WO2024105920A1 - Tire, unvulcanized tire, and tire manufacturing method - Google Patents
Tire, unvulcanized tire, and tire manufacturing method Download PDFInfo
- Publication number
- WO2024105920A1 WO2024105920A1 PCT/JP2023/023400 JP2023023400W WO2024105920A1 WO 2024105920 A1 WO2024105920 A1 WO 2024105920A1 JP 2023023400 W JP2023023400 W JP 2023023400W WO 2024105920 A1 WO2024105920 A1 WO 2024105920A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tire
- antenna
- tag
- communication structure
- extension axis
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 23
- 238000004891 communication Methods 0.000 claims abstract description 86
- 229920001971 elastomer Polymers 0.000 claims description 104
- 239000005060 rubber Substances 0.000 claims description 103
- 238000000465 moulding Methods 0.000 claims description 12
- 238000004073 vulcanization Methods 0.000 claims description 8
- 239000011324 bead Substances 0.000 description 68
- 241000254043 Melolonthinae Species 0.000 description 46
- 230000008878 coupling Effects 0.000 description 46
- 238000010168 coupling process Methods 0.000 description 46
- 238000005859 coupling reaction Methods 0.000 description 46
- 230000005672 electromagnetic field Effects 0.000 description 43
- 239000000758 substrate Substances 0.000 description 43
- 239000000945 filler Substances 0.000 description 40
- 239000004677 Nylon Substances 0.000 description 27
- 229920001778 nylon Polymers 0.000 description 27
- 239000003351 stiffener Substances 0.000 description 19
- 230000002093 peripheral effect Effects 0.000 description 16
- 230000003014 reinforcing effect Effects 0.000 description 9
- 238000010276 construction Methods 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 229910000831 Steel Inorganic materials 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- 239000012141 concentrate Substances 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- -1 polyethylene terephthalate Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229920000297 Rayon Polymers 0.000 description 3
- 239000004760 aramid Substances 0.000 description 3
- 229920003235 aromatic polyamide Polymers 0.000 description 3
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 239000002964 rayon Substances 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 210000000078 claw Anatomy 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 235000019589 hardness Nutrition 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229920005555 halobutyl Polymers 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 229920002620 polyvinyl fluoride Polymers 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000004636 vulcanized rubber Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C19/00—Tyre parts or constructions not otherwise provided for
Definitions
- the present invention relates to a tire, an unvulcanized tire, and a tire manufacturing method.
- Patent Document 1 Traditionally, tires equipped with RF tags have been available (Patent Document 1).
- the present invention aims to provide a tire, an unvulcanized tire, and a tire manufacturing method that can improve the durability of RF tags.
- An RF tag The tire body, A tire comprising: The RF tag has a communication structure, The communication structure includes an antenna; the communication structure unit has a tendency that, in a state where the communication structure unit is not mounted on the tire main body, the antenna has a curved shape in which an antenna extension axis of the antenna has a center of curvature on a first side with respect to the antenna extension axis in a plan view of the communication structure unit, When the communication structure is assembled to the tire body, in a planar view of the communication structure, the antenna extension axis forms a curved shape having a center of curvature on the first side relative to the antenna extension axis, and the first side relative to the antenna extension axis is oriented so as to be radially outward in the tire.
- an RF tag The tire body, An unvulcanized tire comprising: The RF tag has a communication structure, The communication structure includes an antenna; the communication structure unit has a tendency that, in a state where the communication structure unit is not mounted on the tire main body, the antenna has a curved shape in which an antenna extension axis of the antenna has a center of curvature on a first side with respect to the antenna extension axis in a plan view of the communication structure unit, An unvulcanized tire in which, when the communication structure is assembled to the tire body, in a planar view of the communication structure, the antenna extension axis forms a curved shape having a center of curvature on the first side relative to the antenna extension axis, and the first side relative to the antenna extension axis is oriented so as to be radially outward in the tire radial direction.
- a tire manufacturing method for manufacturing the above tire comprising the steps of: An unvulcanized tire manufacturing step of manufacturing an unvulcanized tire; A vulcanization molding step of vulcanizing and molding the unvulcanized tire; Including, a tire manufacturing method in which, in an assembled state in which the communication structure portion is assembled to the tire body of the tire obtained after the vulcanization molding step, in a planar view of the communication structure portion, the antenna extension axis forms a curved shape having a center of curvature on the first side relative to the antenna extension axis, and the first side relative to the antenna extension axis is oriented to be radially outward in the tire direction.
- the present invention provides a tire, an unvulcanized tire, and a tire manufacturing method that can improve the durability of RF tags.
- FIG. 1 is a side view that shows a schematic side view of an unvulcanized tire and a tire according to an embodiment of the present invention, viewed from one side in the tire width direction.
- FIG. 3 is a tire widthwise cross-sectional view that shows the unvulcanized tire and a tire half portion of the tire of FIG. 2 in a tire widthwise cross section.
- FIG. 1 is a perspective view showing an example of an RF tag according to one embodiment of the present invention, which can be provided on an unvulcanized tire and a tire according to any embodiment of the present invention, in a state where the tag is not assembled to the tire body.
- 3 is a plan view of the communication structure unit of the RF tag according to the example of FIG. 2 in a standalone state without being mounted on a tire body.
- FIG. 3 is a perspective view of a communication structure portion of the RF tag according to the example of FIG. 2.
- 1 is an oblique view of a communication structure of an RF tag with the lid of the exterior body removed.
- FIG. 3 is an exploded perspective view of the communication structure of the RF tag according to the example of FIG. 2.
- FIG. 4 is a plan view of a second antenna in a standalone state without being mounted on a tire body.
- 3 is a partial cross-sectional view of the communication structure of the RF tag according to the example of FIG. 2.
- the tire, unvulcanized tire, and tire manufacturing method according to the present invention can be suitably used for any type of pneumatic tire, for example, pneumatic tires for heavy loads (e.g., pneumatic tires for trucks and buses, off-the-road (construction vehicle) pneumatic tires, etc.) and pneumatic tires for passenger cars.
- pneumatic tires for heavy loads e.g., pneumatic tires for trucks and buses, off-the-road (construction vehicle) pneumatic tires, etc.
- pneumatic tires for passenger cars e.g., pneumatic tires for passenger cars.
- FIG. 1 and 2 are diagrams for explaining an unvulcanized tire T01' and a tire T01 according to one embodiment of the present invention.
- the tire (vulcanized tire) T01 is obtained after vulcanizing and molding the unvulcanized tire T01' using a mold for vulcanization molding.
- the unvulcanized tire T01' and the tire T01 may differ slightly in shape, but may be basically similar to each other in terms of the various configurations described in this specification unless otherwise specified.
- FIG. 2 shows the unvulcanized tire T01' and the tire T01 in the same drawing.
- the configurations of the tire T01 and the unvulcanized tire T01' will be described in parallel.
- the unvulcanized tire T01' may be referred to simply as "tire T01'" in the following description.
- Fig. 1 is a side view showing a tire T01', T01 according to an embodiment of the present invention as viewed from one side in the tire width direction.
- Fig. 2 is a tire width direction cross-sectional view showing a half portion of the tire T01', T01 in Fig. 1 (specifically, a portion on one side relative to the tire equatorial plane CL).
- the tires T01', T01 of the embodiment of Figures 1 and 2 are configured as heavy-duty pneumatic tires (e.g., pneumatic tires for trucks and buses, off-the-road (construction vehicle) pneumatic tires, etc.).
- the tires T01', T01 of any embodiment of the present invention may be configured as any type of tire.
- Tires T01' and T01 are equipped with a tire body T0M and an RF tag 10.
- the tire body T0M corresponds to the portion of tires T01' and T01 other than the RF tag 10.
- the tire main body TOM includes a tread portion T01t, a pair of sidewall portions T01w extending radially inward from both ends of the tread portion T01t in the tire width direction, and a pair of bead portions T01b provided at the radially inner ends of each sidewall portion T01w.
- the bead portions T01b are configured to contact the rim on the radially inner side and the tire widthwise outer side when the tire T01 is mounted on a rim.
- the tire main body T0M also includes a pair of bead cores T02, a pair of bead fillers T03, a carcass T05, a belt T06, a tread rubber T07, a side rubber T08, and an inner liner T09.
- Each bead core T02 is embedded in the corresponding bead portion T01b.
- the bead core T02 has a plurality of bead wires that are covered with rubber.
- the bead wires are preferably made of metal (e.g., steel), but may also be made of organic fibers such as polyester, nylon, rayon, and aramid.
- the bead wires may be made of, for example, monofilament or twisted wire.
- Each bead filler T03 is located on the outer side in the tire radial direction with respect to the corresponding bead core T02.
- the bead filler T03 extends in a tapered shape toward the outer side in the tire radial direction.
- the bead filler T03 is made of rubber.
- the bead filler is sometimes called a "stiffener.”
- the bead filler T03 may be composed of a plurality of bead filler portions T031 and T032 (two in the example of FIG. 2).
- the rubber compositions constituting the plurality of bead filler portions T031 and T032 are different from each other.
- the rubber compositions constituting the respective bead filler portions T031 and T032 are substantially the same throughout the entire bead filler portions T031 and T032.
- the plurality of bead filler portions T031 and T032 may have different hardnesses, for example.
- the plurality of bead filler portions T031 and T032 are arranged (stacked) along the tire radial direction, for example.
- the bead filler portion T032 located at the outermost position in the tire radial direction among the plurality of bead filler portions T031 and T032 may be softer than the other bead filler portions T031.
- the bead filler T03 may be composed of only one bead filler portion, in other words, the composition of the rubber constituting the bead filler T03 may be substantially the same throughout the bead filler T03.
- the carcass T05 straddles a pair of bead cores T02 and extends in a toroidal shape.
- the carcass T05 is composed of one or more carcass plies T05p (one in the example of FIG. 2).
- Each carcass ply T05p includes one or more carcass cords T05c and a coating rubber T05r that coats the carcass cords T05c.
- the carcass cords T05c can be formed of a monofilament or a twisted wire.
- the carcass cord T05c is preferably made of a metal (for example, steel), but may be made of an organic fiber such as polyester, nylon, rayon, or aramid.
- the carcass T05 is preferably of radial construction, but may also be of bias construction.
- the belt T06 is disposed radially outward of the crown portion of the carcass T05.
- the belt T06 includes one or more belt plies T06p (four layers in the example of FIG. 2).
- Each belt ply T06p includes one or more belt cords and a coating rubber that covers the belt cords.
- the belt cords can be formed of monofilament or twisted wire.
- the belt cords may be made of metal (e.g., steel) or organic fibers such as polyester, nylon, rayon, and aramid.
- the tread rubber T07 is located on the radially outer side of the belt T06 in the tread portion T01t.
- the tread rubber T07 constitutes the tread surface, which is the radially outer surface of the tread portion T01t.
- a tread pattern is formed on the tread surface.
- the side rubber T08 is located in the sidewall portion T01w.
- the side rubber T08 constitutes the outer surface of the sidewall portion T01w on the outer side in the tire width direction.
- the side rubber T08 is located further outboard in the tire width direction than the carcass T05.
- the side rubber T08 is located further outboard in the tire width direction than the bead filler T03.
- the side rubber T08 is formed integrally with the tread rubber T07.
- the inner liner T09 is disposed on the tire inner side of the carcass T05, and may be laminated, for example, on the tire inner side of the carcass T05.
- the inner liner T09 is made of, for example, a butyl-based rubber having low air permeability.
- Butyl-based rubber includes, for example, butyl rubber and its derivative, halogenated butyl rubber.
- the inner liner T09 is not limited to butyl-based rubber, and may be made of other rubber compositions, resins, or elastomers.
- the tire main body T0M may include a cushion rubber T10 between the carcass T05 and the tread rubber T07 in the tire radial direction.
- the cushion rubber T10 may be located near the tire width direction end of the belt T06, as in the example of FIG. 2.
- the tire body T0M may have a rubber chafer T11 at the portion of each bead portion T01b that is configured to contact the rim.
- the tire main body T0M may include one or more (one in the example of Fig. 2) wire chafers T14 around each bead core T02.
- the wire chafer T14 may be disposed on the opposite side of the carcass T05 from the bead core T02, as in the example of Fig. 2.
- the wire chafer T14 is made of metal (e.g., steel).
- the tire main body T0M may include one or more (two in the example of Fig. 2) nylon chafers T13 around each bead core T02.
- the nylon chafers T13 may be disposed on the opposite side of the carcass T05 from the bead cores T02, as in the example of Fig. 2.
- the nylon chafers T13 are made of nylon. In the example of FIG. 2, each nylon chafer T13 is disposed on the opposite side of the wire chafer T14 from the bead core T02.
- the tire main body T0M may include a hat rubber T12 between the bead filler T03 and the side rubber T08 in the tire width direction in each tire half portion.
- the hat rubber T12 is disposed between the bead filler T03 and each nylon chafer T13 in the tire width direction.
- Figs. 3 to 9 are drawings for explaining an example of an RF tag 10 that can be provided in the unvulcanized tire T01' and tire T01 according to any embodiment of the present invention, including the embodiment of Figs. 1 and 2.
- the RF tag 10 is configured to be capable of wireless communication with a predetermined external device (for example, a reader or a reader/writer) located outside the tire T01.
- a predetermined external device for example, a reader or a reader/writer located outside the tire T01.
- the RF tag 10 is a contactless data transmitter/receiver and is also called an "RFID tag.”
- Fig. 3 is a perspective view showing an example of an RF tag 10 that can be provided in the unvulcanized tire T01' and the tire T01 according to any embodiment of the present invention including the embodiment of Fig. 1 and Fig. 2.
- the RF tag 10 is in a standalone state not mounted on the tire main body T0M (i.e., the RF tag 10 is removed from the tire main body T0M and viewed alone with no external force acting on the RF tag 10).
- the RF tag 10 in this example includes a communication structure section 51 and a tag covering rubber section 50 that covers the communication structure section 51 .
- the tag covering rubber part 50 covers the entire communication structure part 51.
- the tag covering rubber part 50 is made of rubber.
- the tag-covered rubber portion 50 is preferably made of unvulcanized rubber (raw rubber).
- the tag-covering rubber portion 50 is preferably made of vulcanized rubber.
- the tag covering rubber part 50 has a pair of sheet-shaped tag covering rubber members 50a, 50b. The pair of tag covering rubber members 50a, 50b are overlapped with each other with the communication structure part 51 sandwiched between them.
- the tag covering rubber portion 50 may be configured as a single member.
- the tag covering rubber part 50 has a rectangular shape in a plan view, but the tag covering rubber part 50 may have any shape in a plan view.
- the RF tag 10 does not necessarily have to have the tag covering rubber portion 50 .
- FIG. 4 is a plan view of the communication structure portion 51 of the RF tag 10 according to this example.
- the communication structure portion 51 is in a standalone state, not assembled to the tire main body T0M (i.e., the communication structure portion 51 is removed from the tire main body T0M and viewed alone with no external force acting on the communication structure portion 51).
- FIG. 5 is an oblique view of the communication structure portion 51 of the RF tag 10.
- FIG. 6 is an oblique view of the communication structure portion 51 of the RF tag 10 with the lid portion of the outer casing removed.
- FIG. 7 is an exploded oblique view of the communication structure portion 51 of the RF tag 10.
- FIG. 8 is a plan view of the second antenna 2. In FIG. 8, the second antenna 2 is in a standalone state, not attached to the tire main body T0M (i.e., the second antenna 2 is removed from the tire main body T0M, and viewed alone with no external force acting on the second antenna 2).
- FIG. 9 is a partial cross-sectional view of the communication structure 51 of the RF tag 10. FIG. 9 is a cross-sectional view taken along line I-I in FIG. 5.
- the communication structure 51 of the RF tag 10 includes a substrate 1 , a second antenna (antenna) 2 , and an exterior body 3 .
- the longitudinal direction (left-right direction in FIG. 4) of the main surface 31a of the exterior body 3 (see FIG. 6) is referred to as the X direction.
- One of the X directions (right direction in FIG. 4) is referred to as the +X direction.
- the other of the X directions (left direction in FIG. 4) is referred to as the -X direction.
- the short-side direction of the main surface 31a of the exterior body 3 (see FIG. 6) is referred to as the Y direction.
- the Y direction is perpendicular to the X direction in a plane along the main surface 31a.
- One of the Y directions (upward direction in FIG. 4) is referred to as the +Y direction.
- the other of the Y directions (downward direction in FIG. 4) is referred to as the -Y direction.
- the direction perpendicular to the main surface 31a of the exterior body 3 is referred to as the Z direction.
- the Z direction is perpendicular to the X direction and the Y direction. Viewing from the Z direction is referred to as planar view.
- the Z axis is the central axis along the Z direction.
- the substrate 1 includes an IC chip 11, a first antenna (antenna) 12, and a base material 13.
- the substrate 1 is provided with the IC chip 11 and the first antenna 12.
- the substrate 13 is formed in a plate shape.
- the shape of the substrate 13 in plan view is not particularly limited, but it is preferable that at least a part of the outer circumferential edge 13a is curved.
- the curved shape is, for example, an elliptical arc shape, a circular arc shape, a high-order curve shape (for example, a quadratic curve shape), etc.
- the high-order curve shape is, for example, a parabola shape, a hyperbola shape, etc.
- the outer shape of the substrate 13 in plan view may be, for example, an elliptical shape, a circular shape, an oval shape (a racetrack shape), etc. It is preferable that the outer shape of the substrate 13 in plan view is non-circular.
- the substrate 13 has an elliptical shape, and is oriented such that the major axis of the substrate 13 faces the X-direction.
- the substrate 13 may be made of a glass epoxy resin substrate, ceramics, a plastic film, or the like.
- the IC chip 11 allows for contactless writing and reading of information via the first antenna 12 and the second antenna 2.
- the IC chip 11 is mounted on a substrate 13.
- the first antenna 12 is, for example, a conductive layer formed on one surface of the substrate 13.
- the conductive layer is, for example, composed of a conductive foil, a plating layer, a conductive ink layer, etc.
- the conductive foil is, for example, a metal foil composed of copper, silver, gold, platinum, aluminum, etc.
- the conductive foil is formed into a predetermined shape by etching or the like.
- the plating layer is, for example, composed of a metal such as copper, silver, gold, platinum, aluminum, etc.
- the conductive ink layer is formed by printing or the like using a conductive ink.
- the conductive ink contains conductive particles formed of a metal, carbon material, etc.
- the first antenna 12 is formed in a loop shape.
- the first antenna 12 has, for example, a curved shape that follows the outer peripheral edge 13a of the substrate 13. In this example, the first antenna 12 is formed in an elliptical loop shape.
- the first antenna 12 is electrically connected to the IC chip 11.
- the second antenna 2 is an antenna for a booster.
- the second antenna 2 is, for example, a linear body.
- the second antenna 2 is formed of a metal such as steel, stainless steel, copper, or a copper alloy.
- the second antenna 2 can be formed of, for example, a brass-plated steel wire.
- the second antenna 2 is separate from the substrate 1.
- the second antenna 2 in this example is a linear body, the shape of the second antenna is not particularly limited.
- the second antenna may be, for example, a plate-like body.
- the second antenna 2 includes an electromagnetic field coupling portion 21 and a pair of extension portions 22 .
- the electromagnetic field coupling unit 21 has a curved shape.
- a "curved shape” is a shape that does not have a sharp bend and is smoothly curved. Examples of the curved shape include an elliptical arc shape, a circular arc shape, and a high-order curve shape (e.g., a quadratic curve shape). Examples of the "high-order curve shape” include a parabola shape and a hyperbola shape.
- the electromagnetic field coupling unit 21 is in a semi-elliptical shape.
- the electromagnetic field coupling unit 21 is in a semi-elliptical shape that extends from one vertex of the ellipse (the vertex intersecting with the long axis) to the other vertex (the vertex intersecting with the long axis).
- the electromagnetic field coupling portion 21 is shaped to surround at least a portion of the substrate 1 in a plan view.
- the electromagnetic field coupling portion 21 surrounds the area (half the circumference in the +Y direction) from one vertex (the vertex intersecting with the long axis) of the elliptical substrate 1 to the other vertex (the vertex intersecting with the long axis).
- the electromagnetic field coupling portion 21 has a curved shape (e.g., an elliptical arc shape) that follows the outer peripheral edge 12a of the first antenna 12 in a plan view. The distance between the electromagnetic field coupling portion 21 and the outer peripheral edge 12a is approximately constant.
- the electromagnetic field coupling portion 21 is located outside the outer peripheral edge 13a of the substrate 1 and close to the outer peripheral edge 13a in a plan view.
- the electromagnetic field coupling portion 21 has a shape that follows the outer peripheral edge 13a in a plan view. The distance between the electromagnetic field coupling portion 21 and the outer peripheral edge 13a is approximately constant.
- the electromagnetic field coupling portion 21 is electromagnetically coupled to the first antenna 12 in a non-contact manner.
- the electromagnetic field coupling is, for example, either electric field coupling or magnetic field coupling.
- the shape of a cross section perpendicular to the longitudinal direction of the electromagnetic field coupling portion 21 is, for example, circular (see FIG. 9).
- the pair of extensions 22 extend from one and the other end 21 a of the electromagnetic field coupling portion 21 , respectively.
- a first extending portion 22A which is one of the pair of extending portions 22, extends in the -X direction while meandering from an end portion 21a in the -X direction of the electromagnetic field coupling portion 21.
- a second extending portion 22B which is the other of the pair of extending portions 22, extends in the +X direction while meandering from an end portion 21a in the +X direction of the electromagnetic field coupling portion 21.
- the planar shape of the extension portion 22 may be, for example, a meandering shape, a wavy shape, a zigzag shape, or the like. In this example, the extension portion 22 has a meandering shape. However, the planar shape of the extension portion 22 may be any shape, for example, a curved line shape. Alternatively, the extension portion 22 may be spiral.
- the extension portion 22 includes a plurality of straight portions 23 and a plurality of folded portions 24.
- the straight portions 23 are linearly shaped along the Y direction.
- the straight portions 23 are arranged at intervals in the X direction.
- the folded portions 24 connect the ends of adjacent straight portions 23.
- the folded portions 24 have a curved shape (e.g., an arc shape).
- the straight line portion 23 closest to the electromagnetic field coupling portion 21 is referred to as the "first straight line portion 23A.”
- the straight line portion 23 second closest to the electromagnetic field coupling portion 21 is referred to as the “second straight line portion 23B.”
- the straight line portion 23 third closest to the electromagnetic field coupling portion 21 is referred to as the "third straight line portion 23C.”
- the folded portion 24 connecting the first straight portion 23A and the second straight portion 23B is referred to as a "first folded portion 24A.”
- the folded portion 24 connecting the second straight portion 23B and the third straight portion 23C is referred to as a "second folded portion 24B.”
- the first straight portion 23A extends in the -Y direction from the end 21a of the electromagnetic field coupling portion 21.
- the first folded portion 24A extends in a curved manner from the -Y direction end of the first straight portion 23A and reaches the -Y direction end of the second straight portion 23B.
- the first straight portion 23A and a part of the first folded portion 24A are inside the exterior body 3, but the remaining portion of the extension portion 22 extends outside the exterior body 3 (see FIG. 6).
- the exterior body 3 houses a part of the second antenna 2 inside. As shown in FIG. 5, the exterior body 3 includes a plate-shaped main body 31 and a plate-shaped lid 32.
- the exterior body 3 is generally plate-shaped.
- the main body 31 and the lid 32 are formed of, for example, resin.
- resins include polyamide resins such as nylon 6,6; polyester resins such as polyethylene terephthalate (PET); polyolefin resins such as polyethylene; polyethylene fluoride-based resins such as polyvinyl fluoride; vinyl polymers such as polyvinyl chloride; and acrylic resins such as polymethyl methacrylate.
- the main body 31 has a rectangular shape in a plan view.
- a board holding recess 37 (board holding portion), an antenna holding groove 34, and a pair of side recesses 35 are formed on the main surface 31a, which is one surface of the main body 31.
- the board holding recess 37 is formed by the board holding protrusions 33.
- the board holding recess 37 is a recess surrounded by the board holding protrusions 33.
- the board holding protrusion 33 is a ring-shaped rib-shaped protrusion.
- the board holding protrusion 33 has a curved shape (e.g., an elliptical shape) that fits along the outer peripheral edge 13a of the board 1.
- the board holding protrusion 33 protrudes from the main surface 31a in the +Z direction.
- the shape of a cross section perpendicular to the length direction of the board holding protrusion 33 is, for example, rectangular.
- the board holding protrusion 33 has a curved shape (e.g., an elliptical shape) that fits along the outer peripheral edge 12a of the first antenna 12.
- the substrate holding recess 37 holds the substrate 1.
- the substrate holding recess 37 has a shape (e.g., an elliptical shape) that follows the outer peripheral edge 13a of the substrate 1.
- the inner dimension (inner diameter) of the substrate holding recess 37 is approximately the same as the outer dimension (outer diameter) of the substrate 1 or is slightly larger than the outer dimension (outer diameter) of the substrate 1.
- the substrate holding recess 37 has a similar shape to the substrate 1 in a plan view.
- the substrate 1 and the substrate holding recess 37 are non-circular (e.g., elliptical), they can prevent the substrate 1 from tilting around the Z axis and maintain the correct posture of the substrate 1. This makes it possible to maintain the electromagnetic coupling between the first antenna 12 and the electromagnetic field coupling portion 21.
- the antenna holding groove 34 accommodates the electromagnetic field coupling portion 21 of the second antenna 2 (see FIGS. 6 and 9).
- the antenna holding groove 34 is formed outside the substrate holding convex portion 33 and close to the substrate holding convex portion 33.
- the antenna holding groove 34 has a shape that follows the substrate holding convex portion 33 in a plan view.
- the antenna holding groove 34 has a curved shape (e.g., an elliptical arc shape) that follows the outer peripheral edge 12a of the first antenna 12 in a plan view.
- the antenna holding groove 34 has a curved shape (e.g., an elliptical arc shape) that follows the outer peripheral edge 13a of the substrate 1 in a plan view.
- the antenna holding groove 34 has a semi-elliptical shape in a plan view. More specifically, the antenna holding groove 34 has a semi-elliptical shape extending from one vertex (the vertex intersecting with the long axis) of the ellipse to the other vertex (the vertex intersecting with the long axis).
- the antenna holding groove 34 is shaped to surround at least a portion of the substrate 1 in a plan view.
- the antenna holding groove 34 surrounds the area (half the circumference in the +Y direction) from one vertex (the vertex intersecting with the long axis) of the elliptical substrate 1 to the other vertex (the vertex intersecting with the long axis).
- the cross section perpendicular to the longitudinal direction of the antenna holding groove 34 is, for example, rectangular.
- the width (inner dimension) W1 of the antenna holding groove 34 is larger than the outer diameter (outer dimension) D1 of the electromagnetic field coupling portion 21.
- the difference between the width W1 and the outer diameter D1 can be, for example, 0.01 mm to 1 mm (preferably 0.05 mm to 0.2 mm). Since the width W1 of the antenna holding groove 34 is larger than the outer diameter D1 of the electromagnetic field coupling part 21, the electromagnetic field coupling part 21 is accommodated in the antenna holding groove 34 in a state in which it can be displaced in a radial direction (e.g., the Y direction).
- the "radial direction” is a direction perpendicular to the length direction of the electromagnetic field coupling part 21.
- the electromagnetic field coupling part 21 can also be displaced in the length direction relative to the antenna holding groove 34.
- the depth of the antenna holding groove 34 is determined so that the height (inner dimension) H1 from the bottom surface 34a of the antenna holding groove 34 to the cover portion 32 (top surface 38a) is greater than the outer diameter D1 of the electromagnetic field coupling portion 21.
- the difference between the height H1 and the outer diameter D1 can be, for example, 0.01 mm to 1 mm (preferably 0.05 mm to 0.2 mm). Since the height H1 of the antenna holding groove 34 is greater than the outer diameter D1 of the electromagnetic field coupling portion 21, the electromagnetic field coupling portion 21 is accommodated in the antenna holding groove 34 in a state in which it can be displaced in the radial direction (for example, the Z direction).
- the side recesses 35 are defined inside the exterior body 3. As shown in FIG. 7, the side recesses 35 are formed on one and the other side of the main surface 31a. The side recesses 35 are formed in an area including the side edge 31b in the X direction of the main body 31.
- the inner peripheral edge 35a of the side recess 35 has a first straight portion 35b along the Y direction, a curved portion 35c, and a second straight portion 35d along the X direction.
- the first straight portion 35b is a portion that extends in the -Y direction starting from the end of the inner peripheral edge of the antenna holding groove 34.
- the curved portion 35c is a portion that extends from the tip of the first straight portion 35b while the inclination angle with respect to the X direction becomes smaller.
