Nothing Special   »   [go: up one dir, main page]

WO2024095523A1 - Pneumatic tyre manufacturing method - Google Patents

Pneumatic tyre manufacturing method Download PDF

Info

Publication number
WO2024095523A1
WO2024095523A1 PCT/JP2023/022499 JP2023022499W WO2024095523A1 WO 2024095523 A1 WO2024095523 A1 WO 2024095523A1 JP 2023022499 W JP2023022499 W JP 2023022499W WO 2024095523 A1 WO2024095523 A1 WO 2024095523A1
Authority
WO
WIPO (PCT)
Prior art keywords
tag
tire
antenna
shape
rubber
Prior art date
Application number
PCT/JP2023/022499
Other languages
French (fr)
Japanese (ja)
Inventor
浩昭 大野
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2024095523A1 publication Critical patent/WO2024095523A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for

Definitions

  • the present invention relates to a method for manufacturing pneumatic tires.
  • Patent Document 1 Pneumatic tires equipped with a communication device such as an RF (Radio Frequency) tag that has a memory for reading and writing data for manufacturing management, shipping management, usage history management, etc., of the tire are known (for example, Patent Document 1).
  • a communication device such as an RF (Radio Frequency) tag that has a memory for reading and writing data for manufacturing management, shipping management, usage history management, etc., of the tire.
  • Patent Document 2 a device has been proposed in which the antenna section has a portion in which a predetermined shape is repeatedly arranged in the extension direction while folding back and forth at the apex in a direction perpendicular to the extension direction.
  • the inventors considered fitting a communication device to a pneumatic tire, which has an antenna section that has a portion in which a predetermined shape is repeatedly arranged in the extension direction while folding back and forth at an apex in a direction perpendicular to the extension direction, and found that there are cases in which the durability of the antenna section is insufficient.
  • the present invention aims to provide a method for manufacturing pneumatic tires that can improve the durability of the antenna portion of a communication device.
  • the gist and configuration of the present invention are as follows.
  • a method for manufacturing a pneumatic tire having a built-in communication device comprising the steps of:
  • the communication device has an antenna unit,
  • the antenna portion has a portion in which a predetermined shape is repeatedly arranged in the extension direction while being folded back and forth at a vertex in a direction perpendicular to the extension direction,
  • a method for manufacturing a pneumatic tire comprising: covering the antenna portion with rubber while applying tension to the outside of the antenna portion in an extension direction.
  • a method for manufacturing a pneumatic tire having a built-in communication device comprising the steps of:
  • the communication device has an antenna unit,
  • the antenna portion has a portion in which a predetermined shape is repeatedly arranged in the extension direction while being folded back and forth at a vertex in a direction perpendicular to the extension direction,
  • a method for manufacturing a pneumatic tire comprising: expanding the tire with the extension direction of the antenna portion aligned in the tire circumferential direction.
  • the present invention provides a method for manufacturing a pneumatic tire that can improve the durability of the antenna portion of a communication device.
  • FIG. 2 is a plan view of the RF tag.
  • FIG. 2 is a perspective view of the RF tag with the lid of the exterior body removed.
  • FIG. FIG. 4 is a plan view of a second antenna.
  • FIG. 2 is a partial cross-sectional view of the RF tag.
  • 1 is a cross-sectional view (half) of a pneumatic tire in the tire width direction.
  • 11 is a diagram showing a schematic diagram of a state in which tension is applied to an antenna part.
  • the method for manufacturing a pneumatic tire according to the present embodiment is a method for manufacturing a pneumatic tire having a built-in communication device, the communication device will be described first.
  • FIG. 1 is a plan view of a communication device 10.
  • a communication device is sometimes called an "RF tag.”
  • Fig. 2 is a perspective view of the RF tag 10.
  • Fig. 3 is a perspective view of the RF tag 10 with the cover of the exterior body removed.
  • Fig. 4 is an exploded perspective view of the RF tag 10.
  • Fig. 5 is a plan view of the second antenna 2.
  • Fig. 6 is a partial cross-sectional view of the RF tag 10.
  • Fig. 6 is a cross-sectional view taken along line II of Fig. 2.
  • the RF tag 10 includes a substrate 1, a second antenna 2, and an exterior body 3.
  • the longitudinal direction (left-right direction in Fig. 1) of the main surface 31a (see Fig. 3) of the exterior body 3 is called the X direction.
  • One direction of the X direction (right direction in Fig. 1) is called the +X direction.
  • the other direction of the X direction (left direction in Fig. 1) is called the -X direction.
  • the short-side direction of the main surface 31a (see Fig. 3) of the exterior body 3 is called the Y direction.
  • the Y direction is perpendicular to the X direction in a plane along the main surface 31a.
  • One direction of the Y direction (upward in Fig. 1) is called the +Y direction.
  • the other direction of the Y direction (downward in Fig. 1) is called the -Y direction.
  • the direction perpendicular to the main surface 31a of the exterior body 3 is called the Z direction.
  • the Z direction is perpendicular to the X direction and the Y direction. Viewing from the Z direction is called planar view.
  • the Z axis is the central axis along the Z direction.
  • the substrate 1 includes an RFID chip 11, a first antenna 12, and a base material 13.
  • the substrate 1 is provided with the RFID chip 11 and the first antenna 12.
  • the substrate 13 is formed in a plate shape.
  • the shape of the substrate 13 in plan view is not particularly limited, but it is preferable that at least a part of the outer periphery 13a is curved.
  • the curved shape is, for example, an elliptical arc shape, a circular arc shape, or a high-order curve shape (e.g., a quadratic curve shape).
  • the high-order curve shape is, for example, a parabola shape, a hyperbola shape, etc.
  • the outer shape of the substrate 13 in plan view may be, for example, an elliptical shape, a circular shape, an oval shape (a racetrack shape), etc. It is preferable that the outer shape of the substrate 13 in plan view is non-circular. In this embodiment, the substrate 13 is elliptical.
  • the substrate 13 is oriented so that the major axis direction faces the X direction.
  • the substrate 13 may be a glass epoxy resin substrate, a ceramic, a plastic film, or the
  • the RFID chip 11 allows for contactless writing and reading of information via the first antenna 12 and the second antenna 2.
  • the RFID chip 11 is mounted on a substrate 13.
  • the first antenna 12 is, for example, a conductive layer formed on one surface of the substrate 13.
  • the conductive layer is, for example, composed of a conductive foil, a plating layer, a conductive ink layer, etc.
  • the conductive foil is, for example, a metal foil composed of copper, silver, gold, platinum, aluminum, etc.
  • the conductive foil is formed into a predetermined shape by etching or the like.
  • the plating layer is, for example, composed of a metal such as copper, silver, gold, platinum, aluminum, etc.
  • the conductive ink layer is formed by printing or the like using a conductive ink.
  • the conductive ink contains conductive particles formed of a metal, carbon material, etc.
  • the first antenna 12 is formed in a loop shape.
  • the first antenna 12 has, for example, a curved shape that follows the outer peripheral edge 13a of the substrate 13.
  • the first antenna 12 is formed in an elliptical loop shape.
  • the first antenna 12 is electrically connected to the RFID chip 11.
  • the second antenna 2 is an antenna for the booster.
  • the second antenna 2 is, for example, a linear body.
  • the second antenna 2 is formed of a metal such as steel, stainless steel, copper, or a copper alloy.
  • the second antenna 2 can be formed of, for example, a brass-plated steel wire.
  • the second antenna 2 is separate from the substrate 1.
  • the second antenna 2 is a linear body, the second antenna may be, for example, a plate-shaped body.
  • the second antenna 2 comprises an electromagnetic field coupling portion 21 and a pair of extension portions 22.
  • the electromagnetic field coupling portion 21 has a curved shape.
  • a "curved shape” is a shape that curves smoothly without any sharp bends. Examples of curved shapes include an elliptical arc shape, a circular arc shape, and a higher-order curve shape (e.g., a quadratic curve shape). Examples of a "higher-order curve shape” include a parabola shape and a hyperbola shape.
  • the electromagnetic field coupling portion 21 is in a semi-elliptical shape.
  • the electromagnetic field coupling portion 21 is in a semi-elliptical shape that extends from one vertex of the ellipse (the vertex that intersects with the major axis) to the other vertex (the vertex that intersects with the major axis).
  • the electromagnetic field coupling portion 21 is shaped to surround at least a portion of the substrate 1 in a plan view.
  • the electromagnetic field coupling portion 21 surrounds the area (half the circumference in the +Y direction) from one vertex (the vertex intersecting with the long axis) of the elliptical substrate 1 to the other vertex (the vertex intersecting with the long axis).
  • the electromagnetic field coupling portion 21 has a curved shape (e.g., an elliptical arc shape) that follows the outer peripheral edge 12a of the first antenna 12 in a plan view. The distance between the electromagnetic field coupling portion 21 and the outer peripheral edge 12a is approximately constant.
  • the electromagnetic field coupling portion 21 is located outside the outer peripheral edge 13a of the substrate 1 and close to the outer peripheral edge 13a in a plan view.
  • the electromagnetic field coupling portion 21 has a shape that follows the outer peripheral edge 13a in a plan view. The distance between the electromagnetic field coupling portion 21 and the outer peripheral edge 13a is approximately constant.
  • the electromagnetic field coupling portion 21 is electromagnetically coupled to the first antenna 12 in a non-contact manner.
  • the electromagnetic field coupling is, for example, either electric field coupling or magnetic field coupling.
  • the shape of a cross section perpendicular to the longitudinal direction of the electromagnetic field coupling portion 21 is, for example, circular (see FIG. 6).
  • the pair of extension portions 22 extend from one and the other end 21a of the electromagnetic field coupling portion 21, respectively.
  • the first extension portion 22A which is one of the pair of extension portions 22, extends in the -X direction from the -X direction end 21a of the electromagnetic field coupling portion 21 while meandering.
  • the second extension portion 22B which is the other of the pair of extension portions 22, extends in the +X direction from the +X direction end 21a of the electromagnetic field coupling portion 21 while meandering.
  • the planar shape of the extension portion 22 is, for example, a meandering shape, a wavy shape, a zigzag shape, etc.
  • the extension portion 22 has a meandering shape.
  • the extension portion 22 has a plurality of straight portions 23 and a plurality of folded portions 24.
  • the straight portions 23 are linearly shaped along the Y direction.
  • the straight portions 23 are arranged at intervals in the X direction.
  • the folded portions 24 connect the ends of adjacent straight portions 23.
  • the folded portions 24 have a curved shape (e.g., an arc shape).
  • the straight line portion 23 closest to the electromagnetic field coupling portion 21 is referred to as the "first straight line portion 23A.”
  • the straight line portion 23 second closest to the electromagnetic field coupling portion 21 is referred to as the “second straight line portion 23B.”
  • the straight line portion 23 third closest to the electromagnetic field coupling portion 21 is referred to as the "third straight line portion 23C.”
  • the fold portion 24 connecting the first straight line portion 23A and the second straight line portion 23B is referred to as the "first fold portion 24A.”
  • the fold portion 24 connecting the second straight line portion 23B and the third straight line portion 23C is referred to as the "second fold portion 24B.”
  • the first straight portion 23A extends in the -Y direction from the end 21a of the electromagnetic field coupling portion 21.
  • the first folded portion 24A extends in a curved manner from the -Y direction end of the first straight portion 23A and reaches the -Y direction end of the second straight portion 23B.
  • the first straight portion 23A and a portion of the first folded portion 24A are inside the exterior body 3, but the remaining portion of the extension portion 22 extends outside the exterior body 3 (see Figure 3).
  • the exterior body 3 includes a plate-shaped main body 31 and a plate-shaped lid 32.
  • the exterior body 3 is generally plate-shaped.
  • the main body 31 and the lid 32 are formed of, for example, resin.
  • resins include polyamide resins such as nylon 6,6; polyester resins such as polyethylene terephthalate (PET); polyolefin resins such as polyethylene; polyethylene fluoride-based resins such as polyvinyl fluoride; vinyl polymers such as polyvinyl chloride; and acrylic resins such as polymethyl methacrylate.
  • the main body 31 has a rectangular shape in a plan view.
  • a board holding recess 37 (board holding portion), an antenna holding groove 34, and a pair of side recesses 35 are formed on the main surface 31a, which is one surface of the main body 31.
  • the board holding recess 37 is formed by the board holding protrusions 33.
  • the board holding recess 37 is a recess surrounded by the board holding protrusions 33.
  • the board holding protrusion 33 is an annular rib-shaped protrusion.
  • the board holding protrusion 33 has a curved shape (e.g., an elliptical shape) that fits along the outer peripheral edge 13a of the board 1.
  • the board holding protrusion 33 protrudes from the main surface 31a in the +Z direction.
  • the shape of a cross section perpendicular to the length direction of the board holding protrusion 33 is, for example, rectangular.
  • the board holding protrusion 33 has a curved shape (e.g., an elliptical shape) that fits along the outer peripheral edge 12a of the first antenna 12.
  • the substrate holding recess 37 holds the substrate 1.
  • the substrate holding recess 37 has a shape (e.g., an elliptical shape) that follows the outer peripheral edge 13a of the substrate 1.
  • the inner dimension (inner diameter) of the substrate holding recess 37 is approximately the same as the outer dimension (outer diameter) of the substrate 1 or is slightly larger than the outer dimension (outer diameter) of the substrate 1.
  • the substrate holding recess 37 has a similar shape to the substrate 1 in a plan view.
  • the substrate 1 and the substrate holding recess 37 are non-circular (e.g., elliptical), they can prevent the substrate 1 from tilting around the Z axis and maintain the correct posture of the substrate 1. This makes it possible to maintain the electromagnetic coupling between the first antenna 12 and the electromagnetic field coupling portion 21.
  • the antenna holding groove 34 accommodates the electromagnetic field coupling portion 21 of the second antenna 2 (see Figures 3 and 6).
  • the antenna holding groove 34 is formed outside the substrate holding protrusion 33 and close to the substrate holding protrusion 33.
  • the antenna holding groove 34 is shaped to follow the substrate holding protrusion 33 in a plan view.
  • the antenna holding groove 34 is curved (e.g., elliptical) along the outer periphery 12a of the first antenna 12 in a plan view.
  • the antenna holding groove 34 is curved (e.g., elliptical) along the outer periphery 13a of the substrate 1 in a plan view.
  • the antenna holding groove 34 is semi-elliptical in a plan view. More specifically, the antenna holding groove 34 is semi-elliptical from one vertex of the ellipse (the vertex intersecting with the long axis) to the other vertex (the vertex intersecting with the long axis).
  • the antenna holding groove 34 is shaped to surround at least a portion of the substrate 1 in a plan view.
  • the antenna holding groove 34 surrounds the area (half the circumference in the +Y direction) from one vertex (the vertex intersecting with the long axis) of the elliptical substrate 1 to the other vertex (the vertex intersecting with the long axis).
  • the cross section perpendicular to the longitudinal direction of the antenna holding groove 34 is, for example, rectangular.
  • the width (inner dimension) W1 of the antenna holding groove 34 is larger than the outer diameter (outer dimension) D1 of the electromagnetic field coupling portion 21.
  • the difference between the width W1 and the outer diameter D1 can be, for example, 0.01 mm to 1 mm (preferably 0.05 mm to 0.2 mm). Since the width W1 of the antenna holding groove 34 is larger than the outer diameter D1 of the electromagnetic field coupling portion 21, the electromagnetic field coupling portion 21 is accommodated in the antenna holding groove 34 in a state in which it can be displaced in the radial direction (for example, the Y direction).
  • the "radial direction" is the direction perpendicular to the longitudinal direction of the electromagnetic field coupling portion 21.
  • the electromagnetic field coupling portion 21 can also be displaced in the longitudinal direction relative to the antenna holding groove 34.
  • the depth of the antenna holding groove 34 is determined so that the height (inner dimension) H1 from the bottom surface 34a of the antenna holding groove 34 to the lid portion 32 (top surface 38a) is greater than the outer diameter D1 of the electromagnetic field coupling portion 21.
  • the difference between the height H1 and the outer diameter D1 can be, for example, 0.01 mm to 1 mm (preferably 0.05 mm to 0.2 mm). Because the height H1 of the antenna holding groove 34 is greater than the outer diameter D1 of the electromagnetic field coupling portion 21, the electromagnetic field coupling portion 21 is accommodated in the antenna holding groove 34 in a state in which it can be displaced in the wire diameter direction (for example, the Z direction).
  • the side recesses 35 are formed on one and the other side of the main surface 31a.
  • the side recesses 35 are formed in an area including the side edge 31b in the X direction of the main body 31.
  • the inner peripheral edge 35a of the side recess 35 has a first straight portion 35b along the Y direction, a curved portion 35c, and a second straight portion 35d along the X direction.
  • the first straight portion 35b is a portion that extends in the -Y direction starting from the end of the inner peripheral edge of the antenna holding groove 34.
  • the curved portion 35c is a portion that extends from the tip of the first straight portion 35b while the inclination angle with respect to the X direction becomes smaller.
  • the second straight portion 35d is a portion that extends from the tip of the curved portion 35c along the X direction toward the side edge 31b.
  • the side recess 35 includes the first straight portion 23A and a portion of the first folded portion 24A of the second antenna 2 in a plan view.
  • the first straight portion 23A is adjacent to the first straight portion 35b (see FIG. 4).
  • the first folded portion 24A is adjacent to the curved portion 35c (see FIG. 4).
  • the side recess 35 accommodates at least a portion of a predetermined length range of the second antenna 2 (the first straight portion 23A and a portion of the first folded portion 24A).
  • the side recess 35 is spaced a sufficient distance in the Y direction, so that the side edge 31b has a slit-shaped side end opening 36 extending in the Y direction (direction along the main surface 31a).
  • the second antenna 2 extends out of the exterior body 3 through the side end opening 36.
  • two locking recesses 39 are formed at different positions in the X direction on the +Y direction edge 31c of the main body 31.
  • Two locking recesses 39 are also formed at different positions in the X direction on the -Y direction edge 31d of the main body 31.
  • the lid portion 32 has a rectangular shape in a plan view.
  • the lid portion 32 has the same shape as the main body portion 31 and is placed opposite the main surface 31a of the main body portion 31.
  • the lid portion 32 is placed so as to overlap the main surface 31a of the main body portion 31 in a plan view.
  • the opposing surface 32a of the lid portion 32 is a surface that faces the main surface 31a of the main body portion 31.
  • a positioning groove 38 is formed in the opposing surface 32a.
  • the positioning groove 38 is an annular groove.
  • the shape of a cross section perpendicular to the longitudinal direction of the positioning groove 38 is, for example, rectangular.
  • the positioning groove 38 has a curved shape (e.g., an elliptical shape) that corresponds to the board holding protrusion 33 and the antenna holding groove 34.
  • the positioning groove 38 has a width that collectively encompasses the board holding protrusion 33 and the antenna holding groove 34.
  • a portion of the top surface 38a of the positioning groove 38 faces the bottom surface 34a of the antenna holding groove 34.
  • two locking protrusions 40 are formed at different positions in the X direction on the +Y edge 32c of the lid 32.
  • Two locking protrusions 40 are also formed at different positions in the X direction on the -Y edge 32d of the lid 32.
  • the locking protrusion 40 has a locking claw portion (not shown) formed at its tip.
  • the locking protrusion 40 is inserted into the locking recess 39 of the main body 31.
  • the locking claw portion of the locking protrusion 40 locks into the main body 31. This allows the lid 32 to be detachably connected to the main body 31.
  • the exterior body 3 is not fixed to the second antenna 2. In other words, the exterior body 3 is not fixed to the second antenna 2.
  • the RF tag 10 can be installed in a molded product made of, for example, rubber, resin, etc.
  • the RF tag 10 can be embedded in the molded product.
  • the molded product is, for example, an elastic body and can be elastically deformed. When the molded product is stretched, bent, or otherwise deformed, an external force may act on the second antenna 2. For example, a tensile force may act on the extension 22 in the X direction away from the exterior body 3. A force may also act on the extension 22 in the X direction toward the exterior body 3.
  • the RF tag 10 when the RF tag 10 is installed in a tire, the RF tag 10 can be provided so as to be encapsulated in a fixing member (lamination rubber) made of a rubber sheet. This not only reliably prevents damage to the RF tag 10, but also allows the RFID tag 10 to be easily incorporated into the tire 1 without risk of damage if the RF tag 10 is encapsulated in a fixing member before being incorporated into the tire.
  • the electromagnetic field coupling portion 21 of the second antenna 2 is accommodated in the antenna holding groove 34 in a state in which it is displaceable in the radial direction (the direction perpendicular to the length direction of the electromagnetic field coupling portion 21) (see FIG. 6). Since the electromagnetic field coupling portion 21 is displaceable, when an external force acts on the second antenna 2, the stress in the second antenna 2 can be alleviated. Therefore, the second antenna 2 can be made less likely to be damaged. In contrast, when the second antenna is fixed to the exterior body, when an external force acts on the second antenna, stress is concentrated on the base end (root portion) of the second antenna extending from the exterior body, and this portion may be more likely to be damaged.
