WO2023157175A1 - Electric motor and air-conditioning device - Google Patents
Electric motor and air-conditioning device Download PDFInfo
- Publication number
- WO2023157175A1 WO2023157175A1 PCT/JP2022/006374 JP2022006374W WO2023157175A1 WO 2023157175 A1 WO2023157175 A1 WO 2023157175A1 JP 2022006374 W JP2022006374 W JP 2022006374W WO 2023157175 A1 WO2023157175 A1 WO 2023157175A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electric motor
- metal plate
- substrate
- built
- motor according
- Prior art date
Links
- 238000004378 air conditioning Methods 0.000 title 1
- 229910052751 metal Inorganic materials 0.000 claims abstract description 59
- 239000002184 metal Substances 0.000 claims abstract description 59
- 229920005989 resin Polymers 0.000 claims abstract description 22
- 239000011347 resin Substances 0.000 claims abstract description 22
- 239000007787 solid Substances 0.000 claims abstract description 5
- 239000000758 substrate Substances 0.000 claims description 67
- 238000005476 soldering Methods 0.000 claims description 7
- 230000017525 heat dissipation Effects 0.000 description 29
- 238000004804 winding Methods 0.000 description 23
- 230000005855 radiation Effects 0.000 description 17
- 238000001514 detection method Methods 0.000 description 15
- 238000010586 diagram Methods 0.000 description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 9
- 230000006870 function Effects 0.000 description 9
- 229910052710 silicon Inorganic materials 0.000 description 9
- 239000010703 silicon Substances 0.000 description 9
- 239000004065 semiconductor Substances 0.000 description 8
- 238000000465 moulding Methods 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000012212 insulator Substances 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000001746 injection moulding Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- PRQMIVBGRIUJHV-UHFFFAOYSA-N [N].[Fe].[Sm] Chemical compound [N].[Fe].[Sm] PRQMIVBGRIUJHV-UHFFFAOYSA-N 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/07—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/18—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K11/00—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
- H02K11/30—Structural association with control circuits or drive circuits
- H02K11/33—Drive circuits, e.g. power electronics
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
Definitions
- the present disclosure relates to electric motors and air conditioners.
- FIG. 1 is a cross-sectional view of a conventional electric motor.
- a conventional electric motor includes a built-in substrate 11 on which a heat radiation substrate pattern 2A is formed, a mold resin 12, a stator core 21, windings 22, a rotating shaft 31, a rotor magnet 40, a power IC (Integrated Circuit) 80.
- Patent Document 1 the technology disclosed in Patent Document 1 is insufficient for the above requirements.
- the present disclosure has been made in view of the above, and aims to obtain an electric motor capable of improving heat dissipation performance.
- the electric motor according to the present disclosure incorporates a substrate including an inverter circuit, the substrate is integrally molded with resin, and the solid pattern of the substrate is reflowed.
- the high voltage part has a metal plate soldered to it, and the pattern to which the metal plate is soldered is the high voltage part.
- the electric motor according to the present disclosure has the effect of improving heat dissipation performance.
- FIG. 4 is a diagram showing a processor when a control unit of the electric motor according to Embodiment 1 is realized by the processor;
- FIG. 4 is a diagram showing a processing circuit when the control unit of the electric motor according to Embodiment 1 is realized by the processing circuit;
- FIG. 12 is a cross-sectional view of electric motor 1 according to the first embodiment.
- This electric motor 1 is a brushless DC (Direct Current) motor.
- the electric motor 1 has an insulator 23 integrally formed with the stator core 21 in order to insulate the stator core 21 and windings 22 which are formed by laminating electromagnetic steel sheets. Winding 22 is wound around each slot of stator core 21 integrally molded with insulator 23 to form stator 20 .
- Winding 22 is made of copper, aluminum, or the like.
- a built-in substrate 11 having a circuit including a power IC, a microcomputer, and a magnetic sensor (such as a Hall IC) for detecting the position of the rotor 30 is positioned between the output-side bearing 33 and the stator 20 to rotate the rotation shaft 31. It is arranged perpendicular to the axial direction and fixed to the insulator 23 . Also, the power IC of the built-in substrate 11 and the winding 22 are connected via a winding terminal.
- the built-in substrate 11 is provided with a lead outlet portion 14 having a lead wire 13 for connection with a host system (for example, a substrate on the unit side of an air conditioner). Passive components such as operational amplifiers, comparators, regulators, diodes, resistors, capacitors, inductors, and fuses are arranged on the built-in substrate 11 .
- a power IC consists of 6 power transistors, a gate drive circuit, a protection circuit, etc. (also called IPM: Intelligent Power Module). In some cases, six power transistors are individually configured.
- the gate drive circuit may be composed of one IC or may be composed of three separate ICs for three phases.
- the gate drive circuit and control unit are composed of a single IC.
- the control unit may be composed of one dedicated IC (control IC) or a microcomputer.
- six power transistors, a gate drive circuit, a protection circuit, and a control section are composed of one IC.
- a power transistor is composed of a superjunction MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor), a planar MOSFET, and an IGBT (Insulated Gate Bipolar Transistor).
- MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
- IGBT Insulated Gate Bipolar Transistor
- the rotor magnetic flux position is detected by the magnetic pole sensor, but the rotor magnetic pole position may be estimated from the current flowing through the winding 22 and the voltage applied and generated to the winding 22 and controlled (sensorless control).
- the signal of the shunt resistor and current sensor may be amplified by an operational amplifier or the like.
- a comparator may also be used to generate a signal to the control unit for overcurrent protection from this current signal.
- the voltage that drives the gate of the power transistor e.g. 15V
- the microcomputer power supply voltage e.g. 5V
- a regulator For example, a 15V power supply is supplied from the outside, and a regulator generates a 5V power supply.
- This regulator may be incorporated in a gate drive circuit or power IC.
- the magnetic sensor 50 has two types of output signals: a digital type (hereinafter referred to as Hall IC) and an analog type (Hall element).
- the Hall IC further includes the following methods. ⁇ The sensor part and the amplifier part are composed of separate semiconductor chips, the sensor part is composed of a semiconductor other than silicon, and the amplifier part is composed of silicon. (hereinafter referred to as non-silicon Hall IC) ⁇ The sensor part and amplifier part are composed of one silicon semiconductor chip. Since the non-silicon Hall IC contains two chips, the center position of the sensor is arranged at a position different from the center of the IC body. A semiconductor such as indium antimonide (InSb) is used for the sensor portion of the non-silicon Hall IC.
- These non-silicon semiconductors have advantages over silicon semiconductors, such as improved sensitivity and reduced offset due to stress strain.
- the magnetic pole position is estimated from the current value detected by the current detection resistor, the current detection transformer, or the like, and the control is performed.
- a signal detected by a current detection resistor, a current detection transformer, or the like may be amplified using an operational amplifier or the like, if necessary.
- the overcurrent detection unit monitors the voltage of the overcurrent detection resistor, and turns off the power transistor when the voltage reaches a certain level or higher to realize overcurrent protection.
- the overcurrent detection unit may be built in the control unit or built in the gate drive circuit.
- a brushless DC motor obtains rotational power by switching six (in the case of three phases) power transistors in a power IC at appropriate timings according to the magnetic pole position of a rotor magnet. This switching signal is generated by the controller. The principle of this operation is shown below. Estimate the magnetic pole position of the rotor 30 from the magnetic sensor 50 or the current value. - The power transistor is switched according to the magnetic pole position of the rotor 30 and the speed command signal output from the system (for example, the board on the unit side).
- the overcurrent detection unit (control unit or inside the power IC) realizes overcurrent protection by forcibly turning off the power transistor when the voltage across the overcurrent detection resistor exceeds a certain voltage. Overheat protection is realized by forcibly turning off the power transistor in response to a signal from the temperature sensitive element.
- Energization methods include 120° energization, 150° energization, and sine wave energization.
- the molded stator 10 is formed by integrally molding the stator 20 and the built-in substrate 11, and is provided with a concave portion formed to accommodate the rotor 30 inside. In some cases, the stator 20 and the built-in substrate 11 are integrally molded separately.
- a metal plate is attached by soldering to the heat dissipation pattern (solid pattern) connected to the heat dissipation tab of the power transistor, IPM, and power IC (hereinafter referred to as the power transistor, etc.). Since the metal plate can be automatically mounted by reflow in the same way as other surface-mounted parts, it can be attached at a low processing cost.
- the metal plate may be a non-solderable metal such as aluminum. In some cases, a coating such as plating is applied to make it solderable. If the metal plate is aluminum, it is plated with nickel (Ni) and tin (Sn). For that matter, if the metal plate is a non-solderable metal, the solderable portions of the metal plate may be plated and coated to allow soldering.
- the metal plate plays a role like a heat sink and can diffuse heat widely, improving heat dissipation. Disposing a metal plate with a larger volume improves heat dissipation.
- the metal plate on the anti-stator side of the substrate improves heat dissipation, but due to restrictions such as substrate area, it may be necessary to place power transistors, etc., on the stator side.
- the pattern connected to the heat dissipation tab is connected to the heat dissipation pattern to which the metal plate is soldered through the through hole.
- Some power transistors do not have heat dissipation tabs. In that case, a heat radiation pattern is provided at the lower part of the package, which is exposed to high temperature, and a metal plate is soldered to the heat radiation pattern connected thereto.