- the second straight portion 35d is a portion that extends from the tip of the curved portion 35c along the X direction toward the side edge 31b.
- the side recess 35 includes the first straight portion 23A and a portion of the first folded portion 24A of the second antenna 2 in a plan view.
- the first straight portion 23A is adjacent to the first straight portion 35b (see FIG. 7).
- the first folded portion 24A is adjacent to the curved portion 35c (see FIG. 7).
- the side recess 35 accommodates at least a portion of a predetermined length range of the second antenna 2 (the first straight portion 23A and a portion of the first folded portion 24A).
- a slit-shaped side end opening 36 extending in the Y direction (direction along the main surface 31a) is formed in the side edge 31b.
- the side end opening 36 communicates with the side recess 35.
- the second antenna 2 extends to the outside of the exterior body 3 through the side recess 35 and the side end opening 36.
- two locking recesses 39 are formed at different positions in the X direction on the +Y edge 31c of the main body 31.
- Two locking recesses 39 are also formed at different positions in the X direction on the -Y edge 31d of the main body 31.
- the lid portion 32 has a rectangular shape in a plan view.
- the lid portion 32 has the same shape as the main body portion 31 and is placed opposite the main surface 31a of the main body portion 31.
- the lid portion 32 is placed so as to overlap the main surface 31a of the main body portion 31 in a plan view.
- the opposing surface 32a of the lid portion 32 is a surface that faces the main surface 31a of the main body portion 31.
- a positioning groove 38 is formed in the opposing surface 32a.
- the positioning groove 38 is an annular groove.
- the shape of a cross section perpendicular to the longitudinal direction of the positioning groove 38 is, for example, rectangular.
- the positioning groove 38 has a curved shape (e.g., an elliptical shape) that corresponds to the board holding protrusion 33 and the antenna holding groove 34.
- the positioning groove 38 has a width that collectively encompasses the board holding protrusion 33 and the antenna holding groove 34.
- a portion of the top surface 38a of the positioning groove 38 faces the bottom surface 34a of the antenna holding groove 34.
- two locking protrusions 40 are formed at different positions in the X direction on the +Y edge 32c of the lid 32.
- Two locking protrusions 40 are also formed at different positions in the X direction on the -Y edge 32d of the lid 32.
- the locking protrusion 40 has a locking claw portion (not shown) formed at its tip.
- the locking protrusion 40 is inserted into the locking recess 39 of the main body 31.
- the locking claw portion of the locking protrusion 40 locks into the main body 31. This allows the lid 32 to be detachably connected to the main body 31.
- the exterior body 3 is not fixed to the second antenna 2. In other words, the exterior body 3 is not fixed to the second antenna 2.
- the RF tag 10 may be embedded inside the tire main body T0M of the tires T01', T01, as in the embodiment of Figure 2, or may be attached to the inner surface or outer surface of the tire main body T0M of the tires T01', T01.
- an external force may act on the second antenna 2.
- a tensile force may act on the extension portion 22 in a direction away from the exterior body 3 along the X direction.
- a force may also act on the extension portion 22 in a direction approaching the exterior body 3 along the X direction.
- the electromagnetic field coupling part 21 of the second antenna 2 is accommodated in the antenna holding groove 34 in a state in which it can be displaced in the radial direction (a direction perpendicular to the length direction of the electromagnetic field coupling part 21) (see FIG. 9). Since the electromagnetic field coupling part 21 is displaceable, when an external force acts on the second antenna 2, the stress on the second antenna 2 can be alleviated. Therefore, it is possible to make the second antenna 2 less likely to be damaged. In contrast, when the second antenna is fixed to the outer casing, when an external force acts on the second antenna, stress is concentrated at the base end (root portion) of the second antenna extending from the outer casing, making this location more susceptible to damage.
- the electromagnetic field coupling portion 21 of the second antenna 2 has a shape that fits along the outer circumferential edge 12 a of the first antenna 12 , the electromagnetic field coupling portion 21 can be sufficiently electromagnetically coupled to the first antenna 12 . Since the antenna holding groove 34 is formed along the outer peripheral edge 12a of the first antenna 12, the electromagnetic field coupling portion 21 of the second antenna 2 can be disposed along the first antenna 12. Therefore, the electromagnetic field coupling portion 21 can be sufficiently electromagnetically coupled to the first antenna 12.
- the electromagnetic field coupling portion 21 of the second antenna 2 has a curved shape (e.g., a semi-elliptical shape), stress concentration is less likely to occur compared to a rectangular shape even when an external force acts on the second antenna 2. This makes it possible to make the second antenna 2 less likely to be damaged. In contrast, if the electromagnetic field coupling portion is rectangular, when an external force acts on the second antenna, stress is concentrated at the corners (bends), and breakage may easily occur at these locations.
- the antenna holding groove 34 is formed along the outer peripheral edge 13a of the substrate 1, so that the electromagnetic field coupling portion 21 of the second antenna 2 can be positioned along the first antenna 12. This allows the electromagnetic field coupling portion 21 to be sufficiently electromagnetically coupled to the first antenna 12.
- the exterior body 3 comprises a main body portion 31 and a lid portion 32 that is overlaid on the main surface 31a.
- the board holding recess 37 and the antenna holding groove 34 are formed on the main surface 31a. Therefore, the lid portion 32 can prevent the board 1 and the second antenna 2 from falling off the main body portion 31. Therefore, the board 1 and the second antenna 2 can be stably held in the exterior body 3.
- a slit-shaped side end opening 36 extending in the Y direction (direction along the main surface 31a) is formed on the side edge 31b of the exterior body 3. Therefore, the second antenna 2 is displaceable within the side end opening 36, and can change its position in the Y direction relative to the exterior body 3. Therefore, when an external force acts on the second antenna 2, the stress is easily alleviated by the displacement. This makes it possible to make the second antenna 2 less likely to be damaged.
- the second antenna 2 has a tendency (warp) such that, in a planar view of the communication structure 51 (planar view when the communication structure 51 is viewed in the -Z direction from the +Z side), the antenna extension axis EA of the second antenna 2 forms a curved shape having a center of curvature C on the first side S1 relative to the antenna extension axis EA (i.e., the antenna extension axis EA is curved convexly toward the second side S2 relative to the antenna extension axis EA).
- the second antenna 2 has a tendency (warp) in a plan view of the second antenna 2 (plan view of the second antenna 2 seen from the +Z side in the -Z direction) such that the antenna extension axis EA of the second antenna 2 forms a curved shape having a center of curvature C on the first side S1 with respect to the antenna extension axis EA (i.e., the antenna extension axis EA is curved convexly toward the second side S2 with respect to the antenna extension axis EA) when it is not attached to the tire main body T0M.
- a tendency of the second antenna 2 can arise, for example, because the second antenna 2 was originally wound on a reel.
- the antenna extension axis EA is an axis along the extension direction of the extension portion 22 of the second antenna 2 when the extension portion 22 of the second antenna 2 is viewed as a whole (FIGS. 4 and 8).
- the antenna extension axis EA roughly corresponds to the amplitude center line of the meandering, wavy, or zigzag shape of the second antenna 2.
- the antenna extension axis EA corresponds to the central axis of the second antenna 2.
- the antenna extension axis EA corresponds to the central axis of the spiral shape of the second antenna 2.
- the antenna extension axis EA in a plan view of the communication structure 51 (plan view when the communication structure 51 is seen from the +Z side to the -Z direction), the antenna extension axis EA has a curved shape having a center of curvature C on the first side S1 relative to the antenna extension axis EA (i.e., the antenna extension axis EA is curved convexly to the second side S2 relative to the antenna extension axis EA), and the first side S1 relative to the antenna extension axis EA is oriented so as to be on the outer side in the tire radial direction.
- the second antenna 2 of the communication structure 51 is assembled to the tire main body T0M in a state in which it is curved in the same direction as the direction of the curve due to its own habit described above (FIGS. 4 and 8).
- the second antenna 2 of the communication structure 51 is oriented so that the side of the center of curvature C of its own curve is on the outer side in the tire radial direction.
- the second antenna 2 is oriented so that the antenna extension axis EA is curved convexly to the inner side in the tire radial direction.
- the tire T01 has a shape in which the diameter increases toward the tire radial outside (the tread portion T01t side), and thus the deformation amount during tire rolling tends to increase toward the tire radial outside. Therefore, according to the present embodiment, as described above, the second antenna 2 of the communication structure 51 is assembled to the tire main body T0M in a state in which the second antenna 2 is curved in the same direction as the curvature direction due to its own tendency, and in a state in which the curvature center C side of the curvature is on the tire radial outside (a state in which the antenna extension axis EA is curved convexly toward the tire radial inside) As a result, during tire rolling, the second antenna 2 deforms to approach a straight line, and its own distortion is alleviated, so that the durability of the second antenna 2 can be improved.
- the second antenna 2 is attached to the tire main body T0M with the center of curvature C of its curvature facing radially inward in the tire direction (with the antenna extension axis EA curved convexly outward in the tire direction), there is a risk that the second antenna 2 will be easily subjected to load at the base portion of the extension portion 22 (the end portion on the outer body 3 side) due to its own deformation when the tire rolls.
- the curved shape of the antenna extension axis EA may be composed of only one circular arc, or may be composed of a series of multiple circular arcs having mutually different curvatures and/or centers of curvature C.
- the centers of curvature C of each of the multiple circular arcs are located on the first side S1 with respect to the antenna extension axis EA.
- the curved shape of the antenna extension axis EA when the communication structure unit 51 is in a standalone state where it is not assembled to the tire main body T0M and the curved shape of the antenna extension axis EA when the communication structure unit 51 is assembled to the tire main body T0M may be the same or different.
- At least a portion of the second antenna 2 extends along the antenna extension axis EA in a virtual plane (XY plane), and is therefore preferably planar.
- the second antenna 2 deforms to approach a straight line, further improving the effect of alleviating its own distortion, and thus further improving the durability of the RF tag.
- At least a portion (at least the extension portion 22) of the second antenna 2 extends in a meandering, wavy, or zigzag shape along the antenna extension axis EA.
- the extension portion 22 of the second antenna 2 extends along the antenna extension axis EA in a virtual plane (XY plane), and is thus planar.
- the second antenna 2 deforms so as to approach a straight line, thereby further reducing its own distortion, and thus the durability of the RF tag can be further improved.
- the configuration of the RF tag 10 described above is merely an example, and the RF tag 10 can be modified in various ways.
- the outer periphery 13a of the substrate 1 and the outer periphery 12a of the first antenna 12 are curved over the entire circumference, but the substrate and the first antenna may have a curved outer periphery in part.
- the exterior body 3 includes a main body portion 31 and a lid portion 32, but the configuration of the exterior body is not particularly limited.
- the exterior body does not need to include a lid portion.
- the exterior body is not limited to a plate shape, and may have another shape (such as a block shape).
- the RF tag 10 is entirely embedded inside the sidewall portion T01w of the tires T01', T01. Specifically, the RF tag 10 is disposed between the side rubber T08 and the bead filler T03 in the tire width direction. The RF tag 10 is in contact with the outer surface of the bead filler T03 in the tire width direction. However, in any embodiment described in this specification, the RF tag 10 may be embedded inside any portion of the tire main body T0M of the tires T01', T01. Alternatively, in any embodiment described in this specification, the RF tag 10 may be attached to the inner surface or outer surface of the tire main body T0M of the tires T01', T01.
- a tire manufacturing method for manufacturing a tire (vulcanized tire) T01 includes an unvulcanized tire manufacturing step of manufacturing an unvulcanized tire T01', and a vulcanization molding step of vulcanizing and molding the unvulcanized tire T01' using a vulcanization molding mold.
- the RF tag 10 may be embedded inside the tire main body T0M of the unvulcanized tire T01' in the unvulcanized tire manufacturing step, or may be attached to the inner or outer surface of the tire main body T0M of the unvulcanized tire T01'.
- the RF tag 10 is embedded inside the tire main body T0M or attached to the inner or outer surface of the tire main body T0M in the tire T01 obtained from this unvulcanized tire T01'.
- the RF tag 10 may be attached onto the inner surface or outer surface of the tire main body T0M of the tire T01 obtained after the vulcanization molding step.
- the tire T01 has the RF tag 10.
- an unvulcanized tire T01′ before the tire T01 is vulcanized and molded does not need to have the RF tag 10.
- the RF tag 10 is oriented such that the Z direction of the RF tag 10 is approximately along the tire width direction and the X direction of the RF tag 10 is approximately along the tire circumferential direction (Fig. 2).
- the +Z direction faces toward the outside of the tire.
- the RF tag 10 may be oriented in any direction relative to the tire main body T0M of the tires T01', T01.
- the RF tag 10 may be disposed, for example, by being sandwiched between a plurality of the same or different members constituting the tire T01. In this manner, the RF tag 10 can be easily attached during the production of the tire T01, and the productivity of the tire T01 equipped with the RF tag 10 can be improved. As in the example of Fig. 2, the RF tag 10 may be disposed, for example, by being sandwiched between the bead filler T03 and another member adjacent to the bead filler T03. The RF tag 10 may be embedded in any of the components constituting the tire T01. In this way, the load applied to the RF tag 10 can be reduced compared to when the RF tag 10 is sandwiched between multiple components constituting the tire T01.
- the RF tag 10 may be embedded in a rubber member such as the tread rubber T07 or the side rubber T08. It is preferable that the RF tag 10 is not disposed at a position that is a boundary between members having different rigidity in the periphery length direction, which is a direction along the tire outer surface in a cross-sectional view in the tire width direction. In this way, the RF tag 10 is not disposed at a position where distortion is likely to concentrate due to a rigidity step. Therefore, the load applied to the RF tag 10 can be reduced. This makes it possible to improve the durability of the RF tag 10.
- the RF tag 10 is not disposed at a position that is a boundary between an end of the carcass T05 and a member adjacent to the end of the carcass T05 (e.g., a side rubber T08, etc.) in a cross-sectional view in the tire width direction.
- the number of RF tags 10 is not particularly limited.
- the tire T01 may include only one RF tag 10, or may include two or more RF tags 10.
- the RF tag 10 is illustrated as an example of a communication device, but a communication device different from the RF tag 10 may also be used.
- the RF tag 10 may be disposed, for example, in a tread portion T01t of the tire T01. In this manner, the RF tag 10 is not damaged by a side cut of the tire T01.
- the RF tag 10 may be disposed, for example, in the tread center in the tire width direction.
- the tread center is a position where deflection is unlikely to concentrate in the tread portion T01t. In this manner, the load applied to the RF tag 10 can be reduced. This can improve the durability of the RF tag 10.
- the RF tag 10 may be disposed, for example, in the tire width direction within a range of 1/2 the tread width centered on the tire equatorial plane CL.
- the RF tag 10 may be disposed, for example, at a tread end in the tire width direction. If the position of a reader that communicates with the RF tag 10 is determined in advance, the RF tag 10 may be disposed, for example, at one tread end closer to the reader. In this example, the RF tag 10 may be disposed, for example, within a range of 1/4 of the tread width in the tire width direction, with the tread end as the outer end.
- the RF tag 10 may be disposed, for example, on the tire cavity side of the carcass T05 including one or more carcass plies T05p that span between the bead portions T01b. In this way, the RF tag 10 is less likely to be damaged by impacts applied from the outside of the tire T01, or damage such as side cuts and nail penetration. As an example, the RF tag 10 may be disposed in close contact with the surface of the carcass T05 on the tire cavity side (see point P32 in FIG. 2). As another example, when there is another member on the tire cavity side of the carcass T05, the RF tag 10 may be disposed, for example, between the carcass T05 and another member located on the tire cavity side of the carcass T05.
- an inner liner T09 that forms the tire inner surface can be given.
- the RF tag 10 may be attached to the tire inner surface facing the tire cavity (see points P31, P33, and P34 in FIG. 2). By configuring the RF tag 10 to be attached to the inner surface of the tire, it is easy to attach the RF tag 10 to the tire T01 and to inspect and replace the RF tag 10. In other words, it is possible to improve the ease of attachment and maintenance of the RF tag 10.
- the RF tag 10 may be disposed between the overlapped carcass plies T05p.
- the RF tag 10 may be disposed on the tire radial direction outer side of the belt T06 including one or more belt plies T06p in the tread portion T01t of the tire T01.
- the RF tag 10 may be disposed on the tire radial direction outer side of the belt T06 and in close contact with the belt T06 (see point P43 in FIG. 2).
- the RF tag 10 may be disposed on the tire radial direction outer side of the belt reinforcing layer and in close contact with the belt reinforcing layer.
- the RF tag 10 may be embedded in the tread rubber T07 on the tire radial direction outer side of the belt T06 (see point P41 in FIG.
- the RF tag 10 By disposing the RF tag 10 on the tire radial direction outer side of the belt T06 in the tread portion T01t of the tire T01, communication with the RF tag 10 from the outside of the tire T01 in the tire radial direction is less likely to be hindered by the belt T06. Therefore, communication with the RF tag 10 from the outside of the tire T01 in the tire radial direction can be improved. Also, the RF tag 10 may be arranged, for example, in the tread portion T01t of the tire T01, on the inner side in the tire radial direction of the belt T06.
- the outer side of the RF tag 10 in the tire radial direction is covered by the belt T06, so that the RF tag 10 is less likely to be damaged by impact from the tread surface, nail penetration, etc.
- the RF tag 10 may be arranged in the tread portion T01t of the tire T01, between the belt T06 and the carcass T05 located on the inner side in the tire radial direction of the belt T06 (see point P44 in FIG. 2).
- the belt T06 includes a plurality of belt plies T06p
- the RF tag 10 may be disposed between any two belt plies T06p in the tread portion T01t of the tire T01 (see point P42 in FIG. 2).
- the outer side of the RF tag 10 in the tire radial direction is covered with one or more belt plies T06p, so that the RF tag 10 is less likely to be damaged by impact from the tread surface, nail penetration, or the like.
- the RF tag 10 may be disposed, for example, sandwiched between the cushion rubber T10 and the tread rubber T07 or between the cushion rubber T10 and the side rubber T08 (see points P51 and P53 in FIG. 2). In this manner, the impact on the RF tag 10 can be mitigated by the cushion rubber T10. Therefore, the durability of the RF tag 10 can be improved.
- the RF tag 10 may also be embedded in the cushion rubber T10.
- the cushion rubber T10 may be composed of a plurality of adjacent rubber members of the same or different types. In such a case, the RF tag 10 may be sandwiched between the plurality of rubber members that compose the cushion rubber T10 (see point P52 in FIG. 2). This configuration is particularly suitable when the tire T01 is a heavy-duty pneumatic tire (for example, a pneumatic tire for trucks and buses, an off-the-road pneumatic tire (for construction vehicles), etc.).
- the RF tag 10 may be disposed, for example, at the position of the sidewall portion T01w or the bead portion T01b of the tire T01.
- the RF tag 10 may be disposed, for example, at the sidewall portion T01w or the bead portion T01b on one side that is closer to a reader capable of communicating with the RF tag 10. In this manner, it is possible to improve the communication between the RF tag 10 and the reader.
- the RF tag 10 may be disposed between the carcass T05 and the side rubber T08 or between the tread rubber T07 and the side rubber T08 (see points P61 and P63 in FIG. 2).
- the RF tag 10 may be disposed between the position of the maximum tire width and the position of the tread surface in the tire radial direction. In this manner, it is possible to improve communication with the RF tag 10 from the outside of the tire T01 in the tire radial direction, compared to a configuration in which the RF tag 10 is disposed on the inner side in the tire radial direction from the position of the maximum tire width.
- the RF tag 10 may be arranged, for example, radially inward of the position where the tire is at its widest point. In this way, the RF tag 10 is arranged near the bead portion T01b, which has high rigidity. Therefore, the load applied to the RF tag 10 can be reduced. This allows the durability of the RF tag 10 to be improved.
- the RF tag 10 may be arranged at a position adjacent to the bead core T02 in the tire radial direction or tire width direction (see point P62 in Figure 2). Distortion is less likely to concentrate near the bead core T02. Therefore, the load applied to the RF tag 10 can be reduced. This allows the durability of the RF tag 10 to be improved. In particular, it is preferable to place the RF tag 10 in a position radially inward of the maximum tire width position and radially outward of the bead core T02 of the bead portion T01b.
- the RF tag 10 may be positioned by being sandwiched between the multiple rubber members that make up the side rubber T08.
- the RF tag 10 may be disposed by being sandwiched between the bead filler T03 and a member adjacent to the bead filler T03. In this manner, the RF tag 10 can be disposed in a position where distortion is less likely to be concentrated due to the placement of the bead filler T03. Therefore, the load applied to the RF tag 10 can be reduced. This allows the durability of the RF tag 10 to be improved.
- the RF tag 10 may be disposed, for example, sandwiched between the bead filler T03 and the carcass T05.
- the portion of the carcass T05 that sandwiches the RF tag 10 together with the bead filler T03 may be located on the outer side of the bead filler T03 in the tire width direction, or may be located on the inner side of the tire width direction.
- the portion of the carcass T05 that sandwiches the RF tag 10 together with the bead filler T03 is located on the outer side of the bead filler T03 in the tire width direction, the load applied to the RF tag 10 due to impact or damage from the outside of the tire T01 in the tire width direction can be further reduced. This can further improve the durability of the RF tag 10.
- the bead filler T03 may also have a portion disposed adjacent to the side rubber T08.
- the RF tag 10 may be disposed by being sandwiched between the bead filler T03 and the side rubber T08. Furthermore, the bead filler T03 may have a portion disposed adjacent to the rubber chafer T11. In such a case, the RF tag 10 may be disposed by being sandwiched between the bead filler T03 and the rubber chafer T11. This configuration is particularly suitable when the tire T01 is a pneumatic tire for passenger cars.
- the RF tag 10 may be disposed sandwiched between the stiffener T03 and a member adjacent to the stiffener T03. In this way, the RF tag 10 can be disposed in a position where distortion is less likely to concentrate due to the placement of the stiffener T03. This reduces the load applied to the RF tag 10. This improves the durability of the RF tag 10.
- the RF tag 10 may be disposed sandwiched between the stiffener T03 and a side rubber T08, for example (see point P74 in FIG. 2). Also, the RF tag 10 may be arranged, for example, sandwiched between the stiffener T03 and the carcass T05 (see point P72 in FIG. 2).
- the portion of the carcass T05 that sandwiches the RF tag 10 together with the stiffener T03 may be located on the outer side of the stiffener T03 in the tire width direction, or may be located on the inner side of the tire width direction.
- the portion of the carcass T05 that sandwiches the RF tag 10 together with the stiffener T03 is located on the outer side of the stiffener T03 in the tire width direction, the load applied to the RF tag 10 due to impact or damage from the outside of the tire T01 in the tire width direction can be further reduced. This can further improve the durability of the RF tag 10.
- the stiffener T03 may have a portion disposed adjacent to the rubber chafer T11.
- the RF tag 10 may be disposed by being sandwiched between the stiffener T03 and the rubber chafer T11.
- the stiffener T03 may have a portion adjacent to the hat rubber T12 on the outer side in the tire width direction.
- the RF tag 10 may be disposed by being sandwiched between the stiffener T03 and the hat rubber T12 (see point P71 in FIG. 2).
- the stiffener T03 may be made of multiple rubber members having different hardnesses.
- the RF tag 10 may be sandwiched between the multiple rubber members that make up the stiffener T03 (see point P73 in FIG. 2).
- the RF tag 10 may be disposed by being sandwiched between the hat rubber T12 and a member adjacent to the hat rubber T12.
- the RF tag 10 may be disposed by being sandwiched between the hat rubber T12 and the carcass ply T05p. In this manner, the impact on the RF tag 10 can be mitigated by the hat rubber T12. Therefore, the durability of the RF tag 10 can be improved.
- This configuration is particularly suitable when the tire T01 is a heavy-duty pneumatic tire (for example, a pneumatic tire for trucks and buses, an off-the-road pneumatic tire (for construction vehicles), etc.).
- the RF tag 10 may be arranged, for example, sandwiched between the rubber chafer T11 and the side rubber T08 (see point P8 in FIG. 2). In this way, the RF tag 10 can be arranged in a position where distortion is less likely to be concentrated due to the placement of the rubber chafer T11. Therefore, the load applied to the RF tag 10 can be reduced. This can improve the durability of the RF tag 10.
- the RF tag 10 may be disposed, for example, sandwiched between the rubber chafer T11 and the carcass T05. In this manner, the load applied to the RF tag 10 due to impact or damage from the rim can be reduced. Therefore, the durability of the RF tag 10 can be improved.
- the RF tag 10 may be sandwiched between the nylon chafer T13 and another member adjacent to the nylon chafer T13 on the outer or inner side in the tire width direction. In this way, the position of the RF tag 10 is less likely to change when the tire deforms. Therefore, the load applied to the RF tag 10 when the tire deforms can be reduced. This improves the durability of the RF tag 10.
- the nylon chafer T13 may have a portion adjacent to the rubber chafer T11, for example, on the outer side in the tire width direction. In this case, the RF tag 10 may be disposed sandwiched between the nylon chafer T13 and the rubber chafer T11 (see point P101 in FIG. 2).
- the nylon chafer T13 may have a portion adjacent to the side rubber T08, for example, on the outer side in the tire width direction.
- the RF tag 10 may be disposed sandwiched between the nylon chafer T13 and the side rubber T08 (see point P91 in FIG. 2).
- the nylon chafer T13 may have a portion adjacent to the stiffener T03, for example, on the inner side in the tire width direction.
- the RF tag 10 may be disposed by being sandwiched between the nylon chafer T13 and the stiffener T03.
- the nylon chafer T13 may also have a portion adjacent to the hat rubber T12, for example, on the inner side in the tire width direction.
- the RF tag 10 may be disposed by being sandwiched between the nylon chafer T13 and the hat rubber T12 (see point P92 in FIG. 2). Furthermore, the nylon chafer T13 may have a portion adjacent to the carcass T05, for example, on the inner side in the tire width direction. In this case, the RF tag 10 may be disposed by being sandwiched between the nylon chafer T13 and the carcass T05. Furthermore, the nylon chafer T13 may have a portion adjacent to the wire chafer T14, for example, on the inner side in the tire width direction. In this case, the RF tag 10 may be disposed by being sandwiched between the nylon chafer T13 and the wire chafer T14.
- the RF tag 10 may be sandwiched between the nylon chafer T13 and another member adjacent to the outer or inner side in the tire width direction of the nylon chafer T13.
- the load applied to the RF tag 10 due to impact or damage from the outside of the tire in the tire width direction can be further reduced. Therefore, the durability of the RF tag 10 can be further improved.
- This configuration is particularly suitable when the tire T01 is a heavy-duty pneumatic tire (for example, a pneumatic tire for trucks and buses, an off-the-road pneumatic tire (for construction vehicles), etc.).
- the RF tag 10 may be sandwiched between the wire chafer T14 and another adjacent member on the inside or outside of the wire chafer T14 in the tire width direction (see point P102 in Figure 2). This makes it difficult for the position of the RF tag 10 to fluctuate when the tire deforms. This reduces the load applied to the RF tag 10 when the tire deforms. This improves the durability of the RF tag 10.
- the other adjacent member on the inside or outside of the wire chafer T14 in the tire width direction may be, for example, a rubber member such as a rubber chafer T11.
- the other adjacent member on the inside or outside of the wire chafer T14 in the tire width direction may be, for example, a carcass T05.
- a belt reinforcing layer may be further provided on the radially outer side of the belt T06.
- the belt reinforcing layer may be formed by winding a belt reinforcing layer cord made of polyethylene terephthalate continuously in a spiral shape in the tire circumferential direction.
- the belt reinforcing layer cord may be adhesive-treated under a tension of 6.9 ⁇ 10 ⁇ 2 N/tex or more, and may have an elastic modulus of 2.5 mN/dtex ⁇ % or more when a load of 29.4 N is measured at 160° C.
- the belt reinforcing layer may be disposed so as to cover the entire belt T06 or to cover only both ends of the belt T06.
- the winding density per unit width of the belt reinforcing layer may differ depending on the position in the width direction. In this way, road noise and flat spots can be reduced without reducing high-speed durability.
- This configuration is particularly suitable when the tire T01 is a pneumatic tire for passenger cars.
- the tire, unvulcanized tire, tire manufacturing method, and RF tag of the present invention can be suitably used for any type of pneumatic tire, for example, pneumatic tires for heavy loads (e.g., pneumatic tires for trucks and buses, off-the-road (construction vehicle) pneumatic tires, etc.) and pneumatic tires for passenger cars.
- pneumatic tires for heavy loads e.g., pneumatic tires for trucks and buses, off-the-road (construction vehicle) pneumatic tires, etc.
