the case of chip resistors 84, it is desirable to place an adhesion layer 2 around chip resistors 84 that are 1005 size or smaller. Of course, there is no problem with placing an adhesion layer 2 around chip resistors 84 that are larger than the 1005 size.
  • the adhesion layer 2 is arranged in a band around the surface-mounted element, except in areas where it cannot be arranged due to manufacturing constraints on the built-in substrate 11. Furthermore, if the spacing between adjacent pins is 1 mm or more, the adhesion layer 2A is also arranged in the areas between the pins 832b, unless there are constraints.
  • FIG. 7 is a top view showing another example of a state in which elements are mounted on the built-in substrate constituting the electric motor according to the first embodiment.
  • the adhesion layer 2 is arranged around the surface-mounted elements including the surface-mounted IC 83 and the chip resistor 84, but in FIG. 7, the adhesion layer 2 is arranged over the entire surface of the built-in substrate 11, including the element mounting area of the surface-mounted elements. In this case, as described above, the adhesion layer 2 is not arranged on the exposed copper foil areas such as through holes and test pads.
  • Fig. 8 is a top view showing another example of a state in which no elements are mounted on the built-in substrate constituting the electric motor according to the first embodiment.
  • silk which is the adhesion layer 2
  • silk is not arranged in the element mounting area of the built-in substrate 11. That is, silk is not arranged on the built-in substrate 11 at the facing portion 3A of the body 831 of the surface-mounted IC 83 and the facing portion 3B of the body of the chip resistor 84.
  • the body of the chip resistor 84 corresponds to the ceramic substrate 841.
  • Patent Document 1 silk with a first pattern is formed so as to surround a rectangular area including the body and pad of the Hall IC.
  • the width of the silk with the first pattern is about 1/7 or less of the longitudinal length of the pad surrounded by the first pattern. This is to allow it to function as a dike that prevents the solder from flowing out beyond the first pattern. Even if silk with a width sufficiently small compared to the longitudinal length of such a pad is placed around the Hall IC, the effect of increasing the adhesion between the control board and the molded resin is very small. Therefore, in Patent Document 1, if the Hall IC is replaced with a large surface-mounted IC such as a power IC, there is a high possibility that a gap will occur between the control board and the molded resin due to heat shock.
  • the surface-mounted element is fixed between the built-in substrate 11 and the molded resin 12, so that the occurrence of cracks in the solder connecting the surface-mounted element and the footprint 112 can be suppressed, and the heat shock resistance can be improved.
  • the electric motor 1 includes a rotor 30, a stator 20 provided on the outer periphery of the rotor 30, an internal substrate 11 that controls the drive of the rotor 30 and on which surface-mounted elements are mounted, and a molded resin 12 that is integrally molded with the internal substrate 11.
  • the internal substrate 11 has an adhesion layer 2 that is disposed between the internal substrate 11 and the molded resin 12 so as to surround the surface-mounted elements, and the area of the adhesion layer 2 is arranged in the element mounting area, which is the area in which the surface-mounted elements are mounted, and is greater than or equal to the total area of the footprint 112, which is an electrode layer that is connected to the electrodes of the surface-mounted elements via solder.
  • This has the effect of suppressing the occurrence of cracks due to heat shock in the solder that connects the electrode layer of the internal substrate 11 molded with the molded resin 12 to the electrodes of the surface-mounted elements, compared to the conventional case.
  • FIG. 9 is a cross-sectional view showing a schematic example of the configuration of an electric motor according to embodiment 2.
  • the same components as those in embodiment 1 are given the same reference numerals, and detailed description thereof will be omitted.
  • the electric motor 1A shown in Fig. 9 has the built-in substrate 11, molded resin 12, stator 20 having stator core 21 and winding group 22, rotating shaft 31, magnet 40, power IC 80, and heat sink 6, which are described in embodiment 1.
  • the heat sink 6 is provided to further improve heat dissipation and dissipates heat.
  • the heat sink 6 is made of a metal such as aluminum.
  • the heat sink 6 is placed on the side of the built-in substrate 11 opposite the stator 20 via the molded resin 12.
  • the heat sink 6 may be integrally molded with the built-in substrate 11 and the molded resin 12, or the heat sink 6 may be attached after the built-in substrate 11 and the molded resin 12 are integrally molded.
  • the heat sink 6 is provided on the side of the built-in substrate 11 opposite the stator 20. This improves the heat dissipation performance of the built-in substrate 11 and improves the heat shock resistance between the built-in substrate 11 and the molded resin 12.
  • Embodiment 3. 10 is a diagram showing a schematic diagram of an example of the configuration of an air conditioner according to embodiment 3.
  • An air conditioner 200 includes an indoor unit 210 and an outdoor unit 220 connected to the indoor unit 210.
  • the indoor unit 210 includes the motor 1 described in embodiment 1 or the motor 1A described in embodiment 2, an indoor unit board 211, and an indoor unit blower (not shown).
  • the outdoor unit 220 includes an outdoor unit blower 223.
  • the electric motors 1 and 1A described in the first and second embodiments are applied to the air conditioner 200, so that the temperature rise of the built-in board 11 can be significantly suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Abstract

This electric motor comprises: a rotor; a stator provided on the outer circumference of the rotor; a control board which controls the driving of the rotor and on which surface mounting elements are mounted; and a mold resin that is integrally molded with the control board. The control board has an adhesion layer (2) disposed between the control board and the mold resin so as to surround the surface mounting elements. The area of the adhesion layer (2) is not less than the total area of an electrode layer that is disposed in an element mounting region, which is a region where the surface mounting elements are mounted, and that is connected to electrodes of the surface mounting elements via solder.

Description

電動機および空気調和機Electric motors and air conditioners
 本開示は、制御基板と一体成型したモールド樹脂を有する電動機および空気調和機に関する。 This disclosure relates to an electric motor and an air conditioner that have a molded resin integrally molded with a control board.
 近年、空気調和機の省エネルギ化および暖房能力の向上のため、空気調和機のファンモータの高出力化が求められている。ファンモータの高出力化には、大電力回路に使用されるパワー集積回路(Integrated Circuit:IC)が使用され、このパワーICの放熱性が課題となっている。放熱性の向上のため、パワーICを含む基板を樹脂にて一体成型する技術が知られている。 In recent years, there has been a demand for higher output fan motors in air conditioners to save energy and improve the heating capacity of the units. To achieve higher output, power integrated circuits (ICs) used in high-power circuits are used, but the heat dissipation of these power ICs has become an issue. To improve heat dissipation, a technology is known in which a substrate containing a power IC is integrally molded from resin.
 特許文献1には、固定子を内蔵するモータフレームと、モータフレームの内部に設けられる回転子と、回転子を回転自在に指示するベアリングと、を備えるモールドモータが開示されている。モータフレームは、固定子と、固定子の反出力側に設けられ、電極層であるパッド上に面実装されたホールICを有するドーナツ状の制御基板と、を金型内部に収納し、モールド樹脂によって一体に成形した構造を有する。特許文献1では、ホールICの配置位置の周囲に、第1模様、第2模様および第3模様のシルクを配置している。第1模様は、ホールICを配置する大まかな位置が判別できるとともに、パッドに電極であるピンを半田付けした際に、半田が第1模様以外の部分に流れ出て、他の部品と短絡してしまうことを抑制するように、ホールICの全体を取り囲むように設けられる。第2模様は、ホールICの制御基板への位置決めのために設けられ、パッドと接続されるピンを除くボディの周囲を囲むように設けられる。第3模様は、パッドとパッドとの間の領域に設けられる。 Patent Document 1 discloses a molded motor that includes a motor frame with a built-in stator, a rotor that is provided inside the motor frame, and a bearing that supports the rotor so that it can rotate freely. The motor frame has a structure in which the stator and a donut-shaped control board that is provided on the opposite output side of the stator and has a Hall IC surface-mounted on the pad, which is an electrode layer, are housed inside a mold and integrally molded with molded resin. In Patent Document 1, silk with a first pattern, a second pattern, and a third pattern is arranged around the arrangement position of the Hall IC. The first pattern is arranged to surround the entire Hall IC so that the rough position of the Hall IC can be determined and when the pin, which is an electrode, is soldered to the pad, the solder flows out to parts other than the first pattern and prevents a short circuit with other components. The second pattern is arranged to position the Hall IC on the control board and is arranged to surround the periphery of the body except for the pin connected to the pad. The third pattern is arranged in the area between the pads.
特開2006-080243号公報JP 2006-080243 A
 ところで、モータフレームの制御基板には、ホールICだけではなく、パワーICなど他の面実装素子も配置される。通常、モータフレームの制御基板に実装されるホールICのボディの制御基板と対向する面の面積は、1mm2程度の大きさであるのに対して、パワーICのボディの制御基板と対向する面の面積は、12mm2以上である。一般的に、モールド樹脂と制御基板との間の密着度はそれほど高くない。このため、ホールICに比してサイズの大きな面実装素子では、ヒートショックによる熱膨張および熱収縮の繰り返しによって、面実装素子の周囲の制御基板とモールド樹脂との間に隙間が生じてしまう。隙間が生じると、面実装素子は制御基板とモールド樹脂との間で固定されなくなってしまうので、熱膨張および熱収縮の繰り返しによって、パッドとピンとを接続する半田に半田クラックが生じてしまい、ヒートショック耐力が低下し、ヒートショック試験の結果が規格を満足しない場合がある。 Meanwhile, not only Hall ICs but also other surface mount elements such as power ICs are mounted on the control board of the motor frame. Usually, the surface area of the body of the Hall IC facing the control board is about 1 mm2 , whereas the surface area of the body of the power IC facing the control board is 12 mm2 or more. In general, the degree of adhesion between the molded resin and the control board is not so high. For this reason, in a surface mount element larger in size than the Hall IC, a gap is generated between the control board around the surface mount element and the molded resin due to repeated thermal expansion and contraction caused by heat shock. When a gap is generated, the surface mount element is no longer fixed between the control board and the molded resin, and the repeated thermal expansion and contraction cause solder cracks in the solder connecting the pads and pins, which reduces the heat shock resistance and may result in the heat shock test not satisfying the standard.
 本開示は、上記に鑑みてなされたものであって、モールド樹脂でモールドされた制御基板の電極層と面実装素子の電極とを接続する半田へのヒートショックによるクラックの発生を従来に比して抑制することができる電動機を得ることを目的とする。 The present disclosure has been made in consideration of the above, and aims to obtain an electric motor that can reduce the occurrence of cracks due to heat shock in the solder that connects the electrode layer of the control board molded with molded resin and the electrodes of the surface-mounted elements, more than ever before.
 上述した課題を解決し、目的を達成するために、本開示に係る電動機は、回転子と、回転子の外周に設けられる固定子と、回転子の駆動を制御し、面実装素子が実装される制御基板と、制御基板と一体成型したモールド樹脂と、を備える。制御基板は、面実装素子を囲むように、制御基板とモールド樹脂との間に配置される密着層を有する。密着層の面積は、面実装素子が実装される領域である素子実装領域に配置され、面実装素子の電極と半田を介して接続される電極層の総面積以上である。 In order to solve the above-mentioned problems and achieve the object, the electric motor according to the present disclosure comprises a rotor, a stator provided on the outer periphery of the rotor, a control board that controls the drive of the rotor and on which surface-mounted elements are mounted, and a molded resin integrally molded with the control board. The control board has an adhesion layer that is disposed between the control board and the molded resin so as to surround the surface-mounted elements. The area of the adhesion layer is equal to or greater than the total area of the electrode layers that are disposed in the element mounting area, which is the area in which the surface-mounted elements are mounted, and are connected to the electrodes of the surface-mounted elements via solder.
 本開示に係る電動機は、モールド樹脂でモールドされた制御基板の電極層と面実装素子の電極とを接続する半田へのヒートショックによるクラックの発生を従来に比して抑制することができるという効果を奏する。 The electric motor disclosed herein has the advantage of being able to suppress the occurrence of cracks due to heat shock in the solder connecting the electrode layer of the control board molded with molded resin and the electrodes of the surface-mounted elements, more than ever before.
