Nothing Special   »   [go: up one dir, main page]

WO2023175894A1 - エアフィルタ用濾材及びその製造方法 - Google Patents

エアフィルタ用濾材及びその製造方法 Download PDF

Info

Publication number
WO2023175894A1
WO2023175894A1 PCT/JP2022/012608 JP2022012608W WO2023175894A1 WO 2023175894 A1 WO2023175894 A1 WO 2023175894A1 JP 2022012608 W JP2022012608 W JP 2022012608W WO 2023175894 A1 WO2023175894 A1 WO 2023175894A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyvinyl alcohol
support
aqueous solution
air filter
amount
Prior art date
Application number
PCT/JP2022/012608
Other languages
English (en)
French (fr)
Inventor
彰太 福島
純司 根本
篤 田村
Original Assignee
北越コーポレーション株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北越コーポレーション株式会社 filed Critical 北越コーポレーション株式会社
Priority to CN202280093228.2A priority Critical patent/CN118829479A/zh
Priority to KR1020247029767A priority patent/KR20240147687A/ko
Priority to PCT/JP2022/012608 priority patent/WO2023175894A1/ja
Priority to JP2024507397A priority patent/JPWO2023175894A1/ja
Publication of WO2023175894A1 publication Critical patent/WO2023175894A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation

Definitions

  • An object of the present disclosure is to provide a filter medium for an air filter that uses polyvinyl alcohol and has significantly improved particle collection performance, and a method for manufacturing the same. More specifically, we provide a method for producing air filter media suitable for air purification applications in semiconductors, liquid crystals, bio/food industries, clean rooms or clean benches, building air conditioning, internal combustion engines, indoor spaces, etc. in a relatively short time. do.
  • filter media for air filters are generally used.
  • Filter media for air filters are broadly classified into coarse dust filters, medium-performance filters, HEPA (High Efficiency Particulate Air) filters, and ULPA (Ultra Low Penetration Air) filters, depending on their collection performance.
  • the basic characteristics of these filter media for air filters include low particle permeability of fine dust particles, as well as low pressure loss in order to allow air to pass through the filter.
  • Patent Document 1 since a fluorine-based water repellent is included in the binder liquid, the obtained filter medium has water repellency.
  • polyvinyl alcohol is included as a type of binder resin to bind glass fibers together, it does not quickly dry the wet filter medium and plays a role in increasing the dispersibility of glass fibers.
  • binder resins are also mixed, which inhibits the formation of a network of polyvinyl alcohol between the fibers, making it impossible to obtain a structure with a network. Therefore, it may be difficult to improve the collection efficiency of finer particles while maintaining water repellency.
  • Patent Document 1 shows the PF value when the target particle size is 0.30 to 0.40 ⁇ m, but the PF value under more severe conditions where the target particle size is 0.10 to 0.15 ⁇ m is a lower value. Become. Therefore, there is a need for a filter medium for air filters that has a high PF value under severe conditions where the target particle size is 0.10 to 0.15 ⁇ m. Further, in Patent Document 1, although it has water repellency, water repellency is imparted by impregnating the filter medium for an air filter with about 0.25% of water repellent and increasing the amount of water repellent that adheres thereto. However, there is a need for a filter medium for air filters that exhibits water repellency by adding a very small amount of water repellent.
  • Patent Document 2 since there are few polyvinyl alcohol microfibers formed in a direction other than the thickness direction, the microfibers do not necessarily contribute to an increase in filter performance.
  • the present disclosure uses polyvinyl alcohol, a cationic surfactant, and a water repellent to form a mesh-like network of polyvinyl alcohol in the pores of the fluid permeation path of the support relative to the planar direction and thickness direction of the support. It is an object of the present invention to provide a filter medium for an air filter that improves filter performance, particularly particle collection performance, and has good water repellency by providing the particles randomly. A further object of the present disclosure is to provide a method for manufacturing such a filter medium for an air filter in a relatively short time.
  • the present inventors found that although water repellency can be obtained by adding a fluorine-based water repellent to a polyvinyl alcohol aqueous solution that is attached to a fluid-permeable support, compared to the case where the fluorine-based water repellent is not included, Although the reason is not clear, the PF value significantly decreases, and on the other hand, it was found that when a polyvinyl alcohol aqueous solution contains both a cationic surfactant and a fluorine-based water repellent, it has water repellency and a high PF value. This solved the above problem.
  • the method for producing a filter medium for an air filter according to the present invention includes an adhesion step of adhering a polyvinyl alcohol aqueous solution to a support having fluid permeability and bringing the support into a wet state, and a step of adhering the support to the support in a wet state.
  • the support that does not contain any of the following and that has undergone the drying step is characterized by having a mesh-like network of polyvinyl alcohol in the pores that serve as fluid permeation paths by drying the polyvinyl alcohol aqueous solution.
  • the mesh network is made of nanofibers. It is possible to achieve both high particle collection performance and low pressure loss.
  • the nanofibers preferably have a number average fiber diameter of 10 to 500 nm. It is possible to achieve both higher particle collection performance and lower pressure loss.
  • the amount of the polyvinyl alcohol aqueous solution adhered to the support is 50 g or more per 1 m 2 of the support. It is easy to form a mesh network in just the right amount in the pores that serve as fluid permeation paths in the support, and the PF value tends to increase.
  • the evaporation rate of the solvent of the polyvinyl alcohol aqueous solution adhering to the wet support is 100 g/min or more per 1 m 2 of the support. It is preferable.
  • the cationic surfactant in the polyvinyl alcohol aqueous solution is preferably added in an amount of 1 to 30 parts by mass based on 100 parts by mass of polyvinyl alcohol. It is possible to obtain a filter medium for an air filter that has higher particle collection performance and relatively low pressure loss.
  • the water repellent in the polyvinyl alcohol aqueous solution is preferably added in an amount of 5 to 50 parts by mass based on 100 parts by mass of polyvinyl alcohol. High PF value and water repellency can be obtained.
  • the total amount of polyvinyl alcohol, cationic surfactant, and water repellent attached to the support after the drying step is 0.05 to 1.50% by mass. It is preferable. High PF value and water repellency can be obtained.
  • the support is a nonwoven fabric for a filter medium containing glass fiber as a main component. Filter performance can be stably maintained.
  • a filter medium for an air filter according to the present invention includes a support having fluid permeability, and a polyvinyl alcohol mesh network formed in pores of the support that serve as fluid permeation paths,
  • the network is made of nanofibers
  • the degree of polymerization of the polyvinyl alcohol is 1500 to 6000
  • the degree of saponification of the polyvinyl alcohol is 60 to 90 mol%
  • the amount of polyvinyl alcohol attached to the support is 0.05. ⁇ 1.00% by mass, contains a cationic surfactant and a water repellent, and does not contain any binder resin other than the polyvinyl alcohol.
  • polyvinyl alcohol, a cationic surfactant, and a water repellent are used to form a mesh network of polyvinyl alcohol in the pores of the fluid permeation path of the support in the planar direction and thickness direction of the support.
  • the method for producing a filter medium for an air filter includes an adhesion step of adhering a polyvinyl alcohol aqueous solution to a fluid-permeable support to bring the support into a wet state, and adhering to the support in a wet state.
  • the support that has undergone the drying step has a mesh-like network of polyvinyl alcohol in the pores that serve as fluid permeation paths due to the drying of the polyvinyl alcohol aqueous solution.
  • polyvinyl alcohol aqueous solution containing the cationic surfactant and water repellent is also simply referred to as the "polyvinyl alcohol aqueous solution.”
  • the support is not particularly limited as long as it has fluid permeability, and for example, porous materials such as nonwoven fabric, woven fabric, paper, or sponge can be used.
  • nonwoven fabrics are preferred, and particularly preferred are nonwoven fabrics for filter media whose main component is fibers such as glass fibers and organic fibers. It is more preferable to use a nonwoven fabric for a filter medium containing glass fiber as a main component since the filter performance can be stably maintained.
  • the term "mainly composed of fibers such as glass fibers or organic fibers" means that the mass of the fibers is 50% by mass or more based on the total mass of the support. More preferably, it is 80% by mass or more.
  • the basis weight is preferably 10 to 300 g/m 2 , more preferably 30 to 200 g/m 2 .
  • Fluid permeability refers to a property that allows at least gas to pass through, and more preferably a property that allows gas and liquid to pass through.
  • the pressure loss of the support is preferably 1 Pa to 500 Pa. More preferably 10 Pa to 300 Pa, still more preferably 30 Pa to 200 Pa.
  • the pressure loss of the support is less than 1 Pa, the pore size of the support is too wide, making it difficult to stretch the polyvinyl alcohol network, making it difficult to contribute to increasing the collection efficiency, and the PF value may not increase. .
  • the pressure loss of the support exceeds 500 Pa, the collection efficiency of the support itself is extremely high, the polyvinyl alcohol network becomes difficult to contribute to the collection efficiency of the support, and the PF value may not increase.
  • the glass fibers used for the support are, for example, wool-like ultra-fine glass fibers produced by a flame drawing method or a rotary method, or a bundle of glass fibers spun to a predetermined fiber diameter to a predetermined fiber length. Chopped strand glass fiber manufactured by cutting. Among these, those having various fiber diameters and fiber lengths are selected depending on the required physical properties, and used alone or in combination. For example, a nonwoven fabric made of glass fibers obtained by mixing two or more types of ultrafine glass fibers and chopped strand glass fibers having different average fiber diameters is preferred. Further, low boron glass fibers or silica glass fibers can also be used for the purpose of preventing boron contamination of silicon wafers in semiconductor manufacturing process applications.