- pneumatic tires for passenger cars for example, pneumatic tires for heavy loads (e.g., pneumatic tires for trucks and buses, off-the-road (construction vehicle) pneumatic tires, etc.) and pneumatic tires for passenger cars.
- T01 Tire (vulcanized tire), T01': unvulcanized tire, T0M: tire body, T01t: tread portion, T01w: sidewall portion, T01b: bead portion, T02: bead core, T03: Bead filler (stiffener), T031, T032: Bead filler part, T05: carcass, T05p: carcass ply, T05c: carcass cord, T05r: covering rubber, T06: Belt, T06p: Belt ply, T07: tread rubber, T08: Side rubber, T09: Inner liner, T10: Cushion rubber, T11: Rubber chafer, T12: Hat rubber, T13: Nylon chafer, T14: Wire chafer, CL: tire equatorial plane, 1: substrate, 2: second antenna (antenna), 3: exterior body, 10: RF tag, 11: IC chip, 12: first antenna (antenna), 12a: outer periphery, 21: electromagnetic field coupling portion
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Support Of Aerials (AREA)
- Tires In General (AREA)
Abstract
A tire T01 comprising an RF tag 10 and a tire body T0M, wherein: the RF tag has a communication structure unit 51; the communication structure unit comprises an antenna 2; in an individual state when not assembled with the tire body, the antenna of the communication structure unit has a tendency such that, in a plan view of the communication structure unit, an antenna extended axis EA of the antenna forms a curved shape having a center of curvature C on a first side S1 with respect to the antenna extended axis; and in an assembled state when assembled with the tire body, in a plan view of the communication structure unit, the antenna extended axis in the communication structure unit forms a curved shape having a center of curvature on the first side with respect to the antenna extended axis, and is oriented so that the first side with respect to the antenna extended axis is the outside in the tire radial direction.
Description
本発明は、タイヤ、未加硫タイヤ、及び、タイヤ製造方法に関する。
本願は、2022年11月17日に日本に出願された特願2022-184463号に基づく優先権を主張するものであり、その内容の全文をここに援用する。 The present invention relates to a tire, an unvulcanized tire, and a tire manufacturing method.
This application claims priority to Patent Application No. 2022-184463, filed in Japan on November 17, 2022, the entire contents of which are incorporated herein by reference.
本願は、2022年11月17日に日本に出願された特願2022-184463号に基づく優先権を主張するものであり、その内容の全文をここに援用する。 The present invention relates to a tire, an unvulcanized tire, and a tire manufacturing method.
This application claims priority to Patent Application No. 2022-184463, filed in Japan on November 17, 2022, the entire contents of which are incorporated herein by reference.
従来より、RFタグを備えたタイヤがある(特許文献1)。
Traditionally, tires equipped with RF tags have been available (Patent Document 1).
しかし、従来のタイヤにおいては、RFタグの耐久性につき、向上の余地があった。
However, there was room for improvement in the durability of RF tags in conventional tires.
本発明は、RFタグの耐久性を向上できる、タイヤ、未加硫タイヤ、及び、タイヤ製造方法を、提供することを目的とする。
The present invention aims to provide a tire, an unvulcanized tire, and a tire manufacturing method that can improve the durability of RF tags.
〔1〕RFタグと、
タイヤ本体と、
を備えたタイヤであって、
前記RFタグは、通信構造部を有し、
前記通信構造部は、アンテナを備え、
前記通信構造部は、前記タイヤ本体に組み付けられていない単独状態において、前記アンテナが、前記通信構造部の平面視において前記アンテナのアンテナ延在軸線が前記アンテナ延在軸線に対する第1側に曲率中心を有する湾曲形状をなすような、癖を有しており、
前記通信構造部は、前記タイヤ本体に組み付けられた組付状態において、前記通信構造部の平面視において、前記アンテナ延在軸線が、前記アンテナ延在軸線に対する前記第1側に曲率中心を有する湾曲形状をなしているとともに、前記アンテナ延在軸線に対する前記第1側がタイヤ径方向外側となるように指向されている、タイヤ。 [1] An RF tag;
The tire body,
A tire comprising:
The RF tag has a communication structure,
The communication structure includes an antenna;
the communication structure unit has a tendency that, in a state where the communication structure unit is not mounted on the tire main body, the antenna has a curved shape in which an antenna extension axis of the antenna has a center of curvature on a first side with respect to the antenna extension axis in a plan view of the communication structure unit,
When the communication structure is assembled to the tire body, in a planar view of the communication structure, the antenna extension axis forms a curved shape having a center of curvature on the first side relative to the antenna extension axis, and the first side relative to the antenna extension axis is oriented so as to be radially outward in the tire.
タイヤ本体と、
を備えたタイヤであって、
前記RFタグは、通信構造部を有し、
前記通信構造部は、アンテナを備え、
前記通信構造部は、前記タイヤ本体に組み付けられていない単独状態において、前記アンテナが、前記通信構造部の平面視において前記アンテナのアンテナ延在軸線が前記アンテナ延在軸線に対する第1側に曲率中心を有する湾曲形状をなすような、癖を有しており、
前記通信構造部は、前記タイヤ本体に組み付けられた組付状態において、前記通信構造部の平面視において、前記アンテナ延在軸線が、前記アンテナ延在軸線に対する前記第1側に曲率中心を有する湾曲形状をなしているとともに、前記アンテナ延在軸線に対する前記第1側がタイヤ径方向外側となるように指向されている、タイヤ。 [1] An RF tag;
The tire body,
A tire comprising:
The RF tag has a communication structure,
The communication structure includes an antenna;
the communication structure unit has a tendency that, in a state where the communication structure unit is not mounted on the tire main body, the antenna has a curved shape in which an antenna extension axis of the antenna has a center of curvature on a first side with respect to the antenna extension axis in a plan view of the communication structure unit,
When the communication structure is assembled to the tire body, in a planar view of the communication structure, the antenna extension axis forms a curved shape having a center of curvature on the first side relative to the antenna extension axis, and the first side relative to the antenna extension axis is oriented so as to be radially outward in the tire.
〔5〕RFタグと、
タイヤ本体と、
を備えた未加硫タイヤであって、
前記RFタグは、通信構造部を有し、
前記通信構造部は、アンテナを備え、
前記通信構造部は、前記タイヤ本体に組み付けられていない単独状態において、前記アンテナが、前記通信構造部の平面視において前記アンテナのアンテナ延在軸線が前記アンテナ延在軸線に対する第1側に曲率中心を有する湾曲形状をなすような、癖を有しており、
前記通信構造部は、前記タイヤ本体に組み付けられた組付状態において、前記通信構造部の平面視において、前記アンテナ延在軸線が、前記アンテナ延在軸線に対する前記第1側に曲率中心を有する湾曲形状をなしているとともに、前記アンテナ延在軸線に対する前記第1側がタイヤ径方向外側となるように指向されている、未加硫タイヤ。 [5] an RF tag;
The tire body,
An unvulcanized tire comprising:
The RF tag has a communication structure,
The communication structure includes an antenna;
the communication structure unit has a tendency that, in a state where the communication structure unit is not mounted on the tire main body, the antenna has a curved shape in which an antenna extension axis of the antenna has a center of curvature on a first side with respect to the antenna extension axis in a plan view of the communication structure unit,
An unvulcanized tire in which, when the communication structure is assembled to the tire body, in a planar view of the communication structure, the antenna extension axis forms a curved shape having a center of curvature on the first side relative to the antenna extension axis, and the first side relative to the antenna extension axis is oriented so as to be radially outward in the tire radial direction.
タイヤ本体と、
を備えた未加硫タイヤであって、
前記RFタグは、通信構造部を有し、
前記通信構造部は、アンテナを備え、
前記通信構造部は、前記タイヤ本体に組み付けられていない単独状態において、前記アンテナが、前記通信構造部の平面視において前記アンテナのアンテナ延在軸線が前記アンテナ延在軸線に対する第1側に曲率中心を有する湾曲形状をなすような、癖を有しており、
前記通信構造部は、前記タイヤ本体に組み付けられた組付状態において、前記通信構造部の平面視において、前記アンテナ延在軸線が、前記アンテナ延在軸線に対する前記第1側に曲率中心を有する湾曲形状をなしているとともに、前記アンテナ延在軸線に対する前記第1側がタイヤ径方向外側となるように指向されている、未加硫タイヤ。 [5] an RF tag;
The tire body,
An unvulcanized tire comprising:
The RF tag has a communication structure,
The communication structure includes an antenna;
the communication structure unit has a tendency that, in a state where the communication structure unit is not mounted on the tire main body, the antenna has a curved shape in which an antenna extension axis of the antenna has a center of curvature on a first side with respect to the antenna extension axis in a plan view of the communication structure unit,
An unvulcanized tire in which, when the communication structure is assembled to the tire body, in a planar view of the communication structure, the antenna extension axis forms a curved shape having a center of curvature on the first side relative to the antenna extension axis, and the first side relative to the antenna extension axis is oriented so as to be radially outward in the tire radial direction.
〔6〕上記のタイヤを製造するためのタイヤ製造方法であって、
未加硫タイヤを製造する、未加硫タイヤ製造ステップと、
前記未加硫タイヤを加硫成形する、加硫成形ステップと、
を含み、
前記通信構造部は、前記加硫成形ステップ後に得られた前記タイヤの前記タイヤ本体に組み付けられた組付状態において、前記通信構造部の平面視において、前記アンテナ延在軸線が、前記アンテナ延在軸線に対する前記第1側に曲率中心を有する湾曲形状をなしているとともに、前記アンテナ延在軸線に対する前記第1側がタイヤ径方向外側となるように指向されている、タイヤ製造方法。 [6] A tire manufacturing method for manufacturing the above tire, comprising the steps of:
An unvulcanized tire manufacturing step of manufacturing an unvulcanized tire;
A vulcanization molding step of vulcanizing and molding the unvulcanized tire;
Including,
a tire manufacturing method in which, in an assembled state in which the communication structure portion is assembled to the tire body of the tire obtained after the vulcanization molding step, in a planar view of the communication structure portion, the antenna extension axis forms a curved shape having a center of curvature on the first side relative to the antenna extension axis, and the first side relative to the antenna extension axis is oriented to be radially outward in the tire direction.
未加硫タイヤを製造する、未加硫タイヤ製造ステップと、
前記未加硫タイヤを加硫成形する、加硫成形ステップと、
を含み、
前記通信構造部は、前記加硫成形ステップ後に得られた前記タイヤの前記タイヤ本体に組み付けられた組付状態において、前記通信構造部の平面視において、前記アンテナ延在軸線が、前記アンテナ延在軸線に対する前記第1側に曲率中心を有する湾曲形状をなしているとともに、前記アンテナ延在軸線に対する前記第1側がタイヤ径方向外側となるように指向されている、タイヤ製造方法。 [6] A tire manufacturing method for manufacturing the above tire, comprising the steps of:
An unvulcanized tire manufacturing step of manufacturing an unvulcanized tire;
A vulcanization molding step of vulcanizing and molding the unvulcanized tire;
Including,
a tire manufacturing method in which, in an assembled state in which the communication structure portion is assembled to the tire body of the tire obtained after the vulcanization molding step, in a planar view of the communication structure portion, the antenna extension axis forms a curved shape having a center of curvature on the first side relative to the antenna extension axis, and the first side relative to the antenna extension axis is oriented to be radially outward in the tire direction.
本発明によれば、RFタグの耐久性を向上できる、タイヤ、未加硫タイヤ、及び、タイヤ製造方法を、提供することができる。
The present invention provides a tire, an unvulcanized tire, and a tire manufacturing method that can improve the durability of RF tags.
本発明に係るタイヤ、未加硫タイヤ、及び、タイヤ製造方法は、任意の種類の空気入りタイヤに好適に利用でき、例えば、重荷重用空気入りタイヤ(例えば、トラック・バス用空気入りタイヤ、オフ・ザ・ロード(建設車両用)空気入りタイヤ等)、乗用車用空気入りタイヤに好適に利用できる。
The tire, unvulcanized tire, and tire manufacturing method according to the present invention can be suitably used for any type of pneumatic tire, for example, pneumatic tires for heavy loads (e.g., pneumatic tires for trucks and buses, off-the-road (construction vehicle) pneumatic tires, etc.) and pneumatic tires for passenger cars.
以下、本発明に係るタイヤ、未加硫タイヤ、及び、タイヤ製造方法の実施形態について、図面を参照しつつ例示説明する。
各図において共通する部材・部位には同一の符号を付している。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of a tire, an unvulcanized tire, and a tire manufacturing method according to the present invention will be described with reference to the drawings.
The same components and parts are designated by the same reference numerals in each drawing.
各図において共通する部材・部位には同一の符号を付している。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of a tire, an unvulcanized tire, and a tire manufacturing method according to the present invention will be described with reference to the drawings.
The same components and parts are designated by the same reference numerals in each drawing.
図1~図2は、本発明の一実施形態に係る未加硫タイヤT01’及びタイヤT01を説明するための図面である。タイヤ(加硫済みタイヤ)T01は、未加硫タイヤT01’を加硫成形用金型によって加硫成形した後に得られるものである。未加硫タイヤT01’とタイヤT01とは、形状がわずかに異なり得るが、本明細書において説明する種々の構成に関しては、特に断りが無い限り、基本的に互いに同様であり得る。図2では、便宜のため、未加硫タイヤT01’とタイヤT01とを同じ図面により示している。以下の説明では、便宜のため、タイヤT01及び未加硫タイヤT01’の構成を並行して説明する。また、以下では、便宜のため、未加硫タイヤT01’を単に「タイヤT01’」と称する場合がある。
1 and 2 are diagrams for explaining an unvulcanized tire T01' and a tire T01 according to one embodiment of the present invention. The tire (vulcanized tire) T01 is obtained after vulcanizing and molding the unvulcanized tire T01' using a mold for vulcanization molding. The unvulcanized tire T01' and the tire T01 may differ slightly in shape, but may be basically similar to each other in terms of the various configurations described in this specification unless otherwise specified. For convenience, FIG. 2 shows the unvulcanized tire T01' and the tire T01 in the same drawing. In the following description, for convenience, the configurations of the tire T01 and the unvulcanized tire T01' will be described in parallel. In addition, for convenience, the unvulcanized tire T01' may be referred to simply as "tire T01'" in the following description.
図1は、本発明の一実施形態に係るタイヤT01’、T01を、タイヤ幅方向一方側から側面視した様子を概略的に示す、側面図である。図2は、図1のタイヤT01’、T01のタイヤ半部(具体的には、タイヤ赤道面CLに対する一方側の部分)を示す、タイヤ幅方向断面図である。
図1~図2の実施形態のタイヤT01’、T01は、重荷重用空気入りタイヤ(例えば、トラック・バス用空気入りタイヤ、オフ・ザ・ロード(建設車両用)空気入りタイヤ等)として構成されている。ただし、本発明の任意の実施形態のタイヤT01’、T01は、任意の種類のタイヤとして構成されてよい。 Fig. 1 is a side view showing a tire T01', T01 according to an embodiment of the present invention as viewed from one side in the tire width direction. Fig. 2 is a tire width direction cross-sectional view showing a half portion of the tire T01', T01 in Fig. 1 (specifically, a portion on one side relative to the tire equatorial plane CL).
The tires T01', T01 of the embodiment of Figures 1 and 2 are configured as heavy-duty pneumatic tires (e.g., pneumatic tires for trucks and buses, off-the-road (construction vehicle) pneumatic tires, etc.). However, the tires T01', T01 of any embodiment of the present invention may be configured as any type of tire.
図1~図2の実施形態のタイヤT01’、T01は、重荷重用空気入りタイヤ(例えば、トラック・バス用空気入りタイヤ、オフ・ザ・ロード(建設車両用)空気入りタイヤ等)として構成されている。ただし、本発明の任意の実施形態のタイヤT01’、T01は、任意の種類のタイヤとして構成されてよい。 Fig. 1 is a side view showing a tire T01', T01 according to an embodiment of the present invention as viewed from one side in the tire width direction. Fig. 2 is a tire width direction cross-sectional view showing a half portion of the tire T01', T01 in Fig. 1 (specifically, a portion on one side relative to the tire equatorial plane CL).
The tires T01', T01 of the embodiment of Figures 1 and 2 are configured as heavy-duty pneumatic tires (e.g., pneumatic tires for trucks and buses, off-the-road (construction vehicle) pneumatic tires, etc.). However, the tires T01', T01 of any embodiment of the present invention may be configured as any type of tire.
タイヤT01’、T01は、タイヤ本体T0Mと、RFタグ10と、を備えている。タイヤ本体T0Mは、タイヤT01’、T01のうち、RFタグ10以外の部分に相当する。
Tires T01' and T01 are equipped with a tire body T0M and an RF tag 10. The tire body T0M corresponds to the portion of tires T01' and T01 other than the RF tag 10.
まず、図2を主に参照しつつ、タイヤ本体T0Mについて説明する。
図2に示すように、タイヤ本体T0Mは、トレッド部T01tと、このトレッド部T01tのタイヤ幅方向の両端部からタイヤ径方向内側に延びる一対のサイドウォール部T01wと、各サイドウォール部T01wのタイヤ径方向内側の端部に設けられた一対のビード部T01bと、を備えている。ビード部T01bは、タイヤT01をリムに装着したときに、タイヤ径方向内側及びタイヤ幅方向外側においてリムに接するように構成される。
また、タイヤ本体T0Mは、一対のビードコアT02と、一対のビードフィラーT03と、カーカスT05と、ベルトT06と、トレッドゴムT07と、サイドゴムT08と、インナーライナーT09と、を備えている。 First, the tire main body TOM will be described mainly with reference to FIG.
2, the tire main body T0M includes a tread portion T01t, a pair of sidewall portions T01w extending radially inward from both ends of the tread portion T01t in the tire width direction, and a pair of bead portions T01b provided at the radially inner ends of each sidewall portion T01w. The bead portions T01b are configured to contact the rim on the radially inner side and the tire widthwise outer side when the tire T01 is mounted on a rim.
The tire main body T0M also includes a pair of bead cores T02, a pair of bead fillers T03, a carcass T05, a belt T06, a tread rubber T07, a side rubber T08, and an inner liner T09.
図2に示すように、タイヤ本体T0Mは、トレッド部T01tと、このトレッド部T01tのタイヤ幅方向の両端部からタイヤ径方向内側に延びる一対のサイドウォール部T01wと、各サイドウォール部T01wのタイヤ径方向内側の端部に設けられた一対のビード部T01bと、を備えている。ビード部T01bは、タイヤT01をリムに装着したときに、タイヤ径方向内側及びタイヤ幅方向外側においてリムに接するように構成される。
また、タイヤ本体T0Mは、一対のビードコアT02と、一対のビードフィラーT03と、カーカスT05と、ベルトT06と、トレッドゴムT07と、サイドゴムT08と、インナーライナーT09と、を備えている。 First, the tire main body TOM will be described mainly with reference to FIG.
2, the tire main body T0M includes a tread portion T01t, a pair of sidewall portions T01w extending radially inward from both ends of the tread portion T01t in the tire width direction, and a pair of bead portions T01b provided at the radially inner ends of each sidewall portion T01w. The bead portions T01b are configured to contact the rim on the radially inner side and the tire widthwise outer side when the tire T01 is mounted on a rim.
The tire main body T0M also includes a pair of bead cores T02, a pair of bead fillers T03, a carcass T05, a belt T06, a tread rubber T07, a side rubber T08, and an inner liner T09.
各ビードコアT02は、それぞれ、対応するビード部T01bに埋設されている。ビードコアT02は、周囲をゴムにより被覆されている複数のビードワイヤを備えている。ビードワイヤは、金属(例えばスチール)から構成されると好適であるが、ポリエステル、ナイロン、レーヨン、アラミドなどからなる有機繊維から構成されてもよい。ビードワイヤは、例えば、モノフィラメント又は撚り線からなるものとすることができる。
Each bead core T02 is embedded in the corresponding bead portion T01b. The bead core T02 has a plurality of bead wires that are covered with rubber. The bead wires are preferably made of metal (e.g., steel), but may also be made of organic fibers such as polyester, nylon, rayon, and aramid. The bead wires may be made of, for example, monofilament or twisted wire.
各ビードフィラーT03は、それぞれ、対応するビードコアT02に対してタイヤ径方向外側に位置する。ビードフィラーT03は、タイヤ径方向外側に向かって先細状に延びている。ビードフィラーT03は、ゴムから構成される。
一般的に、ビードフィラーは、「スティフナー」と呼ばれることがある。
図2に示すように、ビードフィラーT03は、複数(図2の例では、2つ)のビードフィラー部T031、T032から構成されてもよい。これら複数のビードフィラー部T031、T032は、それぞれを構成するゴムの組成が、互いに異なる。ただし、各ビードフィラー部T031、T032は、それぞれを構成するゴムの組成が、当該ビードフィラー部T031、T032の全体にわたって実質的に同じである。これら複数のビードフィラー部T031、T032は、例えば、硬さが異なり得る。これら複数のビードフィラー部T031、T032は、例えば、タイヤ径方向に沿って配列(積層)される。例えば、これら複数のビードフィラー部T031、T032のうち、最もタイヤ径方向外側に位置するビードフィラー部T032が、他のビードフィラー部T031よりも、軟らかくてもよい。
あるいは、ビードフィラーT03は、1つのビードフィラー部のみから構成されてもよく、いいかえれば、当該ビードフィラーT03を構成するゴムの組成が、当該ビードフィラーT03の全体にわたって実質的に同じであってもよい。 Each bead filler T03 is located on the outer side in the tire radial direction with respect to the corresponding bead core T02. The bead filler T03 extends in a tapered shape toward the outer side in the tire radial direction. The bead filler T03 is made of rubber.
Generally, the bead filler is sometimes called a "stiffener."
As shown in FIG. 2, the bead filler T03 may be composed of a plurality of bead filler portions T031 and T032 (two in the example of FIG. 2). The rubber compositions constituting the plurality of bead filler portions T031 and T032 are different from each other. However, the rubber compositions constituting the respective bead filler portions T031 and T032 are substantially the same throughout the entire bead filler portions T031 and T032. The plurality of bead filler portions T031 and T032 may have different hardnesses, for example. The plurality of bead filler portions T031 and T032 are arranged (stacked) along the tire radial direction, for example. For example, the bead filler portion T032 located at the outermost position in the tire radial direction among the plurality of bead filler portions T031 and T032 may be softer than the other bead filler portions T031.
Alternatively, the bead filler T03 may be composed of only one bead filler portion, in other words, the composition of the rubber constituting the bead filler T03 may be substantially the same throughout the bead filler T03.
一般的に、ビードフィラーは、「スティフナー」と呼ばれることがある。
図2に示すように、ビードフィラーT03は、複数(図2の例では、2つ)のビードフィラー部T031、T032から構成されてもよい。これら複数のビードフィラー部T031、T032は、それぞれを構成するゴムの組成が、互いに異なる。ただし、各ビードフィラー部T031、T032は、それぞれを構成するゴムの組成が、当該ビードフィラー部T031、T032の全体にわたって実質的に同じである。これら複数のビードフィラー部T031、T032は、例えば、硬さが異なり得る。これら複数のビードフィラー部T031、T032は、例えば、タイヤ径方向に沿って配列(積層)される。例えば、これら複数のビードフィラー部T031、T032のうち、最もタイヤ径方向外側に位置するビードフィラー部T032が、他のビードフィラー部T031よりも、軟らかくてもよい。
あるいは、ビードフィラーT03は、1つのビードフィラー部のみから構成されてもよく、いいかえれば、当該ビードフィラーT03を構成するゴムの組成が、当該ビードフィラーT03の全体にわたって実質的に同じであってもよい。 Each bead filler T03 is located on the outer side in the tire radial direction with respect to the corresponding bead core T02. The bead filler T03 extends in a tapered shape toward the outer side in the tire radial direction. The bead filler T03 is made of rubber.
Generally, the bead filler is sometimes called a "stiffener."
As shown in FIG. 2, the bead filler T03 may be composed of a plurality of bead filler portions T031 and T032 (two in the example of FIG. 2). The rubber compositions constituting the plurality of bead filler portions T031 and T032 are different from each other. However, the rubber compositions constituting the respective bead filler portions T031 and T032 are substantially the same throughout the entire bead filler portions T031 and T032. The plurality of bead filler portions T031 and T032 may have different hardnesses, for example. The plurality of bead filler portions T031 and T032 are arranged (stacked) along the tire radial direction, for example. For example, the bead filler portion T032 located at the outermost position in the tire radial direction among the plurality of bead filler portions T031 and T032 may be softer than the other bead filler portions T031.
Alternatively, the bead filler T03 may be composed of only one bead filler portion, in other words, the composition of the rubber constituting the bead filler T03 may be substantially the same throughout the bead filler T03.
カーカスT05は、一対のビードコアT02間に跨っており、トロイダル状に延在している。カーカスT05は、1枚以上(図2の例では、1枚)のカーカスプライT05pから構成されている。各カーカスプライT05pは、1本又は複数本のカーカスコードT05cと、カーカスコードT05cを被覆する被覆ゴムT05rと、を含んでいる。カーカスコードT05cは、モノフィラメント又は撚り線で形成することができる。
カーカスコードT05cは、金属(例えばスチール)から構成されると好適であるが、ポリエステル、ナイロン、レーヨン、アラミドなどからなる有機繊維から構成されてもよい。
カーカスT05は、ラジアル構造であると好適であるが、バイアス構造でもよい。 The carcass T05 straddles a pair of bead cores T02 and extends in a toroidal shape. The carcass T05 is composed of one or more carcass plies T05p (one in the example of FIG. 2). Each carcass ply T05p includes one or more carcass cords T05c and a coating rubber T05r that coats the carcass cords T05c. The carcass cords T05c can be formed of a monofilament or a twisted wire.
The carcass cord T05c is preferably made of a metal (for example, steel), but may be made of an organic fiber such as polyester, nylon, rayon, or aramid.
The carcass T05 is preferably of radial construction, but may also be of bias construction.
カーカスコードT05cは、金属(例えばスチール)から構成されると好適であるが、ポリエステル、ナイロン、レーヨン、アラミドなどからなる有機繊維から構成されてもよい。
カーカスT05は、ラジアル構造であると好適であるが、バイアス構造でもよい。 The carcass T05 straddles a pair of bead cores T02 and extends in a toroidal shape. The carcass T05 is composed of one or more carcass plies T05p (one in the example of FIG. 2). Each carcass ply T05p includes one or more carcass cords T05c and a coating rubber T05r that coats the carcass cords T05c. The carcass cords T05c can be formed of a monofilament or a twisted wire.
The carcass cord T05c is preferably made of a metal (for example, steel), but may be made of an organic fiber such as polyester, nylon, rayon, or aramid.
The carcass T05 is preferably of radial construction, but may also be of bias construction.
ベルトT06は、カーカスT05のクラウン部に対してタイヤ径方向外側に配置されている。ベルトT06は、1層以上(図2の例では、4層)のベルトプライT06pを備えている。各ベルトプライT06pは、1本又は複数本のベルトコードと、ベルトコードを被覆する被覆ゴムと、を含んでいる。ベルトコードは、モノフィラメント又は撚り線で形成することができる。ベルトコードは、金属(例えばスチール)から構成されてもよいし、ポリエステル、ナイロン、レーヨン、アラミドなどからなる有機繊維から構成されてもよい。
The belt T06 is disposed radially outward of the crown portion of the carcass T05. The belt T06 includes one or more belt plies T06p (four layers in the example of FIG. 2). Each belt ply T06p includes one or more belt cords and a coating rubber that covers the belt cords. The belt cords can be formed of monofilament or twisted wire. The belt cords may be made of metal (e.g., steel) or organic fibers such as polyester, nylon, rayon, and aramid.
トレッドゴムT07は、トレッド部T01tにおいて、ベルトT06のタイヤ径方向外側に位置している。トレッドゴムT07は、トレッド部T01tのタイヤ径方向外側の面であるトレッド踏面を構成している。トレッド踏面には、トレッドパターンが形成されている。
The tread rubber T07 is located on the radially outer side of the belt T06 in the tread portion T01t. The tread rubber T07 constitutes the tread surface, which is the radially outer surface of the tread portion T01t. A tread pattern is formed on the tread surface.
サイドゴムT08は、サイドウォール部T01wに位置している。サイドゴムT08は、サイドウォール部T01wのタイヤ幅方向外側の外表面を構成している。サイドゴムT08は、カーカスT05よりもタイヤ幅方向外側に位置している。サイドゴムT08は、ビードフィラーT03よりもタイヤ幅方向外側に位置している。サイドゴムT08は、トレッドゴムT07と一体で形成されている。
The side rubber T08 is located in the sidewall portion T01w. The side rubber T08 constitutes the outer surface of the sidewall portion T01w on the outer side in the tire width direction. The side rubber T08 is located further outboard in the tire width direction than the carcass T05. The side rubber T08 is located further outboard in the tire width direction than the bead filler T03. The side rubber T08 is formed integrally with the tread rubber T07.