実施の形態1に係る電動機の構成の一例を示す図FIG. 1 is a diagram showing an example of a configuration of an electric motor according to a first embodiment; 実施の形態1に係る電動機が備える内蔵基板の回路構成の一例を示す図FIG. 1 is a diagram showing an example of a circuit configuration of a built-in board included in an electric motor according to a first embodiment; 実施の形態1に係る電動機を構成する内蔵基板の構成の一例を模式的に示す上面図FIG. 1 is a top view showing a schematic example of a configuration of a built-in substrate that constitutes an electric motor according to a first embodiment; 実施の形態1に係る電動機を構成する内蔵基板の面実装ICの実装状態の一例を示す図FIG. 1 is a diagram showing an example of a mounting state of a surface-mounted IC on a built-in substrate constituting an electric motor according to a first embodiment; チップ抵抗の構造の一例を模式的に示す断面図FIG. 1 is a cross-sectional view showing a schematic example of a structure of a chip resistor; 内蔵基板とモールド樹脂との間に隙間が生じた場合のチップ抵抗の状態の一例を模式的に示す断面図FIG. 13 is a cross-sectional view showing an example of a state of a chip resistor when a gap occurs between the built-in substrate and the mold resin; 実施の形態1に係る電動機を構成する内蔵基板に素子が実装された状態の他の例を模式的に示す上面図FIG. 13 is a top view showing another example of a state in which elements are mounted on a built-in substrate constituting the electric motor according to the first embodiment; 実施の形態1に係る電動機を構成する内蔵基板に素子が実装されていない状態の他の例を模式的に示す上面図FIG. 13 is a top view showing another example of a state in which elements are not mounted on the built-in substrate constituting the electric motor according to the first embodiment; 実施の形態2に係る電動機の構成の一例を模式的に示す断面図FIG. 11 is a cross-sectional view showing a schematic example of a configuration of an electric motor according to a second embodiment; 実施の形態3にかかる空気調和機の構成の一例を模式的に示す図FIG. 11 is a schematic diagram illustrating an example of the configuration of an air conditioner according to a third embodiment.
 以下に、本開示の実施の形態に係る電動機および空気調和機を図面に基づいて詳細に説明する。 Below, the electric motor and air conditioner according to the embodiment of the present disclosure are described in detail with reference to the drawings.
実施の形態1.
 図1は、実施の形態1に係る電動機の構成の一例を示す図である。なお、実施の形態1では、電動機1が三相の電動機である場合について説明するが、実施の形態1の電動機1は三相の電動機に限られるものではない。
Embodiment 1.
Fig. 1 is a diagram showing an example of the configuration of an electric motor according to embodiment 1. In embodiment 1, a case will be described in which electric motor 1 is a three-phase electric motor, but electric motor 1 in embodiment 1 is not limited to a three-phase electric motor.
 電動機1は、ブラシレスDC(Direct Current、直流)モータである。図1では、電動機1の構成の説明のために、一部を断面構造で示している。電動機1は、回転子30と、固定子20と、制御基板である内蔵基板11と、モールド樹脂12と、を備える。回転子30には、回転軸31が挿入されている。固定子20は、回転子30の外周に設けられている。内蔵基板11は、回転子30の駆動を制御する回路である基板回路を有している。 The electric motor 1 is a brushless DC (Direct Current) motor. In FIG. 1, a portion of the electric motor 1 is shown in cross section to explain the configuration of the electric motor 1. The electric motor 1 comprises a rotor 30, a stator 20, a built-in board 11 that is a control board, and molded resin 12. A rotating shaft 31 is inserted into the rotor 30. The stator 20 is provided on the outer periphery of the rotor 30. The built-in board 11 has a board circuit that is a circuit that controls the drive of the rotor 30.
 固定子20、内蔵基板11およびモールド樹脂12は、モールド固定子10で固定されている。モールド固定子10は、固定子20と内蔵基板11とを一体成型したものである。すなわち、固定子20と内蔵基板11とは、一体化するようにモールド固定子10によって固定されている。また、モールド固定子10は、内部に、回転子30を収容可能に形成された凹部を有する。なお、固定子20と内蔵基板11とは、別々に一体成型されてもよい。この場合、一体成型された固定子20と一体成型された内蔵基板11とが接合される。これによって、パワーICなどの放熱性が向上し、温度上昇を抑制することができる。 The stator 20, the built-in substrate 11, and the molded resin 12 are fixed by the molded stator 10. The molded stator 10 is formed by integrally molding the stator 20 and the built-in substrate 11. That is, the stator 20 and the built-in substrate 11 are fixed by the molded stator 10 so as to be integrated. The molded stator 10 also has a recess formed therein that is capable of accommodating the rotor 30. The stator 20 and the built-in substrate 11 may be integrally molded separately. In this case, the integrally molded stator 20 and the integrally molded built-in substrate 11 are joined. This improves the heat dissipation of the power IC and the like, and makes it possible to suppress temperature rise.
 固定子20は、複数の固定子鉄心21と、固定子鉄心21と一体成型されたインシュレータ23と、巻線群22と、を有する。固定子鉄心21は、電磁鋼板が積層されることによって構成されている。インシュレータ23は、固定子鉄心21と巻線群22とを絶縁する。 The stator 20 has multiple stator cores 21, insulators 23 molded integrally with the stator cores 21, and a winding group 22. The stator cores 21 are formed by laminating electromagnetic steel sheets. The insulators 23 insulate the stator cores 21 from the winding group 22.
 電動機1では、インシュレータ23と一体成型された固定子鉄心21の各スロットに巻線群22の巻線が巻きつけられることで、固定子20が構成されている。巻線群22の各巻線は、銅、アルミニウムなどで構成されている。 In the electric motor 1, the stator 20 is formed by winding the windings of the winding group 22 around each slot of the stator core 21, which is integrally molded with the insulator 23. Each winding of the winding group 22 is made of copper, aluminum, or the like.
 電動機1は、回転軸31の一端に、回転軸31を回転自在に支持する出力側軸受33と、回転軸31の他端に、回転軸31を回転自在に支持する反出力側軸受34と、反出力側軸受34を覆う導電性のブラケット60と、を有する。 The electric motor 1 has an output side bearing 33 at one end of the rotating shaft 31 that rotatably supports the rotating shaft 31, a non-output side bearing 34 at the other end of the rotating shaft 31 that rotatably supports the rotating shaft 31, and a conductive bracket 60 that covers the non-output side bearing 34.
 ブラケット60は、モールド固定子10に設けられた凹部の開口部を塞ぐようにして、ブラケット60の圧入部61がモールド固定子10の内周部に嵌め込まれている。また、反出力側軸受34の外輪がブラケット60の内側に嵌め込まれている。 The bracket 60 is fitted into the inner circumference of the molded stator 10 with the press-in portion 61 of the bracket 60 so as to cover the opening of the recess provided in the molded stator 10. In addition, the outer ring of the non-output side bearing 34 is fitted inside the bracket 60.
 内蔵基板11は、パワーIC80と、制御部と、回転子30の位置を検知するホールICなどの磁気センサ50と、を含む回路を備えている。 The built-in board 11 has a circuit including a power IC 80, a control unit, and a magnetic sensor 50 such as a Hall IC that detects the position of the rotor 30.
 内蔵基板11は、出力側軸受33と固定子20との間で、回転軸31の軸線方向に対して垂直に配置され、インシュレータ23に固定されている。また、内蔵基板11のパワーICと巻線群22の巻線とは、巻線端子を介して接続される。内蔵基板11は、エアコンディショナのユニット側の基板などの上位システムと接続するリード線13が引き出されたリード口出し部14を有する。上位システムは、電動機1を搭載するシステムである。リード線13は、一例では、室内機基板211などのエアコンディショナのユニット側の基板に接続されている。また、内蔵基板11には、オペアンプ、コンパレータ、レギュレータ、ダイオード、抵抗、コンデンサ、インダクタ、ヒューズなどの部品が配置されている。 The built-in board 11 is disposed perpendicular to the axial direction of the rotating shaft 31 between the output bearing 33 and the stator 20, and is fixed to the insulator 23. The power IC of the built-in board 11 and the windings of the winding group 22 are connected via winding terminals. The built-in board 11 has a lead outlet 14 from which lead wires 13 are drawn out to connect to a higher-level system such as a board on the unit side of an air conditioner. The higher-level system is a system in which the electric motor 1 is mounted. In one example, the lead wires 13 are connected to a board on the unit side of an air conditioner such as the indoor unit board 211. The built-in board 11 also has components such as operational amplifiers, comparators, regulators, diodes, resistors, capacitors, inductors, and fuses.
 内蔵基板11の形状は、一例では、中心に貫通孔が形成された円板状である。なお、内蔵基板11の形状は、半円状などの円板状以外の形状であってもよい。内蔵基板11に設けられた貫通孔には、回転軸31が通される。内蔵基板11は、上面および底面が回転軸31の軸線方向に対して垂直になるように電動機1の内部に配置されている。 In one example, the shape of the built-in substrate 11 is a disk with a through hole formed in the center. The shape of the built-in substrate 11 may be a shape other than a disk, such as a semicircular shape. The rotating shaft 31 passes through the through hole provided in the built-in substrate 11. The built-in substrate 11 is disposed inside the electric motor 1 so that the top and bottom surfaces are perpendicular to the axial direction of the rotating shaft 31.
 回転子30は、回転軸31の外周部に配置される、円環状の部材である回転子絶縁部32を有する。回転子30は、モールド固定子10の内側に配置されたマグネット40を有している。マグネット40は、回転軸31の外周側で、固定子鉄心21に対向する位置に配置されている。マグネット40は、円柱状の永久磁石で構成されている。マグネット40は、回転軸31に固定されている。 The rotor 30 has a rotor insulation part 32, which is an annular member, arranged on the outer periphery of the rotating shaft 31. The rotor 30 has a magnet 40 arranged inside the molded stator 10. The magnet 40 is arranged on the outer periphery of the rotating shaft 31, facing the stator core 21. The magnet 40 is composed of a cylindrical permanent magnet. The magnet 40 is fixed to the rotating shaft 31.
 マグネット40は、フェライト磁石、または希土類磁石が熱可塑性の樹脂材料と混合されて構成されたボンド磁石が射出成形されることで作製される。希土類磁石の一例は、サマリウム鉄窒素系磁石、ネオジウム系磁石である。マグネット40の射出成形用の金型には磁石が組み込まれており、マグネット40は、配向をかけながら成形される。なお、マグネット40は、焼結磁石でもよい。 Magnet 40 is produced by injection molding a bonded magnet consisting of a ferrite magnet or a rare earth magnet mixed with a thermoplastic resin material. Examples of rare earth magnets are samarium iron nitrogen magnets and neodymium magnets. A magnet is incorporated into the mold used for injection molding magnet 40, and magnet 40 is molded while applying orientation. Magnet 40 may also be a sintered magnet.
 マグネット40は、回転軸31の軸線方向に、磁気センサ50に近い部分であるセンサマグネット部と、センサマグネット部以外の部分であるメインマグネット部と、を有している。センサマグネット部は、磁気センサ50に回転子30の位置を検知させる。メインマグネット部は、巻線群22が発生する磁束に従って回転子30に回転力を生じさせる。 The magnet 40 has, in the axial direction of the rotating shaft 31, a sensor magnet portion which is the portion close to the magnetic sensor 50, and a main magnet portion which is the portion other than the sensor magnet portion. The sensor magnet portion allows the magnetic sensor 50 to detect the position of the rotor 30. The main magnet portion generates a rotational force in the rotor 30 according to the magnetic flux generated by the winding group 22.
 マグネット40では、内蔵基板11の磁気センサ50側の外径は、他の外径部分よりも小さくなっている。すなわち、マグネット40では、センサマグネット部の外径が、メインマグネット部の外形よりも小さくなっている。このマグネット40の形状により、内蔵基板11に実装される磁気センサ50に磁束が流入しやすくなっている。磁気センサ50は、固定子20の巻線群22から発生する磁束の影響を極力小さくするため、巻線群22から遠い位置、つまり、回転軸31に近い位置に配置されている。 The outer diameter of the magnet 40 on the magnetic sensor 50 side of the built-in board 11 is smaller than the outer diameter of the other parts. That is, the outer diameter of the sensor magnet part of the magnet 40 is smaller than the outer shape of the main magnet part. This shape of the magnet 40 makes it easier for magnetic flux to flow into the magnetic sensor 50 mounted on the built-in board 11. The magnetic sensor 50 is positioned far from the winding group 22, that is, close to the rotating shaft 31, to minimize the influence of the magnetic flux generated from the winding group 22 of the stator 20.
 なお、図1では、メインマグネット部とセンサマグネット部とが1つのマグネット40で構成されている場合を示しているが、メインマグネット部とセンサマグネット部とは、別々のマグネットで構成されてもよい。 Note that while FIG. 1 shows a case in which the main magnet section and the sensor magnet section are configured from a single magnet 40, the main magnet section and the sensor magnet section may be configured from separate magnets.
 磁気センサ50は、出力信号がデジタル信号であるホールICを用いて構成されてもよいし、出力信号がアナログ信号であるホール素子を用いて構成されてもよい。すなわち、磁気センサ50は、ホールICを用いて回転子30の位置を検出する方式であってもよいし、ホール素子を用いて回転子30の位置を検出する方式であってもよい。 The magnetic sensor 50 may be configured using a Hall IC whose output signal is a digital signal, or may be configured using a Hall element whose output signal is an analog signal. In other words, the magnetic sensor 50 may be a type that detects the position of the rotor 30 using a Hall IC, or a type that detects the position of the rotor 30 using a Hall element.