  • the average fiber diameter of the glass fibers is not particularly limited, but is preferably 0.05 to 20 ⁇ m. More preferably, it is 0.1 to 5 ⁇ m.
  • the average fiber length of the glass fibers is not particularly limited, but is preferably 0.5 to 10,000 ⁇ m. More preferably, it is 1 to 1000 ⁇ m.
  • organic fibers are, for example, polypropylene fibers, acrylic fibers, vinylon fibers, cellulose fibers, polyester fibers, or aramid fibers.
  • the average fiber diameter of the organic fibers is not particularly limited, but is preferably 0.05 to 100 ⁇ m. More preferably, it is 0.1 to 50 ⁇ m.
  • the average fiber length of the organic fibers is not particularly limited, but in the case of short fibers, it is preferably 0.5 to 10,000 ⁇ m. More preferably, it is 10 to 5000 ⁇ m.
  • the method for producing the nonwoven fabric is not particularly limited, and is, for example, a dry method or a wet method.
  • the shape of the support is not particularly limited, and it does not have to have a planar structure like a sheet.
  • the material of the support may be processed three-dimensionally, such as pleat processing, in which zigzag-like folds are formed by repeating mountain folds and valley folds.
  • the average pore diameter of the support is preferably 0.1 to 50 ⁇ m. More preferably, it is 0.5 to 10 ⁇ m. If it is less than 0.1 ⁇ m, fluid permeability may be poor. If it exceeds 50 ⁇ m, it may become difficult for polyvinyl alcohol to uniformly form a network structure within the pores of the support.
  • an aqueous solution containing polyvinyl alcohol and water can be deposited into the pores of the support and then dried to form an air filter.
  • the aqueous solution is uniformly distributed within the pore size, making it easier to maintain the network structure even after drying.
  • the average pore diameter can be measured according to ASTM E1294-89 "half dry method".
  • the support is preferably made of a material that can itself be used as a filter medium for an air filter. In the method for manufacturing an air filter according to the present embodiment, by using such a support, it is easier to obtain an air filter with higher particle collection performance than conventional air filter filter media (the support itself). . Further, the support may be in a wet state, and for example, a polyvinyl alcohol solution may be applied to the wet support during the papermaking process.
  • Polyvinyl alcohol is produced using polyvinyl acetate as a raw material by saponifying the carboxyl groups in polyvinyl acetate, that is, converting them to hydroxyl groups by alkaline hydrolysis.
  • the proportion of carboxyl groups converted to hydroxyl groups is particularly called the degree of saponification.
  • the degree of saponification of polyvinyl alcohol is preferably 80 to 98 mol%, more preferably 82 to 90 mol%. If the degree of saponification of polyvinyl alcohol is less than 80 mol%, polyvinyl alcohol may not be completely dissolved and a suitable PF value may not be obtained. When the degree of saponification of polyvinyl alcohol exceeds 98 mol%, the degree of saponification becomes high and the hydrophobic effect becomes weak, so that it may be difficult to form a network.
  • the degree of polymerization of polyvinyl alcohol is preferably 1,500 to 6,000. More preferably, it is 2000 or more and 5000 or less.
  • PVA95-88 spontaneousification degree 88 mol%, polymerization degree 3500, manufactured by Kuraray Co., Ltd.
  • the degree of polymerization of polyvinyl alcohol is less than 1,500, it becomes difficult to form a network structure of polyvinyl alcohol, and the PF value may not increase. If the degree of polymerization of polyvinyl alcohol exceeds 6,000, it is difficult to dissolve polyvinyl alcohol. Therefore, if an undissolved portion remains, the PF value may not increase.
  • the degree of saponification of polyvinyl alcohol is preferably 80 to 98 mol%, and the degree of polymerization of polyvinyl alcohol is preferably 1500 to 6000.
  • the polyvinyl alcohol aqueous solution may contain additives other than polyvinyl alcohol.
  • additives include surfactants, water repellents, antifoaming agents, fine fibers, and fine particles.
  • the polyvinyl alcohol aqueous solution does not contain any binder resin other than polyvinyl alcohol. If the polyvinyl alcohol aqueous solution contains a binder resin other than polyvinyl alcohol, the PF value of the obtained air filter medium will not improve as compared to the PF value measured only with the support. This is because the formation of a mesh network of polyvinyl alcohol is inhibited.
  • the polyvinyl alcohol aqueous solution preferably contains a cationic surfactant as an additive other than polyvinyl alcohol. Comparing a form using a polyvinyl alcohol aqueous solution containing a cationic surfactant with a form using a polyvinyl alcohol aqueous solution containing no cationic surfactant, the PF value is even higher in the form containing a cationic surfactant. improves. Since no improvement in the PF value is observed even when an anionic surfactant or an amphoteric surfactant is contained in the polyvinyl alcohol aqueous solution, further improvement in the PF value is due to the addition of a cationic surfactant.
  • Cationic surfactants can be broadly classified into quaternary ammonium salt types and amine salt types, but quaternary ammonium salt types are preferred, such as alkyltrimethylammonium chloride, dialkyldimethylammonium chloride, perfluoroalkyltrialkyl Examples include ammonium salts. Among these, perfluoroalkyl trialkylammonium salts are fluorine-based cationic surfactants. Examples of the amine salt type include monoalkylamine salts, dialkylamine salts, and trialkylamine salts.
  • the cationic surfactant in the polyvinyl alcohol aqueous solution is preferably added in an amount of 1 to 30 parts by mass per 100 parts by mass of polyvinyl alcohol.
  • the cationic surfactant is a perfluoroalkyl trialkylammonium salt, it is preferably added in an amount of 1 to 30 parts by mass, and preferably 15 to 30 parts by mass, per 100 parts by mass of polyvinyl alcohol. is more preferable.
  • the cationic surfactant is alkyltrimethylammonium chloride, it is preferably added in an amount of 5 to 10 parts by weight per 100 parts by weight of polyvinyl alcohol.
  • the polyvinyl alcohol aqueous solution further contains a water repellent in addition to a cationic surfactant as an additive other than polyvinyl alcohol.
  • a water repellent in addition to a cationic surfactant as an additive other than polyvinyl alcohol. Comparing a form using a polyvinyl alcohol aqueous solution containing a cationic surfactant and a water repellent with a form using a polyvinyl alcohol aqueous solution containing a cationic surfactant but no water repellent, the cationic interface In a form containing an active agent and a water repellent, water repellency can be obtained while maintaining the PF value.
  • the water repellent is preferably a fluororesin, more preferably a cationic fluororesin. More preferably, it is a cationic and fluororesin having a zeta potential of +10 mV or more, more preferably +20 mV or more, still more preferably +30 mV or more.
  • a fluororesin more preferably a cationic fluororesin. More preferably, it is a cationic and fluororesin having a zeta potential of +10 mV or more, more preferably +20 mV or more, still more preferably +30 mV or more.
  • AG-E310 manufactured by AGC is exemplified.
  • the water repellent in the polyvinyl alcohol aqueous solution is preferably added in an amount of 5 to 50 parts by mass, more preferably 10 to 20 parts by mass, per 100 parts by mass of polyvinyl alcohol. If it is less than 5 parts by mass, water repellency may not be obtained, and if it exceeds 50 parts by mass, the balance between high PF value and high water repellency may be lost.
  • the mass ratio of the cationic surfactant to the water repellent is preferably 1:0.3 to 1:5, more preferably 1:1 to 1:3.5.
  • fibrous polyvinyl alcohol is entangled within the pores of the support to form voids between the fibrous polyvinyl alcohol. It is preferable not to have a laminated film-like structure. It is possible to prevent pressure loss from increasing and reduce particle permeability.
  • the film-like structure in which polyvinyl alcohol is laminated refers to a film-like material that is formed by physical entanglement or chemical aggregation of polyvinyl alcohol, and that completely or partially blocks the pores of the support.
  • the ratio of the amount of polyvinyl alcohol attached to the support is preferably 0.05 to 1.00% by mass. More preferably, it is 0.10 to 0.50% by mass. With such a coating amount, an air filter with high particle collection performance and relatively low pressure loss can be obtained. If the ratio of the amount of polyvinyl alcohol attached to the support is less than 0.05% by mass, the particle collection performance may be poor. On the other hand, if it exceeds 1.00% by mass, it tends to form a film that blocks the pores of the support, which may affect the particle collection performance and reduce the filter performance.
  • the amount of polyvinyl alcohol attached to the support can be controlled mainly by the concentration of polyvinyl alcohol in the aqueous solution and the amount of the aqueous solution attached to the support. As the amount of the aqueous solution attached to the support increases, the amount of polyvinyl alcohol attached to the support increases.
  • the ratio of the total amount of polyvinyl alcohol, cationic surfactant, and water repellent applied to the support is preferably 0.05 to 1.50% by mass. More preferably, it is 0.10 to 0.80% by mass.
  • the amount of the polyvinyl alcohol aqueous solution deposited on the support is preferably 50 g or more per 1 m 2 . More preferably it is 100g or more. If it is less than 50 g, it may be difficult to form a mesh network between the fibers of the support, and it may be difficult to increase the PF value.
  • the upper limit of the amount of polyvinyl alcohol aqueous solution to be deposited on the support is, for example, 300 g per 1 m 2 .
  • a filter medium for an air filter can be obtained by applying a polyvinyl alcohol aqueous solution to a support and then performing a drying step of drying the polyvinyl alcohol aqueous solution at 140° C. or higher.
  • the aqueous solution can be obtained by dissolving polyvinyl alcohol in water.
  • the form of polyvinyl alcohol in the aqueous solution is, for example, a form in which polyvinyl alcohol is stably dissolved in the aqueous solution in units of one or several molecules, or a form in which polyvinyl alcohol is partially aggregated.