インナーライナーT09は、カーカスT05のタイヤ内側に配置され、例えば、カーカスT05のタイヤ内側に積層されてもよい。インナーライナーT09は、例えば、空気透過性の低いブチル系ゴムで構成される。ブチル系ゴムには、例えばブチルゴム、及びその誘導体であるハロゲン化ブチルゴムが含まれる。インナーライナーT09は、ブチル系ゴムに限られず、他のゴム組成物、樹脂、又はエラストマーで構成することができる。
The inner liner T09 is disposed on the tire inner side of the carcass T05, and may be laminated, for example, on the tire inner side of the carcass T05. The inner liner T09 is made of, for example, a butyl-based rubber having low air permeability. Butyl-based rubber includes, for example, butyl rubber and its derivative, halogenated butyl rubber. The inner liner T09 is not limited to butyl-based rubber, and may be made of other rubber compositions, resins, or elastomers.
図2に示すように、タイヤ本体T0Mは、タイヤ径方向におけるカーカスT05とトレッドゴムT07との間に、クッションゴムT10を備えていてもよい。クッションゴムT10は、図2の例のように、ベルトT06のタイヤ幅方向端部の近傍に位置していてもよい。
As shown in FIG. 2, the tire main body T0M may include a cushion rubber T10 between the carcass T05 and the tread rubber T07 in the tire radial direction. The cushion rubber T10 may be located near the tire width direction end of the belt T06, as in the example of FIG. 2.
図2に示すように、タイヤ本体T0Mは、各ビード部T01bにおける、リムと接触するように構成された部分において、ゴムチェーファーT11を備えていてもよい。
As shown in FIG. 2, the tire body T0M may have a rubber chafer T11 at the portion of each bead portion T01b that is configured to contact the rim.
図2に示すように、タイヤ本体T0Mは、各ビードコアT02の周りに、1枚又は複数枚(図2の例では、1枚)のワイヤーチェーファーT14を備えていてもよい。ワイヤーチェーファーT14は、図2の例のように、カーカスT05に対してビードコアT02とは反対側に配置されていてもよい。ワイヤーチェーファーT14は、金属(例えばスチール)から構成される。
図2に示すように、タイヤ本体T0Mは、各ビードコアT02の周りに、1枚又は複数枚(図2の例では、2枚)のナイロンチェーファーT13を備えていてもよい。ナイロンチェーファーT13は、図2の例のように、カーカスT05に対してビードコアT02とは反対側に配置されていてもよい。ナイロンチェーファーT13は、ナイロンから構成される。
なお、図2の例において、各ナイロンチェーファーT13は、ワイヤーチェーファーT14に対してビードコアT02とは反対側に配置されている。 As shown in Fig. 2, the tire main body T0M may include one or more (one in the example of Fig. 2) wire chafers T14 around each bead core T02. The wire chafer T14 may be disposed on the opposite side of the carcass T05 from the bead core T02, as in the example of Fig. 2. The wire chafer T14 is made of metal (e.g., steel).
As shown in Fig. 2, the tire main body T0M may include one or more (two in the example of Fig. 2) nylon chafers T13 around each bead core T02. The nylon chafers T13 may be disposed on the opposite side of the carcass T05 from the bead cores T02, as in the example of Fig. 2. The nylon chafers T13 are made of nylon.
In the example of FIG. 2, each nylon chafer T13 is disposed on the opposite side of the wire chafer T14 from the bead core T02.
図2に示すように、タイヤ本体T0Mは、各ビードコアT02の周りに、1枚又は複数枚(図2の例では、2枚)のナイロンチェーファーT13を備えていてもよい。ナイロンチェーファーT13は、図2の例のように、カーカスT05に対してビードコアT02とは反対側に配置されていてもよい。ナイロンチェーファーT13は、ナイロンから構成される。
なお、図2の例において、各ナイロンチェーファーT13は、ワイヤーチェーファーT14に対してビードコアT02とは反対側に配置されている。 As shown in Fig. 2, the tire main body T0M may include one or more (one in the example of Fig. 2) wire chafers T14 around each bead core T02. The wire chafer T14 may be disposed on the opposite side of the carcass T05 from the bead core T02, as in the example of Fig. 2. The wire chafer T14 is made of metal (e.g., steel).
As shown in Fig. 2, the tire main body T0M may include one or more (two in the example of Fig. 2) nylon chafers T13 around each bead core T02. The nylon chafers T13 may be disposed on the opposite side of the carcass T05 from the bead cores T02, as in the example of Fig. 2. The nylon chafers T13 are made of nylon.
In the example of FIG. 2, each nylon chafer T13 is disposed on the opposite side of the wire chafer T14 from the bead core T02.
図2に示すように、タイヤ本体T0Mは、各タイヤ半部において、タイヤ幅方向におけるビードフィラーT03とサイドゴムT08との間に、ハットゴムT12を備えていてもよい。
図2の例において、ハットゴムT12は、タイヤ幅方向におけるビードフィラーT03と各ナイロンチェーファーT13との間に配置されている。 As shown in FIG. 2, the tire main body T0M may include a hat rubber T12 between the bead filler T03 and the side rubber T08 in the tire width direction in each tire half portion.
In the example of FIG. 2, the hat rubber T12 is disposed between the bead filler T03 and each nylon chafer T13 in the tire width direction.
図2の例において、ハットゴムT12は、タイヤ幅方向におけるビードフィラーT03と各ナイロンチェーファーT13との間に配置されている。 As shown in FIG. 2, the tire main body T0M may include a hat rubber T12 between the bead filler T03 and the side rubber T08 in the tire width direction in each tire half portion.
In the example of FIG. 2, the hat rubber T12 is disposed between the bead filler T03 and each nylon chafer T13 in the tire width direction.
つぎに、図3~図9を主に参照しつつ、RFタグ10について説明する。図3~図9は、図1~図2の実施形態を含む、本発明の任意の実施形態に係る未加硫タイヤT01’及びタイヤT01に備えられることができる、RFタグ10の一例を説明するための図面である。
Next, the RF tag 10 will be described with reference mainly to Figs. 3 to 9. Figs. 3 to 9 are drawings for explaining an example of an RF tag 10 that can be provided in the unvulcanized tire T01' and tire T01 according to any embodiment of the present invention, including the embodiment of Figs. 1 and 2.
RFタグ10は、タイヤT01の外部にある所定外部装置(例えば、リーダ、あるいは、リーダ/ライタ)と無線通信可能に構成される。
RFタグ10は、非接触型データ受送信体であり、「RFIDタグ」とも呼ばれる。 TheRF tag 10 is configured to be capable of wireless communication with a predetermined external device (for example, a reader or a reader/writer) located outside the tire T01.
TheRF tag 10 is a contactless data transmitter/receiver and is also called an "RFID tag."
RFタグ10は、非接触型データ受送信体であり、「RFIDタグ」とも呼ばれる。 The
The
図3は、図1~図2の実施形態を含む、本発明の任意の実施形態に係る未加硫タイヤT01’及びタイヤT01に備えられることができる、RFタグ10の一例を示す、斜視図である。図3において、RFタグ10は、タイヤ本体T0Mに組み付けられていない単独状態(すなわち、RFタグ10をタイヤ本体T0Mから取り外して、RFタグ10に外力が作用していない状態で、RFタグ10を単独で見た状態。)にある。
図3に示すように、RFタグ10は、本例において、通信構造部51と、通信構造部51を覆うタグ被覆ゴム部50と、を備えている。 Fig. 3 is a perspective view showing an example of anRF tag 10 that can be provided in the unvulcanized tire T01' and the tire T01 according to any embodiment of the present invention including the embodiment of Fig. 1 and Fig. 2. In Fig. 3, the RF tag 10 is in a standalone state not mounted on the tire main body T0M (i.e., the RF tag 10 is removed from the tire main body T0M and viewed alone with no external force acting on the RF tag 10).
As shown in FIG. 3 , theRF tag 10 in this example includes a communication structure section 51 and a tag covering rubber section 50 that covers the communication structure section 51 .
図3に示すように、RFタグ10は、本例において、通信構造部51と、通信構造部51を覆うタグ被覆ゴム部50と、を備えている。 Fig. 3 is a perspective view showing an example of an
As shown in FIG. 3 , the
タグ被覆ゴム部50は、通信構造部51の全体を覆っている。タグ被覆ゴム部50は、ゴムから構成される。
未加硫タイヤT01’において、タグ被覆ゴム部50は、未加硫ゴム(生ゴム)から構成されていると好適である。
タイヤ(加硫済みタイヤ)T01において、タグ被覆ゴム部50は、加硫済みゴムから構成されていると好適である。
本例において、タグ被覆ゴム部50は、一対のシート状のタグ被覆ゴム部材50a、50bを有している。一対のタグ被覆ゴム部材50a、50bは、両者間に通信構造部51を挟んだ状態で、互いに重ねられている。
ただし、タグ被覆ゴム部50は、1つの部材から構成されてもよい。
本例において、タグ被覆ゴム部50は、平面視において四角形状をなしているが、タグ被覆ゴム部50は、平面視において任意の形状をなしてよい。
RFタグ10は、タグ被覆ゴム部50を有していなくてもよい。 The tag coveringrubber part 50 covers the entire communication structure part 51. The tag covering rubber part 50 is made of rubber.
In the unvulcanized tire T01', the tag-coveredrubber portion 50 is preferably made of unvulcanized rubber (raw rubber).
In the tire (vulcanized tire) T01, the tag-coveringrubber portion 50 is preferably made of vulcanized rubber.
In this example, the tag coveringrubber part 50 has a pair of sheet-shaped tag covering rubber members 50a, 50b. The pair of tag covering rubber members 50a, 50b are overlapped with each other with the communication structure part 51 sandwiched between them.
However, the tag coveringrubber portion 50 may be configured as a single member.
In this example, the tag coveringrubber part 50 has a rectangular shape in a plan view, but the tag covering rubber part 50 may have any shape in a plan view.
TheRF tag 10 does not necessarily have to have the tag covering rubber portion 50 .
未加硫タイヤT01’において、タグ被覆ゴム部50は、未加硫ゴム(生ゴム)から構成されていると好適である。
タイヤ(加硫済みタイヤ)T01において、タグ被覆ゴム部50は、加硫済みゴムから構成されていると好適である。
本例において、タグ被覆ゴム部50は、一対のシート状のタグ被覆ゴム部材50a、50bを有している。一対のタグ被覆ゴム部材50a、50bは、両者間に通信構造部51を挟んだ状態で、互いに重ねられている。
ただし、タグ被覆ゴム部50は、1つの部材から構成されてもよい。
本例において、タグ被覆ゴム部50は、平面視において四角形状をなしているが、タグ被覆ゴム部50は、平面視において任意の形状をなしてよい。
RFタグ10は、タグ被覆ゴム部50を有していなくてもよい。 The tag covering
In the unvulcanized tire T01', the tag-covered
In the tire (vulcanized tire) T01, the tag-covering
In this example, the tag covering
However, the tag covering
In this example, the tag covering
The
図4~図9では、RFタグ10のうちのタグ被覆ゴム部50以外の部分のみを示しており、ひいては、RFタグ10のうちの通信構造部51のみを示している。図4は、本例に係るRFタグ10の通信構造部51の平面図である。図4において、通信構造部51は、タイヤ本体T0Mに組み付けられていない単独状態(すなわち、通信構造部51をタイヤ本体T0Mから取り外して、通信構造部51に外力が作用していない状態で、通信構造部51を単独で見た状態。)にある。図5は、RFタグ10の通信構造部51の斜視図である。図6は、外装体の蓋部を外した状態のRFタグ10の通信構造部51の斜視図である。図7は、RFタグ10の通信構造部51の分解斜視図である。図8は、第2アンテナ2の平面図である。図8において、第2アンテナ2は、タイヤ本体T0Mに組み付けられていない単独状態(すなわち、第2アンテナ2をタイヤ本体T0Mから取り外して、第2アンテナ2に外力が作用していない状態で、第2アンテナ2を単独で見た状態。)にある。図9は、RFタグ10の通信構造部51の一部断面図である。図9は、図5のI-I断面図である。
4 to 9 show only the parts of the RF tag 10 other than the tag-coating rubber portion 50, and thus only the communication structure portion 51 of the RF tag 10. FIG. 4 is a plan view of the communication structure portion 51 of the RF tag 10 according to this example. In FIG. 4, the communication structure portion 51 is in a standalone state, not assembled to the tire main body T0M (i.e., the communication structure portion 51 is removed from the tire main body T0M and viewed alone with no external force acting on the communication structure portion 51). FIG. 5 is an oblique view of the communication structure portion 51 of the RF tag 10. FIG. 6 is an oblique view of the communication structure portion 51 of the RF tag 10 with the lid portion of the outer casing removed. FIG. 7 is an exploded oblique view of the communication structure portion 51 of the RF tag 10. FIG. 8 is a plan view of the second antenna 2. In FIG. 8, the second antenna 2 is in a standalone state, not attached to the tire main body T0M (i.e., the second antenna 2 is removed from the tire main body T0M, and viewed alone with no external force acting on the second antenna 2). FIG. 9 is a partial cross-sectional view of the communication structure 51 of the RF tag 10. FIG. 9 is a cross-sectional view taken along line I-I in FIG. 5.
図4および図5に示すように、RFタグ10の通信構造部51は、基板1と、第2アンテナ(アンテナ)2と、外装体3とを備える。
外装体3の主面31a(図6参照)の長手方向(図4における左右方向)をX方向という。X方向のうち一方向(図4における右方向)を+X方向という。X方向のうち他方向(図4における左方向)を-X方向という。外装体3の主面31a(図6参照)の短手方向をY方向という。Y方向は、主面31aに沿う面内においてX方向に直交する。Y方向のうち一方向(図4における上方向)を+Y方向という。Y方向のうち他方向(図4における下方向)を-Y方向という。外装体3の主面31aに直交する方向をZ方向という。Z方向は、X方向およびY方向に直交する。Z方向から見ることを平面視という。Z軸とは、Z方向に沿う中心軸である。 As shown in FIGS. 4 and 5, thecommunication structure 51 of the RF tag 10 includes a substrate 1 , a second antenna (antenna) 2 , and an exterior body 3 .
The longitudinal direction (left-right direction in FIG. 4) of themain surface 31a of the exterior body 3 (see FIG. 6) is referred to as the X direction. One of the X directions (right direction in FIG. 4) is referred to as the +X direction. The other of the X directions (left direction in FIG. 4) is referred to as the -X direction. The short-side direction of the main surface 31a of the exterior body 3 (see FIG. 6) is referred to as the Y direction. The Y direction is perpendicular to the X direction in a plane along the main surface 31a. One of the Y directions (upward direction in FIG. 4) is referred to as the +Y direction. The other of the Y directions (downward direction in FIG. 4) is referred to as the -Y direction. The direction perpendicular to the main surface 31a of the exterior body 3 is referred to as the Z direction. The Z direction is perpendicular to the X direction and the Y direction. Viewing from the Z direction is referred to as planar view. The Z axis is the central axis along the Z direction.
外装体3の主面31a(図6参照)の長手方向(図4における左右方向)をX方向という。X方向のうち一方向(図4における右方向)を+X方向という。X方向のうち他方向(図4における左方向)を-X方向という。外装体3の主面31a(図6参照)の短手方向をY方向という。Y方向は、主面31aに沿う面内においてX方向に直交する。Y方向のうち一方向(図4における上方向)を+Y方向という。Y方向のうち他方向(図4における下方向)を-Y方向という。外装体3の主面31aに直交する方向をZ方向という。Z方向は、X方向およびY方向に直交する。Z方向から見ることを平面視という。Z軸とは、Z方向に沿う中心軸である。 As shown in FIGS. 4 and 5, the
The longitudinal direction (left-right direction in FIG. 4) of the
図6に示すように、基板1は、ICチップ11と、第1アンテナ(アンテナ)12と、基材13とを備える。基板1には、ICチップ11と第1アンテナ12とが設けられている。
As shown in FIG. 6, the substrate 1 includes an IC chip 11, a first antenna (antenna) 12, and a base material 13. The substrate 1 is provided with the IC chip 11 and the first antenna 12.
基材13は、板状に形成されている。平面視における基材13の形状は、特に限定されないが、少なくとも外周縁13aの一部が湾曲形状であることが好ましい。湾曲形状は、例えば、楕円弧状、円弧状、高次曲線状(例えば二次曲線状)などである。高次曲線状は、放物線状、双曲線状などである。平面視における基材13の外形は、例えば、楕円形状、円形状、長円形状(レーストラック形状)などであってよい。平面視における基材13の外形は、非円形状が望ましい。
本例では、基材13は、楕円形状とされている。基材13は、長径方向をX方向に向けた姿勢とされている。基材13としては、ガラスエポキシ樹脂基板、セラミックス、プラスチックフィルムなどが使用できる。 Thesubstrate 13 is formed in a plate shape. The shape of the substrate 13 in plan view is not particularly limited, but it is preferable that at least a part of the outer circumferential edge 13a is curved. The curved shape is, for example, an elliptical arc shape, a circular arc shape, a high-order curve shape (for example, a quadratic curve shape), etc. The high-order curve shape is, for example, a parabola shape, a hyperbola shape, etc. The outer shape of the substrate 13 in plan view may be, for example, an elliptical shape, a circular shape, an oval shape (a racetrack shape), etc. It is preferable that the outer shape of the substrate 13 in plan view is non-circular.
In this example, thesubstrate 13 has an elliptical shape, and is oriented such that the major axis of the substrate 13 faces the X-direction. The substrate 13 may be made of a glass epoxy resin substrate, ceramics, a plastic film, or the like.
本例では、基材13は、楕円形状とされている。基材13は、長径方向をX方向に向けた姿勢とされている。基材13としては、ガラスエポキシ樹脂基板、セラミックス、プラスチックフィルムなどが使用できる。 The
In this example, the
ICチップ11は、第1アンテナ12および第2アンテナ2を介して非接触にて情報の書き込みおよび読み出しが可能である。ICチップ11は、基材13に実装されている。
The IC chip 11 allows for contactless writing and reading of information via the first antenna 12 and the second antenna 2. The IC chip 11 is mounted on a substrate 13.
第1アンテナ12は、例えば、基材13の一方の面に形成された導電層である。導電層は、例えば、導電性箔、メッキ層、導電インク層などで構成される。導電性箔は、例えば、銅、銀、金、白金、アルミニウムなどで構成される金属箔である。導電性箔は、エッチングなどによって所定の形状に形成される。メッキ層は、例えば、銅、銀、金、白金、アルミニウムなどの金属で構成される。導電インク層は、導電インクを用いて印刷などにより形成される。導電インクは、金属、カーボン材料などで形成される導電性粒子を含む。
The first antenna 12 is, for example, a conductive layer formed on one surface of the substrate 13. The conductive layer is, for example, composed of a conductive foil, a plating layer, a conductive ink layer, etc. The conductive foil is, for example, a metal foil composed of copper, silver, gold, platinum, aluminum, etc. The conductive foil is formed into a predetermined shape by etching or the like. The plating layer is, for example, composed of a metal such as copper, silver, gold, platinum, aluminum, etc. The conductive ink layer is formed by printing or the like using a conductive ink. The conductive ink contains conductive particles formed of a metal, carbon material, etc.
第1アンテナ12は、ループ状に形成されている。第1アンテナ12は、例えば、基材13の外周縁13aに沿う湾曲形状を有する。本例では、第1アンテナ12は、楕円形状のループ状に形成されている。第1アンテナ12は、ICチップ11に電気的に接続されている。
The first antenna 12 is formed in a loop shape. The first antenna 12 has, for example, a curved shape that follows the outer peripheral edge 13a of the substrate 13. In this example, the first antenna 12 is formed in an elliptical loop shape. The first antenna 12 is electrically connected to the IC chip 11.
第2アンテナ2は、ブースター用のアンテナである。第2アンテナ2は、例えば、線状体である。第2アンテナ2は、例えば、スチール、ステンレス鋼、銅、銅合金などの金属で形成されている。第2アンテナ2は、例えば、真鍮メッキ鋼線で形成することができる。第2アンテナ2は、基板1とは別体とされている。
なお、本例における第2アンテナ2は線状体であるが、第2アンテナの形状は特に限定されない。第2アンテナは、例えば、板状体であってもよい。 Thesecond antenna 2 is an antenna for a booster. The second antenna 2 is, for example, a linear body. The second antenna 2 is formed of a metal such as steel, stainless steel, copper, or a copper alloy. The second antenna 2 can be formed of, for example, a brass-plated steel wire. The second antenna 2 is separate from the substrate 1.
In addition, although thesecond antenna 2 in this example is a linear body, the shape of the second antenna is not particularly limited. The second antenna may be, for example, a plate-like body.
なお、本例における第2アンテナ2は線状体であるが、第2アンテナの形状は特に限定されない。第2アンテナは、例えば、板状体であってもよい。 The
In addition, although the
第2アンテナ2は、電磁界結合部21と、一対の延出部22とを備える。
電磁界結合部21は、湾曲形状を有する。「湾曲形状」とは、急峻な屈曲部がなく、滑らかに曲がる形状である。湾曲形状としては、例えば、楕円弧状、円弧状、高次曲線状(例えば二次曲線状)などがある。「高次曲線状」としては、放物線状、双曲線状などがある。本例では、電磁界結合部21は、半楕円形状とされている。詳しくは、電磁界結合部21は、楕円形の一方の頂点(長軸と交わる頂点)から他方の頂点(長軸と交わる頂点)に至る半楕円形状である。 Thesecond antenna 2 includes an electromagnetic field coupling portion 21 and a pair of extension portions 22 .
The electromagneticfield coupling unit 21 has a curved shape. A "curved shape" is a shape that does not have a sharp bend and is smoothly curved. Examples of the curved shape include an elliptical arc shape, a circular arc shape, and a high-order curve shape (e.g., a quadratic curve shape). Examples of the "high-order curve shape" include a parabola shape and a hyperbola shape. In this example, the electromagnetic field coupling unit 21 is in a semi-elliptical shape. More specifically, the electromagnetic field coupling unit 21 is in a semi-elliptical shape that extends from one vertex of the ellipse (the vertex intersecting with the long axis) to the other vertex (the vertex intersecting with the long axis).
電磁界結合部21は、湾曲形状を有する。「湾曲形状」とは、急峻な屈曲部がなく、滑らかに曲がる形状である。湾曲形状としては、例えば、楕円弧状、円弧状、高次曲線状(例えば二次曲線状)などがある。「高次曲線状」としては、放物線状、双曲線状などがある。本例では、電磁界結合部21は、半楕円形状とされている。詳しくは、電磁界結合部21は、楕円形の一方の頂点(長軸と交わる頂点)から他方の頂点(長軸と交わる頂点)に至る半楕円形状である。 The
The electromagnetic
電磁界結合部21は、平面視において、基板1の少なくとも一部を囲む形状とされる。本例では、電磁界結合部21は、楕円形状の基板1の一方の頂点(長軸と交わる頂点)から他方の頂点(長軸と交わる頂点)に至る範囲(+Y方向側の半周範囲)を囲む。
The electromagnetic field coupling portion 21 is shaped to surround at least a portion of the substrate 1 in a plan view. In this example, the electromagnetic field coupling portion 21 surrounds the area (half the circumference in the +Y direction) from one vertex (the vertex intersecting with the long axis) of the elliptical substrate 1 to the other vertex (the vertex intersecting with the long axis).
電磁界結合部21は、平面視において、第1アンテナ12の外周縁12aに沿う湾曲形状(例えば、楕円弧状)とされている。電磁界結合部21と外周縁12aとの離間距離は、ほぼ一定である。電磁界結合部21は、平面視において、基板1の外周縁13aの外側に、外周縁13aに近接して位置する。電磁界結合部21は、平面視において、外周縁13aに沿う形状とされる。電磁界結合部21と外周縁13aとの離間距離は、ほぼ一定である。
The electromagnetic field coupling portion 21 has a curved shape (e.g., an elliptical arc shape) that follows the outer peripheral edge 12a of the first antenna 12 in a plan view. The distance between the electromagnetic field coupling portion 21 and the outer peripheral edge 12a is approximately constant. The electromagnetic field coupling portion 21 is located outside the outer peripheral edge 13a of the substrate 1 and close to the outer peripheral edge 13a in a plan view. The electromagnetic field coupling portion 21 has a shape that follows the outer peripheral edge 13a in a plan view. The distance between the electromagnetic field coupling portion 21 and the outer peripheral edge 13a is approximately constant.
電磁界結合部21は、非接触で第1アンテナ12と電磁界結合する。電磁界結合とは、例えば、電界結合と磁界結合のうち一方である。電磁界結合部21の長さ方向に直交する断面の形状は、例えば、円形状である(図9参照)。
The electromagnetic field coupling portion 21 is electromagnetically coupled to the first antenna 12 in a non-contact manner. The electromagnetic field coupling is, for example, either electric field coupling or magnetic field coupling. The shape of a cross section perpendicular to the longitudinal direction of the electromagnetic field coupling portion 21 is, for example, circular (see FIG. 9).
一対の延出部22は、電磁界結合部21の一方および他方の端部21aからそれぞれ延出する。
図8に示すように、一対の延出部22のうち一方である第1延出部22Aは、電磁界結合部21の-X方向の端部21aから、蛇行しつつ-X方向に延出する。一対の延出部22のうち他方である第2延出部22Bは、電磁界結合部21の+X方向の端部21aから、蛇行しつつ+X方向に延出する。 The pair ofextensions 22 extend from one and the other end 21 a of the electromagnetic field coupling portion 21 , respectively.
8, a first extendingportion 22A, which is one of the pair of extending portions 22, extends in the -X direction while meandering from an end portion 21a in the -X direction of the electromagnetic field coupling portion 21. A second extending portion 22B, which is the other of the pair of extending portions 22, extends in the +X direction while meandering from an end portion 21a in the +X direction of the electromagnetic field coupling portion 21.
図8に示すように、一対の延出部22のうち一方である第1延出部22Aは、電磁界結合部21の-X方向の端部21aから、蛇行しつつ-X方向に延出する。一対の延出部22のうち他方である第2延出部22Bは、電磁界結合部21の+X方向の端部21aから、蛇行しつつ+X方向に延出する。 The pair of
8, a first extending
延出部22の平面視形状は、例えば、メアンダ(蛇行)形状、波状、ジグザグ形状などである。本例では、延出部22は、メアンダ形状を有する。ただし、延出部22の平面視形状は、任意の形状でよく、例えば、湾曲線状であってもよい。あるいは、延出部22は、螺旋状をなしていてもよい。
The planar shape of the extension portion 22 may be, for example, a meandering shape, a wavy shape, a zigzag shape, or the like. In this example, the extension portion 22 has a meandering shape. However, the planar shape of the extension portion 22 may be any shape, for example, a curved line shape. Alternatively, the extension portion 22 may be spiral.
図7に示すように、延出部22は、本例において、複数の直線部23と、複数の折り返し部24とを備える。直線部23は、Y方向に沿う直線状とされている。複数の直線部23は、X方向に間隔をおいて配置されている。折り返し部24は、隣り合う直線部23の端部どうしを連結する。折り返し部24は、湾曲形状(例えば、円弧形状)を有する。
As shown in FIG. 7, in this example, the extension portion 22 includes a plurality of straight portions 23 and a plurality of folded portions 24. The straight portions 23 are linearly shaped along the Y direction. The straight portions 23 are arranged at intervals in the X direction. The folded portions 24 connect the ends of adjacent straight portions 23. The folded portions 24 have a curved shape (e.g., an arc shape).
複数の直線部23のうち最も電磁界結合部21に近い直線部23を「第1直線部23A」という。複数の直線部23のうち2番目に電磁界結合部21に近い直線部23を「第2直線部23B」という。複数の直線部23のうち3番目に電磁界結合部21に近い直線部23を「第3直線部23C」という。
第1直線部23Aと第2直線部23Bとを連結する折り返し部24を「第1折り返し部24A」という。第2直線部23Bと第3直線部23Cとを連結する折り返し部24を「第2折り返し部24B」という。 Of the multiplestraight line portions 23, the straight line portion 23 closest to the electromagnetic field coupling portion 21 is referred to as the "first straight line portion 23A." Of the multiple straight line portions 23, the straight line portion 23 second closest to the electromagnetic field coupling portion 21 is referred to as the "second straight line portion 23B." Of the multiple straight line portions 23, the straight line portion 23 third closest to the electromagnetic field coupling portion 21 is referred to as the "third straight line portion 23C."