- the metal plate may be divided into multiple parts and arranged. It may be better to divide the metal plate than to dispose a large metal plate so that the resin can pass through during integral molding, resulting in better molding. Furthermore, by dividing the metal plate, thick and thin portions of the resin are formed on the upper part of the built-in substrate 11, thereby minimizing the deterioration of the heat radiation performance and improving the fluidity during molding of the resin, thereby improving the productivity. can be improved.
- the metal plate may have a shape in which the cross-sectional area of the part away from the substrate is larger than the cross-sectional area of the soldered part. In that case, the metal plate and the different voltage pattern are close to each other, but since the substrate is integrally molded with resin, the metal plate and the different voltage pattern are insulated by the resin.
- a metal plate having a larger volume can be arranged in such a shape while there are restrictions on the substrate area and height, and heat dissipation is further improved.
- a heat sink may be provided on the opposite side of the board from the stator.
- the heat sink is integrally molded with resin.
- resin is placed between the metal plate and the heat sink to maintain insulation between the heat sink (metal such as aluminum) and the metal plate.
- the heat sink may be attached to the molded stator 10 via a heat dissipation sheet or heat dissipation silicon instead of being integrally molded.
- the rotor 30 has a magnet composed of a permanent magnet arranged inside the molded stator 10 and arranged on the outer peripheral side of the rotating shaft 31 so as to face the stator core 21 .
- the magnet is manufactured by injection molding a ferrite magnet or a bond magnet composed of a mixture of a rare earth magnet (samarium iron nitrogen, neodymium, etc.) and a thermoplastic resin material. A magnet is incorporated in the mold for injection molding, and molding is performed while applying orientation.
- the outer diameter of the built-in substrate 11 on the magnetic sensor 50 side is smaller than the other outer diameter (main magnet portion) (sensor magnet portion), and the magnetic flux flows into the magnetic sensor 50 mounted on the built-in substrate 11. It's getting easier.
- the magnetic sensor 50 is arranged at a position far from the windings 22 , that is, at a position close to the rotating shaft 31 in order to minimize the influence of the magnetic flux generated from the windings 22 of the stator 20 .
- the main magnet part and the sensor magnet part are composed of one magnet, but they may be composed of separate magnets.
- An output-side bearing 33 is provided at one end of the rotating shaft 31 to support it rotatably.
- a non-output side bearing 34 is provided at the other end of the rotary shaft 31 to support it rotatably.
- the conductive bracket is fitted into the inner peripheral portion of the molded stator 10 so as to block the opening of the concave portion of the molded stator 10, and the outer ring of the anti-output side bearing 34 is fitted inside.
- FIG. 12 also shows the mold resin 12, the rotor insulating portion 32, the rotor magnet 40, the bracket 60 and the press-fitting portion 61.
- FIG. 2 is a cross-sectional view of the electric motor according to Embodiment 1.
- the electric motor shown in FIG. 2 includes a built-in board 11 having a heat radiation board pattern 2A formed thereon, a mold resin 12, a stator core 21, windings 22, a rotating shaft 31, a rotor magnet 40, a power It has an IC 80 and a metal plate 3 .
- FIG. 3 is a cross-sectional view of the electric motor according to Embodiment 1.
- the electric motor shown in FIG. 3 includes a built-in board 11 having a heat radiation board pattern 2A formed thereon, a mold resin 12, a stator core 21, windings 22, a rotating shaft 31, a rotor magnet 40, a power It has an IC 80 and a metal plate 3 .
- FIG. 3 also shows the path of the resin.
- FIG. 4 is a cross-sectional view of the electric motor according to Embodiment 1.
- the electric motor shown in FIG. 4 includes a built-in board 11 having a heat radiation board pattern 2A formed thereon, a mold resin 12, a stator core 21, windings 22, a rotating shaft 31, a rotor magnet 40, a power It has an IC 80 , a metal plate (modification 1) 3A, and a substrate pattern 2 .
- FIG. 4 also shows the phrase "it is OK because it is close to other patterns with different voltages but there is resin".
- FIG. 5 is a cross-sectional view of the electric motor according to Embodiment 1.
- the electric motor shown in FIG. 5 includes a built-in board 11 on which a heat radiation board pattern 2A is formed, a mold resin 12, a stator core 21, windings 22, a rotating shaft 31, a rotor magnet 40, a power It has an IC 80 , a metal plate 3 and a heat sink 6 .
- FIG. 5 also shows the phrase "there is resin between the heat sink (metal) and the metal plate to insulate".
- FIG. 6 is a built-in board circuit diagram of the electric motor according to the first embodiment.
- FIG. 6 shows a control unit 70 connected to ground 79, a power IC 80 connected to control unit 70, a winding 22 connected to power IC 80, a magnetic sensor 50, and one of the control unit
- An overcurrent detection resistor 75 connected to 70 and power IC 80 and the other to ground 79, a high voltage power supply 77, and a low voltage power supply 78 are shown.
- the control unit 70 receives a speed command signal (system->electric motor) and transmits a rotation speed signal (electric motor->system).
- the control unit 70 is connected to a low voltage power supply 78 .
- the power IC 80 has a power transistor 81 , a gate drive circuit 82 and a protection circuit 83 .
- Gate drive circuit 82 is connected to control section 70 , high voltage power supply 77 , low voltage power supply 78 , ground 79 and power transistor 81 .
- One end of the protection circuit or the like 83 is connected to the gate drive circuit 82, another end of the protection circuit or the like 83 is connected to ground 79, and yet another end of the protection circuit or the like 83 is connected to ground 79.
- the end is connected to wiring that connects the control unit 70 and the overcurrent detection resistor 75 .
- An overcurrent detection signal flows through wiring connecting the control unit 70 and the overcurrent detection resistor 75 .
- Power transistors 81 include a U-phase upper arm power transistor 81A, a V-phase upper arm power transistor 81B, a W-phase upper arm power transistor 81C, a U-phase lower arm power transistor 81D, a V-phase lower arm power transistor 81E and a W-phase lower arm power transistor. It has a transistor 81F. Also shown in FIG. 6 are “U” for U phase, “V” for V phase and "W” for W phase. Winding 22 has a U-phase winding 22U, a V-phase winding 22V and a W-phase winding 22W.
- FIG. 7 is a cross-sectional view of the built-in substrate of the electric motor according to Embodiment 1.
- a heat dissipation board pattern 2A is formed on each of the two planes of the built-in board 11 .
- a plurality of through holes 4 are formed inside the built-in substrate 11 .
- a metal plate 3 is arranged on one plane of the built-in substrate 11 .
- a power transistor 81 and a heat dissipation tab terminal 81T are arranged on the other plane of the built-in substrate 11 .
- the heat radiation tab terminal 81T is in contact with the heat radiation substrate pattern 2A on the other plane side of the built-in substrate 11 .
- a part of the power transistor 81 is positioned on a plane other than the built-in substrate 11 side of the two planes of the heat radiation tab terminal 81T. Another part of the power transistor 81 is in contact with the other plane of the built-in substrate 11 and the heat dissipation substrate pattern 2A on the other plane side of the built-in substrate 11 .
- FIG. 8 is a cross-sectional view of the built-in substrate of the electric motor according to Embodiment 1.
- a heat radiation board pattern 2A is formed on each of the two planes of the built-in board 11 .
- a plurality of through holes 4 are formed inside the built-in substrate 11 .
- a metal plate 3 is arranged on one plane of the built-in substrate 11 .
- a power IC (without heat dissipation tab) 80A is arranged on the other plane of the built-in substrate 11 .
- FIG. 9 is a cross-sectional view of the built-in substrate of the electric motor according to Embodiment 1.
- a substrate pattern 2A for heat dissipation is formed on one of the two planes of the built-in substrate 11.
- a metal plate 3 As shown in FIG. A metal plate 3, a power transistor 81, and a heat dissipation tab terminal 81T are arranged on the heat dissipation substrate pattern 2A.
- a part of the power transistor 81 is positioned on a plane other than the heat radiation substrate pattern 2A side of the two planes of the heat radiation tab terminal 81T. Another part of the power transistor 81 is in contact with one of the two planes of the built-in substrate 11 and the heat dissipation substrate pattern 2A.
- FIG. 10 is a cross-sectional view of the built-in substrate of the electric motor according to Embodiment 1.
- a substrate pattern 2A for heat radiation is formed on one of the two planes of the built-in substrate 11.
- a metal plate 3 and a power IC (without a heat radiation tab) 80A are arranged on the heat radiation substrate pattern 2A.
- FIG. 11 is a schematic diagram of a built-in substrate of the electric motor according to Embodiment 1.
- FIG. A rotary shaft through-hole 35 is formed in the central portion of the disk-shaped internal substrate 11 shown in FIG. 11 .
- a metal plate soldering portion 5 to which a metal plate (modification 1) 3A is attached is positioned on one of the two planes of the built-in substrate 11 .
- the metal plate (modification 1) 3A is attached to the metal plate soldering portion 5 .
- the electric motor according to Embodiment 1 will be further described below.
- the electric motor according to Embodiment 1 incorporates a substrate including an inverter circuit, and the substrate is integrally molded with resin.