  • the form of the polyvinyl alcohol in the aqueous solution is preferably such that one or several polyvinyl alcohols are stably dissolved in the aqueous solution.
  • the solvent contained in the polyvinyl alcohol aqueous solution is preferably water or a mixture of water and an organic solvent. More preferred is water.
  • the solid content concentration of polyvinyl alcohol in the aqueous solution is preferably 0.01 to 0.20% by mass. More preferably, it is 0.03 to 0.10% by mass. If the solid content concentration of polyvinyl alcohol in the aqueous solution is less than 0.01% by mass, the solid content concentration is too low, making it difficult to form a network of polyvinyl alcohol, and the PF value may not increase to 0.20% by mass. If it exceeds this amount, a film-like structure of polyvinyl alcohol may be formed on the surface of the support.
  • a cationic surfactant As mentioned above, 1 to 30 parts by mass of a cationic surfactant is added to the polyvinyl alcohol aqueous solution based on 100 parts by mass of polyvinyl alcohol. Further, as described above, in addition to the cationic surfactant, 5 to 50 parts by mass of a water repellent is added to the polyvinyl alcohol aqueous solution based on 100 parts by mass of polyvinyl alcohol.
  • the method for preparing the aqueous solution is not particularly limited, and the above-mentioned polyvinyl alcohol may be dissolved in water to form an aqueous solution.
  • a method of adding a cationic surfactant and a water repellent to a polyvinyl alcohol aqueous solution is to add polyvinyl alcohol to water and then add a cationic surfactant and a water repellent of about 0.5 to 3% by mass when final adjusting the concentration of polyvinyl alcohol.
  • aqueous solution containing a cationic surfactant at a concentration of 0.5 to 3% by mass and an aqueous solution containing a water repellent at a concentration of about 0.5 to 3% by mass to adjust the concentration of polyvinyl alcohol, cationic surfactant, and water repellent. Adjust each.
  • the method for dissolving polyvinyl alcohol according to this embodiment is not particularly limited, but for example, using a magnetic stirrer, a propeller type stirrer, etc., polyvinyl alcohol powder or liquid is added to water, and the mixture is heated at 100 to 700 rpm. Stir at low speed for 10 minutes. Next, the temperature is raised to 95° C. during stirring, and the mixture is stirred for about 2 hours to completely dissolve the mixture.
  • the method for attaching the aqueous solution to the support is, for example, an impregnation method, a coating method, or a spraying method. Preferred is the spray method.
  • the amount of the aqueous solution attached to the support is adjusted appropriately depending on the thickness, material, and average pore diameter of the support, but as described above, in this embodiment, the amount of polyvinyl alcohol attached to the support is adjusted as appropriate. 0.05% to 1.00% is preferred. If the amount of polyvinyl alcohol attached to the support is less than 0.05% by mass, the amount of polyvinyl alcohol attached to the support will be insufficient and it will be difficult to form a uniform polyvinyl alcohol network.
  • the ratio of the total amount of polyvinyl alcohol, cationic surfactant, and water repellent applied to the support is preferably 0.05 to 1.50% by mass.
  • the method for calculating the ratio of the amount of polyvinyl alcohol adhered to the support is not particularly limited.
  • the ratio of the amount of polyvinyl alcohol and cationic surfactant attached to the support may be determined by converting the amount of wet attachment. That is, the ratio (unit: %) of the amount of polyvinyl alcohol and cationic surfactant adhered to the support is ⁇ (wet adhesion amount x total solid concentration of polyvinyl alcohol and cationic surfactant in aqueous solution)/aqueous solution The mass of the support before adhering ⁇ 100. Further, the ratio of the amount of polyvinyl alcohol, cationic surfactant, and water repellent applied to the support may be calculated from the wet amount of adhesion.
  • the ratio of the amount of polyvinyl alcohol, cationic surfactant, and water repellent applied to the support is ⁇ (wet amount of adhesion x amount of polyvinyl alcohol, cationic surfactant, and water repellent in the aqueous solution) total solid content concentration)/mass of the support before adhering the aqueous solution ⁇ 100.
  • the wet adhesion amount is the difference between the mass of the support in the wet state to which the aqueous solution is attached and the mass of the support before adhesion, and the amount of the aqueous solution attached to the support at the beginning of the drying process. means mass.
  • the wet adhesion amount is preferably a value measured immediately before the drying process, for example, preferably within 10 minutes before the start of the drying process, and more preferably within 5 minutes.
  • the impregnation method includes, for example, a method in which the support is completely immersed in an aqueous solution, or a method in which only the surface of the support is immersed.
  • the method of completely immersing the support in an aqueous solution allows the aqueous solution to penetrate deep into the pores of the support efficiently and reliably, making it possible to form a more uniform network of polyvinyl alcohol. Are better. Further, if the pressure is reduced while the support is completely immersed in the aqueous solution, the air inside the support can be easily released, which is more effective for penetrating the aqueous solution.
  • the excessively attached aqueous solution be squeezed out using a roll dehydrator or the like, or removed using a water-absorbing member such as water-absorbing felt or water-absorbing paper.
  • the method of immersing only the surface of the support is based on the difference in the density of the polyvinyl alcohol network structure within the pores (the presence of a polyvinyl alcohol network structure between one side and the other side of the support) in the thickness direction of the support. This is effective when providing different ratios).
  • the coating method is a method in which an aqueous solution is applied to the surface of the support using a known coating machine or brush.
  • Known coating machines include, for example, curtain coaters and die coaters.
  • the coating method is excellent in that it is easy to control the amount of the aqueous solution deposited on the support.
  • the spraying method is a method in which an aqueous solution is sprayed onto the surface of the support using a known atomizer such as an atomizer or a sprayer.
  • the spraying method is used, for example, when it is desired to form a network structure of polyvinyl alcohol only in the pores of the support near the surface of the support, or when the support is contacted with a large amount of impregnating liquid or a roll or bar of a coating machine. This is effective when you do not want to do so.
  • the spray method is more preferable.
  • the impregnation method has the advantage of liquid penetration, but when wiping off excess liquid, for example, liquid that has adhered between glass fibers is wiped off, making it difficult to form a mesh network after drying. Furthermore, if dehydration is performed using a suction machine or the like instead of wiping, there will be no liquid film between the fibers, a network will not be formed, and the filter performance will not improve. On the other hand, if the spraying method is used, it is possible to control the amount of liquid attached, so there is no need to attach an excessive amount of liquid, and the filter performance can be stably improved.
  • the aqueous solution is applied to the support as described above to make the support wet, and then dried at 140° C. or higher.
  • the temperature is preferably 140 to 250°C, more preferably 170 to 220°C. Note that the drying temperature here refers to the maximum drying temperature of the drying device during the drying process.
  • the drying equipment is preferably a drum-type thermal dryer, a hot air dryer, an infrared dryer, or the like. Furthermore, these drying methods may be combined. Note that the drying here is performed at normal pressure.
  • the evaporation rate of the solvent of the aqueous polyvinyl alcohol solution adhering to the wet support is 100 g/min or more per 1 m 2 of the support. More preferably, it is 120 g/min or more. If it is less than 100 g/min, the drying rate is slow, and it may not be possible to form a polyvinyl alcohol network. Note that the upper limit of the evaporation rate is, for example, 300 g/min.
  • wind may be used during drying.
  • the purpose of using the wind is to prevent evaporated water vapor from remaining around the support and to promote volatilization of the liquid.
  • the wind is strong enough to penetrate the inside of the filter medium, the liquid film adhering between the fibers may be destroyed, so a moderate air volume is preferable.
  • the amount of the aqueous solution attached to the support is reduced compared to the case where the cationic surfactant is not contained. It is presumed that when a cationic surfactant is contained, drainage is improved and as a result, the amount of adhesion is reduced. When the amount of adhesion of the aqueous solution is reduced, the load and drying time during thermal drying are reduced, and productivity is improved.
  • the solid shape of the polyvinyl alcohol obtained after drying is fibrous, preferably nanofibers, more preferably nanofibers with a number average fiber diameter of 10 to 500 nm, even more preferably. has a number average fiber diameter of 10 to 100 nm.
  • nanofibers especially ultrafine polyvinyl alcohol with a number average fiber diameter of 500 nm or less, are used, the number of fibers per unit volume in the air filter medium increases significantly, making it easier to capture particles in the gas, resulting in higher It becomes possible to obtain collection performance.
  • the polyvinyl alcohol number average fiber diameter here is calculated as follows.
  • a water-soluble polymer cast onto a carbon film-coated grid is observed using an electron microscope image using a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • Two random axes are drawn vertically and horizontally on each image, and the fiber diameters of the fibers that intersect with the axes are visually read.
  • observation is performed at a magnification of 5,000 times, 10,000 times, or 50,000 times depending on the size of the constituent fibers. Note that the sample or magnification is such that 20 or more fibers intersect with the axis.
  • the number average fiber diameter was calculated from the fiber diameter data thus obtained. Note that for branched fibers, if the length of the branched portion is 50 nm or more, it is included in the calculation of the fiber diameter as one fiber. Further, the number average fiber diameter may be calculated as follows. Polyvinyl alcohol present on the surface or inside the support is observed using an electron microscope image using a scanning electron microscope (SEM).
  • Two random axes are drawn in the vertical and horizontal directions for each image, and the fiber diameters of the fibers that intersect with the axes are visually read. At this time, observation is performed at a magnification of 5,000 to 50,000 times depending on the size of the constituent fibers. Images of a plurality of non-overlapping surface areas are taken with an electron microscope, and the values of the fiber diameter of each fiber intersecting the two axes are read. The number average fiber diameter is calculated from the fiber diameter data of at least 120 fibers. Note that for branched fibers, if the length of the branched portion is 50 nm or more, it is included in the calculation of the fiber diameter as one fiber.