  • the electromagnetic field coupling portion 21 of the second antenna 2 has a shape that follows the outer peripheral edge 12a of the first antenna 12, so that the electromagnetic field coupling portion 21 can be sufficiently electromagnetically coupled to the first antenna 12.
  • the antenna holding groove 34 is formed along the outer peripheral edge 12a of the first antenna 12, so that the electromagnetic field coupling portion 21 of the second antenna 2 can be positioned along the first antenna 12. Therefore, the electromagnetic field coupling portion 21 can be sufficiently electromagnetically coupled to the first antenna 12.
  • the electromagnetic field coupling portion 21 of the second antenna 2 has a curved shape (e.g., a semi-elliptical shape), even when an external force acts on the second antenna 2, stress concentration is less likely to occur compared to when the shape is rectangular. This makes it possible to make the second antenna 2 less likely to be damaged. In contrast, if the electromagnetic field coupling portion is rectangular, when an external force acts on the second antenna, stress will concentrate at the corners (bends), and damage may be more likely to occur at these points.
  • the antenna holding groove 34 is formed along the outer peripheral edge 13a of the substrate 1, so that the electromagnetic field coupling portion 21 of the second antenna 2 can be positioned along the first antenna 12. This allows the electromagnetic field coupling portion 21 to be sufficiently electromagnetically coupled to the first antenna 12.
  • the exterior body 3 comprises a main body portion 31 and a lid portion 32 that is overlaid on the main surface 31a.
  • the board holding recess 37 and the antenna holding groove 34 are formed on the main surface 31a. Therefore, the lid portion 32 can prevent the board 1 and the second antenna 2 from falling off the main body portion 31. Therefore, the board 1 and the second antenna 2 can be stably held in the exterior body 3.
  • a slit-shaped side end opening 36 extending in the Y direction (direction along the main surface 31a) is formed on the side end edge 31b of the exterior body 3. Therefore, the position of the second antenna 2 can be moved in the Y direction relative to the exterior body 3. Therefore, when an external force acts on the second antenna 2, the stress is easily alleviated by the displacement. This makes it possible to make the second antenna 2 less likely to be damaged.
  • the outer periphery 13a of the substrate 1 and the outer periphery 12a of the first antenna 12 are curved all around, but the substrate and the first antenna may have only a portion of their outer periphery curved.
  • the exterior body 3 includes a main body portion 31 and a lid portion 32, but the configuration of the exterior body is not particularly limited.
  • the exterior body does not have to include a lid portion.
  • the exterior body is not limited to being plate-shaped, and may have other shapes (such as a block shape).
  • the communication device 10 has an antenna section.
  • the antenna section has a portion (extension section 22) in which a predetermined shape is repeatedly arranged (at a predetermined pitch interval) in the extension direction while folding back and forth at an apex in a direction perpendicular to the extension direction.
  • a portion extension section 22
  • Specific examples of the shape of this portion include a serpentine shape, a wave shape, and a zigzag shape.
  • Fig. 7 is a cross-sectional view in the tire width direction of the pneumatic tire.
  • Fig. 7 shows only one half in the tire width direction bounded by the tire equatorial plane CL, but the other half has a similar configuration.
  • the pneumatic tire may have an asymmetric portion bounded by the tire equatorial plane CL.
  • This pneumatic tire 50 is a passenger vehicle tire, but it may also be a tire suitable for other uses (e.g., a heavy-duty tire).
  • the internal structure of the tire is not particularly limited, but the following configuration can be exemplified.
  • the tire 50 has a pair of bead portions 51, a pair of sidewall portions 52 connected to the bead portions 51, and a tread portion 53 connected to the pair of sidewall portions 52.
  • a bead core 51a is embedded in the bead portion 51, and a bead filler 51b is arranged on the tire radial outer side of the bead core 51a.
  • the tire 50 also has a carcass 54 consisting of one or more carcass plies that spans the pair of bead portions 50 in a toroidal shape.
  • the carcass ply is made of radially arranged carcass cords coated with rubber. In this example, the carcass cords are made of steel cords.
  • the number of carcass plies is not particularly limited.
  • the diameter of the carcass cord is not particularly limited, but can be 0.5 to 1.5 mm.
  • a belt 55 consisting of one or more belt layers 55a, 55b (two layers in the illustrated example) is arranged on the radially outer side of the crown portion of the carcass 54, and tread rubber is arranged on the radially outer side of the belt 55.
  • the belt cord of the belt 55 is an organic fiber cord.
  • the belt cord can be inclined at an inclination angle of, for example, 30 to 60 degrees with respect to the circumferential direction of the tire. There are no particular limitations on the number of belt layers or the belt width.
  • This tire 50 is equipped with an RF tag 10 as a communication device.
  • the RF tag includes an IC chip and an antenna.
  • the RF tag may be, for example, sandwiched between a plurality of members of the same or different types that constitute the tire. In this way, the RF tag can be easily attached during tire production, and the productivity of tires equipped with an RF tag can be improved.
  • the RF tag may be, for example, sandwiched between a bead filler and another member adjacent to the bead filler.
  • the RF tag may be embedded in any of the members that constitute the tire. In this way, the load applied to the RF tag can be reduced compared to when the RF tag is sandwiched between a plurality of members that constitute the tire.
  • the RF tag may be, for example, embedded in a rubber member such as a tread rubber or a side rubber. It is preferable that the RF tag is not placed at a position that is a boundary between members with different rigidity in the periphery length direction, which is a direction along the outer surface of the tire in a cross-sectional view in the tire width direction. In this way, the RF tag is not placed in a position where distortion is likely to concentrate due to a rigidity step. Therefore, the load applied to the RF tag can be reduced. This can improve the durability of the RF tag.
  • the RF tag is not placed at a position that is, for example, a boundary between the end of the carcass and a member adjacent to the end of the carcass (e.g., a side rubber, etc.) in a cross-sectional view in the tire width direction.
  • the number of RF tags is not particularly limited.
  • a tire may include only one RF tag, or may include two or more RF tags.
  • an RF tag is illustrated as an example of a communication device, but a communication device other than the RF tag may also be used.
  • the RF tag may be placed, for example, in the tread portion of the tire. In this way, the RF tag is not damaged by a side cut of the tire.
  • the RF tag may be placed, for example, in the center of the tread in the tire width direction.
  • the center of the tread is a position in the tread portion where bending is unlikely to concentrate. In this way, the load applied to the RF tag can be reduced. This improves the durability of the RF tag.
  • the RF tag may be placed, for example, within a range of 1/2 the tread width centered on the tire equatorial plane in the tire width direction.
  • the RF tag may be placed, for example, at the tread end in the tire width direction. If the position of the reader that communicates with the RF tag is predetermined, the RF tag may be placed, for example, at the tread end on one side closer to the reader. In this example, the RF tag may be placed, for example, within a range of 1/4 the tread width in the tire width direction, with the tread end as the outer end.
  • the RF tag may be arranged, for example, on the tire cavity side of the carcass, which includes one or more carcass plies that span between the bead portions. In this way, the RF tag is less likely to be damaged by impacts applied from outside the tire, or damage such as side cuts and nail penetration.
  • the RF tag may be arranged in close contact with the surface of the carcass on the tire cavity side.
  • the RF tag may be arranged, for example, between the carcass and another member located on the tire cavity side of the carcass.
  • An example of another member located on the tire cavity side of the carcass is an inner liner that forms the tire inner surface.
  • the RF tag may be attached to the tire inner surface facing the tire cavity.
  • the RF tag By configuring the RF tag to be attached to the tire inner surface, it is easy to attach the RF tag to the tire and to inspect and replace the RF tag. In other words, the ease of attachment and maintenance of the RF tag can be improved.
  • the RF tag by attaching the RF tag to the inner surface of the tire, the RF tag can be prevented from becoming the core of tire failure, compared to a configuration in which the RF tag is embedded in the tire.
  • the RF tag may be positioned between the overlapped carcass plies.
  • the RF tag may be arranged, for example, in the tread portion of the tire, on the tire radial outside of the belt including one or more belt plies.
  • the RF tag may be arranged on the tire radial outside of the belt and in close contact with the belt.
  • the RF tag may be arranged on the tire radial outside of the reinforcing belt layer and in close contact with the reinforcing belt layer.
  • the RF tag may be embedded in the tread rubber on the tire radial outside of the belt.
  • the RF tag By arranging the RF tag on the tire radial outside of the belt in the tread portion of the tire, communication with the RF tag from the outside of the tire in the tire radial direction is less likely to be hindered by the belt. Therefore, it is possible to improve communication with the RF tag from the outside of the tire in the tire radial direction.
  • the RF tag may be arranged, for example, in the tire tread portion of the tire, on the tire radial inside of the belt. In this way, the tire radial outside of the RF tag is covered by the belt, so that the RF tag is less likely to be damaged by impacts from the tread surface or nail penetration.
  • the RF tag may be placed in the tread portion of the tire, between the belt and the carcass located radially inward of the belt. Also, if the belt has multiple belt plies, the RF tag may be placed in the tread portion of the tire, between any two belt plies. In this way, the outer side of the RF tag in the tire radial direction is covered by one or more belt plies, making the RF tag less susceptible to damage from impacts from the tread surface or nail penetration.
  • the RF tag may be arranged, for example, sandwiched between the cushion rubber and the tread rubber, or between the cushion rubber and the side rubber. In this way, the impact on the RF tag can be mitigated by the cushion rubber. This improves the durability of the RF tag.
  • the RF tag may also be embedded, for example, in the cushion rubber.
  • the cushion rubber may be made up of multiple adjacent rubber members of the same or different types. In such cases, the RF tag may be arranged, sandwiched between the multiple rubber members that make up the cushion rubber.
  • the RF tag may be arranged, for example, at the sidewall or bead of the tire.
  • the RF tag may be arranged, for example, at one sidewall or one bead that is closer to a reader that can communicate with the RF tag. In this way, the communication between the RF tag and the reader can be improved.
  • the RF tag may be arranged between the carcass and the side rubber, or between the tread rubber and the side rubber.
  • the RF tag may be arranged, for example, in the tire radial direction, between the position where the tire is at its maximum width and the position of the tread surface.
  • the communication with the RF tag from the outside of the tire in the tire radial direction can be improved compared to a configuration in which the RF tag is arranged on the inner side in the tire radial direction from the position where the tire is at its maximum width.
  • the RF tag may be arranged, for example, on the inner side in the tire radial direction from the position where the tire is at its maximum width. In this way, the RF tag is arranged near the bead portion that has high rigidity. Therefore, the load applied to the RF tag can be reduced. This can improve the durability of the RF tag.
  • the RF tag may be arranged at a position adjacent to the bead core in the tire radial direction or tire width direction.
  • Distortion is less likely to concentrate near the bead core. This reduces the load on the RF tag. This improves the durability of the RF tag.
  • the RF tag is placed radially inward from the maximum tire width position and radially outward from the bead core of the bead portion. This improves the durability of the RF tag, and communication between the RF tag and the reader is less likely to be hindered by the bead core, improving the communication performance of the RF tag.
  • the RF tag may be sandwiched between the multiple rubber members that make up the side rubber.
  • the RF tag may be sandwiched between the bead filler and a member adjacent to the bead filler. In this way, the RF tag can be placed in a position where distortion is less likely to concentrate due to the placement of the bead filler. Therefore, the load on the RF tag can be reduced. This improves the durability of the RF tag.
  • the RF tag may be sandwiched between the bead filler and the carcass, for example.
  • the portion of the carcass that sandwiches the RF tag together with the bead filler may be located on the outside in the tire width direction relative to the bead filler, or may be located on the inside in the tire width direction.
  • the bead filler may also have a portion that is located adjacent to the side rubber. In such a case, the RF tag may be disposed by being sandwiched between the bead filler and the side rubber. Furthermore, the bead filler may have a portion disposed adjacent to the rubber chafer. In such a case, the RF tag may be disposed by being sandwiched between the bead filler and the rubber chafer.
  • the RF tag may be sandwiched between the stiffener and a member adjacent to the stiffener. In this way, the RF tag can be placed in a position where the stiffener makes it difficult for distortion to concentrate. Therefore, the load on the RF tag can be reduced. This improves the durability of the RF tag.
  • the RF tag may be sandwiched between the stiffener and the side rubber, for example.
  • the RF tag may also be sandwiched between the stiffener and the carcass, for example.
  • the part of the carcass that sandwiches the RF tag together with the stiffener may be located on the outside in the tire width direction relative to the stiffener, or may be located on the inside in the tire width direction.
  • the stiffener may have a part that is located adjacent to the rubber chafer. In this case, the RF tag may be sandwiched between the stiffener and the rubber chafer. The stiffener may have a portion adjacent to the hat rubber on the outer side in the tire width direction. In this case, the RF tag may be sandwiched between the stiffener and the hat rubber.
  • the stiffener may be composed of a plurality of rubber members having different hardness.
  • the RF tag may be sandwiched between a plurality of rubber members constituting the stiffener.
  • the RF tag may be sandwiched between the hat rubber and a member adjacent to the hat rubber.
  • the RF tag may be sandwiched between, for example, the hat rubber and the carcass ply. In this way, the impact on the RF tag can be mitigated by the hat rubber. Therefore, the durability of the RF tag can be improved.
  • the RF tag may be arranged, for example, sandwiched between the rubber chafer and the side rubber. In this way, the RF tag can be arranged in a position where distortion is less likely to be concentrated due to the placement of the rubber chafer. This makes it possible to reduce the load on the RF tag. This makes it possible to improve the durability of the RF tag.
  • the RF tag may be arranged, for example, sandwiched between the rubber chafer and the carcass. In this way, it makes it possible to reduce the load on the RF tag due to impacts and damage from the rim. This makes it possible to improve the durability of the RF tag.
  • the RF tag may be sandwiched between the nylon chafer and another member adjacent to the nylon chafer on the outer or inner side in the tire width direction. In this way, the position of the RF tag is less likely to fluctuate when the tire deforms. Therefore, the load applied to the RF tag when the tire deforms can be reduced. This improves the durability of the RF tag.
  • the nylon chafer may have a portion adjacent to the rubber chafer, for example, on the outer side in the tire width direction. In such a case, the RF tag may be sandwiched between the nylon chafer and the rubber chafer.
  • the nylon chafer may have a portion adjacent to the side rubber, for example, on the outer side in the tire width direction.
  • the RF tag may be sandwiched between the nylon chafer and the side rubber.
  • the nylon chafer may have a portion adjacent to the stiffener, for example, on the inner side in the tire width direction.
  • the RF tag may be sandwiched between the nylon chafer and the stiffener.
  • the nylon chafer may have a portion adjacent to the hat rubber, for example, on the inner side in the tire width direction.
  • the RF tag may be disposed by being sandwiched between the nylon chafer and the hat rubber.
  • the nylon chafer may have a portion adjacent to the carcass, for example, on the inner side in the tire width direction.
  • the RF tag may be disposed by being sandwiched between the nylon chafer and the carcass.
  • the nylon chafer may have a portion adjacent to the wire chafer, for example, on the inner side in the tire width direction.
  • the RF tag may be disposed by being sandwiched between the nylon chafer and the wire chafer. In this way, the RF tag may be disposed by being sandwiched between the nylon chafer and another member adjacent to the outer side or inner side of the nylon chafer in the tire width direction.
  • the load applied to the RF tag due to impact or damage from the outside of the tire in the tire width direction can be further reduced. This can further improve the durability of the RF tag.
  • the RF tag may be sandwiched between the wire chafer and another adjacent member on the inside or outside of the wire chafer in the tire width direction. This makes it difficult for the position of the RF tag to fluctuate when the tire deforms. This reduces the load applied to the RF tag when the tire deforms. This improves the durability of the RF tag.
  • the other member adjacent to the wire chafer on the inside or outside of the tire width direction may be, for example, a rubber member such as a rubber chafer.
  • the other member adjacent to the wire chafer on the inside or outside of the tire width direction may be, for example, a carcass.
  • a belt reinforcing layer may be further provided on the radially outer side of the belt.
  • the belt reinforcing layer may be formed by winding a cord made of polyethylene terephthalate in a continuous spiral shape in the tire circumferential direction.
  • the cord may be adhesive-treated under a tension of 6.9 ⁇ 10 ⁇ 2 N/tex or more, and may have an elastic modulus of 2.5 mN/dtex ⁇ % or more at a load of 29.4 N measured at 160° C.
  • the belt reinforcing layer may be disposed so as to cover the entire belt or to cover only both ends of the belt.
  • the winding density per unit width of the belt reinforcing layer may differ depending on the position in the width direction. In this way, road noise and flat spots can be reduced without reducing high-speed durability.
  • the method for manufacturing a pneumatic tire of this embodiment is a method for manufacturing a pneumatic tire 50 incorporating a communication device 10, and the communication device 10 has an antenna portion (second antenna 2), and the antenna portion has a portion (extension portion 22) in which a predetermined shape is repeatedly arranged in the extension direction while folding back and forth at an apex in a direction perpendicular to the extension direction.
  • the manufacturing method of the pneumatic tire of the present embodiment includes a step of covering the antenna portion with rubber in a state in which tension is applied to the outer side of the extension direction of the antenna portion (see FIG. 8).
  • tension is applied to the two extension portions 22 extending on one side and the other side, respectively, on the outer side of the extension direction, which is a direction away from the exterior body 3.
  • the manufacturing method of the pneumatic tire of this embodiment includes a step of covering the antenna portion 22 with rubber while applying tension to the outside in the extension direction of the antenna portion 22 (see FIG. 8), so that the pneumatic tire is completed with the antenna portion 22 pulled outward in the extension direction.
  • the compressive force when a compressive force is applied to the extension portion 22 of the built-in communication unit 10, the compressive force can be alleviated by the tensile force, which is the residual stress, and failure of the antenna portion due to buckling can be suppressed.
  • the durability of the antenna portion of the communication device can be improved.
  • the tension applied to the outside of the extension direction of the antenna part 22 is 50 to 200 N.
  • the tension applied to the outside of the extension direction of the antenna part 22 is 50 to 200 N.
  • Another aspect of the method for manufacturing a pneumatic tire is a method for manufacturing a pneumatic tire with a built-in communication device, and includes a step of expanding the tire with the extension direction of the antenna portion set to the tire circumferential direction.
  • the communication device has an antenna portion, and the antenna portion has a portion in which a predetermined shape is repeatedly arranged in the extension direction while folding back and forth at an apex in a direction perpendicular to the extension direction.
  • the antenna portion (extension portion 22) when the tire is expanded in the above process, the antenna portion (extension portion 22) is pulled in the tire circumferential direction by the tire expansion force, and a tensile residual stress can be imparted to the antenna portion (extension portion 22) of the communication portion of the completed tire. Therefore, when a compressive force is applied to the extension portion 22 of the built-in communication portion 10 in a pneumatic tire, the compressive force can be alleviated by the tensile force, which is the residual stress, and failure of the antenna portion due to buckling can be suppressed. As described above, the manufacturing method of a pneumatic tire according to this aspect can also improve the durability of the antenna portion of a communication device.
  • the tire expansion process is preferably performed with the communication device positioned radially outward from the tire's maximum width position. This is because the rate of expansion is higher on the radially outward side of the tire, and therefore compressive residual stress can be effectively imparted to the extension portion 22 of the built-in communication unit 10.
  • the tires obtained by each of the above manufacturing methods have an antenna portion with residual stress directed outward in the extension direction of the antenna portion.
  • SDGs Sustainable Development Goals
  • 1 substrate; 2: second antenna; 3: exterior body; 10: RF tag (communication device), 11: RFID chip, 12: first antenna; 12a: outer periphery; 21: electromagnetic field coupling portion; 21a: end portion; 22: extension portion; 34: Antenna holding groove, 37: Substrate holding recess (substrate holding portion), 50: pneumatic tire, 51: bead portion, 52: sidewall portion, 53: tread portion, 54: carcass, 55: belt, CL: Tire equatorial plane