 また、ホールICは、後述する第1方式で回転子30の位置を検出するホールICである第1方式のホールICであってもよいし、後述する第2方式で回転子30の位置を検出するホールICである第2方式のホールICであってもよい。 The Hall IC may be a first-type Hall IC that detects the position of the rotor 30 using a first method described below, or a second-type Hall IC that detects the position of the rotor 30 using a second method described below.
 第1方式のホールICは、センサ部と増幅部とが別々の半導体チップで構成されている。この第1方式のホールICでは、センサ部は、シリコン以外の半導体で構成され、増幅部はシリコンで構成されている。以下、第1方式のホールICは、非シリコン型ホールICと称される。第2方式のホールICは、センサ部と増幅部とが1つのシリコン半導体チップで構成されている。 In the first type Hall IC, the sensor section and amplifier section are composed of separate semiconductor chips. In this first type Hall IC, the sensor section is composed of a semiconductor other than silicon, and the amplifier section is composed of silicon. Hereinafter, the first type Hall IC will be referred to as a non-silicon type Hall IC. In the second type Hall IC, the sensor section and amplifier section are composed of a single silicon semiconductor chip.
 非シリコン型ホールICでは、2つのチップが内蔵されるので、センサ部の中心位置がICボディの中心と異なった位置となるようにセンサ部が配置される。非シリコン型ホールICのセンサ部には、アンチモン化インジウム(InSb)などの非シリコン半導体が用いられる。この非シリコン半導体は、シリコン半導体と比べて、感度が良く、応力歪みによるオフセットが小さいなどの長所がある。 In a non-silicon Hall IC, two chips are built in, so the sensor part is positioned so that its center position is different from the center of the IC body. A non-silicon semiconductor such as indium antimonide (InSb) is used for the sensor part of a non-silicon Hall IC. Compared to silicon semiconductors, this non-silicon semiconductor has the advantages of better sensitivity and smaller offset due to stress distortion.
 つぎに、図1に示した内蔵基板11の回路構成を説明する。図2は、実施の形態1に係る電動機が備える内蔵基板の回路構成の一例を示す図である。図2では、内蔵基板11と、巻線群22と、磁気センサ50とを示している。 Next, the circuit configuration of the built-in board 11 shown in FIG. 1 will be described. FIG. 2 is a diagram showing an example of the circuit configuration of the built-in board provided in the electric motor according to the first embodiment. FIG. 2 shows the built-in board 11, the winding group 22, and the magnetic sensor 50.
 内蔵基板11は、過電流検出抵抗75と、制御部70と、パワーIC80と、を備えている。 The built-in board 11 includes an overcurrent detection resistor 75, a control unit 70, and a power IC 80.
 制御部70は、上位システム、ゲートドライブ回路82、グランド79Aおよび磁気センサ50に接続されている。また、制御部70は、低圧電源78に接続されている。 The control unit 70 is connected to the host system, the gate drive circuit 82, the ground 79A, and the magnetic sensor 50. The control unit 70 is also connected to a low-voltage power supply 78.
 パワーIC80は、ゲートドライブ回路82およびパワートランジスタ81を備えている。パワーIC80は、インテリジェントパワーモジュール(Intelligent Power Module:IPM)とも称される。ゲートドライブ回路82は、低圧電源78および高圧電源77に接続されている。低圧電源78は、高圧電源77よりも低い電圧を出力する。高圧電源77は、母線電源である。また、ゲートドライブ回路82は、パワートランジスタ81およびグランド79Bに接続されている。 The power IC 80 includes a gate drive circuit 82 and a power transistor 81. The power IC 80 is also called an Intelligent Power Module (IPM). The gate drive circuit 82 is connected to a low-voltage power supply 78 and a high-voltage power supply 77. The low-voltage power supply 78 outputs a lower voltage than the high-voltage power supply 77. The high-voltage power supply 77 is a bus power supply. The gate drive circuit 82 is also connected to the power transistor 81 and ground 79B.
 ゲートドライブ回路82は、保護回路85を有する。保護回路85は、接続点41に接続されている。すなわち、保護回路85は、接続点41および過電流検出抵抗75を介してグランド79Cに接続されている。 The gate drive circuit 82 has a protection circuit 85. The protection circuit 85 is connected to the connection point 41. That is, the protection circuit 85 is connected to ground 79C via the connection point 41 and the overcurrent detection resistor 75.
 パワートランジスタ81は、固定子20の巻線群22に接続されており、固定子20の巻線群22に電流を供給する。また、パワートランジスタ81は、接続点41および過電流検出抵抗75を介してグランド79Cに接続されている。グランド79A-79Cは、同電位の共通グランドである。 The power transistor 81 is connected to the winding group 22 of the stator 20 and supplies current to the winding group 22 of the stator 20. The power transistor 81 is also connected to ground 79C via the connection point 41 and the overcurrent detection resistor 75. Grounds 79A-79C are a common ground of the same potential.
 パワートランジスタ81は、6個のパワートランジスタ81A-81Fを備えている。パワートランジスタ81では、6個のパワートランジスタ81A-81Fが別々に構成されている。すなわち、6個のパワートランジスタ81A-81Fは、それぞれ別々の部品であるチップとして構成されている。 The power transistor 81 includes six power transistors 81A-81F. In the power transistor 81, the six power transistors 81A-81F are configured separately. In other words, the six power transistors 81A-81F are each configured as a chip, which is a separate component.
 ゲートドライブ回路82は、1つのICで構成されてもよいし、3個からなる三相別々のICで構成されてもよい。また、ゲートドライブ回路82と制御部70とが1つのICで構成されてもよい。また、制御部70は、1つのICで構成される場合がある。一例では、制御部70は、ソフトウェアを必要としない1つの専用ICである制御ICで構成されてもよいし、マイクロコンピュータなどで構成されてもよい。以下では、マイクロコンピュータは、マイコンと称される。さらに、6個のパワートランジスタ81A-81F、ゲートドライブ回路82、保護回路85および制御部70が1つのICで構成されてもよいし、ゲートドライブ回路82、保護回路85および制御部70が1つのICで構成されてもよい。 The gate drive circuit 82 may be configured as one IC, or may be configured as three separate ICs for three phases. The gate drive circuit 82 and the control unit 70 may be configured as one IC. The control unit 70 may be configured as one IC. In one example, the control unit 70 may be configured as a control IC, which is a dedicated IC that does not require software, or may be configured as a microcomputer or the like. In the following, the microcomputer is referred to as a microcomputer. Furthermore, the six power transistors 81A-81F, the gate drive circuit 82, the protection circuit 85, and the control unit 70 may be configured as one IC, or the gate drive circuit 82, the protection circuit 85, and the control unit 70 may be configured as one IC.
 パワートランジスタ81A-81Fは、スーパージャンクションMOSFET(Metal Oxide Semiconductor Field Effect Transistor、金属酸化膜半導体電界効果トランジスタ)、プレーナMOSFET、IGBT(Insulated Gate Bipolar Transistor、絶縁ゲート型バイポーラートランジスタ)などで構成される。パワートランジスタ81A-81Fには大きな電流が流れるので、発熱が多く放熱が問題となる場合がある。 The power transistors 81A-81F are composed of superjunction MOSFETs (Metal Oxide Semiconductor Field Effect Transistors), planar MOSFETs, IGBTs (Insulated Gate Bipolar Transistors), etc. Since a large current flows through the power transistors 81A-81F, they generate a lot of heat, which can cause problems with heat dissipation.
 実施の形態1では、磁気センサ50が磁束位置に対応する回転子30の磁極位置を検出し、内蔵基板11が磁極位置に基づいて電動機1を制御する場合について説明する。なお、内蔵基板11は、巻線群22に流れる電流と、巻線群22に印加および発生する電圧とから磁極位置を推測しながら、電動機1をセンサレス制御してもよい。また、内蔵基板11は、電流検出のため、シャント抵抗および電流センサを用いることによって得られた電流信号をオペアンプなどで増幅してもよい。さらに、内蔵基板11は、この電流信号から過電流保護のための制御部70への信号を生成するためのコンパレータを用いてもよい。 In the first embodiment, a case will be described in which the magnetic sensor 50 detects the magnetic pole position of the rotor 30 corresponding to the magnetic flux position, and the built-in board 11 controls the electric motor 1 based on the magnetic pole position. The built-in board 11 may perform sensorless control of the electric motor 1 while estimating the magnetic pole position from the current flowing through the winding group 22 and the voltage applied to and generated by the winding group 22. The built-in board 11 may also amplify a current signal obtained by using a shunt resistor and a current sensor for current detection using an operational amplifier or the like. Furthermore, the built-in board 11 may use a comparator to generate a signal to the control unit 70 for overcurrent protection from this current signal.
 内蔵基板11では、パワートランジスタ81A-81Fのゲートを駆動する電圧、一例では、15Vと、マイコンなどの制御部70を駆動する電圧であるマイコン電源電圧、一例では、5Vと、が異なる場合がある。この場合には、電動機1は、外部から供給される1つの電源からもう1つの電源を生成するために、レギュレータを用いる。一例では、内蔵基板11へは、外部から15Vの電源が供給され、レギュレータは、5Vの電源を生成して内蔵基板11へ供給する。このレギュレータは、ゲートドライブ回路82に内蔵されてもよいし、制御ICである制御部70に内蔵されてもよいし、パワーIC80に内蔵されてもよい。 In the built-in board 11, the voltage that drives the gates of the power transistors 81A-81F, for example 15V, may differ from the microcomputer power supply voltage that drives the control unit 70 such as a microcomputer, for example 5V. In this case, the motor 1 uses a regulator to generate one power supply from another power supply supplied from the outside. In one example, a 15V power supply is supplied to the built-in board 11 from the outside, and the regulator generates a 5V power supply and supplies it to the built-in board 11. This regulator may be built into the gate drive circuit 82, the control unit 70 which is a control IC, or the power IC 80.
 パワートランジスタ81は、入力される直流電圧を、U相、V相およびW相からなる三相の交流電圧に変換して固定子20の巻線群22に供給する。パワートランジスタ81Aは、U相上アームパワートランジスタであり、パワートランジスタ81Bは、V相上アームパワートランジスタであり、パワートランジスタ81Cは、W相上アームパワートランジスタである。パワートランジスタ81Dは、U相下アームパワートランジスタであり、パワートランジスタ81Eは、V相下アームパワートランジスタであり、パワートランジスタ81Fは、W相下アームパワートランジスタである。 The power transistor 81 converts the input DC voltage into a three-phase AC voltage consisting of U-phase, V-phase, and W-phase, and supplies it to the winding group 22 of the stator 20. Power transistor 81A is a U-phase upper arm power transistor, power transistor 81B is a V-phase upper arm power transistor, and power transistor 81C is a W-phase upper arm power transistor. Power transistor 81D is a U-phase lower arm power transistor, power transistor 81E is a V-phase lower arm power transistor, and power transistor 81F is a W-phase lower arm power transistor.
 すなわち、パワートランジスタ81Aは、U相の上アームのパワートランジスタであり、パワートランジスタ81Bは、V相の上アームのパワートランジスタであり、パワートランジスタ81Cは、W相の上アームのパワートランジスタである。また、パワートランジスタ81Dは、U相の下アームのパワートランジスタであり、パワートランジスタ81Eは、V相の下アームのパワートランジスタであり、パワートランジスタ81Fは、W相の下アームのパワートランジスタである。 In other words, power transistor 81A is the power transistor of the upper arm of U phase, power transistor 81B is the power transistor of the upper arm of V phase, and power transistor 81C is the power transistor of the upper arm of W phase. Also, power transistor 81D is the power transistor of the lower arm of U phase, power transistor 81E is the power transistor of the lower arm of V phase, and power transistor 81F is the power transistor of the lower arm of W phase.
 このように、パワートランジスタ81は、上アームの複数のパワートランジスタ81A-81Cと、下アームの複数のパワートランジスタ81D-81Fと、を有している。実施の形態1では、上アームと下アームとでスイッチング回数が多い方のパワートランジスタが、内蔵基板11の上面と、上面に対向する底面と、に分散して配置されている。また、実施の形態1では、上アームと下アームとでスイッチング回数が少ない方のパワートランジスタが、内蔵基板11の上面に配置されている。 In this way, the power transistor 81 has multiple power transistors 81A-81C in the upper arm and multiple power transistors 81D-81F in the lower arm. In the first embodiment, the power transistors in the upper arm and lower arm that switch more frequently are distributed and arranged on the top surface of the built-in substrate 11 and the bottom surface opposite the top surface. Also, in the first embodiment, the power transistor in the upper arm and lower arm that switches less frequently is arranged on the top surface of the built-in substrate 11.