  • the sample in order to obtain an observation image without distortion, the sample should be coated with conductive coating in advance, or the influence of the coating film thickness should be considered.
  • the coating thickness is 12 nm when the discharge current is 15 mA
  • the sample-target distance is 30 mm
  • the degree of vacuum is 6 Pa
  • the coating time is 2 minutes.
  • the deposition direction of the coating film is perpendicular to the expected direction, so when measuring the fiber diameter, the coating film thickness is half of the expected thickness. That is, when coating under the above conditions, the coating film thickness of 12 nm (6 nm+6 nm) at both ends is excluded from the fiber diameter determined by SEM.
  • the air filter medium obtained by the manufacturing method according to the present embodiment includes a support having fluid permeability and a polyvinyl alcohol mesh network formed in pores of the support that serve as fluid permeation paths.
  • the mesh network is made of nanofibers
  • the degree of polymerization of the polyvinyl alcohol is 1500 to 6000
  • the degree of saponification of the polyvinyl alcohol is 60 to 90 mol%
  • the polyvinyl alcohol is It has an adhesion amount of 0.05 to 1.00% by mass, contains a cationic surfactant and a water repellent, and does not contain any binder resin other than the polyvinyl alcohol.
  • the cationic surfactant is preferably added in an amount of 1 to 30 parts by weight per 100 parts by weight of polyvinyl alcohol.
  • the water repellent is preferably added in an amount of 5 to 50 parts by mass per 100 parts by mass of polyvinyl alcohol.
  • the air filter medium does not contain any binder resin other than the polyvinyl alcohol.
  • the air filter medium further contains a binder resin other than polyvinyl alcohol, no improvement in the PF value is observed based on the PF value measured only with the support. This is because if a binder resin other than polyvinyl alcohol is further contained, a mesh network of polyvinyl alcohol will not be formed.
  • the PF value and water repellency are higher than when they are not contained.
  • the total amount of polyvinyl alcohol, cationic surfactant, and water repellent adhered to the support is 0.05 to 1.50% by mass.
  • the nanofibers preferably have a number average fiber diameter of 10 to 500 nm.
  • the PF value of the air filter medium obtained by the manufacturing method according to the present embodiment is 0.5 or more than the PF value of the support under the conditions of a surface wind speed of 5.3 cm/sec and target particles of 0.10 to 0.15 ⁇ m. Preferably high.
  • the PF value is an index for evaluating the balance between pressure loss and particle collection performance, and is calculated using the formula shown in Equation 1. The higher the PF value, the lower the particle permeability of the target particles and the lower the pressure loss of the air filter medium.
  • the pressure loss is measured using, for example, a manometer.
  • the particle permeability is the rate at which the PAO particles permeate an air filter or a filter medium for an air filter when air containing polydisperse polyalphaolefin (PAO) particles generated by a Ruskin nozzle is passed through.
  • Particle transmittance is measured using, for example, a laser particle counter.
  • the PF value of an air filter medium is influenced by the type and structure of the support, but it is greatly influenced by the packing density of polyvinyl alcohol or the degree of network formation by polyvinyl alcohol.
  • the concentration of the aqueous solution of polyvinyl alcohol adhered to the support is 0.01 to 0.20% by mass;
  • the adhesion of polyvinyl alcohol is concentrated inside and/or on the surface of the pores of the support, and the packing density of polyvinyl alcohol becomes excessively high in some areas, this will lead to an excessive increase in pressure loss, and as a result, The PF value decreases.
  • the filter medium for an air filter has a polyvinyl alcohol network inside and/or on the surface of the support, and does not have a polyvinyl alcohol film-like structure.
  • polyvinyl alcohol film-like structures more specifically, when an aqueous solution with a high concentration of polyvinyl alcohol is attached to a support, the adhesion of polyvinyl alcohol concentrates inside the pores and/or on the surface of the support. It is conceivable that polyvinyl alcohol molecules are stacked inside and/or on the surface of the support pores to form a film. As a result, a network of polyvinyl alcohol is not formed on the surface layer of the support, and a film-like structure may be formed.
  • the form "having a mesh network of polyvinyl alcohol in the pores serving as a fluid permeation path” is, for example, a network structure formed by entwining nanofibers made of polyvinyl alcohol in a mesh shape.
  • Example 1 [Adhesion and drying of polyvinyl alcohol] Concentration of polyvinyl alcohol (saponification degree 88 mol%, polymerization degree 3500, PVA95-88, manufactured by Kuraray Co., Ltd.) is 0.07%, surfactant (perfluoroalkyl trialkylammonium salt, fluorine-based/cationic surfactant, Surflon) S-221, manufactured by AGC Seimi Chemical Co., Ltd.) concentration is 0.0105%, and the concentration of water repellent agent (fluorine-based/cationic water repellent, AG-E310, manufactured by AGC Co., Ltd., zeta potential: 30.8 mV) is 0.
  • a polyvinyl alcohol aqueous solution was prepared so as to give a polyvinyl alcohol aqueous solution (0.0035%), and glass fibers ( 22 parts of ultrafine glass fibers with an average fiber diameter of 0.65 ⁇ m and an average A polyvinyl alcohol aqueous solution was sprayed with a two-fluid nozzle onto a nonwoven fabric (hereinafter referred to as "support") consisting of 63 parts of ultrafine glass fibers with a fiber diameter of 2.4 ⁇ m and 15 parts of chopped glass fibers with an average fiber diameter of 6 ⁇ m.
  • support a nonwoven fabric
  • the amount shown in Table 1 was deposited and dried at 190° C. in a hot air dryer to obtain a filter medium for an air filter.
  • the total amount of polyvinyl alcohol and surfactant deposited on the support was 0.43%.
  • Example 2 An air filter was prepared in the same manner as in Example 1, except that the polyvinyl alcohol aqueous solution was changed so that the concentration of the water repellent agent was 0.0105%, and the amount of attached polyvinyl alcohol aqueous solution was changed to the amount shown in Table 1. A filter medium for use was obtained. The total amount of polyvinyl alcohol and surfactant deposited on the support was 0.45%.
  • Example 3 An air filter was prepared in the same manner as in Example 1, except that the polyvinyl alcohol aqueous solution was changed so that the concentration of the water repellent agent was 0.0140%, and the amount of attached polyvinyl alcohol aqueous solution was changed to the amount shown in Table 1. A filter medium for use was obtained. The total amount of polyvinyl alcohol and surfactant deposited on the support was 0.47%.
  • Example 4 An air filter was prepared in the same manner as in Example 1, except that the polyvinyl alcohol aqueous solution was changed so that the concentration of the water repellent agent was 0.0350%, and the amount of the polyvinyl alcohol aqueous solution attached was changed to the amount shown in Table 1. A filter medium for use was obtained. The total amount of polyvinyl alcohol and surfactant deposited on the support was 0.55%.
  • Example 5 Except that the polyvinyl alcohol aqueous solution was changed so that the surfactant concentration was 0.0070% and the water repellent concentration was 0.0070%, and the amount of attached polyvinyl alcohol aqueous solution was changed to the amount shown in Table 2.
  • a filter medium for an air filter was obtained in the same manner as in Example 1. The total amount of polyvinyl alcohol and surfactant deposited on the support was 0.43%.
  • Example 6 The polyvinyl alcohol aqueous solution was changed so that the surfactant concentration was 0.0070% and the water repellent concentration was 0.0140%), and the amount of attached polyvinyl alcohol aqueous solution was changed to the amount shown in Table 2. Except for this, a filter medium for an air filter was obtained in the same manner as in Example 1. The total amount of polyvinyl alcohol and surfactant deposited on the support was 0.44%.
  • Example 7 The polyvinyl alcohol aqueous solution was changed so that the surfactant concentration was 0.0070% and the water repellent concentration was 0.0350%), and the amount of attached polyvinyl alcohol aqueous solution was changed to the amount shown in Table 2. Except for this, a filter medium for an air filter was obtained in the same manner as in Example 1. The total amount of polyvinyl alcohol and surfactant deposited on the support was 0.57%.
  • Example 8 The surfactant was changed to alkyltrimethylammonium chloride, cationic surfactant, Cationogen TML, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., the concentration of surfactant was 0.0070%, and the concentration of water repellent was 0.0070%)
  • a filter medium for an air filter was obtained in the same manner as in Example 1, except that the polyvinyl alcohol aqueous solution was changed so that the amount of the polyvinyl alcohol aqueous solution adhered was changed to the amount shown in Table 2. The total amount of polyvinyl alcohol and surfactant deposited on the support was 0.43%.
  • Example 9 The surfactant was changed to alkyltrimethylammonium chloride, cationic surfactant, Cationogen TML, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., the concentration of surfactant was 0.0070%, and the concentration of water repellent was 0.0140%)
  • a filter medium for an air filter was obtained in the same manner as in Example 1, except that the polyvinyl alcohol aqueous solution was changed so that the amount of the polyvinyl alcohol aqueous solution adhered was changed to the amount shown in Table 2. The total amount of polyvinyl alcohol and surfactant deposited on the support was 0.46%.
  • Example 10 The surfactant was changed to alkyltrimethylammonium chloride, cationic surfactant, Cationogen TML, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., the concentration of surfactant was 0.0070%, and the concentration of water repellent was 0.0350%)
  • a filter medium for an air filter was obtained in the same manner as in Example 1, except that the polyvinyl alcohol aqueous solution was changed so that the amount of the polyvinyl alcohol aqueous solution adhered was changed to the amount shown in Table 2. The total amount of polyvinyl alcohol and surfactant deposited on the support was 0.55%.