- the electric motor according to the first embodiment has a metal plate soldered to the solid pattern of the substrate by reflow.
- the pattern for soldering the metal plate is the high voltage part.
- the electric motor according to Embodiment 1 can improve heat dissipation performance. Since the metal plate can be solder-mounted by reflow in the same manner as the other surface-mounted parts, the processing cost of the electric motor according to the first embodiment is low.
- the metal plate is treated as high voltage, but since it is molded with resin, there is no problem with the insulation distance.
- Embodiment 2 An air conditioner (air conditioner) according to Embodiment 2 will be described.
- An air conditioner includes an indoor unit and an outdoor unit connected to the indoor unit.
- the indoor unit is equipped with an indoor unit fan
- the outdoor unit is equipped with an outdoor unit fan.
- the outdoor unit fan and the indoor unit fan each incorporate the electric motor described in the first embodiment as a drive source. That is, the air conditioner according to the second embodiment is equipped with the electric motor described in the first embodiment.
- FIG. 13 is a schematic diagram of an air conditioner (air conditioner) 200 according to the second embodiment.
- the air conditioner 200 has an indoor unit 210 on which the electric motor 1 and the indoor unit substrate 211 are mounted, and an outdoor unit 220 on which the outdoor unit blower 223 is mounted.
- electric motors can also be used by being mounted on, for example, ventilation fans, home appliances, and machine tools.
- FIG. 14 is a diagram showing the processor 91 when the controller 70 of the electric motor according to Embodiment 1 is realized by the processor 91.
- the functions of the control unit 70 may be realized by the processor 91 executing programs stored in the memory 92 .
- the processor 91 is a CPU (Central Processing Unit), processing device, arithmetic device, microprocessor, or DSP (Digital Signal Processor).
- Memory 92 is also shown in FIG.
- control unit 70 When the function of the control unit 70 is implemented by the processor 91, the function is implemented by the processor 91 and software, firmware, or a combination of software and firmware. Software or firmware is written as a program and stored in memory 92 .
- the processor 91 implements the functions of the control unit 70 by reading and executing programs stored in the memory 92 .
- the motor has a memory 92 for storing programs that result in the execution of the steps performed by the control unit 70. It can be said that the program stored in the memory 92 causes the computer to execute the controller 70 .
- the memory 92 is non-volatile such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (registered trademark) (Electrically Erasable Programmable Read-Only Memory). Or a volatile semiconductor memory, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD (Digital Versatile Disk), or the like.
- FIG. 15 is a diagram showing the processing circuit 93 when the control unit 70 of the electric motor according to Embodiment 1 is implemented by the processing circuit 93. As shown in FIG. That is, the control unit 70 may be implemented by the processing circuit 93 .
- the processing circuit 93 is dedicated hardware.
- the processing circuit 93 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof. is.
- a part of the control unit 70 may be realized by dedicated hardware separate from the rest.
- control unit 70 part of the functions may be implemented by software or firmware, and the rest of the functions may be implemented by dedicated hardware. Thus, multiple functions of the control unit 70 can be realized by hardware, software, firmware, or a combination thereof.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Thermal Sciences (AREA)
Abstract
This electric motor has an integrated circuit board (11) containing an inverter circuit, and the integrated circuit board (11) is integrally moulded using resin. The electric motor has a metal plate (3) that is reflow-soldered to a solid pattern of the integrated circuit board (11). The pattern to which the metal plate (3) is soldered is a high-voltage part.
Description
本開示は、電動機および空気調和機に関する。
The present disclosure relates to electric motors and air conditioners.
近年、空気調和機の省エネルギ化、暖房能力向上のため、空気調和機のファンモータ(ファン用電動機)の高出力化が求められている。また、風路の確保のためファンモータの小型化も求められる。これにより、内蔵インバータ基板の温度上昇が課題となっている。
In recent years, in order to save energy and improve heating capacity of air conditioners, there has been a demand for higher power fan motors (fan motors) for air conditioners. In addition, miniaturization of the fan motor is required in order to secure an air passage. As a result, the temperature rise of the built-in inverter board becomes a problem.
特許文献1では、基板の放熱パターンにて放熱性向上を実現している。
In Patent Document 1, the heat dissipation pattern of the board realizes improved heat dissipation.
図1は、従来の電動機の断面図である。従来の電動機は、放熱用基板パターン2Aが形成されている内蔵基板11と、モールド樹脂12と、固定子鉄心21と、巻線22と、回転軸31と、ロータマグネット40と、パワーIC(Integrated Circuit)80とを有する。
FIG. 1 is a cross-sectional view of a conventional electric motor. A conventional electric motor includes a built-in substrate 11 on which a heat radiation substrate pattern 2A is formed, a mold resin 12, a stator core 21, windings 22, a rotating shaft 31, a rotor magnet 40, a power IC (Integrated Circuit) 80.
しかしながら、特許文献1が開示している技術では、上記の要求には不十分である。
However, the technology disclosed in Patent Document 1 is insufficient for the above requirements.
本開示は、上記に鑑みてなされたものであって、放熱性能を向上させることができる電動機を得ることを目的とする。
The present disclosure has been made in view of the above, and aims to obtain an electric motor capable of improving heat dissipation performance.
上述した課題を解決し、目的を達成するために、本開示に係る電動機は、インバータ回路を含む基板を内蔵しており、基板は、樹脂にて一体成型されており、基板のベタパターンにリフローにてはんだ付けされた金属板を有し、金属板をはんだ付けするパターンが高電圧部である。
In order to solve the above-described problems and achieve the object, the electric motor according to the present disclosure incorporates a substrate including an inverter circuit, the substrate is integrally molded with resin, and the solid pattern of the substrate is reflowed. The high voltage part has a metal plate soldered to it, and the pattern to which the metal plate is soldered is the high voltage part.
本開示に係る電動機は、放熱性能を向上させることができるという効果を奏する。
The electric motor according to the present disclosure has the effect of improving heat dissipation performance.
以下に、実施の形態に係る電動機および空気調和機を図面に基づいて詳細に説明する。
The electric motor and air conditioner according to the embodiment will be described in detail below based on the drawings.
実施の形態1.
(構成)
実施の形態1に係る電動機について説明する。図12は、実施の形態1に係る電動機1の断面図である。
この電動機1はブラシレスDC(Direct Current)モータである。
電動機1は、電磁鋼板を積層することによって構成される固定子鉄心21と巻線22を絶縁するため、固定子鉄心21と一体成型されたインシュレータ23を有する。インシュレータ23と一体成型された固定子鉄心21の各スロットに巻線22が巻きつけられ、固定子20が構成される。巻線22は、銅またはアルミなどで構成される。パワーICと、マイクロコンピュータと、回転子30の位置を検知する磁気センサ(ホールICなど)を含む回路を備える内蔵基板11は、出力側軸受33と固定子20との間にて回転軸31の軸線方向に対して垂直に配置され、インシュレータ23に固定される。また、内蔵基板11のパワーICと巻線22は、巻線端子を介して接続される。内蔵基板11には、上位システム(例えば、エアーコンディショナのユニット側の基板)と接続するリード線13を有するリード口出し部14が配置される。内蔵基板11には、オペアンプ、コンパレータ、レギュレータ、ダイオード、抵抗、コンデンサ、インダクタ、ヒューズなどの受動部品が配置される。Embodiment 1.
(composition)
An electric motor according toEmbodiment 1 will be described. FIG. 12 is a cross-sectional view of electric motor 1 according to the first embodiment.
Thiselectric motor 1 is a brushless DC (Direct Current) motor.
Theelectric motor 1 has an insulator 23 integrally formed with the stator core 21 in order to insulate the stator core 21 and windings 22 which are formed by laminating electromagnetic steel sheets. Winding 22 is wound around each slot of stator core 21 integrally molded with insulator 23 to form stator 20 . Winding 22 is made of copper, aluminum, or the like. A built-in substrate 11 having a circuit including a power IC, a microcomputer, and a magnetic sensor (such as a Hall IC) for detecting the position of the rotor 30 is positioned between the output-side bearing 33 and the stator 20 to rotate the rotation shaft 31. It is arranged perpendicular to the axial direction and fixed to the insulator 23 . Also, the power IC of the built-in substrate 11 and the winding 22 are connected via a winding terminal. The built-in substrate 11 is provided with a lead outlet portion 14 having a lead wire 13 for connection with a host system (for example, a substrate on the unit side of an air conditioner). Passive components such as operational amplifiers, comparators, regulators, diodes, resistors, capacitors, inductors, and fuses are arranged on the built-in substrate 11 .