The foldedportion 24 connecting the first straight portion 23A and the second straight portion 23B is referred to as a "first folded portion 24A." The folded portion 24 connecting the second straight portion 23B and the third straight portion 23C is referred to as a "second folded portion 24B."
第1直線部23Aと第2直線部23Bとを連結する折り返し部24を「第1折り返し部24A」という。第2直線部23Bと第3直線部23Cとを連結する折り返し部24を「第2折り返し部24B」という。 Of the multiple
The folded
第1直線部23Aは、電磁界結合部21の端部21aから-Y方向に延出する。第1折り返し部24Aは、第1直線部23Aの-Y方向の端部から湾曲して延び、第2直線部23Bの-Y方向の端部に達する。
延出部22のうち、第1直線部23Aと第1折り返し部24Aの一部とは外装体3内にあるが、延出部22のそれ以外の部分は、外装体3の外に延出している(図6参照)。 The firststraight portion 23A extends in the -Y direction from the end 21a of the electromagnetic field coupling portion 21. The first folded portion 24A extends in a curved manner from the -Y direction end of the first straight portion 23A and reaches the -Y direction end of the second straight portion 23B.
Of theextension portion 22, the first straight portion 23A and a part of the first folded portion 24A are inside the exterior body 3, but the remaining portion of the extension portion 22 extends outside the exterior body 3 (see FIG. 6).
延出部22のうち、第1直線部23Aと第1折り返し部24Aの一部とは外装体3内にあるが、延出部22のそれ以外の部分は、外装体3の外に延出している(図6参照)。 The first
Of the
外装体3は、第2アンテナ2の一部を内部に収容している。図5に示すように、外装体3は、板状の本体部31と、板状の蓋部32とを備える。外装体3は、全体として板状とされている。本体部31および蓋部32は、例えば、樹脂で形成される。樹脂としては、ナイロン6,6などのポリアミド樹脂;ポリエチレンテレフタレート(PET)などのポリエステル樹脂;ポリエチレンなどのポリオレフィン樹脂;ポリフッ化ビニルなどのポリフッ化エチレン系樹脂;ポリ塩化ビニルなどのビニル重合体;ポリメタクリル酸メチルなどのアクリル系樹脂等が挙げられる。
The exterior body 3 houses a part of the second antenna 2 inside. As shown in FIG. 5, the exterior body 3 includes a plate-shaped main body 31 and a plate-shaped lid 32. The exterior body 3 is generally plate-shaped. The main body 31 and the lid 32 are formed of, for example, resin. Examples of resins include polyamide resins such as nylon 6,6; polyester resins such as polyethylene terephthalate (PET); polyolefin resins such as polyethylene; polyethylene fluoride-based resins such as polyvinyl fluoride; vinyl polymers such as polyvinyl chloride; and acrylic resins such as polymethyl methacrylate.
図7に示すように、本体部31は、平面視において矩形状とされている。本体部31の一方の面である主面31aには、基板保持凹部37(基板保持部)と、アンテナ保持溝34と、一対の側部凹所35が形成されている。基板保持凹部37は、基板保持凸部33によって形成される。基板保持凹部37は、基板保持凸部33によって囲まれた凹部である。
As shown in FIG. 7, the main body 31 has a rectangular shape in a plan view. A board holding recess 37 (board holding portion), an antenna holding groove 34, and a pair of side recesses 35 are formed on the main surface 31a, which is one surface of the main body 31. The board holding recess 37 is formed by the board holding protrusions 33. The board holding recess 37 is a recess surrounded by the board holding protrusions 33.
基板保持凸部33は、環状のリブ状突起である。基板保持凸部33は、基板1の外周縁13aに沿う湾曲形状(例えば、楕円形状)とされている。基板保持凸部33は、主面31aから+Z方向に突出する。基板保持凸部33の長さ方向に直交する断面の形状は、例えば矩形状である。基板保持凸部33は、平面視において、第1アンテナ12の外周縁12aに沿う湾曲形状(例えば、楕円形状)とされている。
The board holding protrusion 33 is a ring-shaped rib-shaped protrusion. The board holding protrusion 33 has a curved shape (e.g., an elliptical shape) that fits along the outer peripheral edge 13a of the board 1. The board holding protrusion 33 protrudes from the main surface 31a in the +Z direction. The shape of a cross section perpendicular to the length direction of the board holding protrusion 33 is, for example, rectangular. In a plan view, the board holding protrusion 33 has a curved shape (e.g., an elliptical shape) that fits along the outer peripheral edge 12a of the first antenna 12.
基板保持凹部37は、基板1を保持する。基板保持凹部37は、基板1の外周縁13aに沿う形状(例えば、楕円形状)とされている。基板保持凹部37の内形寸法(内径)は、基板1の外形寸法(外径)とほぼ同じ、または基板1の外形寸法(外径)よりわずかに大きい。基板保持凹部37は、平面視において基板1と相似形である。
The substrate holding recess 37 holds the substrate 1. The substrate holding recess 37 has a shape (e.g., an elliptical shape) that follows the outer peripheral edge 13a of the substrate 1. The inner dimension (inner diameter) of the substrate holding recess 37 is approximately the same as the outer dimension (outer diameter) of the substrate 1 or is slightly larger than the outer dimension (outer diameter) of the substrate 1. The substrate holding recess 37 has a similar shape to the substrate 1 in a plan view.
基板1および基板保持凹部37は、非円形状(例えば、楕円形状)であると、基板1がZ軸周りに傾斜するのを規制し、基板1の正しい姿勢を保つことができる。そのため、第1アンテナ12と電磁界結合部21との電磁界結合を維持することができる。
If the substrate 1 and the substrate holding recess 37 are non-circular (e.g., elliptical), they can prevent the substrate 1 from tilting around the Z axis and maintain the correct posture of the substrate 1. This makes it possible to maintain the electromagnetic coupling between the first antenna 12 and the electromagnetic field coupling portion 21.
アンテナ保持溝34は、第2アンテナ2の電磁界結合部21を収容する(図6および図9参照)。
アンテナ保持溝34は、基板保持凸部33の外側に、基板保持凸部33に近接して形成されている。アンテナ保持溝34は、平面視において、基板保持凸部33に沿う形状とされる。アンテナ保持溝34は、平面視において、第1アンテナ12の外周縁12aに沿う湾曲形状(例えば、楕円弧状)とされている。アンテナ保持溝34は、平面視において、基板1の外周縁13aに沿う湾曲形状(例えば、楕円弧状)とされている。
アンテナ保持溝34は、平面視において、半楕円形状とされている。詳しくは、アンテナ保持溝34は、楕円形の一方の頂点(長軸と交わる頂点)から他方の頂点(長軸と交わる頂点)に至る半楕円形状である。 Theantenna holding groove 34 accommodates the electromagnetic field coupling portion 21 of the second antenna 2 (see FIGS. 6 and 9).
Theantenna holding groove 34 is formed outside the substrate holding convex portion 33 and close to the substrate holding convex portion 33. The antenna holding groove 34 has a shape that follows the substrate holding convex portion 33 in a plan view. The antenna holding groove 34 has a curved shape (e.g., an elliptical arc shape) that follows the outer peripheral edge 12a of the first antenna 12 in a plan view. The antenna holding groove 34 has a curved shape (e.g., an elliptical arc shape) that follows the outer peripheral edge 13a of the substrate 1 in a plan view.
Theantenna holding groove 34 has a semi-elliptical shape in a plan view. More specifically, the antenna holding groove 34 has a semi-elliptical shape extending from one vertex (the vertex intersecting with the long axis) of the ellipse to the other vertex (the vertex intersecting with the long axis).
アンテナ保持溝34は、基板保持凸部33の外側に、基板保持凸部33に近接して形成されている。アンテナ保持溝34は、平面視において、基板保持凸部33に沿う形状とされる。アンテナ保持溝34は、平面視において、第1アンテナ12の外周縁12aに沿う湾曲形状(例えば、楕円弧状)とされている。アンテナ保持溝34は、平面視において、基板1の外周縁13aに沿う湾曲形状(例えば、楕円弧状)とされている。
アンテナ保持溝34は、平面視において、半楕円形状とされている。詳しくは、アンテナ保持溝34は、楕円形の一方の頂点(長軸と交わる頂点)から他方の頂点(長軸と交わる頂点)に至る半楕円形状である。 The
The
The
アンテナ保持溝34は、平面視において、基板1の少なくとも一部を囲む形状とされる。本本例では、アンテナ保持溝34は、楕円形状の基板1の一方の頂点(長軸と交わる頂点)から他方の頂点(長軸と交わる頂点)に至る範囲(+Y方向側の半周範囲)を囲む。
The antenna holding groove 34 is shaped to surround at least a portion of the substrate 1 in a plan view. In this example, the antenna holding groove 34 surrounds the area (half the circumference in the +Y direction) from one vertex (the vertex intersecting with the long axis) of the elliptical substrate 1 to the other vertex (the vertex intersecting with the long axis).
図9に示すように、アンテナ保持溝34の長さ方向に直交する断面は、例えば、矩形状である。アンテナ保持溝34の幅(内形寸法)W1は、電磁界結合部21の外径(外形寸法)D1より大である。幅W1と外径D1との差は、例えば、0.01mm~1mm(好ましくは0.05mm~0.2mm)とすることができる。
アンテナ保持溝34の幅W1が電磁界結合部21の外径D1より大であるため、電磁界結合部21は、線径方向(例えば、Y方向)に変位可能な状態でアンテナ保持溝34に収容される。「線径方向」は、電磁界結合部21の長さ方向に直交する方向である。電磁界結合部21は、アンテナ保持溝34に対して長さ方向にも変位可能である。 9, the cross section perpendicular to the longitudinal direction of theantenna holding groove 34 is, for example, rectangular. The width (inner dimension) W1 of the antenna holding groove 34 is larger than the outer diameter (outer dimension) D1 of the electromagnetic field coupling portion 21. The difference between the width W1 and the outer diameter D1 can be, for example, 0.01 mm to 1 mm (preferably 0.05 mm to 0.2 mm).
Since the width W1 of theantenna holding groove 34 is larger than the outer diameter D1 of the electromagnetic field coupling part 21, the electromagnetic field coupling part 21 is accommodated in the antenna holding groove 34 in a state in which it can be displaced in a radial direction (e.g., the Y direction). The "radial direction" is a direction perpendicular to the length direction of the electromagnetic field coupling part 21. The electromagnetic field coupling part 21 can also be displaced in the length direction relative to the antenna holding groove 34.
アンテナ保持溝34の幅W1が電磁界結合部21の外径D1より大であるため、電磁界結合部21は、線径方向(例えば、Y方向)に変位可能な状態でアンテナ保持溝34に収容される。「線径方向」は、電磁界結合部21の長さ方向に直交する方向である。電磁界結合部21は、アンテナ保持溝34に対して長さ方向にも変位可能である。 9, the cross section perpendicular to the longitudinal direction of the
Since the width W1 of the
アンテナ保持溝34の深さは、アンテナ保持溝34の底面34aから蓋部32(天面38a)までの高さ(内形寸法)H1が、電磁界結合部21の外径D1より大となるように定められる。高さH1と外径D1との差は、例えば、0.01mm~1mm(好ましくは0.05mm~0.2mm)とすることができる。
アンテナ保持溝34の高さH1が電磁界結合部21の外径D1より大であるため、電磁界結合部21は、線径方向(例えば、Z方向)に変位可能な状態でアンテナ保持溝34に収容される。 The depth of theantenna holding groove 34 is determined so that the height (inner dimension) H1 from the bottom surface 34a of the antenna holding groove 34 to the cover portion 32 (top surface 38a) is greater than the outer diameter D1 of the electromagnetic field coupling portion 21. The difference between the height H1 and the outer diameter D1 can be, for example, 0.01 mm to 1 mm (preferably 0.05 mm to 0.2 mm).
Since the height H1 of theantenna holding groove 34 is greater than the outer diameter D1 of the electromagnetic field coupling portion 21, the electromagnetic field coupling portion 21 is accommodated in the antenna holding groove 34 in a state in which it can be displaced in the radial direction (for example, the Z direction).
アンテナ保持溝34の高さH1が電磁界結合部21の外径D1より大であるため、電磁界結合部21は、線径方向(例えば、Z方向)に変位可能な状態でアンテナ保持溝34に収容される。 The depth of the
Since the height H1 of the
側部凹所35は、外装体3の内部に区画されている。図7に示すように、側部凹所35は、主面31aの一方および他方の側部に形成されている。側部凹所35は、本体部31のX方向の側端縁31bを含む領域に形成されている。側部凹所35の内周縁35aは、Y方向に沿う第1直線部35bと、湾曲部35cと、X方向に沿う第2直線部35dとを有する。
The side recesses 35 are defined inside the exterior body 3. As shown in FIG. 7, the side recesses 35 are formed on one and the other side of the main surface 31a. The side recesses 35 are formed in an area including the side edge 31b in the X direction of the main body 31. The inner peripheral edge 35a of the side recess 35 has a first straight portion 35b along the Y direction, a curved portion 35c, and a second straight portion 35d along the X direction.
第1直線部35bは、アンテナ保持溝34の内周縁の端部を始点として-Y方向に延びる部分である。湾曲部35cは、第1直線部35bの先端から、X方向に対する傾斜角度が小さくなりつつ延出する部分である。第2直線部35dは、湾曲部35cの先端からX方向に沿って側端縁31bに向かう部分である。
The first straight portion 35b is a portion that extends in the -Y direction starting from the end of the inner peripheral edge of the antenna holding groove 34. The curved portion 35c is a portion that extends from the tip of the first straight portion 35b while the inclination angle with respect to the X direction becomes smaller. The second straight portion 35d is a portion that extends from the tip of the curved portion 35c along the X direction toward the side edge 31b.
図6に示すように、側部凹所35は、平面視において、第2アンテナ2の第1直線部23Aと、第1折り返し部24Aの一部とを包含する。第1直線部23Aは、第1直線部35b(図7参照)に近接している。第1折り返し部24Aは、湾曲部35c(図7参照)に近接している。側部凹所35は、第2アンテナ2の所定の長さ範囲(第1直線部23Aと、第1折り返し部24Aの一部)の少なくとも一部を収容する。
As shown in FIG. 6, the side recess 35 includes the first straight portion 23A and a portion of the first folded portion 24A of the second antenna 2 in a plan view. The first straight portion 23A is adjacent to the first straight portion 35b (see FIG. 7). The first folded portion 24A is adjacent to the curved portion 35c (see FIG. 7). The side recess 35 accommodates at least a portion of a predetermined length range of the second antenna 2 (the first straight portion 23A and a portion of the first folded portion 24A).
図5に示すように、側部凹所35はY方向に十分な距離があるため、側端縁31bには、Y方向(主面31aに沿う方向)に延びるスリット状の側端開口36が形成される。側端開口36は、側部凹所35に連通している。第2アンテナ2は、側部凹所35及び側端開口36を通して外装体3の外部に延出している。
図7に示すように、本体部31の+Y方向の端縁31cには、X方向に位置を違えて2つの係止凹部39が形成されている。本体部31の-Y方向の端縁31dにも、X方向に位置を違えて2つの係止凹部39が形成されている。 5, since theside recess 35 has a sufficient distance in the Y direction, a slit-shaped side end opening 36 extending in the Y direction (direction along the main surface 31a) is formed in the side edge 31b. The side end opening 36 communicates with the side recess 35. The second antenna 2 extends to the outside of the exterior body 3 through the side recess 35 and the side end opening 36.
7, two lockingrecesses 39 are formed at different positions in the X direction on the +Y edge 31c of the main body 31. Two locking recesses 39 are also formed at different positions in the X direction on the -Y edge 31d of the main body 31.
図7に示すように、本体部31の+Y方向の端縁31cには、X方向に位置を違えて2つの係止凹部39が形成されている。本体部31の-Y方向の端縁31dにも、X方向に位置を違えて2つの係止凹部39が形成されている。 5, since the
7, two locking
図5に示すように、蓋部32は、平面視において矩形状とされている。蓋部32は、本体部31と同形とされ、本体部31の主面31aに対向して設置されている。蓋部32は、平面視において、本体部31の主面31aに重なるように設置されている。
As shown in FIG. 5, the lid portion 32 has a rectangular shape in a plan view. The lid portion 32 has the same shape as the main body portion 31 and is placed opposite the main surface 31a of the main body portion 31. The lid portion 32 is placed so as to overlap the main surface 31a of the main body portion 31 in a plan view.
図9に示すように、蓋部32の対向面32aは、本体部31の主面31aに対向する面である。対向面32aには、位置決め溝38が形成されている。位置決め溝38は、環状の溝である。位置決め溝38の長さ方向に直交する断面の形状は、例えば矩形状である。
As shown in FIG. 9, the opposing surface 32a of the lid portion 32 is a surface that faces the main surface 31a of the main body portion 31. A positioning groove 38 is formed in the opposing surface 32a. The positioning groove 38 is an annular groove. The shape of a cross section perpendicular to the longitudinal direction of the positioning groove 38 is, for example, rectangular.
位置決め溝38は、基板保持凸部33およびアンテナ保持溝34に応じた湾曲形状(例えば、楕円形状)とされている。位置決め溝38は、平面視において、基板保持凸部33およびアンテナ保持溝34を一括して包含する幅を有する。位置決め溝38の天面38aの一部は、アンテナ保持溝34の底面34aに対向する。
The positioning groove 38 has a curved shape (e.g., an elliptical shape) that corresponds to the board holding protrusion 33 and the antenna holding groove 34. In a plan view, the positioning groove 38 has a width that collectively encompasses the board holding protrusion 33 and the antenna holding groove 34. A portion of the top surface 38a of the positioning groove 38 faces the bottom surface 34a of the antenna holding groove 34.
図5に示すように、蓋部32の+Y方向の端縁32cには、X方向に位置を違えて2つの係止凸部40が形成されている。蓋部32の-Y方向の端縁32dにも、X方向に位置を違えて2つの係止凸部40が形成されている。
As shown in FIG. 5, two locking protrusions 40 are formed at different positions in the X direction on the +Y edge 32c of the lid 32. Two locking protrusions 40 are also formed at different positions in the X direction on the -Y edge 32d of the lid 32.
係止凸部40は、先端に係止爪部(図示略)が形成されている。係止凸部40は、本体部31の係止凹部39に挿入される。係止凸部40の係止爪部は、本体部31に係止する。これにより、蓋部32は、本体部31に着脱自在に結合される。
The locking protrusion 40 has a locking claw portion (not shown) formed at its tip. The locking protrusion 40 is inserted into the locking recess 39 of the main body 31. The locking claw portion of the locking protrusion 40 locks into the main body 31. This allows the lid 32 to be detachably connected to the main body 31.
外装体3は、第2アンテナ2に対して固定されていない。すなわち、外装体3は、第2アンテナ2に対して非固定である。
The exterior body 3 is not fixed to the second antenna 2. In other words, the exterior body 3 is not fixed to the second antenna 2.
RFタグ10は、図2の実施形態のように、タイヤT01’、T01のタイヤ本体T0Mの内部に埋設されていてもよいし、あるいは、タイヤT01’、T01のタイヤ本体T0Mの内表面又は外表面上に貼り付けられていてもよい。
タイヤT01’、T01のタイヤ本体T0Mに伸び、曲げなどの変形が生じた場合、第2アンテナ2に、外力が作用する可能性がある。例えば、延出部22に、X方向に沿って外装体3から離れる方向の引張力が作用することが考えられる。延出部22には、X方向に沿って外装体3に近づく方向の力が作用することも考えられる。 TheRF tag 10 may be embedded inside the tire main body T0M of the tires T01', T01, as in the embodiment of Figure 2, or may be attached to the inner surface or outer surface of the tire main body T0M of the tires T01', T01.
When deformation such as stretching and bending occurs in the tire main body T0M of the tires T01', T01, an external force may act on thesecond antenna 2. For example, a tensile force may act on the extension portion 22 in a direction away from the exterior body 3 along the X direction. A force may also act on the extension portion 22 in a direction approaching the exterior body 3 along the X direction.
タイヤT01’、T01のタイヤ本体T0Mに伸び、曲げなどの変形が生じた場合、第2アンテナ2に、外力が作用する可能性がある。例えば、延出部22に、X方向に沿って外装体3から離れる方向の引張力が作用することが考えられる。延出部22には、X方向に沿って外装体3に近づく方向の力が作用することも考えられる。 The
When deformation such as stretching and bending occurs in the tire main body T0M of the tires T01', T01, an external force may act on the
RFタグ10では、第2アンテナ2の電磁界結合部21が線径方向(電磁界結合部21の長さ方向に直交する方向)に変位可能な状態でアンテナ保持溝34に収容される(図9参照)。電磁界結合部21が変位可能であるため、第2アンテナ2に外力が作用した場合に、第2アンテナ2における応力を緩和することができる。よって、第2アンテナ2の破損を起こりにくくすることができる。
これに対し、第2アンテナが外装体に固定されている場合には、第2アンテナに外力が作用すると、外装体から延出する第2アンテナの基端部(根元部分)に応力が集中し、この箇所で破損が起こりやすくなる可能性がある。 In theRF tag 10, the electromagnetic field coupling part 21 of the second antenna 2 is accommodated in the antenna holding groove 34 in a state in which it can be displaced in the radial direction (a direction perpendicular to the length direction of the electromagnetic field coupling part 21) (see FIG. 9). Since the electromagnetic field coupling part 21 is displaceable, when an external force acts on the second antenna 2, the stress on the second antenna 2 can be alleviated. Therefore, it is possible to make the second antenna 2 less likely to be damaged.
In contrast, when the second antenna is fixed to the outer casing, when an external force acts on the second antenna, stress is concentrated at the base end (root portion) of the second antenna extending from the outer casing, making this location more susceptible to damage.
これに対し、第2アンテナが外装体に固定されている場合には、第2アンテナに外力が作用すると、外装体から延出する第2アンテナの基端部(根元部分)に応力が集中し、この箇所で破損が起こりやすくなる可能性がある。 In the
In contrast, when the second antenna is fixed to the outer casing, when an external force acts on the second antenna, stress is concentrated at the base end (root portion) of the second antenna extending from the outer casing, making this location more susceptible to damage.
第2アンテナ2の電磁界結合部21は、第1アンテナ12の外周縁12aに沿う形状を有するため、電磁界結合部21を第1アンテナ12に十分に電磁界結合させることができる。
アンテナ保持溝34は、第1アンテナ12の外周縁12aに沿って形成されているため、第2アンテナ2の電磁界結合部21を、第1アンテナ12に沿って配置することができる。よって、電磁界結合部21を第1アンテナ12に十分に電磁界結合させることができる。 Since the electromagneticfield coupling portion 21 of the second antenna 2 has a shape that fits along the outer circumferential edge 12 a of the first antenna 12 , the electromagnetic field coupling portion 21 can be sufficiently electromagnetically coupled to the first antenna 12 .
Since theantenna holding groove 34 is formed along the outer peripheral edge 12a of the first antenna 12, the electromagnetic field coupling portion 21 of the second antenna 2 can be disposed along the first antenna 12. Therefore, the electromagnetic field coupling portion 21 can be sufficiently electromagnetically coupled to the first antenna 12.
アンテナ保持溝34は、第1アンテナ12の外周縁12aに沿って形成されているため、第2アンテナ2の電磁界結合部21を、第1アンテナ12に沿って配置することができる。よって、電磁界結合部21を第1アンテナ12に十分に電磁界結合させることができる。 Since the electromagnetic
Since the
第2アンテナ2の電磁界結合部21は、湾曲形状(例えば、半楕円形状)を有するため、第2アンテナ2に外力が作用した場合でも、矩形状の場合に比べ、応力集中が生じにくい。よって、第2アンテナ2の破損を起こりにくくすることができる。
これに対し、電磁界結合部が矩形状である場合には、第2アンテナに外力が作用すると、角部(屈曲部)に応力が集中し、この箇所で破損が起こりやすくなる可能性がある。 Since the electromagneticfield coupling portion 21 of the second antenna 2 has a curved shape (e.g., a semi-elliptical shape), stress concentration is less likely to occur compared to a rectangular shape even when an external force acts on the second antenna 2. This makes it possible to make the second antenna 2 less likely to be damaged.
In contrast, if the electromagnetic field coupling portion is rectangular, when an external force acts on the second antenna, stress is concentrated at the corners (bends), and breakage may easily occur at these locations.
これに対し、電磁界結合部が矩形状である場合には、第2アンテナに外力が作用すると、角部(屈曲部)に応力が集中し、この箇所で破損が起こりやすくなる可能性がある。 Since the electromagnetic
In contrast, if the electromagnetic field coupling portion is rectangular, when an external force acts on the second antenna, stress is concentrated at the corners (bends), and breakage may easily occur at these locations.
アンテナ保持溝34は、基板1の外周縁13aに沿って形成されているため、第2アンテナ2の電磁界結合部21を、第1アンテナ12に沿って配置することができる。よって、電磁界結合部21を第1アンテナ12に十分に電磁界結合させることができる。
The antenna holding groove 34 is formed along the outer peripheral edge 13a of the substrate 1, so that the electromagnetic field coupling portion 21 of the second antenna 2 can be positioned along the first antenna 12. This allows the electromagnetic field coupling portion 21 to be sufficiently electromagnetically coupled to the first antenna 12.
外装体3は、本体部31と、主面31aに重ねられる蓋部32とを備える。基板保持凹部37およびアンテナ保持溝34は、主面31aに形成されている。そのため、蓋部32によって、基板1および第2アンテナ2が本体部31から脱落するのを阻止することができる。よって、基板1および第2アンテナ2を外装体3に安定的に保持することができる。
The exterior body 3 comprises a main body portion 31 and a lid portion 32 that is overlaid on the main surface 31a. The board holding recess 37 and the antenna holding groove 34 are formed on the main surface 31a. Therefore, the lid portion 32 can prevent the board 1 and the second antenna 2 from falling off the main body portion 31. Therefore, the board 1 and the second antenna 2 can be stably held in the exterior body 3.
RFタグ10では、外装体3の側端縁31bに、Y方向(主面31aに沿う方向)に延びるスリット状の側端開口36が形成されている。そのため、第2アンテナ2は、側端開口36内で変位可能であり、外装体3に対してY方向に位置変動できる。したがって、第2アンテナ2に外力が作用した場合に、変位により応力を緩和しやすくなる。よって、第2アンテナ2の破損を起こりにくくすることができる。
In the RF tag 10, a slit-shaped side end opening 36 extending in the Y direction (direction along the main surface 31a) is formed on the side edge 31b of the exterior body 3. Therefore, the second antenna 2 is displaceable within the side end opening 36, and can change its position in the Y direction relative to the exterior body 3. Therefore, when an external force acts on the second antenna 2, the stress is easily alleviated by the displacement. This makes it possible to make the second antenna 2 less likely to be damaged.