  • Example 1 The "support” made of glass fiber in Example 1 was used as an air filter medium.
  • Example 2 Polyvinyl alcohol (saponification degree 88 mol%, polymerization degree 3500, PVA95-88, manufactured by Kuraray) was adjusted so that the concentration of polyvinyl alcohol (saponification degree 88 mol%, polymerization degree 3500, manufactured by Kuraray) was 0.07%, the surfactant concentration was 0%, and the water repellent concentration was 0%.
  • a filter medium for an air filter was obtained in the same manner as in Example 1, except that the alcohol aqueous solution was changed and the amount of the polyvinyl alcohol aqueous solution adhered was changed to the amount shown in Table 1. The total amount of polyvinyl alcohol and surfactant deposited on the support was 0.39%.
  • Example 8 The concentration of the surfactant was changed to 0%, the water repellent was changed to a non-fluorine-based cationic hydrocarbon polymer water repellent, Mayshield P-350K, manufactured by Meisei Chemical Industry Co., Ltd., zeta potential: 37.8 mV, An air filter was prepared in the same manner as in Example 1, except that the polyvinyl alcohol aqueous solution was changed so that the concentration of the water repellent was 0.0007%, and the amount of the polyvinyl alcohol aqueous solution attached was changed to the amount shown in Table 3. A filter medium for use was obtained. The total amount of polyvinyl alcohol and surfactant deposited on the support was 0.33%.
  • Example 9 The concentration of the surfactant was changed to 0%, the water repellent was changed to a non-fluorine-based cationic hydrocarbon polymer water repellent, Mayshield P-350K, manufactured by Meisei Chemical Industry Co., Ltd., zeta potential: 37.8 mV, An air filter was prepared in the same manner as in Example 1, except that the polyvinyl alcohol aqueous solution was changed so that the concentration of the water repellent agent was 0.0070%, and the amount of attached polyvinyl alcohol aqueous solution was changed to the amount shown in Table 3. A filter medium for use was obtained. The total amount of polyvinyl alcohol and surfactant deposited on the support was 0.41%.
  • Example 10 The concentration of the surfactant was changed to 0%, the water repellent was changed to a non-fluorine-based cationic hydrocarbon polymer water repellent, Mayshield Z-1, manufactured by Meisei Chemical Industry Co., Ltd., zeta potential: 13.7 mV, An air filter was prepared in the same manner as in Example 1, except that the polyvinyl alcohol aqueous solution was changed so that the concentration of the water repellent was 0.0007%, and the amount of the polyvinyl alcohol aqueous solution attached was changed to the amount shown in Table 3. A filter medium for use was obtained. The total amount of polyvinyl alcohol and surfactant deposited on the support was 0.34%.
  • Example 11 The concentration of the surfactant was changed to 0%, the water repellent was changed to a non-fluorine-based cationic hydrocarbon polymer water repellent, Mayshield Z-1, manufactured by Meisei Chemical Industry Co., Ltd., zeta potential: 13.7 mV, An air filter was prepared in the same manner as in Example 1, except that the polyvinyl alcohol aqueous solution was changed so that the concentration of the water repellent agent was 0.0070%, and the amount of attached polyvinyl alcohol aqueous solution was changed to the amount shown in Table 3. A filter medium for use was obtained. The total amount of polyvinyl alcohol and surfactant deposited on the support was 0.36%.
  • Example 13 A filter medium for an air filter was obtained in the same manner as in Example 1, except that the drying temperature was changed to 120° C. and the amount of the aqueous solution of polyvinyl alcohol deposited was changed to the amount shown in Table 4. The amount of polyvinyl alcohol adhered to the support was 0.42%.
  • the surfactant was changed to a perfluoroalkyl compound, a fluorine-based/ampholytic surfactant, Surflon S-232, manufactured by AGC Seimi Chemical Co., Ltd., and a polyvinyl alcohol aqueous solution was added so that the surfactant concentration was 0.0105%.
  • a filter medium for an air filter was obtained in the same manner as in Example 1, except that the amount of the aqueous solution of polyvinyl alcohol attached was changed to the amount shown in Table 4. The total amount of polyvinyl alcohol and surfactant deposited on the support was 0.43%.
  • Tables 1 to 4 show the manufacturing conditions and physical property values of the air filter media obtained in each Example and Comparative Example. In addition, each physical property value was measured by the method shown below.
  • PF value The PF value was calculated from the measured values of pressure drop and particle permeability using the formula shown in Equation 1. Note that the target particle size was 0.10 to 0.15 ⁇ m. The higher the PF value, the lower the particle permeability of target particles and the lower the pressure loss of the air filter.
  • Network Observation The network was observed by observing the air filter medium using a scanning electron microscope (abbreviated as SEM, manufactured by Hitachi High-Technologies, SU8010) at a magnification of 5,000 to 10,000 times. Before observation, conductive coating was performed using an ion sputter (E-1045, manufactured by Hitachi High-Technologies) under conditions of a discharge current of 15 mA, a sample-target distance of 30 mm, a degree of vacuum of 6 Pa, and a coating time of 2 minutes.
  • SEM scanning electron microscope
  • Gurley stiffness measurement method JAPAN TAPPI Paper Pulp Test Method No. 40:2000 Paper and paperboard - Stiffness test method by bending under load - Measured according to the Gurley method.
  • the equipment used was a Gurley stiffness tester (manufactured by Kumagai Riki Kogyo Co., Ltd.).
  • Examples 1 to 10 and Comparative Examples 2 to 11 it was confirmed that polyvinyl alcohol nanofibers were formed and had polyvinyl alcohol mesh networks in the pores that served as fluid permeation paths. Further, the number average fiber diameter of the nanofibers was approximately 40 nm. In addition, in Comparative Examples 2 to 11, the amount of polyvinyl alcohol network formed was small.
  • FIG. 1 shows an SEM observation image of the air filter of Example 8. According to FIG. 1, by rapidly drying polyvinyl alcohol with a degree of saponification of 88 mol% at a high temperature of 190° C., it was possible to obtain a beautiful nanofiber network and a suitable PF value.
  • FIG. 2 shows a SEM observation image of the air filter of Example 9. According to FIG. 2, by rapidly drying polyvinyl alcohol with a degree of saponification of 88 mol% at a high temperature of 190° C., it was possible to obtain a beautiful nanofiber network and a suitable PF value.
  • Examples 1 to 10 all exhibit higher PF values than the support of Comparative Example 1.
  • a PF value of 11.0 or more can be obtained in the range of 0.10 to 0.15 ⁇ m.
  • a PF value of 11.3 or more was obtained for 0.10-0.15 ⁇ m.
  • Comparative Example 12 a small amount of acrylic resin as a binder resin (1% acrylic resin added to PVA) was added to the aqueous solution of polyvinyl alcohol, so a mesh network of polyvinyl alcohol was not formed.
  • the PF value was almost the same as that of Comparative Example 1, and there was no improvement.
  • Comparative Examples 3 to 7 although water repellency was obtained compared to Comparative Example 2, the PF value was lower.
  • an example in which a water repellent is added without a surfactant in an aqueous solution of polyvinyl alcohol has a lower PF value than an example in which a cationic surfactant and a water repellent are not added in an aqueous solution of polyvinyl alcohol. goes down.
  • FIG. 3 shows an image of the air filter of Comparative Example 4 observed by SEM. Since no cationic surfactant is added, a polyvinyl alcohol network is not formed.
  • Examples 1 to 10 in which both a cationic surfactant and a water repellent were blended into an aqueous solution of polyvinyl alcohol, not only water repellency was obtained, but also a high PF value was obtained. Although the reason for this phenomenon is not clear, examples in which polyvinyl alcohol, a cationic surfactant, and a water repellent are mixed into an aqueous solution are useful in that water repellency can be obtained and a high PF value can be obtained. It has been shown.
  • Comparative Examples 8 to 11 are also examples in which a water repellent was added to an aqueous solution of polyvinyl alcohol without adding a surfactant.
  • FIG. 4 shows an image of the air filter of Comparative Example 9 observed by SEM. Since no cationic surfactant is added, a polyvinyl alcohol network is not formed. The PF values obtained are similar to those of Comparative Examples 3 to 7, and the PF values are lower than those of Comparative Example 2. Further, even though a non-fluorine water repellent is blended into the polyvinyl alcohol aqueous solution, water repellency is not obtained. A comparison between Comparative Examples 8 to 11 and Examples 1 to 10 also showed that the Examples were useful in that they provided water repellency and a high PF value.
  • Comparative Example 8 and Comparative Example 10 did not exhibit water repellency. Both Comparative Example 9, in which a water repellent was added to Comparative Example 8, and Comparative Example 11, in which a water repellent was added to Comparative Example 10, despite the addition of a water repellent. , water repellency was not developed.
  • Comparative Example 14 a fluorine-based amphoteric surfactant is added to the polyvinyl alcohol aqueous solution, but the PF value is almost the same as that of Comparative Example 1, and the PF value of Comparative Example 2 to which no surfactant is added. Only a PF value lower than the PF value was obtained. From this, it was found that adding a cationic surfactant rather than a fluorine-containing or amphoteric surfactant is more useful for obtaining a high PF value.
  • Comparative Example 15 an anionic surfactant is added to the polyvinyl alcohol aqueous solution instead of a cationic surfactant, but the PF value is lower than the PF value of Comparative Example 1, compared to the comparison without the addition of a surfactant. Much lower than the PF value of Example 2. From this, it was found that adding a cationic surfactant instead of an anionic surfactant is more useful for obtaining a high PF value.