(構成)
実施の形態1に係る電動機について説明する。図12は、実施の形態1に係る電動機1の断面図である。
この電動機1はブラシレスDC(Direct Current)モータである。
電動機1は、電磁鋼板を積層することによって構成される固定子鉄心21と巻線22を絶縁するため、固定子鉄心21と一体成型されたインシュレータ23を有する。インシュレータ23と一体成型された固定子鉄心21の各スロットに巻線22が巻きつけられ、固定子20が構成される。巻線22は、銅またはアルミなどで構成される。パワーICと、マイクロコンピュータと、回転子30の位置を検知する磁気センサ(ホールICなど)を含む回路を備える内蔵基板11は、出力側軸受33と固定子20との間にて回転軸31の軸線方向に対して垂直に配置され、インシュレータ23に固定される。また、内蔵基板11のパワーICと巻線22は、巻線端子を介して接続される。内蔵基板11には、上位システム(例えば、エアーコンディショナのユニット側の基板)と接続するリード線13を有するリード口出し部14が配置される。内蔵基板11には、オペアンプ、コンパレータ、レギュレータ、ダイオード、抵抗、コンデンサ、インダクタ、ヒューズなどの受動部品が配置される。
(composition)
An electric motor according to
This
The
パワーICは、パワートランジスタ6個、ゲートドライブ回路、保護回路などで構成される(IPM:インテリジェント・パワー・モジュールとも呼ぶ)。パワートランジスタが6個個別に構成される場合がある。このときゲートドライブ回路は一つのICで構成される場合と三相別々のIC3個で構成される場合もある。
A power IC consists of 6 power transistors, a gate drive circuit, a protection circuit, etc. (also called IPM: Intelligent Power Module). In some cases, six power transistors are individually configured. At this time, the gate drive circuit may be composed of one IC or may be composed of three separate ICs for three phases.
ゲートドライブ回路と制御部が一つのICで構成される場合もある。また、制御部は一つの専用IC(制御IC)、または、マイクロコンピュータなどで構成される場合がある。
In some cases, the gate drive circuit and control unit are composed of a single IC. Also, the control unit may be composed of one dedicated IC (control IC) or a microcomputer.
パワートランジスタ6個、ゲートドライブ回路、保護回路、制御部が一つのICで構成される場合もある。
In some cases, six power transistors, a gate drive circuit, a protection circuit, and a control section are composed of one IC.
パワートランジスタは、スーパージャンクションMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)、プレーナMOSFET、および、IGBT(Insulated Gate Bipolar Transistor)などで構成される。
A power transistor is composed of a superjunction MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor), a planar MOSFET, and an IGBT (Insulated Gate Bipolar Transistor).
パワートランジスタには大きな電流が流れるので、発熱が多く放熱が問題となる場合がある。
Because a large amount of current flows through the power transistor, it generates a lot of heat and heat dissipation can be a problem.
前記では、ロータ磁束位置を磁極センサにて検出しているが、巻線22に流れる電流、巻線22に印加および発生する電圧よりロータ磁極位置を推測し制御(センサレス制御)する場合もある。電流検出のため、シャント抵抗、および、電流センサの信号をオペアンプなどで増幅する場合がある。また、この電流信号から過電流保護のための制御部への信号を生成するためコンパレータを用いる場合がある。
In the above description, the rotor magnetic flux position is detected by the magnetic pole sensor, but the rotor magnetic pole position may be estimated from the current flowing through the winding 22 and the voltage applied and generated to the winding 22 and controlled (sensorless control). For current detection, the signal of the shunt resistor and current sensor may be amplified by an operational amplifier or the like. A comparator may also be used to generate a signal to the control unit for overcurrent protection from this current signal.
パワートランジスタのゲートを駆動する電圧(例えば、15V)とマイクロコンピュータ電源電圧(例えば、5V)が異なる場合があるので、その場合、外部から供給される一つの電源からもう一つの電源を生成するため、レギュレータを用いる。例えば、外部から15V電源が供給され、レギュレータで5V電源を生成する。このレギュレータはゲートドライブ回路、または、パワーICに内蔵される場合もある。
Since the voltage that drives the gate of the power transistor (e.g. 15V) and the microcomputer power supply voltage (e.g. 5V) may differ, in that case, to generate another power supply from one power supply supplied from the outside , using a regulator. For example, a 15V power supply is supplied from the outside, and a regulator generates a 5V power supply. This regulator may be incorporated in a gate drive circuit or power IC.
磁気センサ50は、出力信号がデジタルのもの(以下、ホールIC)とアナログのもの(ホール素子)の2つの方式がある。ホールICには更に以下の方式がある。
・センサ部と増幅部が別々の半導体チップで構成され、センサ部はシリコン以外の半導体で構成され、増幅部はシリコンで構成される。(以下、非シリコン型ホールIC)
・センサ部と増幅部が一つのシリコン半導体チップで構成される。
非シリコン型ホールICは、2つのチップが内蔵されるため、センサ中心位置がICボディの中心と異なった位置に配置される。非シリコン型ホールICのセンサ部は、アンチモン化インジウム(InSb)などの半導体が用いられる。これらの非シリコン半導体には、シリコン半導体と比べ、感度向上、応力歪みによるオフセットが小さいなどの長所がある。 Themagnetic sensor 50 has two types of output signals: a digital type (hereinafter referred to as Hall IC) and an analog type (Hall element). The Hall IC further includes the following methods.
・The sensor part and the amplifier part are composed of separate semiconductor chips, the sensor part is composed of a semiconductor other than silicon, and the amplifier part is composed of silicon. (hereinafter referred to as non-silicon Hall IC)
・The sensor part and amplifier part are composed of one silicon semiconductor chip.
Since the non-silicon Hall IC contains two chips, the center position of the sensor is arranged at a position different from the center of the IC body. A semiconductor such as indium antimonide (InSb) is used for the sensor portion of the non-silicon Hall IC. These non-silicon semiconductors have advantages over silicon semiconductors, such as improved sensitivity and reduced offset due to stress strain.
・センサ部と増幅部が別々の半導体チップで構成され、センサ部はシリコン以外の半導体で構成され、増幅部はシリコンで構成される。(以下、非シリコン型ホールIC)
・センサ部と増幅部が一つのシリコン半導体チップで構成される。
非シリコン型ホールICは、2つのチップが内蔵されるため、センサ中心位置がICボディの中心と異なった位置に配置される。非シリコン型ホールICのセンサ部は、アンチモン化インジウム(InSb)などの半導体が用いられる。これらの非シリコン半導体には、シリコン半導体と比べ、感度向上、応力歪みによるオフセットが小さいなどの長所がある。 The
・The sensor part and the amplifier part are composed of separate semiconductor chips, the sensor part is composed of a semiconductor other than silicon, and the amplifier part is composed of silicon. (hereinafter referred to as non-silicon Hall IC)
・The sensor part and amplifier part are composed of one silicon semiconductor chip.
Since the non-silicon Hall IC contains two chips, the center position of the sensor is arranged at a position different from the center of the IC body. A semiconductor such as indium antimonide (InSb) is used for the sensor portion of the non-silicon Hall IC. These non-silicon semiconductors have advantages over silicon semiconductors, such as improved sensitivity and reduced offset due to stress strain.
磁気センサ50がないセンサレス制御の場合もある。この場合電流検出抵抗や電流検出用トランスなどで検出された電流値から磁極位置を推定し制御を行う。必要に応じて電流検出抵抗や電流検出用トランスなどで検出された信号をオペアンプなどを用いて増幅する場合もある。
There is also a case of sensorless control without the magnetic sensor 50. In this case, the magnetic pole position is estimated from the current value detected by the current detection resistor, the current detection transformer, or the like, and the control is performed. A signal detected by a current detection resistor, a current detection transformer, or the like may be amplified using an operational amplifier or the like, if necessary.
過電流検出部は、過電流検出抵抗の電圧を監視し、一定以上の電圧となったらパワートランジスタをOFFすることにより過電流保護を実現する。過電流検出部は、制御部に内蔵される場合と、ゲートドライブ回路に内蔵される場合がある。
The overcurrent detection unit monitors the voltage of the overcurrent detection resistor, and turns off the power transistor when the voltage reaches a certain level or higher to realize overcurrent protection. The overcurrent detection unit may be built in the control unit or built in the gate drive circuit.
ブラシレスDCモータは、回転子マグネットの磁極位置に応じて、パワーIC内の6つ(3相の場合)のパワートランジスタを適切なタイミングでスイッチングすることにより回転動力を得る。このスイッチング信号は制御部が生成する。この動作原理を以下に示す。
・磁気センサ50、または、電流値により回転子30の磁極位置を推測する。
・回転子30の磁極位置、および、システム(例えば、ユニット側の基板)から出力される速度指令信号に応じてパワートランジスタをスイッチングする。 A brushless DC motor obtains rotational power by switching six (in the case of three phases) power transistors in a power IC at appropriate timings according to the magnetic pole position of a rotor magnet. This switching signal is generated by the controller. The principle of this operation is shown below.
Estimate the magnetic pole position of therotor 30 from the magnetic sensor 50 or the current value.
- The power transistor is switched according to the magnetic pole position of therotor 30 and the speed command signal output from the system (for example, the board on the unit side).
・磁気センサ50、または、電流値により回転子30の磁極位置を推測する。
・回転子30の磁極位置、および、システム(例えば、ユニット側の基板)から出力される速度指令信号に応じてパワートランジスタをスイッチングする。 A brushless DC motor obtains rotational power by switching six (in the case of three phases) power transistors in a power IC at appropriate timings according to the magnetic pole position of a rotor magnet. This switching signal is generated by the controller. The principle of this operation is shown below.