 電動機1は、巻線群22に含まれる巻線として、U相巻線22Uと、V相巻線22Vと、W相巻線22Wと、を有している。U相巻線22Uは、パワートランジスタ81A,81Dに接続されている。V相巻線22Vは、パワートランジスタ81B,81Eに接続されている。W相巻線22Wは、パワートランジスタ81C,81Fに接続されている。 The motor 1 has a U-phase winding 22U, a V-phase winding 22V, and a W-phase winding 22W as windings included in the winding group 22. The U-phase winding 22U is connected to power transistors 81A and 81D. The V-phase winding 22V is connected to power transistors 81B and 81E. The W-phase winding 22W is connected to power transistors 81C and 81F.
 ゲートドライブ回路82は、制御部70から受信するスイッチング信号に従ってパワートランジスタ81A-81Fのオンおよびオフを制御する。 The gate drive circuit 82 controls the on and off of the power transistors 81A-81F according to the switching signal received from the control unit 70.
 巻線群22の周辺には、3つの磁気センサ50が配置されている。3つの磁気センサ50は、それぞれ回転子30の位置に対応する磁極位置信号を制御部70に出力する。 Three magnetic sensors 50 are arranged around the winding group 22. Each of the three magnetic sensors 50 outputs a magnetic pole position signal corresponding to the position of the rotor 30 to the control unit 70.
 また、パワートランジスタ81およびゲートドライブ回路82の少なくとも一方が高温になったとき、保護回路85は、パワートランジスタ81の全てのパワートランジスタ81A-81Fをオフして高温による素子破壊を抑制する。 In addition, when at least one of the power transistor 81 and the gate drive circuit 82 becomes too hot, the protection circuit 85 turns off all of the power transistors 81A-81F of the power transistor 81 to prevent element destruction due to high temperatures.
 過電流検出抵抗75は、パワートランジスタ81D-81Fが備える下アームスイッチに接続されており、保護回路85の一部である。保護回路85は、過電流保護、過熱保護、電源の過電圧および定電圧保護などを行う回路である。保護回路85は、過電流検出抵抗75の電圧を監視し、過電流検出抵抗75の電圧が特定値以上の電圧となった場合にパワートランジスタ81A-81Fを強制的にオフすることによって巻線群22に過電流が流れることを抑制し、過電流保護を実現する。過電流検出部である過電流検出抵抗75は、制御部70に内蔵されてもよいし、ゲートドライブ回路82に内蔵されてもよい。 Overcurrent detection resistor 75 is connected to the lower arm switches of power transistors 81D-81F, and is part of protection circuit 85. Protection circuit 85 is a circuit that performs overcurrent protection, overheat protection, and power supply overvoltage and constant voltage protection. Protection circuit 85 monitors the voltage of overcurrent detection resistor 75, and when the voltage of overcurrent detection resistor 75 reaches or exceeds a specific value, it forcibly turns off power transistors 81A-81F to prevent overcurrent from flowing through winding group 22, thereby realizing overcurrent protection. Overcurrent detection resistor 75, which is an overcurrent detection unit, may be built into control unit 70 or gate drive circuit 82.
 なお、内蔵基板11は、図示しない感温素子を備えていてもよい。この場合には、制御部70は、異常温度であることを示す信号を感温素子から受信すると、パワートランジスタ81A-81Fを強制的にオフにすることで過熱保護を実現する。 The built-in board 11 may also be equipped with a temperature sensor (not shown). In this case, when the control unit 70 receives a signal from the temperature sensor indicating an abnormal temperature, it forcibly turns off the power transistors 81A-81F to achieve overheat protection.
 制御部70は、ゲートドライブ回路82にスイッチング信号を出力することで、パワートランジスタ81A-81Fに対してパルス幅変調(Pulse Width Modulation:PWM)制御を行う。制御部70は、磁気センサ50から入力される磁極位置信号に基づいて、回転子30の磁極位置を推測し、推測した磁極位置から回転子30の回転数を算出する。制御部70は、算出した回転数を示す回転数信号を上位システムに出力する。 The control unit 70 performs pulse width modulation (PWM) control on the power transistors 81A-81F by outputting a switching signal to the gate drive circuit 82. The control unit 70 estimates the magnetic pole position of the rotor 30 based on the magnetic pole position signal input from the magnetic sensor 50, and calculates the rotation speed of the rotor 30 from the estimated magnetic pole position. The control unit 70 outputs a rotation speed signal indicating the calculated rotation speed to a higher-level system.
 ブラシレスDCモータである電動機1は、回転子30のマグネット40の磁極位置に応じて、三相の場合は6個のパワートランジスタ81A-81Fを適切なタイミングでスイッチングすることによって回転動力を得る。このスイッチングに用いられるスイッチング信号は制御部70が生成する。この電動機1の動作原理について説明する。 The electric motor 1, which is a brushless DC motor, obtains rotational power by switching six power transistors 81A-81F (in the case of a three-phase motor) at appropriate timing according to the magnetic pole position of the magnet 40 of the rotor 30. The switching signal used for this switching is generated by the control unit 70. The operating principle of this electric motor 1 will be explained below.
 電動機1では、制御部70が、磁気センサ50からの磁極位置信号、または巻線群22に流れる電流の電流値に基づいて、回転子30の磁極位置を推測する。制御部70は、回転子30の磁極位置および上位システムから出力される速度指令信号に応じてパワートランジスタ81A-81Fをスイッチングするためのスイッチング信号を生成する。ゲートドライブ回路82は、制御部70が生成したスイッチング信号に従ってパワートランジスタ81A-81Fのオンおよびオフをスイッチングする。 In the electric motor 1, the control unit 70 estimates the magnetic pole position of the rotor 30 based on the magnetic pole position signal from the magnetic sensor 50 or the current value of the current flowing through the winding group 22. The control unit 70 generates switching signals for switching the power transistors 81A-81F according to the magnetic pole position of the rotor 30 and the speed command signal output from the higher-level system. The gate drive circuit 82 switches the power transistors 81A-81F on and off according to the switching signals generated by the control unit 70.
 電動機1が用いる通電方式には、120°通電制御、150°通電制御、正弦波通電制御などがある。 The energization methods used by the motor 1 include 120° energization control, 150° energization control, and sine wave energization control.
 120°通電制御を一例として挙げると、6個のパワートランジスタ81A-81Fのオンとオフとの切り替えタイミングが、3個のホールICによる検出信号の各立ち上がりおよび立ち下がりと同じである。このため、120°通電制御では、制御部70は、クロックを必要としない組合せ回路で構成可能である。 Taking 120° energization control as an example, the timing at which the six power transistors 81A-81F are switched on and off is the same as the rising and falling edges of the detection signals from the three Hall ICs. For this reason, in 120° energization control, the control unit 70 can be configured as a combinational circuit that does not require a clock.
 一方、150°通電制御、正弦波通電制御、位相制御、センサレス制御など磁極位置の推定が必要な制御の場合、制御部70は、クロックを含む複雑なデジタル回路で構成される。磁極位置の推定では、一例では、3個のホールICによる検出信号の各立ち上がりおよび立ち下がりの間のタイミングが細かく推定される。 On the other hand, in the case of control that requires estimation of the magnetic pole position, such as 150° energization control, sinusoidal energization control, phase control, and sensorless control, the control unit 70 is composed of complex digital circuits including a clock. In one example of estimating the magnetic pole position, the timing between each rising and falling edge of the detection signals from three Hall ICs is precisely estimated.
 センサレス制御は、磁気センサ50を用いない制御である。センサレス制御では、電流検出抵抗、電流検出用トランスなどで検出された電流値から磁極位置を推定し制御が行われる。センサレス制御では、必要に応じて電流検出抵抗、電流検出用トランスなどで検出された信号がオペアンプなどを用いて増幅される場合もある。 Sensorless control is control that does not use a magnetic sensor 50. In sensorless control, the magnetic pole position is estimated from the current value detected by a current detection resistor, a current detection transformer, etc., and control is performed. In sensorless control, the signal detected by the current detection resistor, current detection transformer, etc. may be amplified using an operational amplifier, etc., as necessary.
 上述したように、制御部70は、パワートランジスタ81A-81Fに対するPWM制御にて巻線群22に印加する電圧を調整する。電動機1は、パワートランジスタ81のスイッチングによる損失を減らすため、上下アームの片側だけをスイッチングする場合がある。 As described above, the control unit 70 adjusts the voltage applied to the winding group 22 by PWM control of the power transistors 81A-81F. In order to reduce losses due to switching of the power transistors 81, the motor 1 may switch only one of the upper and lower arms.
 次に、電動機1における内蔵基板11の構成の詳細について説明する。上記したパワーIC80、ホールIC、ホール素子、オペアンプ、コンパレータ、レギュレータ、ダイオードなどの素子は、部品小型化による部品単体のコスト抑制のため、および基板実装コストの抑制のため面実装ICで構成される。面実装ICは、面実装素子の一例である。 Next, the configuration of the built-in board 11 in the electric motor 1 will be described in detail. The above-mentioned power IC 80, Hall IC, Hall element, operational amplifier, comparator, regulator, diode, and other elements are configured as surface-mounted ICs to reduce the cost of individual components by miniaturizing the components and to reduce the cost of mounting on the board. Surface-mounted ICs are an example of surface-mounted elements.
 上記したように、モールド固定子10は、一例では固定子20と内蔵基板11とを一体となるようにモールド樹脂12でインサート成形したものである。面実装ICを含む素子が実装された内蔵基板11は、モールド樹脂12と密着した状態にある。 As described above, in one example, the molded stator 10 is formed by insert molding the stator 20 and the built-in substrate 11 into one body using molded resin 12. The built-in substrate 11, on which elements including surface-mounted ICs are mounted, is in close contact with the molded resin 12.
 このように、モールド樹脂12にて一体成型された内蔵基板11において、スルーホールに挿入されたリード線を半田付けするSIP(Single Inline Packag)およびDIP(Dual Inline Package)のような挿入実装タイプのICと比較して、面実装ICでは、ヒートショック耐力が低下し、ヒートショック試験の規格を満足しない場合がある。特に、ヒートショックによる熱膨張および熱収縮によって面実装ICの周辺の内蔵基板11とモールド樹脂12との間に隙間が生じる場合には、ヒートショック耐力が低下する。内蔵基板11とモールド樹脂12との間に隙間が生じるのは、内蔵基板11とモールド樹脂12との間の密着力が弱いためである。また、内蔵基板11とモールド樹脂12との間に隙間が生じるのは、サイズの大きな素子の周囲、あるいはチップ抵抗の周囲であることが多い。ここで、サイズの大きな素子は、面実装ICのボディの内蔵基板11と対向する面の面積が12mm2以上の素子のことをいうものとする。また、面実装ICのボディの内蔵基板11と対向する面の面積が12mm2未満の素子は、サイズの小さな素子と称される。 In this way, in the built-in substrate 11 integrally molded with the molded resin 12, compared to an insert-mount type IC such as an SIP (Single Inline Package) or DIP (Dual Inline Package) in which lead wires inserted into through holes are soldered, the heat shock resistance of the surface-mounted IC is lowered and may not satisfy the standards of the heat shock test. In particular, when a gap occurs between the built-in substrate 11 and the molded resin 12 around the surface-mounted IC due to thermal expansion and thermal contraction caused by the heat shock, the heat shock resistance is lowered. The gap occurs between the built-in substrate 11 and the molded resin 12 because the adhesion between the built-in substrate 11 and the molded resin 12 is weak. Also, the gap occurs between the built-in substrate 11 and the molded resin 12 around a large-sized element or around a chip resistor in many cases. Here, a large-sized element refers to an element whose surface area facing the built-in substrate 11 of the body of the surface-mounted IC is 12 mm 2 or more. Moreover, an element whose surface area of the surface of the body of the surface-mounted IC facing the built-in substrate 11 is less than 12 mm 2 is called a small-sized element.
 サイズの小さな素子では、熱膨張および熱収縮が生じても、熱膨張および熱収縮の絶対値が小さいため、素子が内蔵基板11上に固定される半田部分に大きな応力が加わることがない。このため、サイズの小さな素子では、ヒートショック耐力の低下が問題になることは少ない。また、サイズの小さな素子を囲む領域において内蔵基板11とモールド樹脂12との間に隙間が存在したとしてもヒートショック耐力に大きな影響を与えないと考えられる。 In small-sized elements, even if thermal expansion and contraction occur, the absolute values of thermal expansion and contraction are small, so large stress is not applied to the solder portion where the element is fixed onto the built-in substrate 11. For this reason, reduced heat shock resistance is rarely an issue in small-sized elements. Also, even if there is a gap between the built-in substrate 11 and the molded resin 12 in the area surrounding the small-sized element, it is thought that this will not have a significant effect on the heat shock resistance.