  • FIG. 5 shows an image of the air filter of Comparative Example 15 observed by SEM. Although an anionic surfactant is added, a polyvinyl alcohol network is not formed.
  • stiffness and tensile strength can be improved without greatly reducing the PF value.
  • Examples 1 to 10 have Gurley stiffness improved by 1 mN or more, and tensile strength improved by 0.2 kN/m or more.
  • the stiffness and tensile strength are improved compared to Comparative Example 1, it is possible to suppress deformation of the filter during ventilation after pleating and an increase in structural pressure loss. For example, it is possible to prevent the filter from weakening and deforming over time during use.
  • the method for manufacturing the air filter medium according to the present embodiment uses polyvinyl alcohol, a cationic surfactant, and a water repellent to improve filter performance, particularly particle collection performance, and to improve water repellency. It can be seen that it is possible to provide a method for manufacturing a good air filter medium in a relatively short time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Filtering Materials (AREA)
  • Textile Engineering (AREA)

Abstract

本開示は、ポリビニルアルコール、カチオン性界面活性剤及び撥水剤を用い、支持体の流体透過経路の孔に、ポリビニルアルコールの網目状のネットワークを設けることで、フィルタ性能を向上させ、また撥水性が良好なエアフィルタ用濾材を提供することを目的とする。本開示に係るエアフィルタ用濾材の製造方法は、流体透過性を有する支持体に、ポリビニルアルコール水溶液を付着させ、支持体を湿潤状態とする付着工程と、湿潤状態の支持体に付着しているポリビニルアルコール水溶液を140℃以上で乾燥させる乾燥工程と、を有し、ポリビニルアルコール水溶液は、カチオン性界面活性剤及び撥水剤を含有し、かつ、ポリビニルアルコール以外のバインダー樹脂を含有しておらず、乾燥工程を経た支持体は、ポリビニルアルコール水溶液が乾燥させられることによって、流体透過経路となる孔にポリビニルアルコールの網目状のネットワークを有する。

Description

エアフィルタ用濾材及びその製造方法
 本開示は、ポリビニルアルコールを用い、粒子捕集性能を格段に向上させたエアフィルタ用濾材及びその製造方法を提供することを目的とする。更に詳しくは、半導体、液晶、バイオ・食品工業関係のクリーンルーム若しくはクリーンベンチ、ビル空調、内燃機関又は室内空間などの空気浄化用途に適したエアフィルタ濾材を、比較的短時間で製造する方法を提供する。
 空気中のサブミクロン乃至ミクロン単位の粒子を捕集するためには、一般的に、エアフィルタ用濾材が用いられている。エアフィルタ用濾材は、その捕集性能によって、粗塵フィルタ用、中性能フィルタ用、HEPA(High Efficiency Particulate Air)フィルタ用又はULPA(Ultra Low Penetration Air)フィルタ用に大別される。これらエアフィルタ用濾材における基本的な特性としては、微細なダスト粒子の粒子透過率が低いことのほかに、フィルタに空気を通気させるために、圧力損失が低いことが求められている。
 エアフィルタ用濾材として、部分鹸化度90%までのポリビニルアルコールを用い、ガラス繊維の表面を疎水化させ、繊維の分散性を向上させてフィルタ性能を上昇させる提案がある(例えば、特許文献1を参照。)。
 また、風圧が加わっても厚さ方向に潰れにくい形状維持性が高い不織布フィルタとして、厚さ方向へポリビニルアルコールの微小繊維を配向させて形成する提案がある(例えば、特許文献2を参照。)。
特開2008-194584号公報 WO2018/221063号公報
 特許文献1では、フッ素系撥水剤がバインダー液に含まれているため、得られた濾材は撥水性を有している。しかし、ガラス繊維同士を結着させるためのバインダー樹脂のうちの一種としてポリビニルアルコールが含まれているが、湿潤状態の濾材の急速な乾燥を行わず、ガラス繊維の分散性を高める役割を果たすものの、その他バインダー樹脂も混合されている為、繊維間にポリビニルアルコールの網目状のネットワークの形成を阻害してしまい、ネットワークを有する構造は得られない。したがって、撥水性を有しつつ、さらに細かい粒子の捕集効率を良好とすることが難しい場合があった。特許文献1では、対象粒子径が0.30~0.40μmにおけるPF値が示されているが、対象粒子径を0.10~0.15μmとしたより厳しい条件でのPF値は低い値となる。よって、対象粒子径が0.10~0.15μmの厳しい条件において高PF値を有するエアフィルタ用濾材が求められている。また、特許文献1では撥水性を有するものの、エアフィルタ用濾材を約0.25%の撥水剤に含浸させ、付着する撥水剤を多量とすることで撥水性を付与している。しかし、極少量の撥水剤の添加で撥水性を発現するエアフィルタ用濾材が求められている。
 特許文献2では、厚さ方向以外に形成されるポリビニルアルコールの微小繊維が少ないため、当該微小繊維がフィルタ性能の上昇に必ずしも寄与していない。
 本開示は、ポリビニルアルコール、カチオン性界面活性剤及び撥水剤を用い、支持体の流体透過経路の孔に、ポリビニルアルコールの網目状のネットワークを、支持体の平面方向、厚さ方向と比較的ランダムに設けることで、フィルタ性能、特に粒子捕集性能を向上させ、また撥水性が良好なエアフィルタ用濾材を提供することを目的とする。さらに本開示は、このようなエアフィルタ用濾材を比較的短時間で製造する方法を提供することを目的とする。
 本発明者らは、流体透過性を有する支持体に付着させるポリビニルアルコール水溶液にフッ素系撥水剤を含ませると撥水性は得られるものの、フッ素系撥水剤を含ませない場合と比較して理由は定かでないがPF値が大きく低下し、一方、ポリビニルアルコール水溶液にカチオン性界面活性剤とフッ素系撥水剤の両方を含ませると撥水性を有しつつ、高いPF値を有することを見出すことで上記課題を解決した。すなわち、本発明に係るエアフィルタ用濾材の製造方法は、流体透過性を有する支持体に、ポリビニルアルコール水溶液を付着させ、前記支持体を湿潤状態とする付着工程と、湿潤状態の前記支持体に付着している前記ポリビニルアルコール水溶液を140℃以上で乾燥させる乾燥工程と、を有し、前記ポリビニルアルコール水溶液は、カチオン性界面活性剤及び撥水剤を含有し、かつ、ポリビニルアルコール以外のバインダー樹脂を含有しておらず、前記乾燥工程を経た前記支持体は、前記ポリビニルアルコール水溶液が乾燥させられることによって、流体透過経路となる孔にポリビニルアルコールの網目状のネットワークを有することを特徴とする。
 本発明に係るエアフィルタ用濾材の製造方法では、前記網目状のネットワークは、ナノファイバーからなることが好ましい。高い粒子捕集性能と低圧力損失とを両立させることができる。
 本発明に係るエアフィルタ用濾材の製造方法では、前記ナノファイバーは、数平均繊維径が10~500nmのナノファイバーであることが好ましい。より高い粒子捕集性能と低圧力損失とを両立させることができる。
 本発明に係るエアフィルタ用濾材の製造方法では、前記支持体に付着させる前記ポリビニルアルコール水溶液の量は、支持体1mあたり50g以上であることが好ましい。支持体の流体透過経路となる孔に、網目状のネットワークを過不足なく形成しやすく、PF値が上昇しやすい。
 本発明に係るエアフィルタ用濾材の製造方法では、前記乾燥工程において、湿潤状態の前記支持体に付着している前記ポリビニルアルコール水溶液の溶媒の蒸発速度が支持体1mあたり100g/分以上であることが好ましい。ポリビニルアルコール水溶液を急速に乾燥することで、ポリビニルアルコールの網目状のネットワークをより確実に形成することができる。
 本発明に係るエアフィルタ用濾材の製造方法では、前記ポリビニルアルコール水溶液中の前記カチオン性界面活性剤は、ポリビニルアルコール100質量部に対して1~30質量部添加されていることが好ましい。粒子捕集性能がさらに高く、圧力損失が比較的低いエアフィルタ用濾材を得ることができる。
 本発明に係るエアフィルタ用濾材の製造方法では、前記ポリビニルアルコール水溶液中の前記撥水剤は、ポリビニルアルコール100質量部に対して5~50質量部添加されていることが好ましい。高いPF値と撥水性が得られる。
 本発明に係るエアフィルタ用濾材の製造方法では、前記乾燥工程を経た前記支持体に対するポリビニルアルコール、カチオン性界面活性剤及び撥水剤の合計付着量が0.05~1.50質量%であることが好ましい。高いPF値と撥水性が得られる。