Estimate the magnetic pole position of the
- The power transistor is switched according to the magnetic pole position of the
過電流検出部(制御部、または、パワーIC内部)は過電流検出抵抗の両端電圧が一定電圧以上になったとき、パワートランジスタを強制的にOFFすることにより過電流保護を実現する。また、感温素子からの信号を受け、パワートランジスタを強制的にOFFすることにより過熱保護を実現する。
The overcurrent detection unit (control unit or inside the power IC) realizes overcurrent protection by forcibly turning off the power transistor when the voltage across the overcurrent detection resistor exceeds a certain voltage. Overheat protection is realized by forcibly turning off the power transistor in response to a signal from the temperature sensitive element.
通電方式には、120°通電、150°通電、正弦波通電がある。
Energization methods include 120° energization, 150° energization, and sine wave energization.
モールド固定子10は、固定子20と内蔵基板11を一体成型すると共に、内部に回転子30を収容可能に形成された凹部が設けられる。また、固定子20と内蔵基板11を別々に一体成型する場合もある。
The molded stator 10 is formed by integrally molding the stator 20 and the built-in substrate 11, and is provided with a concave portion formed to accommodate the rotor 30 inside. In some cases, the stator 20 and the built-in substrate 11 are integrally molded separately.
パワートランジスタ、IPM、および、パワーIC(以下、パワートランジスタなど)の放熱タブに接続される放熱パターン(ベタパターン)に金属板がはんだにて取り付けられる。金属板は他の面実装部品と同じようにリフローにて自動実装可能なため安い加工費で取り付け可能である。金属板はアルミなどはんだ付け不可な金属な場合もある。はんだ付け可能とするためメッキなどのコーティングを施す場合がある。金属板がアルミである場合は、ニッケル(Ni)と錫(Sn)のメッキを施す。更に言うと、金属板がはんだ付け不可な金属である場合、金属板のはんだ付け部にはんだ付け可能となるような、メッキおよびコーティングが施されてもよい。
A metal plate is attached by soldering to the heat dissipation pattern (solid pattern) connected to the heat dissipation tab of the power transistor, IPM, and power IC (hereinafter referred to as the power transistor, etc.). Since the metal plate can be automatically mounted by reflow in the same way as other surface-mounted parts, it can be attached at a low processing cost. The metal plate may be a non-solderable metal such as aluminum. In some cases, a coating such as plating is applied to make it solderable. If the metal plate is aluminum, it is plated with nickel (Ni) and tin (Sn). For that matter, if the metal plate is a non-solderable metal, the solderable portions of the metal plate may be plated and coated to allow soldering.
金属板を配置することにより金属板がヒートシンクのような役割を果たし、広く熱を拡散することができ放熱性が向上する。より体積の大きい金属板を配置するとより放熱性が向上する。
By arranging the metal plate, the metal plate plays a role like a heat sink and can diffuse heat widely, improving heat dissipation. Disposing a metal plate with a larger volume improves heat dissipation.
金属板は基板の反ステータ側に配したほうがより放熱性が向上するが、基板面積などの制約によりパワートランジスタなどをステータ側に配置しなければいけない場合がある。その場合、放熱タブに接続されるパターンはスルーホールを介して、金属板がはんだ付けされる放熱パターンに接続される。
Placing the metal plate on the anti-stator side of the substrate improves heat dissipation, but due to restrictions such as substrate area, it may be necessary to place power transistors, etc., on the stator side. In that case, the pattern connected to the heat dissipation tab is connected to the heat dissipation pattern to which the metal plate is soldered through the through hole.
パワートランジスタなどでは放熱タブを備えていないものもある。その場合は高温となるパッケージ下部に放熱パターンを設け、それと接続される放熱パターンに金属板がはんだ付けされる。
Some power transistors do not have heat dissipation tabs. In that case, a heat radiation pattern is provided at the lower part of the package, which is exposed to high temperature, and a metal plate is soldered to the heat radiation pattern connected thereto.
金属板は複数に分割して配置される場合もある。大きな金属板を配置するよりも分割した方が、一体成型時の樹脂の通り道ができ成型が良いとなる場合がある。更に言うと、金属板を分割することにより、内蔵基板11の上部に樹脂の厚みが厚いところと薄いところができ、放熱性能低下を最小限に抑え、樹脂成型時の流動性を良くし生産性を向上することができる。
The metal plate may be divided into multiple parts and arranged. It may be better to divide the metal plate than to dispose a large metal plate so that the resin can pass through during integral molding, resulting in better molding. Furthermore, by dividing the metal plate, thick and thin portions of the resin are formed on the upper part of the built-in substrate 11, thereby minimizing the deterioration of the heat radiation performance and improving the fluidity during molding of the resin, thereby improving the productivity. can be improved.
金属板ははんだ付け部の断面積より、基板から離れた部分の断面積が大きい形状でもよい。その場合、金属板と異電圧パターンが近接するが、基板を樹脂にて一体成型しているため金属板と異電圧パターンの間はその樹脂にて絶縁される。このような形状に基板面積、高さ制約がある中で、より大きい体積の金属板を配置でき放熱性がより向上する。
The metal plate may have a shape in which the cross-sectional area of the part away from the substrate is larger than the cross-sectional area of the soldered part. In that case, the metal plate and the different voltage pattern are close to each other, but since the substrate is integrally molded with resin, the metal plate and the different voltage pattern are insulated by the resin. A metal plate having a larger volume can be arranged in such a shape while there are restrictions on the substrate area and height, and heat dissipation is further improved.
基板に対しステータと反対側にヒートシンクが設けられる場合がある。ヒートシンクは樹脂にて一体成型される。この場合、金属板とヒートシンクの間に樹脂が配置されヒートシンク(金属、例えばアルミ)と金属板の絶縁が保たれる。
A heat sink may be provided on the opposite side of the board from the stator. The heat sink is integrally molded with resin. In this case, resin is placed between the metal plate and the heat sink to maintain insulation between the heat sink (metal such as aluminum) and the metal plate.
ヒートシンクは一体成型ではなく、放熱シート、または、放熱シリコンを介してモールド固定子10に取り付けられる場合もある。
The heat sink may be attached to the molded stator 10 via a heat dissipation sheet or heat dissipation silicon instead of being integrally molded.
回転子30は、モールド固定子10の内側に配置され固定子鉄心21と対向して回転軸31の外周側に配置された永久磁石で構成されるマグネットを有する。マグネットは、フェライト磁石、または、希土類磁石(サマリウム鉄窒素、ネオジウムなど)を熱可塑性の樹脂材料と混合して構成されるボンド磁石を射出成型にて作製される。射出成型用の金型には磁石が組み込まれており、配向をかけながら成型が行われる。
The rotor 30 has a magnet composed of a permanent magnet arranged inside the molded stator 10 and arranged on the outer peripheral side of the rotating shaft 31 so as to face the stator core 21 . The magnet is manufactured by injection molding a ferrite magnet or a bond magnet composed of a mixture of a rare earth magnet (samarium iron nitrogen, neodymium, etc.) and a thermoplastic resin material. A magnet is incorporated in the mold for injection molding, and molding is performed while applying orientation.
マグネットは、内蔵基板11の磁気センサ50側の外径はそれ以外の外径(メインマグネット部)より小さくなっており(センサマグネット部)、内蔵基板11に実装される磁気センサ50に磁束が流入しやすくなっている。磁気センサ50は固定子20の巻線22から発生する磁束の影響を極力小さくするため、巻線22から遠い位置、つまり、回転軸31に近い位置に配置される。
In the magnet, the outer diameter of the built-in substrate 11 on the magnetic sensor 50 side is smaller than the other outer diameter (main magnet portion) (sensor magnet portion), and the magnetic flux flows into the magnetic sensor 50 mounted on the built-in substrate 11. It's getting easier. The magnetic sensor 50 is arranged at a position far from the windings 22 , that is, at a position close to the rotating shaft 31 in order to minimize the influence of the magnetic flux generated from the windings 22 of the stator 20 .
図面ではメインマグネット部とセンサマグネット部が一つのマグネットで構成されているが、別々のマグネットで構成してもよい。
In the drawing, the main magnet part and the sensor magnet part are composed of one magnet, but they may be composed of separate magnets.
回転軸31の一端には回転自在に支持する出力側軸受33が設けられている。回転軸31の他端には回転自在に支持する反出力側軸受34が設けられている。
An output-side bearing 33 is provided at one end of the rotating shaft 31 to support it rotatably. A non-output side bearing 34 is provided at the other end of the rotary shaft 31 to support it rotatably.
導電性ブラケットは、モールド固定子10の凹部の開口部を塞ぐようにしてモールド固定子10の内周部に嵌め込まれると共に、反出力側軸受34の外輪が内側に嵌め込まれる。
The conductive bracket is fitted into the inner peripheral portion of the molded stator 10 so as to block the opening of the concave portion of the molded stator 10, and the outer ring of the anti-output side bearing 34 is fitted inside.
図12には、モールド樹脂12、回転子絶縁部32、ロータマグネット40、ブラケット60および圧入部61も示されている。
FIG. 12 also shows the mold resin 12, the rotor insulating portion 32, the rotor magnet 40, the bracket 60 and the press-fitting portion 61.