図4に示すように、通信構造部51は、タイヤ本体T0Mに組み付けられていない単独状態において、第2アンテナ2が、通信構造部51の平面視(通信構造部51を+Z側から-Z方向に見たときの平面視)において第2アンテナ2のアンテナ延在軸線EAがアンテナ延在軸線EAに対する第1側S1に曲率中心Cを有する湾曲形状をなすような(すなわち、アンテナ延在軸線EAがアンテナ延在軸線EAに対する第2側S2に凸に湾曲するような)、癖(反り)を有している。同様に、図8に示すように、第2アンテナ2は、タイヤ本体T0Mに組み付けられていない単独状態において、第2アンテナ2の平面視(第2アンテナ2を+Z側から-Z方向に見たときの平面視)において第2アンテナ2のアンテナ延在軸線EAがアンテナ延在軸線EAに対する第1側S1に曲率中心Cを有する湾曲形状をなすような(すなわち、アンテナ延在軸線EAがアンテナ延在軸線EAに対する第2側S2に凸に湾曲するような)、癖(反り)を有している。このような第2アンテナ2の癖は、例えば、第2アンテナ2がもともとリールに巻かれていたこと等に起因して生じ得る。
ここで、アンテナ延在軸線EAは、第2アンテナ2の延出部22を全体的に見たときの第2アンテナ2の延出部22の延在方向に沿う軸線である(図4、図8)。例えば、本例のように第2アンテナ2の延出部22がメアンダ形状、波状、又はジグザグ形状をなしている場合、アンテナ延在軸線EAは、第2アンテナ2のなすメアンダ形状、波状、又はジグザグ形状の振幅中心線に概略的に相当する。また、例えば、第2アンテナ2が湾曲線状をなす場合、アンテナ延在軸線EAは、第2アンテナ2の中心軸線に相当する。また、例えば、第2アンテナ2が螺旋状をなす場合、アンテナ延在軸線EAは、第2アンテナ2のなす螺旋形状の中心軸線に相当する。
図1に示すように、通信構造部51は、タイヤ本体T0Mに組み付けられた組付状態において、通信構造部51の平面視(通信構造部51を+Z側から-Z方向に見たときの平面視)において、アンテナ延在軸線EAが、アンテナ延在軸線EAに対する第1側S1に曲率中心Cを有する湾曲形状をなしている(すなわち、アンテナ延在軸線EAがアンテナ延在軸線EAに対する第2側S2に凸に湾曲している)とともに、アンテナ延在軸線EAに対する第1側S1がタイヤ径方向外側となるように指向されている。すなわち、通信構造部51の第2アンテナ2は、上述した自身の癖による湾曲の向き(図4、図8)と同じ向きに湾曲した状態で、タイヤ本体T0Mに組み付けられている。また、通信構造部51の第2アンテナ2は、自身の湾曲の曲率中心C側が、タイヤ径方向外側となるように、指向されている。言い換えれば、第2アンテナ2は、アンテナ延在軸線EAがタイヤ径方向内側に凸に湾曲するように、指向されている。 As shown in FIG. 4, when thecommunication structure 51 is in a standalone state not assembled to the tire main body T0M, the second antenna 2 has a tendency (warp) such that, in a planar view of the communication structure 51 (planar view when the communication structure 51 is viewed in the -Z direction from the +Z side), the antenna extension axis EA of the second antenna 2 forms a curved shape having a center of curvature C on the first side S1 relative to the antenna extension axis EA (i.e., the antenna extension axis EA is curved convexly toward the second side S2 relative to the antenna extension axis EA). 8, the second antenna 2 has a tendency (warp) in a plan view of the second antenna 2 (plan view of the second antenna 2 seen from the +Z side in the -Z direction) such that the antenna extension axis EA of the second antenna 2 forms a curved shape having a center of curvature C on the first side S1 with respect to the antenna extension axis EA (i.e., the antenna extension axis EA is curved convexly toward the second side S2 with respect to the antenna extension axis EA) when it is not attached to the tire main body T0M. Such a tendency of the second antenna 2 can arise, for example, because the second antenna 2 was originally wound on a reel.
Here, the antenna extension axis EA is an axis along the extension direction of theextension portion 22 of the second antenna 2 when the extension portion 22 of the second antenna 2 is viewed as a whole (FIGS. 4 and 8). For example, when the extension portion 22 of the second antenna 2 has a meandering, wavy, or zigzag shape as in this example, the antenna extension axis EA roughly corresponds to the amplitude center line of the meandering, wavy, or zigzag shape of the second antenna 2. Also, for example, when the second antenna 2 has a curved linear shape, the antenna extension axis EA corresponds to the central axis of the second antenna 2. Also, for example, when the second antenna 2 has a spiral shape, the antenna extension axis EA corresponds to the central axis of the spiral shape of the second antenna 2.
As shown in FIG. 1, in the assembled state of thecommunication structure 51 assembled to the tire main body T0M, in a plan view of the communication structure 51 (plan view when the communication structure 51 is seen from the +Z side to the -Z direction), the antenna extension axis EA has a curved shape having a center of curvature C on the first side S1 relative to the antenna extension axis EA (i.e., the antenna extension axis EA is curved convexly to the second side S2 relative to the antenna extension axis EA), and the first side S1 relative to the antenna extension axis EA is oriented so as to be on the outer side in the tire radial direction. That is, the second antenna 2 of the communication structure 51 is assembled to the tire main body T0M in a state in which it is curved in the same direction as the direction of the curve due to its own habit described above (FIGS. 4 and 8). In addition, the second antenna 2 of the communication structure 51 is oriented so that the side of the center of curvature C of its own curve is on the outer side in the tire radial direction. In other words, the second antenna 2 is oriented so that the antenna extension axis EA is curved convexly to the inner side in the tire radial direction.
ここで、アンテナ延在軸線EAは、第2アンテナ2の延出部22を全体的に見たときの第2アンテナ2の延出部22の延在方向に沿う軸線である(図4、図8)。例えば、本例のように第2アンテナ2の延出部22がメアンダ形状、波状、又はジグザグ形状をなしている場合、アンテナ延在軸線EAは、第2アンテナ2のなすメアンダ形状、波状、又はジグザグ形状の振幅中心線に概略的に相当する。また、例えば、第2アンテナ2が湾曲線状をなす場合、アンテナ延在軸線EAは、第2アンテナ2の中心軸線に相当する。また、例えば、第2アンテナ2が螺旋状をなす場合、アンテナ延在軸線EAは、第2アンテナ2のなす螺旋形状の中心軸線に相当する。
図1に示すように、通信構造部51は、タイヤ本体T0Mに組み付けられた組付状態において、通信構造部51の平面視(通信構造部51を+Z側から-Z方向に見たときの平面視)において、アンテナ延在軸線EAが、アンテナ延在軸線EAに対する第1側S1に曲率中心Cを有する湾曲形状をなしている(すなわち、アンテナ延在軸線EAがアンテナ延在軸線EAに対する第2側S2に凸に湾曲している)とともに、アンテナ延在軸線EAに対する第1側S1がタイヤ径方向外側となるように指向されている。すなわち、通信構造部51の第2アンテナ2は、上述した自身の癖による湾曲の向き(図4、図8)と同じ向きに湾曲した状態で、タイヤ本体T0Mに組み付けられている。また、通信構造部51の第2アンテナ2は、自身の湾曲の曲率中心C側が、タイヤ径方向外側となるように、指向されている。言い換えれば、第2アンテナ2は、アンテナ延在軸線EAがタイヤ径方向内側に凸に湾曲するように、指向されている。 As shown in FIG. 4, when the
Here, the antenna extension axis EA is an axis along the extension direction of the
As shown in FIG. 1, in the assembled state of the
一般的に、タイヤT01は、タイヤ径方向外側(トレッド部T01t側)に向かうほど径が大きくなるという形状を有しており、ひいては、タイヤ径方向外側に向かうほどタイヤ転動時の変形量が大きくなる傾向がある。そのため、本実施形態によれば、上述のように、通信構造部51の第2アンテナ2は、自身の癖による湾曲の向きと同じ向きに湾曲した状態で、かつ、自身の湾曲の曲率中心C側がタイヤ径方向外側となった状態(アンテナ延在軸線EAがタイヤ径方向内側に凸に湾曲した状態)で、タイヤ本体T0Mに組み付けられている。これにより、タイヤ転動時において、第2アンテナ2は、直線状に近づくように変形し、自身の歪が緩和されるため、第2アンテナ2の耐久性を向上できる。
仮に、第2アンテナ2が、自身の湾曲の曲率中心C側がタイヤ径方向内側となった状態(アンテナ延在軸線EAがタイヤ径方向外側に凸に湾曲した状態)で、タイヤ本体T0Mに組み付けられている場合は、タイヤ転動時における自身の変形によって、第2アンテナ2の延出部22の根元部分(外装体3側の端部)に負荷がかかりやすくなるおそれがある。 In general, the tire T01 has a shape in which the diameter increases toward the tire radial outside (the tread portion T01t side), and thus the deformation amount during tire rolling tends to increase toward the tire radial outside. Therefore, according to the present embodiment, as described above, thesecond antenna 2 of the communication structure 51 is assembled to the tire main body T0M in a state in which the second antenna 2 is curved in the same direction as the curvature direction due to its own tendency, and in a state in which the curvature center C side of the curvature is on the tire radial outside (a state in which the antenna extension axis EA is curved convexly toward the tire radial inside) As a result, during tire rolling, the second antenna 2 deforms to approach a straight line, and its own distortion is alleviated, so that the durability of the second antenna 2 can be improved.
If thesecond antenna 2 is attached to the tire main body T0M with the center of curvature C of its curvature facing radially inward in the tire direction (with the antenna extension axis EA curved convexly outward in the tire direction), there is a risk that the second antenna 2 will be easily subjected to load at the base portion of the extension portion 22 (the end portion on the outer body 3 side) due to its own deformation when the tire rolls.
仮に、第2アンテナ2が、自身の湾曲の曲率中心C側がタイヤ径方向内側となった状態(アンテナ延在軸線EAがタイヤ径方向外側に凸に湾曲した状態)で、タイヤ本体T0Mに組み付けられている場合は、タイヤ転動時における自身の変形によって、第2アンテナ2の延出部22の根元部分(外装体3側の端部)に負荷がかかりやすくなるおそれがある。 In general, the tire T01 has a shape in which the diameter increases toward the tire radial outside (the tread portion T01t side), and thus the deformation amount during tire rolling tends to increase toward the tire radial outside. Therefore, according to the present embodiment, as described above, the
If the
なお、通信構造部51がタイヤ本体T0Mに組み付けられていない単独状態、及び、通信構造部51がタイヤ本体T0Mに組み付けられた組付状態のそれぞれにおいて、アンテナ延在軸線EAのなす湾曲形状は、1つの円弧のみから構成されていてもよいし、あるいは、互いに異なる曲率及び/又は曲率中心Cを有する複数の円弧が連なってなるものでもよい。後者の場合、上記平面視において、前記複数の円弧のそれぞれの曲率中心Cが、アンテナ延在軸線EAに対する第1側S1に位置する。
また、通信構造部51がタイヤ本体T0Mに組み付けられていない単独状態における、アンテナ延在軸線EAのなす湾曲形状と、通信構造部51がタイヤ本体T0Mに組み付けられた組付状態における、アンテナ延在軸線EAのなす湾曲形状とは、同じであってもよいし、異なっていてもよい。 In addition, in each of the independent state in which thecommunication structure unit 51 is not assembled to the tire main body T0M and the assembled state in which the communication structure unit 51 is assembled to the tire main body T0M, the curved shape of the antenna extension axis EA may be composed of only one circular arc, or may be composed of a series of multiple circular arcs having mutually different curvatures and/or centers of curvature C. In the latter case, in the above-mentioned plan view, the centers of curvature C of each of the multiple circular arcs are located on the first side S1 with respect to the antenna extension axis EA.
Furthermore, the curved shape of the antenna extension axis EA when thecommunication structure unit 51 is in a standalone state where it is not assembled to the tire main body T0M and the curved shape of the antenna extension axis EA when the communication structure unit 51 is assembled to the tire main body T0M may be the same or different.
また、通信構造部51がタイヤ本体T0Mに組み付けられていない単独状態における、アンテナ延在軸線EAのなす湾曲形状と、通信構造部51がタイヤ本体T0Mに組み付けられた組付状態における、アンテナ延在軸線EAのなす湾曲形状とは、同じであってもよいし、異なっていてもよい。 In addition, in each of the independent state in which the
Furthermore, the curved shape of the antenna extension axis EA when the
図1、図3、図4、図8に示すように、通信構造部51がタイヤ本体T0Mに組み付けられていない単独状態、及び、通信構造部51がタイヤ本体T0Mに組み付けられた組付状態のそれぞれにおいて、第2アンテナ2は、少なくとも一部(少なくとも延出部22。好適には全部。)において、仮想平面(XY平面)内においてアンテナ延在軸線EAに沿って延在しており、それにより、平面状をなしていると、好適である。この場合、タイヤ転動時において、第2アンテナ2は、直線状に近づくように変形し、自身の歪が緩和される、という効果を、一層得ることができ、ひいては、RFタグの耐久性をさらに向上できる。
As shown in Figures 1, 3, 4, and 8, in both a standalone state in which the communication structure unit 51 is not attached to the tire main body T0M and an assembled state in which the communication structure unit 51 is attached to the tire main body T0M, at least a portion of the second antenna 2 (at least the extension portion 22, preferably the entirety) extends along the antenna extension axis EA in a virtual plane (XY plane), and is therefore preferably planar. In this case, when the tire rolls, the second antenna 2 deforms to approach a straight line, further improving the effect of alleviating its own distortion, and thus further improving the durability of the RF tag.
図1、図3、図4、図8に示すように、第2アンテナ2は、少なくとも一部(少なくとも延出部22)において、アンテナ延在軸線EAに沿ってメアンダ状、波状、又はジグザグ状に延在していると、好適である。この場合、第2アンテナ2の延出部22は、仮想平面(XY平面)内においてアンテナ延在軸線EAに沿って延在しており、それにより、平面状をなしている。
この場合、例えば第2アンテナ2の延出部22が螺旋状をなしている場合等に比べて、タイヤ転動時において、第2アンテナ2は、直線状に近づくように変形し、自身の歪が緩和される、という効果を、一層得ることができ、ひいては、RFタグの耐久性をさらに向上できる。 1, 3, 4, and 8, it is preferable that at least a portion (at least the extension portion 22) of thesecond antenna 2 extends in a meandering, wavy, or zigzag shape along the antenna extension axis EA. In this case, the extension portion 22 of the second antenna 2 extends along the antenna extension axis EA in a virtual plane (XY plane), and is thus planar.
In this case, compared to, for example, the case where theextension portion 22 of the second antenna 2 is spiral-shaped, when the tire rolls, the second antenna 2 deforms so as to approach a straight line, thereby further reducing its own distortion, and thus the durability of the RF tag can be further improved.
この場合、例えば第2アンテナ2の延出部22が螺旋状をなしている場合等に比べて、タイヤ転動時において、第2アンテナ2は、直線状に近づくように変形し、自身の歪が緩和される、という効果を、一層得ることができ、ひいては、RFタグの耐久性をさらに向上できる。 1, 3, 4, and 8, it is preferable that at least a portion (at least the extension portion 22) of the
In this case, compared to, for example, the case where the
なお、上述したRFタグ10の構成は、一例にすぎず、RFタグ10は様々な変形例が可能である。
例えば、RFタグ10では、基板1の外周縁13aおよび第1アンテナ12の外周縁12aは全周にわたって湾曲形状であるが、基板および第1アンテナは、外周縁の一部が湾曲形状であってもよい。外装体3は、本体部31と蓋部32とを備えるが、外装体の構成は特に限定されない。例えば、外装体は、蓋部を備えていなくてもよい。外装体は板状に限らず、他の形状(ブロック状等)であってもよい。 The configuration of theRF tag 10 described above is merely an example, and the RF tag 10 can be modified in various ways.
For example, in theRF tag 10, the outer periphery 13a of the substrate 1 and the outer periphery 12a of the first antenna 12 are curved over the entire circumference, but the substrate and the first antenna may have a curved outer periphery in part. The exterior body 3 includes a main body portion 31 and a lid portion 32, but the configuration of the exterior body is not particularly limited. For example, the exterior body does not need to include a lid portion. The exterior body is not limited to a plate shape, and may have another shape (such as a block shape).
例えば、RFタグ10では、基板1の外周縁13aおよび第1アンテナ12の外周縁12aは全周にわたって湾曲形状であるが、基板および第1アンテナは、外周縁の一部が湾曲形状であってもよい。外装体3は、本体部31と蓋部32とを備えるが、外装体の構成は特に限定されない。例えば、外装体は、蓋部を備えていなくてもよい。外装体は板状に限らず、他の形状(ブロック状等)であってもよい。 The configuration of the
For example, in the
つぎに、タイヤT01’、T01のタイヤ本体T0MとRFタグ10との関係について説明する。
Next, the relationship between the tire body T0M of tires T01' and T01 and the RF tag 10 will be explained.
図2に示す実施形態において、RFタグ10は、その全体が、タイヤT01’、T01のサイドウォール部T01wの内部に埋設されている。具体的に、RFタグ10は、タイヤ幅方向において、サイドゴムT08とビードフィラーT03との間に配置されている。RFタグ10は、ビードフィラーT03のタイヤ幅方向外側の面に接触している。
ただし、本明細書で説明する任意の実施形態において、RFタグ10は、タイヤT01’、T01のタイヤ本体T0Mにおける任意の部分の内部に埋設されていてよい。
あるいは、本明細書で説明する任意の実施形態において、RFタグ10は、タイヤT01’、T01のタイヤ本体T0Mの内表面又は外表面上に貼り付けられていてもよい。 2, theRF tag 10 is entirely embedded inside the sidewall portion T01w of the tires T01', T01. Specifically, the RF tag 10 is disposed between the side rubber T08 and the bead filler T03 in the tire width direction. The RF tag 10 is in contact with the outer surface of the bead filler T03 in the tire width direction.
However, in any embodiment described in this specification, theRF tag 10 may be embedded inside any portion of the tire main body T0M of the tires T01', T01.
Alternatively, in any embodiment described in this specification, theRF tag 10 may be attached to the inner surface or outer surface of the tire main body T0M of the tires T01', T01.
ただし、本明細書で説明する任意の実施形態において、RFタグ10は、タイヤT01’、T01のタイヤ本体T0Mにおける任意の部分の内部に埋設されていてよい。
あるいは、本明細書で説明する任意の実施形態において、RFタグ10は、タイヤT01’、T01のタイヤ本体T0Mの内表面又は外表面上に貼り付けられていてもよい。 2, the
However, in any embodiment described in this specification, the
Alternatively, in any embodiment described in this specification, the
本明細書で説明する任意の実施形態において、タイヤ(加硫済みタイヤ)T01を製造するためのタイヤ製造方法は、未加硫タイヤT01’を製造する、未加硫タイヤ製造ステップと、未加硫タイヤT01’を加硫成形用金型を用いて加硫成形する、加硫成形ステップと、
を含む。
RFタグ10は、未加硫タイヤ製造ステップにおいて、未加硫タイヤT01’のタイヤ本体T0Mの内部に埋設されてもよいし、あるいは、未加硫タイヤT01’のタイヤ本体T0Mの内表面又は外表面上に貼り付けられてもよい。この場合、この未加硫タイヤT01’から得られたタイヤT01においても、RFタグ10が、タイヤ本体T0Mの内部に埋設されているか、あるいは、タイヤ本体T0Mの内表面又は外表面上に貼り付けられた状態となる。
あるいは、RFタグ10は、加硫成形ステップの後に得られたタイヤT01のタイヤ本体T0Mの内表面又は外表面上に貼り付けられてもよい。それにより、タイヤT01は、RFタグ10を有することとなる。この場合、このタイヤT01を加硫成形する前の未加硫タイヤT01’は、RFタグ10を備えなくてもよい。 In any embodiment described in this specification, a tire manufacturing method for manufacturing a tire (vulcanized tire) T01 includes an unvulcanized tire manufacturing step of manufacturing an unvulcanized tire T01', and a vulcanization molding step of vulcanizing and molding the unvulcanized tire T01' using a vulcanization molding mold.
including.
TheRF tag 10 may be embedded inside the tire main body T0M of the unvulcanized tire T01' in the unvulcanized tire manufacturing step, or may be attached to the inner or outer surface of the tire main body T0M of the unvulcanized tire T01'. In this case, the RF tag 10 is embedded inside the tire main body T0M or attached to the inner or outer surface of the tire main body T0M in the tire T01 obtained from this unvulcanized tire T01'.
Alternatively, theRF tag 10 may be attached onto the inner surface or outer surface of the tire main body T0M of the tire T01 obtained after the vulcanization molding step. As a result, the tire T01 has the RF tag 10. In this case, an unvulcanized tire T01′ before the tire T01 is vulcanized and molded does not need to have the RF tag 10.
を含む。
RFタグ10は、未加硫タイヤ製造ステップにおいて、未加硫タイヤT01’のタイヤ本体T0Mの内部に埋設されてもよいし、あるいは、未加硫タイヤT01’のタイヤ本体T0Mの内表面又は外表面上に貼り付けられてもよい。この場合、この未加硫タイヤT01’から得られたタイヤT01においても、RFタグ10が、タイヤ本体T0Mの内部に埋設されているか、あるいは、タイヤ本体T0Mの内表面又は外表面上に貼り付けられた状態となる。
あるいは、RFタグ10は、加硫成形ステップの後に得られたタイヤT01のタイヤ本体T0Mの内表面又は外表面上に貼り付けられてもよい。それにより、タイヤT01は、RFタグ10を有することとなる。この場合、このタイヤT01を加硫成形する前の未加硫タイヤT01’は、RFタグ10を備えなくてもよい。 In any embodiment described in this specification, a tire manufacturing method for manufacturing a tire (vulcanized tire) T01 includes an unvulcanized tire manufacturing step of manufacturing an unvulcanized tire T01', and a vulcanization molding step of vulcanizing and molding the unvulcanized tire T01' using a vulcanization molding mold.
including.
The
Alternatively, the
図2に示す実施形態において、RFタグ10は、RFタグ10のZ方向がタイヤ幅方向にほぼ沿うとともに、RFタグ10のX方向がタイヤ周方向にほぼ沿うように、指向されている(図2)。+Z方向は、タイヤ外側を向いている。
ただし、本明細書で説明する任意の実施形態において、RFタグ10は、タイヤT01’、T01のタイヤ本体T0Mに対して任意の向きに指向されてよい。 In the embodiment shown in Fig. 2, theRF tag 10 is oriented such that the Z direction of the RF tag 10 is approximately along the tire width direction and the X direction of the RF tag 10 is approximately along the tire circumferential direction (Fig. 2). The +Z direction faces toward the outside of the tire.
However, in any embodiment described herein, theRF tag 10 may be oriented in any direction relative to the tire main body T0M of the tires T01', T01.
ただし、本明細書で説明する任意の実施形態において、RFタグ10は、タイヤT01’、T01のタイヤ本体T0Mに対して任意の向きに指向されてよい。 In the embodiment shown in Fig. 2, the
However, in any embodiment described herein, the
RFタグ10は、例えば、タイヤT01を構成する同種又は異種の複数の部材の間の位置に挟み込まれて配置されてよい。このようにすることで、タイヤT01生産時にRFタグ10を取り付け易く、RFタグ10を備えるタイヤT01の生産性を向上させることができる。図2の例のように、RFタグ10は、例えば、ビードフィラーT03と、ビードフィラーT03に隣接するその他の部材と、の間に挟み込まれて配置されてよい。
RFタグ10は、タイヤT01を構成するいずれかの部材内に埋設されていてもよい。このようにすることで、タイヤT01を構成する複数の部材の間の位置に挟み込まれて配置される場合と比較して、RFタグ10に加わる負荷を低減できる。これにより、RFタグ10の耐久性を向上させることができる。本例では、RFタグ10は、例えば、トレッドゴムT07、サイドゴムT08等のゴム部材内に埋設されてよい。
RFタグ10は、タイヤ幅方向断面視でのタイヤ外面に沿う方向であるペリフェリ長さ方向において、剛性の異なる部材の境界となる位置に、配置されないことが好ましい。このようにすることで、RFタグ10は、剛性段差に基づき歪みが集中し易い位置に、配置されない。そのため、RFタグ10に加わる負荷を低減できる。これにより、RFタグ10の耐久性を向上させることができる。本例では、RFタグ10は、例えば、タイヤ幅方向断面視でカーカスT05の端部と、このカーカスT05の端部に隣接する部材(例えばサイドゴムT08等)と、の境界となる位置に配置されないことが好ましい。
RFタグ10の数は特に限定されない。タイヤT01は、1個のみのRFタグ10を備えてもよく、2個以上のRFタグ10を備えてもよい。ここでは、通信装置の一例として、RFタグ10を例示説明しているが、RFタグ10とは異なる通信装置であってもよい。 TheRF tag 10 may be disposed, for example, by being sandwiched between a plurality of the same or different members constituting the tire T01. In this manner, the RF tag 10 can be easily attached during the production of the tire T01, and the productivity of the tire T01 equipped with the RF tag 10 can be improved. As in the example of Fig. 2, the RF tag 10 may be disposed, for example, by being sandwiched between the bead filler T03 and another member adjacent to the bead filler T03.
TheRF tag 10 may be embedded in any of the components constituting the tire T01. In this way, the load applied to the RF tag 10 can be reduced compared to when the RF tag 10 is sandwiched between multiple components constituting the tire T01. This improves the durability of the RF tag 10. In this example, the RF tag 10 may be embedded in a rubber member such as the tread rubber T07 or the side rubber T08.
It is preferable that theRF tag 10 is not disposed at a position that is a boundary between members having different rigidity in the periphery length direction, which is a direction along the tire outer surface in a cross-sectional view in the tire width direction. In this way, the RF tag 10 is not disposed at a position where distortion is likely to concentrate due to a rigidity step. Therefore, the load applied to the RF tag 10 can be reduced. This makes it possible to improve the durability of the RF tag 10. In this example, it is preferable that the RF tag 10 is not disposed at a position that is a boundary between an end of the carcass T05 and a member adjacent to the end of the carcass T05 (e.g., a side rubber T08, etc.) in a cross-sectional view in the tire width direction.
The number of RF tags 10 is not particularly limited. The tire T01 may include only oneRF tag 10, or may include two or more RF tags 10. Here, the RF tag 10 is illustrated as an example of a communication device, but a communication device different from the RF tag 10 may also be used.
RFタグ10は、タイヤT01を構成するいずれかの部材内に埋設されていてもよい。このようにすることで、タイヤT01を構成する複数の部材の間の位置に挟み込まれて配置される場合と比較して、RFタグ10に加わる負荷を低減できる。これにより、RFタグ10の耐久性を向上させることができる。本例では、RFタグ10は、例えば、トレッドゴムT07、サイドゴムT08等のゴム部材内に埋設されてよい。
RFタグ10は、タイヤ幅方向断面視でのタイヤ外面に沿う方向であるペリフェリ長さ方向において、剛性の異なる部材の境界となる位置に、配置されないことが好ましい。このようにすることで、RFタグ10は、剛性段差に基づき歪みが集中し易い位置に、配置されない。そのため、RFタグ10に加わる負荷を低減できる。これにより、RFタグ10の耐久性を向上させることができる。本例では、RFタグ10は、例えば、タイヤ幅方向断面視でカーカスT05の端部と、このカーカスT05の端部に隣接する部材(例えばサイドゴムT08等)と、の境界となる位置に配置されないことが好ましい。
RFタグ10の数は特に限定されない。タイヤT01は、1個のみのRFタグ10を備えてもよく、2個以上のRFタグ10を備えてもよい。ここでは、通信装置の一例として、RFタグ10を例示説明しているが、RFタグ10とは異なる通信装置であってもよい。 The
The
It is preferable that the
The number of RF tags 10 is not particularly limited. The tire T01 may include only one
RFタグ10は、例えば、タイヤT01のトレッド部T01tに配置されてよい。このようにすることで、RFタグ10は、タイヤT01のサイドカットにより損傷しない。
RFタグ10は、例えば、タイヤ幅方向において、トレッド中央部に配置されてよい。トレッド中央部は、トレッド部T01tにおいて撓みが集中し難い位置である。このようにすることで、RFタグ10に加わる負荷を低減できる。これにより、RFタグ10の耐久性を向上させることができる。また、タイヤ幅方向でのタイヤT01の両外側からのRFタグ10との通信性に差が生じることを抑制できる。本例では、RFタグ10は、例えば、タイヤ幅方向において、タイヤ赤道面CLを中心としてトレッド幅の1/2の範囲内に配置されてよい。
RFタグ10は、例えば、タイヤ幅方向において、トレッド端部に配置されてもよい。RFタグ10と通信するリーダーの位置が予め決まっている場合には、RFタグ10は、例えば、このリーダーに近い一方側のトレッド端部に配置されてよい。本例では、RFタグ10は、例えば、タイヤ幅方向において、トレッド端を外端とする、トレッド幅の1/4の範囲内に配置されてよい。 TheRF tag 10 may be disposed, for example, in a tread portion T01t of the tire T01. In this manner, the RF tag 10 is not damaged by a side cut of the tire T01.
TheRF tag 10 may be disposed, for example, in the tread center in the tire width direction. The tread center is a position where deflection is unlikely to concentrate in the tread portion T01t. In this manner, the load applied to the RF tag 10 can be reduced. This can improve the durability of the RF tag 10. In addition, it is possible to suppress differences in communication with the RF tag 10 from both outer sides of the tire T01 in the tire width direction. In this example, the RF tag 10 may be disposed, for example, in the tire width direction within a range of 1/2 the tread width centered on the tire equatorial plane CL.
TheRF tag 10 may be disposed, for example, at a tread end in the tire width direction. If the position of a reader that communicates with the RF tag 10 is determined in advance, the RF tag 10 may be disposed, for example, at one tread end closer to the reader. In this example, the RF tag 10 may be disposed, for example, within a range of 1/4 of the tread width in the tire width direction, with the tread end as the outer end.