 一方、サイズの大きな素子では、熱膨張および熱収縮の絶対値が大きくなるため、素子が内蔵基板11上に固定される半田部分に大きな応力が加わることになる。そして、サイズの大きな素子の周囲で内蔵基板11とモールド樹脂12との間に隙間が存在することで、ヒートショック耐力が低下する。サイズの大きな素子は、半田で内蔵基板11上に固定されているが、サイズの大きな素子の周囲の内蔵基板11とモールド樹脂12との密着によってもサイズの大きな素子の位置が固定されている。このため、サイズの大きな素子の周囲で内蔵基板11とモールド樹脂12との間に隙間が存在すると、サイズの大きな素子を固定する力が弱まり、ヒートショックによる熱膨張および熱収縮によって変位可能となってしまう。この結果、半田部分に熱膨張および熱収縮による大きな応力が加わることになり、クラックが発生してしまう。 On the other hand, for larger elements, the absolute values of thermal expansion and thermal contraction are large, so that large stress is applied to the solder portion where the element is fixed onto the built-in substrate 11. Furthermore, the presence of gaps between the built-in substrate 11 and the molded resin 12 around the large element reduces heat shock resistance. The large element is fixed onto the built-in substrate 11 with solder, but the position of the large element is also fixed by the close contact between the built-in substrate 11 and the molded resin 12 around the large element. Therefore, if there are gaps between the built-in substrate 11 and the molded resin 12 around the large element, the force fixing the large element is weakened, and the large element can be displaced by thermal expansion and thermal contraction due to heat shock. As a result, large stress is applied to the solder portion due to thermal expansion and thermal contraction, causing cracks.
 また、サイズの大きな素子でも、隣接するピンの間隔であるピン間隔が1mm以上の場合の方が、ピン間隔が1mm未満の場合よりもヒートショック耐力が低下する傾向にある。ピン間隔が広い方が、熱膨張および熱収縮による変位が大きくなるからである。 Also, even for large-sized elements, when the pin spacing between adjacent pins is 1 mm or more, the heat shock resistance tends to be lower than when the pin spacing is less than 1 mm. This is because the wider the pin spacing, the greater the displacement due to thermal expansion and contraction.
 図3は、実施の形態1に係る電動機を構成する内蔵基板の構成の一例を模式的に示す上面図である。図3の例では、内蔵基板11は、中心部に電動機1の回転軸31を通す厚さ方向に貫通した回転軸貫通孔35を有する円盤状の基板である。内蔵基板11は、プリント回路基板といわれる基板であり、絶縁材料で構成される板状部材であり、板状部材の表面または表面に加えて内部に配線が配置されたものである。配線が配置された板状部材の表面には、絶縁材料であるソルダーレジスト111が塗布され、面実装素子の実装位置には導電性材料のフットプリント112が配置される。フットプリント112は、内蔵基板11の配線と面実装素子のピンとを半田を介して接続する電極層である。内蔵基板11は、厚さ方向に貫通するスルーホールを有していてもよい。内蔵基板11の面実装素子が実装される領域は、素子実装領域と称される。素子実装領域は、面実装素子の全体と、面実装素子に対応して設けられるフットプリント112とを包含する領域であり、図3の例では矩形状の領域となっている。素子実装領域には、定められた面実装素子が実装される。面実装素子の一例は、能動素子であるパワーIC80等の面実装IC83、受動素子であるチップ抵抗84である。 3 is a top view showing a schematic example of the configuration of the built-in board constituting the electric motor according to the first embodiment. In the example of FIG. 3, the built-in board 11 is a disk-shaped board having a rotating shaft through hole 35 penetrating in the thickness direction through which the rotating shaft 31 of the electric motor 1 passes at the center. The built-in board 11 is a board called a printed circuit board, and is a plate-shaped member made of an insulating material, with wiring arranged on the surface of the plate-shaped member or inside in addition to the surface. Solder resist 111, which is an insulating material, is applied to the surface of the plate-shaped member on which the wiring is arranged, and a footprint 112 of a conductive material is arranged at the mounting position of the surface-mounted element. The footprint 112 is an electrode layer that connects the wiring of the built-in board 11 and the pin of the surface-mounted element via solder. The built-in board 11 may have a through hole penetrating in the thickness direction. The area of the built-in board 11 where the surface-mounted element is mounted is called the element mounting area. The element mounting area is an area that includes the entire surface mount element and the footprint 112 that is provided to correspond to the surface mount element, and is a rectangular area in the example of FIG. 3. A specified surface mount element is mounted in the element mounting area. Examples of surface mount elements are surface mount ICs 83 such as power ICs 80, which are active elements, and chip resistors 84, which are passive elements.
 内蔵基板11は、面実装素子を囲むように、内蔵基板11とモールド樹脂12との間に配置される密着層2を有する。密着層2は、モールド樹脂12で内蔵基板11を一体成型する際に、内蔵基板11とモールド樹脂12との間の密着力を高める層である。密着層2は、内蔵基板11の表面を構成するソルダーレジスト111とモールド樹脂12との間の密着力よりも、モールド樹脂12との間の密着力が高い、非絶縁性の材料によって構成される。つまり、密着層2は、内蔵基板11、特にソルダーレジスト111と密着性が高く、かつモールド樹脂12とも密着性が高い材料によって構成される。このような密着層2の一例は、シルクである。シルクは、内蔵基板11に面実装素子等の諸元等の文字およびマークを含む標識を印刷する材料である。シルクは、ソルダーレジスト111と密着性が高くなるようになっているので、モールド樹脂12に対しても同様に密着性が高くなるため、密着層2として好適である。密着層2の厚さは、特に限定されないが、数μm以上20μm以下程度であることが望ましい。 The built-in substrate 11 has an adhesion layer 2 disposed between the built-in substrate 11 and the molded resin 12 so as to surround the surface-mounted element. The adhesion layer 2 is a layer that enhances the adhesion between the built-in substrate 11 and the molded resin 12 when the built-in substrate 11 is integrally molded with the molded resin 12. The adhesion layer 2 is made of a non-insulating material that has a higher adhesion to the molded resin 12 than the adhesion between the solder resist 111 that constitutes the surface of the built-in substrate 11 and the molded resin 12. In other words, the adhesion layer 2 is made of a material that has a high adhesion to the built-in substrate 11, particularly the solder resist 111, and also has a high adhesion to the molded resin 12. An example of such an adhesion layer 2 is silk. Silk is a material that prints signs, including characters and marks of specifications of the surface-mounted element, on the built-in substrate 11. Silk is designed to have a high adhesion to the solder resist 111, and therefore has a similar high adhesion to the molded resin 12, making it suitable as the adhesion layer 2. The thickness of the adhesion layer 2 is not particularly limited, but it is desirable for it to be between several μm and 20 μm.
 密着層2は、面実装素子を囲むように配置されるが、内蔵基板11の製造の制約上、配置不可能な領域には配置されない。つまり、この明細書で「面実装素子を囲むように配置される」とは、内蔵基板11の製造の制約上、配置不可能な領域を除いた面実装素子を囲む領域に配置されることをいう。一例では、面実装素子の周囲の一部に、スルーホール、テストパッドなどの銅箔露出部がある場合には、銅箔露出部には密着層2は配置されず、途切れることになる。他の例では、面実装素子の周囲にマークおよび文字を含む標識がシルクによって形成されている場合には、標識には密着層2は配置されない。また、密着層2は、面実装素子の外形、面実装素子の周囲に存在する銅箔露出部などから決められた距離の範囲内には配置されない。決められた距離の一例は、1mmである。銅箔露出部は、導電層露出部に対応する。 The adhesion layer 2 is arranged so as to surround the surface mount element, but is not arranged in an area where it is not possible to arrange it due to manufacturing constraints of the built-in board 11. In other words, in this specification, "arranged so as to surround the surface mount element" means that it is arranged in an area surrounding the surface mount element, excluding areas where it is not possible to arrange it due to manufacturing constraints of the built-in board 11. In one example, if there is a copper foil exposed part such as a through hole or a test pad in a part around the surface mount element, the adhesion layer 2 is not arranged in the copper foil exposed part, and it is interrupted. In another example, if a sign including a mark and letters is formed by silk around the surface mount element, the adhesion layer 2 is not arranged on the sign. In addition, the adhesion layer 2 is not arranged within a range of a determined distance from the outer shape of the surface mount element, the copper foil exposed part around the surface mount element, etc. An example of the determined distance is 1 mm. The copper foil exposed part corresponds to the conductive layer exposed part.
 面実装素子を囲むように配置される密着層2の面積は、素子実装領域に配置されたフットプリント112の面積の総和以上であることが望ましい。これは、密着層2の面積がフットプリント112の面積の総和未満である場合には、面実装IC83、チップ抵抗84等の面実装素子の周囲において内蔵基板11とモールド樹脂12との間の密着力を高めることができないからである。つまり、ヒートショックに耐え得る密着力を実現することができないからである。密着層2の面積をフットプリント112の面積の総和以上とすることによって、面実装素子の周囲では、内蔵基板11とモールド樹脂12との間の密着力が高められ、内蔵基板11とモールド樹脂12との間の隙間の発生が抑制される。つまり、面実装素子は、内蔵基板11とモールド樹脂12との間で強固に固定されることになる。この結果、熱膨張および熱収縮が繰り返されたとしても、内蔵基板11とモールド樹脂12とは密着層2によって強固に固定される。これによって、面実装IC83は内蔵基板11とモールド樹脂12との間に固定されることになり、面実装IC83の電極であるピン832の破壊が抑制される。つまり、ヒートショック耐力を向上させることができる。 It is desirable that the area of the adhesion layer 2 arranged to surround the surface-mounted element is equal to or greater than the sum of the areas of the footprints 112 arranged in the element mounting area. This is because if the area of the adhesion layer 2 is less than the sum of the areas of the footprints 112, the adhesion between the built-in substrate 11 and the molded resin 12 around the surface-mounted elements such as the surface-mounted IC 83 and the chip resistor 84 cannot be increased. In other words, it is impossible to realize an adhesion that can withstand heat shock. By making the area of the adhesion layer 2 equal to or greater than the sum of the areas of the footprints 112, the adhesion between the built-in substrate 11 and the molded resin 12 around the surface-mounted element is increased, and the occurrence of gaps between the built-in substrate 11 and the molded resin 12 is suppressed. In other words, the surface-mounted element is firmly fixed between the built-in substrate 11 and the molded resin 12. As a result, even if thermal expansion and thermal contraction are repeated, the built-in substrate 11 and the molded resin 12 are firmly fixed by the adhesion layer 2. This fixes the surface-mounted IC 83 between the built-in substrate 11 and the molded resin 12, preventing damage to the pins 832, which are the electrodes of the surface-mounted IC 83. In other words, the heat shock resistance can be improved.
 なお、密着層2は、内蔵基板11とモールド樹脂12との間の密着力を高めるためのものであるので、線状に配置されるよりも帯状に配置されることが望ましい。つまり、密着層2を線状に配置した場合には、密着層2が内蔵基板11およびモールド樹脂12と接触する面積が小さいため、内蔵基板11とモールド樹脂12との間の密着力を所望の大きさとすることができない。面実装素子として面実装IC83を例に挙げると、面実装IC83のボディ831の外形の辺に垂直な方向における密着層2の長さおよびフットプリント112の長さを幅と称するものとすると、密着層2の幅は、フットプリント112の幅の1.5倍以上であることが望ましい。面実装素子がチップ抵抗84である場合も同様である。 The adhesion layer 2 is intended to increase the adhesion between the built-in substrate 11 and the molded resin 12, and is therefore preferably arranged in a strip rather than a line. In other words, if the adhesion layer 2 is arranged in a line, the contact area of the adhesion layer 2 with the built-in substrate 11 and the molded resin 12 is small, and the adhesion between the built-in substrate 11 and the molded resin 12 cannot be made as desired. Taking a surface-mounted IC 83 as an example of a surface-mounted element, if the length of the adhesion layer 2 in the direction perpendicular to the outer side of the body 831 of the surface-mounted IC 83 and the length of the footprint 112 are referred to as the width, it is desirable that the width of the adhesion layer 2 be 1.5 times or more the width of the footprint 112. The same applies when the surface-mounted element is a chip resistor 84.
 また、面実装IC83の矩形状のボディ831のピン832が設けられない辺に沿った領域では、ボディ831のピン832が設けられない辺の長さよりも長い領域に密着層2が、フットプリント112の幅の1.5倍以上の幅で設けられる。このように、実施の形態1では、面実装IC83のボディ831とフットプリント112とを除いた面実装IC83の周囲の領域に、密着層2が欠けることなく配置される。 Furthermore, in the region along the side of the rectangular body 831 of the surface mount IC 83 where the pins 832 are not provided, the adhesion layer 2 is provided in a region longer than the length of the side of the body 831 where the pins 832 are not provided, with a width at least 1.5 times the width of the footprint 112. In this way, in the first embodiment, the adhesion layer 2 is disposed without any gaps in the region around the surface mount IC 83 excluding the body 831 and footprint 112 of the surface mount IC 83.