図2は、実施の形態1に係る電動機の断面図である。図2に示される電動機は、放熱用基板パターン2Aが形成されている内蔵基板11と、モールド樹脂12と、固定子鉄心21と、巻線22と、回転軸31と、ロータマグネット40と、パワーIC80と、金属板3とを有する。
FIG. 2 is a cross-sectional view of the electric motor according to Embodiment 1. FIG. The electric motor shown in FIG. 2 includes a built-in board 11 having a heat radiation board pattern 2A formed thereon, a mold resin 12, a stator core 21, windings 22, a rotating shaft 31, a rotor magnet 40, a power It has an IC 80 and a metal plate 3 .
図3は、実施の形態1に係る電動機の断面図である。図3に示される電動機は、放熱用基板パターン2Aが形成されている内蔵基板11と、モールド樹脂12と、固定子鉄心21と、巻線22と、回転軸31と、ロータマグネット40と、パワーIC80と、金属板3とを有する。図3には、樹脂の通り道も示されている。
FIG. 3 is a cross-sectional view of the electric motor according to Embodiment 1. FIG. The electric motor shown in FIG. 3 includes a built-in board 11 having a heat radiation board pattern 2A formed thereon, a mold resin 12, a stator core 21, windings 22, a rotating shaft 31, a rotor magnet 40, a power It has an IC 80 and a metal plate 3 . FIG. 3 also shows the path of the resin.
図4は、実施の形態1に係る電動機の断面図である。図4に示される電動機は、放熱用基板パターン2Aが形成されている内蔵基板11と、モールド樹脂12と、固定子鉄心21と、巻線22と、回転軸31と、ロータマグネット40と、パワーIC80と、金属板(変形例1)3Aと、基板パターン2とを有する。図4には、「異電圧の他パターンと近接するが樹脂があるのでOK」という文言も示されている。
FIG. 4 is a cross-sectional view of the electric motor according to Embodiment 1. FIG. The electric motor shown in FIG. 4 includes a built-in board 11 having a heat radiation board pattern 2A formed thereon, a mold resin 12, a stator core 21, windings 22, a rotating shaft 31, a rotor magnet 40, a power It has an IC 80 , a metal plate (modification 1) 3A, and a substrate pattern 2 . FIG. 4 also shows the phrase "it is OK because it is close to other patterns with different voltages but there is resin".
図5は、実施の形態1に係る電動機の断面図である。図5に示される電動機は、放熱用基板パターン2Aが形成されている内蔵基板11と、モールド樹脂12と、固定子鉄心21と、巻線22と、回転軸31と、ロータマグネット40と、パワーIC80と、金属板3と、ヒートシンク6とを有する。図5には、「ヒートシンク(金属)と金属板の間に樹脂があり絶縁される」という文言も示されている。
FIG. 5 is a cross-sectional view of the electric motor according to Embodiment 1. FIG. The electric motor shown in FIG. 5 includes a built-in board 11 on which a heat radiation board pattern 2A is formed, a mold resin 12, a stator core 21, windings 22, a rotating shaft 31, a rotor magnet 40, a power It has an IC 80 , a metal plate 3 and a heat sink 6 . FIG. 5 also shows the phrase "there is resin between the heat sink (metal) and the metal plate to insulate".
図6は、実施の形態1に係る電動機の内蔵基板回路図である。図6には、グランド79に接続されている制御部70と、制御部70に接続されているパワーIC80と、パワーIC80に接続されている巻線22と、磁気センサ50と、一方が制御部70とパワーIC80とに接続されていて他方がグランド79に接続されている過電流検出抵抗75と、高圧電源77と、低圧電源78とが示されている。制御部70は、速度指令信号(システム→電動機)を受信し、回転数信号(電動機→システム)を送信する。制御部70は、低圧電源78に接続されている。パワーIC80は、パワートランジスタ81と、ゲートドライブ回路82と、保護回路など83を有する。ゲートドライブ回路82は、制御部70、高圧電源77、低圧電源78、グランド79およびパワートランジスタ81に接続されている。保護回路など83の一つの端部はゲートドライブ回路82に接続されており、保護回路など83の別の一つの端部はグランド79に接続されており、保護回路など83の更に別の一つの端部は制御部70と過電流検出抵抗75とを結ぶ配線に接続されている。制御部70と過電流検出抵抗75とを結ぶ配線には、過電流検出信号が流れる。パワートランジスタ81は、U相上アームパワートランジスタ81A、V相上アームパワートランジスタ81B、W相上アームパワートランジスタ81C、U相下アームパワートランジスタ81D、V相下アームパワートランジスタ81EおよびW相下アームパワートランジスタ81Fを有する。図6には、U相を意味する「U」、V相を意味する「V」およびW相を意味する「W」も示されている。巻線22は、U相巻線22U、V相巻線22VおよびW相巻線22Wを有する。
FIG. 6 is a built-in board circuit diagram of the electric motor according to the first embodiment. FIG. 6 shows a control unit 70 connected to ground 79, a power IC 80 connected to control unit 70, a winding 22 connected to power IC 80, a magnetic sensor 50, and one of the control unit An overcurrent detection resistor 75 connected to 70 and power IC 80 and the other to ground 79, a high voltage power supply 77, and a low voltage power supply 78 are shown. The control unit 70 receives a speed command signal (system->electric motor) and transmits a rotation speed signal (electric motor->system). The control unit 70 is connected to a low voltage power supply 78 . The power IC 80 has a power transistor 81 , a gate drive circuit 82 and a protection circuit 83 . Gate drive circuit 82 is connected to control section 70 , high voltage power supply 77 , low voltage power supply 78 , ground 79 and power transistor 81 . One end of the protection circuit or the like 83 is connected to the gate drive circuit 82, another end of the protection circuit or the like 83 is connected to ground 79, and yet another end of the protection circuit or the like 83 is connected to ground 79. The end is connected to wiring that connects the control unit 70 and the overcurrent detection resistor 75 . An overcurrent detection signal flows through wiring connecting the control unit 70 and the overcurrent detection resistor 75 . Power transistors 81 include a U-phase upper arm power transistor 81A, a V-phase upper arm power transistor 81B, a W-phase upper arm power transistor 81C, a U-phase lower arm power transistor 81D, a V-phase lower arm power transistor 81E and a W-phase lower arm power transistor. It has a transistor 81F. Also shown in FIG. 6 are "U" for U phase, "V" for V phase and "W" for W phase. Winding 22 has a U-phase winding 22U, a V-phase winding 22V and a W-phase winding 22W.
図7は、実施の形態1に係る電動機の内蔵基板断面図である。図7に示される内蔵基板11について、内蔵基板11の二つの平面の各々には放熱用基板パターン2Aが形成されている。内蔵基板11の内部には、複数のスルーホール4が形成されている。内蔵基板11の一方の平面には、金属板3が配置されている。内蔵基板11の他方の平面には、パワートランジスタ81と、放熱タブ端子81Tとが配置されている。放熱タブ端子81Tは、内蔵基板11の他方の平面の側の放熱用基板パターン2Aに接している。パワートランジスタ81の一部は、放熱タブ端子81Tの二つの平面のうちの内蔵基板11の側でない平面に位置している。パワートランジスタ81の別の一部は、内蔵基板11の他方の平面と内蔵基板11の他方の平面の側の放熱用基板パターン2Aとに接している。
FIG. 7 is a cross-sectional view of the built-in substrate of the electric motor according to Embodiment 1. FIG. As for the built-in board 11 shown in FIG. 7, a heat dissipation board pattern 2A is formed on each of the two planes of the built-in board 11 . A plurality of through holes 4 are formed inside the built-in substrate 11 . A metal plate 3 is arranged on one plane of the built-in substrate 11 . A power transistor 81 and a heat dissipation tab terminal 81T are arranged on the other plane of the built-in substrate 11 . The heat radiation tab terminal 81T is in contact with the heat radiation substrate pattern 2A on the other plane side of the built-in substrate 11 . A part of the power transistor 81 is positioned on a plane other than the built-in substrate 11 side of the two planes of the heat radiation tab terminal 81T. Another part of the power transistor 81 is in contact with the other plane of the built-in substrate 11 and the heat dissipation substrate pattern 2A on the other plane side of the built-in substrate 11 .
図8は、実施の形態1に係る電動機の内蔵基板断面図である。図8に示される内蔵基板11について、内蔵基板11の二つの平面の各々には放熱用基板パターン2Aが形成されている。内蔵基板11の内部には、複数のスルーホール4が形成されている。内蔵基板11の一方の平面には、金属板3が配置されている。内蔵基板11の他方の平面には、パワーIC(放熱タブなし)80Aが配置されている。
FIG. 8 is a cross-sectional view of the built-in substrate of the electric motor according to Embodiment 1. FIG. As for the built-in board 11 shown in FIG. 8, a heat radiation board pattern 2A is formed on each of the two planes of the built-in board 11 . A plurality of through holes 4 are formed inside the built-in substrate 11 . A metal plate 3 is arranged on one plane of the built-in substrate 11 . A power IC (without heat dissipation tab) 80A is arranged on the other plane of the built-in substrate 11 .