RFタグ10は、例えば、タイヤ幅方向において、トレッド中央部に配置されてよい。トレッド中央部は、トレッド部T01tにおいて撓みが集中し難い位置である。このようにすることで、RFタグ10に加わる負荷を低減できる。これにより、RFタグ10の耐久性を向上させることができる。また、タイヤ幅方向でのタイヤT01の両外側からのRFタグ10との通信性に差が生じることを抑制できる。本例では、RFタグ10は、例えば、タイヤ幅方向において、タイヤ赤道面CLを中心としてトレッド幅の1/2の範囲内に配置されてよい。
RFタグ10は、例えば、タイヤ幅方向において、トレッド端部に配置されてもよい。RFタグ10と通信するリーダーの位置が予め決まっている場合には、RFタグ10は、例えば、このリーダーに近い一方側のトレッド端部に配置されてよい。本例では、RFタグ10は、例えば、タイヤ幅方向において、トレッド端を外端とする、トレッド幅の1/4の範囲内に配置されてよい。 The
The
The
RFタグ10は、例えば、ビード部T01b間に跨る、1枚以上のカーカスプライT05pを含むカーカスT05より、タイヤ内腔側に配置されてよい。このようにすることで、タイヤT01の外部から加わる衝撃や、サイドカットや釘刺さりなどの損傷に対して、RFタグ10が損傷し難くなる。一例として、RFタグ10は、カーカスT05のタイヤ内腔側の面に密着して配置されてよい(図2の点P32参照。)。別の一例として、カーカスT05よりタイヤ内腔側に別の部材がある場合に、RFタグ10は、例えば、カーカスT05と、このカーカスT05よりタイヤ内腔側に位置する別の部材と、の間に配置されてもよい。カーカスT05よりタイヤ内腔側に位置する別の部材としては、例えば、タイヤ内面を形成するインナーライナーT09が挙げられる。別の一例として、RFタグ10は、タイヤ内腔に面するタイヤ内面に取り付けられていてもよい(図2の点P31、P33、P34参照。)。RFタグ10が、タイヤ内面に取り付けられる構成とすることで、RFタグ10のタイヤT01への取り付け、及び、RFタグ10の点検・交換が行い易い。つまり、RFタグ10の取り付け性及びメンテナンス性を向上させることができる。また、RFタグ10が、タイヤ内面に取り付けられることで、RFタグ10をタイヤT01内に埋設する構成と比較して、RFタグ10がタイヤ故障の核となることを防ぐことができる。
また、カーカスT05が、複数枚のカーカスプライT05pを備え、複数枚のカーカスプライT05pが重ねられている位置がある場合に、RFタグ10は、重ねられているカーカスプライT05pの間に配置されていてもよい。 TheRF tag 10 may be disposed, for example, on the tire cavity side of the carcass T05 including one or more carcass plies T05p that span between the bead portions T01b. In this way, the RF tag 10 is less likely to be damaged by impacts applied from the outside of the tire T01, or damage such as side cuts and nail penetration. As an example, the RF tag 10 may be disposed in close contact with the surface of the carcass T05 on the tire cavity side (see point P32 in FIG. 2). As another example, when there is another member on the tire cavity side of the carcass T05, the RF tag 10 may be disposed, for example, between the carcass T05 and another member located on the tire cavity side of the carcass T05. As an example of another member located on the tire cavity side of the carcass T05, for example, an inner liner T09 that forms the tire inner surface can be given. As another example, the RF tag 10 may be attached to the tire inner surface facing the tire cavity (see points P31, P33, and P34 in FIG. 2). By configuring the RF tag 10 to be attached to the inner surface of the tire, it is easy to attach the RF tag 10 to the tire T01 and to inspect and replace the RF tag 10. In other words, it is possible to improve the ease of attachment and maintenance of the RF tag 10. Furthermore, by attaching the RF tag 10 to the inner surface of the tire, it is possible to prevent the RF tag 10 from becoming the core of a tire failure, compared to a configuration in which the RF tag 10 is buried inside the tire T01.
Furthermore, when the carcass T05 has a plurality of carcass plies T05p and there is a position where the plurality of carcass plies T05p are overlapped, theRF tag 10 may be disposed between the overlapped carcass plies T05p.
また、カーカスT05が、複数枚のカーカスプライT05pを備え、複数枚のカーカスプライT05pが重ねられている位置がある場合に、RFタグ10は、重ねられているカーカスプライT05pの間に配置されていてもよい。 The
Furthermore, when the carcass T05 has a plurality of carcass plies T05p and there is a position where the plurality of carcass plies T05p are overlapped, the
RFタグ10は、例えば、タイヤT01のトレッド部T01tで、1枚以上のベルトプライT06pを含むベルトT06より、タイヤ径方向の外側に配置されてよい。一例として、RFタグ10は、ベルトT06に対してタイヤ径方向の外側で、当該ベルトT06に密着して配置されてよい(図2の点P43参照。)。また、別の一例として、ベルト補強層を備える場合、当該ベルト補強層に対してタイヤ径方向の外側で、当該ベルト補強層に密着して配置されてよい。また、別の一例として、RFタグ10は、ベルトT06よりタイヤ径方向の外側で、トレッドゴムT07内に埋設されていてもよい(図2の点P41参照。)。RFタグ10が、タイヤT01のトレッド部T01tで、ベルトT06よりタイヤ径方向の外側に配置されることで、タイヤ径方向でのタイヤT01の外側からのRFタグ10との通信が、ベルトT06により阻害され難い。そのため、タイヤ径方向でのタイヤT01の外側からのRFタグ10との通信性を向上させることができる。
また、RFタグ10は、例えば、タイヤT01のトレッド部T01tで、ベルトT06よりタイヤ径方向の内側に配置されていてもよい。このようにすることで、RFタグ10のタイヤ径方向の外側がベルトT06に覆われるため、RFタグ10は、トレッド面からの衝撃や釘刺さりなどに対して損傷し難くなる。この一例として、RFタグ10は、タイヤT01のトレッド部T01tで、ベルトT06と、当該ベルトT06よりタイヤ径方向の内側に位置するカーカスT05と、の間に配置されてよい(図2の点P44参照。)。
また、ベルトT06が、複数枚のベルトプライT06pを備える場合に、RFタグ10は、タイヤT01のトレッド部T01tで、任意の2枚のベルトプライT06pの間に配置されてよい(図2の点P42参照。)。このようにすることで、RFタグ10のタイヤ径方向の外側が1枚以上のベルトプライT06pに覆われるため、RFタグ10は、トレッド面からの衝撃や釘刺さりなどに対して損傷し難くなる。 For example, theRF tag 10 may be disposed on the tire radial direction outer side of the belt T06 including one or more belt plies T06p in the tread portion T01t of the tire T01. As an example, the RF tag 10 may be disposed on the tire radial direction outer side of the belt T06 and in close contact with the belt T06 (see point P43 in FIG. 2). As another example, in the case where a belt reinforcing layer is provided, the RF tag 10 may be disposed on the tire radial direction outer side of the belt reinforcing layer and in close contact with the belt reinforcing layer. As another example, the RF tag 10 may be embedded in the tread rubber T07 on the tire radial direction outer side of the belt T06 (see point P41 in FIG. 2). By disposing the RF tag 10 on the tire radial direction outer side of the belt T06 in the tread portion T01t of the tire T01, communication with the RF tag 10 from the outside of the tire T01 in the tire radial direction is less likely to be hindered by the belt T06. Therefore, communication with the RF tag 10 from the outside of the tire T01 in the tire radial direction can be improved.
Also, theRF tag 10 may be arranged, for example, in the tread portion T01t of the tire T01, on the inner side in the tire radial direction of the belt T06. In this way, the outer side of the RF tag 10 in the tire radial direction is covered by the belt T06, so that the RF tag 10 is less likely to be damaged by impact from the tread surface, nail penetration, etc. As an example of this, the RF tag 10 may be arranged in the tread portion T01t of the tire T01, between the belt T06 and the carcass T05 located on the inner side in the tire radial direction of the belt T06 (see point P44 in FIG. 2).
In addition, when the belt T06 includes a plurality of belt plies T06p, theRF tag 10 may be disposed between any two belt plies T06p in the tread portion T01t of the tire T01 (see point P42 in FIG. 2). In this manner, the outer side of the RF tag 10 in the tire radial direction is covered with one or more belt plies T06p, so that the RF tag 10 is less likely to be damaged by impact from the tread surface, nail penetration, or the like.
また、RFタグ10は、例えば、タイヤT01のトレッド部T01tで、ベルトT06よりタイヤ径方向の内側に配置されていてもよい。このようにすることで、RFタグ10のタイヤ径方向の外側がベルトT06に覆われるため、RFタグ10は、トレッド面からの衝撃や釘刺さりなどに対して損傷し難くなる。この一例として、RFタグ10は、タイヤT01のトレッド部T01tで、ベルトT06と、当該ベルトT06よりタイヤ径方向の内側に位置するカーカスT05と、の間に配置されてよい(図2の点P44参照。)。
また、ベルトT06が、複数枚のベルトプライT06pを備える場合に、RFタグ10は、タイヤT01のトレッド部T01tで、任意の2枚のベルトプライT06pの間に配置されてよい(図2の点P42参照。)。このようにすることで、RFタグ10のタイヤ径方向の外側が1枚以上のベルトプライT06pに覆われるため、RFタグ10は、トレッド面からの衝撃や釘刺さりなどに対して損傷し難くなる。 For example, the
Also, the
In addition, when the belt T06 includes a plurality of belt plies T06p, the
RFタグ10は、例えば、クッションゴムT10と、トレッドゴムT07との間やクッションゴムT10と、サイドゴムT08と、の間に挟み込まれて配置されてよい(図2の点P51、53参照。)。このようにすることで、RFタグ10への衝撃を、クッションゴムT10により緩和できる。そのため、RFタグ10の耐久性を向上させることができる。
また、RFタグ10は、例えば、クッションゴムT10内に埋設されていてもよい。更に、クッションゴムT10は、隣接する同種又は異種の複数のゴム部材から構成されてよい。かかる場合に、RFタグ10は、クッションゴムT10を構成する複数のゴム部材の間に挟み込まれて配置されてもよい(図2の点P52参照。)。
この構成は、タイヤT01が重荷重用空気入りタイヤ(例えば、トラック・バス用空気入りタイヤ、オフ・ザ・ロード(建設車両用)空気入りタイヤ等)である場合に、特に好適である。 TheRF tag 10 may be disposed, for example, sandwiched between the cushion rubber T10 and the tread rubber T07 or between the cushion rubber T10 and the side rubber T08 (see points P51 and P53 in FIG. 2). In this manner, the impact on the RF tag 10 can be mitigated by the cushion rubber T10. Therefore, the durability of the RF tag 10 can be improved.
TheRF tag 10 may also be embedded in the cushion rubber T10. Furthermore, the cushion rubber T10 may be composed of a plurality of adjacent rubber members of the same or different types. In such a case, the RF tag 10 may be sandwiched between the plurality of rubber members that compose the cushion rubber T10 (see point P52 in FIG. 2).
This configuration is particularly suitable when the tire T01 is a heavy-duty pneumatic tire (for example, a pneumatic tire for trucks and buses, an off-the-road pneumatic tire (for construction vehicles), etc.).
また、RFタグ10は、例えば、クッションゴムT10内に埋設されていてもよい。更に、クッションゴムT10は、隣接する同種又は異種の複数のゴム部材から構成されてよい。かかる場合に、RFタグ10は、クッションゴムT10を構成する複数のゴム部材の間に挟み込まれて配置されてもよい(図2の点P52参照。)。
この構成は、タイヤT01が重荷重用空気入りタイヤ(例えば、トラック・バス用空気入りタイヤ、オフ・ザ・ロード(建設車両用)空気入りタイヤ等)である場合に、特に好適である。 The
The
This configuration is particularly suitable when the tire T01 is a heavy-duty pneumatic tire (for example, a pneumatic tire for trucks and buses, an off-the-road pneumatic tire (for construction vehicles), etc.).
RFタグ10は、例えば、タイヤT01のサイドウォール部T01w又はビード部T01bの位置に配置されてよい。RFタグ10は、例えば、RFタグ10と通信可能なリーダーに対して近い一方側のサイドウォール部T01w又は一方側のビード部T01bに配置されてよい。このようにすることで、RFタグ10とリーダーとの通信性を高めることができる。一例として、RFタグ10は、カーカスT05と、サイドゴムT08と、の間やトレッドゴムT07とサイドゴムT08と、の間に配置されてよい(図2の点P61、P63参照。)。
RFタグ10は、例えば、タイヤ径方向において、タイヤ最大幅となる位置と、トレッド面の位置と、の間に配置されてよい。このようにすることで、RFタグ10がタイヤ最大幅となる位置よりタイヤ径方向の内側に配置される構成と比較して、タイヤ径方向でのタイヤT01の外側からのRFタグ10との通信性を高めることができる。
RFタグ10は、例えば、タイヤ最大幅となる位置よりタイヤ径方向の内側に配置されていてもよい。このようにすることで、RFタグ10は、剛性の高いビード部T01b近傍に配置される。そのため、RFタグ10に加わる負荷を低減できる。これにより、RFタグ10の耐久性を向上させることができる。一例として、RFタグ10は、ビードコアT02とタイヤ径方向又はタイヤ幅方向で隣接する位置に配置されてよい(図2の点P62参照。)。ビードコアT02近傍は歪みが集中し難い。そのため、RFタグ10に加わる負荷を低減できる。これにより、RFタグ10の耐久性を向上させることができる。
特に、RFタグ10は、タイヤ最大幅となる位置よりタイヤ径方向の内側であって、かつ、ビード部T01bのビードコアT02よりタイヤ径方向の外側の位置に配置されることが好ましい。このようにすることで、RFタグ10の耐久性を向上させることができるとともに、RFタグ10とリーダーとの通信が、ビードコアT02により阻害され難く、RFタグ10の通信性を高めることができる。
また、サイドゴムT08がタイヤ径方向に隣接する同種又は異種の複数のゴム部材から構成されている場合に、RFタグ10は、サイドゴムT08を構成する複数のゴム部材の間に挟み込まれて配置されていてもよい。 TheRF tag 10 may be disposed, for example, at the position of the sidewall portion T01w or the bead portion T01b of the tire T01. The RF tag 10 may be disposed, for example, at the sidewall portion T01w or the bead portion T01b on one side that is closer to a reader capable of communicating with the RF tag 10. In this manner, it is possible to improve the communication between the RF tag 10 and the reader. As an example, the RF tag 10 may be disposed between the carcass T05 and the side rubber T08 or between the tread rubber T07 and the side rubber T08 (see points P61 and P63 in FIG. 2).
For example, theRF tag 10 may be disposed between the position of the maximum tire width and the position of the tread surface in the tire radial direction. In this manner, it is possible to improve communication with the RF tag 10 from the outside of the tire T01 in the tire radial direction, compared to a configuration in which the RF tag 10 is disposed on the inner side in the tire radial direction from the position of the maximum tire width.
TheRF tag 10 may be arranged, for example, radially inward of the position where the tire is at its widest point. In this way, the RF tag 10 is arranged near the bead portion T01b, which has high rigidity. Therefore, the load applied to the RF tag 10 can be reduced. This allows the durability of the RF tag 10 to be improved. As an example, the RF tag 10 may be arranged at a position adjacent to the bead core T02 in the tire radial direction or tire width direction (see point P62 in Figure 2). Distortion is less likely to concentrate near the bead core T02. Therefore, the load applied to the RF tag 10 can be reduced. This allows the durability of the RF tag 10 to be improved.
In particular, it is preferable to place theRF tag 10 in a position radially inward of the maximum tire width position and radially outward of the bead core T02 of the bead portion T01b. This can improve the durability of the RF tag 10, and can improve the communication performance of the RF tag 10 by preventing communication between the RF tag 10 and a reader from being hindered by the bead core T02.
In addition, when the side rubber T08 is composed of multiple rubber members of the same or different types adjacent to each other in the tire radial direction, theRF tag 10 may be positioned by being sandwiched between the multiple rubber members that make up the side rubber T08.
RFタグ10は、例えば、タイヤ径方向において、タイヤ最大幅となる位置と、トレッド面の位置と、の間に配置されてよい。このようにすることで、RFタグ10がタイヤ最大幅となる位置よりタイヤ径方向の内側に配置される構成と比較して、タイヤ径方向でのタイヤT01の外側からのRFタグ10との通信性を高めることができる。
RFタグ10は、例えば、タイヤ最大幅となる位置よりタイヤ径方向の内側に配置されていてもよい。このようにすることで、RFタグ10は、剛性の高いビード部T01b近傍に配置される。そのため、RFタグ10に加わる負荷を低減できる。これにより、RFタグ10の耐久性を向上させることができる。一例として、RFタグ10は、ビードコアT02とタイヤ径方向又はタイヤ幅方向で隣接する位置に配置されてよい(図2の点P62参照。)。ビードコアT02近傍は歪みが集中し難い。そのため、RFタグ10に加わる負荷を低減できる。これにより、RFタグ10の耐久性を向上させることができる。
特に、RFタグ10は、タイヤ最大幅となる位置よりタイヤ径方向の内側であって、かつ、ビード部T01bのビードコアT02よりタイヤ径方向の外側の位置に配置されることが好ましい。このようにすることで、RFタグ10の耐久性を向上させることができるとともに、RFタグ10とリーダーとの通信が、ビードコアT02により阻害され難く、RFタグ10の通信性を高めることができる。
また、サイドゴムT08がタイヤ径方向に隣接する同種又は異種の複数のゴム部材から構成されている場合に、RFタグ10は、サイドゴムT08を構成する複数のゴム部材の間に挟み込まれて配置されていてもよい。 The
For example, the
The
In particular, it is preferable to place the
In addition, when the side rubber T08 is composed of multiple rubber members of the same or different types adjacent to each other in the tire radial direction, the
RFタグ10は、ビードフィラーT03と、このビードフィラーT03に隣接する部材と、の間に挟み込まれて配置されてよい。このようにすることで、ビードフィラーT03を配置することにより歪みが集中し難くなった位置に、RFタグ10を配置することができる。そのため、RFタグ10に加わる負荷を低減できる。これにより、RFタグ10の耐久性を向上させることができる。
RFタグ10は、例えば、ビードフィラーT03と、カーカスT05と、の間に挟み込まれて配置されていてもよい。カーカスT05のうちビードフィラーT03と共にRFタグ10を挟み込む部分は、ビードフィラーT03に対してタイヤ幅方向の外側に位置してもよく、タイヤ幅方向の内側に位置してもよい。カーカスT05のうちビードフィラーT03と共にRFタグ10を挟み込む部分が、ビードフィラーT03に対してタイヤ幅方向の外側に位置する場合には、タイヤ幅方向のタイヤT01の外側からの衝撃や損傷により、RFタグ10に加わる負荷を、より低減できる。これにより、RFタグ10の耐久性を、より向上させることができる。
また、ビードフィラーT03は、サイドゴムT08と隣接して配置されている部分を備えてもよい。かかる場合に、RFタグ10は、ビードフィラーT03と、サイドゴムT08と、の間に挟み込まれて配置されていてもよい。
更に、ビードフィラーT03は、ゴムチェーファーT11と隣接して配置されている部分を備えてもよい。かかる場合に、RFタグ10は、ビードフィラーT03と、ゴムチェーファーT11と、の間に挟み込まれて配置されていてもよい。
この構成は、タイヤT01が乗用車用空気入りタイヤである場合に、特に好適である。 TheRF tag 10 may be disposed by being sandwiched between the bead filler T03 and a member adjacent to the bead filler T03. In this manner, the RF tag 10 can be disposed in a position where distortion is less likely to be concentrated due to the placement of the bead filler T03. Therefore, the load applied to the RF tag 10 can be reduced. This allows the durability of the RF tag 10 to be improved.
TheRF tag 10 may be disposed, for example, sandwiched between the bead filler T03 and the carcass T05. The portion of the carcass T05 that sandwiches the RF tag 10 together with the bead filler T03 may be located on the outer side of the bead filler T03 in the tire width direction, or may be located on the inner side of the tire width direction. When the portion of the carcass T05 that sandwiches the RF tag 10 together with the bead filler T03 is located on the outer side of the bead filler T03 in the tire width direction, the load applied to the RF tag 10 due to impact or damage from the outside of the tire T01 in the tire width direction can be further reduced. This can further improve the durability of the RF tag 10.
The bead filler T03 may also have a portion disposed adjacent to the side rubber T08. In this case, theRF tag 10 may be disposed by being sandwiched between the bead filler T03 and the side rubber T08.
Furthermore, the bead filler T03 may have a portion disposed adjacent to the rubber chafer T11. In such a case, theRF tag 10 may be disposed by being sandwiched between the bead filler T03 and the rubber chafer T11.
This configuration is particularly suitable when the tire T01 is a pneumatic tire for passenger cars.
RFタグ10は、例えば、ビードフィラーT03と、カーカスT05と、の間に挟み込まれて配置されていてもよい。カーカスT05のうちビードフィラーT03と共にRFタグ10を挟み込む部分は、ビードフィラーT03に対してタイヤ幅方向の外側に位置してもよく、タイヤ幅方向の内側に位置してもよい。カーカスT05のうちビードフィラーT03と共にRFタグ10を挟み込む部分が、ビードフィラーT03に対してタイヤ幅方向の外側に位置する場合には、タイヤ幅方向のタイヤT01の外側からの衝撃や損傷により、RFタグ10に加わる負荷を、より低減できる。これにより、RFタグ10の耐久性を、より向上させることができる。
また、ビードフィラーT03は、サイドゴムT08と隣接して配置されている部分を備えてもよい。かかる場合に、RFタグ10は、ビードフィラーT03と、サイドゴムT08と、の間に挟み込まれて配置されていてもよい。
更に、ビードフィラーT03は、ゴムチェーファーT11と隣接して配置されている部分を備えてもよい。かかる場合に、RFタグ10は、ビードフィラーT03と、ゴムチェーファーT11と、の間に挟み込まれて配置されていてもよい。
この構成は、タイヤT01が乗用車用空気入りタイヤである場合に、特に好適である。 The
The
The bead filler T03 may also have a portion disposed adjacent to the side rubber T08. In this case, the
Furthermore, the bead filler T03 may have a portion disposed adjacent to the rubber chafer T11. In such a case, the
This configuration is particularly suitable when the tire T01 is a pneumatic tire for passenger cars.
RFタグ10は、スティフナーT03と、このスティフナーT03に隣接する部材と、の間に挟み込まれて配置されてよい。このようにすることで、スティフナーT03を配置することにより歪みが集中し難くなった位置に、RFタグ10を配置することができる。そのため、RFタグ10に加わる負荷を低減できる。これにより、RFタグ10の耐久性を向上させることができる。RFタグ10は、例えば、スティフナーT03と、サイドゴムT08と、の間に挟み込まれて配置されてよい(図2の点P74参照。)。
また、RFタグ10は、例えば、スティフナーT03と、カーカスT05と、の間に挟み込まれて配置されていてもよい(図2の点P72参照。)。カーカスT05のうちスティフナーT03と共にRFタグ10を挟み込む部分は、スティフナーT03に対してタイヤ幅方向の外側に位置してもよく、タイヤ幅方向の内側に位置してもよい。カーカスT05のうちスティフナーT03と共にRFタグ10を挟み込む部分が、スティフナーT03に対してタイヤ幅方向の外側に位置する場合には、タイヤ幅方向のタイヤT01の外側からの衝撃や損傷により、RFタグ10に加わる負荷を、より低減できる。これにより、RFタグ10の耐久性を、より向上させることができる。
スティフナーT03は、ゴムチェーファーT11と隣接して配置されている部分を備えてもよい。かかる場合に、RFタグ10は、スティフナーT03と、ゴムチェーファーT11と、の間に挟み込まれて配置されていてもよい。
スティフナーT03は、タイヤ幅方向の外側でハットゴムT12に隣接する部分を備えてもよい。かかる場合に、RFタグ10は、スティフナーT03と、ハットゴムT12と、の間に挟み込まれて配置されていてもよい(図2の点P71参照。)。
スティフナーT03は、硬さの異なる複数のゴム部材から構成されてよい。かかる場合に、RFタグ10は、スティフナーT03を構成する複数のゴム部材の間に挟み込まれて配置されていてもよい(図2の点P73参照。)。
RFタグ10は、ハットゴムT12と、このハットゴムT12に隣接する部材と、の間に挟み込まれて配置されてよい。RFタグ10は、例えば、ハットゴムT12と、カーカスプライT05pと、の間に挟み込まれて配置されてよい。このようにすることで、RFタグ10への衝撃を、ハットゴムT12により緩和できる。そのため、RFタグ10の耐久性を向上させることができる。
この構成は、タイヤT01が重荷重用空気入りタイヤ(例えば、トラック・バス用空気入りタイヤ、オフ・ザ・ロード(建設車両用)空気入りタイヤ等)である場合に、特に好適である。 TheRF tag 10 may be disposed sandwiched between the stiffener T03 and a member adjacent to the stiffener T03. In this way, the RF tag 10 can be disposed in a position where distortion is less likely to concentrate due to the placement of the stiffener T03. This reduces the load applied to the RF tag 10. This improves the durability of the RF tag 10. The RF tag 10 may be disposed sandwiched between the stiffener T03 and a side rubber T08, for example (see point P74 in FIG. 2).
Also, theRF tag 10 may be arranged, for example, sandwiched between the stiffener T03 and the carcass T05 (see point P72 in FIG. 2). The portion of the carcass T05 that sandwiches the RF tag 10 together with the stiffener T03 may be located on the outer side of the stiffener T03 in the tire width direction, or may be located on the inner side of the tire width direction. When the portion of the carcass T05 that sandwiches the RF tag 10 together with the stiffener T03 is located on the outer side of the stiffener T03 in the tire width direction, the load applied to the RF tag 10 due to impact or damage from the outside of the tire T01 in the tire width direction can be further reduced. This can further improve the durability of the RF tag 10.
The stiffener T03 may have a portion disposed adjacent to the rubber chafer T11. In this case, theRF tag 10 may be disposed by being sandwiched between the stiffener T03 and the rubber chafer T11.
The stiffener T03 may have a portion adjacent to the hat rubber T12 on the outer side in the tire width direction. In this case, theRF tag 10 may be disposed by being sandwiched between the stiffener T03 and the hat rubber T12 (see point P71 in FIG. 2).
The stiffener T03 may be made of multiple rubber members having different hardnesses. In this case, theRF tag 10 may be sandwiched between the multiple rubber members that make up the stiffener T03 (see point P73 in FIG. 2).
TheRF tag 10 may be disposed by being sandwiched between the hat rubber T12 and a member adjacent to the hat rubber T12. For example, the RF tag 10 may be disposed by being sandwiched between the hat rubber T12 and the carcass ply T05p. In this manner, the impact on the RF tag 10 can be mitigated by the hat rubber T12. Therefore, the durability of the RF tag 10 can be improved.
This configuration is particularly suitable when the tire T01 is a heavy-duty pneumatic tire (for example, a pneumatic tire for trucks and buses, an off-the-road pneumatic tire (for construction vehicles), etc.).
また、RFタグ10は、例えば、スティフナーT03と、カーカスT05と、の間に挟み込まれて配置されていてもよい(図2の点P72参照。)。カーカスT05のうちスティフナーT03と共にRFタグ10を挟み込む部分は、スティフナーT03に対してタイヤ幅方向の外側に位置してもよく、タイヤ幅方向の内側に位置してもよい。カーカスT05のうちスティフナーT03と共にRFタグ10を挟み込む部分が、スティフナーT03に対してタイヤ幅方向の外側に位置する場合には、タイヤ幅方向のタイヤT01の外側からの衝撃や損傷により、RFタグ10に加わる負荷を、より低減できる。これにより、RFタグ10の耐久性を、より向上させることができる。
スティフナーT03は、ゴムチェーファーT11と隣接して配置されている部分を備えてもよい。かかる場合に、RFタグ10は、スティフナーT03と、ゴムチェーファーT11と、の間に挟み込まれて配置されていてもよい。
スティフナーT03は、タイヤ幅方向の外側でハットゴムT12に隣接する部分を備えてもよい。かかる場合に、RFタグ10は、スティフナーT03と、ハットゴムT12と、の間に挟み込まれて配置されていてもよい(図2の点P71参照。)。
スティフナーT03は、硬さの異なる複数のゴム部材から構成されてよい。かかる場合に、RFタグ10は、スティフナーT03を構成する複数のゴム部材の間に挟み込まれて配置されていてもよい(図2の点P73参照。)。
RFタグ10は、ハットゴムT12と、このハットゴムT12に隣接する部材と、の間に挟み込まれて配置されてよい。RFタグ10は、例えば、ハットゴムT12と、カーカスプライT05pと、の間に挟み込まれて配置されてよい。このようにすることで、RFタグ10への衝撃を、ハットゴムT12により緩和できる。そのため、RFタグ10の耐久性を向上させることができる。
この構成は、タイヤT01が重荷重用空気入りタイヤ(例えば、トラック・バス用空気入りタイヤ、オフ・ザ・ロード(建設車両用)空気入りタイヤ等)である場合に、特に好適である。 The
Also, the
The stiffener T03 may have a portion disposed adjacent to the rubber chafer T11. In this case, the
The stiffener T03 may have a portion adjacent to the hat rubber T12 on the outer side in the tire width direction. In this case, the
The stiffener T03 may be made of multiple rubber members having different hardnesses. In this case, the
The
This configuration is particularly suitable when the tire T01 is a heavy-duty pneumatic tire (for example, a pneumatic tire for trucks and buses, an off-the-road pneumatic tire (for construction vehicles), etc.).
