Nothing Special   »   [go: up one dir, main page]

WO2024034230A1 - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
WO2024034230A1
WO2024034230A1 PCT/JP2023/019792 JP2023019792W WO2024034230A1 WO 2024034230 A1 WO2024034230 A1 WO 2024034230A1 JP 2023019792 W JP2023019792 W JP 2023019792W WO 2024034230 A1 WO2024034230 A1 WO 2024034230A1
Authority
WO
WIPO (PCT)
Prior art keywords
tag
antenna
tire
carcass
shape
Prior art date
Application number
PCT/JP2023/019792
Other languages
French (fr)
Japanese (ja)
Inventor
敬俊 小野
真寿 小塩
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2024034230A1 publication Critical patent/WO2024034230A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for

Definitions

  • the present invention relates to a pneumatic tire.
  • pneumatic tires have been known that are equipped with a communication device such as an RF (Radio Frequency) tag that has a memory for reading and writing data for tire manufacturing management, shipping management, usage history management, etc.
  • a communication device such as an RF (Radio Frequency) tag that has a memory for reading and writing data for tire manufacturing management, shipping management, usage history management, etc.
  • Patent Literature 1 a communication device
  • Patent Document 2 one in which the antenna has a portion in which a predetermined shape is repeatedly arranged has been proposed (for example, Patent Document 2).
  • an object of the present invention is to provide a pneumatic tire that is equipped with a communication device and has improved durability of the antenna of the communication device.
  • the gist of the present invention is as follows.
  • a pneumatic tire comprising a carcass consisting of one or more carcass plies spanning a pair of bead portions in a toroidal manner,
  • the carcass ply is made of a radially arranged carcass cord covered with rubber
  • the pneumatic tire is provided with a communication device having an antenna,
  • the antenna has a portion in which a predetermined shape is repeatedly arranged at a pitch interval A (mm) in the extending direction while reciprocating in a direction perpendicular to the extending direction,
  • the carcass cords are arranged at a pitch interval P (mm) in the tire circumferential direction at a tire radial position where the communication device is provided,
  • the "pitch interval P" of carcass cords means the distance between the centers of adjacent carcass cords.
  • FIG. 2 is a plan view of an RF tag.
  • FIG. 2 is a perspective view of an RF tag.
  • FIG. 2 is a perspective view of the RF tag with the lid of the exterior body removed.
  • FIG. 3 is an exploded perspective view of the RF tag.
  • FIG. 3 is a plan view of the second antenna. It is a partial sectional view of an RF tag. 1 is a sectional view (half) in the tire width direction of a pneumatic tire according to an embodiment of the present invention.
  • FIG. 3 is a diagram for explaining a pitch interval P and a pitch interval A;
  • FIG. 1 is a plan view of a communication device 10. As shown in FIG. The communication device is sometimes called an "RF tag.”
  • FIG. 2 is a perspective view of the RF tag 10.
  • FIG. 3 is a perspective view of the RF tag 10 with the lid of the exterior body removed.
  • FIG. 4 is an exploded perspective view of the RF tag 10.
  • FIG. 5 is a plan view of the second antenna 2.
  • FIG. 6 is a partial cross-sectional view of the RF tag 10.
  • FIG. 6 is a sectional view taken along line II in FIG.
  • the RF tag 10 includes a substrate 1, a second antenna 2, and an exterior body 3.
  • the longitudinal direction (left-right direction in FIG. 1) of the main surface 31a (see FIG. 3) of the exterior body 3 is referred to as the X direction.
  • One of the X directions (the right direction in FIG. 1) is referred to as the +X direction.
  • the other direction (the left direction in FIG. 1) among the X directions is referred to as the -X direction.
  • the lateral direction of the main surface 31a (see FIG. 3) of the exterior body 3 is referred to as the Y direction.
  • the Y direction is perpendicular to the X direction in a plane along the main surface 31a.
  • the Z direction is orthogonal to the X direction and the Y direction. Viewing from the Z direction is called planar view.
  • the Z-axis is a central axis along the Z direction.
  • the substrate 1 includes an RFID chip 11, a first antenna 12, and a base material 13.
  • the substrate 1 is provided with an RFID chip 11 and a first antenna 12.
  • the base material 13 is formed into a plate shape.
  • the shape of the base material 13 in plan view is not particularly limited, but it is preferable that at least a part of the outer peripheral edge 13a is curved.
  • the curved shape is, for example, an elliptical arc shape, a circular arc shape, a higher order curve shape (for example, a quadratic curve shape), or the like.
  • the higher-order curved shape includes a parabolic shape, a hyperbolic shape, and the like.
  • the outer shape of the base material 13 in plan view may be, for example, an ellipse, a circle, an ellipse (racetrack shape), or the like.
  • the outer shape of the base material 13 in plan view is desirably non-circular.
  • the base material 13 has an elliptical shape.
  • the base material 13 is oriented with its major diameter direction facing the X direction.
  • the RFID chip 11 is capable of writing and reading information in a non-contact manner via the first antenna 12 and the second antenna 2.
  • RFID chip 11 is mounted on base material 13.
  • the first antenna 12 is, for example, a conductive layer formed on one surface of the base material 13.
  • the conductive layer is composed of, for example, a conductive foil, a plating layer, a conductive ink layer, or the like.
  • the conductive foil is, for example, a metal foil made of copper, silver, gold, platinum, aluminum, or the like.
  • the conductive foil is formed into a predetermined shape by etching or the like.
  • the plating layer is made of metal such as copper, silver, gold, platinum, and aluminum, for example.
  • the conductive ink layer is formed by printing or the like using conductive ink.
  • Conductive ink includes conductive particles made of metal, carbon material, or the like.
  • the first antenna 12 is formed in a loop shape.
  • the first antenna 12 has, for example, a curved shape along the outer peripheral edge 13a of the base material 13.
  • the first antenna 12 is formed in an elliptical loop shape.
  • the first antenna 12 is electrically connected to the RFID chip 11 .
  • the second antenna 2 is a booster antenna.
  • the second antenna 2 is, for example, a linear body.
  • the second antenna 2 is made of metal such as steel, stainless steel, copper, and copper alloy, for example.
  • the second antenna 2 can be formed of, for example, brass-plated steel wire.
  • the second antenna 2 is separate from the substrate 1.
  • the second antenna 2 is a linear body, the second antenna may be, for example, a plate-shaped body.
  • the second antenna 2 includes an electromagnetic field coupling section 21 and a pair of extension sections 22.
  • the electromagnetic field coupling section 21 has a curved shape.
  • a "curved shape” is a shape that curves smoothly without sharp bends. Examples of the curved shape include an elliptical arc shape, a circular arc shape, and a higher-order curve shape (for example, a quadratic curve shape). Examples of the "higher-order curved shape” include a parabolic shape and a hyperbolic shape.
  • the electromagnetic field coupling portion 21 has a semi-elliptical shape.
  • the electromagnetic field coupling portion 21 has a semi-elliptical shape extending from one apex of the ellipse (the apex that intersects with the long axis) to the other apex (the apex that intersects with the long axis).
  • the electromagnetic field coupling portion 21 has a shape that surrounds at least a portion of the substrate 1 in plan view.
  • the electromagnetic field coupling section 21 surrounds a range (a half circumference range on the +Y direction side) from one apex (the apex that intersects with the long axis) to the other apex (the apex that intersects with the long axis) of the elliptical substrate 1 .
  • the electromagnetic field coupling portion 21 has a curved shape (for example, an elliptical arc shape) along the outer peripheral edge 12a of the first antenna 12 in a plan view. The distance between the electromagnetic field coupling portion 21 and the outer peripheral edge 12a is approximately constant.
  • the electromagnetic field coupling portion 21 is located outside the outer peripheral edge 13a of the substrate 1 and close to the outer peripheral edge 13a in plan view.
  • the electromagnetic field coupling portion 21 has a shape along the outer peripheral edge 13a in plan view. The distance between the electromagnetic field coupling portion 21 and the outer peripheral edge 13a is approximately constant.
  • the electromagnetic field coupling section 21 performs electromagnetic coupling with the first antenna 12 in a non-contact manner.
  • Electromagnetic field coupling is, for example, one of electric field coupling and magnetic field coupling.
  • the shape of the cross section perpendicular to the length direction of the electromagnetic field coupling portion 21 is, for example, circular (see FIG. 6).
  • the pair of extension parts 22 extend from one end 21a and the other end 21a of the electromagnetic field coupling part 21, respectively.
  • the first extension part 22A which is one of the pair of extension parts 22, extends in the -X direction from the end 21a of the electromagnetic field coupling part 21 in the -X direction while meandering.
  • the second extending portion 22B which is the other of the pair of extending portions 22, extends in the +X direction from the end 21a of the electromagnetic field coupling portion 21 in the +X direction while meandering.
  • the shape of the extending portion 22 in plan view is, for example, a meandering shape, a wavy shape, a zigzag shape, or the like.
  • the extending portion 22 has a meander shape.
  • the extending portion 22 includes a plurality of straight portions 23 and a plurality of folded portions 24.
  • the linear portion 23 is linear along the Y direction.
  • the plurality of straight portions 23 are arranged at intervals in the X direction.
  • the folded portion 24 connects the ends of the adjacent straight portions 23.
  • the folded portion 24 has a curved shape (for example, an arc shape).
  • the straight part 23 closest to the electromagnetic field coupling part 21 is referred to as a "first straight part 23A.”
  • the second straight section 23 closest to the electromagnetic field coupling section 21 is referred to as a “second straight section 23B.”
  • the third straight portion 23 closest to the electromagnetic field coupling portion 21 is referred to as a “third straight portion 23C”.
  • the folded portion 24 connecting the first straight portion 23A and the second straight portion 23B is referred to as a “first folded portion 24A”.
  • the folded portion 24 connecting the second straight portion 23B and the third straight portion 23C is referred to as a “second folded portion 24B”.
  • the first linear portion 23A extends from the end portion 21a of the electromagnetic field coupling portion 21 in the ⁇ Y direction.
  • the first folded portion 24A extends in a curved manner from the end in the ⁇ Y direction of the first straight portion 23A, and reaches the end in the ⁇ Y direction of the second straight portion 23B.
  • the first straight portion 23A and a part of the first folded portion 24A are inside the exterior body 3, but the other portions of the extending portion 22 extend outside the exterior body 3. (See Figure 3).
  • the exterior body 3 includes a plate-shaped main body 31 and a plate-shaped lid 32.
  • the exterior body 3 has a plate shape as a whole.
  • the main body portion 31 and the lid portion 32 are made of resin, for example.
  • resins include polyamide resins such as nylon 6,6; polyester resins such as polyethylene terephthalate (PET); polyolefin resins such as polyethylene; polyfluorinated ethylene resins such as polyvinyl fluoride; vinyl polymers such as polyvinyl chloride; Examples include acrylic resins such as methyl methacrylate.
  • the main body portion 31 has a rectangular shape in plan view.
  • a substrate holding recess 37 (substrate holding portion), an antenna holding groove 34, and a pair of side recesses 35 are formed on the main surface 31a, which is one surface of the main body portion 31.
  • the substrate holding recess 37 is formed by the substrate holding protrusion 33 .
  • the substrate holding recess 37 is a recess surrounded by the substrate holding protrusion 33 .
  • the substrate holding protrusion 33 is an annular rib-like protrusion.
  • the substrate holding convex portion 33 has a curved shape (for example, an elliptical shape) along the outer peripheral edge 13a of the substrate 1.
  • the substrate holding convex portion 33 protrudes from the main surface 31a in the +Z direction.
  • the shape of the cross section perpendicular to the length direction of the substrate holding convex portion 33 is, for example, rectangular.
  • the substrate holding convex portion 33 has a curved shape (for example, an elliptical shape) along the outer peripheral edge 12a of the first antenna 12 in plan view.
  • the substrate holding recess 37 holds the substrate 1.
  • the substrate holding recess 37 has a shape (for example, an elliptical shape) along the outer peripheral edge 13a of the substrate 1.
  • the inner dimensions (inner diameter) of the substrate holding recess 37 are approximately the same as the outer dimensions (outer diameter) of the substrate 1 or slightly larger than the outer dimensions (outer diameter) of the substrate 1 .
  • the substrate holding recess 37 has a similar shape to the substrate 1 in plan view.
  • the substrate 1 and the substrate holding recess 37 have a non-circular shape (for example, an elliptical shape), it is possible to prevent the substrate 1 from tilting around the Z-axis and maintain the correct posture of the substrate 1. Therefore, the electromagnetic field coupling between the first antenna 12 and the electromagnetic field coupling section 21 can be maintained.
  • a non-circular shape for example, an elliptical shape
  • the antenna holding groove 34 accommodates the electromagnetic field coupling portion 21 of the second antenna 2 (see FIGS. 3 and 6).
  • the antenna holding groove 34 is formed on the outside of the substrate holding protrusion 33 and close to the substrate holding protrusion 33 .
  • the antenna holding groove 34 has a shape along the substrate holding convex portion 33 in plan view.
  • the antenna holding groove 34 has a curved shape (for example, an elliptical arc shape) along the outer peripheral edge 12a of the first antenna 12 in a plan view.
  • the antenna holding groove 34 has a curved shape (for example, an elliptical arc shape) along the outer peripheral edge 13a of the substrate 1 in plan view.
  • the antenna holding groove 34 has a semi-elliptical shape in plan view.
  • the antenna holding groove 34 has a semi-elliptical shape extending from one apex of the ellipse (the apex that intersects with the long axis) to the other apex (the apex that intersects with the long axis).
  • the antenna holding groove 34 has a shape that surrounds at least a portion of the substrate 1 in plan view.
  • the antenna holding groove 34 surrounds a range (a half circumference range on the +Y direction side) from one apex (the apex that intersects with the long axis) of the elliptical substrate 1 to the other apex (the apex that intersects with the long axis).
  • the cross section of the antenna holding groove 34 perpendicular to the length direction is, for example, rectangular.
  • the width (inner dimension) W1 of the antenna holding groove 34 is larger than the outer diameter (outer dimension) D1 of the electromagnetic field coupling portion 21.
  • the difference between the width W1 and the outer diameter D1 can be, for example, 0.01 mm to 1 mm (preferably 0.05 mm to 0.2 mm). Since the width W1 of the antenna holding groove 34 is larger than the outer diameter D1 of the electromagnetic field coupling part 21, the electromagnetic field coupling part 21 is inserted into the antenna holding groove 34 in a state where it can be displaced in the radial direction (for example, the Y direction). be accommodated.
  • the “wire radial direction” is a direction perpendicular to the length direction of the electromagnetic field coupling portion 21.
  • the electromagnetic field coupling portion 21 can also be displaced in the length direction with respect to the antenna holding groove 34.
  • the depth of the antenna holding groove 34 is such that the height (inner dimension) H1 from the bottom surface 34a of the antenna holding groove 34 to the lid part 32 (top surface 38a) is larger than the outer diameter D1 of the electromagnetic field coupling part 21. It is determined as follows.
  • the difference between the height H1 and the outer diameter D1 can be, for example, 0.01 mm to 1 mm (preferably 0.05 mm to 0.2 mm). Since the height H1 of the antenna holding groove 34 is larger than the outer diameter D1 of the electromagnetic field coupling part 21, the electromagnetic field coupling part 21 can be moved in the antenna holding groove 34 in a state where it can be displaced in the radial direction (for example, the Z direction). be accommodated in.
  • the side recesses 35 are formed on one side and the other side of the main surface 31a.
  • the side recess 35 is formed in a region including the side edge 31b of the main body 31 in the X direction.
  • the inner peripheral edge 35a of the side recess 35 has a first straight part 35b along the Y direction, a curved part 35c, and a second straight part 35d along the X direction.
  • the first linear portion 35b is a portion extending in the -Y direction starting from the end of the inner peripheral edge of the antenna holding groove 34.
  • the curved portion 35c is a portion that extends from the tip of the first straight portion 35b with a decreasing inclination angle with respect to the X direction.
  • the second straight portion 35d is a portion extending from the tip of the curved portion 35c toward the side edge 31b along the X direction.
  • the side recess 35 includes the first straight portion 23A of the second antenna 2 and a part of the first folded portion 24A in plan view.
  • the first straight portion 23A is close to the first straight portion 35b (see FIG. 4).
  • the first folded portion 24A is close to the curved portion 35c (see FIG. 4).
  • the side recess 35 accommodates at least a portion of a predetermined length range (the first straight portion 23A and a portion of the first folded portion 24A) of the second antenna 2.
  • a slit-shaped side opening 36 extending in the Y direction (direction along the main surface 31a) is formed in the side edge 31b. It is formed.
  • the second antenna 2 extends outside the exterior body 3 through the side end opening 36.
  • two locking recesses 39 are formed in the +Y direction edge 31c of the main body portion 31 at different positions in the X direction.
  • Two locking recesses 39 are also formed on the edge 31d of the main body portion 31 in the -Y direction at different positions in the X direction.
  • the lid portion 32 has a rectangular shape in plan view.
  • the lid portion 32 has the same shape as the main body portion 31, and is installed facing the main surface 31a of the main body portion 31.
  • the lid portion 32 is installed so as to overlap the main surface 31a of the main body portion 31 in a plan view.
  • the facing surface 32a of the lid portion 32 is a surface facing the main surface 31a of the main body portion 31.
  • a positioning groove 38 is formed in the opposing surface 32a.
  • the positioning groove 38 is an annular groove.
  • the shape of the cross section perpendicular to the length direction of the positioning groove 38 is, for example, rectangular.
  • the positioning groove 38 has a curved shape (for example, an elliptical shape) corresponding to the substrate holding convex portion 33 and the antenna holding groove 34.
  • the positioning groove 38 has a width that collectively includes the substrate holding convex portion 33 and the antenna holding groove 34 in plan view. A portion of the top surface 38a of the positioning groove 38 faces the bottom surface 34a of the antenna holding groove 34.
  • two locking protrusions 40 are formed on the edge 32c of the lid 32 in the +Y direction at different positions in the X direction.
  • Two locking convex portions 40 are also formed on the edge 32d of the lid portion 32 in the ⁇ Y direction at different positions in the X direction.
  • the locking convex portion 40 has a locking claw portion (not shown) formed at its tip.
  • the locking convex portion 40 is inserted into the locking recess 39 of the main body portion 31 .
  • the locking claw portion of the locking convex portion 40 locks on the main body portion 31 .
  • the lid part 32 is detachably coupled to the main body part 31.
  • the exterior body 3 is not fixed to the second antenna 2. That is, the exterior body 3 is not fixed to the second antenna 2.
  • the RF tag 10 can be installed on a molded product made of rubber, resin, etc., for example.
  • the RF tag 10 can be embedded in a molded product.
  • the molded product is, for example, an elastic body and can be elastically deformed. If the molded product undergoes deformation such as elongation or bending, an external force may act on the second antenna 2.
  • a tensile force is applied to the extending portion 22 in a direction away from the exterior body 3 along the X direction. It is also conceivable that a force in a direction toward the exterior body 3 acts on the extending portion 22 along the X direction.
  • the RF tag 10 When installing the RF tag 10 on a tire as in this embodiment, the RF tag 10 can be provided so as to be enclosed in a fixing member (lamination rubber) made of a rubber sheet. This not only reliably prevents the RF tag 10 from being damaged, but also allows the RFID tag 10 to be easily and without fear of damage by incorporating the RFID tag 10 into the tire after the RF tag 10 is enclosed in the fixing member. It can be incorporated into the tire 1.
  • a fixing member laminate rubber
  • the electromagnetic field coupling part 21 of the second antenna 2 is accommodated in the antenna holding groove 34 in a state that it can be displaced in the wire diameter direction (direction orthogonal to the length direction of the electromagnetic field coupling part 21) (see FIG. (see 6). Since the electromagnetic field coupling portion 21 is movable, stress in the second antenna 2 can be alleviated when an external force acts on the second antenna 2. Therefore, damage to the second antenna 2 can be made less likely to occur. On the other hand, when the second antenna is fixed to the exterior body, when an external force acts on the second antenna, stress concentrates on the proximal end (root portion) of the second antenna that extends from the exterior body. , damage may be more likely to occur at this location.
  • the electromagnetic field coupling portion 21 of the second antenna 2 has a shape that follows the outer peripheral edge 12a of the first antenna 12, the electromagnetic field coupling portion 21 can be sufficiently electromagnetically coupled to the first antenna 12. Since the antenna holding groove 34 is formed along the outer peripheral edge 12a of the first antenna 12, the electromagnetic field coupling portion 21 of the second antenna 2 can be arranged along the first antenna 12. Therefore, the electromagnetic field coupling portion 21 can be sufficiently electromagnetically coupled to the first antenna 12.
  • the electromagnetic field coupling portion 21 of the second antenna 2 has a curved shape (for example, a semi-elliptical shape), even if an external force acts on the second antenna 2, stress concentration is less likely to occur compared to a rectangular shape. Therefore, damage to the second antenna 2 can be made less likely to occur.
  • the electromagnetic field coupling part is rectangular, when external force acts on the second antenna, stress will be concentrated at the corners (bent parts), and damage may easily occur at these parts. .
  • the electromagnetic field coupling portion 21 of the second antenna 2 can be arranged along the first antenna 12. Therefore, the electromagnetic field coupling portion 21 can be sufficiently electromagnetically coupled to the first antenna 12.
  • the exterior body 3 includes a main body portion 31 and a lid portion 32 overlaid on the main surface 31a.
  • the substrate holding recess 37 and the antenna holding groove 34 are formed on the main surface 31a. Therefore, the lid portion 32 can prevent the substrate 1 and the second antenna 2 from falling off from the main body portion 31. Therefore, the substrate 1 and the second antenna 2 can be stably held in the exterior body 3.
  • a slit-shaped side opening 36 extending in the Y direction (direction along the main surface 31a) is formed in the side edge 31b of the exterior body 3. Therefore, the second antenna 2 can move in position relative to the exterior body 3 in the Y direction. Therefore, when an external force acts on the second antenna 2, the stress can be easily alleviated by displacement. Therefore, damage to the second antenna 2 can be made less likely to occur.
  • the outer periphery 13a of the substrate 1 and the outer periphery 12a of the first antenna 12 are curved over the entire circumference, but the outer periphery of the substrate and the first antenna is partially curved.
  • the exterior body 3 includes a main body portion 31 and a lid portion 32, but the configuration of the exterior body is not particularly limited.
  • the exterior body does not need to include a lid.
  • the exterior body is not limited to a plate shape, but may have other shapes (such as a block shape).
  • the communication device 10 has an antenna.
  • the antenna has a portion (extending portion 22) in which a predetermined shape is repeatedly arranged at a pitch interval A (mm) (see FIG. 8) in the extending direction while reciprocating in a direction perpendicular to the extending direction.
  • the shape of the portion (extending portion 22) is exemplified by a meandering shape, a wavy shape, or a zigzag shape. Note that in FIG. 8, only one of the pair of antennas is shown, and the antenna extending in the opposite direction is not shown.
  • FIG. 7 is a sectional view in the tire width direction of a pneumatic tire according to an embodiment of the present invention.
  • FIG. 7 shows only one half in the tire width direction with the tire equatorial plane CL as a boundary, the other half has a similar configuration.
  • the pneumatic tire may have an asymmetrical portion with the tire equatorial plane CL as a boundary.
  • FIG. 8 is a diagram for explaining the pitch interval P and the pitch interval A.
  • this pneumatic tire 50 is a tire for trucks and buses, it may also be a tire for other heavy loads or a tire for passenger cars.
  • This tire 50 includes a pair of bead portions 51, a pair of sidewall portions 52 continuous to the bead portions 51, and a tread portion 53 continuous to the pair of sidewall portions 52.
  • a bead core 51a is embedded in the bead portion 51, and a bead filler 51b is arranged outside the bead core 51a in the tire radial direction.
  • the tire 50 also includes a carcass 54 made of one or more carcass plies that extends between the pair of bead portions 50 in a toroidal manner.
  • the carcass ply is formed by covering radially arranged carcass cords 54a with rubber, and the carcass cords are arranged at a pitch interval P (mm) in the tire circumferential direction at the position in the tire radial direction where the communication device 10 is provided.
  • the carcass cord consists of steel cord.
  • the number of carcass plies is not particularly limited.
  • the pitch interval P (mm) is not particularly limited, but may be, for example, 2.0 to 4.0 mm. Further, the diameter of the carcass cord is not particularly limited, but may be 0.5 to 1.5 mm.
  • a belt 55 consisting of one or more belt layers 55a to 55d (four layers in the illustrated example) is arranged on the outside in the tire radial direction of the crown portion of the carcass 54, and tread rubber is arranged on the outside of the belt 55 in the tire radial direction.
  • the belt cord of the belt 55 is a steel cord in this example.
  • the belt cord can be inclined at an inclination angle of, for example, 30 to 60 degrees with respect to the tire circumferential direction.
  • the number of belt layers and the belt width are not particularly limited.
  • This tire 50 is equipped with an RF tag as a communication device.
  • the RF tag includes an IC chip and an antenna.
  • the RF tag may be placed between a plurality of members of the same type or different types that constitute a tire. By doing so, the RF tag can be easily attached during tire production, and the productivity of tires equipped with the RF tag can be improved.
  • the RF tag is embedded in the sidewall portion 52, but it may also be placed between, for example, the bead filler and another member adjacent to the bead filler.
  • the RF tag may be embedded in any member that constitutes the tire.
  • the load applied to the RF tag can be reduced compared to the case where the RF tag is sandwiched between a plurality of members constituting the tire.
  • the durability of the RF tag can be improved.
  • the RF tag may be embedded in a rubber member such as tread rubber or side rubber. It is preferable that the RF tag is not placed at a position that is a boundary between members having different rigidities in the periphery length direction, which is a direction along the outer surface of the tire in a cross-sectional view in the tire width direction. By doing so, the RF tag is not placed in a position where distortion is likely to be concentrated due to the difference in rigidity. Therefore, the load applied to the RF tag can be reduced.
  • the RF tag is not placed at a position that is a boundary between the end of the carcass and a member (for example, side rubber, etc.) adjacent to the end of the carcass in a cross-sectional view in the tire width direction.
  • the number of RF tags is not particularly limited.
  • a tire may include only one RF tag, or may include two or more RF tags.
  • an RF tag is illustrated as an example of a communication device, but a communication device other than an RF tag may be used.
  • the RF tag may be placed, for example, in the tread of a tire. In this way, the RF tag will not be damaged by the side cut of the tire.
  • the RF tag may be placed, for example, on the inner surface of the tire in the tread portion of the tire.
  • the RF tag may be placed, for example, in the center of the tread in the tire width direction.
  • the central portion of the tread is a position where deflection is difficult to concentrate in the tread portion. By doing so, the load applied to the RF tag can be reduced. Thereby, the durability of the RF tag can be improved. Further, it is possible to suppress differences in communication with the RF tag from both outsides of the tire in the tire width direction.
  • the RF tag may be arranged, for example, in the tire width direction within a range of 1/2 of the tread width centered on the tire equatorial plane.
  • the RF tag may be placed, for example, at the edge of the tread in the width direction of the tire. If the position of the reader communicating with the RF tag is predetermined, the RF tag may be placed, for example, at one tread end close to the reader.
  • the RF tag may be arranged, for example, in the tire width direction within a range of 1/4 of the tread width, with the tread end being the outer end.
  • the RF tag may be placed closer to the inner cavity of the tire than the carcass, which includes one or more carcass plies spanning between the bead portions. By doing so, the RF tag is less likely to be damaged by shocks applied from outside the tire, side cuts, nail penetrations, and other damage.
  • the RF tag may be placed in close contact with the tire lumen side surface of the carcass.
  • the RF tag may be placed between the carcass and another member located closer to the tire lumen than the carcass. Good too.
  • Another member located closer to the inner cavity of the tire than the carcass is, for example, an inner liner that forms the inner surface of the tire.
  • the RF tag may be attached to the inner surface of the tire facing the tire bore.
  • the RF tag By configuring the RF tag to be attached to the inner surface of the tire, it is easy to attach the RF tag to the tire and to inspect and replace the RF tag. In other words, the ease of attaching and maintaining the RF tag can be improved.
  • the RF tag by attaching the RF tag to the inner surface of the tire, compared to a configuration in which the RF tag is buried within the tire, it is possible to prevent the RF tag from becoming the core of tire failure.
  • the carcass includes a plurality of carcass plies and there is a position where the plurality of carcass plies are overlapped, the RF tag may be arranged between the overlapped carcass plies.
  • the RF tag may be placed, for example, in the tread portion of the tire, on the outside in the tire radial direction from a belt including one or more belt plies.
  • the RF tag may be placed on the outside of the belt in the tire radial direction and in close contact with the belt.
  • a reinforcing belt layer when a reinforcing belt layer is provided, it may be disposed on the outer side of the reinforcing belt layer in the tire radial direction and in close contact with the reinforcing belt layer.
  • the RF tag may be embedded in the tread rubber outside the belt in the tire radial direction.
  • the RF tag Since the RF tag is disposed in the tread portion of the tire outside the belt in the tire radial direction, communication with the RF tag from outside the tire in the tire radial direction is less likely to be obstructed by the belt. Therefore, communication with the RF tag from the outside of the tire in the tire radial direction can be improved. Further, the RF tag may be placed, for example, in the tread portion of the tire, inside the belt in the tire radial direction. In this way, since the outside of the RF tag in the tire radial direction is covered by the belt, the RF tag is less likely to be damaged by impact from the tread surface or nail penetration.
  • the RF tag may be placed in the tread portion of a tire between a belt and a carcass located inside the belt in the tire radial direction. Further, when the belt includes a plurality of belt plies, the RF tag may be placed between any two belt plies in the tread portion of the tire. By doing this, the outside of the RF tag in the tire radial direction is covered with one or more belt plies, so that the RF tag is less likely to be damaged by impacts from the tread surface, nail penetration, etc.
  • the RF tag may be placed, for example, between the cushion rubber and the tread rubber or between the cushion rubber and the side rubber. By doing so, the impact on the RF tag can be alleviated by the cushion rubber. Therefore, the durability of the RF tag can be improved. Furthermore, the RF tag may be embedded within the cushion rubber, for example. Further, the cushion rubber may be composed of a plurality of adjacent rubber members of the same type or different types. In such a case, the RF tag may be placed between a plurality of rubber members that constitute the cushion rubber.
  • the RF tag may be placed, for example, at the sidewall or bead of the tire.
  • the RF tag may be placed, for example, on one sidewall portion or one side bead portion close to a reader capable of communicating with the RF tag. By doing so, it is possible to improve the communication between the RF tag and the reader.
  • the RF tag may be placed between the carcass and the side rubber or between the tread rubber and the side rubber.
  • the RF tag may be placed, for example, in the tire radial direction between the tire maximum width position and the tread surface position.
  • the RF tag may be placed, for example, on the inner side of the tire in the radial direction from the position where the tire is at its maximum width. By doing so, the RF tag is placed near the highly rigid bead portion. Therefore, the load applied to the RF tag can be reduced. Thereby, the durability of the RF tag can be improved.
  • the RF tag may be placed adjacent to the bead core in the tire radial direction or the tire width direction. Distortion is difficult to concentrate near the bead core.
  • the load applied to the RF tag can be reduced.
  • the durability of the RF tag can be improved.
  • the RF tag be arranged at a position radially inside the tire from the maximum tire width position and radially outside the bead core of the bead portion. By doing so, the durability of the RF tag can be improved, and communication between the RF tag and the reader is less likely to be hindered by the bead core, and the communication performance of the RF tag can be improved.
  • the RF tag may be placed between the plurality of rubber members that constitute the side rubber. .
  • the RF tag may be placed on the outer surface of the side rubber, for example.
  • the RF tag may be placed between a stiffener (bead filler) and a member adjacent to the stiffener. By doing so, the RF tag can be placed at a position where distortion is difficult to concentrate due to the placement of the stiffener. Therefore, the load applied to the RF tag can be reduced. Thereby, the durability of the RF tag can be improved.
  • the RF tag may be placed between the stiffener and the side rubber, for example. Further, the RF tag may be placed between the stiffener and the carcass, for example. The portion of the carcass where the RF tag is sandwiched together with the stiffener may be located on the outside in the tire width direction with respect to the stiffener, or may be located on the inside in the tire width direction with respect to the stiffener.
  • the stiffener may include a portion located adjacent to the rubber chafer. In such a case, the RF tag may be placed between the stiffener and the rubber chafer.
  • the stiffener may include a portion adjacent to the hat rubber on the outside in the tire width direction. In such a case, the RF tag may be placed between the stiffener and the hat rubber.
  • the stiffener may be composed of a plurality of rubber members having different hardnesses.
  • the RF tag may be placed between a plurality of rubber members that constitute the stiffener.
  • the RF tag may be placed between the hat rubber and a member adjacent to the hat rubber.
  • the RF tag may be placed between the hat rubber and the carcass ply, for example. By doing so, the impact on the RF tag can be alleviated by the hat rubber. Therefore, the durability of the RF tag can be improved.
  • the RF tag may be placed between the rubber chafer and the side rubber, for example. By doing so, the RF tag can be placed at a position where distortion is less likely to be concentrated by placing the rubber chafer. Therefore, the load applied to the RF tag can be reduced. Thereby, the durability of the RF tag can be improved.
  • the RF tag may be placed between the rubber chafer and the carcass, for example. By doing so, it is possible to reduce the load applied to the RF tag due to impact or damage from the rim. Therefore, the durability of the RF tag can be improved.
  • the RF tag may be placed between the nylon chafer and another member adjacent to the nylon chafer on the outside or inside of the nylon chafer in the tire width direction. By doing this, the position of the RF tag becomes less likely to change when the tire deforms. Therefore, the load applied to the RF tag during tire deformation can be reduced. Thereby, the durability of the RF tag can be improved.
  • the nylon chafer may include, for example, a portion adjacent to the rubber chafer on the outside in the tire width direction. In such a case, the RF tag may be placed between the nylon chafer and the rubber chafer.
  • the nylon chafer may include, for example, a portion adjacent to the side rubber on the outside in the tire width direction.
  • the RF tag may be placed between the nylon chafer and the side rubber.
  • the nylon chafer may include, for example, a portion adjacent to the stiffener on the inner side in the tire width direction. In such a case, the RF tag may be placed between the nylon chafer and the stiffener.
  • the nylon chafer may include, for example, a portion adjacent to the hat rubber on the inner side in the tire width direction. In such a case, the RF tag may be placed between the nylon chafer and the hat rubber.
  • the nylon chafer may include a portion adjacent to the carcass, for example, on the inner side in the tire width direction. In such a case, the RF tag may be placed between the nylon chafer and the carcass.
  • the nylon chafer may include a portion adjacent to the wire chafer on the inner side in the tire width direction, for example.
  • the RF tag may be placed between the nylon chafer and the wire chafer.
  • the RF tag may be placed between the nylon chafer and another member adjacent to the nylon chafer on the outside or inside of the nylon chafer in the tire width direction.
  • the load applied to the RF tag due to impact or damage from the outside of the tire in the tire width direction can be further reduced. Therefore, the durability of the RF tag can be further improved.
  • the RF tag may be placed between the wire chafer and another member adjacent to the wire chafer on the inside or outside of the wire chafer in the tire width direction.
  • Another member adjacent to the wire chafer on the inside or outside in the tire width direction may be, for example, a rubber member such as a rubber chafer.
  • another member adjacent to the wire chafer on the inside or outside in the tire width direction may be, for example, a carcass.
  • the carcass code (if there are multiple carcass plies, the carcass code of the carcass ply closest to the RF tag) is the tire diameter on which the communication device 10 (RF tag) is installed.
  • the antennas are arranged at a pitch interval P (mm) in the tire circumferential direction at the direction position, and the antennas are arranged in a predetermined shape at a pitch interval A (mm) in the extending direction while reciprocating in a direction perpendicular to the extending direction (in the example shown). , in the tire circumferential direction), and the pitch interval A (mm) is larger than the pitch interval P (mm).
  • the pitch interval A (mm) is larger than the pitch interval P (mm), it is possible to improve the durability of the antenna of the communication device.
  • the pitch interval A (mm) is smaller than (or equal to) the pitch interval P (mm)
  • the ratio A/P is 6 or less, which suppresses the fact that the distance between the straight parts is too large compared to the pitch distance of the carcass cord, which reduces the communication performance of the antenna. can be ensured.
  • the antenna has a first portion extending in a direction perpendicular to the extending direction (straight portion 23 in the illustrated example) and a second portion extending in the extending direction (folded portion 24 in the illustrated example), and has an air-filled portion.
  • the direction perpendicular to the tire surface for example, if the RF tag is placed outside the carcass in the tire width direction, when viewed from the outside of the tire from the direction perpendicular to the outer surface,
  • the second portion may intersect with two or three carcass cords (when viewed from inside the tire in a direction perpendicular to the inner surface). preferable.
  • the second portion closest to the exterior body 3 side intersects two or three carcass cords. This is because failures tend to occur in the second portion closest to the exterior body 3, so it is effective to increase durability in this portion.
  • the portion where a predetermined shape is repeatedly arranged at a pitch interval A (mm) in the extending direction has a meandering shape, a wave shape, or a zigzag shape. This is because such a shape has a long path length relative to a unit extension length (the length in the X direction in FIG. 1), and is advantageous for improving communication performance.
  • the present invention is not limited to the above embodiments.
  • the extending direction of the antenna extension part 22 is the tire circumferential direction (that is, the direction of the pitch interval of the carcass cord and the direction of the pitch interval of the straight part 23 of the antenna extension part 22 are
  • the extending direction of the antenna extension portion 22 may be inclined with respect to the tire circumferential direction.
  • SDGs Sustainable Development Goals
  • SDGs have been proposed to realize a sustainable society. It is believed that an embodiment of the present invention can become a technology that contributes to "No. 12_Responsibility to create and use.”
  • 1 Board, 2: Second antenna, 3: Exterior body, 10: RF tag (communication device), 11: RFID chip, 12: first antenna, 12a: outer periphery, 21: Electromagnetic field coupling part, 21a: End part, 22: Extension part, 34: Antenna holding groove, 37: Board holding recess (board holding part), 50: Pneumatic tire, 51: Bead part, 52: Sidewall part, 53: Tread part, 54; carcass, 55: belt, CL: Tire equatorial plane

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

A pneumatic tire according to the present invention is provided with a carcass that comprises one or more carcass plies and that toroidally spans between a pair of bead sections. The carcass plies are formed by covering, with rubber, carcass cords that are arrayed in a radial configuration. The pneumatic tire is provided with a communication device having an antenna. The antenna has a portion in which a prescribed form is repeatedly arrayed at a pitch distance A (mm) in the extension direction of the antenna while reciprocating along a direction orthogonal to the extension direction. The carcass cords are arrayed at a pitch distance P (mm) in the tire circumferential direction at a tire radial direction position where the communication device is provided. The pitch distance A (mm) is greater than the pitch distance P (mm).

Description

空気入りタイヤpneumatic tires
 本発明は、空気入りタイヤに関するものである。 The present invention relates to a pneumatic tire.
 従来、タイヤの製造管理、出荷管理、使用履歴管理等のデータを読み書きするためのメモリ等を有するRF(Radio Frequency)タグ等の通信装置を備えた空気入りタイヤが知られている(例えば特許文献1)。このような通信装置として、アンテナが、所定の形状が繰り返し配列された部分を有するものが提案されている(例えば特許文献2)。 Conventionally, pneumatic tires have been known that are equipped with a communication device such as an RF (Radio Frequency) tag that has a memory for reading and writing data for tire manufacturing management, shipping management, usage history management, etc. (for example, Patent Literature 1). As such a communication device, one in which the antenna has a portion in which a predetermined shape is repeatedly arranged has been proposed (for example, Patent Document 2).
特開2016-037235号公報JP2016-037235A 特開2022-084145号公報JP2022-084145A
 本発明者らが、所定の形状が繰り返し配列された部分を有するアンテナを備えた通信装置を空気入りタイヤに設けることを検討したところ、アンテナの耐久性が十分でない場合が生じることが判明した。 When the present inventors investigated installing a communication device in a pneumatic tire that includes an antenna having a portion in which a predetermined shape is repeatedly arranged, it was found that the durability of the antenna may not be sufficient.
 そこで、本発明は、通信装置を備え、通信装置のアンテナの耐久性を向上させた、空気入りタイヤを提供することを目的とする。 Therefore, an object of the present invention is to provide a pneumatic tire that is equipped with a communication device and has improved durability of the antenna of the communication device.
 本発明の要旨構成は、以下の通りである。
(1)一対のビード部にトロイダルに跨る、1枚以上のカーカスプライからなるカーカスを備えた、空気入りタイヤであって、
 前記カーカスプライは、ラジアル配列のカーカスコードをゴム被覆してなり、
 前記空気入りタイヤに、アンテナを有する通信装置が設けられ、
 前記アンテナは、延在方向に直交する方向に往復しながら前記延在方向にピッチ間隔A(mm)で所定の形状が繰り返し配列されてなる部分を有し、
 前記カーカスコードは、前記通信装置が設けられたタイヤ径方向位置においてタイヤ周方向にピッチ間隔P(mm)で配列され、
 前記ピッチ間隔A(mm)は、前記ピッチ間隔P(mm)より大きいことを特徴とする、空気入りタイヤ。
 ここで、カーカスコードの「ピッチ間隔P」は、隣接するカーカスコードの中心間の距離を意味する。
The gist of the present invention is as follows.
(1) A pneumatic tire comprising a carcass consisting of one or more carcass plies spanning a pair of bead portions in a toroidal manner,
The carcass ply is made of a radially arranged carcass cord covered with rubber,
The pneumatic tire is provided with a communication device having an antenna,
The antenna has a portion in which a predetermined shape is repeatedly arranged at a pitch interval A (mm) in the extending direction while reciprocating in a direction perpendicular to the extending direction,
The carcass cords are arranged at a pitch interval P (mm) in the tire circumferential direction at a tire radial position where the communication device is provided,
A pneumatic tire, wherein the pitch interval A (mm) is larger than the pitch interval P (mm).
Here, the "pitch interval P" of carcass cords means the distance between the centers of adjacent carcass cords.
 本発明によれば、通信装置を備え、通信装置のアンテナの耐久性を向上させた、空気入りタイヤを提供することができる。 According to the present invention, it is possible to provide a pneumatic tire that is equipped with a communication device and has improved durability of the antenna of the communication device.
RFタグの平面図である。FIG. 2 is a plan view of an RF tag. RFタグの斜視図である。FIG. 2 is a perspective view of an RF tag. 外装体の蓋部を外した状態のRFタグの斜視図である。FIG. 2 is a perspective view of the RF tag with the lid of the exterior body removed. RFタグの分解斜視図である。FIG. 3 is an exploded perspective view of the RF tag. 第2アンテナの平面図である。FIG. 3 is a plan view of the second antenna. RFタグの一部断面図である。It is a partial sectional view of an RF tag. 本発明の一実施形態にかかる空気入りタイヤのタイヤ幅方向断面図(半部)である。1 is a sectional view (half) in the tire width direction of a pneumatic tire according to an embodiment of the present invention. ピッチ間隔Pおよびピッチ間隔Aについて説明するための図である。FIG. 3 is a diagram for explaining a pitch interval P and a pitch interval A;
 以下、本発明の実施形態について、図面を参照して詳細に例示説明する。 Hereinafter, embodiments of the present invention will be explained in detail with reference to the drawings.
<通信装置>
 先に、空気入りタイヤが備える通信装置について説明する。
<Communication device>
First, a communication device included in a pneumatic tire will be described.
[通信装置]
 図1は、通信装置10の平面図である。通信装置は、「RFタグ」ということがある。図2は、RFタグ10の斜視図である。図3は、外装体の蓋部を外した状態のRFタグ10の斜視図である。図4は、RFタグ10の分解斜視図である。図5は、第2アンテナ2の平面図である。図6は、RFタグ10の一部断面図である。図6は、図2のI-I断面図である。
[Communication device]
FIG. 1 is a plan view of a communication device 10. As shown in FIG. The communication device is sometimes called an "RF tag." FIG. 2 is a perspective view of the RF tag 10. FIG. 3 is a perspective view of the RF tag 10 with the lid of the exterior body removed. FIG. 4 is an exploded perspective view of the RF tag 10. FIG. 5 is a plan view of the second antenna 2. FIG. 6 is a partial cross-sectional view of the RF tag 10. FIG. 6 is a sectional view taken along line II in FIG.
 図1および図2に示すように、RFタグ10は、基板1と、第2アンテナ2と、外装体3とを備える。外装体3の主面31a(図3参照)の長手方向(図1における左右方向)をX方向という。X方向のうち一方向(図1における右方向)を+X方向という。X方向のうち他方向(図1における左方向)を-X方向という。外装体3の主面31a(図3参照)の短手方向をY方向という。Y方向は、主面31aに沿う面内においてX方向に直交する。Y方向のうち一方向(図1における上方向)を+Y方向という。Y方向のうち他方向(図1 における下方向)を-Y方向という。外装体3の主面31aに直交する方向をZ方向という。Z方向は、X方向およびY方向に直交する。Z方向から見ることを平面視という。Z軸とは、Z方向に沿う中心軸である。 As shown in FIGS. 1 and 2, the RF tag 10 includes a substrate 1, a second antenna 2, and an exterior body 3. The longitudinal direction (left-right direction in FIG. 1) of the main surface 31a (see FIG. 3) of the exterior body 3 is referred to as the X direction. One of the X directions (the right direction in FIG. 1) is referred to as the +X direction. The other direction (the left direction in FIG. 1) among the X directions is referred to as the -X direction. The lateral direction of the main surface 31a (see FIG. 3) of the exterior body 3 is referred to as the Y direction. The Y direction is perpendicular to the X direction in a plane along the main surface 31a. One direction (upward direction in FIG. 1) among the Y directions is referred to as the +Y direction. The other direction (downward in FIG. 1) among the Y directions is referred to as the -Y direction. The direction perpendicular to the main surface 31a of the exterior body 3 is referred to as the Z direction. The Z direction is orthogonal to the X direction and the Y direction. Viewing from the Z direction is called planar view. The Z-axis is a central axis along the Z direction.
 図3に示すように、基板1は、RFIDチップ11と、第1アンテナ12と、基材13とを備える。基板1には、RFIDチップ11と第1アンテナ12とが設けられている。 As shown in FIG. 3, the substrate 1 includes an RFID chip 11, a first antenna 12, and a base material 13. The substrate 1 is provided with an RFID chip 11 and a first antenna 12.
 基材13は、板状に形成されている。平面視における基材13の形状は、特に限定されないが、少なくとも外周縁13aの一部が湾曲形状であることが好ましい。湾曲形状は、例えば、楕円弧状、円弧状、高次曲線状(例えば二次曲線状)などである。高次曲線状は、放物線状、双曲線状などである。平面視における基材13の外形は、例えば、楕円形状、円形状、長円形状(レーストラック形状)などであってよい。平面視における基材13の外形は、非円形状が望ましい。本実施形態では、基材13は、楕円形状とされている。基材13は、長径方向をX方向に向けた姿勢とされている。基材13としては、ガラスエポキシ樹脂基板、セラミックス、プラスチックフィルムなどが使用できる。 The base material 13 is formed into a plate shape. The shape of the base material 13 in plan view is not particularly limited, but it is preferable that at least a part of the outer peripheral edge 13a is curved. The curved shape is, for example, an elliptical arc shape, a circular arc shape, a higher order curve shape (for example, a quadratic curve shape), or the like. The higher-order curved shape includes a parabolic shape, a hyperbolic shape, and the like. The outer shape of the base material 13 in plan view may be, for example, an ellipse, a circle, an ellipse (racetrack shape), or the like. The outer shape of the base material 13 in plan view is desirably non-circular. In this embodiment, the base material 13 has an elliptical shape. The base material 13 is oriented with its major diameter direction facing the X direction. As the base material 13, a glass epoxy resin substrate, ceramics, a plastic film, etc. can be used.
 RFIDチップ11は、第1アンテナ12および第2アンテナ2を介して非接触にて情報の書き込みおよび読み出しが可能である。RFIDチップ11は、基材13に実装されている。 The RFID chip 11 is capable of writing and reading information in a non-contact manner via the first antenna 12 and the second antenna 2. RFID chip 11 is mounted on base material 13.
 第1アンテナ12は、例えば、基材13の一方の面に形成された導電層である。導電層は、例えば、導電性箔、メッキ層、導電インク層などで構成される。導電性箔は、例えば、銅、銀、金、白金、アルミニウムなどで構成される金属箔である。導電性箔は、エッチングなどによって所定の形状に形成される。メッキ層は、例えば、銅、銀、金、白金、アルミニウムなどの金属で構成される。導電インク層は、導電インクを用いて印刷などにより形成される。導電インクは、金属、カーボン材料などで形成される導電性粒子を含む。 The first antenna 12 is, for example, a conductive layer formed on one surface of the base material 13. The conductive layer is composed of, for example, a conductive foil, a plating layer, a conductive ink layer, or the like. The conductive foil is, for example, a metal foil made of copper, silver, gold, platinum, aluminum, or the like. The conductive foil is formed into a predetermined shape by etching or the like. The plating layer is made of metal such as copper, silver, gold, platinum, and aluminum, for example. The conductive ink layer is formed by printing or the like using conductive ink. Conductive ink includes conductive particles made of metal, carbon material, or the like.
 第1アンテナ12は、ループ状に形成されている。第1アンテナ12は、例えば、基材1 3の外周縁13aに沿う湾曲形状を有する。第1アンテナ12は、楕円形状のループ状に形成されている。第1アンテナ12は、RFID チップ11に電気的に接続されている。 The first antenna 12 is formed in a loop shape. The first antenna 12 has, for example, a curved shape along the outer peripheral edge 13a of the base material 13. The first antenna 12 is formed in an elliptical loop shape. The first antenna 12 is electrically connected to the RFID chip 11 .
 第2アンテナ2は、ブースター用のアンテナである。第2アンテナ2は、例えば、線状体である。第2アンテナ2は、例えば、スチール、ステンレス鋼、銅、銅合金などの金属で形成されている。第2アンテナ2は、例えば、真鍮メッキ鋼線で形成することができる。第2アンテナ2は、基板1とは別体とされている。なお、第2アンテナ2は線状体であるが、第2アンテナは、例えば、板状体であってもよい。 The second antenna 2 is a booster antenna. The second antenna 2 is, for example, a linear body. The second antenna 2 is made of metal such as steel, stainless steel, copper, and copper alloy, for example. The second antenna 2 can be formed of, for example, brass-plated steel wire. The second antenna 2 is separate from the substrate 1. Although the second antenna 2 is a linear body, the second antenna may be, for example, a plate-shaped body.
 第2アンテナ2は、電磁界結合部21と、一対の延出部22とを備える。電磁界結合部21は、湾曲形状を有する。「湾曲形状」とは、急峻な屈曲部がなく、滑らかに曲がる形状である。湾曲形状としては、例えば、楕円弧状、円弧状、高次曲線状(例えば二次曲線状)などがある。「高次曲線状」としては、放物線状、双曲線状などがある。電磁界結合部21は、半楕円形状とされている。詳しくは、電磁界結合部21は、楕円形の一方の頂点(長軸と交わる頂点)から他方の頂点(長軸と交わる頂点)に至る半楕円形状である。 The second antenna 2 includes an electromagnetic field coupling section 21 and a pair of extension sections 22. The electromagnetic field coupling section 21 has a curved shape. A "curved shape" is a shape that curves smoothly without sharp bends. Examples of the curved shape include an elliptical arc shape, a circular arc shape, and a higher-order curve shape (for example, a quadratic curve shape). Examples of the "higher-order curved shape" include a parabolic shape and a hyperbolic shape. The electromagnetic field coupling portion 21 has a semi-elliptical shape. Specifically, the electromagnetic field coupling portion 21 has a semi-elliptical shape extending from one apex of the ellipse (the apex that intersects with the long axis) to the other apex (the apex that intersects with the long axis).
 電磁界結合部21は、平面視において、基板1の少なくとも一部を囲む形状とされる。電磁界結合部21は、楕円形状の基板1の一方の頂点(長軸と交わる頂点)から他方の頂点(長軸と交わる頂点)に至る範囲(+Y方向側の半周範囲)を囲む。 The electromagnetic field coupling portion 21 has a shape that surrounds at least a portion of the substrate 1 in plan view. The electromagnetic field coupling section 21 surrounds a range (a half circumference range on the +Y direction side) from one apex (the apex that intersects with the long axis) to the other apex (the apex that intersects with the long axis) of the elliptical substrate 1 .
 電磁界結合部21は、平面視において、第1アンテナ12の外周縁12aに沿う湾曲形状(例えば、楕円弧状)とされている。電磁界結合部21と外周縁12aとの離間距離は、ほぼ一定である。電磁界結合部21は、平面視において、基板1の外周縁13aの外側に、外周縁13aに近接して位置する。電磁界結合部21は、平面視において、外周縁13aに沿う形状とされる。電磁界結合部21と外周縁13aとの離間距離は、ほぼ一定である。 The electromagnetic field coupling portion 21 has a curved shape (for example, an elliptical arc shape) along the outer peripheral edge 12a of the first antenna 12 in a plan view. The distance between the electromagnetic field coupling portion 21 and the outer peripheral edge 12a is approximately constant. The electromagnetic field coupling portion 21 is located outside the outer peripheral edge 13a of the substrate 1 and close to the outer peripheral edge 13a in plan view. The electromagnetic field coupling portion 21 has a shape along the outer peripheral edge 13a in plan view. The distance between the electromagnetic field coupling portion 21 and the outer peripheral edge 13a is approximately constant.
 電磁界結合部21は、非接触で第1アンテナ12と電磁界結合する。電磁界結合とは、例えば、電界結合と磁界結合のうち一方である。電磁界結合部21の長さ方向に直交する断面の形状は、例えば、円形状である(図6参照)。 The electromagnetic field coupling section 21 performs electromagnetic coupling with the first antenna 12 in a non-contact manner. Electromagnetic field coupling is, for example, one of electric field coupling and magnetic field coupling. The shape of the cross section perpendicular to the length direction of the electromagnetic field coupling portion 21 is, for example, circular (see FIG. 6).
 一対の延出部22は、電磁界結合部21の一方および他方の端部21aからそれぞれ延出する。図5に示すように、一対の延出部22のうち一方である第1延出部22Aは、電磁界結合部21の-X方向の端部21aから、蛇行しつつ-X方向に延出する。一対の延出部22のうち他方である第2延出部22Bは、電磁界結合部21の+X方向の端部21aから、蛇行しつつ+X方向に延出する。 The pair of extension parts 22 extend from one end 21a and the other end 21a of the electromagnetic field coupling part 21, respectively. As shown in FIG. 5, the first extension part 22A, which is one of the pair of extension parts 22, extends in the -X direction from the end 21a of the electromagnetic field coupling part 21 in the -X direction while meandering. do. The second extending portion 22B, which is the other of the pair of extending portions 22, extends in the +X direction from the end 21a of the electromagnetic field coupling portion 21 in the +X direction while meandering.
 延出部22の平面視形状は、例えば、メアンダ(蛇行)形状、波状、ジグザグ形状などである。延出部22は、メアンダ形状を有する。 The shape of the extending portion 22 in plan view is, for example, a meandering shape, a wavy shape, a zigzag shape, or the like. The extending portion 22 has a meander shape.
 図4に示すように、延出部22は、複数の直線部23と、複数の折り返し部24とを備える。直線部23は、Y方向に沿う直線状とされている。複数の直線部23は、X方向に間隔をおいて配置されている。折り返し部24は、隣り合う直線部23の端部どうしを連結する。折り返し部24は、湾曲形状(例えば、円弧形状)を有する。 As shown in FIG. 4, the extending portion 22 includes a plurality of straight portions 23 and a plurality of folded portions 24. The linear portion 23 is linear along the Y direction. The plurality of straight portions 23 are arranged at intervals in the X direction. The folded portion 24 connects the ends of the adjacent straight portions 23. The folded portion 24 has a curved shape (for example, an arc shape).
 複数の直線部23のうち最も電磁界結合部21に近い直線部23を「第1直線部23A」という。複数の直線部23のうち2番目に電磁界結合部21に近い直線部23を「第2直線部23B」という。複数の直線部23のうち3番目に電磁界結合部21に近い直線部23 を「第3直線部23C」という。第1直線部23Aと第2直線部23Bとを連結する折り返し部24を「第1折り返し部24A」という。第2直線部23Bと第3直線部23Cとを連結する折り返し部24を「第2折り返し部24B」という。 Among the plurality of straight parts 23, the straight part 23 closest to the electromagnetic field coupling part 21 is referred to as a "first straight part 23A." Among the plurality of straight sections 23, the second straight section 23 closest to the electromagnetic field coupling section 21 is referred to as a "second straight section 23B." Among the plurality of straight portions 23, the third straight portion 23 closest to the electromagnetic field coupling portion 21 is referred to as a “third straight portion 23C”. The folded portion 24 connecting the first straight portion 23A and the second straight portion 23B is referred to as a “first folded portion 24A”. The folded portion 24 connecting the second straight portion 23B and the third straight portion 23C is referred to as a “second folded portion 24B”.
 第1直線部23Aは、電磁界結合部21の端部21aから-Y方向に延出する。第1折り返し部24Aは、第1直線部23Aの-Y方向の端部から湾曲して延び、第2直線部23 Bの-Y方向の端部に達する。延出部22のうち、第1直線部23Aと第1折り返し部2 4Aの一部とは外装体3内にあるが、延出部22のそれ以外の部分は、外装体3の外に延出している(図3参照) 。 The first linear portion 23A extends from the end portion 21a of the electromagnetic field coupling portion 21 in the −Y direction. The first folded portion 24A extends in a curved manner from the end in the −Y direction of the first straight portion 23A, and reaches the end in the −Y direction of the second straight portion 23B. Of the extending portion 22, the first straight portion 23A and a part of the first folded portion 24A are inside the exterior body 3, but the other portions of the extending portion 22 extend outside the exterior body 3. (See Figure 3).
 図2に示すように、外装体3は、板状の本体部31と、板状の蓋部32とを備える。外装体3は、全体として板状とされている。本体部31および蓋部32は、例えば、樹脂で形成される。樹脂としては、ナイロン6,6などのポリアミド樹脂;ポリエチレンテレフタレート(PET)などのポリエステル樹脂;ポリエチレンなどのポリオレフィン樹脂;ポリフッ化ビニルなどのポリフッ化エチレン系樹脂;ポリ塩化ビニルなどのビニル重合体;ポリメタクリル酸メチルなどのアクリル系樹脂等が挙げられる。 As shown in FIG. 2, the exterior body 3 includes a plate-shaped main body 31 and a plate-shaped lid 32. The exterior body 3 has a plate shape as a whole. The main body portion 31 and the lid portion 32 are made of resin, for example. Examples of resins include polyamide resins such as nylon 6,6; polyester resins such as polyethylene terephthalate (PET); polyolefin resins such as polyethylene; polyfluorinated ethylene resins such as polyvinyl fluoride; vinyl polymers such as polyvinyl chloride; Examples include acrylic resins such as methyl methacrylate.
 図4に示すように、本体部31は、平面視において矩形状とされている。本体部31の一方の面である主面31aには、基板保持凹部37(基板保持部)と、アンテナ保持溝34と、一対の側部凹所35が形成されている。基板保持凹部37は、基板保持凸部33によって形成される。基板保持凹部37は、基板保持凸部33によって囲まれた凹部である。 As shown in FIG. 4, the main body portion 31 has a rectangular shape in plan view. A substrate holding recess 37 (substrate holding portion), an antenna holding groove 34, and a pair of side recesses 35 are formed on the main surface 31a, which is one surface of the main body portion 31. The substrate holding recess 37 is formed by the substrate holding protrusion 33 . The substrate holding recess 37 is a recess surrounded by the substrate holding protrusion 33 .
 基板保持凸部33 は、環状のリブ状突起である。基板保持凸部33は、基板1の外周縁13aに沿う湾曲形状(例えば、楕円形状)とされている。基板保持凸部33 は、主面31aから+Z方向に突出する。基板保持凸部33の長さ方向に直交する断面の形状は、例えば矩形状である。基板保持凸部33は、平面視において、第1アンテナ12の外周縁12aに沿う湾曲形状(例えば、楕円形状)とされている。 The substrate holding protrusion 33 is an annular rib-like protrusion. The substrate holding convex portion 33 has a curved shape (for example, an elliptical shape) along the outer peripheral edge 13a of the substrate 1. The substrate holding convex portion 33 protrudes from the main surface 31a in the +Z direction. The shape of the cross section perpendicular to the length direction of the substrate holding convex portion 33 is, for example, rectangular. The substrate holding convex portion 33 has a curved shape (for example, an elliptical shape) along the outer peripheral edge 12a of the first antenna 12 in plan view.
 基板保持凹部37は、基板1を保持する。基板保持凹部37は、基板1の外周縁13aに沿う形状(例えば、楕円形状)とされている。基板保持凹部37の内形寸法(内径)は、基板1の外形寸法(外径)とほぼ同じ、または基板1の外形寸法(外径)よりわずかに大きい。基板保持凹部37は、平面視において基板1と相似形である。 The substrate holding recess 37 holds the substrate 1. The substrate holding recess 37 has a shape (for example, an elliptical shape) along the outer peripheral edge 13a of the substrate 1. The inner dimensions (inner diameter) of the substrate holding recess 37 are approximately the same as the outer dimensions (outer diameter) of the substrate 1 or slightly larger than the outer dimensions (outer diameter) of the substrate 1 . The substrate holding recess 37 has a similar shape to the substrate 1 in plan view.
 基板1および基板保持凹部37 は、非円形状(例えば、楕円形状)であると、基板1がZ軸周りに傾斜するのを規制し、基板1の正しい姿勢を保つことができる。そのため、第1アンテナ12と電磁界結合部21との電磁界結合を維持することができる。 When the substrate 1 and the substrate holding recess 37 have a non-circular shape (for example, an elliptical shape), it is possible to prevent the substrate 1 from tilting around the Z-axis and maintain the correct posture of the substrate 1. Therefore, the electromagnetic field coupling between the first antenna 12 and the electromagnetic field coupling section 21 can be maintained.
 アンテナ保持溝34は、第2アンテナ2の電磁界結合部21を収容する(図3および図6 参照)。アンテナ保持溝34は、基板保持凸部33の外側に、基板保持凸部33に近接して形成されている。アンテナ保持溝34は、平面視において、基板保持凸部33に沿う形状とされる。アンテナ保持溝34は、平面視において、第1アンテナ12の外周縁12aに沿う湾曲形状(例えば、楕円弧状)とされている。アンテナ保持溝34は、平面視において、基板1の外周縁13aに沿う湾曲形状(例えば、楕円弧状)とされている。アンテナ保持溝34は、平面視において、半楕円形状とされている。詳しくは、アンテナ保持溝34は、楕円形の一方の頂点(長軸と交わる頂点)から他方の頂点(長軸と交わる頂点)に至る半楕円形状である。 The antenna holding groove 34 accommodates the electromagnetic field coupling portion 21 of the second antenna 2 (see FIGS. 3 and 6). The antenna holding groove 34 is formed on the outside of the substrate holding protrusion 33 and close to the substrate holding protrusion 33 . The antenna holding groove 34 has a shape along the substrate holding convex portion 33 in plan view. The antenna holding groove 34 has a curved shape (for example, an elliptical arc shape) along the outer peripheral edge 12a of the first antenna 12 in a plan view. The antenna holding groove 34 has a curved shape (for example, an elliptical arc shape) along the outer peripheral edge 13a of the substrate 1 in plan view. The antenna holding groove 34 has a semi-elliptical shape in plan view. Specifically, the antenna holding groove 34 has a semi-elliptical shape extending from one apex of the ellipse (the apex that intersects with the long axis) to the other apex (the apex that intersects with the long axis).
 アンテナ保持溝34は、平面視において、基板1の少なくとも一部を囲む形状とされる。アンテナ保持溝34は、楕円形状の基板1の一方の頂点(長軸と交わる頂点)から他方の頂点(長軸と交わる頂点)に至る範囲(+Y方向側の半周範囲)を囲む。 The antenna holding groove 34 has a shape that surrounds at least a portion of the substrate 1 in plan view. The antenna holding groove 34 surrounds a range (a half circumference range on the +Y direction side) from one apex (the apex that intersects with the long axis) of the elliptical substrate 1 to the other apex (the apex that intersects with the long axis).
 図6に示すように、アンテナ保持溝34の長さ方向に直交する断面は、例えば、矩形状である。アンテナ保持溝34の幅(内形寸法)W1は、電磁界結合部21の外径(外形寸法) D1より大である。幅W1と外径D1との差は、例えば、0.01mm~1mm(好ましくは0.05mm~0.2mm)とすることができる。アンテナ保持溝34の幅W1が電磁界結合部21の外径D1より大であるため、電磁界結合部21は、線径方向(例えば、Y方向)に変位可能な状態でアンテナ保持溝34に収容される。「線径方向」は、電磁界結合部21の長さ方向に直交する方向である。電磁界結合部21は、アンテナ保持溝34に対して長さ方向にも変位可能である。 As shown in FIG. 6, the cross section of the antenna holding groove 34 perpendicular to the length direction is, for example, rectangular. The width (inner dimension) W1 of the antenna holding groove 34 is larger than the outer diameter (outer dimension) D1 of the electromagnetic field coupling portion 21. The difference between the width W1 and the outer diameter D1 can be, for example, 0.01 mm to 1 mm (preferably 0.05 mm to 0.2 mm). Since the width W1 of the antenna holding groove 34 is larger than the outer diameter D1 of the electromagnetic field coupling part 21, the electromagnetic field coupling part 21 is inserted into the antenna holding groove 34 in a state where it can be displaced in the radial direction (for example, the Y direction). be accommodated. The “wire radial direction” is a direction perpendicular to the length direction of the electromagnetic field coupling portion 21. The electromagnetic field coupling portion 21 can also be displaced in the length direction with respect to the antenna holding groove 34.
 アンテナ保持溝34の深さは、アンテナ保持溝34の底面34aから蓋部32(天面38a)までの高さ(内形寸法)H1が、電磁界結合部21の外径D1より大となるように定められる。高さH1と外径D1との差は、例えば、0.01mm~1mm(好ましくは0.05mm~0.2mm)とすることができる。アンテナ保持溝34の高さH1が電磁界結合部21の外径D1より大であるため、電磁界結合部21は、線径方向(例えば、Z方向)に変位可能な状態でアンテナ保持溝34に収容される。 The depth of the antenna holding groove 34 is such that the height (inner dimension) H1 from the bottom surface 34a of the antenna holding groove 34 to the lid part 32 (top surface 38a) is larger than the outer diameter D1 of the electromagnetic field coupling part 21. It is determined as follows. The difference between the height H1 and the outer diameter D1 can be, for example, 0.01 mm to 1 mm (preferably 0.05 mm to 0.2 mm). Since the height H1 of the antenna holding groove 34 is larger than the outer diameter D1 of the electromagnetic field coupling part 21, the electromagnetic field coupling part 21 can be moved in the antenna holding groove 34 in a state where it can be displaced in the radial direction (for example, the Z direction). be accommodated in.
 図4に示すように、側部凹所35は、主面31aの一方および他方の側部に形成されている。側部凹所35は、本体部31のX方向の側端縁31bを含む領域に形成されている。側部凹所35の内周縁35aは、Y方向に沿う第1直線部35bと、湾曲部35cと、X方向に沿う第2直線部35dとを有する。 As shown in FIG. 4, the side recesses 35 are formed on one side and the other side of the main surface 31a. The side recess 35 is formed in a region including the side edge 31b of the main body 31 in the X direction. The inner peripheral edge 35a of the side recess 35 has a first straight part 35b along the Y direction, a curved part 35c, and a second straight part 35d along the X direction.
 第1直線部35bは、アンテナ保持溝34の内周縁の端部を始点として-Y方向に延びる部分である。湾曲部35cは、第1直線部35bの先端から、X方向に対する傾斜角度が小さくなりつつ延出する部分である。第2直線部35dは、湾曲部35cの先端からX方向に沿って側端縁31bに向かう部分である。 The first linear portion 35b is a portion extending in the -Y direction starting from the end of the inner peripheral edge of the antenna holding groove 34. The curved portion 35c is a portion that extends from the tip of the first straight portion 35b with a decreasing inclination angle with respect to the X direction. The second straight portion 35d is a portion extending from the tip of the curved portion 35c toward the side edge 31b along the X direction.
 図3に示すように、側部凹所35は、平面視において、第2アンテナ2の第1直線部23 Aと、第1折り返し部24Aの一部と、を包含する。第1直線部23Aは、第1直線部35b(図4参照)に近接している。第1折り返し部24Aは、湾曲部35c(図4参照)に近接している。側部凹所35は、第2アンテナ2の所定の長さ範囲(第1直線部23Aと、第1折り返し部24Aの一部)の少なくとも一部を収容する。 As shown in FIG. 3, the side recess 35 includes the first straight portion 23A of the second antenna 2 and a part of the first folded portion 24A in plan view. The first straight portion 23A is close to the first straight portion 35b (see FIG. 4). The first folded portion 24A is close to the curved portion 35c (see FIG. 4). The side recess 35 accommodates at least a portion of a predetermined length range (the first straight portion 23A and a portion of the first folded portion 24A) of the second antenna 2.
 図2に示すように、側部凹所35はY方向に十分な距離があるため、側端縁31bには、Y方向(主面31aに沿う方向)に延びるスリット状の側端開口36が形成される。第2アンテナ2は、側端開口36を通して外装体3の外に延出している。図4に示すように、本体部31の+Y方向の端縁31cには、X方向に位置を違えて2つの係止凹部39が形成されている。本体部31の-Y方向の端縁31dにも、X方向に位置を違えて2つの係止凹部39が形成されている。 As shown in FIG. 2, since the side recess 35 has a sufficient distance in the Y direction, a slit-shaped side opening 36 extending in the Y direction (direction along the main surface 31a) is formed in the side edge 31b. It is formed. The second antenna 2 extends outside the exterior body 3 through the side end opening 36. As shown in FIG. 4, two locking recesses 39 are formed in the +Y direction edge 31c of the main body portion 31 at different positions in the X direction. Two locking recesses 39 are also formed on the edge 31d of the main body portion 31 in the -Y direction at different positions in the X direction.
 図2に示すように、蓋部32は、平面視において矩形状とされている。蓋部32は、本体部31と同形とされ、本体部31の主面31aに対向して設置されている。蓋部32は、平面視において、本体部31の主面31aに重なるように設置されている。 As shown in FIG. 2, the lid portion 32 has a rectangular shape in plan view. The lid portion 32 has the same shape as the main body portion 31, and is installed facing the main surface 31a of the main body portion 31. The lid portion 32 is installed so as to overlap the main surface 31a of the main body portion 31 in a plan view.
 図6に示すように、蓋部32の対向面32aは、本体部31の主面31aに対向する面である。対向面32aには、位置決め溝38が形成されている。位置決め溝38は、環状の溝である。位置決め溝38の長さ方向に直交する断面の形状は、例えば矩形状である。 As shown in FIG. 6, the facing surface 32a of the lid portion 32 is a surface facing the main surface 31a of the main body portion 31. A positioning groove 38 is formed in the opposing surface 32a. The positioning groove 38 is an annular groove. The shape of the cross section perpendicular to the length direction of the positioning groove 38 is, for example, rectangular.
 位置決め溝38は、基板保持凸部33およびアンテナ保持溝34に応じた湾曲形状(例えば、楕円形状)とされている。位置決め溝38は、平面視において、基板保持凸部33およびアンテナ保持溝34を一括して包含する幅を有する。位置決め溝38の天面38aの一部は、アンテナ保持溝34の底面34aに対向する。 The positioning groove 38 has a curved shape (for example, an elliptical shape) corresponding to the substrate holding convex portion 33 and the antenna holding groove 34. The positioning groove 38 has a width that collectively includes the substrate holding convex portion 33 and the antenna holding groove 34 in plan view. A portion of the top surface 38a of the positioning groove 38 faces the bottom surface 34a of the antenna holding groove 34.
 図2に示すように、蓋部32の+Y方向の端縁32cには、X方向に位置を違えて2つの係止凸部40が形成されている。蓋部32の-Y方向の端縁32dにも、X方向に位置を違えて2つの係止凸部40が形成されている。 As shown in FIG. 2, two locking protrusions 40 are formed on the edge 32c of the lid 32 in the +Y direction at different positions in the X direction. Two locking convex portions 40 are also formed on the edge 32d of the lid portion 32 in the −Y direction at different positions in the X direction.
 係止凸部40は、先端に係止爪部(図示略)が形成されている。係止凸部40は、本体部31の係止凹部39に挿入される。係止凸部40の係止爪部は、本体部31に係止する。これにより、蓋部32は、本体部31に着脱自在に結合される。 The locking convex portion 40 has a locking claw portion (not shown) formed at its tip. The locking convex portion 40 is inserted into the locking recess 39 of the main body portion 31 . The locking claw portion of the locking convex portion 40 locks on the main body portion 31 . Thereby, the lid part 32 is detachably coupled to the main body part 31.
 外装体3は、第2アンテナ2に対して固定されていない。すなわち、外装体3は、第2アンテナ2に対して非固定である。 The exterior body 3 is not fixed to the second antenna 2. That is, the exterior body 3 is not fixed to the second antenna 2.
 RFタグ10は、例えば、ゴム、樹脂などで構成される成形品に設置することができる。例えば、RFタグ10は、成形品に埋設することができる。成形品は、例えば、弾性体であり、弾性変形可能である。成形品に伸び、曲げなどの変形が生じた場合、第2アンテナ2に、外力が作用する可能性がある。例えば、延出部22に、X方向に沿って外装体3から離れる方向の引張力が作用することが考えられる。延出部22には、X方向に沿って外装体3に近づく方向の力が作用することも考えられる。本実施形態のように、RFタグ10をタイヤに設置する際には、RFタグ10を、ゴム製のシートから成る固定部材(ラミネーションゴム)に内包するようにして設けることができる。これにより、RFタグ10の破損を確実に防止できるだけでなく、RFタグ10を固定部材で内包した後に、RFIDタグ10をタイヤに組み込むようにすれば、RFIDタグ10を容易にかつ破損のおそれなくタイヤ1に組み込むことができる。 The RF tag 10 can be installed on a molded product made of rubber, resin, etc., for example. For example, the RF tag 10 can be embedded in a molded product. The molded product is, for example, an elastic body and can be elastically deformed. If the molded product undergoes deformation such as elongation or bending, an external force may act on the second antenna 2. For example, it is conceivable that a tensile force is applied to the extending portion 22 in a direction away from the exterior body 3 along the X direction. It is also conceivable that a force in a direction toward the exterior body 3 acts on the extending portion 22 along the X direction. When installing the RF tag 10 on a tire as in this embodiment, the RF tag 10 can be provided so as to be enclosed in a fixing member (lamination rubber) made of a rubber sheet. This not only reliably prevents the RF tag 10 from being damaged, but also allows the RFID tag 10 to be easily and without fear of damage by incorporating the RFID tag 10 into the tire after the RF tag 10 is enclosed in the fixing member. It can be incorporated into the tire 1.
[RFタグが奏する効果]
 RFタグ10では、第2アンテナ2の電磁界結合部21が線径方向(電磁界結合部21の長さ方向に直交する方向)に変位可能な状態でアンテナ保持溝34に収容される(図6参照)。電磁界結合部21が変位可能であるため、第2アンテナ2に外力が作用した場合に、第2アンテナ2における応力を緩和することができる。よって、第2アンテナ2の破損を起こりにくくすることができる。これに対し、第2アンテナが外装体に固定されている場合には、第2アンテナに外力が作用すると、外装体から延出する第2アンテナの基端部(根元部分)に応力が集中し、この箇所で破損が起こりやすくなる可能性がある。
[Effects of RF tags]
In the RF tag 10, the electromagnetic field coupling part 21 of the second antenna 2 is accommodated in the antenna holding groove 34 in a state that it can be displaced in the wire diameter direction (direction orthogonal to the length direction of the electromagnetic field coupling part 21) (see FIG. (see 6). Since the electromagnetic field coupling portion 21 is movable, stress in the second antenna 2 can be alleviated when an external force acts on the second antenna 2. Therefore, damage to the second antenna 2 can be made less likely to occur. On the other hand, when the second antenna is fixed to the exterior body, when an external force acts on the second antenna, stress concentrates on the proximal end (root portion) of the second antenna that extends from the exterior body. , damage may be more likely to occur at this location.
 第2アンテナ2の電磁界結合部21は、第1アンテナ12の外周縁12aに沿う形状を有するため、電磁界結合部21を第1アンテナ12に十分に電磁界結合させることができる。アンテナ保持溝34は、第1アンテナ12の外周縁12aに沿って形成されているため、第2アンテナ2の電磁界結合部21を、第1アンテナ12に沿って配置することができる。よって、電磁界結合部21を第1アンテナ12に十分に電磁界結合させることができる。 Since the electromagnetic field coupling portion 21 of the second antenna 2 has a shape that follows the outer peripheral edge 12a of the first antenna 12, the electromagnetic field coupling portion 21 can be sufficiently electromagnetically coupled to the first antenna 12. Since the antenna holding groove 34 is formed along the outer peripheral edge 12a of the first antenna 12, the electromagnetic field coupling portion 21 of the second antenna 2 can be arranged along the first antenna 12. Therefore, the electromagnetic field coupling portion 21 can be sufficiently electromagnetically coupled to the first antenna 12.
 第2アンテナ2の電磁界結合部21は、湾曲形状(例えば、半楕円形状)を有するため、第2アンテナ2に外力が作用した場合でも、矩形状の場合に比べ、応力集中が生じにくい。よって、第2アンテナ2の破損を起こりにくくすることができる。これに対し、電磁界結合部が矩形状である場合には、第2アンテナに外力が作用すると、角部(屈曲部)に応力が集中し、この箇所で破損が起こりやすくなる可能性がある。 Since the electromagnetic field coupling portion 21 of the second antenna 2 has a curved shape (for example, a semi-elliptical shape), even if an external force acts on the second antenna 2, stress concentration is less likely to occur compared to a rectangular shape. Therefore, damage to the second antenna 2 can be made less likely to occur. On the other hand, if the electromagnetic field coupling part is rectangular, when external force acts on the second antenna, stress will be concentrated at the corners (bent parts), and damage may easily occur at these parts. .
 アンテナ保持溝34は、基板1の外周縁13aに沿って形成されているため、第2アンテナ2の電磁界結合部21を、第1アンテナ12に沿って配置することができる。よって、電磁界結合部21を第1アンテナ12に十分に電磁界結合させることができる。 Since the antenna holding groove 34 is formed along the outer peripheral edge 13a of the substrate 1, the electromagnetic field coupling portion 21 of the second antenna 2 can be arranged along the first antenna 12. Therefore, the electromagnetic field coupling portion 21 can be sufficiently electromagnetically coupled to the first antenna 12.
 外装体3は、本体部31と、主面31aに重ねられる蓋部32とを備える。基板保持凹部37およびアンテナ保持溝34は、主面31aに形成されている。そのため、蓋部32によって、基板1および第2アンテナ2が本体部31から脱落するのを阻止することができる。よって、基板1および第2アンテナ2を外装体3に安定的に保持することができる。 The exterior body 3 includes a main body portion 31 and a lid portion 32 overlaid on the main surface 31a. The substrate holding recess 37 and the antenna holding groove 34 are formed on the main surface 31a. Therefore, the lid portion 32 can prevent the substrate 1 and the second antenna 2 from falling off from the main body portion 31. Therefore, the substrate 1 and the second antenna 2 can be stably held in the exterior body 3.
 RFタグ10では、外装体3の側端縁31bに、Y方向(主面31aに沿う方向)に延びるスリット状の側端開口36が形成されている。そのため、第2アンテナ2は外装体3に対してY方向に位置変動できる。したがって、第2アンテナ2に外力が作用した場合に、変位により応力を緩和しやすくなる。よって、第2アンテナ2の破損を起こりにくくすることができる。 In the RF tag 10, a slit-shaped side opening 36 extending in the Y direction (direction along the main surface 31a) is formed in the side edge 31b of the exterior body 3. Therefore, the second antenna 2 can move in position relative to the exterior body 3 in the Y direction. Therefore, when an external force acts on the second antenna 2, the stress can be easily alleviated by displacement. Therefore, damage to the second antenna 2 can be made less likely to occur.
 例えば、RFタグ10では、基板1の外周縁13aおよび第1アンテナ12の外周縁12aは全周にわたって湾曲形状であるが、基板および第1アンテナは、外周縁の一部が湾曲形状であってもよい。外装体3は、本体部31と蓋部32とを備えるが、外装体の構成は特に限定されない。例えば、外装体は、蓋部を備えていなくてもよい。外装体は板状に限らず、他の形状(ブロック状等)であってもよい。 For example, in the RF tag 10, the outer periphery 13a of the substrate 1 and the outer periphery 12a of the first antenna 12 are curved over the entire circumference, but the outer periphery of the substrate and the first antenna is partially curved. Good too. The exterior body 3 includes a main body portion 31 and a lid portion 32, but the configuration of the exterior body is not particularly limited. For example, the exterior body does not need to include a lid. The exterior body is not limited to a plate shape, but may have other shapes (such as a block shape).
 上記のように、通信装置10は、アンテナを有する。アンテナは、延在方向に直交する方向に往復しながら延在方向にピッチ間隔A(mm)で(図8参照)所定の形状が繰り返し配列されてなる部分(延出部22)を有する。当該部分(延出部22)の形状は、具体的には、蛇行形状、波状、又はジグザグ状が例示される。なお、図8においては、一対のアンテナのうち一方のみを示しており、反対方向に延在するアンテナは図示を省略している。 As mentioned above, the communication device 10 has an antenna. The antenna has a portion (extending portion 22) in which a predetermined shape is repeatedly arranged at a pitch interval A (mm) (see FIG. 8) in the extending direction while reciprocating in a direction perpendicular to the extending direction. Specifically, the shape of the portion (extending portion 22) is exemplified by a meandering shape, a wavy shape, or a zigzag shape. Note that in FIG. 8, only one of the pair of antennas is shown, and the antenna extending in the opposite direction is not shown.
<空気入りタイヤ>
 図7は、本発明の一実施形態にかかる空気入りタイヤのタイヤ幅方向断面図である。図7は、タイヤ赤道面CLを境界とするタイヤ幅方向の一方の半部のみを示しているが、他方の半部についても同様の構成である。一方で、空気入りタイヤは、タイヤ赤道面CLを境界として、非対称な部分を有していても良い。図8は、ピッチ間隔Pおよびピッチ間隔Aについて説明するための図である。
<Pneumatic tires>
FIG. 7 is a sectional view in the tire width direction of a pneumatic tire according to an embodiment of the present invention. Although FIG. 7 shows only one half in the tire width direction with the tire equatorial plane CL as a boundary, the other half has a similar configuration. On the other hand, the pneumatic tire may have an asymmetrical portion with the tire equatorial plane CL as a boundary. FIG. 8 is a diagram for explaining the pitch interval P and the pitch interval A.
 この空気入りタイヤ50は、トラック・バス用タイヤであるが、他の重荷重用タイヤや乗用車用タイヤとしても良い。 Although this pneumatic tire 50 is a tire for trucks and buses, it may also be a tire for other heavy loads or a tire for passenger cars.
 タイヤの内部構造は特には限定されないが、以下の構成を例示することができる。このタイヤ50は、一対のビード部51と、ビード部51に連なる一対のサイドウォール部52と、一対のサイドウォール部52に連なるトレッド部53とを備えている。ビード部51には、ビードコア51aが埋設され、ビードコア51aのタイヤ径方向外側にはビードフィラ51bが配置されている。また、このタイヤ50は、一対のビード部50間をトロイダル状に跨る、1枚以上のカーカスプライからなるカーカス54を備えている。カーカスプライは、ラジアル配列のカーカスコード54aをゴム被覆してなり、カーカスコードは、通信装置10が設けられたタイヤ径方向位置においてタイヤ周方向にピッチ間隔P(mm)で配列されている。本例では、カーカスコードは、スチールコードからなる。カーカスプライの枚数は、特に限定されない。上記ピッチ間隔P(mm)は、特には限定されないが、例えば、2.0~4.0mmとすることができる。また、カーカスコードの径は、特には限定されないが、0.5~1.5mmとすることができる。 The internal structure of the tire is not particularly limited, but the following structures can be exemplified. This tire 50 includes a pair of bead portions 51, a pair of sidewall portions 52 continuous to the bead portions 51, and a tread portion 53 continuous to the pair of sidewall portions 52. A bead core 51a is embedded in the bead portion 51, and a bead filler 51b is arranged outside the bead core 51a in the tire radial direction. The tire 50 also includes a carcass 54 made of one or more carcass plies that extends between the pair of bead portions 50 in a toroidal manner. The carcass ply is formed by covering radially arranged carcass cords 54a with rubber, and the carcass cords are arranged at a pitch interval P (mm) in the tire circumferential direction at the position in the tire radial direction where the communication device 10 is provided. In this example, the carcass cord consists of steel cord. The number of carcass plies is not particularly limited. The pitch interval P (mm) is not particularly limited, but may be, for example, 2.0 to 4.0 mm. Further, the diameter of the carcass cord is not particularly limited, but may be 0.5 to 1.5 mm.
 カーカス54のクラウン部のタイヤ径方向外側には、1層以上(図示例で4層)のベルト層55a~55dからなるベルト55が配置され、ベルト55のタイヤ径方向外側にはトレッドゴムが配置されている。ベルト55のベルトコードは、本例では、スチールコードである。ベルトコードは、タイヤ周方向に対して、例えば30~60°の傾斜角度で傾斜することができる。ベルト層の層数や、ベルト幅は特に限定されない。 A belt 55 consisting of one or more belt layers 55a to 55d (four layers in the illustrated example) is arranged on the outside in the tire radial direction of the crown portion of the carcass 54, and tread rubber is arranged on the outside of the belt 55 in the tire radial direction. has been done. The belt cord of the belt 55 is a steel cord in this example. The belt cord can be inclined at an inclination angle of, for example, 30 to 60 degrees with respect to the tire circumferential direction. The number of belt layers and the belt width are not particularly limited.
 このタイヤ50は、通信装置としてのRFタグを備えている。RFタグは、ICチップとアンテナとを備える。RFタグは、例えば、タイヤを構成する同種又は異種の複数の部材の間の位置に挟み込まれて配置されてよい。このようにすることで、タイヤ生産時にRFタグを取り付け易く、RFタグを備えるタイヤの生産性を向上させることができる。本例では、RFタグは、サイドウォール部52内に埋設されているが、他にも例えば、ビードフィラと、ビードフィラに隣接するその他の部材と、の間に挟み込まれて配置されてよい。RFタグは、タイヤを構成するいずれかの部材内に埋設されていてもよい。このようにすることで、タイヤを構成する複数の部材の間の位置に挟み込まれて配置される場合と比較して、RFタグに加わる負荷を低減できる。これにより、RFタグの耐久性を向上させることができる。本例では、RFタグは、例えば、トレッドゴム、サイドゴム等のゴム部材内に埋設されてよい。RFタグは、タイヤ幅方向断面視でのタイヤ外面に沿う方向であるペリフェリ長さ方向において、剛性の異なる部材の境界となる位置に、配置されないことが好ましい。このようにすることで、RFタグは、剛性段差に基づき歪みが集中し易い位置に、配置されない。そのため、RFタグに加わる負荷を低減できる。これにより、RFタグの耐久性を向上させることができる。本例では、RFタグは、例えば、タイヤ幅方向断面視でカーカスの端部と、このカーカスの端部に隣接する部材(例えばサイドゴム等)と、の境界となる位置に配置されないことが好ましい。RFタグの数は特に限定されない。タイヤは、1個のみのRFタグを備えてもよく、2個以上のRFタグを備えてもよい。ここでは、通信装置の一例として、RFタグを例示説明しているが、RFタグとは異なる通信装置であってもよい。 This tire 50 is equipped with an RF tag as a communication device. The RF tag includes an IC chip and an antenna. For example, the RF tag may be placed between a plurality of members of the same type or different types that constitute a tire. By doing so, the RF tag can be easily attached during tire production, and the productivity of tires equipped with the RF tag can be improved. In this example, the RF tag is embedded in the sidewall portion 52, but it may also be placed between, for example, the bead filler and another member adjacent to the bead filler. The RF tag may be embedded in any member that constitutes the tire. By doing so, the load applied to the RF tag can be reduced compared to the case where the RF tag is sandwiched between a plurality of members constituting the tire. Thereby, the durability of the RF tag can be improved. In this example, the RF tag may be embedded in a rubber member such as tread rubber or side rubber. It is preferable that the RF tag is not placed at a position that is a boundary between members having different rigidities in the periphery length direction, which is a direction along the outer surface of the tire in a cross-sectional view in the tire width direction. By doing so, the RF tag is not placed in a position where distortion is likely to be concentrated due to the difference in rigidity. Therefore, the load applied to the RF tag can be reduced. Thereby, the durability of the RF tag can be improved. In this example, it is preferable that the RF tag is not placed at a position that is a boundary between the end of the carcass and a member (for example, side rubber, etc.) adjacent to the end of the carcass in a cross-sectional view in the tire width direction. The number of RF tags is not particularly limited. A tire may include only one RF tag, or may include two or more RF tags. Here, an RF tag is illustrated as an example of a communication device, but a communication device other than an RF tag may be used.
 RFタグは、例えば、タイヤのトレッド部に配置されてよい。このようにすることで、RFタグは、タイヤのサイドカットにより損傷しない。RFタグは、例えば、タイヤのトレッド部のタイヤ内面に配置しても良い。RFタグは、例えば、タイヤ幅方向において、トレッド中央部に配置されてよい。トレッド中央部は、トレッド部において撓みが集中し難い位置である。このようにすることで、RFタグに加わる負荷を低減できる。これにより、RFタグの耐久性を向上させることができる。また、タイヤ幅方向でのタイヤの両外側からのRFタグとの通信性に差が生じることを抑制できる。本例では、RFタグは、例えば、タイヤ幅方向において、タイヤ赤道面を中心としてトレッド幅の1/2の範囲内に配置されてよい。RFタグは、例えば、タイヤ幅方向において、トレッド端部に配置されてもよい。RFタグと通信するリーダーの位置が予め決まっている場合には、RFタグは、例えば、このリーダーに近い一方側のトレッド端部に配置されてよい。本例では、RFタグは、例えば、タイヤ幅方向において、トレッド端を外端とする、トレッド幅の1/4の範囲内に配置されてよい。 The RF tag may be placed, for example, in the tread of a tire. In this way, the RF tag will not be damaged by the side cut of the tire. The RF tag may be placed, for example, on the inner surface of the tire in the tread portion of the tire. The RF tag may be placed, for example, in the center of the tread in the tire width direction. The central portion of the tread is a position where deflection is difficult to concentrate in the tread portion. By doing so, the load applied to the RF tag can be reduced. Thereby, the durability of the RF tag can be improved. Further, it is possible to suppress differences in communication with the RF tag from both outsides of the tire in the tire width direction. In this example, the RF tag may be arranged, for example, in the tire width direction within a range of 1/2 of the tread width centered on the tire equatorial plane. The RF tag may be placed, for example, at the edge of the tread in the width direction of the tire. If the position of the reader communicating with the RF tag is predetermined, the RF tag may be placed, for example, at one tread end close to the reader. In this example, the RF tag may be arranged, for example, in the tire width direction within a range of 1/4 of the tread width, with the tread end being the outer end.
 RFタグは、例えば、ビード部間に跨る、1枚以上のカーカスプライを含むカーカスより、タイヤ内腔側に配置されてよい。このようにすることで、タイヤの外部から加わる衝撃や、サイドカットや釘刺さりなどの損傷に対して、RFタグが損傷し難くなる。一例として、RFタグは、カーカスのタイヤ内腔側の面に密着して配置されてよい。別の一例として、カーカスよりタイヤ内腔側に別の部材がある場合に、RFタグは、例えば、カーカスと、このカーカスよりタイヤ内腔側に位置する別の部材と、の間に配置されてもよい。カーカスよりタイヤ内腔側に位置する別の部材としては、例えば、タイヤ内面を形成するインナーライナーが挙げられる。別の一例として、RFタグは、タイヤ内腔に面するタイヤ内面に取り付けられていてもよい。RFタグが、タイヤ内面に取り付けられる構成とすることで、RFタグのタイヤへの取り付け、及び、RFタグの点検・交換が行い易い。つまり、RFタグの取り付け性及びメンテナンス性を向上させることができる。また、RFタグが、タイヤ内面に取り付けられることで、RFタグをタイヤ内に埋設する構成と比較して、RFタグがタイヤ故障の核となることを防ぐことができる。また、カーカスが、複数枚のカーカスプライを備え、複数枚のカーカスプライが重ねられている位置がある場合に、RFタグは、重ねられているカーカスプライの間に配置されていてもよい。 For example, the RF tag may be placed closer to the inner cavity of the tire than the carcass, which includes one or more carcass plies spanning between the bead portions. By doing so, the RF tag is less likely to be damaged by shocks applied from outside the tire, side cuts, nail penetrations, and other damage. As an example, the RF tag may be placed in close contact with the tire lumen side surface of the carcass. As another example, when there is another member closer to the tire lumen than the carcass, the RF tag may be placed between the carcass and another member located closer to the tire lumen than the carcass. Good too. Another member located closer to the inner cavity of the tire than the carcass is, for example, an inner liner that forms the inner surface of the tire. As another example, the RF tag may be attached to the inner surface of the tire facing the tire bore. By configuring the RF tag to be attached to the inner surface of the tire, it is easy to attach the RF tag to the tire and to inspect and replace the RF tag. In other words, the ease of attaching and maintaining the RF tag can be improved. Furthermore, by attaching the RF tag to the inner surface of the tire, compared to a configuration in which the RF tag is buried within the tire, it is possible to prevent the RF tag from becoming the core of tire failure. Further, when the carcass includes a plurality of carcass plies and there is a position where the plurality of carcass plies are overlapped, the RF tag may be arranged between the overlapped carcass plies.
 RFタグは、例えば、タイヤのトレッド部で、1枚以上のベルトプライを含むベルトより、タイヤ径方向の外側に配置されてよい。一例として、RFタグは、ベルトに対してタイヤ径方向の外側で、当該ベルトに密着して配置されてよい。また、別の一例として、補強ベルト層を備える場合、当該補強ベルト層に対してタイヤ径方向の外側で、当該補強ベルト層に密着して配置されてよい。また、別の一例として、RFタグは、ベルトよりタイヤ径方向の外側で、トレッドゴム内に埋設されていてもよい。RFタグが、タイヤのトレッド部で、ベルトよりタイヤ径方向の外側に配置されることで、タイヤ径方向でのタイヤの外側からのRFタグとの通信が、ベルトにより阻害され難い。そのため、タイヤ径方向でのタイヤの外側からのRFタグとの通信性を向上させることができる。また、RFタグは、例えば、タイヤのトレッド部で、ベルトよりタイヤ径方向の内側に配置されていてもよい。このようにすることで、RFタグのタイヤ径方向の外側がベルトに覆われるため、RFタグは、トレッド面からの衝撃や釘刺さりなどに対して損傷し難くなる。この一例として、RFタグは、タイヤのトレッド部で、ベルトと、当該ベルトよりタイヤ径方向の内側に位置するカーカスと、の間に配置されてよい。また、ベルトが、複数枚のベルトプライを備える場合に、RFタグは、タイヤのトレッド部で、任意の2枚のベルトプライの間に配置されてよい。このようにすることで、RFタグのタイヤ径方向の外側が1枚以上のベルトプライに覆われるため、RFタグは、トレッド面からの衝撃や釘刺さりなどに対して損傷し難くなる。 The RF tag may be placed, for example, in the tread portion of the tire, on the outside in the tire radial direction from a belt including one or more belt plies. As an example, the RF tag may be placed on the outside of the belt in the tire radial direction and in close contact with the belt. As another example, when a reinforcing belt layer is provided, it may be disposed on the outer side of the reinforcing belt layer in the tire radial direction and in close contact with the reinforcing belt layer. Further, as another example, the RF tag may be embedded in the tread rubber outside the belt in the tire radial direction. Since the RF tag is disposed in the tread portion of the tire outside the belt in the tire radial direction, communication with the RF tag from outside the tire in the tire radial direction is less likely to be obstructed by the belt. Therefore, communication with the RF tag from the outside of the tire in the tire radial direction can be improved. Further, the RF tag may be placed, for example, in the tread portion of the tire, inside the belt in the tire radial direction. In this way, since the outside of the RF tag in the tire radial direction is covered by the belt, the RF tag is less likely to be damaged by impact from the tread surface or nail penetration. As an example of this, the RF tag may be placed in the tread portion of a tire between a belt and a carcass located inside the belt in the tire radial direction. Further, when the belt includes a plurality of belt plies, the RF tag may be placed between any two belt plies in the tread portion of the tire. By doing this, the outside of the RF tag in the tire radial direction is covered with one or more belt plies, so that the RF tag is less likely to be damaged by impacts from the tread surface, nail penetration, etc.
 RFタグは、例えば、クッションゴムと、トレッドゴムとの間やクッションゴムと、サイドゴムと、の間に挟み込まれて配置されてよい。このようにすることで、RFタグへの衝撃を、クッションゴムにより緩和できる。そのため、RFタグの耐久性を向上させることができる。また、RFタグは、例えば、クッションゴム内に埋設されていてもよい。更に、クッションゴムは、隣接する同種又は異種の複数のゴム部材から構成されてよい。かかる場合に、RFタグは、クッションゴムを構成する複数のゴム部材の間に挟み込まれて配置されてもよい。 The RF tag may be placed, for example, between the cushion rubber and the tread rubber or between the cushion rubber and the side rubber. By doing so, the impact on the RF tag can be alleviated by the cushion rubber. Therefore, the durability of the RF tag can be improved. Furthermore, the RF tag may be embedded within the cushion rubber, for example. Further, the cushion rubber may be composed of a plurality of adjacent rubber members of the same type or different types. In such a case, the RF tag may be placed between a plurality of rubber members that constitute the cushion rubber.
 RFタグは、例えば、タイヤのサイドウォール部又はビード部の位置に配置されてよい。RFタグは、例えば、RFタグと通信可能なリーダーに対して近い一方側のサイドウォール部又は一方側のビード部に配置されてよい。このようにすることで、RFタグとリーダーとの通信性を高めることができる。一例として、RFタグは、カーカスと、サイドゴムと、の間やトレッドゴムとサイドゴムと、の間に配置されてよい。RFタグは、例えば、タイヤ径方向において、タイヤ最大幅となる位置と、トレッド面の位置と、の間に配置されてよい。このようにすることで、RFタグがタイヤ最大幅となる位置よりタイヤ径方向の内側に配置される構成と比較して、タイヤ径方向でのタイヤの外側からのRFタグとの通信性を高めることができる。RFタグは、例えば、タイヤ最大幅となる位置よりタイヤ径方向の内側に配置されていてもよい。このようにすることで、RFタグは、剛性の高いビード部近傍に配置される。そのため、RFタグに加わる負荷を低減できる。これにより、RFタグの耐久性を向上させることができる。一例として、RFタグは、ビードコアとタイヤ径方向又はタイヤ幅方向で隣接する位置に配置されてよい。ビードコア近傍は歪みが集中し難い。そのため、RFタグに加わる負荷を低減できる。これにより、RFタグの耐久性を向上させることができる。特に、RFタグは、タイヤ最大幅となる位置よりタイヤ径方向の内側であって、かつ、ビード部のビードコアよりタイヤ径方向の外側の位置に配置されることが好ましい。このようにすることで、RFタグの耐久性を向上させることができるとともに、RFタグとリーダーとの通信が、ビードコアにより阻害され難く、RFタグの通信性を高めることができる。また、サイドゴムがタイヤ径方向に隣接する同種又は異種の複数のゴム部材から構成されている場合に、RFタグは、サイドゴムを構成する複数のゴム部材の間に挟み込まれて配置されていてもよい。RFタグは、例えば、サイドゴムの外表面に配置しても良い。 The RF tag may be placed, for example, at the sidewall or bead of the tire. The RF tag may be placed, for example, on one sidewall portion or one side bead portion close to a reader capable of communicating with the RF tag. By doing so, it is possible to improve the communication between the RF tag and the reader. As an example, the RF tag may be placed between the carcass and the side rubber or between the tread rubber and the side rubber. The RF tag may be placed, for example, in the tire radial direction between the tire maximum width position and the tread surface position. By doing this, communication with the RF tag from the outside of the tire in the tire radial direction is improved compared to a configuration in which the RF tag is placed inside the tire radial direction from the position where the tire is at its maximum width. be able to. The RF tag may be placed, for example, on the inner side of the tire in the radial direction from the position where the tire is at its maximum width. By doing so, the RF tag is placed near the highly rigid bead portion. Therefore, the load applied to the RF tag can be reduced. Thereby, the durability of the RF tag can be improved. As an example, the RF tag may be placed adjacent to the bead core in the tire radial direction or the tire width direction. Distortion is difficult to concentrate near the bead core. Therefore, the load applied to the RF tag can be reduced. Thereby, the durability of the RF tag can be improved. In particular, it is preferable that the RF tag be arranged at a position radially inside the tire from the maximum tire width position and radially outside the bead core of the bead portion. By doing so, the durability of the RF tag can be improved, and communication between the RF tag and the reader is less likely to be hindered by the bead core, and the communication performance of the RF tag can be improved. Furthermore, when the side rubber is composed of a plurality of rubber members of the same type or different types adjacent in the tire radial direction, the RF tag may be placed between the plurality of rubber members that constitute the side rubber. . The RF tag may be placed on the outer surface of the side rubber, for example.
 RFタグは、スティフナー(ビードフィラ)と、このスティフナーに隣接する部材と、の間に挟み込まれて配置されてよい。このようにすることで、スティフナーを配置することにより歪みが集中し難くなった位置に、RFタグを配置することができる。そのため、RFタグに加わる負荷を低減できる。これにより、RFタグの耐久性を向上させることができる。RFタグは、例えば、スティフナーと、サイドゴムと、の間に挟み込まれて配置されてよい。また、RFタグは、例えば、スティフナーと、カーカスと、の間に挟み込まれて配置されていてもよい。カーカスのうちスティフナーと共にRFタグを挟み込む部分は、スティフナーに対してタイヤ幅方向の外側に位置してもよく、タイヤ幅方向の内側に位置してもよい。カーカスのうちスティフナーと共にRFタグを挟み込む部分が、スティフナーに対してタイヤ幅方向の外側に位置する場合には、タイヤ幅方向のタイヤの外側からの衝撃や損傷により、RFタグに加わる負荷を、より低減できる。これにより、RFタグの耐久性を、より向上させることができる。スティフナーは、ゴムチェーファーと隣接して配置されている部分を備えてもよい。かかる場合に、RFタグは、スティフナーと、ゴムチェーファーと、の間に挟み込まれて配置されていてもよい。スティフナーは、タイヤ幅方向の外側でハットゴムに隣接する部分を備えてもよい。かかる場合に、RFタグは、スティフナーと、ハットゴムと、の間に挟み込まれて配置されていてもよい。スティフナーは、硬さの異なる複数のゴム部材から構成されてよい。かかる場合に、RFタグは、スティフナーを構成する複数のゴム部材の間に挟み込まれて配置されていてもよい。RFタグは、ハットゴムと、このハットゴムに隣接する部材と、の間に挟み込まれて配置されてよい。RFタグは、例えば、ハットゴムと、カーカスプライと、の間に挟み込まれて配置されてよい。このようにすることで、RFタグへの衝撃を、ハットゴムにより緩和できる。そのため、RFタグの耐久性を向上させることができる。 The RF tag may be placed between a stiffener (bead filler) and a member adjacent to the stiffener. By doing so, the RF tag can be placed at a position where distortion is difficult to concentrate due to the placement of the stiffener. Therefore, the load applied to the RF tag can be reduced. Thereby, the durability of the RF tag can be improved. The RF tag may be placed between the stiffener and the side rubber, for example. Further, the RF tag may be placed between the stiffener and the carcass, for example. The portion of the carcass where the RF tag is sandwiched together with the stiffener may be located on the outside in the tire width direction with respect to the stiffener, or may be located on the inside in the tire width direction with respect to the stiffener. If the part of the carcass where the RF tag is sandwiched together with the stiffener is located on the outside of the stiffener in the tire width direction, the load applied to the RF tag due to impact or damage from the outside of the tire in the tire width direction is reduced. Can be reduced. Thereby, the durability of the RF tag can be further improved. The stiffener may include a portion located adjacent to the rubber chafer. In such a case, the RF tag may be placed between the stiffener and the rubber chafer. The stiffener may include a portion adjacent to the hat rubber on the outside in the tire width direction. In such a case, the RF tag may be placed between the stiffener and the hat rubber. The stiffener may be composed of a plurality of rubber members having different hardnesses. In such a case, the RF tag may be placed between a plurality of rubber members that constitute the stiffener. The RF tag may be placed between the hat rubber and a member adjacent to the hat rubber. The RF tag may be placed between the hat rubber and the carcass ply, for example. By doing so, the impact on the RF tag can be alleviated by the hat rubber. Therefore, the durability of the RF tag can be improved.
 RFタグは、例えば、ゴムチェーファーと、サイドゴムと、の間に挟み込まれて配置されてよい。このようにすることで、ゴムチェーファーを配置することにより歪みが集中し難くなった位置に、RFタグを配置することができる。そのため、RFタグに加わる負荷を低減できる。これにより、RFタグの耐久性を向上させることができる。RFタグは、例えば、ゴムチェーファーと、カーカスと、の間に挟み込まれて配置されていてもよい。このようにすることで、リムから加わる衝撃や損傷により、RFタグに加わる負荷を低減できる。そのため、RFタグの耐久性を向上させることができる。 The RF tag may be placed between the rubber chafer and the side rubber, for example. By doing so, the RF tag can be placed at a position where distortion is less likely to be concentrated by placing the rubber chafer. Therefore, the load applied to the RF tag can be reduced. Thereby, the durability of the RF tag can be improved. The RF tag may be placed between the rubber chafer and the carcass, for example. By doing so, it is possible to reduce the load applied to the RF tag due to impact or damage from the rim. Therefore, the durability of the RF tag can be improved.
 RFタグは、ナイロンチェーファーと、このナイロンチェーファーのタイヤ幅方向の外側又は内側で隣接する別の部材と、の間に挟み込まれて配置されていてもよい。このようにすることで、タイヤ変形時に、RFタグの位置が変動し難くなる。そのため、タイヤ変形時にRFタグに加わる負荷を低減できる。これにより、RFタグの耐久性を向上させることができる。ナイロンチェーファーは、例えば、タイヤ幅方向外側で、ゴムチェーファーと隣接する部分を備えてもよい。かかる場合に、RFタグは、ナイロンチェーファーと、ゴムチェーファーと、の間に挟み込まれて配置されていてもよい。ナイロンチェーファーは、例えば、タイヤ幅方向外側で、サイドゴムと隣接する部分を備えてもよい。かかる場合に、RFタグは、ナイロンチェーファーと、サイドゴムと、の間に挟み込まれて配置されていてもよい。ナイロンチェーファーは、例えば、タイヤ幅方向内側で、スティフナーと隣接する部分を備えてもよい。かかる場合に、RFタグは、ナイロンチェーファーと、スティフナーと、の間に挟み込まれて配置されていてもよい。また、ナイロンチェーファーは、例えば、タイヤ幅方向内側で、ハットゴムと隣接する部分を備えてもよい。かかる場合に、RFタグは、ナイロンチェーファーと、ハットゴムと、の間に挟み込まれて配置されていてもよい。更に、ナイロンチェーファーは、例えば、タイヤ幅方向内側で、カーカスと隣接する部分を備えてもよい。かかる場合に、RFタグは、ナイロンチェーファーと、カーカスと、の間に挟み込まれて配置されていてもよい。更に、ナイロンチェーファーは、例えば、タイヤ幅方向内側で、ワイヤーチェーファーと隣接する部分を備えてもよい。かかる場合に、RFタグは、ナイロンチェーファーと、ワイヤーチェーファーと、の間に挟み込まれて配置されていてもよい。
 このように、RFタグは、ナイロンチェーファーと、このナイロンチェーファーのタイヤ幅方向の外側又は内側で隣接する別の部材と、の間に挟み込まれて配置されていてよい。特に、RFタグのタイヤ幅方向外側が、ナイロンチェーファーに覆われることで、タイヤ幅方向でのタイヤの外側からの衝撃や損傷により、RFタグに加わる負荷を、より低減できる。そのため、RFタグの耐久性を、より向上させることができる。
The RF tag may be placed between the nylon chafer and another member adjacent to the nylon chafer on the outside or inside of the nylon chafer in the tire width direction. By doing this, the position of the RF tag becomes less likely to change when the tire deforms. Therefore, the load applied to the RF tag during tire deformation can be reduced. Thereby, the durability of the RF tag can be improved. The nylon chafer may include, for example, a portion adjacent to the rubber chafer on the outside in the tire width direction. In such a case, the RF tag may be placed between the nylon chafer and the rubber chafer. The nylon chafer may include, for example, a portion adjacent to the side rubber on the outside in the tire width direction. In such a case, the RF tag may be placed between the nylon chafer and the side rubber. The nylon chafer may include, for example, a portion adjacent to the stiffener on the inner side in the tire width direction. In such a case, the RF tag may be placed between the nylon chafer and the stiffener. Further, the nylon chafer may include, for example, a portion adjacent to the hat rubber on the inner side in the tire width direction. In such a case, the RF tag may be placed between the nylon chafer and the hat rubber. Furthermore, the nylon chafer may include a portion adjacent to the carcass, for example, on the inner side in the tire width direction. In such a case, the RF tag may be placed between the nylon chafer and the carcass. Furthermore, the nylon chafer may include a portion adjacent to the wire chafer on the inner side in the tire width direction, for example. In such a case, the RF tag may be placed between the nylon chafer and the wire chafer.
In this way, the RF tag may be placed between the nylon chafer and another member adjacent to the nylon chafer on the outside or inside of the nylon chafer in the tire width direction. In particular, by covering the outside of the RF tag in the tire width direction with the nylon chafer, the load applied to the RF tag due to impact or damage from the outside of the tire in the tire width direction can be further reduced. Therefore, the durability of the RF tag can be further improved.
 RFタグは、ワイヤーチェーファーと、このワイヤーチェーファーのタイヤ幅方向の内側又は外側で隣接する別の部材と、の間に挟み込まれて配置されていてもよい。このようにすることで、タイヤ変形時に、RFタグの位置が変動し難くなる。そのため、タイヤ変形時にRFタグに加わる負荷を低減できる。これにより、RFタグの耐久性を向上させることができる。ワイヤーチェーファーがタイヤ幅方向の内側又は外側で隣接する別の部材は、例えば、ゴムチェーファーなどのゴム部材であってよい。また、ワイヤーチェーファーがタイヤ幅方向の内側又は外側で隣接する別の部材は、例えば、カーカスであってもよい。 The RF tag may be placed between the wire chafer and another member adjacent to the wire chafer on the inside or outside of the wire chafer in the tire width direction. By doing this, the position of the RF tag becomes less likely to change when the tire deforms. Therefore, the load applied to the RF tag during tire deformation can be reduced. Thereby, the durability of the RF tag can be improved. Another member adjacent to the wire chafer on the inside or outside in the tire width direction may be, for example, a rubber member such as a rubber chafer. Further, another member adjacent to the wire chafer on the inside or outside in the tire width direction may be, for example, a carcass.
 ここで、図8に示すように、カーカスコード(カーカスプライが複数枚である場合には、RFタグに最も近いカーカスプライのカーカスコード)は、通信装置10(RFタグ)が設けられたタイヤ径方向位置においてタイヤ周方向にピッチ間隔P(mm)で配列され、アンテナは、延在方向に直交する方向に往復しながら延在方向にピッチ間隔A(mm)で所定の形状が(図示例では、タイヤ周方向に)繰り返し配列されてなる部分を有し、ピッチ間隔A(mm)は、ピッチ間隔P(mm)より大きい。
 以下、本実施形態の空気入りタイヤの作用効果について説明する。
Here, as shown in FIG. 8, the carcass code (if there are multiple carcass plies, the carcass code of the carcass ply closest to the RF tag) is the tire diameter on which the communication device 10 (RF tag) is installed. The antennas are arranged at a pitch interval P (mm) in the tire circumferential direction at the direction position, and the antennas are arranged in a predetermined shape at a pitch interval A (mm) in the extending direction while reciprocating in a direction perpendicular to the extending direction (in the example shown). , in the tire circumferential direction), and the pitch interval A (mm) is larger than the pitch interval P (mm).
Hereinafter, the effects of the pneumatic tire of this embodiment will be explained.
 本実施形態の空気入りタイヤによれば、ピッチ間隔A(mm)は、ピッチ間隔P(mm)より大きいため、通信装置のアンテナの耐久性を向上させることができる。すなわち、ピッチ間隔A(mm)が、ピッチ間隔P(mm)より小さい(又は等しい)と、タイヤの転動時に、隣接する直線部23同士が干渉(接触)するおそれがあるため、アンテナの耐久性(ひいては通信装置の耐久性)が低下してしまう。また、比A/Pが6以下であることが好ましく、カーカスコードのピッチ間隔対比で直線部の間隔が大きすぎてアンテナの通信性が低下してしまうのを抑制して、アンテナ効果による通信性を確保することができる。 According to the pneumatic tire of this embodiment, since the pitch interval A (mm) is larger than the pitch interval P (mm), it is possible to improve the durability of the antenna of the communication device. In other words, if the pitch interval A (mm) is smaller than (or equal to) the pitch interval P (mm), there is a risk that adjacent straight parts 23 will interfere (contact) with each other when the tire rolls, which will reduce the durability of the antenna. performance (and thus the durability of the communication device). In addition, it is preferable that the ratio A/P is 6 or less, which suppresses the fact that the distance between the straight parts is too large compared to the pitch distance of the carcass cord, which reduces the communication performance of the antenna. can be ensured.
 アンテナは、延在方向に直交する方向に延びる第1の部分(図示例では直線部23)と、延在方向に延びる第2の部分(図示例では折り返し部24)とを有し、空気入りタイヤの表面と直交する方向から見た際に(例えばRFタグがカーカスよりもタイヤ幅方向外側に配置されている場合は、タイヤの外部から外表面に直交する方向から見た際に、また、例えばRFタグがタイヤ内面に配置されている場合は、タイヤの内部から内表面に直交する方向から見た際に)、第2の部分は、2本又は3本のカーカスコードと交差することが好ましい。これにより、より高い次元で通信装置のアンテナの耐久性と通信性とを両立させることができる。特に、外装体3側に最も近い第2の部分は、2本又は3本のカーカスコードと交差することが好ましい。外装体3側に最も近い第2の部分において、故障が生じやすいため、この部分で耐久性を高めることが効果的だからである。 The antenna has a first portion extending in a direction perpendicular to the extending direction (straight portion 23 in the illustrated example) and a second portion extending in the extending direction (folded portion 24 in the illustrated example), and has an air-filled portion. When viewed from the direction perpendicular to the tire surface (for example, if the RF tag is placed outside the carcass in the tire width direction, when viewed from the outside of the tire from the direction perpendicular to the outer surface, For example, if the RF tag is placed on the inner surface of the tire, the second portion may intersect with two or three carcass cords (when viewed from inside the tire in a direction perpendicular to the inner surface). preferable. Thereby, it is possible to achieve both durability and communication performance of the antenna of the communication device at a higher level. In particular, it is preferable that the second portion closest to the exterior body 3 side intersects two or three carcass cords. This is because failures tend to occur in the second portion closest to the exterior body 3, so it is effective to increase durability in this portion.
 また、延在方向にピッチ間隔A(mm)で所定の形状が繰り返し配列されてなる部分は、蛇行形状、波状、又はジグザグ状であることが好ましい。このような形状は、単位延在長さ(図1でいうX方向の長さ)に対するパスの長さが長く、通信性を向上させるのに有利だからである。 Further, it is preferable that the portion where a predetermined shape is repeatedly arranged at a pitch interval A (mm) in the extending direction has a meandering shape, a wave shape, or a zigzag shape. This is because such a shape has a long path length relative to a unit extension length (the length in the X direction in FIG. 1), and is advantageous for improving communication performance.
 以上、本発明の実施形態について説明したが、本発明は上記の実施形態に何ら限定されるものではない。例えば、図8では、アンテナの延出部22の延在方向がタイヤ周方向である場合(すなわち、カーカスコードのピッチ間隔の方向とアンテナの延出部22の直線部23のピッチ間隔の方向が同じである場合)を示したが、アンテナの延出部22の延在方向は、タイヤ周方向に対して傾斜していても良い。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments. For example, in FIG. 8, when the extending direction of the antenna extension part 22 is the tire circumferential direction (that is, the direction of the pitch interval of the carcass cord and the direction of the pitch interval of the straight part 23 of the antenna extension part 22 are However, the extending direction of the antenna extension portion 22 may be inclined with respect to the tire circumferential direction.
[国連が主導する持続可能な開発目標(SDGs)への貢献]
 持続可能な社会の実現に向けて、SDGsが提唱されている。本発明の一実施形態は「No.12_作る責任、つかう責任」などに貢献する技術となり得ると考えられる。
[Contribution to the Sustainable Development Goals (SDGs) led by the United Nations]
SDGs have been proposed to realize a sustainable society. It is believed that an embodiment of the present invention can become a technology that contributes to "No. 12_Responsibility to create and use."
1:基板、 2:第2アンテナ、 3:外装体、
10:RFタグ(通信装置)、 11:RFIDチップ、
12:第1アンテナ、 12a:外周縁、
21:電磁界結合部、 21a:端部、 22:延出部、
34:アンテナ保持溝、 37:基板保持凹部(基板保持部)、
50:空気入りタイヤ、 51:ビード部、
52:サイドウォール部、 53:トレッド部、
54;カーカス、 55:ベルト、
CL:タイヤ赤道面
1: Board, 2: Second antenna, 3: Exterior body,
10: RF tag (communication device), 11: RFID chip,
12: first antenna, 12a: outer periphery,
21: Electromagnetic field coupling part, 21a: End part, 22: Extension part,
34: Antenna holding groove, 37: Board holding recess (board holding part),
50: Pneumatic tire, 51: Bead part,
52: Sidewall part, 53: Tread part,
54; carcass, 55: belt,
CL: Tire equatorial plane

Claims (3)

  1.  一対のビード部にトロイダルに跨る、1枚以上のカーカスプライからなるカーカスを備えた、空気入りタイヤであって、
     前記カーカスプライは、ラジアル配列のカーカスコードをゴム被覆してなり、
     前記空気入りタイヤに、アンテナを有する通信装置が設けられ、
     前記アンテナは、延在方向に直交する方向に往復しながら前記延在方向にピッチ間隔A(mm)で所定の形状が繰り返し配列されてなる部分を有し、
     前記カーカスコードは、前記通信装置が設けられたタイヤ径方向位置においてタイヤ周方向にピッチ間隔P(mm)で配列され、
     前記ピッチ間隔A(mm)は、前記ピッチ間隔P(mm)より大きいことを特徴とする、空気入りタイヤ。
    A pneumatic tire comprising a carcass consisting of one or more carcass plies spanning a pair of bead portions in a toroidal manner,
    The carcass ply is made of a radially arranged carcass cord covered with rubber,
    The pneumatic tire is provided with a communication device having an antenna,
    The antenna has a portion in which a predetermined shape is repeatedly arranged at a pitch interval A (mm) in the extending direction while reciprocating in a direction perpendicular to the extending direction,
    The carcass cords are arranged at a pitch interval P (mm) in the tire circumferential direction at a tire radial position where the communication device is provided,
    A pneumatic tire, wherein the pitch interval A (mm) is larger than the pitch interval P (mm).
  2.  前記アンテナは、延在方向に直交する方向に延びる第1の部分と、延在方向に延びる第2の部分とを有し、
     前記空気入りタイヤの表面と直交する方向から見た際に、前記第2の部分は、2本又は3本の前記カーカスコードと交差する、請求項1に記載の空気入りタイヤ。
    The antenna has a first portion extending in a direction perpendicular to the extending direction, and a second portion extending in the extending direction,
    The pneumatic tire according to claim 1, wherein the second portion intersects with two or three of the carcass cords when viewed from a direction perpendicular to the surface of the pneumatic tire.
  3.  前記延在方向にピッチ間隔A(mm)で所定の形状が繰り返し配列されてなる部分は、蛇行形状、波状、又はジグザグ状である、請求項1又は2に記載の空気入りタイヤ。
     
    The pneumatic tire according to claim 1 or 2, wherein the portion in which predetermined shapes are repeatedly arranged at pitch intervals A (mm) in the extending direction has a meandering shape, a wave shape, or a zigzag shape.
PCT/JP2023/019792 2022-08-10 2023-05-26 Pneumatic tire WO2024034230A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022128254A JP2024025094A (en) 2022-08-10 2022-08-10 Pneumatic tire
JP2022-128254 2022-08-10

Publications (1)

Publication Number Publication Date
WO2024034230A1 true WO2024034230A1 (en) 2024-02-15

Family

ID=89851300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019792 WO2024034230A1 (en) 2022-08-10 2023-05-26 Pneumatic tire

Country Status (2)

Country Link
JP (1) JP2024025094A (en)
WO (1) WO2024034230A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005535497A (en) * 2002-08-14 2005-11-24 ミネラル ラッセン リミテッド ライアビリティ カンパニー RFID belt antenna system and method
JP2008536357A (en) * 2005-03-09 2008-09-04 ソシエテ ドゥ テクノロジー ミシュラン Sturdy installation of RFID transponder antenna
JP2014038627A (en) * 2012-08-20 2014-02-27 The Goodyear Tire & Rubber Co Laminated tire rfid reader device and method
WO2017130956A1 (en) * 2016-01-25 2017-08-03 トッパン・フォームズ株式会社 Tire with embedded rfid tag
JP2022084145A (en) * 2020-11-26 2022-06-07 トッパン・フォームズ株式会社 Non-contact data transmitter/receiver

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005535497A (en) * 2002-08-14 2005-11-24 ミネラル ラッセン リミテッド ライアビリティ カンパニー RFID belt antenna system and method
JP2008536357A (en) * 2005-03-09 2008-09-04 ソシエテ ドゥ テクノロジー ミシュラン Sturdy installation of RFID transponder antenna
JP2014038627A (en) * 2012-08-20 2014-02-27 The Goodyear Tire & Rubber Co Laminated tire rfid reader device and method
WO2017130956A1 (en) * 2016-01-25 2017-08-03 トッパン・フォームズ株式会社 Tire with embedded rfid tag
JP2022084145A (en) * 2020-11-26 2022-06-07 トッパン・フォームズ株式会社 Non-contact data transmitter/receiver

Also Published As

Publication number Publication date
JP2024025094A (en) 2024-02-26

Similar Documents

Publication Publication Date Title
JP6650767B2 (en) RFID tag built-in tire
WO2024034230A1 (en) Pneumatic tire
WO2024042802A1 (en) Pneumatic tire
WO2024053338A1 (en) Pneumatic tire
WO2024053337A1 (en) Pneumatic tire
JP7505383B2 (en) Contactless Data Transmitter/Receiver
WO2024095522A1 (en) Pneumatic tire and manufacturing method therefor
WO2024095523A1 (en) Pneumatic tyre manufacturing method
CN114475097A (en) Tyre for vehicle wheels
WO2024053210A1 (en) Tire, uncured tire, tire manufacturing method, and rf tag
CN110978900B (en) Tyre for vehicle wheels
WO2024105921A1 (en) Tire, unvulcanized tire, and tire manufacturing method
US20240351377A1 (en) Tire
WO2024105920A1 (en) Tire, unvulcanized tire, and tire manufacturing method
WO2022004477A1 (en) Pneumatic tire
JP2024073327A (en) Tire, unvulcanized tire, tire manufacturing method, and RF tag
JP7573494B2 (en) tire
EP4364978A1 (en) Tire
WO2023276180A1 (en) Tire
WO2024106094A1 (en) Tire
JP2023087600A (en) tire
JP2023087599A (en) tire
JP2024008309A (en) tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852214

Country of ref document: EP

Kind code of ref document: A1