図9は、実施の形態1に係る電動機の内蔵基板断面図である。図9に示される内蔵基板11について、内蔵基板11の二つの平面のうちの一方には放熱用基板パターン2Aが形成されている。放熱用基板パターン2Aには、金属板3と、パワートランジスタ81と、放熱タブ端子81Tとが配置されている。パワートランジスタ81の一部は、放熱タブ端子81Tの二つの平面のうちの放熱用基板パターン2Aの側でない平面に位置している。パワートランジスタ81の別の一部は、内蔵基板11の二つの平面のうちの一方と放熱用基板パターン2Aとに接している。
FIG. 9 is a cross-sectional view of the built-in substrate of the electric motor according to Embodiment 1. FIG. As for the built-in substrate 11 shown in FIG. 9, a substrate pattern 2A for heat dissipation is formed on one of the two planes of the built-in substrate 11. As shown in FIG. A metal plate 3, a power transistor 81, and a heat dissipation tab terminal 81T are arranged on the heat dissipation substrate pattern 2A. A part of the power transistor 81 is positioned on a plane other than the heat radiation substrate pattern 2A side of the two planes of the heat radiation tab terminal 81T. Another part of the power transistor 81 is in contact with one of the two planes of the built-in substrate 11 and the heat dissipation substrate pattern 2A.
図10は、実施の形態1に係る電動機の内蔵基板断面図である。図10に示される内蔵基板11について、内蔵基板11の二つの平面のうちの一方には放熱用基板パターン2Aが形成されている。放熱用基板パターン2Aには、金属板3とパワーIC(放熱タブなし)80Aとが配置されている。
FIG. 10 is a cross-sectional view of the built-in substrate of the electric motor according to Embodiment 1. FIG. As for the built-in substrate 11 shown in FIG. 10, a substrate pattern 2A for heat radiation is formed on one of the two planes of the built-in substrate 11. As shown in FIG. A metal plate 3 and a power IC (without a heat radiation tab) 80A are arranged on the heat radiation substrate pattern 2A.
図11は、実施の形態1に係る電動機の内蔵基板模式図である。図11に示される内蔵基板11について、円盤状の内蔵基板11の中心部に回転軸貫通穴35が形成されている。内蔵基板11の二つの平面のうちの一方には、金属板(変形例1)3Aが取り付けられる金属板はんだ付け部5が位置している。金属板(変形例1)3Aは、金属板はんだ付け部5に取り付けられる。
FIG. 11 is a schematic diagram of a built-in substrate of the electric motor according to Embodiment 1. FIG. A rotary shaft through-hole 35 is formed in the central portion of the disk-shaped internal substrate 11 shown in FIG. 11 . A metal plate soldering portion 5 to which a metal plate (modification 1) 3A is attached is positioned on one of the two planes of the built-in substrate 11 . The metal plate (modification 1) 3A is attached to the metal plate soldering portion 5 .
以下に、実施の形態1に係る電動機を更に説明する。実施の形態1に係る電動機は、インバータ回路を含む基板を内蔵しており、当該基板は、樹脂にて一体成型されている。実施の形態1に係る電動機は、当該基板のベタパターンにリフローにてはんだ付けされた金属板を有する。金属板をはんだ付けするパターンは、高電圧部である。実施の形態1に係る電動機は、放熱性能を向上させることができる。他面実装部品と同様に金属板をリフローにてはんだ実装可能なため、実施の形態1に係る電動機の加工費は安い。金属板が高電圧扱いとなるが、樹脂にてモールドされるので絶縁距離は問題ない。
The electric motor according to Embodiment 1 will be further described below. The electric motor according to Embodiment 1 incorporates a substrate including an inverter circuit, and the substrate is integrally molded with resin. The electric motor according to the first embodiment has a metal plate soldered to the solid pattern of the substrate by reflow. The pattern for soldering the metal plate is the high voltage part. The electric motor according to Embodiment 1 can improve heat dissipation performance. Since the metal plate can be solder-mounted by reflow in the same manner as the other surface-mounted parts, the processing cost of the electric motor according to the first embodiment is low. The metal plate is treated as high voltage, but since it is molded with resin, there is no problem with the insulation distance.
実施の形態2.
(構成)
実施の形態2に係る空気調和機(エアーコンディショナ)について説明する。
空気調和機は室内機と、室内機に接続される室外機とを備える。室内機には室内機用送風機が搭載されており、室外機には室外機用送風機が搭載されている。室外機用送風機および室内機用送風機は、それぞれ駆動源として実施の形態1で説明された電動機を内蔵している。すなわち、実施の形態2に係る空気調和機には、実施の形態1で説明された電動機が搭載されている。Embodiment 2.
(composition)
An air conditioner (air conditioner) according toEmbodiment 2 will be described.
An air conditioner includes an indoor unit and an outdoor unit connected to the indoor unit. The indoor unit is equipped with an indoor unit fan, and the outdoor unit is equipped with an outdoor unit fan. The outdoor unit fan and the indoor unit fan each incorporate the electric motor described in the first embodiment as a drive source. That is, the air conditioner according to the second embodiment is equipped with the electric motor described in the first embodiment.
(構成)
実施の形態2に係る空気調和機(エアーコンディショナ)について説明する。
空気調和機は室内機と、室内機に接続される室外機とを備える。室内機には室内機用送風機が搭載されており、室外機には室外機用送風機が搭載されている。室外機用送風機および室内機用送風機は、それぞれ駆動源として実施の形態1で説明された電動機を内蔵している。すなわち、実施の形態2に係る空気調和機には、実施の形態1で説明された電動機が搭載されている。
(composition)
An air conditioner (air conditioner) according to
An air conditioner includes an indoor unit and an outdoor unit connected to the indoor unit. The indoor unit is equipped with an indoor unit fan, and the outdoor unit is equipped with an outdoor unit fan. The outdoor unit fan and the indoor unit fan each incorporate the electric motor described in the first embodiment as a drive source. That is, the air conditioner according to the second embodiment is equipped with the electric motor described in the first embodiment.
特に業務用空気調和機はより高出力を求められ高い放熱性能を求められるので、実施の形態2に係る空気調和機が大きく効果を発揮する。
In particular, commercial air conditioners are required to have higher output and high heat dissipation performance, so the air conditioner according to Embodiment 2 is highly effective.
図13は、実施の形態2に係る空気調和機(エアーコンディショナ)200の模式図である。空気調和機200は、電動機1と室内機基板211とが搭載されている室内機210と、室外機用送風機223が搭載されている室外機220とを有する。
FIG. 13 is a schematic diagram of an air conditioner (air conditioner) 200 according to the second embodiment. The air conditioner 200 has an indoor unit 210 on which the electric motor 1 and the indoor unit substrate 211 are mounted, and an outdoor unit 220 on which the outdoor unit blower 223 is mounted.
なお、電動機は、空気調和機の他にも、例えば換気扇、家電機器、工作機などに搭載して利用することができる。
In addition to air conditioners, electric motors can also be used by being mounted on, for example, ventilation fans, home appliances, and machine tools.
図14は、実施の形態1に係る電動機が有する制御部70がプロセッサ91によって実現される場合のプロセッサ91を示す図である。つまり、制御部70の機能は、メモリ92に格納されるプログラムを実行するプロセッサ91によって実現されてもよい。プロセッサ91は、CPU(Central Processing Unit)、処理装置、演算装置、マイクロプロセッサ、又はDSP(Digital Signal Processor)である。図14には、メモリ92も示されている。
FIG. 14 is a diagram showing the processor 91 when the controller 70 of the electric motor according to Embodiment 1 is realized by the processor 91. As shown in FIG. In other words, the functions of the control unit 70 may be realized by the processor 91 executing programs stored in the memory 92 . The processor 91 is a CPU (Central Processing Unit), processing device, arithmetic device, microprocessor, or DSP (Digital Signal Processor). Memory 92 is also shown in FIG.
制御部70の機能がプロセッサ91によって実現される場合、当該機能は、プロセッサ91と、ソフトウェア、ファームウェア、又は、ソフトウェアとファームウェアとの組み合わせとによって実現される。ソフトウェア又はファームウェアは、プログラムとして記述され、メモリ92に格納される。プロセッサ91は、メモリ92に記憶されたプログラムを読み出して実行することにより、制御部70の機能を実現する。
When the function of the control unit 70 is implemented by the processor 91, the function is implemented by the processor 91 and software, firmware, or a combination of software and firmware. Software or firmware is written as a program and stored in memory 92 . The processor 91 implements the functions of the control unit 70 by reading and executing programs stored in the memory 92 .
制御部70の機能がプロセッサ91によって実現される場合、電動機は、制御部70によって実行されるステップが結果的に実行されることになるプログラムを格納するためのメモリ92を有する。メモリ92に格納されるプログラムは、制御部70をコンピュータに実行させるものであるともいえる。
When the functions of the control unit 70 are implemented by the processor 91, the motor has a memory 92 for storing programs that result in the execution of the steps performed by the control unit 70. It can be said that the program stored in the memory 92 causes the computer to execute the controller 70 .
メモリ92は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(登録商標)(Electrically Erasable Programmable Read-Only Memory)等の不揮発性若しくは揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク又はDVD(Digital Versatile Disk)等である。
The memory 92 is non-volatile such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (registered trademark) (Electrically Erasable Programmable Read-Only Memory). Or a volatile semiconductor memory, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD (Digital Versatile Disk), or the like.