RFタグ10は、例えば、ゴムチェーファーT11と、サイドゴムT08と、の間に挟み込まれて配置されてよい(図2の点P8参照。)。このようにすることで、ゴムチェーファーT11を配置することにより歪みが集中し難くなった位置に、RFタグ10を配置することができる。そのため、RFタグ10に加わる負荷を低減できる。これにより、RFタグ10の耐久性を向上させることができる。
RFタグ10は、例えば、ゴムチェーファーT11と、カーカスT05と、の間に挟み込まれて配置されていてもよい。このようにすることで、リムから加わる衝撃や損傷により、RFタグ10に加わる負荷を低減できる。そのため、RFタグ10の耐久性を向上させることができる。 TheRF tag 10 may be arranged, for example, sandwiched between the rubber chafer T11 and the side rubber T08 (see point P8 in FIG. 2). In this way, the RF tag 10 can be arranged in a position where distortion is less likely to be concentrated due to the placement of the rubber chafer T11. Therefore, the load applied to the RF tag 10 can be reduced. This can improve the durability of the RF tag 10.
TheRF tag 10 may be disposed, for example, sandwiched between the rubber chafer T11 and the carcass T05. In this manner, the load applied to the RF tag 10 due to impact or damage from the rim can be reduced. Therefore, the durability of the RF tag 10 can be improved.
RFタグ10は、例えば、ゴムチェーファーT11と、カーカスT05と、の間に挟み込まれて配置されていてもよい。このようにすることで、リムから加わる衝撃や損傷により、RFタグ10に加わる負荷を低減できる。そのため、RFタグ10の耐久性を向上させることができる。 The
The
RFタグ10は、ナイロンチェーファーT13と、このナイロンチェーファーT13のタイヤ幅方向の外側又は内側で隣接する別の部材と、の間に挟み込まれて配置されていてもよい。このようにすることで、タイヤ変形時に、RFタグ10の位置が変動し難くなる。そのため、タイヤ変形時にRFタグ10に加わる負荷を低減できる。これにより、RFタグ10の耐久性を向上させることができる。
ナイロンチェーファーT13は、例えば、タイヤ幅方向外側で、ゴムチェーファーT11と隣接する部分を備えてもよい。かかる場合に、RFタグ10は、ナイロンチェーファーT13と、ゴムチェーファーT11と、の間に挟み込まれて配置されていてもよい(図2の点P101参照。)。ナイロンチェーファーT13は、例えば、タイヤ幅方向外側で、サイドゴムT08と隣接する部分を備えてもよい。かかる場合に、RFタグ10は、ナイロンチェーファーT13と、サイドゴムT08と、の間に挟み込まれて配置されていてもよい(図2の点P91参照。)。
ナイロンチェーファーT13は、例えば、タイヤ幅方向内側で、スティフナーT03と隣接する部分を備えてもよい。かかる場合に、RFタグ10は、ナイロンチェーファーT13と、スティフナーT03と、の間に挟み込まれて配置されていてもよい。また、ナイロンチェーファーT13は、例えば、タイヤ幅方向内側で、ハットゴムT12と隣接する部分を備えてもよい。かかる場合に、RFタグ10は、ナイロンチェーファーT13と、ハットゴムT12と、の間に挟み込まれて配置されていてもよい(図2の点P92参照。)。更に、ナイロンチェーファーT13は、例えば、タイヤ幅方向内側で、カーカスT05と隣接する部分を備えてもよい。かかる場合に、RFタグ10は、ナイロンチェーファーT13と、カーカスT05と、の間に挟み込まれて配置されていてもよい。更に、ナイロンチェーファーT13は、例えば、タイヤ幅方向内側で、ワイヤーチェーファーT14と隣接する部分を備えてもよい。かかる場合に、RFタグ10は、ナイロンチェーファーT13と、ワイヤーチェーファーT14と、の間に挟み込まれて配置されていてもよい。
このように、RFタグ10は、ナイロンチェーファーT13と、このナイロンチェーファーT13のタイヤ幅方向の外側又は内側で隣接する別の部材と、の間に挟み込まれて配置されていてよい。特に、RFタグ10のタイヤ幅方向外側が、ナイロンチェーファーT13に覆われることで、タイヤ幅方向でのタイヤの外側からの衝撃や損傷により、RFタグ10に加わる負荷を、より低減できる。そのため、RFタグ10の耐久性を、より向上させることができる。
この構成は、タイヤT01が重荷重用空気入りタイヤ(例えば、トラック・バス用空気入りタイヤ、オフ・ザ・ロード(建設車両用)空気入りタイヤ等)である場合に、特に好適である。 TheRF tag 10 may be sandwiched between the nylon chafer T13 and another member adjacent to the nylon chafer T13 on the outer or inner side in the tire width direction. In this way, the position of the RF tag 10 is less likely to change when the tire deforms. Therefore, the load applied to the RF tag 10 when the tire deforms can be reduced. This improves the durability of the RF tag 10.
The nylon chafer T13 may have a portion adjacent to the rubber chafer T11, for example, on the outer side in the tire width direction. In this case, theRF tag 10 may be disposed sandwiched between the nylon chafer T13 and the rubber chafer T11 (see point P101 in FIG. 2). The nylon chafer T13 may have a portion adjacent to the side rubber T08, for example, on the outer side in the tire width direction. In this case, the RF tag 10 may be disposed sandwiched between the nylon chafer T13 and the side rubber T08 (see point P91 in FIG. 2).
The nylon chafer T13 may have a portion adjacent to the stiffener T03, for example, on the inner side in the tire width direction. In this case, theRF tag 10 may be disposed by being sandwiched between the nylon chafer T13 and the stiffener T03. The nylon chafer T13 may also have a portion adjacent to the hat rubber T12, for example, on the inner side in the tire width direction. In this case, the RF tag 10 may be disposed by being sandwiched between the nylon chafer T13 and the hat rubber T12 (see point P92 in FIG. 2). Furthermore, the nylon chafer T13 may have a portion adjacent to the carcass T05, for example, on the inner side in the tire width direction. In this case, the RF tag 10 may be disposed by being sandwiched between the nylon chafer T13 and the carcass T05. Furthermore, the nylon chafer T13 may have a portion adjacent to the wire chafer T14, for example, on the inner side in the tire width direction. In this case, the RF tag 10 may be disposed by being sandwiched between the nylon chafer T13 and the wire chafer T14.
In this way, theRF tag 10 may be sandwiched between the nylon chafer T13 and another member adjacent to the outer or inner side in the tire width direction of the nylon chafer T13. In particular, by covering the outer side of the RF tag 10 in the tire width direction with the nylon chafer T13, the load applied to the RF tag 10 due to impact or damage from the outside of the tire in the tire width direction can be further reduced. Therefore, the durability of the RF tag 10 can be further improved.
This configuration is particularly suitable when the tire T01 is a heavy-duty pneumatic tire (for example, a pneumatic tire for trucks and buses, an off-the-road pneumatic tire (for construction vehicles), etc.).
ナイロンチェーファーT13は、例えば、タイヤ幅方向外側で、ゴムチェーファーT11と隣接する部分を備えてもよい。かかる場合に、RFタグ10は、ナイロンチェーファーT13と、ゴムチェーファーT11と、の間に挟み込まれて配置されていてもよい(図2の点P101参照。)。ナイロンチェーファーT13は、例えば、タイヤ幅方向外側で、サイドゴムT08と隣接する部分を備えてもよい。かかる場合に、RFタグ10は、ナイロンチェーファーT13と、サイドゴムT08と、の間に挟み込まれて配置されていてもよい(図2の点P91参照。)。
ナイロンチェーファーT13は、例えば、タイヤ幅方向内側で、スティフナーT03と隣接する部分を備えてもよい。かかる場合に、RFタグ10は、ナイロンチェーファーT13と、スティフナーT03と、の間に挟み込まれて配置されていてもよい。また、ナイロンチェーファーT13は、例えば、タイヤ幅方向内側で、ハットゴムT12と隣接する部分を備えてもよい。かかる場合に、RFタグ10は、ナイロンチェーファーT13と、ハットゴムT12と、の間に挟み込まれて配置されていてもよい(図2の点P92参照。)。更に、ナイロンチェーファーT13は、例えば、タイヤ幅方向内側で、カーカスT05と隣接する部分を備えてもよい。かかる場合に、RFタグ10は、ナイロンチェーファーT13と、カーカスT05と、の間に挟み込まれて配置されていてもよい。更に、ナイロンチェーファーT13は、例えば、タイヤ幅方向内側で、ワイヤーチェーファーT14と隣接する部分を備えてもよい。かかる場合に、RFタグ10は、ナイロンチェーファーT13と、ワイヤーチェーファーT14と、の間に挟み込まれて配置されていてもよい。
このように、RFタグ10は、ナイロンチェーファーT13と、このナイロンチェーファーT13のタイヤ幅方向の外側又は内側で隣接する別の部材と、の間に挟み込まれて配置されていてよい。特に、RFタグ10のタイヤ幅方向外側が、ナイロンチェーファーT13に覆われることで、タイヤ幅方向でのタイヤの外側からの衝撃や損傷により、RFタグ10に加わる負荷を、より低減できる。そのため、RFタグ10の耐久性を、より向上させることができる。
この構成は、タイヤT01が重荷重用空気入りタイヤ(例えば、トラック・バス用空気入りタイヤ、オフ・ザ・ロード(建設車両用)空気入りタイヤ等)である場合に、特に好適である。 The
The nylon chafer T13 may have a portion adjacent to the rubber chafer T11, for example, on the outer side in the tire width direction. In this case, the
The nylon chafer T13 may have a portion adjacent to the stiffener T03, for example, on the inner side in the tire width direction. In this case, the
In this way, the
This configuration is particularly suitable when the tire T01 is a heavy-duty pneumatic tire (for example, a pneumatic tire for trucks and buses, an off-the-road pneumatic tire (for construction vehicles), etc.).
RFタグ10は、ワイヤーチェーファーT14と、このワイヤーチェーファーT14のタイヤ幅方向の内側又は外側で隣接する別の部材と、の間に挟み込まれて配置されていてもよい(図2の点P102参照。)。このようにすることで、タイヤ変形時に、RFタグ10の位置が変動し難くなる。そのため、タイヤ変形時にRFタグ10に加わる負荷を低減できる。これにより、RFタグ10の耐久性を向上させることができる。ワイヤーチェーファーT14がタイヤ幅方向の内側又は外側で隣接する別の部材は、例えば、ゴムチェーファーT11などのゴム部材であってよい。また、ワイヤーチェーファーT14がタイヤ幅方向の内側又は外側で隣接する別の部材は、例えば、カーカスT05であってもよい。
The RF tag 10 may be sandwiched between the wire chafer T14 and another adjacent member on the inside or outside of the wire chafer T14 in the tire width direction (see point P102 in Figure 2). This makes it difficult for the position of the RF tag 10 to fluctuate when the tire deforms. This reduces the load applied to the RF tag 10 when the tire deforms. This improves the durability of the RF tag 10. The other adjacent member on the inside or outside of the wire chafer T14 in the tire width direction may be, for example, a rubber member such as a rubber chafer T11. The other adjacent member on the inside or outside of the wire chafer T14 in the tire width direction may be, for example, a carcass T05.
ベルトT06の半径方向外側にベルト補強層をさらに備えてもよい。例えば、ベルト補強層はポリエチレンテレフタレートからなるベルト補強層コードをタイヤ周方向に連続して螺旋状に巻回してなってもよい。ここでベルト補強層コードは、6.9×10-2 N/tex以上の張力をかけて接着剤処理を施してなり、160℃で測定した29.4N荷重時の弾性率が2.5 mN/dtex・%以上であってもよい。さらにベルト補強層はベルトT06全体を覆うように配置されていてもベルトT06の両端部のみを覆うように配置されていてもよい。さらにベルト補強層の単位幅あたりの巻き回し密度が幅方向位置で異なっていてもよい。このようにすることで、高速耐久性を低下させることなくロードノイズおよびフラットスポットを低減させることができる。
この構成は、タイヤT01が乗用車用空気入りタイヤである場合に、特に好適である。 A belt reinforcing layer may be further provided on the radially outer side of the belt T06. For example, the belt reinforcing layer may be formed by winding a belt reinforcing layer cord made of polyethylene terephthalate continuously in a spiral shape in the tire circumferential direction. Here, the belt reinforcing layer cord may be adhesive-treated under a tension of 6.9×10 −2 N/tex or more, and may have an elastic modulus of 2.5 mN/dtex·% or more when a load of 29.4 N is measured at 160° C. Furthermore, the belt reinforcing layer may be disposed so as to cover the entire belt T06 or to cover only both ends of the belt T06. Furthermore, the winding density per unit width of the belt reinforcing layer may differ depending on the position in the width direction. In this way, road noise and flat spots can be reduced without reducing high-speed durability.
This configuration is particularly suitable when the tire T01 is a pneumatic tire for passenger cars.
この構成は、タイヤT01が乗用車用空気入りタイヤである場合に、特に好適である。 A belt reinforcing layer may be further provided on the radially outer side of the belt T06. For example, the belt reinforcing layer may be formed by winding a belt reinforcing layer cord made of polyethylene terephthalate continuously in a spiral shape in the tire circumferential direction. Here, the belt reinforcing layer cord may be adhesive-treated under a tension of 6.9×10 −2 N/tex or more, and may have an elastic modulus of 2.5 mN/dtex·% or more when a load of 29.4 N is measured at 160° C. Furthermore, the belt reinforcing layer may be disposed so as to cover the entire belt T06 or to cover only both ends of the belt T06. Furthermore, the winding density per unit width of the belt reinforcing layer may differ depending on the position in the width direction. In this way, road noise and flat spots can be reduced without reducing high-speed durability.
This configuration is particularly suitable when the tire T01 is a pneumatic tire for passenger cars.
本発明に係るタイヤ、未加硫タイヤ、タイヤ製造方法、及び、RFタグは、任意の種類の空気入りタイヤに好適に利用でき、例えば、重荷重用空気入りタイヤ(例えば、トラック・バス用空気入りタイヤ、オフ・ザ・ロード(建設車両用)空気入りタイヤ等)、乗用車用空気入りタイヤに好適に利用できる。
The tire, unvulcanized tire, tire manufacturing method, and RF tag of the present invention can be suitably used for any type of pneumatic tire, for example, pneumatic tires for heavy loads (e.g., pneumatic tires for trucks and buses, off-the-road (construction vehicle) pneumatic tires, etc.) and pneumatic tires for passenger cars.
T01:タイヤ(加硫済みタイヤ)、
T01’:未加硫タイヤ、
T0M:タイヤ本体、
T01t:トレッド部、 T01w:サイドウォール部、 T01b:ビード部、
T02:ビードコア、
T03:ビードフィラー(スティフナー)、 T031、T032:ビードフィラー部、
T05:カーカス、 T05p:カーカスプライ、 T05c:カーカスコード、 T05r:被覆ゴム、
T06:ベルト、 T06p:ベルトプライ、
T07:トレッドゴム、
T08:サイドゴム、
T09:インナーライナー、
T10:クッションゴム、
T11:ゴムチェーファー、
T12:ハットゴム、
T13:ナイロンチェーファー、
T14:ワイヤーチェーファー、
CL:タイヤ赤道面、
1:基板、 2:第2アンテナ(アンテナ)、 3:外装体、 10:RFタグRFタグ、 11:ICチップ、 12:第1アンテナ(アンテナ)、 12a:外周縁、 21:電磁界結合部、 21a:端部、 22:延出部、 34:アンテナ保持溝、 35:側部凹所、 36:側端開口、 37:基板保持凹部(基板保持部)、
50:タグ被覆ゴム部、 50a、50b:タグ被覆ゴム部材、
51:通信構造部、
EA:アンテナ延在軸線、 S1:通信構造部の平面視におけるアンテナ延在軸線に対する第1側、 S2:通信構造部の平面視におけるアンテナ延在軸線に対する第2側、 C:曲率中心、
O:タイヤ中心軸線 T01: Tire (vulcanized tire),
T01': unvulcanized tire,
T0M: tire body,
T01t: tread portion, T01w: sidewall portion, T01b: bead portion,
T02: bead core,
T03: Bead filler (stiffener), T031, T032: Bead filler part,
T05: carcass, T05p: carcass ply, T05c: carcass cord, T05r: covering rubber,
T06: Belt, T06p: Belt ply,
T07: tread rubber,
T08: Side rubber,
T09: Inner liner,
T10: Cushion rubber,
T11: Rubber chafer,
T12: Hat rubber,
T13: Nylon chafer,
T14: Wire chafer,
CL: tire equatorial plane,
1: substrate, 2: second antenna (antenna), 3: exterior body, 10: RF tag, 11: IC chip, 12: first antenna (antenna), 12a: outer periphery, 21: electromagnetic field coupling portion, 21a: end portion, 22: extension portion, 34: antenna holding groove, 35: side recess, 36: side end opening, 37: substrate holding recess (substrate holding portion),
50: tag covering rubber part, 50a, 50b: tag covering rubber member,
51: communication structure part,
EA: antenna extension axis; S1: first side with respect to the antenna extension axis in a plan view of the communication structure; S2: second side with respect to the antenna extension axis in a plan view of the communication structure; C: center of curvature;
O: tire center axis
T01’:未加硫タイヤ、
T0M:タイヤ本体、
T01t:トレッド部、 T01w:サイドウォール部、 T01b:ビード部、
T02:ビードコア、
T03:ビードフィラー(スティフナー)、 T031、T032:ビードフィラー部、
T05:カーカス、 T05p:カーカスプライ、 T05c:カーカスコード、 T05r:被覆ゴム、
T06:ベルト、 T06p:ベルトプライ、
T07:トレッドゴム、
T08:サイドゴム、
T09:インナーライナー、
T10:クッションゴム、
T11:ゴムチェーファー、
T12:ハットゴム、
T13:ナイロンチェーファー、
T14:ワイヤーチェーファー、
CL:タイヤ赤道面、
1:基板、 2:第2アンテナ(アンテナ)、 3:外装体、 10:RFタグRFタグ、 11:ICチップ、 12:第1アンテナ(アンテナ)、 12a:外周縁、 21:電磁界結合部、 21a:端部、 22:延出部、 34:アンテナ保持溝、 35:側部凹所、 36:側端開口、 37:基板保持凹部(基板保持部)、
50:タグ被覆ゴム部、 50a、50b:タグ被覆ゴム部材、
51:通信構造部、
EA:アンテナ延在軸線、 S1:通信構造部の平面視におけるアンテナ延在軸線に対する第1側、 S2:通信構造部の平面視におけるアンテナ延在軸線に対する第2側、 C:曲率中心、
O:タイヤ中心軸線 T01: Tire (vulcanized tire),
T01': unvulcanized tire,
T0M: tire body,
T01t: tread portion, T01w: sidewall portion, T01b: bead portion,
T02: bead core,
T03: Bead filler (stiffener), T031, T032: Bead filler part,
T05: carcass, T05p: carcass ply, T05c: carcass cord, T05r: covering rubber,
T06: Belt, T06p: Belt ply,
T07: tread rubber,
T08: Side rubber,
T09: Inner liner,
T10: Cushion rubber,
T11: Rubber chafer,
T12: Hat rubber,
T13: Nylon chafer,
T14: Wire chafer,
CL: tire equatorial plane,
1: substrate, 2: second antenna (antenna), 3: exterior body, 10: RF tag, 11: IC chip, 12: first antenna (antenna), 12a: outer periphery, 21: electromagnetic field coupling portion, 21a: end portion, 22: extension portion, 34: antenna holding groove, 35: side recess, 36: side end opening, 37: substrate holding recess (substrate holding portion),
50: tag covering rubber part, 50a, 50b: tag covering rubber member,
51: communication structure part,
EA: antenna extension axis; S1: first side with respect to the antenna extension axis in a plan view of the communication structure; S2: second side with respect to the antenna extension axis in a plan view of the communication structure; C: center of curvature;
O: tire center axis
Claims (6)
- RFタグと、
タイヤ本体と、
を備えたタイヤであって、
前記RFタグは、通信構造部を有し、
前記通信構造部は、アンテナを備え、
前記通信構造部は、前記タイヤ本体に組み付けられていない単独状態において、前記アンテナが、前記通信構造部の平面視において前記アンテナのアンテナ延在軸線が前記アンテナ延在軸線に対する第1側に曲率中心を有する湾曲形状をなすような、癖を有しており、
前記通信構造部は、前記タイヤ本体に組み付けられた組付状態において、前記通信構造部の平面視において、前記アンテナ延在軸線が、前記アンテナ延在軸線に対する前記第1側に曲率中心を有する湾曲形状をなしているとともに、前記アンテナ延在軸線に対する前記第1側がタイヤ径方向外側となるように指向されている、タイヤ。 An RF tag;
The tire body,
A tire comprising:
The RF tag has a communication structure,
The communication structure includes an antenna;
the communication structure unit has a tendency that, in a state where the communication structure unit is not mounted on the tire main body, the antenna has a curved shape in which an antenna extension axis of the antenna has a center of curvature on a first side with respect to the antenna extension axis in a plan view of the communication structure unit,
When the communication structure is assembled to the tire body, in a planar view of the communication structure, the antenna extension axis forms a curved shape having a center of curvature on the first side relative to the antenna extension axis, and the first side relative to the antenna extension axis is oriented so as to be radially outward in the tire. - 前記アンテナは、仮想平面内において前記アンテナ延在軸線に沿って延在しており、それにより、平面状をなしている、請求項1に記載のタイヤ。 The tire of claim 1, wherein the antenna extends along the antenna extension axis in an imaginary plane, thereby forming a planar shape.
- 前記アンテナは、少なくとも一部において、前記アンテナ延在軸線に沿ってメアンダ状、波状、又はジグザグ状に延在している、請求項2に記載のタイヤ。 The tire according to claim 2, wherein the antenna extends, at least in part, in a meandering, wavy, or zigzag pattern along the antenna extension axis.
- 前記RFタグは、前記通信構造部を覆うタグ被覆ゴム部をさらに有している、請求項1に記載のタイヤ。 The tire according to claim 1, wherein the RF tag further has a tag-covering rubber portion that covers the communication structure portion.
- RFタグと、
タイヤ本体と、
を備えた未加硫タイヤであって、
前記RFタグは、通信構造部を有し、
前記通信構造部は、アンテナを備え、
前記通信構造部は、前記タイヤ本体に組み付けられていない単独状態において、前記アンテナが、前記通信構造部の平面視において前記アンテナのアンテナ延在軸線が前記アンテナ延在軸線に対する第1側に曲率中心を有する湾曲形状をなすような、癖を有しており、
前記通信構造部は、前記タイヤ本体に組み付けられた組付状態において、前記通信構造部の平面視において、前記アンテナ延在軸線が、前記アンテナ延在軸線に対する前記第1側に曲率中心を有する湾曲形状をなしているとともに、前記アンテナ延在軸線に対する前記第1側がタイヤ径方向外側となるように指向されている、未加硫タイヤ。 An RF tag;
The tire body,
An unvulcanized tire comprising:
The RF tag has a communication structure,
The communication structure includes an antenna;
the communication structure unit has a tendency that, in a state where the communication structure unit is not mounted on the tire main body, the antenna has a curved shape in which an antenna extension axis of the antenna has a center of curvature on a first side with respect to the antenna extension axis in a plan view of the communication structure unit,
An unvulcanized tire in which, when the communication structure is assembled to the tire body, in a planar view of the communication structure, the antenna extension axis forms a curved shape having a center of curvature on the first side relative to the antenna extension axis, and the first side relative to the antenna extension axis is oriented so as to be radially outward in the tire radial direction. - 請求項1~4のいずれか一項に記載のタイヤを製造するためのタイヤ製造方法であって、
未加硫タイヤを製造する、未加硫タイヤ製造ステップと、
前記未加硫タイヤを加硫成形する、加硫成形ステップと、
を含み、
前記通信構造部は、前記加硫成形ステップ後に得られた前記タイヤの前記タイヤ本体に組み付けられた組付状態において、前記通信構造部の平面視において、前記アンテナ延在軸線が、前記アンテナ延在軸線に対する前記第1側に曲率中心を有する湾曲形状をなしているとともに、前記アンテナ延在軸線に対する前記第1側がタイヤ径方向外側となるように指向されている、タイヤ製造方法。 A tire manufacturing method for manufacturing the tire according to any one of claims 1 to 4, comprising the steps of:
An unvulcanized tire manufacturing step of manufacturing an unvulcanized tire;
A vulcanization molding step of vulcanizing and molding the unvulcanized tire;
Including,
a tire manufacturing method in which, in an assembled state in which the communication structure portion is assembled to the tire body of the tire obtained after the vulcanization molding step, in a planar view of the communication structure portion, the antenna extension axis forms a curved shape having a center of curvature on the first side relative to the antenna extension axis, and the first side relative to the antenna extension axis is oriented to be radially outward in the tire direction.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022184463A JP2024073324A (en) | 2022-11-17 | 2022-11-17 | Tire, unvulcanized tire, and tire manufacturing method |
JP2022-184463 | 2022-11-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024105920A1 true WO2024105920A1 (en) | 2024-05-23 |
Family
ID=91084386
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/023400 WO2024105920A1 (en) | 2022-11-17 | 2023-06-23 | Tire, unvulcanized tire, and tire manufacturing method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2024073324A (en) |
WO (1) | WO2024105920A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005323339A (en) * | 2004-03-24 | 2005-11-17 | Soc D Technologie Michelin | Radio frequency antenna for tire and method for the same |
JP2017132292A (en) * | 2016-01-25 | 2017-08-03 | 株式会社ブリヂストン | Fid tag built-in tire |
JP2021127094A (en) * | 2020-02-17 | 2021-09-02 | 横浜ゴム株式会社 | Pneumatic tire |
JP2021187268A (en) * | 2020-05-28 | 2021-12-13 | 横浜ゴム株式会社 | Pneumatic tire |
-
2022
- 2022-11-17 JP JP2022184463A patent/JP2024073324A/en active Pending
-
2023
- 2023-06-23 WO PCT/JP2023/023400 patent/WO2024105920A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005323339A (en) * | 2004-03-24 | 2005-11-17 | Soc D Technologie Michelin | Radio frequency antenna for tire and method for the same |
JP2017132292A (en) * | 2016-01-25 | 2017-08-03 | 株式会社ブリヂストン | Fid tag built-in tire |
JP2021127094A (en) * | 2020-02-17 | 2021-09-02 | 横浜ゴム株式会社 | Pneumatic tire |
JP2021187268A (en) * | 2020-05-28 | 2021-12-13 | 横浜ゴム株式会社 | Pneumatic tire |
Also Published As
Publication number | Publication date |
---|---|
JP2024073324A (en) | 2024-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110978899B (en) | Tire and tire manufacturing method | |
CN110978901B (en) | Tyre for vehicle wheels | |
CN110978903B (en) | Tire and tire manufacturing method | |
EP3991993B1 (en) | Tire | |
WO2024105920A1 (en) | Tire, unvulcanized tire, and tire manufacturing method | |
CN111845213A (en) | Tyre for vehicle wheels | |
WO2024105921A1 (en) | Tire, unvulcanized tire, and tire manufacturing method | |
CN110978900B (en) | Tyre for vehicle wheels | |
WO2024053210A1 (en) | Tire, uncured tire, tire manufacturing method, and rf tag | |
JP2024073327A (en) | Tire, unvulcanized tire, tire manufacturing method, and RF tag | |
WO2024095522A1 (en) | Pneumatic tire and manufacturing method therefor | |
US20240351377A1 (en) | Tire | |
WO2024095523A1 (en) | Pneumatic tyre manufacturing method | |
US20230271459A1 (en) | Pneumatic tire | |
WO2024034230A1 (en) | Pneumatic tire | |
WO2024042802A1 (en) | Pneumatic tire | |
WO2024053338A1 (en) | Pneumatic tire | |
WO2024053337A1 (en) | Pneumatic tire | |
US20240278604A1 (en) | Tire | |
US20230311589A1 (en) | Pneumatic tire | |
US20240262136A1 (en) | Tire | |
US20240246363A1 (en) | Tire | |
WO2021241202A1 (en) | Pneumatic tire | |
US20200108574A1 (en) | Tire | |
JP2020055520A (en) | Tire and manufacturing method of tire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23891082 Country of ref document: EP Kind code of ref document: A1 |