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)
  • Tyre Moulding (AREA)

Abstract

In a pneumatic tire manufacturing method of the present invention, a communication device has an antenna unit, and the antenna unit has a portion in which a predetermined shape is repeatedly arranged in an extending direction while reciprocating by being folded back at the apex in a direction perpendicular to the extending direction, the method comprising a step for covering the antenna unit with rubber with tension applied to the outside in the extending direction of the antenna unit, or a step for expanding the tire with the extending direction of the antenna unit as the circumferential direction of the tire.

Description

空気入りタイヤの製造方法Manufacturing method of pneumatic tire
 本発明は、空気入りタイヤの製造方法に関するものである。 The present invention relates to a method for manufacturing pneumatic tires.
 従来、タイヤの製造管理、出荷管理、使用履歴管理等のデータを読み書きするためのメモリ等を有するRF(Radio Frequency)タグ等の通信装置を備えた空気入りタイヤが知られている(例えば特許文献1)。このような通信装置として、アンテナ部が、延在方向に直交する方向に頂点で折り返されて往復しながら延在方向に所定の形状が繰り返し配列されてなる部分を有するものが提案されている(例えば特許文献2)。  Pneumatic tires equipped with a communication device such as an RF (Radio Frequency) tag that has a memory for reading and writing data for manufacturing management, shipping management, usage history management, etc., of the tire are known (for example, Patent Document 1). As such a communication device, a device has been proposed in which the antenna section has a portion in which a predetermined shape is repeatedly arranged in the extension direction while folding back and forth at the apex in a direction perpendicular to the extension direction (for example, Patent Document 2).
特開2016-037235号公報JP 2016-037235 A 特開2022-084145号公報JP 2022-084145 A
 本発明者らが、延在方向に直交する方向に頂点で折り返されて往復しながら延在方向に所定の形状が繰り返し配列されてなる部分を有するアンテナ部を備えた通信装置を空気入りタイヤに設けることを検討したところ、アンテナ部の耐久性が十分でない場合が生じることが判明した。 The inventors considered fitting a communication device to a pneumatic tire, which has an antenna section that has a portion in which a predetermined shape is repeatedly arranged in the extension direction while folding back and forth at an apex in a direction perpendicular to the extension direction, and found that there are cases in which the durability of the antenna section is insufficient.
 そこで、本発明は、通信装置のアンテナ部の耐久性を向上させ得る、空気入りタイヤの製造方法を提供することを目的とする。 The present invention aims to provide a method for manufacturing pneumatic tires that can improve the durability of the antenna portion of a communication device.
 本発明の要旨構成は、以下の通りである。
通信装置を内蔵した空気入りタイヤを製造する方法であって、
 前記通信装置は、アンテナ部を有し、
 前記アンテナ部は、延在方向に直交する方向に頂点で折り返されて往復しながら延在方向に所定の形状が繰り返し配列されてなる部分を有し、
 前記アンテナ部の延在方向外側に張力を与えた状態で、前記アンテナ部をゴムで被覆する工程を含むことを特徴とする、空気入りタイヤの製造方法。
The gist and configuration of the present invention are as follows.
A method for manufacturing a pneumatic tire having a built-in communication device, comprising the steps of:
The communication device has an antenna unit,
The antenna portion has a portion in which a predetermined shape is repeatedly arranged in the extension direction while being folded back and forth at a vertex in a direction perpendicular to the extension direction,
A method for manufacturing a pneumatic tire, comprising: covering the antenna portion with rubber while applying tension to the outside of the antenna portion in an extension direction.
 通信装置を内蔵した空気入りタイヤを製造する方法であって、
 前記通信装置は、アンテナ部を有し、
 前記アンテナ部は、延在方向に直交する方向に頂点で折り返されて往復しながら延在方向に所定の形状が繰り返し配列されてなる部分を有し、
 前記アンテナ部の延在方向をタイヤ周方向とした状態でタイヤを拡張する工程を含むことを特徴とする、空気入りタイヤの製造方法。
A method for manufacturing a pneumatic tire having a built-in communication device, comprising the steps of:
The communication device has an antenna unit,
The antenna portion has a portion in which a predetermined shape is repeatedly arranged in the extension direction while being folded back and forth at a vertex in a direction perpendicular to the extension direction,
A method for manufacturing a pneumatic tire, comprising: expanding the tire with the extension direction of the antenna portion aligned in the tire circumferential direction.
 本発明によれば、通信装置のアンテナ部の耐久性を向上させ得る、空気入りタイヤの製造方法を提供することができる。 The present invention provides a method for manufacturing a pneumatic tire that can improve the durability of the antenna portion of a communication device.
RFタグの平面図である。FIG. 2 is a plan view of the RF tag. RFタグの斜視図である。FIG. 外装体の蓋部を外した状態のRFタグの斜視図である。2 is a perspective view of the RF tag with the lid of the exterior body removed. FIG. RFタグの分解斜視図である。FIG. 第2アンテナの平面図である。FIG. 4 is a plan view of a second antenna. RFタグの一部断面図である。FIG. 2 is a partial cross-sectional view of the RF tag. 空気入りタイヤのタイヤ幅方向断面図(半部)である。1 is a cross-sectional view (half) of a pneumatic tire in the tire width direction. アンテナ部に張力を付与する様子を模式的に示した図である。11 is a diagram showing a schematic diagram of a state in which tension is applied to an antenna part. FIG.
 以下、本発明の実施形態について、図面を参照して詳細に例示説明する。 Below, an embodiment of the present invention will be described in detail with reference to the drawings.
<通信装置>
 先に、本実施形態の空気入りタイヤの製造方法は、通信装置を内蔵した空気入りタイヤを製造する方法であるので、先に通信装置について説明する。
<Communication Device>
Since the method for manufacturing a pneumatic tire according to the present embodiment is a method for manufacturing a pneumatic tire having a built-in communication device, the communication device will be described first.
[通信装置]
 図1は、通信装置10の平面図である。通信装置は、「RFタグ」ということがある。図2は、RFタグ10の斜視図である。図3は、外装体の蓋部を外した状態のRFタグ10の斜視図である。図4は、RFタグ10の分解斜視図である。図5は、第2アンテナ2の平面図である。図6は、RFタグ10の一部断面図である。図6は、図2のI-I断面図である。
[Communication device]
Fig. 1 is a plan view of a communication device 10. A communication device is sometimes called an "RF tag." Fig. 2 is a perspective view of the RF tag 10. Fig. 3 is a perspective view of the RF tag 10 with the cover of the exterior body removed. Fig. 4 is an exploded perspective view of the RF tag 10. Fig. 5 is a plan view of the second antenna 2. Fig. 6 is a partial cross-sectional view of the RF tag 10. Fig. 6 is a cross-sectional view taken along line II of Fig. 2.
 図1および図2に示すように、RFタグ10は、基板1と、第2アンテナ2と、外装体3とを備える。外装体3の主面31a(図3参照)の長手方向(図1における左右方向)をX方向という。X方向のうち一方向(図1における右方向)を+X方向という。X方向のうち他方向(図1における左方向)を-X方向という。外装体3の主面31a(図3参照)の短手方向をY方向という。Y方向は、主面31aに沿う面内においてX方向に直交する。Y方向のうち一方向(図1における上方向)を+Y方向という。Y方向のうち他方向(図1 における下方向)を-Y方向という。外装体3の主面31aに直交する方向をZ方向という。Z方向は、X方向およびY方向に直交する。Z方向から見ることを平面視という。Z軸とは、Z方向に沿う中心軸である。 As shown in Figs. 1 and 2, the RF tag 10 includes a substrate 1, a second antenna 2, and an exterior body 3. The longitudinal direction (left-right direction in Fig. 1) of the main surface 31a (see Fig. 3) of the exterior body 3 is called the X direction. One direction of the X direction (right direction in Fig. 1) is called the +X direction. The other direction of the X direction (left direction in Fig. 1) is called the -X direction. The short-side direction of the main surface 31a (see Fig. 3) of the exterior body 3 is called the Y direction. The Y direction is perpendicular to the X direction in a plane along the main surface 31a. One direction of the Y direction (upward in Fig. 1) is called the +Y direction. The other direction of the Y direction (downward in Fig. 1) is called the -Y direction. The direction perpendicular to the main surface 31a of the exterior body 3 is called the Z direction. The Z direction is perpendicular to the X direction and the Y direction. Viewing from the Z direction is called planar view. The Z axis is the central axis along the Z direction.
 図3に示すように、基板1は、RFIDチップ11と、第1アンテナ12と、基材13とを備える。基板1には、RFIDチップ11と第1アンテナ12とが設けられている。 As shown in FIG. 3, the substrate 1 includes an RFID chip 11, a first antenna 12, and a base material 13. The substrate 1 is provided with the RFID chip 11 and the first antenna 12.
 基材13は、板状に形成されている。平面視における基材13の形状は、特に限定されないが、少なくとも外周縁13aの一部が湾曲形状であることが好ましい。湾曲形状は、例えば、楕円弧状、円弧状、高次曲線状(例えば二次曲線状)などである。高次曲線状は、放物線状、双曲線状などである。平面視における基材13の外形は、例えば、楕円形状、円形状、長円形状(レーストラック形状)などであってよい。平面視における基材13の外形は、非円形状が望ましい。本実施形態では、基材13は、楕円形状とされている。基材13は、長径方向をX方向に向けた姿勢とされている。基材13としては、ガラスエポキシ樹脂基板、セラミックス、プラスチックフィルムなどが使用できる。 The substrate 13 is formed in a plate shape. The shape of the substrate 13 in plan view is not particularly limited, but it is preferable that at least a part of the outer periphery 13a is curved. The curved shape is, for example, an elliptical arc shape, a circular arc shape, or a high-order curve shape (e.g., a quadratic curve shape). The high-order curve shape is, for example, a parabola shape, a hyperbola shape, etc. The outer shape of the substrate 13 in plan view may be, for example, an elliptical shape, a circular shape, an oval shape (a racetrack shape), etc. It is preferable that the outer shape of the substrate 13 in plan view is non-circular. In this embodiment, the substrate 13 is elliptical. The substrate 13 is oriented so that the major axis direction faces the X direction. The substrate 13 may be a glass epoxy resin substrate, a ceramic, a plastic film, or the like.
 RFIDチップ11は、第1アンテナ12および第2アンテナ2を介して非接触にて情報の書き込みおよび読み出しが可能である。RFIDチップ11は、基材13に実装されている。 The RFID chip 11 allows for contactless writing and reading of information via the first antenna 12 and the second antenna 2. The RFID chip 11 is mounted on a substrate 13.
 第1アンテナ12は、例えば、基材13の一方の面に形成された導電層である。導電層は、例えば、導電性箔、メッキ層、導電インク層などで構成される。導電性箔は、例えば、銅、銀、金、白金、アルミニウムなどで構成される金属箔である。導電性箔は、エッチングなどによって所定の形状に形成される。メッキ層は、例えば、銅、銀、金、白金、アルミニウムなどの金属で構成される。導電インク層は、導電インクを用いて印刷などにより形成される。導電インクは、金属、カーボン材料などで形成される導電性粒子を含む。 The first antenna 12 is, for example, a conductive layer formed on one surface of the substrate 13. The conductive layer is, for example, composed of a conductive foil, a plating layer, a conductive ink layer, etc. The conductive foil is, for example, a metal foil composed of copper, silver, gold, platinum, aluminum, etc. The conductive foil is formed into a predetermined shape by etching or the like. The plating layer is, for example, composed of a metal such as copper, silver, gold, platinum, aluminum, etc. The conductive ink layer is formed by printing or the like using a conductive ink. The conductive ink contains conductive particles formed of a metal, carbon material, etc.
 第1アンテナ12は、ループ状に形成されている。第1アンテナ12は、例えば、基材1 3の外周縁13aに沿う湾曲形状を有する。第1アンテナ12は、楕円形状のループ状に形成されている。第1アンテナ12は、RFID チップ11に電気的に接続されている。 The first antenna 12 is formed in a loop shape. The first antenna 12 has, for example, a curved shape that follows the outer peripheral edge 13a of the substrate 13. The first antenna 12 is formed in an elliptical loop shape. The first antenna 12 is electrically connected to the RFID chip 11.
 第2アンテナ2は、ブースター用のアンテナである。第2アンテナ2は、例えば、線状体である。第2アンテナ2は、例えば、スチール、ステンレス鋼、銅、銅合金などの金属で形成されている。第2アンテナ2は、例えば、真鍮メッキ鋼線で形成することができる。第2アンテナ2は、基板1とは別体とされている。なお、第2アンテナ2は線状体であるが、第2アンテナは、例えば、板状体であってもよい。 The second antenna 2 is an antenna for the booster. The second antenna 2 is, for example, a linear body. The second antenna 2 is formed of a metal such as steel, stainless steel, copper, or a copper alloy. The second antenna 2 can be formed of, for example, a brass-plated steel wire. The second antenna 2 is separate from the substrate 1. Although the second antenna 2 is a linear body, the second antenna may be, for example, a plate-shaped body.
 第2アンテナ2は、電磁界結合部21と、一対の延出部22とを備える。電磁界結合部21は、湾曲形状を有する。「湾曲形状」とは、急峻な屈曲部がなく、滑らかに曲がる形状である。湾曲形状としては、例えば、楕円弧状、円弧状、高次曲線状(例えば二次曲線状)などがある。「高次曲線状」としては、放物線状、双曲線状などがある。電磁界結合部21は、半楕円形状とされている。詳しくは、電磁界結合部21は、楕円形の一方の頂点(長軸と交わる頂点)から他方の頂点(長軸と交わる頂点)に至る半楕円形状である。 The second antenna 2 comprises an electromagnetic field coupling portion 21 and a pair of extension portions 22. The electromagnetic field coupling portion 21 has a curved shape. A "curved shape" is a shape that curves smoothly without any sharp bends. Examples of curved shapes include an elliptical arc shape, a circular arc shape, and a higher-order curve shape (e.g., a quadratic curve shape). Examples of a "higher-order curve shape" include a parabola shape and a hyperbola shape. The electromagnetic field coupling portion 21 is in a semi-elliptical shape. More specifically, the electromagnetic field coupling portion 21 is in a semi-elliptical shape that extends from one vertex of the ellipse (the vertex that intersects with the major axis) to the other vertex (the vertex that intersects with the major axis).
 電磁界結合部21は、平面視において、基板1の少なくとも一部を囲む形状とされる。電磁界結合部21は、楕円形状の基板1の一方の頂点(長軸と交わる頂点)から他方の頂点(長軸と交わる頂点)に至る範囲(+Y方向側の半周範囲)を囲む。 The electromagnetic field coupling portion 21 is shaped to surround at least a portion of the substrate 1 in a plan view. The electromagnetic field coupling portion 21 surrounds the area (half the circumference in the +Y direction) from one vertex (the vertex intersecting with the long axis) of the elliptical substrate 1 to the other vertex (the vertex intersecting with the long axis).
 電磁界結合部21は、平面視において、第1アンテナ12の外周縁12aに沿う湾曲形状(例えば、楕円弧状)とされている。電磁界結合部21と外周縁12aとの離間距離は、ほぼ一定である。電磁界結合部21は、平面視において、基板1の外周縁13aの外側に、外周縁13aに近接して位置する。電磁界結合部21は、平面視において、外周縁13aに沿う形状とされる。電磁界結合部21と外周縁13aとの離間距離は、ほぼ一定である。 The electromagnetic field coupling portion 21 has a curved shape (e.g., an elliptical arc shape) that follows the outer peripheral edge 12a of the first antenna 12 in a plan view. The distance between the electromagnetic field coupling portion 21 and the outer peripheral edge 12a is approximately constant. The electromagnetic field coupling portion 21 is located outside the outer peripheral edge 13a of the substrate 1 and close to the outer peripheral edge 13a in a plan view. The electromagnetic field coupling portion 21 has a shape that follows the outer peripheral edge 13a in a plan view. The distance between the electromagnetic field coupling portion 21 and the outer peripheral edge 13a is approximately constant.
 電磁界結合部21は、非接触で第1アンテナ12と電磁界結合する。電磁界結合とは、例えば、電界結合と磁界結合のうち一方である。電磁界結合部21の長さ方向に直交する断面の形状は、例えば、円形状である(図6参照)。 The electromagnetic field coupling portion 21 is electromagnetically coupled to the first antenna 12 in a non-contact manner. The electromagnetic field coupling is, for example, either electric field coupling or magnetic field coupling. The shape of a cross section perpendicular to the longitudinal direction of the electromagnetic field coupling portion 21 is, for example, circular (see FIG. 6).
 一対の延出部22は、電磁界結合部21の一方および他方の端部21aからそれぞれ延出する。図5に示すように、一対の延出部22のうち一方である第1延出部22Aは、電磁界結合部21の-X方向の端部21aから、蛇行しつつ-X方向に延出する。一対の延出部22のうち他方である第2延出部22Bは、電磁界結合部21の+X方向の端部21aから、蛇行しつつ+X方向に延出する。 The pair of extension portions 22 extend from one and the other end 21a of the electromagnetic field coupling portion 21, respectively. As shown in FIG. 5, the first extension portion 22A, which is one of the pair of extension portions 22, extends in the -X direction from the -X direction end 21a of the electromagnetic field coupling portion 21 while meandering. The second extension portion 22B, which is the other of the pair of extension portions 22, extends in the +X direction from the +X direction end 21a of the electromagnetic field coupling portion 21 while meandering.
 延出部22の平面視形状は、例えば、メアンダ(蛇行)形状、波状、ジグザグ形状などである。延出部22は、メアンダ形状を有する。 The planar shape of the extension portion 22 is, for example, a meandering shape, a wavy shape, a zigzag shape, etc. The extension portion 22 has a meandering shape.
 図4に示すように、延出部22は、複数の直線部23と、複数の折り返し部24とを備える。直線部23は、Y方向に沿う直線状とされている。複数の直線部23は、X方向に間隔をおいて配置されている。折り返し部24は、隣り合う直線部23の端部どうしを連結する。折り返し部24は、湾曲形状(例えば、円弧形状)を有する。 As shown in FIG. 4, the extension portion 22 has a plurality of straight portions 23 and a plurality of folded portions 24. The straight portions 23 are linearly shaped along the Y direction. The straight portions 23 are arranged at intervals in the X direction. The folded portions 24 connect the ends of adjacent straight portions 23. The folded portions 24 have a curved shape (e.g., an arc shape).
 複数の直線部23のうち最も電磁界結合部21に近い直線部23を「第1直線部23A」という。複数の直線部23のうち2番目に電磁界結合部21に近い直線部23を「第2直線部23B」という。複数の直線部23のうち3番目に電磁界結合部21に近い直線部23 を「第3直線部23C」という。第1直線部23Aと第2直線部23Bとを連結する折り返し部24を「第1折り返し部24A」という。第2直線部23Bと第3直線部23Cとを連結する折り返し部24を「第2折り返し部24B」という。 Of the multiple straight line portions 23, the straight line portion 23 closest to the electromagnetic field coupling portion 21 is referred to as the "first straight line portion 23A." Of the multiple straight line portions 23, the straight line portion 23 second closest to the electromagnetic field coupling portion 21 is referred to as the "second straight line portion 23B." Of the multiple straight line portions 23, the straight line portion 23 third closest to the electromagnetic field coupling portion 21 is referred to as the "third straight line portion 23C." The fold portion 24 connecting the first straight line portion 23A and the second straight line portion 23B is referred to as the "first fold portion 24A." The fold portion 24 connecting the second straight line portion 23B and the third straight line portion 23C is referred to as the "second fold portion 24B."
 第1直線部23Aは、電磁界結合部21の端部21aから-Y方向に延出する。第1折り返し部24Aは、第1直線部23Aの-Y方向の端部から湾曲して延び、第2直線部23 Bの-Y方向の端部に達する。延出部22のうち、第1直線部23Aと第1折り返し部2 4Aの一部とは外装体3内にあるが、延出部22のそれ以外の部分は、外装体3の外に延出している(図3参照) 。 The first straight portion 23A extends in the -Y direction from the end 21a of the electromagnetic field coupling portion 21. The first folded portion 24A extends in a curved manner from the -Y direction end of the first straight portion 23A and reaches the -Y direction end of the second straight portion 23B. Of the extension portion 22, the first straight portion 23A and a portion of the first folded portion 24A are inside the exterior body 3, but the remaining portion of the extension portion 22 extends outside the exterior body 3 (see Figure 3).
 図2に示すように、外装体3は、板状の本体部31と、板状の蓋部32とを備える。外装体3は、全体として板状とされている。本体部31および蓋部32は、例えば、樹脂で形成される。樹脂としては、ナイロン6,6などのポリアミド樹脂;ポリエチレンテレフタレート(PET)などのポリエステル樹脂;ポリエチレンなどのポリオレフィン樹脂;ポリフッ化ビニルなどのポリフッ化エチレン系樹脂;ポリ塩化ビニルなどのビニル重合体;ポリメタクリル酸メチルなどのアクリル系樹脂等が挙げられる。 As shown in FIG. 2, the exterior body 3 includes a plate-shaped main body 31 and a plate-shaped lid 32. The exterior body 3 is generally plate-shaped. The main body 31 and the lid 32 are formed of, for example, resin. Examples of resins include polyamide resins such as nylon 6,6; polyester resins such as polyethylene terephthalate (PET); polyolefin resins such as polyethylene; polyethylene fluoride-based resins such as polyvinyl fluoride; vinyl polymers such as polyvinyl chloride; and acrylic resins such as polymethyl methacrylate.
 図4に示すように、本体部31は、平面視において矩形状とされている。本体部31の一方の面である主面31aには、基板保持凹部37(基板保持部)と、アンテナ保持溝34と、一対の側部凹所35が形成されている。基板保持凹部37は、基板保持凸部33によって形成される。基板保持凹部37は、基板保持凸部33によって囲まれた凹部である。 As shown in FIG. 4, the main body 31 has a rectangular shape in a plan view. A board holding recess 37 (board holding portion), an antenna holding groove 34, and a pair of side recesses 35 are formed on the main surface 31a, which is one surface of the main body 31. The board holding recess 37 is formed by the board holding protrusions 33. The board holding recess 37 is a recess surrounded by the board holding protrusions 33.
 基板保持凸部33 は、環状のリブ状突起である。基板保持凸部33は、基板1の外周縁13aに沿う湾曲形状(例えば、楕円形状)とされている。基板保持凸部33 は、主面31aから+Z方向に突出する。基板保持凸部33の長さ方向に直交する断面の形状は、例えば矩形状である。基板保持凸部33は、平面視において、第1アンテナ12の外周縁12aに沿う湾曲形状(例えば、楕円形状)とされている。 The board holding protrusion 33 is an annular rib-shaped protrusion. The board holding protrusion 33 has a curved shape (e.g., an elliptical shape) that fits along the outer peripheral edge 13a of the board 1. The board holding protrusion 33 protrudes from the main surface 31a in the +Z direction. The shape of a cross section perpendicular to the length direction of the board holding protrusion 33 is, for example, rectangular. In a plan view, the board holding protrusion 33 has a curved shape (e.g., an elliptical shape) that fits along the outer peripheral edge 12a of the first antenna 12.
 基板保持凹部37は、基板1を保持する。基板保持凹部37は、基板1の外周縁13aに沿う形状(例えば、楕円形状)とされている。基板保持凹部37の内形寸法(内径)は、基板1の外形寸法(外径)とほぼ同じ、または基板1の外形寸法(外径)よりわずかに大きい。基板保持凹部37は、平面視において基板1と相似形である。 The substrate holding recess 37 holds the substrate 1. The substrate holding recess 37 has a shape (e.g., an elliptical shape) that follows the outer peripheral edge 13a of the substrate 1. The inner dimension (inner diameter) of the substrate holding recess 37 is approximately the same as the outer dimension (outer diameter) of the substrate 1 or is slightly larger than the outer dimension (outer diameter) of the substrate 1. The substrate holding recess 37 has a similar shape to the substrate 1 in a plan view.
 基板1および基板保持凹部37 は、非円形状(例えば、楕円形状)であると、基板1がZ軸周りに傾斜するのを規制し、基板1の正しい姿勢を保つことができる。そのため、第1アンテナ12と電磁界結合部21との電磁界結合を維持することができる。 If the substrate 1 and the substrate holding recess 37 are non-circular (e.g., elliptical), they can prevent the substrate 1 from tilting around the Z axis and maintain the correct posture of the substrate 1. This makes it possible to maintain the electromagnetic coupling between the first antenna 12 and the electromagnetic field coupling portion 21.
 アンテナ保持溝34は、第2アンテナ2の電磁界結合部21を収容する(図3および図6 参照)。アンテナ保持溝34は、基板保持凸部33の外側に、基板保持凸部33に近接して形成されている。アンテナ保持溝34は、平面視において、基板保持凸部33に沿う形状とされる。アンテナ保持溝34は、平面視において、第1アンテナ12の外周縁12aに沿う湾曲形状(例えば、楕円弧状)とされている。アンテナ保持溝34は、平面視において、基板1の外周縁13aに沿う湾曲形状(例えば、楕円弧状)とされている。アンテナ保持溝34は、平面視において、半楕円形状とされている。詳しくは、アンテナ保持溝34は、楕円形の一方の頂点(長軸と交わる頂点)から他方の頂点(長軸と交わる頂点)に至る半楕円形状である。 The antenna holding groove 34 accommodates the electromagnetic field coupling portion 21 of the second antenna 2 (see Figures 3 and 6). The antenna holding groove 34 is formed outside the substrate holding protrusion 33 and close to the substrate holding protrusion 33. The antenna holding groove 34 is shaped to follow the substrate holding protrusion 33 in a plan view. The antenna holding groove 34 is curved (e.g., elliptical) along the outer periphery 12a of the first antenna 12 in a plan view. The antenna holding groove 34 is curved (e.g., elliptical) along the outer periphery 13a of the substrate 1 in a plan view. The antenna holding groove 34 is semi-elliptical in a plan view. More specifically, the antenna holding groove 34 is semi-elliptical from one vertex of the ellipse (the vertex intersecting with the long axis) to the other vertex (the vertex intersecting with the long axis).
 アンテナ保持溝34は、平面視において、基板1の少なくとも一部を囲む形状とされる。アンテナ保持溝34は、楕円形状の基板1の一方の頂点(長軸と交わる頂点)から他方の頂点(長軸と交わる頂点)に至る範囲(+Y方向側の半周範囲)を囲む。 The antenna holding groove 34 is shaped to surround at least a portion of the substrate 1 in a plan view. The antenna holding groove 34 surrounds the area (half the circumference in the +Y direction) from one vertex (the vertex intersecting with the long axis) of the elliptical substrate 1 to the other vertex (the vertex intersecting with the long axis).
 図6に示すように、アンテナ保持溝34の長さ方向に直交する断面は、例えば、矩形状である。アンテナ保持溝34の幅(内形寸法)W1は、電磁界結合部21の外径(外形寸法) D1より大である。幅W1と外径D1との差は、例えば、0.01mm~1mm(好ましくは0.05mm~0.2mm)とすることができる。アンテナ保持溝34の幅W1が電磁界結合部21の外径D1より大であるため、電磁界結合部21は、線径方向(例えば、Y方向)に変位可能な状態でアンテナ保持溝34に収容される。「線径方向」は、電磁界結合部21の長さ方向に直交する方向である。電磁界結合部21は、アンテナ保持溝34に対して長さ方向にも変位可能である。 As shown in FIG. 6, the cross section perpendicular to the longitudinal direction of the antenna holding groove 34 is, for example, rectangular. The width (inner dimension) W1 of the antenna holding groove 34 is larger than the outer diameter (outer dimension) D1 of the electromagnetic field coupling portion 21. The difference between the width W1 and the outer diameter D1 can be, for example, 0.01 mm to 1 mm (preferably 0.05 mm to 0.2 mm). Since the width W1 of the antenna holding groove 34 is larger than the outer diameter D1 of the electromagnetic field coupling portion 21, the electromagnetic field coupling portion 21 is accommodated in the antenna holding groove 34 in a state in which it can be displaced in the radial direction (for example, the Y direction). The "radial direction" is the direction perpendicular to the longitudinal direction of the electromagnetic field coupling portion 21. The electromagnetic field coupling portion 21 can also be displaced in the longitudinal direction relative to the antenna holding groove 34.
 アンテナ保持溝34の深さは、アンテナ保持溝34の底面34aから蓋部32(天面38a)までの高さ(内形寸法)H1が、電磁界結合部21の外径D1より大となるように定められる。高さH1と外径D1との差は、例えば、0.01mm~1mm(好ましくは0.05mm~0.2mm)とすることができる。アンテナ保持溝34の高さH1が電磁界結合部21の外径D1より大であるため、電磁界結合部21は、線径方向(例えば、Z方向)に変位可能な状態でアンテナ保持溝34に収容される。 The depth of the antenna holding groove 34 is determined so that the height (inner dimension) H1 from the bottom surface 34a of the antenna holding groove 34 to the lid portion 32 (top surface 38a) is greater than the outer diameter D1 of the electromagnetic field coupling portion 21. The difference between the height H1 and the outer diameter D1 can be, for example, 0.01 mm to 1 mm (preferably 0.05 mm to 0.2 mm). Because the height H1 of the antenna holding groove 34 is greater than the outer diameter D1 of the electromagnetic field coupling portion 21, the electromagnetic field coupling portion 21 is accommodated in the antenna holding groove 34 in a state in which it can be displaced in the wire diameter direction (for example, the Z direction).
 図4に示すように、側部凹所35は、主面31aの一方および他方の側部に形成されている。側部凹所35は、本体部31のX方向の側端縁31bを含む領域に形成されている。側部凹所35の内周縁35aは、Y方向に沿う第1直線部35bと、湾曲部35cと、X方向に沿う第2直線部35dとを有する。 As shown in FIG. 4, the side recesses 35 are formed on one and the other side of the main surface 31a. The side recesses 35 are formed in an area including the side edge 31b in the X direction of the main body 31. The inner peripheral edge 35a of the side recess 35 has a first straight portion 35b along the Y direction, a curved portion 35c, and a second straight portion 35d along the X direction.
 第1直線部35bは、アンテナ保持溝34の内周縁の端部を始点として-Y方向に延びる部分である。湾曲部35cは、第1直線部35bの先端から、X方向に対する傾斜角度が小さくなりつつ延出する部分である。第2直線部35dは、湾曲部35cの先端からX方向に沿って側端縁31bに向かう部分である。 The first straight portion 35b is a portion that extends in the -Y direction starting from the end of the inner peripheral edge of the antenna holding groove 34. The curved portion 35c is a portion that extends from the tip of the first straight portion 35b while the inclination angle with respect to the X direction becomes smaller. The second straight portion 35d is a portion that extends from the tip of the curved portion 35c along the X direction toward the side edge 31b.
 図3に示すように、側部凹所35は、平面視において、第2アンテナ2の第1直線部23 Aと、第1折り返し部24Aの一部と、を包含する。第1直線部23Aは、第1直線部35b(図4参照)に近接している。第1折り返し部24Aは、湾曲部35c(図4参照)に近接している。側部凹所35は、第2アンテナ2の所定の長さ範囲(第1直線部23Aと、第1折り返し部24Aの一部)の少なくとも一部を収容する。 As shown in FIG. 3, the side recess 35 includes the first straight portion 23A and a portion of the first folded portion 24A of the second antenna 2 in a plan view. The first straight portion 23A is adjacent to the first straight portion 35b (see FIG. 4). The first folded portion 24A is adjacent to the curved portion 35c (see FIG. 4). The side recess 35 accommodates at least a portion of a predetermined length range of the second antenna 2 (the first straight portion 23A and a portion of the first folded portion 24A).
 図2に示すように、側部凹所35はY方向に十分な距離があるため、側端縁31bには、Y方向(主面31aに沿う方向)に延びるスリット状の側端開口36が形成される。第2アンテナ2は、側端開口36を通して外装体3の外に延出している。図4に示すように、本体部31の+Y方向の端縁31cには、X方向に位置を違えて2つの係止凹部39が形成されている。本体部31の-Y方向の端縁31dにも、X方向に位置を違えて2つの係止凹部39が形成されている。 As shown in Figure 2, the side recess 35 is spaced a sufficient distance in the Y direction, so that the side edge 31b has a slit-shaped side end opening 36 extending in the Y direction (direction along the main surface 31a). The second antenna 2 extends out of the exterior body 3 through the side end opening 36. As shown in Figure 4, two locking recesses 39 are formed at different positions in the X direction on the +Y direction edge 31c of the main body 31. Two locking recesses 39 are also formed at different positions in the X direction on the -Y direction edge 31d of the main body 31.
 図2に示すように、蓋部32は、平面視において矩形状とされている。蓋部32は、本体部31と同形とされ、本体部31の主面31aに対向して設置されている。蓋部32は、平面視において、本体部31の主面31aに重なるように設置されている。 As shown in FIG. 2, the lid portion 32 has a rectangular shape in a plan view. The lid portion 32 has the same shape as the main body portion 31 and is placed opposite the main surface 31a of the main body portion 31. The lid portion 32 is placed so as to overlap the main surface 31a of the main body portion 31 in a plan view.
 図6に示すように、蓋部32の対向面32aは、本体部31の主面31aに対向する面である。対向面32aには、位置決め溝38が形成されている。位置決め溝38は、環状の溝である。位置決め溝38の長さ方向に直交する断面の形状は、例えば矩形状である。 As shown in FIG. 6, the opposing surface 32a of the lid portion 32 is a surface that faces the main surface 31a of the main body portion 31. A positioning groove 38 is formed in the opposing surface 32a. The positioning groove 38 is an annular groove. The shape of a cross section perpendicular to the longitudinal direction of the positioning groove 38 is, for example, rectangular.
 位置決め溝38は、基板保持凸部33およびアンテナ保持溝34に応じた湾曲形状(例えば、楕円形状)とされている。位置決め溝38は、平面視において、基板保持凸部33およびアンテナ保持溝34を一括して包含する幅を有する。位置決め溝38の天面38aの一部は、アンテナ保持溝34の底面34aに対向する。 The positioning groove 38 has a curved shape (e.g., an elliptical shape) that corresponds to the board holding protrusion 33 and the antenna holding groove 34. In a plan view, the positioning groove 38 has a width that collectively encompasses the board holding protrusion 33 and the antenna holding groove 34. A portion of the top surface 38a of the positioning groove 38 faces the bottom surface 34a of the antenna holding groove 34.
 図2に示すように、蓋部32の+Y方向の端縁32cには、X方向に位置を違えて2つの係止凸部40が形成されている。蓋部32の-Y方向の端縁32dにも、X方向に位置を違えて2つの係止凸部40が形成されている。 As shown in FIG. 2, two locking protrusions 40 are formed at different positions in the X direction on the +Y edge 32c of the lid 32. Two locking protrusions 40 are also formed at different positions in the X direction on the -Y edge 32d of the lid 32.
 係止凸部40は、先端に係止爪部(図示略)が形成されている。係止凸部40は、本体部31の係止凹部39に挿入される。係止凸部40の係止爪部は、本体部31に係止する。これにより、蓋部32は、本体部31に着脱自在に結合される。 The locking protrusion 40 has a locking claw portion (not shown) formed at its tip. The locking protrusion 40 is inserted into the locking recess 39 of the main body 31. The locking claw portion of the locking protrusion 40 locks into the main body 31. This allows the lid 32 to be detachably connected to the main body 31.
 外装体3は、第2アンテナ2に対して固定されていない。すなわち、外装体3は、第2アンテナ2に対して非固定である。 The exterior body 3 is not fixed to the second antenna 2. In other words, the exterior body 3 is not fixed to the second antenna 2.
 RFタグ10は、例えば、ゴム、樹脂などで構成される成形品に設置することができる。例えば、RFタグ10は、成形品に埋設することができる。成形品は、例えば、弾性体であり、弾性変形可能である。成形品に伸び、曲げなどの変形が生じた場合、第2アンテナ2に、外力が作用する可能性がある。例えば、延出部22に、X方向に沿って外装体3から離れる方向の引張力が作用することが考えられる。延出部22には、X方向に沿って外装体3に近づく方向の力が作用することも考えられる。本実施形態のように、RFタグ10をタイヤに設置する際には、RFタグ10を、ゴム製のシートから成る固定部材(ラミネーションゴム)に内包するようにして設けることができる。これにより、RFタグ10の破損を確実に防止できるだけでなく、RFタグ10を固定部材で内包した後に、RFIDタグ10をタイヤに組み込むようにすれば、RFIDタグ10を容易にかつ破損のおそれなくタイヤ1に組み込むことができる。 The RF tag 10 can be installed in a molded product made of, for example, rubber, resin, etc. For example, the RF tag 10 can be embedded in the molded product. The molded product is, for example, an elastic body and can be elastically deformed. When the molded product is stretched, bent, or otherwise deformed, an external force may act on the second antenna 2. For example, a tensile force may act on the extension 22 in the X direction away from the exterior body 3. A force may also act on the extension 22 in the X direction toward the exterior body 3. As in this embodiment, when the RF tag 10 is installed in a tire, the RF tag 10 can be provided so as to be encapsulated in a fixing member (lamination rubber) made of a rubber sheet. This not only reliably prevents damage to the RF tag 10, but also allows the RFID tag 10 to be easily incorporated into the tire 1 without risk of damage if the RF tag 10 is encapsulated in a fixing member before being incorporated into the tire.
[RFタグが奏する効果]
 RFタグ10では、第2アンテナ2の電磁界結合部21が線径方向(電磁界結合部21の長さ方向に直交する方向)に変位可能な状態でアンテナ保持溝34に収容される(図6参照)。電磁界結合部21が変位可能であるため、第2アンテナ2に外力が作用した場合に、第2アンテナ2における応力を緩和することができる。よって、第2アンテナ2の破損を起こりにくくすることができる。これに対し、第2アンテナが外装体に固定されている場合には、第2アンテナに外力が作用すると、外装体から延出する第2アンテナの基端部(根元部分)に応力が集中し、この箇所で破損が起こりやすくなる可能性がある。
[Effects of RF tags]
In the RF tag 10, the electromagnetic field coupling portion 21 of the second antenna 2 is accommodated in the antenna holding groove 34 in a state in which it is displaceable in the radial direction (the direction perpendicular to the length direction of the electromagnetic field coupling portion 21) (see FIG. 6). Since the electromagnetic field coupling portion 21 is displaceable, when an external force acts on the second antenna 2, the stress in the second antenna 2 can be alleviated. Therefore, the second antenna 2 can be made less likely to be damaged. In contrast, when the second antenna is fixed to the exterior body, when an external force acts on the second antenna, stress is concentrated on the base end (root portion) of the second antenna extending from the exterior body, and this portion may be more likely to be damaged.
 第2アンテナ2の電磁界結合部21は、第1アンテナ12の外周縁12aに沿う形状を有するため、電磁界結合部21を第1アンテナ12に十分に電磁界結合させることができる。アンテナ保持溝34は、第1アンテナ12の外周縁12aに沿って形成されているため、第2アンテナ2の電磁界結合部21を、第1アンテナ12に沿って配置することができる。よって、電磁界結合部21を第1アンテナ12に十分に電磁界結合させることができる。 The electromagnetic field coupling portion 21 of the second antenna 2 has a shape that follows the outer peripheral edge 12a of the first antenna 12, so that the electromagnetic field coupling portion 21 can be sufficiently electromagnetically coupled to the first antenna 12. The antenna holding groove 34 is formed along the outer peripheral edge 12a of the first antenna 12, so that the electromagnetic field coupling portion 21 of the second antenna 2 can be positioned along the first antenna 12. Therefore, the electromagnetic field coupling portion 21 can be sufficiently electromagnetically coupled to the first antenna 12.
 第2アンテナ2の電磁界結合部21は、湾曲形状(例えば、半楕円形状)を有するため、第2アンテナ2に外力が作用した場合でも、矩形状の場合に比べ、応力集中が生じにくい。よって、第2アンテナ2の破損を起こりにくくすることができる。これに対し、電磁界結合部が矩形状である場合には、第2アンテナに外力が作用すると、角部(屈曲部)に応力が集中し、この箇所で破損が起こりやすくなる可能性がある。 Since the electromagnetic field coupling portion 21 of the second antenna 2 has a curved shape (e.g., a semi-elliptical shape), even when an external force acts on the second antenna 2, stress concentration is less likely to occur compared to when the shape is rectangular. This makes it possible to make the second antenna 2 less likely to be damaged. In contrast, if the electromagnetic field coupling portion is rectangular, when an external force acts on the second antenna, stress will concentrate at the corners (bends), and damage may be more likely to occur at these points.
 アンテナ保持溝34は、基板1の外周縁13aに沿って形成されているため、第2アンテナ2の電磁界結合部21を、第1アンテナ12に沿って配置することができる。よって、電磁界結合部21を第1アンテナ12に十分に電磁界結合させることができる。 The antenna holding groove 34 is formed along the outer peripheral edge 13a of the substrate 1, so that the electromagnetic field coupling portion 21 of the second antenna 2 can be positioned along the first antenna 12. This allows the electromagnetic field coupling portion 21 to be sufficiently electromagnetically coupled to the first antenna 12.
 外装体3は、本体部31と、主面31aに重ねられる蓋部32とを備える。基板保持凹部37およびアンテナ保持溝34は、主面31aに形成されている。そのため、蓋部32によって、基板1および第2アンテナ2が本体部31から脱落するのを阻止することができる。よって、基板1および第2アンテナ2を外装体3に安定的に保持することができる。 The exterior body 3 comprises a main body portion 31 and a lid portion 32 that is overlaid on the main surface 31a. The board holding recess 37 and the antenna holding groove 34 are formed on the main surface 31a. Therefore, the lid portion 32 can prevent the board 1 and the second antenna 2 from falling off the main body portion 31. Therefore, the board 1 and the second antenna 2 can be stably held in the exterior body 3.
 RFタグ10では、外装体3の側端縁31bに、Y方向(主面31aに沿う方向)に延びるスリット状の側端開口36が形成されている。そのため、第2アンテナ2は外装体3に対してY方向に位置変動できる。したがって、第2アンテナ2に外力が作用した場合に、変位により応力を緩和しやすくなる。よって、第2アンテナ2の破損を起こりにくくすることができる。 In the RF tag 10, a slit-shaped side end opening 36 extending in the Y direction (direction along the main surface 31a) is formed on the side end edge 31b of the exterior body 3. Therefore, the position of the second antenna 2 can be moved in the Y direction relative to the exterior body 3. Therefore, when an external force acts on the second antenna 2, the stress is easily alleviated by the displacement. This makes it possible to make the second antenna 2 less likely to be damaged.
 例えば、RFタグ10では、基板1の外周縁13aおよび第1アンテナ12の外周縁12aは全周にわたって湾曲形状であるが、基板および第1アンテナは、外周縁の一部が湾曲形状であってもよい。外装体3は、本体部31と蓋部32とを備えるが、外装体の構成は特に限定されない。例えば、外装体は、蓋部を備えていなくてもよい。外装体は板状に限らず、他の形状(ブロック状等)であってもよい。 For example, in the RF tag 10, the outer periphery 13a of the substrate 1 and the outer periphery 12a of the first antenna 12 are curved all around, but the substrate and the first antenna may have only a portion of their outer periphery curved. The exterior body 3 includes a main body portion 31 and a lid portion 32, but the configuration of the exterior body is not particularly limited. For example, the exterior body does not have to include a lid portion. The exterior body is not limited to being plate-shaped, and may have other shapes (such as a block shape).
 上記のように、通信装置10は、アンテナ部を有する。アンテナ部は、延在方向に直交する方向に頂点で折り返されて往復しながら延在方向に(所定のピッチ間隔で)所定の形状が繰り返し配列されてなる部分(延出部22)を有する。当該部分(延出部22)の形状は、具体的には、蛇行形状、波状、又はジグザグ状が例示される。 As described above, the communication device 10 has an antenna section. The antenna section has a portion (extension section 22) in which a predetermined shape is repeatedly arranged (at a predetermined pitch interval) in the extension direction while folding back and forth at an apex in a direction perpendicular to the extension direction. Specific examples of the shape of this portion (extension section 22) include a serpentine shape, a wave shape, and a zigzag shape.
<空気入りタイヤ>
 次に、製造する空気入りタイヤについて説明する。図7は、空気入りタイヤのタイヤ幅方向断面図である。図7は、タイヤ赤道面CLを境界とするタイヤ幅方向の一方の半部のみを示しているが、他方の半部についても同様の構成である。一方で、空気入りタイヤは、タイヤ赤道面CLを境界として、非対称な部分を有していても良い。
<Pneumatic tires>
Next, the pneumatic tire to be manufactured will be described. Fig. 7 is a cross-sectional view in the tire width direction of the pneumatic tire. Fig. 7 shows only one half in the tire width direction bounded by the tire equatorial plane CL, but the other half has a similar configuration. On the other hand, the pneumatic tire may have an asymmetric portion bounded by the tire equatorial plane CL.
 この空気入りタイヤ50は、乗用車用タイヤであるが、他の用途に適したタイヤ(例えば重荷重用タイヤ)としても良い。 This pneumatic tire 50 is a passenger vehicle tire, but it may also be a tire suitable for other uses (e.g., a heavy-duty tire).
 タイヤの内部構造は特には限定されないが、以下の構成を例示することができる。このタイヤ50は、一対のビード部51と、ビード部51に連なる一対のサイドウォール部52と、一対のサイドウォール部52に連なるトレッド部53とを備えている。ビード部51には、ビードコア51aが埋設され、ビードコア51aのタイヤ径方向外側にはビードフィラ51bが配置されている。また、このタイヤ50は、一対のビード部50間をトロイダル状に跨る、1枚以上のカーカスプライからなるカーカス54を備えている。カーカスプライは、ラジアル配列のカーカスコードをゴム被覆してなる。本例では、カーカスコードは、スチールコードからなる。カーカスプライの枚数は、特に限定されない。また、カーカスコードの径は、特には限定されないが、0.5~1.5mmとすることができる。 The internal structure of the tire is not particularly limited, but the following configuration can be exemplified. The tire 50 has a pair of bead portions 51, a pair of sidewall portions 52 connected to the bead portions 51, and a tread portion 53 connected to the pair of sidewall portions 52. A bead core 51a is embedded in the bead portion 51, and a bead filler 51b is arranged on the tire radial outer side of the bead core 51a. The tire 50 also has a carcass 54 consisting of one or more carcass plies that spans the pair of bead portions 50 in a toroidal shape. The carcass ply is made of radially arranged carcass cords coated with rubber. In this example, the carcass cords are made of steel cords. The number of carcass plies is not particularly limited. The diameter of the carcass cord is not particularly limited, but can be 0.5 to 1.5 mm.
 カーカス54のクラウン部のタイヤ径方向外側には、1層以上(図示例で2層)のベルト層55a、55bからなるベルト55が配置され、ベルト55のタイヤ径方向外側にはトレッドゴムが配置されている。ベルト55のベルトコードは、本例では、有機繊維のコードである。ベルトコードは、タイヤ周方向に対して、例えば30~60°の傾斜角度で傾斜することができる。ベルト層の層数や、ベルト幅は特に限定されない。 A belt 55 consisting of one or more belt layers 55a, 55b (two layers in the illustrated example) is arranged on the radially outer side of the crown portion of the carcass 54, and tread rubber is arranged on the radially outer side of the belt 55. In this example, the belt cord of the belt 55 is an organic fiber cord. The belt cord can be inclined at an inclination angle of, for example, 30 to 60 degrees with respect to the circumferential direction of the tire. There are no particular limitations on the number of belt layers or the belt width.
 このタイヤ50は、通信装置としてのRFタグ10を備えている。RFタグは、ICチップとアンテナとを備える。RFタグは、例えば、タイヤを構成する同種又は異種の複数の部材の間の位置に挟み込まれて配置されてよい。このようにすることで、タイヤ生産時にRFタグを取り付け易く、RFタグを備えるタイヤの生産性を向上させることができる。本例では、RFタグは、例えば、ビードフィラと、ビードフィラに隣接するその他の部材と、の間に挟み込まれて配置されてよい。RFタグは、タイヤを構成するいずれかの部材内に埋設されていてもよい。このようにすることで、タイヤを構成する複数の部材の間の位置に挟み込まれて配置される場合と比較して、RFタグに加わる負荷を低減できる。これにより、RFタグの耐久性を向上させることができる。本例では、RFタグは、例えば、トレッドゴム、サイドゴム等のゴム部材内に埋設されてよい。RFタグは、タイヤ幅方向断面視でのタイヤ外面に沿う方向であるペリフェリ長さ方向において、剛性の異なる部材の境界となる位置に、配置されないことが好ましい。このようにすることで、RFタグは、剛性段差に基づき歪みが集中し易い位置に、配置されない。そのため、RFタグに加わる負荷を低減できる。これにより、RFタグの耐久性を向上させることができる。本例では、RFタグは、例えば、タイヤ幅方向断面視でカーカスの端部と、このカーカスの端部に隣接する部材(例えばサイドゴム等)と、の境界となる位置に配置されないことが好ましい。RFタグの数は特に限定されない。タイヤは、1個のみのRFタグを備えてもよく、2個以上のRFタグを備えてもよい。ここでは、通信装置の一例として、RFタグを例示説明しているが、RFタグとは異なる通信装置であってもよい。 This tire 50 is equipped with an RF tag 10 as a communication device. The RF tag includes an IC chip and an antenna. The RF tag may be, for example, sandwiched between a plurality of members of the same or different types that constitute the tire. In this way, the RF tag can be easily attached during tire production, and the productivity of tires equipped with an RF tag can be improved. In this example, the RF tag may be, for example, sandwiched between a bead filler and another member adjacent to the bead filler. The RF tag may be embedded in any of the members that constitute the tire. In this way, the load applied to the RF tag can be reduced compared to when the RF tag is sandwiched between a plurality of members that constitute the tire. This can improve the durability of the RF tag. In this example, the RF tag may be, for example, embedded in a rubber member such as a tread rubber or a side rubber. It is preferable that the RF tag is not placed at a position that is a boundary between members with different rigidity in the periphery length direction, which is a direction along the outer surface of the tire in a cross-sectional view in the tire width direction. In this way, the RF tag is not placed in a position where distortion is likely to concentrate due to a rigidity step. Therefore, the load applied to the RF tag can be reduced. This can improve the durability of the RF tag. In this example, it is preferable that the RF tag is not placed at a position that is, for example, a boundary between the end of the carcass and a member adjacent to the end of the carcass (e.g., a side rubber, etc.) in a cross-sectional view in the tire width direction. The number of RF tags is not particularly limited. A tire may include only one RF tag, or may include two or more RF tags. Here, an RF tag is illustrated as an example of a communication device, but a communication device other than the RF tag may also be used.
 RFタグは、例えば、タイヤのトレッド部に配置されてよい。このようにすることで、RFタグは、タイヤのサイドカットにより損傷しない。RFタグは、例えば、タイヤ幅方向において、トレッド中央部に配置されてよい。トレッド中央部は、トレッド部において撓みが集中し難い位置である。このようにすることで、RFタグに加わる負荷を低減できる。これにより、RFタグの耐久性を向上させることができる。また、タイヤ幅方向でのタイヤの両外側からのRFタグとの通信性に差が生じることを抑制できる。本例では、RFタグは、例えば、タイヤ幅方向において、タイヤ赤道面を中心としてトレッド幅の1/2の範囲内に配置されてよい。RFタグは、例えば、タイヤ幅方向において、トレッド端部に配置されてもよい。RFタグと通信するリーダーの位置が予め決まっている場合には、RFタグは、例えば、このリーダーに近い一方側のトレッド端部に配置されてよい。本例では、RFタグは、例えば、タイヤ幅方向において、トレッド端を外端とする、トレッド幅の1/4の範囲内に配置されてよい。 The RF tag may be placed, for example, in the tread portion of the tire. In this way, the RF tag is not damaged by a side cut of the tire. The RF tag may be placed, for example, in the center of the tread in the tire width direction. The center of the tread is a position in the tread portion where bending is unlikely to concentrate. In this way, the load applied to the RF tag can be reduced. This improves the durability of the RF tag. In addition, it is possible to suppress the occurrence of differences in communication with the RF tag from both outer sides of the tire in the tire width direction. In this example, the RF tag may be placed, for example, within a range of 1/2 the tread width centered on the tire equatorial plane in the tire width direction. The RF tag may be placed, for example, at the tread end in the tire width direction. If the position of the reader that communicates with the RF tag is predetermined, the RF tag may be placed, for example, at the tread end on one side closer to the reader. In this example, the RF tag may be placed, for example, within a range of 1/4 the tread width in the tire width direction, with the tread end as the outer end.
 RFタグは、例えば、ビード部間に跨る、1枚以上のカーカスプライを含むカーカスより、タイヤ内腔側に配置されてよい。このようにすることで、タイヤの外部から加わる衝撃や、サイドカットや釘刺さりなどの損傷に対して、RFタグが損傷し難くなる。一例として、RFタグは、カーカスのタイヤ内腔側の面に密着して配置されてよい。別の一例として、カーカスよりタイヤ内腔側に別の部材がある場合に、RFタグは、例えば、カーカスと、このカーカスよりタイヤ内腔側に位置する別の部材と、の間に配置されてもよい。カーカスよりタイヤ内腔側に位置する別の部材としては、例えば、タイヤ内面を形成するインナーライナーが挙げられる。別の一例として、RFタグは、タイヤ内腔に面するタイヤ内面に取り付けられていてもよい。RFタグが、タイヤ内面に取り付けられる構成とすることで、RFタグのタイヤへの取り付け、及び、RFタグの点検・交換が行い易い。つまり、RFタグの取り付け性及びメンテナンス性を向上させることができる。また、RFタグが、タイヤ内面に取り付けられることで、RFタグをタイヤ内に埋設する構成と比較して、RFタグがタイヤ故障の核となることを防ぐことができる。また、カーカスが、複数枚のカーカスプライを備え、複数枚のカーカスプライが重ねられている位置がある場合に、RFタグは、重ねられているカーカスプライの間に配置されていてもよい。 The RF tag may be arranged, for example, on the tire cavity side of the carcass, which includes one or more carcass plies that span between the bead portions. In this way, the RF tag is less likely to be damaged by impacts applied from outside the tire, or damage such as side cuts and nail penetration. As an example, the RF tag may be arranged in close contact with the surface of the carcass on the tire cavity side. As another example, when there is another member on the tire cavity side of the carcass, the RF tag may be arranged, for example, between the carcass and another member located on the tire cavity side of the carcass. An example of another member located on the tire cavity side of the carcass is an inner liner that forms the tire inner surface. As another example, the RF tag may be attached to the tire inner surface facing the tire cavity. By configuring the RF tag to be attached to the tire inner surface, it is easy to attach the RF tag to the tire and to inspect and replace the RF tag. In other words, the ease of attachment and maintenance of the RF tag can be improved. In addition, by attaching the RF tag to the inner surface of the tire, the RF tag can be prevented from becoming the core of tire failure, compared to a configuration in which the RF tag is embedded in the tire. In addition, if the carcass has multiple carcass plies and there is a position where multiple carcass plies are overlapped, the RF tag may be positioned between the overlapped carcass plies.
 RFタグは、例えば、タイヤのトレッド部で、1枚以上のベルトプライを含むベルトより、タイヤ径方向の外側に配置されてよい。一例として、RFタグは、ベルトに対してタイヤ径方向の外側で、当該ベルトに密着して配置されてよい。また、別の一例として、補強ベルト層を備える場合、当該補強ベルト層に対してタイヤ径方向の外側で、当該補強ベルト層に密着して配置されてよい。また、別の一例として、RFタグは、ベルトよりタイヤ径方向の外側で、トレッドゴム内に埋設されていてもよい。RFタグが、タイヤのトレッド部で、ベルトよりタイヤ径方向の外側に配置されることで、タイヤ径方向でのタイヤの外側からのRFタグとの通信が、ベルトにより阻害され難い。そのため、タイヤ径方向でのタイヤの外側からのRFタグとの通信性を向上させることができる。また、RFタグは、例えば、タイヤのトレッド部で、ベルトよりタイヤ径方向の内側に配置されていてもよい。このようにすることで、RFタグのタイヤ径方向の外側がベルトに覆われるため、RFタグは、トレッド面からの衝撃や釘刺さりなどに対して損傷し難くなる。この一例として、RFタグは、タイヤのトレッド部で、ベルトと、当該ベルトよりタイヤ径方向の内側に位置するカーカスと、の間に配置されてよい。また、ベルトが、複数枚のベルトプライを備える場合に、RFタグは、タイヤのトレッド部で、任意の2枚のベルトプライの間に配置されてよい。このようにすることで、RFタグのタイヤ径方向の外側が1枚以上のベルトプライに覆われるため、RFタグは、トレッド面からの衝撃や釘刺さりなどに対して損傷し難くなる。 The RF tag may be arranged, for example, in the tread portion of the tire, on the tire radial outside of the belt including one or more belt plies. As an example, the RF tag may be arranged on the tire radial outside of the belt and in close contact with the belt. As another example, when a reinforcing belt layer is provided, the RF tag may be arranged on the tire radial outside of the reinforcing belt layer and in close contact with the reinforcing belt layer. As another example, the RF tag may be embedded in the tread rubber on the tire radial outside of the belt. By arranging the RF tag on the tire radial outside of the belt in the tread portion of the tire, communication with the RF tag from the outside of the tire in the tire radial direction is less likely to be hindered by the belt. Therefore, it is possible to improve communication with the RF tag from the outside of the tire in the tire radial direction. Also, the RF tag may be arranged, for example, in the tire tread portion of the tire, on the tire radial inside of the belt. In this way, the tire radial outside of the RF tag is covered by the belt, so that the RF tag is less likely to be damaged by impacts from the tread surface or nail penetration. As one example, the RF tag may be placed in the tread portion of the tire, between the belt and the carcass located radially inward of the belt. Also, if the belt has multiple belt plies, the RF tag may be placed in the tread portion of the tire, between any two belt plies. In this way, the outer side of the RF tag in the tire radial direction is covered by one or more belt plies, making the RF tag less susceptible to damage from impacts from the tread surface or nail penetration.
 トラック・バス用タイヤの場合、RFタグは、例えば、クッションゴムと、トレッドゴムとの間やクッションゴムと、サイドゴムと、の間に挟み込まれて配置されてよい。このようにすることで、RFタグへの衝撃を、クッションゴムにより緩和できる。そのため、RFタグの耐久性を向上させることができる。また、RFタグは、例えば、クッションゴム内に埋設されていてもよい。更に、クッションゴムは、隣接する同種又は異種の複数のゴム部材から構成されてよい。かかる場合に、RFタグは、クッションゴムを構成する複数のゴム部材の間に挟み込まれて配置されてもよい。 In the case of truck and bus tires, the RF tag may be arranged, for example, sandwiched between the cushion rubber and the tread rubber, or between the cushion rubber and the side rubber. In this way, the impact on the RF tag can be mitigated by the cushion rubber. This improves the durability of the RF tag. The RF tag may also be embedded, for example, in the cushion rubber. Furthermore, the cushion rubber may be made up of multiple adjacent rubber members of the same or different types. In such cases, the RF tag may be arranged, sandwiched between the multiple rubber members that make up the cushion rubber.
 RFタグは、例えば、タイヤのサイドウォール部又はビード部の位置に配置されてよい。RFタグは、例えば、RFタグと通信可能なリーダーに対して近い一方側のサイドウォール部又は一方側のビード部に配置されてよい。このようにすることで、RFタグとリーダーとの通信性を高めることができる。一例として、RFタグは、カーカスと、サイドゴムと、の間やトレッドゴムとサイドゴムと、の間に配置されてよい。RFタグは、例えば、タイヤ径方向において、タイヤ最大幅となる位置と、トレッド面の位置と、の間に配置されてよい。このようにすることで、RFタグがタイヤ最大幅となる位置よりタイヤ径方向の内側に配置される構成と比較して、タイヤ径方向でのタイヤの外側からのRFタグとの通信性を高めることができる。RFタグは、例えば、タイヤ最大幅となる位置よりタイヤ径方向の内側に配置されていてもよい。このようにすることで、RFタグは、剛性の高いビード部近傍に配置される。そのため、RFタグに加わる負荷を低減できる。これにより、RFタグの耐久性を向上させることができる。一例として、RFタグは、ビードコアとタイヤ径方向又はタイヤ幅方向で隣接する位置に配置されてよい。ビードコア近傍は歪みが集中し難い。そのため、RFタグに加わる負荷を低減できる。これにより、RFタグの耐久性を向上させることができる。特に、RFタグは、タイヤ最大幅となる位置よりタイヤ径方向の内側であって、かつ、ビード部のビードコアよりタイヤ径方向の外側の位置に配置されることが好ましい。このようにすることで、RFタグの耐久性を向上させることができるとともに、RFタグとリーダーとの通信が、ビードコアにより阻害され難く、RFタグの通信性を高めることができる。また、サイドゴムがタイヤ径方向に隣接する同種又は異種の複数のゴム部材から構成されている場合に、RFタグは、サイドゴムを構成する複数のゴム部材の間に挟み込まれて配置されていてもよい。 The RF tag may be arranged, for example, at the sidewall or bead of the tire. The RF tag may be arranged, for example, at one sidewall or one bead that is closer to a reader that can communicate with the RF tag. In this way, the communication between the RF tag and the reader can be improved. As an example, the RF tag may be arranged between the carcass and the side rubber, or between the tread rubber and the side rubber. The RF tag may be arranged, for example, in the tire radial direction, between the position where the tire is at its maximum width and the position of the tread surface. In this way, the communication with the RF tag from the outside of the tire in the tire radial direction can be improved compared to a configuration in which the RF tag is arranged on the inner side in the tire radial direction from the position where the tire is at its maximum width. The RF tag may be arranged, for example, on the inner side in the tire radial direction from the position where the tire is at its maximum width. In this way, the RF tag is arranged near the bead portion that has high rigidity. Therefore, the load applied to the RF tag can be reduced. This can improve the durability of the RF tag. As an example, the RF tag may be arranged at a position adjacent to the bead core in the tire radial direction or tire width direction. Distortion is less likely to concentrate near the bead core. This reduces the load on the RF tag. This improves the durability of the RF tag. In particular, it is preferable that the RF tag is placed radially inward from the maximum tire width position and radially outward from the bead core of the bead portion. This improves the durability of the RF tag, and communication between the RF tag and the reader is less likely to be hindered by the bead core, improving the communication performance of the RF tag. In addition, when the side rubber is composed of multiple rubber members of the same or different types adjacent in the tire radial direction, the RF tag may be sandwiched between the multiple rubber members that make up the side rubber.
 RFタグは、ビードフィラと、このビードフィラに隣接する部材と、の間に挟み込まれて配置されてよい。このようにすることで、ビードフィラを配置することにより歪みが集中し難くなった位置に、RFタグを配置することができる。そのため、RFタグに加わる負荷を低減できる。これにより、RFタグの耐久性を向上させることができる。RFタグは、例えば、ビードフィラと、カーカスと、の間に挟み込まれて配置されていてもよい。カーカスのうちビードフィラと共にRFタグを挟み込む部分は、ビードフィラに対してタイヤ幅方向の外側に位置してもよく、タイヤ幅方向の内側に位置してもよい。カーカスのうちビードフィラと共にRFタグを挟み込む部分が、ビードフィラに対してタイヤ幅方向の外側に位置する場合には、タイヤ幅方向のタイヤの外側からの衝撃や損傷により、RFタグに加わる負荷を、より低減できる。これにより、RFタグの耐久性を、より向上させることができる。また、ビードフィラは、サイドゴムと隣接して配置されている部分を備えてもよい。かかる場合に、RFタグは、ビードフィラと、サイドゴムと、の間に挟み込まれて配置されていてもよい。更に、ビードフィラは、ゴムチェーファーと隣接して配置されている部分を備えてもよい。かかる場合に、RFタグは、ビードフィラと、ゴムチェーファーと、の間に挟み込まれて配置されていてもよい。 The RF tag may be sandwiched between the bead filler and a member adjacent to the bead filler. In this way, the RF tag can be placed in a position where distortion is less likely to concentrate due to the placement of the bead filler. Therefore, the load on the RF tag can be reduced. This improves the durability of the RF tag. The RF tag may be sandwiched between the bead filler and the carcass, for example. The portion of the carcass that sandwiches the RF tag together with the bead filler may be located on the outside in the tire width direction relative to the bead filler, or may be located on the inside in the tire width direction. When the portion of the carcass that sandwiches the RF tag together with the bead filler is located on the outside in the tire width direction relative to the bead filler, the load on the RF tag due to impact or damage from the outside of the tire in the tire width direction can be further reduced. This improves the durability of the RF tag. The bead filler may also have a portion that is located adjacent to the side rubber. In such a case, the RF tag may be disposed by being sandwiched between the bead filler and the side rubber. Furthermore, the bead filler may have a portion disposed adjacent to the rubber chafer. In such a case, the RF tag may be disposed by being sandwiched between the bead filler and the rubber chafer.
 RFタグは、スティフナーと、このスティフナーに隣接する部材と、の間に挟み込まれて配置されてよい。このようにすることで、スティフナーを配置することにより歪みが集中し難くなった位置に、RFタグを配置することができる。そのため、RFタグに加わる負荷を低減できる。これにより、RFタグの耐久性を向上させることができる。RFタグは、例えば、スティフナーと、サイドゴムと、の間に挟み込まれて配置されてよい。また、RFタグは、例えば、スティフナーと、カーカスと、の間に挟み込まれて配置されていてもよい。カーカスのうちスティフナーと共にRFタグを挟み込む部分は、スティフナーに対してタイヤ幅方向の外側に位置してもよく、タイヤ幅方向の内側に位置してもよい。カーカスのうちスティフナーと共にRFタグを挟み込む部分が、スティフナーに対してタイヤ幅方向の外側に位置する場合には、タイヤ幅方向のタイヤの外側からの衝撃や損傷により、RFタグに加わる負荷を、より低減できる。これにより、RFタグの耐久性を、より向上させることができる。スティフナーは、ゴムチェーファーと隣接して配置されている部分を備えてもよい。かかる場合に、RFタグは、スティフナーと、ゴムチェーファーと、の間に挟み込まれて配置されていてもよい。スティフナーは、タイヤ幅方向の外側でハットゴムに隣接する部分を備えてもよい。かかる場合に、RFタグは、スティフナーと、ハットゴムと、の間に挟み込まれて配置されていてもよい。スティフナーは、硬さの異なる複数のゴム部材から構成されてよい。かかる場合に、RFタグは、スティフナーを構成する複数のゴム部材の間に挟み込まれて配置されていてもよい。RFタグは、ハットゴムと、このハットゴムに隣接する部材と、の間に挟み込まれて配置されてよい。RFタグは、例えば、ハットゴムと、カーカスプライと、の間に挟み込まれて配置されてよい。このようにすることで、RFタグへの衝撃を、ハットゴムにより緩和できる。そのため、RFタグの耐久性を向上させることができる。 The RF tag may be sandwiched between the stiffener and a member adjacent to the stiffener. In this way, the RF tag can be placed in a position where the stiffener makes it difficult for distortion to concentrate. Therefore, the load on the RF tag can be reduced. This improves the durability of the RF tag. The RF tag may be sandwiched between the stiffener and the side rubber, for example. The RF tag may also be sandwiched between the stiffener and the carcass, for example. The part of the carcass that sandwiches the RF tag together with the stiffener may be located on the outside in the tire width direction relative to the stiffener, or may be located on the inside in the tire width direction. When the part of the carcass that sandwiches the RF tag together with the stiffener is located on the outside in the tire width direction relative to the stiffener, the load on the RF tag due to impact or damage from the outside of the tire in the tire width direction can be further reduced. This improves the durability of the RF tag. The stiffener may have a part that is located adjacent to the rubber chafer. In this case, the RF tag may be sandwiched between the stiffener and the rubber chafer. The stiffener may have a portion adjacent to the hat rubber on the outer side in the tire width direction. In this case, the RF tag may be sandwiched between the stiffener and the hat rubber. The stiffener may be composed of a plurality of rubber members having different hardness. In this case, the RF tag may be sandwiched between a plurality of rubber members constituting the stiffener. The RF tag may be sandwiched between the hat rubber and a member adjacent to the hat rubber. The RF tag may be sandwiched between, for example, the hat rubber and the carcass ply. In this way, the impact on the RF tag can be mitigated by the hat rubber. Therefore, the durability of the RF tag can be improved.