 本発明に係るエアフィルタ用濾材の製造方法では、前記支持体が、ガラス繊維を主成分とする濾材用不織布であることが好ましい。フィルタ性能を安定して維持することができる。
 本発明に係るエアフィルタ用濾材は、流体透過性を有する支持体と、該支持体の流体透過経路となる孔に形成されているポリビニルアルコールの網目状のネットワークと、を有し、前記網目状のネットワークは、ナノファイバーからなり、前記ポリビニルアルコールの重合度は1500~6000であり、前記ポリビニルアルコールのケン化度は60~90mol%であり、前記支持体に対するポリビニルアルコールの付着量が0.05~1.00質量%であり、かつ、カチオン性界面活性剤及び撥水剤を含有し、前記ポリビニルアルコール以外のバインダー樹脂を含有していないことを特徴とする。
 本開示によれば、ポリビニルアルコール、カチオン性界面活性剤及び撥水剤を用い、支持体の流体透過経路の孔に、ポリビニルアルコールの網目状のネットワークを、支持体の平面方向、厚さ方向と比較的ランダムに設けることで、フィルタ性能、特に粒子捕集性能を向上させ、また撥水性が良好なエアフィルタ用濾材を提供することができる。さらに本開示によれば、このようなエアフィルタ用濾材を比較的短時間で製造する方法を提供することができる。
実施例8のエアフィルタをSEMにより観察した画像(観察倍率10000倍)である。 実施例9のエアフィルタをSEMにより観察した画像(観察倍率10000倍)である。 比較例4のエアフィルタをSEMにより観察した画像(観察倍率10000倍)である。 比較例9のエアフィルタをSEMにより観察した画像(観察倍率10000倍)である。 比較例15のエアフィルタをSEMにより観察した画像(観察倍率10000倍)である。
 次に、本発明について実施形態を示して詳細に説明するが、本発明はこれらの記載に限定して解釈されない。本発明の効果を奏する限り、実施形態は種々の変形をしてもよい。
 本実施形態に係るエアフィルタ用濾材の製造方法は、流体透過性を有する支持体に、ポリビニルアルコール水溶液を付着させ、前記支持体を湿潤状態とする付着工程と、 湿潤状態の前記支持体に付着している前記ポリビニルアルコール水溶液を140℃以上で乾燥させる乾燥工程と、を有し、前記ポリビニルアルコール水溶液は、カチオン性界面活性剤及び撥水剤を含有し、かつ、ポリビニルアルコール以外のバインダー樹脂を含有しておらず、前記乾燥工程を経た前記支持体は、前記ポリビニルアルコール水溶液が乾燥させられることによって、流体透過経路となる孔にポリビニルアルコールの網目状のネットワークを有する。
 カチオン性界面活性剤及び撥水剤を含有するポリビニルアルコール水溶液を、以降、単に、「ポリビニルアルコール水溶液」ともいう。
<支持体>
 支持体は、流体透過性を有するものであれば特に限定するものではなく、例えば、不織布、織布、紙又はスポンジなどの多孔質な材料を用いることができる。これらの中でも不織布が好ましく、特にガラス繊維、有機繊維などの繊維を主成分とする濾材用不織布であることが好ましい。フィルタ性能を安定して維持することができるという点でガラス繊維を主成分とする濾材用不織布であることがさらに好ましい。ガラス繊維、有機繊維などの繊維を主成分とするとは、支持体の全質量に対する当該繊維の質量が50質量%以上であることをいう。より好ましくは、80質量%以上である。支持体が当該繊維を主成分とする不織布であるとき、目付は10~300g/mであることが好ましく、30~200g/mであることがより好ましい。流体透過性とは、少なくとも気体を透過させることができる性質をいい、より好ましくは気体及び液体を透過させることができる性質をいう。
 支持体の圧力損失は1Pa~500Paであることが好ましい。より好ましくは10Pa~300Paであり、さらに好ましくは30Pa~200Paである。
 支持体の圧力損失が1Pa未満の場合、支持体の孔径が広すぎる為、ポリビニルアルコールのネットワークを張り巡らせることが難しく、捕集効率の上昇に寄与し難くなり、PF値も上昇しない場合がある。支持体の圧力損失が500Paを超える場合、支持体自体の捕集効率が極めて高く、ポリビニルアルコールのネットワークが支持体の捕集効率に寄与し難くなり、PF値は上昇しない場合がある。
 支持体に用いられるガラス繊維は、例えば、火焔延伸法若しくはロータリー法によって製造されるウール状の極細ガラス繊維、又は所定の繊維径となるように紡糸されたガラス繊維の束を所定の繊維長に切断して製造されるチョップドストランドガラス繊維である。これらの中から、必要とされる物性に応じて、種々の繊維径及び繊維長を有するものが選択され、単独又は混合して使用される。例えば、平均繊維径が相互に異なる2種以上の極細ガラス繊維とチョップドストランドガラス繊維とを混合して得たガラス繊維からなる不織布が好ましい。また、半導体製造工程用途におけるシリコンウェハの硼素汚染を防止する目的で、低硼素ガラス繊維又はシリカガラス繊維を使用することもできる。ガラス繊維の平均繊維径は、特に限定されないが、0.05~20μmであることが好ましい。より好ましくは、0.1~5μmである。ガラス繊維の平均繊維長は、特に限定されないが、0.5~10000μmであることが好ましい。より好ましくは、1~1000μmである。一方、有機繊維は、例えば、ポリプロピレン繊維、アクリル繊維、ビニロン繊維、セルロース繊維、ポリエステル繊維又はアラミド繊維である。有機繊維の平均繊維径は、特に限定されないが、0.05~100μmであることが好ましい。より好ましくは、0.1~50μmである。有機繊維の平均繊維長は、特に限定されないが、短繊維である場合は0.5~10000μmであることが好ましい。より好ましくは、10~5000μmである。不織布の製造方法は、特に限定されず、例えば、乾式法又は湿式法である。
 支持体の形状については、特に限定されるものでは無く、シート状の様な平面構造をしていなくても良い。例えば、支持体の材料に山折りと谷折りとを繰り返したジグザグ状の折り目を形成するプリーツ加工のように立体的に加工が施されたものでも構わない。予めプリーツ加工が施された支持体を用いれば、容積の限られた乾燥領域内で長尺な支持体を乾燥させることができ、効率的にポリビニルアルコールが付着されたエアフィルタ用濾材を得ることができる。
 また、支持体の平均孔径は、0.1~50μmであることが好ましい。より好ましくは0.5~10μmである。0.1μm未満では、流体透過性に劣る場合がある。50μmを超えると、ポリビニルアルコールが支持体の孔内に網目状構造体を均一に形成しにくくなる場合がある。本実施形態においては、ポリビニルアルコールと水とを含有する水溶液を支持体の孔内に付着させ、その後乾燥してエアフィルタとすることができるが、適切な平均孔径を有する支持体を用いることで、均一に水溶液が孔径内へ分布し、乾燥後も網目状構造を維持させやすくなる。ここで、平均孔径は、ASTM E1294‐89「ハーフドライ法」に従って計測することができる。
 支持体は、支持体自体がエアフィルタ用濾材として使用できる素材であることが好ましい。本実施形態に係るエアフィルタの製造方法では、このような支持体を用いることで、従来のエアフィルタ用濾材(支持体自体)よりも粒子捕集性能の高いエアフィルタを得ることが容易となる。また、支持体は湿潤状態でもよく、例えば抄紙工程の途中で、湿潤状態の支持体にポリビニルアルコールの液を付着してもよい。
 ポリビニルアルコールは、ポリ酢酸ビニルを原料として、ポリ酢酸ビニル中のカルボキシル基を鹸化、すなわち、アルカリ加水分解による水酸基への変換によって製造される。ここで、水酸基に変換したカルボキシル基の割合を、特に鹸化度と呼ぶ。
 ポリビニルアルコールの鹸化度は80~98mol%であることが好ましく、82~90mol%がより好ましい。ポリビニルアルコールの鹸化度が80mol%未満であると、ポリビニルアルコールが完全に溶解せず、好適なPF値を得ることができない場合がある。ポリビニルアルコールの鹸化度が98mol%を超えると、ケン化度が高くなり、疎水効果が薄くなる為、ネットワークが形成し難くなる場合がある。
 ポリビニルアルコールの重合度は1500~6000であることが好ましい。更に好ましくは2000以上5000以下である。例えばPVA95-88(鹸化度88mol%、重合度3500、クラレ社製)が挙げられる。ポリビニルアルコールの重合度が1500未満であると、ポリビニルアルコールのネットワーク構造が形成されにくくなり、PF値が上昇しない場合があり、ポリビニルアルコールの重合度が6000を超えると、ポリビニルアルコールの溶解がし難い為、未溶解部分が残るとPF値が上昇しない場合がある。
 本実施形態では、ポリビニルアルコールの鹸化度は80~98mol%であり、かつ、ポリビニルアルコールの重合度は1500~6000であることが好ましい。ポリビニルアルコールの鹸化度と重合度とをこのような範囲にすることで、ポリビニルアルコールの網目状のネットワークをより形成しやすく、かつ、PF値が向上する。
 本実施形態では、ポリビニルアルコール水溶液は、ポリビニルアルコール以外の添加剤を含んでも良い。添加剤としては、界面活性剤、撥水剤、消泡剤、微細繊維、微細粒子などである。ただし、ポリビニルアルコール水溶液は、ポリビニルアルコール以外のバインダー樹脂を含有していないことが必要である。ポリビニルアルコール水溶液にポリビニルアルコール以外のバインダー樹脂が含まれていると、得られたエアフィルタ用濾材のPF値は支持体のみで測定したPF値と比較して、PF値の向上はみられない。ポリビニルアルコールの網目状のネットワークの形成が阻害されるからである。
 本実施形態では、ポリビニルアルコール水溶液は、ポリビニルアルコール以外の添加剤として、カチオン性界面活性剤を含有することが好ましい。カチオン性界面活性剤を含有するポリビニルアルコール水溶液を使用した形態とカチオン性界面活性剤を含有しないポリビニルアルコール水溶液を使用した形態とを比較すると、カチオン性界面活性剤を含有する形態ではPF値がさらに向上する。ポリビニルアルコール水溶液にアニオン性界面活性剤又は両性界面活性剤を含有させてもPF値の向上はみられないため、このPF値の更なる向上はカチオン性界面活性剤の配合によるものである。