図15は、実施の形態1に係る電動機が有する制御部70が処理回路93によって実現される場合の処理回路93を示す図である。つまり、制御部70は、処理回路93によって実現されてもよい。
FIG. 15 is a diagram showing the processing circuit 93 when the control unit 70 of the electric motor according to Embodiment 1 is implemented by the processing circuit 93. As shown in FIG. That is, the control unit 70 may be implemented by the processing circuit 93 .
処理回路93は、専用のハードウェアである。処理回路93は、例えば、単一回路、複合回路、プログラム化されたプロセッサ、並列プログラム化されたプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又はこれらを組み合わせたものである。制御部70の一部は、残部と別個の専用のハードウェアで実現されてもよい。
The processing circuit 93 is dedicated hardware. The processing circuit 93 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof. is. A part of the control unit 70 may be realized by dedicated hardware separate from the rest.
制御部70の複数の機能について、当該複数の機能の一部がソフトウェア又はファームウェアで実現され、当該複数の機能の残部が専用のハードウェアで実現されてもよい。このように、制御部70の複数の機能は、ハードウェア、ソフトウェア、ファームウェア、又はこれらの組み合わせによって実現することができる。
Regarding the functions of the control unit 70, part of the functions may be implemented by software or firmware, and the rest of the functions may be implemented by dedicated hardware. Thus, multiple functions of the control unit 70 can be realized by hardware, software, firmware, or a combination thereof.
以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略又は変更することも可能である。
The configurations shown in the above embodiments are only examples, and can be combined with other known techniques, or can be combined with other embodiments, without departing from the scope of the invention. It is also possible to omit or change part of the configuration.
1 電動機(モータ)、2 基板パターン、2A 放熱用基板パターン、3 金属板、3A 金属板(変形例1)、4 スルーホール、5 金属板はんだ付け部、6 ヒートシンク、10 モールド固定子、11 内蔵基板、12 モールド樹脂、13 リード線、14 リード口出し部、20 固定子、21 固定子鉄心、22 巻線、22U U相巻線、22V V相巻線、22W W相巻線、23 インシュレータ、30 回転子、31 回転軸、32 回転子絶縁部、33 出力側軸受、34 反出力側軸受、35 回転軸貫通穴、40 ロータマグネット、50 磁気センサ、60 ブラケット、61 圧入部、70 制御部、75 過電流検出抵抗、77 高圧電源、78 低圧電源、79 グランド、80 パワーIC、80A パワーIC(放熱タブなし)、81 パワートランジスタ、81A U相上アームパワートランジスタ、81B V相上アームパワートランジスタ、81C W相上アームパワートランジスタ、81D U相下アームパワートランジスタ、81E V相下アームパワートランジスタ、81F W相下アームパワートランジスタ、81T 放熱タブ端子、82 ゲートドライブ回路、83 保護回路など、91 プロセッサ、92 メモリ、93 処理回路、200 空気調和機(エアーコンディショナ)、210 室内機、211 室内機基板、220 室外機、223 室外機用送風機。
1 Electric motor (motor), 2 Board pattern, 2A Board pattern for heat dissipation, 3 Metal plate, 3A Metal plate (Modification 1), 4 Through hole, 5 Metal plate soldering part, 6 Heat sink, 10 Molded stator, 11 Built-in Substrate, 12 Mold resin, 13 Lead wire, 14 Lead outlet, 20 Stator, 21 Stator core, 22 Winding, 22U U-phase winding, 22V V-phase winding, 22W W-phase winding, 23 Insulator, 30 Rotor, 31 Rotating shaft, 32 Rotor insulating part, 33 Output side bearing, 34 Anti-output side bearing, 35 Rotating shaft through hole, 40 Rotor magnet, 50 Magnetic sensor, 60 Bracket, 61 Press fitting part, 70 Control part, 75 Overcurrent detection resistor, 77 high-voltage power supply, 78 low-voltage power supply, 79 ground, 80 power IC, 80A power IC (no heat dissipation tab), 81 power transistor, 81A U-phase upper arm power transistor, 81B V-phase upper arm power transistor, 81C W-phase upper arm power transistor, 81D U-phase lower arm power transistor, 81E V-phase lower arm power transistor, 81F W-phase lower arm power transistor, 81T heat dissipation tab terminal, 82 gate drive circuit, 83 protection circuit, etc., 91 processor, 92 Memory, 93 processing circuit, 200 air conditioner (air conditioner), 210 indoor unit, 211 indoor unit substrate, 220 outdoor unit, 223 outdoor unit blower.
Claims (5)
- インバータ回路を含む基板を内蔵しており、
前記基板は、樹脂にて一体成型されており、
前記基板のベタパターンにリフローにてはんだ付けされた金属板を備え、
前記金属板をはんだ付けするパターンが高電圧部である
電動機。 It has a built-in substrate including an inverter circuit,
The substrate is integrally molded with resin,
A metal plate soldered to the solid pattern of the substrate by reflow,
An electric motor, wherein the pattern to which the metal plate is soldered is a high-voltage part. - 前記金属板は、複数に分割されて配置されている
請求項1に記載の電動機。 The electric motor according to claim 1, wherein the metal plate is divided into a plurality of pieces. - 前記金属板は、はんだ付け部の断面積より、前記基板から離れた部分の断面積のほうが大きい
請求項1又は2に記載の電動機。 The electric motor according to claim 1 or 2, wherein the metal plate has a larger cross-sectional area at a portion away from the substrate than a cross-sectional area at the soldered portion. - 前記金属板がはんだ付け不可な金属であって、前記金属板のはんだ付け部にはんだ付け可能となるような、メッキおよびコーティングが施されている
請求項1から3のいずれか1項に記載の電動機。 4. The metal plate according to any one of claims 1 to 3, wherein the metal plate is a non-solderable metal, and the metal plate is plated and coated so that the soldering portion of the metal plate can be soldered. Electric motor. - 請求項1から4のいずれか1項に記載の電動機が搭載された空気調和機。 An air conditioner equipped with the electric motor according to any one of claims 1 to 4.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/006374 WO2023157175A1 (en) | 2022-02-17 | 2022-02-17 | Electric motor and air-conditioning device |
JP2024500811A JPWO2023157175A1 (en) | 2022-02-17 | 2022-02-17 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/006374 WO2023157175A1 (en) | 2022-02-17 | 2022-02-17 | Electric motor and air-conditioning device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023157175A1 true WO2023157175A1 (en) | 2023-08-24 |
Family
ID=87577823
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/006374 WO2023157175A1 (en) | 2022-02-17 | 2022-02-17 | Electric motor and air-conditioning device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2023157175A1 (en) |
WO (1) | WO2023157175A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05259666A (en) * | 1992-03-12 | 1993-10-08 | Matsushita Electric Ind Co Ltd | Heat sink of integrated circuit for motor |
JP2005333099A (en) * | 2004-04-22 | 2005-12-02 | Matsushita Electric Ind Co Ltd | Semiconductor module |
-
2022
- 2022-02-17 WO PCT/JP2022/006374 patent/WO2023157175A1/en active Application Filing
- 2022-02-17 JP JP2024500811A patent/JPWO2023157175A1/ja active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05259666A (en) * | 1992-03-12 | 1993-10-08 | Matsushita Electric Ind Co Ltd | Heat sink of integrated circuit for motor |
JP2005333099A (en) * | 2004-04-22 | 2005-12-02 | Matsushita Electric Ind Co Ltd | Semiconductor module |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023157175A1 (en) | 2023-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR940010066B1 (en) | Brushless motor incorporating an integrated circuit having a 0ne-chipped peripheral circuit | |
US7259487B2 (en) | Electric machine including circuit board mounting means | |
US10461611B2 (en) | Electromechanical motor unit | |
JP4682985B2 (en) | Brushless DC motor and electric device equipped with the same | |
CN117559686A (en) | Motor, blower, and air conditioner | |
JP2001128417A (en) | Motor | |
JP5317846B2 (en) | Drive device | |
WO2023157175A1 (en) | Electric motor and air-conditioning device | |
WO2017072965A1 (en) | Electric motor, blower and air conditioner | |
JP2010187435A (en) | Power conversion device, motor with built-in drive circuit using the power conversion device, indoor unit of air conditioner using the motor with built-in drive circuit, air conditioner, ventilation fan, pump, and equipment and water heater using the pump | |
US10598393B2 (en) | Electric-power control device, electric motor, air-conditioning apparatus, and method for manufacturing electric motor | |
JP2960754B2 (en) | Fan drive motor | |
JPH0467758A (en) | Motor | |
CN111052575B (en) | Motor and air conditioner provided with same | |
WO2024047863A1 (en) | Electric motor, air conditioner, and control board | |
WO2021220427A1 (en) | Electric motor and air conditioner | |
WO2022264407A1 (en) | Electric motor, air conditioner, and control board | |
WO2024201738A1 (en) | Electric motor and air conditioner | |
JP3248933B2 (en) | Electric motor | |
JP7337273B2 (en) | Power control device, electric motor with power control device, and air conditioner with electric motor | |
WO2023135743A1 (en) | Electric motor, air conditioner, and control board | |
CN113169697B (en) | Motor and air conditioner equipped with same | |
JP7204042B2 (en) | Electric motors and air conditioners equipped with electric motors | |
WO2024142213A1 (en) | Electronic control device and electric power steering device | |
WO2017072964A1 (en) | Electric motor, blower and air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22927077 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2024500811 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |