WO2023199667A1 - 吸音部材、吸音パネル及び吸音壁 - Google Patents
吸音部材、吸音パネル及び吸音壁 Download PDFInfo
- Publication number
- WO2023199667A1 WO2023199667A1 PCT/JP2023/009220 JP2023009220W WO2023199667A1 WO 2023199667 A1 WO2023199667 A1 WO 2023199667A1 JP 2023009220 W JP2023009220 W JP 2023009220W WO 2023199667 A1 WO2023199667 A1 WO 2023199667A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sound absorption
- sound
- waveguide
- sound absorbing
- perforated
- Prior art date
Links
- 238000005192 partition Methods 0.000 claims description 24
- 230000003287 optical effect Effects 0.000 claims description 5
- 238000010521 absorption reaction Methods 0.000 description 199
- 238000013461 design Methods 0.000 description 44
- 239000000463 material Substances 0.000 description 16
- 230000004048 modification Effects 0.000 description 14
- 238000012986 modification Methods 0.000 description 14
- 230000006870 function Effects 0.000 description 11
- 238000000034 method Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 230000008569 process Effects 0.000 description 8
- 238000002834 transmittance Methods 0.000 description 8
- 239000011521 glass Substances 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 239000011358 absorbing material Substances 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 230000001771 impaired effect Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000010276 construction Methods 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- 230000010365 information processing Effects 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 238000009423 ventilation Methods 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000012938 design process Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 241000282412 Homo Species 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000011111 cardboard Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- -1 for example Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/82—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
- E04B1/84—Sound-absorbing elements
- E04B1/86—Sound-absorbing elements slab-shaped
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C2/00—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
- E04C2/54—Slab-like translucent elements
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/16—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/16—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/172—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using resonance effects
Definitions
- the present disclosure relates to technology for reducing sound through sound absorption.
- Patent Document 1 discloses that sound is absorbed by fixing a sound absorbing panel to a wall surface.
- An object of the present disclosure is to realize a sound absorbing member suitable for use on a wall surface having light transmittance such as glass.
- the sound absorbing member includes a cavity surrounded by a light-transmitting outer shell, and a perforation that communicates the inside and outside of the cavity.
- FIG. 2 is a diagram showing an example of the configuration of a design device. It is a figure which shows the design process of the sound absorption unit by a design device. It is a figure which shows the modification of the structure of a sound absorption unit.
- the sound absorption unit 10 includes a specific sound absorption structure that has a sound absorption effect of reducing the sound pressure of reflected and transmitted sound by converting or canceling the energy of the sound waves traveling toward the sound absorption unit 10 into other energy. It is a sound absorbing member.
- FIGS. 1A and 1B are a perspective view and a front view, respectively, showing the structure of a sound absorption unit according to an embodiment.
- FIGS. 2A and 2B are a side view and a bottom view, respectively, showing the structure of the sound absorption unit according to the embodiment.
- the "D direction” is the depth direction (thickness direction) of the sound absorbing unit 10.
- the sound absorption unit 10 mainly absorbs sound waves traveling in the D direction.
- the “H direction” is a direction substantially perpendicular to the D direction, and is the height direction of the sound absorption unit 10.
- the “W direction” is a direction perpendicular to the “D direction” and the “H direction” and is the width direction of the sound absorption unit 10.
- the sound absorption unit 10 has a plurality of cavities (hereinafter referred to as "waveguides") through which sound waves can enter through perforations, and each waveguide functions as a resonator.
- the sound absorption unit 10 includes a perforated plate 20, which is a plate-like member with perforations formed therein, and a chamber member 40, which forms a cavity when combined with the perforated plate 20.
- a perforated plate 20 which is a plate-like member with perforations formed therein
- a chamber member 40 which forms a cavity when combined with the perforated plate 20.
- the sound absorbing unit 10 has a polygonal (specifically hexagonal) shape when viewed from the ⁇ D direction.
- FIGS. 3(a) and 3(b) are a perspective view and a front view, respectively, showing the structure of the chamber member according to the embodiment.
- FIGS. 4A and 4B are a side view and a bottom view, respectively, showing the structure of the chamber member according to the embodiment.
- the chamber member 40 has spaces 41 to 44 partitioned from each other by partition walls 45 to 47. By providing the perforated plate 20 so as to cover the chamber member 40 from the ⁇ D direction side, each of the spaces 41 to 44 becomes a waveguide whose walls are formed by the chamber member 40 and the perforated plate 20.
- the space 41 is covered by a perforated region 21 , a non-perforated region 31 adjacent to the perforated region 21 , and a perforated region 22 not adjacent to the perforated region 21 and adjacent to the non-perforated region 31 .
- Space 42 is covered by non-perforated region 32 , perforated region 23 , non-perforated region 33 and perforated region 24 .
- Space 43 is covered by perforated region 25 and non-perforated region 34 adjacent to perforated region 25 .
- the space 44 is covered by a non-perforated region 35 , a perforated region 26 , a non-perforated region 36 and a perforated region 27 .
- a waveguide having a space 41 will be referred to as a waveguide 11
- a waveguide having a space 42 will be referred to as a waveguide 12
- a waveguide having a space 43 will be referred to as a waveguide 13
- a waveguide having a space 44 will be referred to as a waveguide 13.
- a waveguide having the following is called a waveguide 14.
- the waveguide 11 and the waveguide 12 are adjacent to each other via the partition wall 45
- the waveguide 12 and the waveguide 13 are adjacent to each other via the partition wall 46
- the waveguide 13 and the waveguide are adjacent to each other via the partition wall 46. 14 with a partition wall 47 in between. That is, the partition walls 45 to 47 divide the inside of the sound absorption unit 10 into a plurality of waveguides.
- each of the waveguides 11 to 14 has a substantially trapezoidal outline when viewed from the -D direction, and extends substantially parallel to each other.
- the waveguide 11 and the waveguide 12 have different shapes and sizes, and the waveguide 13 and the waveguide 14 have different shapes and sizes.
- the waveguide 12 and the waveguide 13 have substantially the same cavity shape and size, but differ in the arrangement of the perforations formed in their respective walls.
- the waveguide 11 and the waveguide 14 have substantially the same cavity shape and size, the arrangement of the perforations formed in each wall is different.
- the sound absorption unit 10 may be configured as a whole, or may be configured by combining a plurality of members.
- the sound absorption unit 10 may be configured by combining the perforated plate 20 and the chamber member 40, or the perforated plate 20 and the chamber member 40 may be configured integrally.
- the sound absorbing unit 10 may be configured by combining members constituting each waveguide. That is, the sound absorption unit 10 only needs to have a plurality of waveguides, and a perforated region and a non-perforated region exist in the member constituting the wall of each waveguide. The inside and outside of each waveguide communicate with each other via a plurality of perforations present in the perforation area, allowing ventilation.
- the inside and outside of the waveguide 11 communicate with each other through a plurality of perforations formed in the perforation region 21 and the perforation region 22, allowing ventilation.
- ventilation is not possible between the inside and outside of the waveguide 11.
- the inside and outside of the waveguide 12 communicate with each other via a plurality of perforations formed in the perforation region 23 and the perforation region 24 .
- the inside and outside of the waveguide 13 communicate with each other via a plurality of perforations formed in the perforation region 25.
- the inside and outside of the waveguide 14 communicate with each other via a plurality of perforations formed in the perforation region 26 and the perforation region 27 .
- the perforated surfaces of the perforated plates 20 forming the walls of each of the waveguides 11 to 14 are exposed when viewed from the ⁇ D direction. Sound waves arriving from the -D direction with respect to the sound absorption unit 10 and incident on the perforated plate 20 enter the inside of each waveguide through the plurality of perforations formed in the perforated area, and are covered by the non-perforated area. The light travels in a direction non-parallel to the direction D, and is reflected by the side surface of the chamber member 40.
- Each perforated region of the perforated plate 20 functions as an acoustic impedance matching member, and the waveguides 11 to 14 function as resonators having mutually different resonance characteristics.
- the sound absorbing unit 10 a sound absorbing effect can be obtained in a wide frequency band compared to a sound absorbing material having a single waveguide.
- the sound absorption characteristics of the sound absorption unit 10 in this embodiment are expressed by, for example, sound absorption coefficient for each frequency or acoustic impedance.
- the sound absorption unit 10 may be designed so that the frequency bands of sound waves absorbed by each waveguide do not overlap with each other, or the sound absorption unit 10 may be designed such that the frequency bands of sound waves absorbed by each waveguide partially overlap. Unit 10 may be designed.
- the volume of the waveguide 11 is smaller than the volume of the waveguide 12, and the volume of the waveguide 13 is larger than the volume of the waveguide 14.
- the length of the non-perforated area 34 in the direction connecting the center of gravity of the perforated area 25 and the center of gravity of the non-perforated area 34 on the surface of the perforated plate 20 is is longer than the length of the waveguide 13 in the normal direction (thickness L4 in FIG. 2(b)).
- the waveguide 11 has a superior sound absorption coefficient in high frequency bands.
- the waveguide 13 has a better sound absorption coefficient in a low frequency band than the waveguide 11.
- the perforations are arranged in one place (that is, perforated area 25). With such a configuration, it is possible to improve the sound absorption coefficient in a low frequency band by the waveguide 13, compared to a case where the perforations are distributed at a plurality of locations.
- the perforations are arranged in a plurality of locations (that is, perforated regions 21 and 22).
- the sound absorption coefficient in a high frequency band by the waveguide 11 can be improved compared to a case where the perforations are arranged in one place.
- desired sound absorption characteristics can be achieved by appropriately designing the arrangement of perforations.
- the sound absorbing unit 10 exhibits sound absorbing performance depending on its shape and structure, so it can be constructed using various materials.
- the sound absorption unit 10 is made of, for example, a material such as resin, metal, silicone, rubber, polymer, paper, cardboard, wood, or nonwoven fabric.
- the sound absorbing unit 10 may be made of materials other than these materials.
- the sound absorption unit 10 may be configured by combining a plurality of members each made of different materials.
- the perforated plate 20 and the chamber member 40 of the sound absorption unit 10 may be made of different materials.
- (1-2) Configuration of perforated plate The configuration of the perforated plate 20 will be explained. A plurality of perforations are formed in each of the perforation areas 21 to 27 of the perforation plate 20.
- the perforated plate 20 may be configured as one piece, or may be configured by combining a plurality of members.
- the portion of the perforated plate 20 that covers each waveguide may be formed from a separate member, or each perforated area and each non-perforated area of the perforated plate 20 may be formed from a separate member.
- the perforated plate 20 may be composed of six triangular plate members.
- the size of each member can be reduced, so even if there is a limit to the size of the members that can be manufactured, a large perforated plate 20 can be created.
- each waveguide depends on the shape of the waveguide and the shape parameters of the perforated plate (hereinafter referred to as "hole parameters") combined with the waveguide.