 密着層2は、面実装素子の周囲に設けられるが、すべての面実装IC83の周囲に設けられてもよいし、定められたサイズ以上のボディ831を有する面実装IC83の周囲に設けられるようにしてもよい。上記したように、サイズの小さな面実装IC83の場合には、ヒートショックは大きな問題になることがないため、サイズの小さな面実装IC83の周囲には密着層2を配置せず、サイズの大きな面実装IC83の周囲に密着層2を設けてもよい。 The adhesion layer 2 is provided around the surface mount elements, but may be provided around all surface mount ICs 83, or may be provided around surface mount ICs 83 that have a body 831 of a specified size or larger. As described above, heat shock is not a major problem for small surface mount ICs 83, so the adhesion layer 2 may not be provided around small surface mount ICs 83, and may be provided around large surface mount ICs 83.
 あるいは、ホールICのようなピン832の数が3本以下のサイズの小さな面実装IC83に比して、ピン832の数が4本以上のサイズの大きな面実装IC83の方がヒートショック耐力が弱い傾向にある。このため、ピン832の数が4本以上ある面実装IC83の周囲に、密着層2を帯状に配置するようにしてもよい。また、ピン832の数が3本以下である面実装IC83の周囲には、密着層2は配置されなくてもよい。 Alternatively, larger surface mount ICs 83 with four or more pins 832 tend to have weaker heat shock resistance than smaller surface mount ICs 83 with three or fewer pins 832, such as Hall ICs. For this reason, the adhesion layer 2 may be arranged in a band around a surface mount IC 83 with four or more pins 832. Also, the adhesion layer 2 may not be arranged around a surface mount IC 83 with three or fewer pins 832.
 面実装素子が高圧対応の面実装IC83である場合には、隣接するピン間隔が一例では1mm以上と広いものがある。この場合には、図3の面実装IC83のように、隣接するピン832間の領域にも密着層2を塗布するとより効果的である。ピン間隔が広いとボディ831に対してピン832の数が少なるので、1つのピン832における熱膨張および熱収縮の絶対値が大きくなり、ピン832とフットプリント112とを接続する半田にかかる応力が大きくなる。この結果、隣接するピン間隔が1mm以上の広い面実装IC83では、ヒートショック耐力が低下する傾向にある。 When the surface mount element is a high-voltage compatible surface mount IC 83, the spacing between adjacent pins may be as wide as 1 mm or more in one example. In this case, it is more effective to apply adhesion layer 2 to the area between adjacent pins 832 as in the surface mount IC 83 in Figure 3. When the pin spacing is wide, the number of pins 832 is small relative to the body 831, so the absolute value of thermal expansion and thermal contraction of each pin 832 becomes large, and the stress on the solder connecting the pin 832 and the footprint 112 becomes large. As a result, surface mount ICs 83 with a wide spacing between adjacent pins of 1 mm or more tend to have reduced heat shock resistance.
 図4は、実施の形態1に係る電動機を構成する内蔵基板の面実装ICの実装状態の一例を示す図である。図4では、ボディ831aの一方の側面に配置されるピン832aの隣接するピン間隔は1mm未満であり、他方の側面に配置されるピン832bの隣接するピン間隔は1mm以上である面実装IC83Aを内蔵基板11に実装した例が示されている。図4に示されるように、隣接するピン間隔が1mm未満の場合には、密着層2を形成することができる最小幅などの製造の制約上、隣接するピン832a間に密着層2を形成することができない。一方、隣接するピン間隔が1mm以上の場合には、製造の制約上、密着層2を形成することが可能であるため、隣接するピン832b間にも密着層2Aが形成されている。 FIG. 4 is a diagram showing an example of a state in which a surface-mounted IC is mounted on a built-in substrate constituting an electric motor according to the first embodiment. FIG. 4 shows an example in which a surface-mounted IC 83A is mounted on a built-in substrate 11, in which the adjacent pin interval of the pins 832a arranged on one side of the body 831a is less than 1 mm, and the adjacent pin interval of the pins 832b arranged on the other side is 1 mm or more. As shown in FIG. 4, when the adjacent pin interval is less than 1 mm, due to manufacturing constraints such as the minimum width at which the adhesion layer 2 can be formed, it is not possible to form an adhesion layer 2 between adjacent pins 832a. On the other hand, when the adjacent pin interval is 1 mm or more, due to manufacturing constraints, it is possible to form an adhesion layer 2, so an adhesion layer 2A is also formed between adjacent pins 832b.
 図4に示される例では、隣接するピン間隔が1mm未満であるそれぞれのピン832aとフットプリント112とを接続する図示しない半田にかかる応力は、隣接するピン間隔が1mm以上であるそれぞれのピン832bとフットプリント112とを接続する半田にかかる応力よりも小さい。このため、隣接するピン832a間に密着層2が形成されていなくても、ピン832b付近の面実装IC83Aの周囲に配置される密着層2によって、内蔵基板11とモールド樹脂12との間がしっかりと固定される。このため、ヒートショック耐力を所望の値以上とすることができる。上記したように、隣接するピン間隔が1mm以上であるピン832bとフットプリント112とを接続する半田には、ピン間隔が1mm未満であるそれぞれのピン832aとフットプリント112とを接続する半田よりも大きい応力がかかるが、ピン832b間に配置された密着層2Aによって、内蔵基板11とモールド樹脂12との間の密着力が高められ、ヒートショック耐力を所望の値以上とすることができる。 In the example shown in FIG. 4, the stress applied to the solder (not shown) connecting each pin 832a with an adjacent pin interval of less than 1 mm to the footprint 112 is smaller than the stress applied to the solder connecting each pin 832b with an adjacent pin interval of 1 mm or more to the footprint 112. Therefore, even if the adhesion layer 2 is not formed between the adjacent pins 832a, the built-in substrate 11 and the molded resin 12 are firmly fixed by the adhesion layer 2 arranged around the surface-mounted IC 83A near the pin 832b. Therefore, the heat shock resistance can be made to a desired value or more. As described above, the solder connecting the pin 832b with an adjacent pin interval of 1 mm or more to the footprint 112 is subjected to a larger stress than the solder connecting each pin 832a with an adjacent pin interval of less than 1 mm to the footprint 112, but the adhesion layer 2A arranged between the pins 832b increases the adhesion between the built-in substrate 11 and the molded resin 12, and the heat shock resistance can be made to a desired value or more.
 面実装IC83Aのボディ831aの底面とフットプリント112との間に距離がある場合には、フットプリント112と面実装IC83Aのボディ831aと対向する部分の間にも密着層2を配置してもよい。 If there is a distance between the bottom surface of the body 831a of the surface-mounted IC 83A and the footprint 112, the adhesion layer 2 may also be disposed between the footprint 112 and the portion facing the body 831a of the surface-mounted IC 83A.
 図3に示されるように、面実装素子は、面実装IC83だけではなく、チップ抵抗84などである場合もある。図5は、チップ抵抗の構造の一例を模式的に示す断面図である。チップ抵抗84は、一方向に延在した板状のセラミック基板841と、セラミック基板841の上面に設けられる抵抗体842と、セラミック基板841の延在方向である長手方向の両端部に設けられる一対の電極843と、を有する。電極843は、セラミック基板841の長手方向の端部で、セラミック基板841の上面の抵抗体842の端部と接触し、セラミック基板841の下面の定められた位置まで、セラミック基板841の表面と密着して配置される。すなわち、電極843は、セラミック基板841の長手方向の端部の側面と上面および下面の一部とをC字状に覆うように設けられる。 As shown in FIG. 3, the surface mount element may be not only a surface mount IC 83 but also a chip resistor 84. FIG. 5 is a cross-sectional view showing an example of the structure of a chip resistor. The chip resistor 84 has a plate-shaped ceramic substrate 841 extending in one direction, a resistor 842 provided on the upper surface of the ceramic substrate 841, and a pair of electrodes 843 provided at both ends in the longitudinal direction, which is the extension direction of the ceramic substrate 841. The electrode 843 contacts the end of the resistor 842 on the upper surface of the ceramic substrate 841 at the end in the longitudinal direction of the ceramic substrate 841, and is arranged in close contact with the surface of the ceramic substrate 841 up to a predetermined position on the lower surface of the ceramic substrate 841. In other words, the electrode 843 is provided so as to cover the side of the end in the longitudinal direction of the ceramic substrate 841 and a part of the upper surface and lower surface in a C-shape.
 図5に示されるように、チップ抵抗84は、長手方向の両端部の側面に電極843が設けられ、長手方向に沿った側面には電極は設けられていない。したがって、チップコンデンサなどの長手方向に沿った側面にも電極が設けられている受動素子と比較すると、チップ抵抗84は、電極843が剥がれやすい。 As shown in FIG. 5, the chip resistor 84 has electrodes 843 on the side surfaces at both ends in the longitudinal direction, and no electrodes are provided on the side surfaces along the longitudinal direction. Therefore, compared to passive elements such as chip capacitors that have electrodes on the side surfaces along the longitudinal direction, the electrodes 843 of the chip resistor 84 are more likely to peel off.
 図6は、内蔵基板とモールド樹脂との間に隙間が生じた場合のチップ抵抗の状態の一例を模式的に示す断面図である。図6は、図5の領域Aの部分を拡大した断面図である。図6に示されるように、チップ抵抗84の上面において、抵抗体842と電極843との間に隙間845が空いている場合がある。このようなチップ抵抗84を実装した内蔵基板11をインサート成形した場合には、この隙間845にモールド樹脂12が入り込んでしまう。このような場合に、ヒートショックの熱膨張および熱収縮によって、チップ抵抗84の抵抗体842と電極843との間の隙間845に入り込んだモールド樹脂12が持ち上がる。この結果、隙間845に入り込んだモールド樹脂12は、電極843に引っかかった状態となり、電極843も上に持ち上げられることで、抵抗体842から剥がれてしまい、抵抗が電気的にオープンとなってしまう場合がある。 6 is a cross-sectional view showing an example of the state of a chip resistor when a gap occurs between the built-in substrate and the molded resin. FIG. 6 is a cross-sectional view showing an enlarged view of region A in FIG. 5. As shown in FIG. 6, a gap 845 may be formed between the resistor 842 and the electrode 843 on the upper surface of the chip resistor 84. When the built-in substrate 11 on which such a chip resistor 84 is mounted is insert-molded, the molded resin 12 enters the gap 845. In such a case, the molded resin 12 that has entered the gap 845 between the resistor 842 and the electrode 843 of the chip resistor 84 is lifted up by thermal expansion and contraction of the heat shock. As a result, the molded resin 12 that has entered the gap 845 becomes caught by the electrode 843, and the electrode 843 is also lifted up, causing it to peel off from the resistor 842, and the resistor may become electrically open.
 面実装IC83の場合と同様にチップ抵抗84を囲むように密着層2を帯状に塗布することによって、チップ抵抗84の周囲における内蔵基板11とモールド樹脂12との密着度が高くなり、内蔵基板11とモールド樹脂12との間に隙間845が生じにくくなる。この結果、チップ抵抗84の抵抗体842と電極843との間の隙間845にモールド樹脂12が入り込んでしまう場合であっても、チップ抵抗84の周囲では、モールド樹脂12が内蔵基板11と密着している状態にあるので、モールド樹脂12が内蔵基板11から離れる方向に動くことがない。この結果、チップ抵抗84の電極843の剥がれによる電気的なオープンの発生を抑制することができる。 By applying the adhesion layer 2 in a strip shape so as to surround the chip resistor 84, as in the case of the surface mount IC 83, the degree of adhesion between the built-in substrate 11 and the molded resin 12 around the chip resistor 84 is increased, and gaps 845 are less likely to occur between the built-in substrate 11 and the molded resin 12. As a result, even if the molded resin 12 gets into the gaps 845 between the resistor 842 and the electrodes 843 of the chip resistor 84, the molded resin 12 is in close contact with the built-in substrate 11 around the chip resistor 84, so the molded resin 12 does not move in a direction away from the built-in substrate 11. As a result, it is possible to suppress the occurrence of electrical open circuits caused by peeling of the electrodes 843 of the chip resistor 84.
 なお、チップ抵抗84の周囲の一部には、スルーホール、テストパッドなどの銅箔露出部がある場合もある。このように、チップ抵抗84の周囲に存在する銅箔露出部には密着層2は配置されない。つまり、密着層2は途切れる部分があっても、問題はない。また、チップ抵抗84の場合にも、チップ抵抗84の周囲の密着層2の面積が、チップ抵抗84の素子実装領域におけるフットプリント112の面積の総和以上であると効果的である。 In addition, there may be exposed copper foil areas such as through holes and test pads around the chip resistor 84. In this way, the adhesion layer 2 is not disposed on the exposed copper foil areas around the chip resistor 84. In other words, there is no problem even if the adhesion layer 2 has some discontinuous areas. Also, in the case of the chip resistor 84, it is effective if the area of the adhesion layer 2 around the chip resistor 84 is equal to or greater than the sum of the areas of the footprints 112 in the element mounting area of the chip resistor 84.