 RFタグは、例えば、ゴムチェーファーと、サイドゴムと、の間に挟み込まれて配置されてよい。このようにすることで、ゴムチェーファーを配置することにより歪みが集中し難くなった位置に、RFタグを配置することができる。そのため、RFタグに加わる負荷を低減できる。これにより、RFタグの耐久性を向上させることができる。RFタグは、例えば、ゴムチェーファーと、カーカスと、の間に挟み込まれて配置されていてもよい。このようにすることで、リムから加わる衝撃や損傷により、RFタグに加わる負荷を低減できる。そのため、RFタグの耐久性を向上させることができる。 The RF tag may be arranged, for example, sandwiched between the rubber chafer and the side rubber. In this way, the RF tag can be arranged in a position where distortion is less likely to be concentrated due to the placement of the rubber chafer. This makes it possible to reduce the load on the RF tag. This makes it possible to improve the durability of the RF tag. The RF tag may be arranged, for example, sandwiched between the rubber chafer and the carcass. In this way, it makes it possible to reduce the load on the RF tag due to impacts and damage from the rim. This makes it possible to improve the durability of the RF tag.
 トラック・バス用タイヤの場合、RFタグは、ナイロンチェーファーと、このナイロンチェーファーのタイヤ幅方向の外側又は内側で隣接する別の部材と、の間に挟み込まれて配置されていてもよい。このようにすることで、タイヤ変形時に、RFタグの位置が変動し難くなる。そのため、タイヤ変形時にRFタグに加わる負荷を低減できる。これにより、RFタグの耐久性を向上させることができる。ナイロンチェーファーは、例えば、タイヤ幅方向外側で、ゴムチェーファーと隣接する部分を備えてもよい。かかる場合に、RFタグは、ナイロンチェーファーと、ゴムチェーファーと、の間に挟み込まれて配置されていてもよい。ナイロンチェーファーは、例えば、タイヤ幅方向外側で、サイドゴムと隣接する部分を備えてもよい。かかる場合に、RFタグは、ナイロンチェーファーと、サイドゴムと、の間に挟み込まれて配置されていてもよい。ナイロンチェーファーは、例えば、タイヤ幅方向内側で、スティフナーと隣接する部分を備えてもよい。かかる場合に、RFタグは、ナイロンチェーファーと、スティフナーと、の間に挟み込まれて配置されていてもよい。また、ナイロンチェーファーは、例えば、タイヤ幅方向内側で、ハットゴムと隣接する部分を備えてもよい。かかる場合に、RFタグは、ナイロンチェーファーと、ハットゴムと、の間に挟み込まれて配置されていてもよい。更に、ナイロンチェーファーは、例えば、タイヤ幅方向内側で、カーカスと隣接する部分を備えてもよい。かかる場合に、RFタグは、ナイロンチェーファーと、カーカスと、の間に挟み込まれて配置されていてもよい。更に、ナイロンチェーファーは、例えば、タイヤ幅方向内側で、ワイヤーチェーファーと隣接する部分を備えてもよい。かかる場合に、RFタグは、ナイロンチェーファーと、ワイヤーチェーファーと、の間に挟み込まれて配置されていてもよい。このように、RFタグは、ナイロンチェーファーと、このナイロンチェーファーのタイヤ幅方向の外側又は内側で隣接する別の部材と、の間に挟み込まれて配置されていてよい。特に、RFタグのタイヤ幅方向外側が、ナイロンチェーファーに覆われることで、タイヤ幅方向でのタイヤの外側からの衝撃や損傷により、RFタグに加わる負荷を、より低減できる。そのため、RFタグの耐久性を、より向上させることができる。 In the case of truck and bus tires, the RF tag may be sandwiched between the nylon chafer and another member adjacent to the nylon chafer on the outer or inner side in the tire width direction. In this way, the position of the RF tag is less likely to fluctuate when the tire deforms. Therefore, the load applied to the RF tag when the tire deforms can be reduced. This improves the durability of the RF tag. The nylon chafer may have a portion adjacent to the rubber chafer, for example, on the outer side in the tire width direction. In such a case, the RF tag may be sandwiched between the nylon chafer and the rubber chafer. The nylon chafer may have a portion adjacent to the side rubber, for example, on the outer side in the tire width direction. In such a case, the RF tag may be sandwiched between the nylon chafer and the side rubber. The nylon chafer may have a portion adjacent to the stiffener, for example, on the inner side in the tire width direction. In such a case, the RF tag may be sandwiched between the nylon chafer and the stiffener. Moreover, the nylon chafer may have a portion adjacent to the hat rubber, for example, on the inner side in the tire width direction. In such a case, the RF tag may be disposed by being sandwiched between the nylon chafer and the hat rubber. Furthermore, the nylon chafer may have a portion adjacent to the carcass, for example, on the inner side in the tire width direction. In such a case, the RF tag may be disposed by being sandwiched between the nylon chafer and the carcass. Furthermore, the nylon chafer may have a portion adjacent to the wire chafer, for example, on the inner side in the tire width direction. In such a case, the RF tag may be disposed by being sandwiched between the nylon chafer and the wire chafer. In this way, the RF tag may be disposed by being sandwiched between the nylon chafer and another member adjacent to the outer side or inner side of the nylon chafer in the tire width direction. In particular, by covering the outer side of the RF tag in the tire width direction with the nylon chafer, the load applied to the RF tag due to impact or damage from the outside of the tire in the tire width direction can be further reduced. This can further improve the durability of the RF tag.
 RFタグは、ワイヤーチェーファーと、このワイヤーチェーファーのタイヤ幅方向の内側又は外側で隣接する別の部材と、の間に挟み込まれて配置されていてもよい。このようにすることで、タイヤ変形時に、RFタグの位置が変動し難くなる。そのため、タイヤ変形時にRFタグに加わる負荷を低減できる。これにより、RFタグの耐久性を向上させることができる。ワイヤーチェーファーがタイヤ幅方向の内側又は外側で隣接する別の部材は、例えば、ゴムチェーファーなどのゴム部材であってよい。また、ワイヤーチェーファーがタイヤ幅方向の内側又は外側で隣接する別の部材は、例えば、カーカスであってもよい。 The RF tag may be sandwiched between the wire chafer and another adjacent member on the inside or outside of the wire chafer in the tire width direction. This makes it difficult for the position of the RF tag to fluctuate when the tire deforms. This reduces the load applied to the RF tag when the tire deforms. This improves the durability of the RF tag. The other member adjacent to the wire chafer on the inside or outside of the tire width direction may be, for example, a rubber member such as a rubber chafer. The other member adjacent to the wire chafer on the inside or outside of the tire width direction may be, for example, a carcass.
 ベルトの半径方向外側にベルト補強層をさらに備えてもよい。例えば、ベルト補強層はポリエチレンテレフタレートからなるコードをタイヤ周方向に連続して螺旋状に巻回してなってもよい。ここでコードは、6.9×10-2N/tex以上の張力をかけて接着剤処理を施してなり、160℃で測定した29.4N荷重時の弾性率が2.5mN/dtex・%以上であってもよい。さらにベルト補強層はベルト全体を覆うように配置されていてもベルトの両端部のみを覆うように配置されていてもよい。さらにベルト補強層の単位幅あたりの巻き回し密度が幅方向位置で異なっていてもよい。このようにすることで、高速耐久性を低下させることなくロードノイズおよびフラットスポットを低減させることができる。 A belt reinforcing layer may be further provided on the radially outer side of the belt. For example, the belt reinforcing layer may be formed by winding a cord made of polyethylene terephthalate in a continuous spiral shape in the tire circumferential direction. Here, the cord may be adhesive-treated under a tension of 6.9×10 −2 N/tex or more, and may have an elastic modulus of 2.5 mN/dtex·% or more at a load of 29.4 N measured at 160° C. Furthermore, the belt reinforcing layer may be disposed so as to cover the entire belt or to cover only both ends of the belt. Furthermore, the winding density per unit width of the belt reinforcing layer may differ depending on the position in the width direction. In this way, road noise and flat spots can be reduced without reducing high-speed durability.
 本実施形態の空気入りタイヤの製造方法は、通信装置10を内蔵した空気入りタイヤ50を製造する方法であって、通信装置10は、アンテナ部(第2のアンテナ2)を有し、アンテナ部は、延在方向に直交する方向に頂点で折り返されて往復しながら延在方向に所定の形状が繰り返し配列されてなる部分(延出部22)を有する。 The method for manufacturing a pneumatic tire of this embodiment is a method for manufacturing a pneumatic tire 50 incorporating a communication device 10, and the communication device 10 has an antenna portion (second antenna 2), and the antenna portion has a portion (extension portion 22) in which a predetermined shape is repeatedly arranged in the extension direction while folding back and forth at an apex in a direction perpendicular to the extension direction.
 図8は、アンテナ部に張力を付与する様子を模式的に示した図である。本実施形態の空気入りタイヤの製造方法は、アンテナ部の延在方向外側に張力を与えた状態(図8参照)で、アンテナ部をゴムで被覆する工程を含む。本例では、一方側と他方側とにそれぞれ延出する2つの延出部22に対し、それぞれ外装体3から離れる方向である延在方向外側に張力を付与している。
 以下、本実施形態の空気入りタイヤの製造方法の作用効果について説明する。
8 is a schematic diagram showing how tension is applied to the antenna portion. The manufacturing method of the pneumatic tire of the present embodiment includes a step of covering the antenna portion with rubber in a state in which tension is applied to the outer side of the extension direction of the antenna portion (see FIG. 8). In this example, tension is applied to the two extension portions 22 extending on one side and the other side, respectively, on the outer side of the extension direction, which is a direction away from the exterior body 3.
Hereinafter, the effects of the method for manufacturing a pneumatic tire according to the present embodiment will be described.
 本発明者は、延在方向に直交する方向に頂点で折り返されて往復しながら延在方向に所定の形状が繰り返し配列されてなる部分を有するアンテナ部は、圧縮側(ICチップに近づく方向)の力による座屈が、故障の主な原因となっていることを突き止めた。
 本実施形態の空気入りタイヤの製造方法は、アンテナ部22の延在方向外側に張力を与えた状態(図8参照)で、アンテナ部をゴムで被覆する工程を含むため、アンテナ部22が延在方向外側に引っ張られた状態で空気入りタイヤが完成する。従って、空気入りタイヤにおいて、内蔵された通信部10の延出部22に圧縮側の力がかかった際に、残留応力である引っ張り側の力によって、圧縮側の力を緩和することができ、座屈によるアンテナ部の故障を抑制することができる。
 以上のように、本実施形態の空気入りタイヤの製造方法によれば、通信装置のアンテナ部の耐久性を向上させ得る。
The inventor has discovered that the main cause of failure of an antenna section having a portion in which a predetermined shape is repeatedly arranged in the extension direction while folding back and forth at an apex in a direction perpendicular to the extension direction, is buckling due to a force on the compression side (in the direction approaching the IC chip).
The manufacturing method of the pneumatic tire of this embodiment includes a step of covering the antenna portion 22 with rubber while applying tension to the outside in the extension direction of the antenna portion 22 (see FIG. 8), so that the pneumatic tire is completed with the antenna portion 22 pulled outward in the extension direction. Therefore, in the pneumatic tire, when a compressive force is applied to the extension portion 22 of the built-in communication unit 10, the compressive force can be alleviated by the tensile force, which is the residual stress, and failure of the antenna portion due to buckling can be suppressed.
As described above, according to the method for manufacturing a pneumatic tire of the present embodiment, the durability of the antenna portion of the communication device can be improved.
 ここで、アンテナ部22の延在方向外側に与える張力は、50~200Nであることが好ましい。50N以上とすることにより、上記の効果をより確実に得ることができ、一方で、200N以下とすることにより、引っ張りの力によるアンテナ部の故障を生じさせないようにすることができる。 Here, it is preferable that the tension applied to the outside of the extension direction of the antenna part 22 is 50 to 200 N. By making it 50 N or more, the above-mentioned effect can be obtained more reliably, while by making it 200 N or less, it is possible to prevent the antenna part from being damaged by the pulling force.
 別の態様としての空気入りタイヤの製造方法は、通信装置を内蔵した空気入りタイヤを製造する方法であって、アンテナ部の延在方向をタイヤ周方向とした状態でタイヤを拡張する工程を含む。なお、通信装置は、アンテナ部を有し、アンテナ部は、延在方向に直交する方向に頂点で折り返されて往復しながら延在方向に所定の形状が繰り返し配列されてなる部分を有する。 Another aspect of the method for manufacturing a pneumatic tire is a method for manufacturing a pneumatic tire with a built-in communication device, and includes a step of expanding the tire with the extension direction of the antenna portion set to the tire circumferential direction. The communication device has an antenna portion, and the antenna portion has a portion in which a predetermined shape is repeatedly arranged in the extension direction while folding back and forth at an apex in a direction perpendicular to the extension direction.
 この態様によれば、上記工程におけるタイヤ拡張時に、アンテナ部(延出部22)が、タイヤが拡張する力によってタイヤ周方向に引っ張られることになり、完成したタイヤの通信部のアンテナ部(延出部22)に、引っ張り側の残留応力を付与することができる。従って、空気入りタイヤにおいて、内蔵された通信部10の延出部22に圧縮側の力がかかった際に、残留応力である引っ張り側の力によって、圧縮側の力を緩和することができ、座屈によるアンテナ部の故障を抑制することができる。
 以上のように、この態様の空気入りタイヤの製造方法によっても、通信装置のアンテナ部の耐久性を向上させ得る。
According to this aspect, when the tire is expanded in the above process, the antenna portion (extension portion 22) is pulled in the tire circumferential direction by the tire expansion force, and a tensile residual stress can be imparted to the antenna portion (extension portion 22) of the communication portion of the completed tire. Therefore, when a compressive force is applied to the extension portion 22 of the built-in communication portion 10 in a pneumatic tire, the compressive force can be alleviated by the tensile force, which is the residual stress, and failure of the antenna portion due to buckling can be suppressed.
As described above, the manufacturing method of a pneumatic tire according to this aspect can also improve the durability of the antenna portion of a communication device.
 上記の態様において、タイヤを拡張する工程は、通信装置が、タイヤ最大幅位置よりもタイヤ径方向外側に位置する状態で行うことが好ましい。タイヤ径方向外側ほど拡張率が高いため、内蔵された通信部10の延出部22に圧縮側の残留応力を効果的に付与することができるからである。 In the above embodiment, the tire expansion process is preferably performed with the communication device positioned radially outward from the tire's maximum width position. This is because the rate of expansion is higher on the radially outward side of the tire, and therefore compressive residual stress can be effectively imparted to the extension portion 22 of the built-in communication unit 10.
 上記の各製造方法により得られたタイヤは、アンテナ部が、該アンテナ部の延在方向外側に向かう残留応力を有するものである。  The tires obtained by each of the above manufacturing methods have an antenna portion with residual stress directed outward in the extension direction of the antenna portion.
[国連が主導する持続可能な開発目標(SDGs)への貢献]
 持続可能な社会の実現に向けて、SDGsが提唱されている。本発明の一実施形態は「No.12_作る責任、つかう責任」および「No.13_気候変動に具体的な対策を」などに貢献する技術となり得ると考えられる。
[Contribution to the United Nations-led Sustainable Development Goals (SDGs)]
The SDGs have been proposed to realize a sustainable society. One embodiment of the present invention is considered to be a technology that can contribute to "No. 12 Responsible consumption and production" and "No. 13 Concrete measures against climate change."
1:基板、 2:第2アンテナ、 3:外装体、
10:RFタグ(通信装置)、 11:RFIDチップ、
12:第1アンテナ、 12a:外周縁、
21:電磁界結合部、 21a:端部、 22:延出部、
34:アンテナ保持溝、 37:基板保持凹部(基板保持部)、
50:空気入りタイヤ、 51:ビード部、
52:サイドウォール部、 53:トレッド部、
54;カーカス、 55:ベルト、
CL:タイヤ赤道面
1: substrate; 2: second antenna; 3: exterior body;
10: RF tag (communication device), 11: RFID chip,
12: first antenna; 12a: outer periphery;
21: electromagnetic field coupling portion; 21a: end portion; 22: extension portion;
34: Antenna holding groove, 37: Substrate holding recess (substrate holding portion),
50: pneumatic tire, 51: bead portion,
52: sidewall portion, 53: tread portion,
54: carcass, 55: belt,
CL: Tire equatorial plane