- Pore parameters include, for example: ⁇ Area of the perforation area (area of the surface where the hole is formed) ⁇ Thickness of perforated plate (dimension in the direction perpendicular to the surface) - Size of the hole (e.g. diameter if the hole is circular) ⁇ Percentage of the area of the holes on the surface of the perforated plate (hereinafter referred to as "hole occupancy”) - Shape of holes, number of holes, spacing between holes
- the perforated plate By changing the hole parameters of the perforated plate, the acoustic impedance of the sound absorption unit 10 can be adjusted. Additionally, the perforated plate has the effect of lowering the Q value due to thermoviscous resistance and enabling sound absorption in a wide frequency band.
- the length of the sound absorbing unit 10 in the H direction and the W direction is respectively 10 cm to 50 cm
- the thickness of the sound absorbing unit 10 in the D direction is 2 cm to 10 cm.
- the thickness of the perforated plate 20 is 0.5 mm to 3 mm
- the diameter of the hole existing in the perforated plate is set to 0.3 mm to 3 mm.
- the sound absorption unit 10 By appropriately setting other parameters such as the number of holes in the perforated plate, it is possible to efficiently absorb (reduce sound pressure) the sounds in the range of 400Hz to 1500Hz, which is the main component of the sounds contained in human conversation. be able to.
- the average sound absorption coefficient of sounds in the range of 400 Hz to 1500 Hz by the sound absorption unit 10 is higher than the average sound absorption coefficient of sounds in other frequency bands (frequency bands lower than 400 Hz and frequency bands higher than 1500 Hz) by the sound absorption unit 10.
- the sound absorption characteristics of the sound absorption unit 10 can be changed by adjusting at least one of the shape of the waveguide and the hole parameters.
- the sound absorption unit 10 can be designed so that the average sound absorption coefficient for sounds in the range of 1000 Hz to 4000 Hz is higher than the average sound absorption coefficient for sounds in other frequency bands.
- the sound absorption unit 10 can also be designed to efficiently absorb sounds of 200 Hz or more and 2500 Hz or less.
- the hole parameters of the plurality of perforation regions included in the sound absorption unit 10 may be different from each other.
- the hole parameters of the perforated region 21 and the perforated region 22 may be optimized depending on the sound absorption properties required of the waveguide 11.
- the hole parameters of the perforated region 23 and the perforated region 24 may be optimized depending on the sound absorption properties required of the waveguide 12.
- the hole parameters of the perforated region 25 may be optimized depending on the sound absorption properties required of the waveguide 13.
- the hole parameters of the perforated region 26 and the perforated region 27 may be optimized depending on the sound absorption properties required of the waveguide 14.
- a hole that communicates the inside and outside of one of the waveguides 11 to 14 and a hole that connects the inside and outside of the other waveguide are determined by at least one of the hole parameters or The arrangement of the holes may be different.
- the sound absorption unit 10 can achieve a high sound absorption coefficient in a wide frequency band.
- the present invention is not limited to this, and the hole parameters of the plurality of perforation regions included in the sound absorption unit 10 may be common. Thereby, the specifications of the holes in the perforated plate 20 can be unified, so that the manufacturing cost of the perforated plate 20 can be reduced.
- the surface of the perforated plate 20 is planar, but the shape of the perforated plate 20 is not limited to this.
- the surface of the perforated plate 20 may be a curved surface or may have irregularities.
- FIG. 5 is a diagram illustrating the functions of the sound absorption unit according to the embodiment.
- the sound absorption unit 10 is installed at a position away from the noise source NS that emits the sound to be absorbed in the D direction.
- Each waveguide included in the sound absorption unit 10 absorbs a frequency of sound waves traveling in the D direction from the noise source NS according to the shape (for example, length or volume) of the waveguide and the hole parameters of the perforated plate. absorb ingredients.
- the sound pressure of the sound wave reaching the position on the D direction side from the sound absorption unit 10 from the noise source NS is significantly reduced compared to the case where the sound absorption unit 10 is not installed.
- FIG. 6 is a diagram showing an example of use of the sound absorption unit according to the embodiment.
- the plurality of sound absorbing units 10 are installed in combination so as to constitute a sound absorbing wall 1 that blocks sound waves traveling from the noise source NS in the direction of the human HMa.
- the plurality of sound absorbing units 10 are attached to the support plate 50 so that the surface of the perforated plate 20 (the surface on which the perforations are formed) of each of the plurality of sound absorbing units 10 is exposed when viewed from the same direction. , the sound absorbing wall 1 is constructed.
- the sound absorption wall 1 Since the sound absorption wall 1 has a sound insulation effect, by installing the sound absorption wall 1, the sound pressure of the sound wave emitted from the noise source NS is greatly reduced when passing through the sound absorption wall 1, and the sound absorption is reduced as seen from the noise source NS. The noise felt by the person HMa who is located deeper than the wall 1 can be reduced.
- the sound absorption wall 1 has a sound absorption effect
- the amount of sound reflected by the wall will be lower than when a wall made of conventional members (for example, a concrete wall) is installed at the same position.
- the volume of the sound decreases. Therefore, the sound pressure of the sound waves emitted from the noise source NS is greatly reduced when reflected by the sound absorption wall 1, reducing the noise felt by the person HMb who is on the opposite side of the sound absorption wall 1 with respect to the noise source NS. can do.
- the sound absorbing wall 1 when the sound absorbing wall 1 is installed, the volume of sound that goes around to the back of the wall due to diffraction is also reduced compared to when a wall made of conventional members is installed at the same position. This effect makes it possible to further reduce the noise felt by the person HMa who is behind the wall.
- the sound absorption wall 1 can be used in the following applications.
- the sound-absorbing wall 1 can suppress noise generated by automobiles or trains by being placed around roads or railroad tracks.
- the sound-absorbing wall 1 can suppress construction noise by being placed at a construction site. By being used as a wall of a building, the sound absorbing wall 1 can suppress noise within the building.
- the sound-absorbing wall 1 is placed around a person's work place (for example, a work desk) to suppress noise perceived by the worker and to suppress leakage of noise emitted by the worker to the surroundings. be able to.
- the sound absorbing wall 1 may be placed so as to surround the work place on all four sides, or the sound absorbing wall 1 may be placed so as to surround the work place in three directions excluding the direction of the entrance/exit. Alternatively, only one sound absorbing wall 1 may be placed. Further, a work booth may be configured by blocking the ceiling of a work place surrounded by sound-absorbing walls 1 on all sides.
- the perforated plate 20 and the chamber member 40 are each made of a light-transmitting material.
- the light-transmitting material for example, resin materials such as glass and acrylic can be used, but the material is not limited thereto.
- the sound absorbing unit 10 only needs to have at least the outer shell having light transmittance. That is, the portions of the chamber member 40 other than the partition walls 45 to 47 and the perforated plate 20 are made of a transparent or translucent material.
- the sound absorbing unit 10 having such a configuration is a sound absorbing member suitable for use on a wall surface having light transmittance such as glass or acrylic.
- the support plate 50 has optical transparency, so the human HMa passes through the support plate 50 and is visually recognized by the human HMb.
- the human HMb will not be able to visually recognize the human HMa. That is, the functionality and design of the support plate 50 are impaired by the attachment of the sound absorbing material.
- the human HMb can visually recognize the human HMa, and the functionality and design of the support plate 50 are maintained.
- the translucent sound absorbing unit 10 by attaching the translucent sound absorbing unit 10 to a wall surface, it is also possible to change the transparency of the wall surface to which it is attached. For example, if a sound absorption unit is not attached to the support plate 50 made of glass, the humans HMa and HMb who are on opposite sides of the support plate 50 can visually recognize each other's actions. On the other hand, when the translucent sound absorption unit 10 is attached to the support plate 50, the transparency of the sound absorption wall 1 made up of the sound absorption unit 10 and the support plate 50 is lower than that of the support plate 50. As a result, human HMa and human HMb can visually recognize each other's presence, but cannot visually recognize the detailed contents of their actions.
- the translucent sound absorption unit 10 can be realized by using a translucent material for the perforated plate 20 or by increasing the surface roughness of the perforated plate 20.
- the sound absorbing unit 10 can also be used on a wall surface that does not have light transmittance.
- a wall surface that does not have light transmittance For example, consider a case where a screen that is opaque and has a characteristic pattern on its surface is used as the support plate 50 in FIG. In this case, if a sound absorbing material that does not have light transmittance is attached to the support plate 50, the characteristic pattern will not be visible and the design will be impaired. When installed, the distinctive pattern becomes visible and the design is maintained.
- the perforated plate 20 is depicted as opaque in order to simplify the drawings.
- the perforated plate 20 is actually transparent or semi-transparent, when viewed from the same angles as in these figures (oblique direction and -D direction), the partition walls 45 to 47 do not pass through the perforated plate 20. Visible.
- the partition walls 45 to 47 may be made of a light-transmitting material. Thereby, visibility through the sound absorption unit 10 can be further improved.
- FIG. 7 is a diagram showing another usage example of the sound absorption unit according to the embodiment.
- a sound-absorbing panel is constructed by adding a mounting structure to the sound-absorbing unit 10 that allows the sound-absorbing unit 10 to be attached to the wall surface 60.
- a plurality of sound absorbing panels are attached to the wall surface 60 side by side so that the surface of the perforated plate 20 (the surface on which the perforations are formed) of each of the plurality of sound absorbing units 10 is exposed when viewed from the normal direction of the wall surface 60.
- the sound absorbing unit 10 can be easily attached to or removed from the wall surface 60.
- the mounting structure for example, double-sided tape, screw fixing tool, magnet, hook-and-loop fastener, or suction cup can be used.
- the sound absorption unit 10 If the sound absorption unit 10 is not installed in the space SP, the sound of the conversation between the human HMc and the human HMd in the space SP will echo within the space SP, and will interfere with the conversation between the human HMe and the human HMf who are in the same space SP. Sometimes it happens.
- the sound absorbing unit 10 by attaching the sound absorbing unit 10 to the wall surface 60, the sound incident on the wall surface 60 is absorbed, and the echo of the sound in the space SP can be suppressed. Further, it is also possible to suppress sound leaking from inside the space SP to the outside of the space SP.
- the sound absorption unit 10 has desired sound absorption characteristics
- the sound of a specific frequency band in the space SP can be made more efficient than the sound of other frequency bands. It can be significantly reduced. Thereby, the resonance of the sound in the space SP can be adjusted.
- the outer shell of the sound absorbing unit 10 is transparent to light. Therefore, for example, when the wall surface 60 is made of a light-transmitting material such as glass, it is possible to particularly prevent the functionality and design of the space SP from being impaired.
- the mounting structure for mounting the sound absorbing unit 10 on the wall surface 60 may be made of a light-transmitting material. Moreover, regardless of whether the mounting structure has optical transparency, the mounting structure may not be provided on the entire surface of the mounting surface of the sound absorption unit 10, but may be provided only on a part of the mounting surface. These configurations can further prevent the functionality and design of the space SP from being impaired.
- FIG. 8 is a diagram showing an example of the configuration of the design device.
- the design device 210 includes a storage device 211, a processor 212, an input/output interface 213, and a communication interface 214.
- the storage device 211 is configured to store programs and data.
- the storage device 211 is, for example, a combination of ROM (Read Only Memory), RAM (Random Access Memory), and storage (for example, flash memory or hard disk).
- the programs include, for example, an OS (Operating System) program and an application program (for example, a web browser) that executes information processing.
- the data includes, for example, data and databases referred to in information processing, and data obtained by executing information processing (that is, execution results of information processing).
- the programs and data stored in the storage device 211 may be provided via a network, or may be provided by being recorded on a computer-readable recording medium.
- the processor 212 implements the functions of the design device 210 by executing programs stored in the storage device 211 and processing data. Note that at least part of the functions of the design device 210 may be realized by dedicated hardware (for example, an ASIC (application specific integrated circuit) or an FPGA (field-programmable gate array)).
- ASIC application specific integrated circuit
- FPGA field-programmable gate array
- the input/output interface 213 has a function of receiving input according to a user operation on an input device connected to the design apparatus 210 and a function of outputting information to an output device connected to the design apparatus 210.
- the input device is, for example, a keyboard, pointing device, touch panel, or a combination thereof.
- the output device is, for example, a display that displays images or a speaker that outputs audio.
- Communication interface 214 controls communication between design device 210 and an external device (eg, a server).
- FIG. 9 is a diagram showing the design process of the sound absorption unit by the design device.
- the processing shown in FIG. 6 is realized by the processor 212 of the design device 210 executing a program stored in the storage device 211. However, at least a part of the processing shown in FIG. 6 may be realized by dedicated hardware.
- the process shown in FIG. 6 is started in response to a user inputting an instruction to the design device 210 to start designing the sound absorption unit 10. However, the starting conditions for the process shown in FIG. 6 are not limited to this.
- the design device 210 acquires fixed values that can be set as design parameters of the sound absorption unit 10.
- the processor 212 obtains the fixed value by accepting user input or by reading a file in which the fixed value is stored.
- the design parameters of the sound absorption unit 10 include, for example, at least one of the following. ⁇ Size of sound absorption unit 10 (dimensions in H direction, D direction, and W direction) ⁇ Number of waveguides ⁇ Length or volume of waveguide (dimensions in H direction or W direction) ⁇ Waveguide depth (D dimension) - Shape of the waveguide - Shape of the side wall included in the sound absorption unit 10 - Hole parameters of the perforated plate
- the size of the sound absorption unit 10 the number of waveguides, and the shape of the side wall are acquired as fixed values in S100. It is assumed that the hole parameters of the perforated plate, the size of the waveguide, and the shape of the waveguide are treated as variables.
- the design device 210 acquires the domain (possible range of the variable) of the design parameter treated as a variable.
- the processor 212 obtains the domain of the variable by accepting user input or by reading a file in which the domain of the variable is stored.
- the design device 210 constructs an analytical model of the sound absorption unit 10. Specifically, the processor 212 uses the fixed value acquired in S100 and the value of the variable selected from the domain acquired in S101 as design parameters of the analytical model of the sound absorption unit 10.
- the design device 210 evaluates the sound absorption characteristics of the analytical model. Specifically, the processor 212 acquires the evaluation value of the sound absorption characteristics of the analytical model by analyzing the sound absorption characteristics through acoustic simulation using the analytical model constructed in S102. For example, the design device 210 obtains the average sound absorption coefficient or average reflection coefficient in each of a plurality of frequency bands. Note that the method for evaluating sound absorption characteristics is not limited to this. For example, the design device 210 may obtain the average transmittance in each of a plurality of frequency bands.
- the design device 210 determines the search state. Specifically, the processor 212 determines whether the domain obtained in S101 has been searched for each variable (that is, whether the analysis model has been constructed using all selectable values from the domain and the sound absorption characteristics have been evaluated). Determine whether the process has ended (or not).
- the process returns to S102, and the design device 210 selects new variable values from the domain obtained in S101, and executes the construction of the analytical model and the evaluation of the sound absorption characteristics again. On the other hand, if it is determined in S104 that the search has ended, the process advances to S105.
- the design device 210 extracts optimal values of variables. Specifically, the processor 212 extracts, as the optimal value, the numerical value of the design parameter corresponding to the analytical model that showed the highest evaluation value in the repeatedly executed sound absorption characteristic evaluation in S103. For example, if 400 Hz to 1000 Hz is specified as the frequency band for sound absorption, the numerical value of the design parameter of the analytical model with the highest average sound absorption coefficient for 400 Hz to 1000 Hz is extracted as the optimum value. By designing the sound absorbing unit 10 using the optimum values extracted in this way, it is possible to manufacture the sound absorbing unit 10 with excellent sound absorbing characteristics in the range of 400 Hz to 1000 Hz.
- the frequency band to be subjected to sound absorption may be specified according to user input.
- the processing flow in FIG. 6 ends.
- the processes of S100 and S101 may be performed in the reverse order or may be performed in parallel.
- the design device 210 may output information indicating the evaluation result of the analytical model instead of extracting the optimum value of the variable in S105, or in addition to the process in S105.
- the design device 210 may output information indicating the sound absorption characteristics of each of the plurality of analytical models constructed in S102, or output information indicating the sound absorption characteristics of the analytical model corresponding to the optimal value extracted in S105. You may.
- the information output by the design device 210 may be a numerical value indicating sound absorption characteristics, or may be an image output to a display device.
- the sound absorption unit 10 is designed so that the sound absorption performance in a predetermined frequency band is the highest.
- the present invention is not limited to this, and the sound absorption unit 10 may be designed so that a specified sound absorption performance is achieved in a predetermined frequency band. For example, you may want to suppress the echo of a person's voice in a space, but leave some echo so that the voice can be heard naturally.
- the design device 210 extracts the numerical value of the design parameter of the analytical model whose average sound absorption coefficient in the specified frequency band of 400 Hz to 1000 Hz is closest to the specified value (for example, 0.5) as the optimal value. .
- the design device 210 optimizes the numerical values of the design parameters of the analytical model in which the average sound absorption coefficient of 100Hz to 500Hz is higher than the average sound absorption coefficient of 800Hz to 2000Hz, and the difference between these average sound absorption coefficients is the largest. It may be extracted as a value.
- FIGS. 10(a) and 10(b) are a perspective view and a front view, respectively, showing the structure of a sound absorption unit according to a modification.
- FIGS. 11(a) and 11(b) are a side view and a bottom view, respectively, showing the structure of a sound absorbing unit according to a modification.
- FIGS. 12(a) and 12(b) are a perspective view and a front view, respectively, showing the structure of a chamber member according to a modified example.
- 13(a) and 13(b) are a side view and a bottom view, respectively, showing the structure of a chamber member according to a modified example.
- the plurality of partition walls extend in substantially the same direction, so that the plurality of waveguides are arranged substantially in parallel.
- a plurality of partition walls that divide the inside of the sound absorption unit 110 into a plurality of waveguides are respectively located inside the sound absorption unit 110 when viewed from the -D direction. It extends from the position toward the periphery of the sound absorption unit 110.
- the sound absorption unit 110 includes a perforated plate 120, which is a plate-like member with perforations formed therein, and a chamber member 140, which forms a cavity when combined with the perforated plate 120.
- a perforated plate 120 On the surface of the perforated plate 120, there are a plurality of perforated areas each having a plurality of perforations formed therein, and a plurality of non-perforated areas having no perforations formed therein.
- the sound absorbing unit 110 has a polygonal (specifically hexagonal) shape when viewed from the ⁇ D direction.
- the chamber member 140 has spaces 141 to 146 partitioned from each other by partition walls 147 to 152.
- each of the spaces 141 to 146 becomes a waveguide whose walls are formed by the chamber member 140 and the perforated plate 120.
- the space 141 is covered by the perforated region 121 and the non-perforated region 131 adjacent to the perforated region 21 .
- Space 142 is covered by perforated region 122 and non-perforated region 132.
- Space 143 is covered by perforated region 123 and non-perforated region 133.
- Space 144 is covered by perforated region 124 and non-perforated region 134 .
- Space 145 is covered by perforated region 125 and non-perforated region 135.
- Space 146 is covered by perforated region 126 and non-perforated region 136.
- waveguides having spaces 141 to 146 will be referred to as waveguides 111 to 116, respectively.
- the partition walls 147 to 152 divide the inside of the sound absorption unit 110 into a plurality of waveguides, and each waveguide is adjacent to two other waveguides via the partition wall.
- the partition walls 147 to 152 extend from a position 153 toward each apex of the hexagon when viewed from the ⁇ D direction, and the waveguides 111 to 116 each have a triangular shape when viewed from the ⁇ D direction.
- the waveguide 111, the waveguide 116, and the waveguide 115 have different shapes and sizes, and the waveguide 112, the waveguide The wave tube 113 and the waveguide 114 have mutually different shapes and sizes.
- the waveguide 12 and the waveguide 13 have substantially the same cavity shape and size, but differ in the arrangement of the perforations formed in their respective walls.
- the waveguide 111 and the waveguide 112, the waveguide 116 and the waveguide 113, and the waveguide 114 and the waveguide 115 each have cavities of approximately the same size, but are formed in their respective walls. The arrangement of the perforations is different.
- the perforated surface of the perforated plate 120 forming the wall of each of the waveguides 111 to 116 is exposed when viewed from the -D direction.
- a sound wave that comes from the -D direction with respect to the sound absorption unit 110 and enters the perforated plate 120 enters the inside of each waveguide through the plurality of perforations formed in the perforated area, and is covered by the non-perforated area.
- the light travels in a direction non-parallel to the direction D, and is reflected by the side surface of the chamber member 140.
- Each perforated region of the perforated plate 120 functions as an acoustic impedance matching member, and the waveguides 111 to 116 function as resonators having mutually different resonance characteristics. Therefore, according to the sound absorbing unit 110, a sound absorbing effect can be obtained in a wide frequency band compared to a sound absorbing material having a single waveguide.
- the waveguide 113 has a better sound absorption coefficient in a low frequency band than the waveguide 112, and the waveguide 114 has a better sound absorption coefficient in a lower frequency band than the waveguide 113.
- the waveguide 116 has a better sound absorption coefficient in a low frequency band than the waveguide 111, and the waveguide 115 has a better sound absorption coefficient in a lower frequency band than the waveguide 116.
- the sound absorption unit 110 may be designed so that the frequency bands of sound waves absorbed by each waveguide do not overlap with each other, or the sound absorption unit 110 may be designed such that the frequency bands of sound waves absorbed by each waveguide partially overlap. Unit 110 may be designed.
- the length of the non-perforated region 135 in the direction connecting the center of gravity of the perforated region 125 and the center of gravity of the non-perforated region 135 is the length of the waveguide in the normal direction of the surface of the perforated plate 120. 115 (thickness L6 in FIG. 11(b)).
- FIG. 14 shows a modification of the structure of the perforated plate in the sound absorption unit 110.
- the perforated plate 220 in FIG. 14 is newly provided with a perforated area 221 and a perforated area 222 compared to the perforated plate 120 in FIG. 10 . That is, in the portion of the perforated plate 220 that constitutes the wall of the waveguide 115, the perforations are arranged at multiple locations. With such a configuration, the sound absorption coefficient in a high frequency band by the waveguide 111 can be improved compared to the case where the perforations are arranged in one place (that is, when the perforated plate 120 is used).
- the distance between the perforated region 125 and the perforated region 221 on the surface of the perforated plate 220 is the length of the waveguide 111 in the normal direction of the surface of the perforated plate 220 (FIG. ) equal to the thickness L6 at ).
- the perforated plate 120 is depicted as opaque in order to simplify the drawings. However, since the perforated plate 120 is actually transparent or semi-transparent, when viewed from the same angle as in these figures (oblique direction and -D direction), the partition walls 147 to 152 do not pass through the perforated plate 120. Visible. Further, the partition walls 147 to 152 may be made of a light-transmitting material. Thereby, visibility through the sound absorption unit 110 can be further improved.
- the sound absorption unit has a combination of a plurality of waveguides having different shapes and sizes, and a combination of a plurality of waveguides having substantially the same shape and size.
- the sound absorbing unit may just have a cavity surrounded by an outer shell and a perforation that communicates the inside of the cavity with the outside. That is, the sound absorbing unit only needs to have at least one space in which air resonates, and it is not essential that the sound absorbing unit has a partition wall that divides the internal space. Further, the number of cavities and the number of perforations that the sound absorbing unit has may be one or more.
- the sound absorbing unit has a plurality of cavities (waveguides) having at least one different shape and size, it is possible to absorb sound in a wider frequency band. Furthermore, by forming a plurality of perforations in one cavity, it is possible to reduce the deviation in the sound absorption coefficient depending on the frequency (that is, to make the peak of the sound absorption characteristic gentle). Further, in the above-described embodiment, the perforations of the plurality of waveguides included in the sound absorption unit are arranged differently from each other, but the present invention is not limited to this. It may be By providing the sound absorption unit with two or more waveguides having mutually different resonance characteristics, it is possible to absorb sound in a wide frequency band. On the other hand, some of the plurality of waveguides included in the sound absorption unit have resonance characteristics that are close to each other, so that the sound absorption coefficient in a specific frequency band can be improved.
- the length of the waveguide in the normal direction to the surface of the perforated plate is non-uniform.
- the thickness of the sound absorbing unit 10 in the D direction is thicker at the center when viewed from the ⁇ D direction than at the peripheral portion when viewed from the ⁇ D direction.
- the volume of each waveguide can be made larger than when the thickness of the sound absorption unit 10 is made equal to the thickness of the peripheral edge seen from the -D direction, and as a result, the volume of the waveguide can be increased. Sound absorption performance in frequency bands can be improved.
- the present invention is not limited to this, and the thickness of the sound absorbing unit 10 in the D direction may be uniform. In this case, the length of the waveguide in the normal direction to the surface of the perforated plate also becomes uniform.
- a cavity is formed by the perforated plate and the base body (chamber member) that is integrally fixed to the perforated plate.
- the perforated plate provided in the sound absorption unit may be configured to be detachable from the chamber member. Therefore, even if the perforated plate is worn out and the sound absorption characteristics of the sound absorption unit deteriorate, the perforated plate can be easily replaced and the sound absorption characteristics of the sound absorption unit can be improved. Furthermore, by replacing the perforated plate with another perforated plate having different hole parameters, the sound absorption characteristics of the sound absorption unit can be adjusted as desired.
- the partition wall that divides the internal space of the sound absorption unit may be provided on the chamber member or the perforated plate, or the perforated plate may be provided on both the chamber member and the perforated plate. It may also be a member independent of the plate.
- At least one of the perforated plate and the partition wall provided in the sound absorption unit may be configured to be movable. Moreover, a new member may be added inside the waveguide. Thereby, the shape and size of the waveguide can be easily adjusted, and the sound absorption characteristics of the sound absorption unit can be adjusted as desired.
- the sound absorption unit has a hexagonal shape when viewed from the -D direction, a perforated surface is provided on the surface of the sound absorption unit on the -D direction side, and the inside of the sound absorption unit is surrounded by a partition wall. Divided into multiple cavities.
- the shape of the sound absorbing unit may be other polyhedrons or spheres.
- the perforated surface may be provided on another surface of the sound absorption unit.
- a structure other than a cavity may be included inside the sound absorption unit.
- a plurality of sound absorbing units having the same shape may be arranged side by side, or a plurality of sound absorbing units having different shapes may be arranged side by side.
- the plurality of types of sound absorbing units described in the above embodiment and each modification may be arranged side by side.
- a plurality of sound absorption units having the same waveguide shape but different hole parameters of the perforated plate may be arranged side by side.
- Sound absorption wall 10 Sound absorption unit 20: Perforated plate
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Multimedia (AREA)
- Electromagnetism (AREA)
- Soundproofing, Sound Blocking, And Sound Damping (AREA)
- Building Environments (AREA)
- Panels For Use In Building Construction (AREA)
Abstract
吸音ユニット10は、光透過性を有する外殻に囲まれた空洞部と、前記空洞部の内部と外部とを連通させる穿孔と、を有する。
Description
本開示は、吸音により音を低減させる技術に関する。
鉄道、高速道路、工事現場、室内空間などにおいて発生する騒音を抑制することは、重要な社会課題の1つである。特許文献1には、壁面に吸音パネルを固定することで音を吸収することが開示されている。
建築物の内装や外装、又は設備などに吸音部材を取り付けた場合、取り付け対象の建築物や設備の外観が変化する。特に、ガラスなどの光透過性を有する壁面に吸音部材を取り付けることで光透過性が失われると、その壁面の機能性及び意匠性が損なわれてしまう。
本開示は、ガラスなどの光透過性を有する壁面に用いるに適した吸音部材を実現することを目的とする。
本開示の一態様によれば、吸音部材は、光透過性を有する外殻に囲まれた空洞部と、前記空洞部の内部と外部とを連通させる穿孔と、を有する。
以下、本発明の実施形態の例について、図面に基づいて詳細に説明する。なお、実施形態を説明するための図面において、同一の構成要素についてはその繰り返しの説明は省略する。
(1)吸音ユニットの構成
(1-1)吸音ユニットの基本構成
吸音ユニット10の基本構成について説明する。吸音ユニット10は、吸音ユニット10に向かって進む音波のエネルギーを他のエネルギーに変換したり打ち消したりすることで反射音及び透過音の音圧を低減する吸音効果を有する、特定の吸音構造を備える吸音部材である。図1(a)及び図1(b)はそれぞれ、実施形態に係る吸音ユニットの構造を示す斜視図及び正面図である。図2(a)及び図2(b)はそれぞれ、実施形態に係る吸音ユニットの構造を示す側面図及び底面図である。
(1-1)吸音ユニットの基本構成
吸音ユニット10の基本構成について説明する。吸音ユニット10は、吸音ユニット10に向かって進む音波のエネルギーを他のエネルギーに変換したり打ち消したりすることで反射音及び透過音の音圧を低減する吸音効果を有する、特定の吸音構造を備える吸音部材である。図1(a)及び図1(b)はそれぞれ、実施形態に係る吸音ユニットの構造を示す斜視図及び正面図である。図2(a)及び図2(b)はそれぞれ、実施形態に係る吸音ユニットの構造を示す側面図及び底面図である。
以下の説明において、「D方向」は、吸音ユニット10の奥行方向(厚み方向)である。吸音ユニット10は、主にD方向に進む音波を吸音する。「H方向」は、D方向と略垂直な方向であり、吸音ユニット10の高さ方向である。「W方向」は、「D方向」および「H方向」に直交する方向であり、吸音ユニット10の幅方向である。吸音ユニット10は、穿孔を介して音波が侵入可能な空洞部(以下「導波管」という。)を複数有し、各導波管は共振器として機能する。
図1に示すように、吸音ユニット10は、穿孔が形成された板状部材である穿孔板20と、穿孔板20と組み合わされることで空洞を形成するチャンバー部材40とを有する。穿孔板20の表面には、それぞれ複数の穿孔が形成された穿孔領域21~27と、穿孔が形成されていない非穿孔領域31~36が存在する。吸音ユニット10は-D方向から見て多角形(具体的には六角形)の形状である。
図3(a)及び図3(b)はそれぞれ、実施形態に係るチャンバー部材の構造を示す斜視図及び正面図である。図4(a)及び図4(b)はそれぞれ、実施形態に係るチャンバー部材の構造を示す側面図及び底面図である。チャンバー部材40には、隔壁45~47により互いに仕切られた空間41~44が存在する。チャンバー部材40を-D方向側から覆うように穿孔板20が設けられることで、空間41~44はそれぞれ、チャンバー部材40と穿孔板20とにより壁が構成された導波管となる。具体的には、空間41は、穿孔領域21と、穿孔領域21に隣接する非穿孔領域31と、穿孔領域21に隣接せず且つ非穿孔領域31に隣接する穿孔領域22とにより覆われる。空間42は、非穿孔領域32と、穿孔領域23と、非穿孔領域33と、穿孔領域24とにより覆われる。空間43は、穿孔領域25と、穿孔領域25に隣接する非穿孔領域34とにより覆われる。空間44は、非穿孔領域35と、穿孔領域26と、非穿孔領域36と、穿孔領域27とにより覆われる。
以下では、空間41を有する導波管を導波管11と呼び、空間42を有する導波管を導波管12と呼び、空間43を有する導波管を導波管13と呼び、空間44を有する導波管を導波管14と呼ぶ。導波管11と導波管12とは隔壁45を介して隣接しており、導波管12と導波管13とは隔壁46を介して隣接しており、導波管13と導波管14とは隔壁47を介して隣接している。すなわち、隔壁45~47は、吸音ユニット10の内部を複数の導波管に分割する。
隔壁45~47は互いに略同一方向に延在している。そのため、導波管11~14はそれぞれ-D方向から見た輪郭が略台形であり、互いに略平行に延在する。導波管11と導波管12とは互いに形状及び大きさが異なり、導波管13と導波管14とは互いに形状及び大きさが異なる。導波管12と導波管13とは、空洞の形状及び大きさが互いに略同一であるが、それぞれの壁に形成された穿孔の配置が異なる。導波管11と導波管14とは、空洞の形状及び大きさが互いに略同一であるが、それぞれの壁に形成された穿孔の配置が異なる。
なお、吸音ユニット10は、全体が一体となって構成されていてもよいし、複数の部材を組み合わせることで構成されていてもよい。例えば、穿孔板20とチャンバー部材40とを組み合わせることで吸音ユニット10が構成されてもよいし、穿孔板20とチャンバー部材40とが一体となって構成されていてもよい。また例えば、各導波管を構成する部材を組み合わせることで吸音ユニット10が構成されてもよい。すなわち、吸音ユニット10は、複数の導波管を有し、各導波管の壁を構成する部材に穿孔領域と非穿孔領域とが存在していればよい。各導波管の内部と外部とは、穿孔領域に存在する複数の穿孔を介して連通しており、通気が可能である。
具体的には、導波管11の内部と外部とは、穿孔領域21及び穿孔領域22に形成された複数の穿孔を介して連通しており、通気可能である。一方、非穿孔領域31に覆われた部分においては、導波管11の内部と外部とが通気可能でない。同様に、導波管12の内部と外部とは、穿孔領域23及び穿孔領域24に形成された複数の穿孔を介して連通している。導波管13の内部と外部とは、穿孔領域25に形成された複数の穿孔を介して連通している。導波管14の内部と外部とは、穿孔領域26及び穿孔領域27に形成された複数の穿孔を介して連通している。
導波管11~14それぞれの壁を構成する穿孔板20における穿孔が形成された表面は、-D方向から見て露出している。吸音ユニット10に対して-D方向から到来して穿孔板20に入射する音波は、穿孔領域に形成された複数の穿孔を介して各導波管の内部に侵入し、非穿孔領域に覆われた部分をD方向とは非平行に進行し、チャンバー部材40の側面で反射する。穿孔板20の各穿孔領域は、音響インピーダンスの整合部材として機能し、導波管11~14は、互いに共振特性が異なる共振器として機能する。そのため、吸音ユニット10によれば、単一の導波管を有する吸音材と比較して、広い周波数帯域において吸音効果を得ることができる。本実施形態における吸音ユニット10の吸音特性は、例えば、周波数ごとの吸音率、又は音響インピーダンスにより表される。なお、各導波管が吸音する音波の周波数帯域が互いに重ならないように吸音ユニット10が設計されていてもよいし、各導波管が吸音する音波の周波数帯域の一部が重なるように吸音ユニット10が設計されていてもよい。
導波管11の体積は導波管12の体積より小さく、導波管13の体積は導波管14の体積より大きい。このように複数の導波管の大きさを異ならせることで、それらの導波管の共振特性を異ならせることができる。なお、穿孔板20の表面における穿孔領域21と穿孔領域22との距離(図1(b)における長さL1)は、穿孔板20の表面の法線方向における導波管11の長さ(図2(b)における厚さL2)より長い。このような構成により、導波管11において、D方向とは非平行な方向に音波が進行する経路の長さを長くすることで低周波数帯域の吸音率を向上させつつ、吸音ユニット10のD方向の奥行(つまり厚さ)を小さくすることができる。また、穿孔板20の表面における穿孔領域25の重心と非穿孔領域34の重心とを結ぶ方向における非穿孔領域34の長さ(図1(b)における長さL3)は、穿孔板20の表面の法線方向における導波管13の長さ(図2(b)における厚さL4)より長い。このような構成により、導波管13において、D方向とは非平行な方向に音波が進行する経路の長さを長くすることで低周波数帯域の吸音率を向上させつつ、吸音ユニット10の厚さを小さくすることができる。
導波管11は、導波管13と比較して、高い周波数帯域の吸音率が優れている。一方、導波管13は、導波管11と比較して、低い周波数帯域の吸音率が優れている。ここで、穿孔板20のうち導波管13の壁を構成する部分においては、穿孔の配置が1か所(すなわち穿孔領域25)にまとめられている。このような構成により、穿孔の配置を複数箇所に分散させた場合と比較して、導波管13による低い周波数帯域の吸音率を向上させることができる。一方、穿孔板20のうち導波管11の壁を構成する部分においては、穿孔の配置が複数箇所(すなわち穿孔領域21及び穿孔領域22)に分散している。このような構成により、穿孔の配置を1か所にまとめた場合と比較して、導波管11による高い周波数帯域の吸音率を向上させることができる。後述するように、それぞれの穿孔の大きさなどのパラメータを変えることでも導波管の吸音特性を変化させることは可能であるが、穿孔の大きさ等に製造上の制限がある場合であっても、穿孔の配置を適切に設計することで所望の吸音特性を実現することができる。
吸音ユニット10は、その形状及び構造により吸音性能を発揮するため、様々な素材を用いて構成することができる。吸音ユニット10は、例えば、樹脂、金属、シリコン、ゴム、ポリマー、紙、段ボール、木材、又は不織布などの素材により構成される。ただし、吸音ユニット10はこれらの素材以外の素材により構成されていてもよい。また、それぞれ素材が異なる複数の部材を組み合わせることで吸音ユニット10が構成されてもよい。例えば、吸音ユニット10のうち穿孔板20とチャンバー部材40とが異なる素材により構成されていてもよい。
(1-2)穿孔板の構成
穿孔板20の構成について説明する。穿孔板20の穿孔領域21~27には、それぞれ複数の穿孔が形成されている。なお、穿孔板20は一体として構成されていてもよいし、複数の部材を組み合わせることで構成されていてもよい。例えば、穿孔板20のうち各導波管を覆う部分が別個の部材で構成されていてもよいし、穿孔板20の各穿孔領域及び各非穿孔領域が別個の部材で構成されていてもよいし、穿孔板20が6個の三角形形状の板状部材で構成されていてもよい。穿孔板20の全体を一体として構成することで、穿孔板20の製造工程を簡易にすることができ、製造コストを低減できる。一方、複数の部材を組み合わせて穿孔板20を構成することで、各部材のサイズを小さくできるため、部材の製造可能なサイズに制限がある場合でも大きい穿孔板20を作成することができる。
穿孔板20の構成について説明する。穿孔板20の穿孔領域21~27には、それぞれ複数の穿孔が形成されている。なお、穿孔板20は一体として構成されていてもよいし、複数の部材を組み合わせることで構成されていてもよい。例えば、穿孔板20のうち各導波管を覆う部分が別個の部材で構成されていてもよいし、穿孔板20の各穿孔領域及び各非穿孔領域が別個の部材で構成されていてもよいし、穿孔板20が6個の三角形形状の板状部材で構成されていてもよい。穿孔板20の全体を一体として構成することで、穿孔板20の製造工程を簡易にすることができ、製造コストを低減できる。一方、複数の部材を組み合わせて穿孔板20を構成することで、各部材のサイズを小さくできるため、部材の製造可能なサイズに制限がある場合でも大きい穿孔板20を作成することができる。
各導波管の共振特性は、当該導波管の形状と、当該導波管に組み合わされる穿孔板の形状パラメータ(以下「孔パラメータ」という)に依存する。孔パラメータには、例えば、以下が含まれる。
・穿孔領域の面積(孔が形成される表面の面積)
・穿孔板の厚さ(表面に直交する方向の寸法)
・孔の大きさ(例えば孔が円形である場合の直径)
・穿孔板の表面に占める孔の面積の割合(以下「孔の占有率」という)
・孔の形状
・孔の数
・孔どうしの間隔
・穿孔領域の面積(孔が形成される表面の面積)
・穿孔板の厚さ(表面に直交する方向の寸法)
・孔の大きさ(例えば孔が円形である場合の直径)
・穿孔板の表面に占める孔の面積の割合(以下「孔の占有率」という)
・孔の形状
・孔の数
・孔どうしの間隔
穿孔板の孔パラメータを変更することで、吸音ユニット10の音響インピーダンスを調整することができる。また、穿孔板は、熱粘性抵抗によってQ値を低くし、広い周波数帯域における吸音を可能とする効果もある。具体的なパラメータ例として、例えば、吸音ユニット10のH方向及びW方向の長さがそれぞれ10cm~50cmであり、吸音ユニット10のD方向の厚さが2cm~10cmであるものとする。また、穿孔板20の厚さが0.5mm~3mmである場合に、穿孔板に存在する孔の径を0.3mm~3mmに設定する。そして、穿孔板における孔の数などその他のパラメータを適切に設定することで、人の会話に含まれる音の主成分である400Hz~1500Hzの音を効率的に吸音する(音圧を低減する)ことができる。この場合、吸音ユニット10による400Hz以上1500Hz以下の音の平均吸音率は、吸音ユニット10による他の周波数帯(400Hzより低い周波数帯及び1500Hzより高い周波数帯)の音の平均吸音率よりも高くなる。また、導波管の形状及び孔パラメータの少なくとも何れかを調整することで、吸音ユニット10の吸音特性を変化させることができる。例えば、1000Hz以上4000Hz以下の音の平均吸音率が、その他の周波数帯の音の平均吸音率よりも高くなるように、吸音ユニット10を設計することもできる。また例えば、200Hz以上2500Hz以下の音を効率的に吸音するように吸音ユニット10を設計することもできる。
吸音ユニット10が有する複数の穿孔領域の孔パラメータは互いに異なっていてもよい。例えば、穿孔領域21及び穿孔領域22の孔パラメータは導波管11に要求される吸音特性に応じて最適化されてもよい。穿孔領域23及び穿孔領域24の孔パラメータは導波管12に要求される吸音特性に応じて最適化されてもよい。穿孔領域25の孔パラメータは導波管13に要求される吸音特性に応じて最適化されてもよい。穿孔領域26及び穿孔領域27の孔パラメータは導波管14に要求される吸音特性に応じて最適化されてもよい。すなわち、導波管11~14のうち1つの導波管の内部と外部とを連通させる穿孔と、他の導波管の内部と外部とを連通させる穿孔とは、少なくとも何れかの孔パラメータ又は孔の配置が異なっていてもよい。これにより、吸音ユニット10は、広い周波数帯域において高い吸音率を達成できる。ただしこれに限らず、吸音ユニット10が有する複数の穿孔領域の孔パラメータは共通であってもよい。これにより、穿孔板20の孔の仕様を統一にできるため、穿孔板20の製造コストを低減することができる。
なお、吸音ユニット10の例では穿孔板20の表面が平面状であるが、穿孔板20の形状はこれに限定されない。例えば、穿孔板20の表面が曲面であってもよいし、凹凸を有していてもよい。
(2)吸音ユニットの使用方法
吸音ユニットの使用方法について説明する。図5は、実施形態に係る吸音ユニットの機能を説明する図である。図5に示すように、吸音ユニット10は、吸音すべき音を発する騒音源NSに対してD方向に離れた位置に設置される。吸音ユニット10に含まれる各導波管は、騒音源NSからD方向に進行する音波のうち、当該導波管の形状(例えば長さ又は体積)と穿孔板の孔パラメータとに応じた周波数の成分を吸収する。これにより、騒音源NSから吸音ユニット10よりもD方向側の位置に到達する音波の音圧は、吸音ユニット10が設置されていない場合と比較して、大きく低減される。
吸音ユニットの使用方法について説明する。図5は、実施形態に係る吸音ユニットの機能を説明する図である。図5に示すように、吸音ユニット10は、吸音すべき音を発する騒音源NSに対してD方向に離れた位置に設置される。吸音ユニット10に含まれる各導波管は、騒音源NSからD方向に進行する音波のうち、当該導波管の形状(例えば長さ又は体積)と穿孔板の孔パラメータとに応じた周波数の成分を吸収する。これにより、騒音源NSから吸音ユニット10よりもD方向側の位置に到達する音波の音圧は、吸音ユニット10が設置されていない場合と比較して、大きく低減される。
図6実施形態に係る吸音ユニットの使用例を示す図である。図6に示すように、複数の吸音ユニット10を組み合わせて設置することで、騒音源NSから発される音の音圧をより低減することができる。複数の吸音ユニット10は、騒音源NSから人間HMaがいる方向へ進行する音波を遮る吸音壁1を構成するように、組み合わせて設置される。具体的には、複数の吸音ユニット10それぞれの穿孔板20の表面(穿孔が形成された面)が同一方向から見て露出するように、複数の吸音ユニット10が支持板50に取り付けられることで、吸音壁1が構成される。吸音壁1は遮音効果を有するため、吸音壁1を設置することにより、騒音源NSから発された音波の音圧は吸音壁1を通過する際に大きく低減され、騒音源NSから見て吸音壁1より奥に居る人間HMaが感じる騒音を小さくすることができる。
また、吸音壁1は吸音効果を有するため、吸音壁1を設置することにより、従来の部材で構成された壁(例えばコンクリート壁)を同じ位置に設置した場合と比較して、壁で反射した音の大きさが小さくなる。そのため、騒音源NSから発された音波の音圧は、吸音壁1で反射される際に大きく低減され、騒音源NSに対して吸音壁1とは反対側にいる人間HMbが感じる騒音を小さくすることができる。また、吸音壁1を設置した場合、従来の部材で構成された壁を同じ位置に設置した場合と比較して、回折により壁の奥に回り込む音の大きさも小さくなる。この効果により、壁の奥にいる人間HMaが感じる騒音をより小さくすることができる。
吸音壁1の用途は限定されないが、例えば以下のような用途で吸音壁1を用いることができる。吸音壁1は、道路又は鉄道線路の周辺に配置されることで、自動車又は電車により生じる騒音を抑制することができる。吸音壁1は、工事現場に配置されることで、工事騒音を抑制することができる。吸音壁1は、建物の壁として使用されることで、建物内の騒音を抑制することができる。吸音壁1は、人の作業場所(例えば作業デスク)の周辺に配置されることで、作業者により知覚される騒音を抑制し、且つ、作業者が発する騒音の周囲への音漏れを抑制することができる。作業場所の周辺における吸音壁1の置き方としては、作業場所の四方を囲むように吸音壁1が置かれてもよいし、出入り口の方向を除いた3方向を囲むように吸音壁が置かれてもよいし、1面のみの吸音壁1が置かれてもよい。また、四方を吸音壁1により囲まれた作業場所の天井部分を塞ぐことで、作業ブースを構成してもよい。
本実施形態において、穿孔板20とチャンバー部材40はそれぞれ、光透過性を有する素材により構成される。光透過性を有する素材としては、例えば、ガラスやアクリル等の樹脂素材を用いることができるが、これらに限定されない。なお、吸音ユニット10は、少なくとも外殻が光透過性を有していればよい。すなわち、チャンバー部材40のうち隔壁45~47以外の部分と、穿孔板20とが、透明又は半透明の素材により構成される。このような構成を有する吸音ユニット10は、ガラスやアクリルなどの光透過性を有する壁面に用いるに適した吸音部材である。
例えば、図6の支持板50として、ガラス製の衝立又はローパーティションを用いる場合を考える。支持板50に吸音ユニット10が取り付けられていない場合、支持板50は光透過性を有するため、人間HMaは支持板50を透過して人間HMbにより視認される。一方、仮に光透過性を有しない吸音材を支持板50に取り付けた場合、人間HMbは人間HMaを視認できなくなる。すなわち、吸音材の取り付けにより支持板50の機能性及び意匠性が損なわれる。これに対して、光透過性を有する吸音ユニット10を支持板50に取り付けた場合、人間HMbは人間HMaを視認することができ、支持板50の機能性及び意匠性が維持される。
なお、半透明の吸音ユニット10を壁面に取り付けることで、取付対象の壁面の透明度を変化させることもできる。例えば、ガラス製の支持板50に吸音ユニットが取り付けられていない場合、互いに支持板50の反対側にいる人間HMaと人間HMbは互いの行動を視認可能である。一方、半透明の吸音ユニット10を支持板50に取り付けた場合、吸音ユニット10と支持板50からなる吸音壁1の透明度は、支持板50よりも低くなる。その結果、人間HMaと人間HMbは、お互いの存在は視認可能でありつつ、詳細な行動の内容までは視認できなくなる。このような構成によれば、互いに支持板50の反対側にいる人間の間でのプライバシー保護が可能となる。なお、半透明の吸音ユニット10は、穿孔板20に半透明の素材を用いることや、穿孔板20の表面粗さを粗くすることにより、実現できる。
また、吸音ユニット10を、光透過性を有しない壁面に用いることもできる。例えば、図5の支持板50として、不透明であり且つ表面に特徴的な模様を有する衝立を用いる場合を考える。この場合において、仮に光透過性を有しない吸音材を支持板50に取り付けると、特徴的な模様が視認できなくなり意匠性が損なわれてしまうが、光透過性を有する吸音ユニット10を支持板50に取り付けると、特徴的な模様が視認可能となり意匠性が維持される。
なお、図1(a)及び図1(b)においては、図面を簡潔にするために穿孔板20を不透明に描いている。ただし、実際には穿孔板20は透明又は半透明であるため、これらの図と同じ角度(斜め方向及び-D方向)から見た場合には、隔壁45~47が穿孔板20を透過して視認される。また、隔壁45~47を、光透過性を有する素材で構成してもよい。これにより、吸音ユニット10を介した視認性をさらに向上させることができる。
図7は、実施形態に係る吸音ユニットの他の使用例を示す図である。図7に示すように、複数の吸音ユニット10が空間SPの壁面60に取り付けられることで、空間SPにおける音圧を低減することができる。具体的には、吸音ユニット10を壁面60に取り付け可能にする取付構造を吸音ユニット10に付加することで、吸音パネルを構成する。そして、複数の吸音ユニット10それぞれの穿孔板20の表面(穿孔が形成された面)が壁面60の法線方向から見て露出するように、複数の吸音パネルが壁面60に並べて取り付けられる。吸音パネルが取付構造を有することにより、吸音ユニット10を容易に壁面60に取り付けたり取り外したりすることが可能となる。取付構造としては、例えば、両面テープ、ネジ固定具、マグネット、面ファスナー、又は吸盤などを用いることができる。
空間SPに吸音ユニット10が設置されていない場合、空間SPにおける人間HMcと人間HMdとの会話の音は空間SP内で反響し、同じ空間SPにいる人間HMeと人間HMfとの会話を妨害してしまうことがある。一方、壁面60に吸音ユニット10を取り付けることで、壁面60に入射する音が吸音され、空間SPにおける音の反響を抑制することができる。また、空間SP内から空間SPの外へ漏れ出す音も抑制することができる。さらに、吸音ユニット10が所望の吸音特性を有するように導波管の形状及び穿孔板20の孔パラメータを設計することで、空間SPにおける特定の周波数帯域の音を他の周波数帯域の音よりも大きく低減させることができる。これにより、空間SPにおける音の響きを調整することができる。
上述したように、吸音ユニット10は、少なくとも外殻が光透過性をする。そのため、例えば壁面60がガラスなどの光透過性を有する素材により構成されている場合に、空間SPの機能性及び意匠性が損なわれることを特に抑制できる。また、吸音ユニット10を壁面60に取り付けるための取付構造を、光透過性を有する素材で構成してもよい。また、取付構造が光透過性を有するか否かに関わらず、取付構造を、吸音ユニット10の取付面の全面に設けるのではなく、取付面の一部にだけ設けてもよい。これらの構成により、空間SPの機能性及び意匠性が損なわれることをさらに抑制できる。
(3)吸音ユニットの設計方法
(3-1)設計装置の構成
吸音ユニット10を設計するための処理を実行する設計装置の構成について説明する。図8は、設計装置の構成例を示す図である。図8に示すように、設計装置210は、記憶装置211と、プロセッサ212と、入出力インタフェース213と、通信インタフェース214とを備える。
(3-1)設計装置の構成
吸音ユニット10を設計するための処理を実行する設計装置の構成について説明する。図8は、設計装置の構成例を示す図である。図8に示すように、設計装置210は、記憶装置211と、プロセッサ212と、入出力インタフェース213と、通信インタフェース214とを備える。
記憶装置211は、プログラム及びデータを記憶するように構成される。記憶装置211は、例えば、ROM(Read Only Memory)、RAM(Random Access Memory)、及び、ストレージ(例えば、フラッシュメモリ又はハードディスク)の組合せである。プログラムは、例えば、OS(Operating System)のプログラムと、情報処理を実行するアプリケーション(例えば、ウェブブラウザ)のプログラムを含む。データは、例えば、情報処理において参照されるデータ及びデータベースと、情報処理を実行することによって得られるデータ(つまり、情報処理の実行結果)を含む。記憶装置211により記憶されるプログラム及びデータは、ネットワークを介して提供されてもよいし、コンピュータにより読み取り可能な記録媒体に記録して提供されてもよい。
プロセッサ212は、記憶装置211に記憶されたプログラムを実行してデータを処理することによって、設計装置210の機能を実現する。なお、設計装置210の機能の少なくとも一部が、専用のハードウェア(例えばASIC(application specific integrated circuit)又はFPGA(field-programmable gate array))により実現されてもよい。
入出力インタフェース213は、設計装置210に接続される入力デバイスに対するユーザ操作に応じた入力を受け付ける機能と、設計装置210に接続される出力デバイスに情報を出力する機能を有する。入力デバイスは、例えば、キーボード、ポインティングデバイス、タッチパネル、又は、それらの組合せである。出力デバイスは、例えば、画像を表示するディスプレイ又は音声を出力するスピーカである。通信インタフェース214は、設計装置210と外部装置(例えばサーバ)との間の通信を制御する。
(3-2)設計処理
吸音ユニット10を設計するための処理について説明する。図9は、設計装置による吸音ユニットの設計処理を示す図である。
吸音ユニット10を設計するための処理について説明する。図9は、設計装置による吸音ユニットの設計処理を示す図である。
図6に示す処理は、設計装置210のプロセッサ212が記憶装置211に記憶されたプログラムを実行することで実現される。ただし、図6に示す処理の少なくとも一部が専用のハードウェアにより実現されてもよい。図6に示す処理は、吸音ユニット10の設計を開始するためのユーザによる指示が設計装置210に入力されたことに応じて開始される。ただし、図6に示す処理の開始条件はこれに限定されない。
S100において、設計装置210は、吸音ユニット10の設計パラメータとして設定可能な固定値を取得する。例えば、プロセッサ212は、ユーザの入力を受け付けることで、もしくは固定値が格納されたファイルを読み込むことで、固定値を取得する。吸音ユニット10の設計パラメータは、例えば以下の少なくとも1つを含む。
・吸音ユニット10のサイズ(H方向、D方向、及びW方向の寸法)
・導波管の数
・導波管の長さ又は体積(H方向又はW方向の寸法)
・導波管の奥行(D方向の寸法)
・導波管の形状
・吸音ユニット10に含まれる側壁の形状
・穿孔板の孔パラメータ
・吸音ユニット10のサイズ(H方向、D方向、及びW方向の寸法)
・導波管の数
・導波管の長さ又は体積(H方向又はW方向の寸法)
・導波管の奥行(D方向の寸法)
・導波管の形状
・吸音ユニット10に含まれる側壁の形状
・穿孔板の孔パラメータ
一例として、以降の説明では、S100において吸音ユニット10のサイズ、導波管の数、及び側壁の形状が固定値として取得されるものとする。そして、穿孔板の孔パラメータ、導波管のサイズ、及び導波管の形状が変数として扱われるものとする。
S101において、設計装置210は、変数として扱われる設計パラメータの定義域(変数のとり得る範囲)を取得する。例えば、プロセッサ212は、ユーザの入力を受け付けることで、もしくは変数の定義域が格納されたファイルを読み込むことで、変数の定義域を取得する。
S102において、設計装置210は、吸音ユニット10の解析モデルを構築する。具体的には、プロセッサ212は、S100で取得した固定値と、S101で取得した定義域から選択された変数の値とを、吸音ユニット10の解析モデルの設計パラメータとして用いる。
S103において、設計装置210は、解析モデルの吸音特性を評価する。具体的には、プロセッサ212は、S102において構築した解析モデルを用いた音響シミュレーションにより吸音特性を解析することで、解析モデルの吸音特性の評価値を取得する。例えば、設計装置210は、複数の周波数帯それぞれにおける平均吸音率または平均反射率を取得する。なお、吸音特性の評価方法はこれに限定されない。例えば、設計装置210は、複数の周波数帯それぞれにおける平均透過率を取得してもよい。
S104において、設計装置210は、探索状態の判定を実行する。具体的には、プロセッサ212は、各変数について、S101において取得した定義域が探索済みであるか(つまり、定義域から選択可能な全ての数値を用いた解析モデルの構築および吸音特性の評価が終了したか)否かを判定する。
S104において探索終了と判定されなかった場合、S102に戻り、設計装置210は、S101で取得した定義域から新たな変数の値を選択し、解析モデルの構築と吸音特性の評価を再度実行する。一方、S104において探索終了と判定された場合、S105へ進む。
S105において設計装置210は、変数の最適値を抽出する。具体的には、プロセッサ212は、繰り返し実行されたS103における吸音特性の評価において最も高い評価値を示した解析モデルに対応する設計パラメータの数値を、最適値として抽出する。例えば、400Hz~1000Hzが吸音対象の周波数帯として指定されている場合、400Hz~1000Hzの平均吸音率が最も高い解析モデルの設計パラメータの数値が最適値として抽出される。こうして抽出された最適値を用いて吸音ユニット10を設計することで、400Hz~1000Hzにおける吸音特性が優れた吸音ユニット10を製造することができる。吸音対象の周波数帯は、ユーザ入力に応じて指定されてもよい。
S105の後に、図6の処理フローは終了する。なお、図6の処理フローにおいて、S100とS101の処理は逆の順序で行われてもよいし、並行して行われてもよい。また、設計装置210は、S105における変数の最適値の抽出に代えて、もしくはS105の処理に加えて、解析モデルの評価結果を示す情報の出力を行ってもよい。例えば、設計装置210は、S102で構築した複数の解析モデルそれぞれの吸音特性を示す情報を出力してもよいし、S105で抽出された最適値に対応する解析モデルの吸音特性を示す情報を出力してもよい。設計装置210により出力される情報は、吸音特性を示す数値であってもよいし、表示装置へ出力される画像であってもよい。
なお、上記の説明では、所定の周波数帯域における吸音性能が最も高くなるように吸音ユニット10が設計される場合について説明した。ただしこれに限らず、所定の周波数帯域において指定された吸音性能が実現されるように吸音ユニット10が設計されてもよい。例えば、空間における人の声の反響を抑制したいが、多少の反響は残しておくことで声が自然に聞こえるようにしたい場合が考えられる。この場合、S105において設計装置210は、指定された400Hz~1000Hzの周波数帯域における平均吸音率が指定された値(例えば0.5)に最も近い解析モデルの設計パラメータの数値を最適値として抽出する。また例えば、空間における低音の反響は抑制したいが、高音の反響は残しておきたい場合が考えられる。この場合、S105において設計装置210は、100Hz~500Hzの平均吸音率が800Hz~2000Hzの平均吸音率よりも高く、且つ、それらの平均吸音率の差が最も大きい解析モデルの設計パラメータの数値を最適値として抽出してもよい。
(4)変形例
(4-1)吸音ユニットの変形例1
吸音ユニットの構成の変形例について説明する。上述した実施形態の説明における吸音ユニット10は、以下で説明する変形例の吸音ユニットに置き換えることができる。図10(a)及び図10(b)はそれぞれ、変形例に係る吸音ユニットの構造を示す斜視図及び正面図である。図11(a)及び図11(b)はそれぞれ、変形例に係る吸音ユニットの構造を示す側面図及び底面図である。図12(a)及び図12(b)はそれぞれ、変形例に係るチャンバー部材の構造を示す斜視図及び正面図である。図13(a)及び図13(b)はそれぞれ、変形例に係るチャンバー部材の構造を示す側面図及び底面図である。図1から図4を用いて説明した吸音ユニット10においては、複数の隔壁が互いに略同一方向に延在することで、複数の導波管が略平行に並ぶ。一方、図10から図13を用いて説明する吸音ユニット110においては、吸音ユニット110の内部を複数の導波管に分割する複数の隔壁はそれぞれ、-D方向から見て吸音ユニット110の内側の位置から吸音ユニット110の周縁に向かって延在する。
(4-1)吸音ユニットの変形例1
吸音ユニットの構成の変形例について説明する。上述した実施形態の説明における吸音ユニット10は、以下で説明する変形例の吸音ユニットに置き換えることができる。図10(a)及び図10(b)はそれぞれ、変形例に係る吸音ユニットの構造を示す斜視図及び正面図である。図11(a)及び図11(b)はそれぞれ、変形例に係る吸音ユニットの構造を示す側面図及び底面図である。図12(a)及び図12(b)はそれぞれ、変形例に係るチャンバー部材の構造を示す斜視図及び正面図である。図13(a)及び図13(b)はそれぞれ、変形例に係るチャンバー部材の構造を示す側面図及び底面図である。図1から図4を用いて説明した吸音ユニット10においては、複数の隔壁が互いに略同一方向に延在することで、複数の導波管が略平行に並ぶ。一方、図10から図13を用いて説明する吸音ユニット110においては、吸音ユニット110の内部を複数の導波管に分割する複数の隔壁はそれぞれ、-D方向から見て吸音ユニット110の内側の位置から吸音ユニット110の周縁に向かって延在する。
図10に示すように、吸音ユニット110は、穿孔が形成された板状部材である穿孔板120と、穿孔板120と組み合わされることで空洞を形成するチャンバー部材140とを有する。穿孔板120の表面には、それぞれ複数の穿孔が形成された複数の穿孔領域と、穿孔が形成されていない複数の非穿孔領域が存在する。吸音ユニット110は-D方向から見て多角形(具体的には六角形)の形状である。
図12に示すように、チャンバー部材140には、隔壁147~152により互いに仕切られた空間141~146が存在する。チャンバー部材140を-D方向側から覆うように穿孔板120が設けられることで、空間141~146はそれぞれ、チャンバー部材140と穿孔板120とにより壁が構成された導波管となる。具体的には、空間141は、穿孔領域121と、穿孔領域21に隣接する非穿孔領域131とにより覆われる。空間142は、穿孔領域122と、非穿孔領域132とにより覆われる。空間143は、穿孔領域123と、非穿孔領域133とにより覆われる。空間144は、穿孔領域124と、非穿孔領域134とにより覆われる。空間145は、穿孔領域125と、非穿孔領域135とにより覆われる。空間146は、穿孔領域126と、非穿孔領域136とにより覆われる。
以下では、空間141~146を有する導波管をそれぞれ導波管111~116と呼ぶ。隔壁147~152は吸音ユニット110の内部を複数の導波管に分割し、各導波管は隔壁を介して他の2つの導波管と隣接している。隔壁147~152は-D方向から見て位置153から六角形の各頂点に向けて延在しており、導波管111~116はそれぞれ-D方向から見て三角形の形状である。位置153が-D方向から見て吸音ユニット110の中心からずれているため、導波管111、導波管116、及び導波管115は互いに形状及び大きさが異なり、導波管112、導波管113、及び導波管114は互いに形状及び大きさが異なる。導波管12と導波管13とは、空洞の形状及び大きさが互いに略同一であるが、それぞれの壁に形成された穿孔の配置が異なる。導波管111と導波管112、導波管116と導波管113、導波管114と導波管115は、それぞれ空洞の大きさが互いに略同一であるが、それぞれの壁に形成された穿孔の配置が異なる。
導波管111~116それぞれの壁を構成する穿孔板120における穿孔が形成された表面は、-D方向から見て露出している。吸音ユニット110に対して-D方向から到来して穿孔板120に入射する音波は、穿孔領域に形成された複数の穿孔を介して各導波管の内部に侵入し、非穿孔領域に覆われた部分をD方向とは非平行に進行し、チャンバー部材140の側面で反射する。穿孔板120の各穿孔領域は、音響インピーダンスの整合部材として機能し、導波管111~116は、互いに共振特性が異なる共振器として機能する。そのため、吸音ユニット110によれば、単一の導波管を有する吸音材と比較して、広い周波数帯域において吸音効果を得ることができる。
例えば、導波管113は導波管112と比較して低い周波数帯域の吸音率が優れており、導波管114は導波管113よりさらに低い周波数帯域の吸音率が優れている。また、導波管116は導波管111と比較して低い周波数帯域の吸音率が優れており、導波管115は導波管116よりさらに低い周波数帯域の吸音率が優れている。なお、各導波管が吸音する音波の周波数帯域が互いに重ならないように吸音ユニット110が設計されていてもよいし、各導波管が吸音する音波の周波数帯域の一部が重なるように吸音ユニット110が設計されていてもよい。
穿孔領域125の重心と非穿孔領域135の重心とを結ぶ方向における非穿孔領域135の長さ(図10(b)における長さL5)は、穿孔板120の表面の法線方向における導波管115の長さ(図11(b)における厚さL6)より長い。このような構成により、導波管115において、D方向とは非平行な方向に音波が進行する経路の長さを長くすることで低周波数帯域の吸音率を向上させつつ、吸音ユニット110のD方向の奥行(つまり厚さ)を小さくすることができる。
なお、吸音ユニット110における穿孔の配置は図10に示す例に限定されない。図14は、吸音ユニット110における穿孔板の構造の変形例を示す。図14の穿孔板220には、図10の穿孔板120と比較して、新たに穿孔領域221及び穿孔領域222が設けられている。つまり、穿孔板220のうち導波管115の壁を構成する部分においては、穿孔の配置が複数箇所に分散している。このような構成により、穿孔の配置を1か所にまとめた場合(すなわち穿孔板120を用いる場合)と比較して、導波管111による高い周波数帯域の吸音率を向上させることができる。なお、穿孔板220の表面における穿孔領域125と穿孔領域221との距離(図14における長さL7)は、穿孔板220の表面の法線方向における導波管111の長さ(図11(b)における厚さL6に等しい)より長い。このような構成により、導波管115において、D方向とは非平行な方向に音波が進行する経路の長さを長くすることで低周波数帯域の吸音率を向上させつつ、吸音ユニット110の厚さを小さくすることができる。
なお、図10(a)及び図10(b)においては、図面を簡潔にするために穿孔板120を不透明に描いている。ただし、実際には穿孔板120は透明又は半透明であるため、これらの図と同じ角度(斜め方向及び-D方向)から見た場合には、隔壁147~152が穿孔板120を透過して視認される。また、隔壁147~152を、光透過性を有する素材で構成してもよい。これにより、吸音ユニット110を介した視認性をさらに向上させることができる。
(4-2)その他の変形例
上述の実施形態では、吸音ユニットが、形状及び大きさが異なる複数の導波管の組み合わせと、形状及び大きさが略同一である複数の導波管の組み合わせを有するものとした。ただしこれに限らず、吸音ユニットは、外殻に囲まれた空洞部と、空洞部の内部と外部とを連通させる穿孔とを有していればよい。すなわち、吸音ユニットは、空気が共振する空間を少なくとも1つ有していればよく、吸音ユニットが内部空間を分割する隔壁を有することは必須ではない。また、吸音ユニットが有する空洞部の数及び穿孔の数は、1以上であればよい。ただし、吸音ユニットが、形状及び大きさの少なくとも何れかが互いに異なる複数の空洞部(導波管)を有することで、より広い周波数帯域の音を吸音することができる。また、1つの空洞部に対して複数の穿孔を形成することで、周波数に応じた吸音率の偏りを低減する(つまり、吸音特性のピークをなだらかにする)ことができる。また、上述の実施形態では、吸音ユニットが有する複数の導波管における穿孔の配置が互いに異なるものとしたが、これに限らず、穿孔の配置が互いに等しい複数の導波管が吸音ユニットに含まれていてもよい。吸音ユニットが2以上の互いに異なる共振特性を有する導波管を備えることで、広い周波数帯域の音を吸音することができる。一方、吸音ユニットが有する複数の導波管のうちの一部が互いに近しい共振特性を有することで、特定の周波数帯域における吸音率を向上させることができる。
上述の実施形態では、穿孔板の表面の法線方向における導波管の長さが不均一であるものとした。例えば、吸音ユニット10のD方向における厚さは、-D方向から見た周縁部よりも、-D方向から見た中心部の方が厚い。このような構成によれば、吸音ユニット10の厚さを-D方向から見た周縁部の厚さに揃えた場合よりも、各導波管の体積を大きくすることができ、その結果、低周波数帯域の吸音性能を向上させることができる。ただしこれに限らず、吸音ユニット10のD方向における厚さが均一であってもよい。この場合、穿孔板の表面の法線方向における導波管の長さも均一となる。
上述の実施形態に係る吸音ユニットにおいては、穿孔板と、穿孔板と一体的に固着されるベース体(チャンバー部材)とによって、空洞部(導波管)が形成される。なお、吸音ユニットに設けられる穿孔板は、チャンバー部材に対して着脱可能に構成されてもよい。これにより、穿孔板が消耗して吸音ユニットの吸音特性が劣化した場合でも、容易に穿孔板を交換して吸音ユニットの吸音特性を向上させることができる。また、穿孔板を孔パラメータが異なる別の穿孔板に交換することで、吸音ユニットの吸音特性を任意に調整することができる。なお、穿孔板とチャンバー部材とが分離可能である場合、吸音ユニットの内部空間を分割する隔壁は、チャンバー部材に設けられてもよいし、穿孔板に設けられてもよいし、チャンバー部材とも穿孔板とも独立した部材であってもよい。
吸音ユニットに設けられる穿孔板及び隔壁の少なくとも何れかは、可動に構成されてもよい。また、導波管の内部に新たな部材が追加されてもよい。これにより、導波管の形状や大きさの調整が容易になり、吸音ユニットの吸音特性を任意に調整することができる。
上述の実施形態及び各変形例において、吸音ユニットは-D方向から見て六角形形状であり、吸音ユニットの-D方向側の面に穿孔面が設けられており、吸音ユニットの内部が隔壁により複数の空洞部に分割されている。ただし、吸音ユニットの形状は他の多面体や球体であってもよい。また、穿孔面は、吸音ユニットの他の面に設けられていてもよい。また、吸音ユニットの内部に、空洞以外の構造が含まれていてもよい。
図6及び図7を用いて説明したように、複数の吸音ユニットを並べて配置することで、広い範囲で吸音することができる。このとき、同一形状の複数の吸音ユニットを並べて配置してもよいし、形状が異なる複数の吸音ユニットを並べて配置してもよい。例えば、上述の実施形態及び各変形例で説明した複数種類の吸音ユニットを並べて配置してもよい。また例えば、導波管の形状は同じで穿孔板の孔パラメータが異なる複数の吸音ユニットを並べて配置してもよい。吸音特性が異なる複数の吸音ユニットを並べて配置することで、同一の吸音ユニットを並べて配置する場合よりも、広い周波数帯域において吸音効果を得ることができる。一方、同一の吸音ユニットを並べて配置した場合、吸音特性が異なる複数の吸音ユニットを並べて配置する場合よりも、特定の周波数帯域において高い吸音効果を得ることができる。
以上、本発明の実施形態について詳細に説明したが、本発明の範囲は上記の実施形態に限定されない。また、上記の実施形態は、本発明の主旨を逸脱しない範囲において、種々の改良や変更が可能である。また、上記の実施形態及び変形例を組合せてもよい。
1 :吸音壁
10 :吸音ユニット
20 :穿孔板
10 :吸音ユニット
20 :穿孔板
Claims (8)
- 光透過性を有する外殻に囲まれた空洞部と、
前記空洞部の内部と外部とを連通させる穿孔と、
を有する吸音部材。 - 前記空洞部は、前記穿孔が形成された穿孔板と、前記穿孔板と一体的に固着されるベース体と、により形成され、
前記穿孔板及び前記ベース体はともに光透過性を有する、
請求項1に記載の吸音部材。 - 前記外殻に内包される空間が隔壁により複数の前記空洞部に分割された、請求項1に記載の吸音部材。
- 複数の前記空洞部は互いに共振特性が異なる共振器として機能する、請求項3に記載の吸音部材。
- 請求項1から請求項4の何れか1項に記載の吸音部材と、
前記吸音部材を壁面に取り付け可能にする取付手段と、
を有する吸音パネル。 - 前記取付手段は光透過性を有する、請求項5に記載の吸音パネル。
- 光透過性を有する壁面と、
前記壁面に取り付けられた請求項1から請求項4の何れか1項に記載の吸音部材と、
を有する吸音壁。 - 前記壁面には前記吸音部材が複数取り付けられ、
複数の前記吸音部材それぞれの前記穿孔が形成された表面は、所定方向から見て露出している、
請求項7に記載の吸音壁。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-065124 | 2022-04-11 | ||
JP2022065124A JP7246053B1 (ja) | 2022-04-11 | 2022-04-11 | 吸音パネル及び吸音壁 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023199667A1 true WO2023199667A1 (ja) | 2023-10-19 |
Family
ID=85716964
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/009220 WO2023199667A1 (ja) | 2022-04-11 | 2023-03-10 | 吸音部材、吸音パネル及び吸音壁 |
Country Status (2)
Country | Link |
---|---|
JP (2) | JP7246053B1 (ja) |
WO (1) | WO2023199667A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002317408A (ja) * | 2001-04-19 | 2002-10-31 | Ngk Insulators Ltd | 透光性防音板および防音壁 |
JP2007100394A (ja) * | 2005-10-04 | 2007-04-19 | Univ Of Yamanashi | 吸音パネル |
JP2009030432A (ja) * | 2007-06-28 | 2009-02-12 | Yamaha Corp | 吸音構造体および音響室並びに室内音響特性調整方法 |
JP3167362U (ja) * | 2010-12-01 | 2011-04-21 | 輝雄 島方 | 吸音パネル |
WO2018211120A1 (en) * | 2017-05-19 | 2018-11-22 | Clear Acoustics Ltd. | Improvements in and relating to acoustics panels |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05333866A (ja) * | 1992-06-03 | 1993-12-17 | Matsushita Electric Ind Co Ltd | 吸音体 |
JP2018123661A (ja) * | 2017-01-27 | 2018-08-09 | 株式会社コスモプロジェクト | 音響調整パネル |
-
2022
- 2022-04-11 JP JP2022065124A patent/JP7246053B1/ja active Active
- 2022-09-12 JP JP2022144585A patent/JP2023155870A/ja active Pending
-
2023
- 2023-03-10 WO PCT/JP2023/009220 patent/WO2023199667A1/ja unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002317408A (ja) * | 2001-04-19 | 2002-10-31 | Ngk Insulators Ltd | 透光性防音板および防音壁 |
JP2007100394A (ja) * | 2005-10-04 | 2007-04-19 | Univ Of Yamanashi | 吸音パネル |
JP2009030432A (ja) * | 2007-06-28 | 2009-02-12 | Yamaha Corp | 吸音構造体および音響室並びに室内音響特性調整方法 |
JP3167362U (ja) * | 2010-12-01 | 2011-04-21 | 輝雄 島方 | 吸音パネル |
WO2018211120A1 (en) * | 2017-05-19 | 2018-11-22 | Clear Acoustics Ltd. | Improvements in and relating to acoustics panels |
Also Published As
Publication number | Publication date |
---|---|
JP2023155870A (ja) | 2023-10-23 |
JP2023155665A (ja) | 2023-10-23 |
JP7246053B1 (ja) | 2023-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7157974B1 (ja) | 吸音部材、吸音パネル及び吸音壁 | |
Yu et al. | Origami-inspired foldable sound barrier designs | |
EP2226791B1 (en) | Accoustic structure | |
JP5531343B2 (ja) | 間仕切りパネル | |
JP5252699B2 (ja) | 広帯域吸音構造及び吸音材 | |
EP2402936B1 (en) | Acoustic structure | |
JP2002030744A (ja) | 音響放射構造体、音響室および音響散乱方法 | |
WO2023199667A1 (ja) | 吸音部材、吸音パネル及び吸音壁 | |
JP6491788B1 (ja) | 防音システム | |
Kumar et al. | Acoustic performance of sonic metacage consisting of Helmholtz’s resonator columns with internal partitions | |
WO2023013323A1 (ja) | 吸音部材、吸音パネル及び吸音壁 | |
JP2024114238A (ja) | 吸音部材及び吸音壁 | |
JP2022180196A (ja) | 吸音部材 | |
WO2023021916A1 (ja) | 吸音部材及び吸音壁 | |
CN103428612B (zh) | 扬声器 | |
Hawkins | Studies and research regarding sound reduction materials with the purpose of reducing sound pollution | |
JP2011058188A (ja) | 音響室 | |
Gréhant | Acoustics in buildings | |
JP6420211B2 (ja) | 防音室 | |
JP7049734B1 (ja) | 吸音構造体 | |
WO2024214333A1 (ja) | 遮音ユニット、遮音構造体、および区画設備 | |
ITVR20130147A1 (it) | Lente acustica | |
WO2022091898A1 (ja) | 吸音ユニット、吸音構造体、製造方法、および設計方法 | |
JP2014141821A (ja) | 防音室 | |
Fuchs et al. | Sound absorbers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23788089 Country of ref document: EP Kind code of ref document: A1 |