 また、チップ抵抗84はサイズ小さくなると電極843が剥がれやすく、特に長辺が1.0mmであり短辺が0.5mmである1005サイズと呼ばれるサイズ以下のチップ抵抗84では非常に剥がれやすい傾向にある。このため、チップ抵抗84の場合には、1005サイズ以下のチップ抵抗84の周囲に密着層2を配置することが望ましい。もちろん、1005サイズより大きいチップ抵抗84の周囲に密着層2を配置しても問題はない。 In addition, the electrodes 843 tend to peel off easily as the chip resistor 84 becomes smaller, and this tendency is particularly strong in chip resistors 84 that are smaller than the so-called 1005 size, which has a long side of 1.0 mm and a short side of 0.5 mm. For this reason, in the case of chip resistors 84, it is desirable to place an adhesion layer 2 around chip resistors 84 that are 1005 size or smaller. Of course, there is no problem with placing an adhesion layer 2 around chip resistors 84 that are larger than the 1005 size.
 以上のように、密着層2は、面実装素子の周りに沿って、内蔵基板11の製造の制約上配置できない領域を除いて、帯状に配置される。また、隣接するピン間隔が1mm以上である場合には、制約がない限り、ピン832bとピン832bとの間の領域にも密着層2Aが配置される。 As described above, the adhesion layer 2 is arranged in a band around the surface-mounted element, except in areas where it cannot be arranged due to manufacturing constraints on the built-in substrate 11. Furthermore, if the spacing between adjacent pins is 1 mm or more, the adhesion layer 2A is also arranged in the areas between the pins 832b, unless there are constraints.
 図7は、実施の形態1に係る電動機を構成する内蔵基板に素子が実装された状態の他の例を模式的に示す上面図である。図3では、密着層2は、面実装IC83およびチップ抵抗84を含む面実装素子の周囲に配置される例を示したが、図7では、内蔵基板11の面実装素子の素子実装領域を含む全面に密着層2が配置される。この場合にも、上記したように、スルーホール、テストパッドなどの銅箔露出部には密着層2は配置されない。このように、内蔵基板11上での密着層2を配置するエリアを多くすることで、内蔵基板11とモールド樹脂12との間の密着度をより高めることが可能となり、内蔵基板11とモールド樹脂12との間に挟まれる面実装素子をより強固に固定することができる。 FIG. 7 is a top view showing another example of a state in which elements are mounted on the built-in substrate constituting the electric motor according to the first embodiment. In FIG. 3, the adhesion layer 2 is arranged around the surface-mounted elements including the surface-mounted IC 83 and the chip resistor 84, but in FIG. 7, the adhesion layer 2 is arranged over the entire surface of the built-in substrate 11, including the element mounting area of the surface-mounted elements. In this case, as described above, the adhesion layer 2 is not arranged on the exposed copper foil areas such as through holes and test pads. In this way, by increasing the area on the built-in substrate 11 where the adhesion layer 2 is arranged, it is possible to further increase the adhesion between the built-in substrate 11 and the molded resin 12, and the surface-mounted elements sandwiched between the built-in substrate 11 and the molded resin 12 can be more firmly fixed.
 密着層2は、一例では上記したようにシルクで構成することができる。密着層2をシルクで構成した場合には、面実装部品の諸元、実装部品の配置方向などを示す標識を密着層2に持たせることができる。この場合には、内蔵基板11の全面に配置されたシルクに、標識を抜き文字として形成すればよい。 As an example, the adhesion layer 2 can be made of silk as described above. When the adhesion layer 2 is made of silk, it can have markings on it that indicate the specifications of the surface mounted components, the arrangement direction of the mounted components, and the like. In this case, the markings can be formed as cut-out characters on the silk placed over the entire surface of the built-in substrate 11.
 また、シルクの材質によっては、アメリカ保険業者安全試験所(Underwriters Laboratories Inc.:UL)が策定する製品安全規格であるUL規格などによって塗布面積に制約がある。図8は、実施の形態1に係る電動機を構成する内蔵基板に素子が実装されていない状態の他の例を模式的に示す上面図である。図8の例では、内蔵基板11の素子実装領域には密着層2であるシルクは配置されていない。すなわち、内蔵基板11のうち、面実装IC83のボディ831の対向箇所3Aと、チップ抵抗84のボディの対向箇所3Bとには、シルクは配置されていない。チップ抵抗84のボディは、セラミック基板841に対応する。 Also, depending on the material of the silk, there are restrictions on the application area due to the UL standard, which is a product safety standard established by Underwriters Laboratories Inc. (UL). Fig. 8 is a top view showing another example of a state in which no elements are mounted on the built-in substrate constituting the electric motor according to the first embodiment. In the example of Fig. 8, silk, which is the adhesion layer 2, is not arranged in the element mounting area of the built-in substrate 11. That is, silk is not arranged on the built-in substrate 11 at the facing portion 3A of the body 831 of the surface-mounted IC 83 and the facing portion 3B of the body of the chip resistor 84. The body of the chip resistor 84 corresponds to the ceramic substrate 841.
 面実装素子のボディと対向する部分など、モールド樹脂12と接触しない部分にはシルクを配置してもヒートショック耐力の向上効果はない。このため、シルクの塗布面積に制約がある場合には、図8に示されるように、面実装素子のボディと対向する部分にはシルクを塗布しないようにしてもよい。また、図3に示したように、ヒートショック耐力が低い面実装素子から離れた位置にはシルクを塗布しないようにして、塗布面積の制約を回避してもよい。 Even if silk is placed in areas that do not come into contact with the molded resin 12, such as the area facing the body of the surface-mounted element, there is no effect of improving heat shock resistance. For this reason, if there are restrictions on the area where silk can be applied, as shown in Figure 8, it is possible not to apply silk to the area facing the body of the surface-mounted element. In addition, as shown in Figure 3, restrictions on the application area can be avoided by not applying silk to positions away from the surface-mounted element, which has low heat shock resistance.
 密着層2は、スクリーン印刷法などの方法によって内蔵基板11の表面の定められた位置に印刷される。内蔵基板11は、一端的なプリント回路基板であり、銅箔露出部、フットプリント112等を除いた部分には、ソルダーレジスト111が塗布されている。密着層2が印刷された内蔵基板11に面実装素子が実装される。面実装素子が実装された内蔵基板11は、固定子20など電動機1を構成する部材とともにモールド樹脂12で一体成型される。 The adhesion layer 2 is printed at a predetermined position on the surface of the built-in substrate 11 by a method such as screen printing. The built-in substrate 11 is a typical printed circuit board, and solder resist 111 is applied to the area excluding the exposed copper foil area, footprint 112, etc. Surface mount elements are mounted on the built-in substrate 11 on which the adhesion layer 2 is printed. The built-in substrate 11 on which the surface mount elements are mounted is integrally molded with the stator 20 and other components that constitute the electric motor 1 using molded resin 12.
 特許文献1では、ホールICのボディとパッドとを含む矩形状の領域の周囲を囲むように、第1模様のシルクが形成されている。第1模様のシルクの幅は、第1模様に囲まれるパッドの長手方向の長さの1/7以下程度の大きさとなっている。これは、半田が第1模様を超えて外部に流れ出さないようにする堤防として機能させるためである。このようなパッドの長手方向の長さに比して十分に小さい幅のシルクをホールICの周囲に配置したとしても、制御基板とモールド樹脂との間の密着性を高める効果は非常に小さい。したがって、特許文献1で、ホールICをパワーIC等のサイズの大きな面実装ICに置き換えた場合には、ヒートショックによって制御基板とモールド樹脂との間に隙間が生じてしまう可能性が高い。 In Patent Document 1, silk with a first pattern is formed so as to surround a rectangular area including the body and pad of the Hall IC. The width of the silk with the first pattern is about 1/7 or less of the longitudinal length of the pad surrounded by the first pattern. This is to allow it to function as a dike that prevents the solder from flowing out beyond the first pattern. Even if silk with a width sufficiently small compared to the longitudinal length of such a pad is placed around the Hall IC, the effect of increasing the adhesion between the control board and the molded resin is very small. Therefore, in Patent Document 1, if the Hall IC is replaced with a large surface-mounted IC such as a power IC, there is a high possibility that a gap will occur between the control board and the molded resin due to heat shock.
 一方、実施の形態1では、モールド樹脂12が接触する側の内蔵基板11の面実装素子の周囲に密着層2を配置して、内蔵基板11をモールド樹脂12で一体成型する。密着層2は、内蔵基板11とモールド樹脂12との間の密着性を高めるため、密着層2がない場合に比して、内蔵基板11とモールド樹脂12との間の密着力を高めることができる。この結果、面実装素子の周囲における内蔵基板11とモールド樹脂12との間がしっかりと固定され、両者の間に隙間が生じにくくなり、面実装素子が内蔵基板11とモールド樹脂12との間に固定されることになる。そして、熱膨張および熱収縮が繰り返された場合でも、面実装素子が内蔵基板11とモールド樹脂12との間で固定されているために、面実装素子とフットプリント112との間を接続する半田にクラックが発生してしまうことを抑え、ヒートショック耐力を向上させることができる。 On the other hand, in the first embodiment, the adhesion layer 2 is disposed around the surface-mounted element of the built-in substrate 11 on the side where the molded resin 12 comes into contact, and the built-in substrate 11 is integrally molded with the molded resin 12. The adhesion layer 2 enhances the adhesion between the built-in substrate 11 and the molded resin 12, and therefore the adhesion between the built-in substrate 11 and the molded resin 12 can be enhanced compared to the case where the adhesion layer 2 is not present. As a result, the built-in substrate 11 and the molded resin 12 are firmly fixed around the surface-mounted element, and gaps are unlikely to occur between the two, and the surface-mounted element is fixed between the built-in substrate 11 and the molded resin 12. Even if thermal expansion and thermal contraction are repeated, the surface-mounted element is fixed between the built-in substrate 11 and the molded resin 12, so that the occurrence of cracks in the solder connecting the surface-mounted element and the footprint 112 can be suppressed, and the heat shock resistance can be improved.
 このように、実施の形態1に係る電動機1は、回転子30と、回転子30の外周に設けられる固定子20と、回転子30の駆動を制御し、面実装素子が実装される内蔵基板11と、内蔵基板11と一体成型したモールド樹脂12と、を備え、内蔵基板11は、面実装素子を囲むように、内蔵基板11とモールド樹脂12との間に配置される密着層2を有し、密着層2の面積は、面実装素子が実装される領域である素子実装領域に配置され、面実装素子の電極と半田を介して接続される電極層であるフットプリント112の総面積以上であるようにした。これによって、モールド樹脂12でモールドされた内蔵基板11の電極層と面実装素子の電極とを接続する半田へのヒートショックによるクラックの発生を従来に比して抑制することができるという効果を有する。 In this way, the electric motor 1 according to the first embodiment includes a rotor 30, a stator 20 provided on the outer periphery of the rotor 30, an internal substrate 11 that controls the drive of the rotor 30 and on which surface-mounted elements are mounted, and a molded resin 12 that is integrally molded with the internal substrate 11. The internal substrate 11 has an adhesion layer 2 that is disposed between the internal substrate 11 and the molded resin 12 so as to surround the surface-mounted elements, and the area of the adhesion layer 2 is arranged in the element mounting area, which is the area in which the surface-mounted elements are mounted, and is greater than or equal to the total area of the footprint 112, which is an electrode layer that is connected to the electrodes of the surface-mounted elements via solder. This has the effect of suppressing the occurrence of cracks due to heat shock in the solder that connects the electrode layer of the internal substrate 11 molded with the molded resin 12 to the electrodes of the surface-mounted elements, compared to the conventional case.
実施の形態2.
 図9は、実施の形態2に係る電動機の構成の一例を模式的に示す断面図である。なお、実施の形態1と同一の構成要素には同一の符号を付して、その詳細な説明を省略する。図9に示される電動機1Aは、実施の形態1で説明した内蔵基板11と、モールド樹脂12と、固定子鉄心21および巻線群22を有する固定子20と、回転軸31と、マグネット40と、パワーIC80と、ヒートシンク6と、を有する。
Embodiment 2.
Fig. 9 is a cross-sectional view showing a schematic example of the configuration of an electric motor according to embodiment 2. The same components as those in embodiment 1 are given the same reference numerals, and detailed description thereof will be omitted. The electric motor 1A shown in Fig. 9 has the built-in substrate 11, molded resin 12, stator 20 having stator core 21 and winding group 22, rotating shaft 31, magnet 40, power IC 80, and heat sink 6, which are described in embodiment 1.