Claims (4)

  1.  通信装置を内蔵した空気入りタイヤを製造する方法であって、
     前記通信装置は、アンテナ部を有し、
     前記アンテナ部は、延在方向に直交する方向に頂点で折り返されて往復しながら延在方向に所定の形状が繰り返し配列されてなる部分を有し、
     前記アンテナ部の延在方向外側に張力を与えた状態で、前記アンテナ部をゴムで被覆する工程を含むことを特徴とする、空気入りタイヤの製造方法。
    A method for manufacturing a pneumatic tire having a built-in communication device, comprising the steps of:
    The communication device has an antenna unit,
    The antenna portion has a portion in which a predetermined shape is repeatedly arranged in the extension direction while being folded back and forth at a vertex in a direction perpendicular to the extension direction,
    A method for manufacturing a pneumatic tire, comprising: covering the antenna portion with rubber while applying tension to the outside of the antenna portion in an extension direction.
  2.  前記張力は、50~200Nである、請求項1に記載の空気入りタイヤの製造方法。 The method for manufacturing a pneumatic tire according to claim 1, wherein the tension is 50 to 200 N.
  3.  通信装置を内蔵した空気入りタイヤを製造する方法であって、
     前記通信装置は、アンテナ部を有し、
     前記アンテナ部は、延在方向に直交する方向に頂点で折り返されて往復しながら延在方向に所定の形状が繰り返し配列されてなる部分を有し、
     前記アンテナ部の延在方向をタイヤ周方向とした状態でタイヤを拡張する工程を含むことを特徴とする、空気入りタイヤの製造方法。
    A method for manufacturing a pneumatic tire having a built-in communication device, comprising the steps of:
    The communication device has an antenna unit,
    The antenna portion has a portion in which a predetermined shape is repeatedly arranged in the extension direction while being folded back and forth at a vertex in a direction perpendicular to the extension direction,
    A method for manufacturing a pneumatic tire, comprising: expanding the tire with the extension direction of the antenna portion aligned in the tire circumferential direction.
  4.  前記タイヤを拡張する工程は、前記通信装置が、タイヤ最大幅位置よりもタイヤ径方向外側に位置する状態で行う、請求項3に記載の空気入りタイヤの製造方法。 The method for manufacturing a pneumatic tire according to claim 3, wherein the tire expansion process is performed with the communication device positioned radially outward of the maximum tire width position.
PCT/JP2023/022499 2022-10-31 2023-06-16 Pneumatic tyre manufacturing method WO2024095523A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-175031 2022-10-31
JP2022175031A JP2024065929A (en) 2022-10-31 2022-10-31 Method for manufacturing pneumatic tire

Publications (1)

Publication Number Publication Date
WO2024095523A1 true WO2024095523A1 (en) 2024-05-10

Family

ID=90930103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022499 WO2024095523A1 (en) 2022-10-31 2023-06-16 Pneumatic tyre manufacturing method

Country Status (2)

Country Link
JP (1) JP2024065929A (en)
WO (1) WO2024095523A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1142915A (en) * 1997-07-30 1999-02-16 Yokohama Rubber Co Ltd:The Transponder installed tire and its manufacture
JP2006507967A (en) * 2002-06-11 2006-03-09 ソシエテ ドゥ テクノロジー ミシュラン Method of embedding a high-frequency antenna in a tire
JP2021084512A (en) * 2019-11-27 2021-06-03 横浜ゴム株式会社 Pneumatic tire

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1142915A (en) * 1997-07-30 1999-02-16 Yokohama Rubber Co Ltd:The Transponder installed tire and its manufacture
JP2006507967A (en) * 2002-06-11 2006-03-09 ソシエテ ドゥ テクノロジー ミシュラン Method of embedding a high-frequency antenna in a tire
JP2021084512A (en) * 2019-11-27 2021-06-03 横浜ゴム株式会社 Pneumatic tire

Also Published As

Publication number Publication date
JP2024065929A (en) 2024-05-15

Similar Documents

Publication Publication Date Title
JP6650767B2 (en) RFID tag built-in tire
US20100123584A1 (en) Method of embedding an electronic device in a tire
US20100122757A1 (en) Tire and electronic device assembly
US20120291936A1 (en) Embedded transponder and tire assembly and method of construction thereof
WO2024095523A1 (en) Pneumatic tyre manufacturing method
EP3991993B1 (en) Tire
WO2024095522A1 (en) Pneumatic tire and manufacturing method therefor
CN110978900B (en) Tyre for vehicle wheels
WO2024034230A1 (en) Pneumatic tire
WO2024042802A1 (en) Pneumatic tire
WO2024105921A1 (en) Tire, unvulcanized tire, and tire manufacturing method
WO2024105920A1 (en) Tire, unvulcanized tire, and tire manufacturing method
US20240351377A1 (en) Tire
WO2024053210A1 (en) Tire, uncured tire, tire manufacturing method, and rf tag
WO2024053338A1 (en) Pneumatic tire
US20230271459A1 (en) Pneumatic tire
JP2024073327A (en) Tire, unvulcanized tire, tire manufacturing method, and RF tag
WO2021241202A1 (en) Pneumatic tire
JP2021187268A (en) Pneumatic tire
JP7519961B2 (en) tire
WO2023276185A1 (en) Tire
US20240262136A1 (en) Tire
JP2024065931A (en) Pneumatic tire and manufacturing method therefor
JP2021187267A (en) Pneumatic tire
JP2024073323A (en) tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23885297

Country of ref document: EP

Kind code of ref document: A1