 ヒートシンク6は、より放熱性を向上させるために設けられ、熱を放散させる。ヒートシンク6は、アルミニウムなどの金属によって形成される。ヒートシンク6は、モールド樹脂12を介して内蔵基板11に対して固定子20とは反対側に配置される。ヒートシンク6は、内蔵基板11とモールド樹脂12にて一体成型されてもよいし、内蔵基板11とモールド樹脂12とを一体成型した後にヒートシンク6が取り付けられてもよい。一体成型後にヒートシンク6を取り付ける場合には、モールド樹脂12との接触熱抵抗を下げるため、ヒートシンク6とモールド樹脂12との間に熱伝導シートまたは熱伝導グリスを配置することが望ましい。 The heat sink 6 is provided to further improve heat dissipation and dissipates heat. The heat sink 6 is made of a metal such as aluminum. The heat sink 6 is placed on the side of the built-in substrate 11 opposite the stator 20 via the molded resin 12. The heat sink 6 may be integrally molded with the built-in substrate 11 and the molded resin 12, or the heat sink 6 may be attached after the built-in substrate 11 and the molded resin 12 are integrally molded. When attaching the heat sink 6 after integral molding, it is desirable to place a thermally conductive sheet or thermally conductive grease between the heat sink 6 and the molded resin 12 in order to reduce the contact thermal resistance with the molded resin 12.
 実施の形態2では、ヒートシンク6を内蔵基板11に対して固定子20と反対側に設けるようにした。これによって、内蔵基板11における放熱性を向上させることができ、内蔵基板11とモールド樹脂12との間のヒートショック耐力を向上させることができる。 In the second embodiment, the heat sink 6 is provided on the side of the built-in substrate 11 opposite the stator 20. This improves the heat dissipation performance of the built-in substrate 11 and improves the heat shock resistance between the built-in substrate 11 and the molded resin 12.
実施の形態3.
 図10は、実施の形態3にかかる空気調和機の構成の一例を模式的に示す図である。エアコンディショナである空気調和機200は、室内機210と、室内機210に接続される室外機220と、を備えている。室内機210は、実施の形態1で説明した電動機1または実施の形態2で説明した電動機1Aと、室内機基板211と、図示しない室内機用送風機と、を有している。室外機220は、室外機用送風機223を有している。
Embodiment 3.
10 is a diagram showing a schematic diagram of an example of the configuration of an air conditioner according to embodiment 3. An air conditioner 200 includes an indoor unit 210 and an outdoor unit 220 connected to the indoor unit 210. The indoor unit 210 includes the motor 1 described in embodiment 1 or the motor 1A described in embodiment 2, an indoor unit board 211, and an indoor unit blower (not shown). The outdoor unit 220 includes an outdoor unit blower 223.
 室外機用送風機223および室内機用送風機は、それぞれ駆動源として実施の形態1で説明した電動機1または実施の形態2で説明した電動機1Aを内蔵している。特に、空気調和機200が業務用である場合には、高出力が求められ高い放熱性能が求められるので、実施の形態1,2で説明した電動機1,1Aが適用されることで放熱効果が大きくなる。 The outdoor unit blower 223 and the indoor unit blower each incorporate the electric motor 1 described in embodiment 1 or the electric motor 1A described in embodiment 2 as their drive source. In particular, when the air conditioner 200 is for commercial use, high output and high heat dissipation performance are required, so the application of the electric motors 1 and 1A described in embodiments 1 and 2 increases the heat dissipation effect.
 なお、電動機1,1Aは、空気調和機200の他にも、換気扇、家電機器、工作機などに搭載して利用することができる。 In addition to the air conditioner 200, the electric motors 1 and 1A can also be mounted and used in ventilation fans, home appliances, machine tools, etc.
 このように実施の形態3によれば、実施の形態1,2で説明した電動機1,1Aが空気調和機200に適用されるので、内蔵基板11の温度上昇を大きく抑制することができる。 In this way, according to the third embodiment, the electric motors 1 and 1A described in the first and second embodiments are applied to the air conditioner 200, so that the temperature rise of the built-in board 11 can be significantly suppressed.
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configurations shown in the above embodiments are merely examples, and may be combined with other known technologies, or the embodiments may be combined with each other. In addition, parts of the configurations may be omitted or modified without departing from the spirit of the invention.
 1,1A 電動機、2,2A 密着層、3A,3B 対向箇所、6 ヒートシンク、10 モールド固定子、11 内蔵基板、12 モールド樹脂、13 リード線、14 リード口出し部、20 固定子、21 固定子鉄心、22 巻線群、22U U相巻線、22V V相巻線、22W W相巻線、23 インシュレータ、30 回転子、31 回転軸、32 回転子絶縁部、33 出力側軸受、34 反出力側軸受、35 回転軸貫通孔、40 マグネット、41 接続点、50 磁気センサ、60 ブラケット、61 圧入部、70 制御部、75 過電流検出抵抗、77 高圧電源、78 低圧電源、79A,79B,79C グランド、80 パワーIC、81,81A-81F パワートランジスタ、82 ゲートドライブ回路、83,83A 面実装IC、84 チップ抵抗、85 保護回路、111 ソルダーレジスト、112 フットプリント、200 空気調和機、210 室内機、211 室内機基板、220 室外機、223 室外機用送風機、831,831a ボディ、832,832a,832b ピン、841 セラミック基板、842 抵抗体、843 電極、845 隙間。 1, 1A electric motor, 2, 2A adhesive layer, 3A, 3B opposing parts, 6 heat sink, 10 molded stator, 11 built-in board, 12 molded resin, 13 lead wire, 14 lead outlet, 20 stator, 21 stator core, 22 winding group, 22U U-phase winding, 22V V-phase winding, 22W W-phase winding, 23 insulator, 30 rotor, 31 rotating shaft, 32 rotor insulation part, 33 output side bearing, 34 anti-output side bearing, 35 rotating shaft through hole, 40 magnet, 41 connection point, 50 magnetic sensor, 60 bracket, 61 press-fit part, 70 control part, 75 Overcurrent detection resistor, 77 high voltage power supply, 78 low voltage power supply, 79A, 79B, 79C ground, 80 power IC, 81, 81A-81F power transistor, 82 gate drive circuit, 83, 83A surface mount IC, 84 chip resistor, 85 protection circuit, 111 solder resist, 112 footprint, 200 air conditioner, 210 indoor unit, 211 indoor unit board, 220 outdoor unit, 223 outdoor unit blower, 831, 831a body, 832, 832a, 832b pin, 841 ceramic board, 842 resistor, 843 electrode, 845 gap.

Claims (9)

  1.  回転子と、
     前記回転子の外周に設けられる固定子と、
     前記回転子の駆動を制御し、面実装素子が実装される制御基板と、
     前記制御基板と一体成型したモールド樹脂と、
     を備え、
     前記制御基板は、前記面実装素子を囲むように、前記制御基板と前記モールド樹脂との間に配置される密着層を有し、
     前記密着層の面積は、前記面実装素子が実装される領域である素子実装領域に配置され、前記面実装素子の電極と半田を介して接続される電極層の総面積以上である電動機。
    A rotor;
    A stator provided on an outer periphery of the rotor;
    a control board for controlling the driving of the rotor and on which surface mount devices are mounted;
    a mold resin integrally molded with the control board;
    Equipped with
    the control board has an adhesion layer disposed between the control board and the molding resin so as to surround the surface-mounted device;
    An electric motor in which the area of the adhesion layer is greater than or equal to the total area of electrode layers that are disposed in an element mounting area, which is an area where the surface mount element is mounted, and are connected to the electrodes of the surface mount element via solder.
  2.  前記面実装素子は、複数のピンを有する面実装集積回路であり、
     前記密着層は、隣接する前記ピンの間隔が1mm以上である場合に、前記隣接するピン間にも配置される請求項1に記載の電動機。
    the surface mount device is a surface mount integrated circuit having a plurality of pins;
    The electric motor according to claim 1 , wherein the adhesion layer is also disposed between the adjacent pins when the interval between the adjacent pins is 1 mm or more.
  3.  前記面実装素子は、長手方向の両端に電極を有するチップ抵抗である請求項1に記載の電動機。 The electric motor according to claim 1, wherein the surface-mounted element is a chip resistor having electrodes on both longitudinal ends.
  4.  前記密着層は、前記制御基板の全面に配置される請求項1から3のいずれか1つに記載の電動機。 The electric motor according to any one of claims 1 to 3, wherein the adhesion layer is disposed over the entire surface of the control board.
  5.  前記密着層は、前記面実装素子のボディと対向する部分以外の前記制御基板の全面に配置される請求項1から3のいずれか1つに記載の電動機。 The electric motor according to any one of claims 1 to 3, wherein the adhesion layer is disposed on the entire surface of the control board except for the portion facing the body of the surface-mounted element.
  6.  前記密着層は、シルクである請求項1から5のいずれか1つに記載の電動機。 The electric motor according to any one of claims 1 to 5, wherein the adhesive layer is silk.
  7.  前記密着層は、前記面実装素子の周囲の前記密着層に形成されるマークおよび文字を含む標識、導電層露出部、前記面実装素子のボディと対向し前記モールド樹脂と接しない位置には配置されない請求項1から6のいずれか1つに記載の電動機。 The electric motor according to any one of claims 1 to 6, wherein the adhesive layer is not disposed on signs including marks and letters formed on the adhesive layer around the surface mount element, on exposed conductive layer portions, or in a position facing the body of the surface mount element and not in contact with the molded resin.
  8.  熱を放散させるヒートシンクをさらに備え、
     前記ヒートシンクは、前記モールド樹脂を介して、前記制御基板に対して前記固定子とは反対側に配置される請求項1から7のいずれか1つに記載の電動機。
    Further comprising a heat sink for dissipating heat;
    The electric motor according to claim 1 , wherein the heat sink is disposed on an opposite side of the control board from the stator, with the molding resin interposed therebetween.
  9.  請求項1から8のいずれか1つに記載の電動機を備える空気調和機。 An air conditioner equipped with an electric motor according to any one of claims 1 to 8.
PCT/JP2023/012616 2023-03-28 2023-03-28 Electric motor and air conditioner WO2024201738A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/012616 WO2024201738A1 (en) 2023-03-28 2023-03-28 Electric motor and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/012616 WO2024201738A1 (en) 2023-03-28 2023-03-28 Electric motor and air conditioner

Publications (1)

Publication Number Publication Date
WO2024201738A1 true WO2024201738A1 (en) 2024-10-03

Family

ID=92903553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012616 WO2024201738A1 (en) 2023-03-28 2023-03-28 Electric motor and air conditioner

Country Status (1)

Country Link
WO (1) WO2024201738A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010123914A (en) * 2008-10-20 2010-06-03 Denso Corp Electronic control device
JP2016058453A (en) * 2014-09-05 2016-04-21 三菱電機株式会社 Wiring board, motor, electrical apparatus and air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010123914A (en) * 2008-10-20 2010-06-03 Denso Corp Electronic control device
JP2016058453A (en) * 2014-09-05 2016-04-21 三菱電機株式会社 Wiring board, motor, electrical apparatus and air conditioner

Similar Documents

Publication Publication Date Title
EP2424079B1 (en) Motor and electric apparatus and method for manufacturing motor
EP3014747B1 (en) A control module for an electric motor or generator
US10136555B2 (en) Power conversion apparatus having a metal plate for heat dissipation
KR940010066B1 (en) Brushless motor incorporating an integrated circuit having a 0ne-chipped peripheral circuit
US10461611B2 (en) Electromechanical motor unit
JP4682985B2 (en) Brushless DC motor and electric device equipped with the same
EP1571707A2 (en) Semiconductor device temperature detection method and power conversion apparatus
JP2017103922A (en) Power supply unit-integrated rotary electric machine
JP2011083063A (en) Drive controller and motor unit
WO2024201738A1 (en) Electric motor and air conditioner
JP2002112516A (en) Brushless motor
JP5296817B2 (en) Drive circuit built-in motor, blower and equipment
WO2024047863A1 (en) Electric motor, air conditioner, and control board
JP4904851B2 (en) Semiconductor device with overvoltage protection circuit
CN111052575B (en) Motor and air conditioner provided with same
WO2022264407A1 (en) Electric motor, air conditioner, and control board
WO2023157175A1 (en) Electric motor and air-conditioning device
JP7337273B2 (en) Power control device, electric motor with power control device, and air conditioner with electric motor
JP7204042B2 (en) Electric motors and air conditioners equipped with electric motors
WO2021220427A1 (en) Electric motor and air conditioner
JP7003294B2 (en) Motor and air conditioner equipped with it
GB2579851A (en) A stator for an electric motor or generator
WO2024142213A1 (en) Electronic control device and electric power steering device
WO2023135743A1 (en) Electric motor, air conditioner, and control board
JPH1066309A (en) Motor drive