 カチオン性界面活性剤としては、第4級アンモニウム塩型とアミン塩型に大別できるが、第4級アンモニウム塩型が好ましく、例えば、アルキルトリメチルアンモニウムクロライド、ジアルキルジメチルアンモニウムクロライド、パーフルオロアルキルトリアルキルアンモニウム塩などが挙げられる。このうちパーフルオロアルキルトリアルキルアンモニウム塩はフッ素系カチオン性界面活性剤である。アミン塩型としてはモノアルキルアミン塩、ジアルキルアミン塩、トリアルキルアミン塩などが例示される。
 ポリビニルアルコール水溶液中のカチオン性界面活性剤は、ポリビニルアルコール100質量部に対して1~30質量部添加されていることが好ましい。カチオン性界面活性剤がパーフルオロアルキルトリアルキルアンモニウム塩である場合には、ポリビニルアルコール100質量部に対して1~30質量部添加されていることが好ましく、15~30質量部添加されていることがより好ましい。カチオン性界面活性剤がアルキルトリメチルアンモニウムクロライドである場合には、ポリビニルアルコール100質量部に対して5~10質量部添加されていることが好ましい。
 本実施形態では、ポリビニルアルコール水溶液は、ポリビニルアルコール以外の添加剤として、カチオン性界面活性剤に加えてさらに撥水剤を含有する。カチオン性界面活性剤及び撥水剤を含有するポリビニルアルコール水溶液を使用した形態とカチオン性界面活性剤を含有し、撥水剤を含有しないポリビニルアルコール水溶液を使用した形態とを比較すると、カチオン性界面活性剤及び撥水剤を含有する形態ではPF値を維持しつつ撥水性が得られる。ポリビニルアルコール水溶液にカチオン性界面活性剤を含有させずに撥水剤を含有させた場合、撥水性は得られるものの高いPF値が得られない。高PF値と撥水性を得るためには、カチオン性界面活性剤及び撥水剤の両方を含有するポリビニルアルコール水溶液を使用する必要がある。
 撥水剤としては、フッ素系樹脂が好ましく、より好ましくはカチオン性かつフッ素系樹脂が好ましい。更に好ましくはゼータ電位が+10mV以上、より好ましくは+20mV以上、さらに好ましくは+30mV以上のカチオン性かつフッ素系樹脂である。例えば、AG-E310(AGC社製)などが例示される。
 ポリビニルアルコール水溶液中の撥水剤は、ポリビニルアルコール100質量部に対して5~50質量部添加されていることが好ましく、10~20質量部がより好ましい。5質量部未満であると、撥水性が得られない場合があり、50質量部を超えると、高PF値と高撥水性とのバランスが崩れるおそれがある。
 カチオン性界面活性剤と撥水剤との配合質量比は、1:0.3~1:5が好ましく、1:1~1:3.5がより好ましい。
 本実施形態に係る製造方法で得られるエアフィルタ用濾材では、支持体の孔内で繊維状のポリビニルアルコールが絡み合って該繊維状のポリビニルアルコール間に空隙が形成されていることが好ましく、ポリビニルアルコールが積層されたフィルム状の構造体を有さないことが好ましい。圧力損失が上昇することを防止し、粒子透過率を低くすることができる。ポリビニルアルコールが積層されたフィルム状の構造体とは、ポリビニルアルコールが物理的な絡み合い又は化学的な凝集などによって形成された、支持体の孔の全体又は一部を塞ぐ膜状物をいう。
 本実施形態においては、支持体に対するポリビニルアルコールの付着量の割合を0.05~1.00質量%とすることが好ましい。より好ましくは、0.10~0.50質量%である。このような付着量とすることによって粒子捕集性能が高く、圧力損失が比較的低いエアフィルタとすることができる。支持体に対するポリビニルアルコールの付着量の割合が0.05質量%を下回ると、粒子捕集性能に劣る場合がある。逆に1.00質量%を上回ると、支持体の孔を塞ぐ膜状になり易く、粒子捕集性能に影響し、フィルタ性能が低下する場合がある。支持体に対するポリビニルアルコールの付着量は、主に、水溶液中のポリビニルアルコールの濃度と、支持体への水溶液の付着量でコントロールすることができ、水溶液中のポリビニルアルコールの濃度を高くするほど、また、支持体への水溶液の付着量を多くするほど、支持体へのポリビニルアルコールの付着量は多くなる。
 本実施形態においては、支持体に対するポリビニルアルコール、カチオン性界面活性剤及び撥水剤の合計付着量の割合は0.05~1.50質量%とすることが好ましい。より好ましくは、0.10~0.80質量%である。
 本実施形態においては、支持体に付着させるポリビニルアルコール水溶液の量は1mあたり50g以上が好ましい。より好ましくは100g以上である。50gを下回ると、支持体の繊維間に網目状のネットワークが形成し辛く、PF値も上昇し難い場合がある。支持体に付着させるポリビニルアルコール水溶液の量の上限は、例えば1mあたり300gである。
 本実施形態においては、支持体にポリビニルアルコール水溶液を付着させた後、前記ポリビニルアルコール水溶液を140℃以上で乾燥させる乾燥工程を経て、エアフィルタ用濾材を得ることができる。水溶液は、ポリビニルアルコールを水に溶解させることで得ることができる。水溶液中のポリビニルアルコールの形態は、例えば、ポリビニルアルコールが分子1本または数本単位で水溶液中に安定溶解した形態、又は部分的に凝集した形態である。このうち、水溶液中のポリビニルアルコールの形態は、ポリビニルアルコールが1本または数本単位で水溶液中に安定溶解した形態であることが好ましい。
<溶媒>
 ポリビニルアルコール水溶液中に含まれる溶媒は水または水と有機溶剤との混合物であることが好ましい。より好ましくは水である。
<ポリビニルアルコール水溶液>
 本実施形態では、水溶液中のポリビニルアルコールの固形分濃度を0.01~0.20質量%とすることが好ましい。より好ましくは0.03~0.10質量%である。水溶液中のポリビニルアルコールの固形分濃度が0.01質量%未満では、固形分濃度が低すぎる為、ポリビニルアルコールのネットワークが形成され難くなり、PF値が上昇しない場合があり、0.20質量%を超えると支持体の表面にポリビニルアルコールのフィルム状の構造体が形成される場合がある。ポリビニルアルコール水溶液には、前述の通り、カチオン性界面活性剤がポリビニルアルコール100質量部に対して1~30質量部添加される。また、ポリビニルアルコール水溶液には、前述の通り、カチオン性界面活性剤に加えて撥水剤がポリビニルアルコール100質量部に対して5~50質量部添加される。
<水溶液の調製>
 本実施形態では、水溶液の調製方法は特に限定するものではなく、前述したポリビニルアルコールを水に溶解させて水溶液とすればよい。ポリビニルアルコール水溶液に、カチオン性界面活性剤及び撥水剤を添加する方法としては、水にポリビニルアルコールの添加した後、ポリビニルアルコールの濃度を最終調整するときに、0.5~3質量%程度の濃度でカチオン性界面活性剤を含む水溶液及び0.5~3質量%程度の濃度で撥水剤を含む水溶液を使用して希釈し、ポリビニルアルコールとカチオン性界面活性剤と撥水剤の濃度をそれぞれ調整する。
 本実施形態に係るポリビニルアルコールの溶解の方法として、特に限定するものではないが、例えば、マグネティックスターラー、プロペラ型撹拌機等を用い、水にポリビニルアルコールの粉体又は液体を投入し、100~700rpm程度で10分間攪拌する。次いで、攪拌中に温度を95℃にし、2時間程度攪拌することで、綺麗に溶解する。
<付着工程>
 水溶液を支持体に付着させる方法は、例えば、含浸法、塗布法又は噴霧法である。好ましくは噴霧法である。支持体に対する水溶液の付着量は、支持体の厚さ、材質及び平均細孔径に応じて適宜調整するものであるが、前述したように、本実施形態では、支持体に対するポリビニルアルコールの付着量が0.05%~1.00%が好ましい。支持体に対するポリビニルアルコールの付着量が0.05質量%未満では、支持体へのポリビニルアルコールの付着量が不十分となり、均一なポリビニルアルコールのネットワークを形成することが難しい。結果としてエアフィルタ用濾材としての粒子捕集性能を十分に向上させることができないおそれがある。逆に1.00質量%を超えると、ポリビニルアルコールの網目状ネットワークが凝集した膜になり易く、粒子捕集性能を十分に向上させることができないおそれがある。また、前述したように、本実施形態では、支持体に対するポリビニルアルコール、カチオン性界面活性剤及び撥水剤の合計付着量の割合は0.05~1.50質量%とすることが好ましい。本実施形態において、支持体に対するポリビニルアルコールの付着量の割合の算出方法は特に限定するものではないが、例えば支持体が無機繊維のみで構成されている場合は、ポリビニルアルコールのみを燃焼、カチオン性界面活性剤を含む場合にはポリビニルアルコール及びカチオン性界面活性剤を燃焼、又は、カチオン性界面活性剤及び撥水剤を含む場合にはポリビニルアルコール、カチオン性界面活性剤及び撥水剤を燃焼させて、燃焼後の減量割合から算出することができる。また、支持体に対するポリビニルアルコールの付着量の割合は、湿潤付着量から換算して求めてもよい。すなわち、支持体に対するポリビニルアルコールの付着量の割合(単位%)は、{(湿潤付着量×水溶液中のポリビニルアルコールの固形分濃度)/水溶液を付着させる前の支持体の質量}×100である。また、支持体に対するポリビニルアルコール及びカチオン性界面活性剤の付着量の割合は、湿潤付着量から換算して求めてもよい。すなわち、支持体に対するポリビニルアルコール及びカチオン性界面活性剤の付着量の割合(単位%)は、{(湿潤付着量×水溶液中のポリビニルアルコール及びカチオン性界面活性剤の合計の固形分濃度)/水溶液を付着させる前の支持体の質量}×100である。また、支持体に対するポリビニルアルコール、カチオン性界面活性剤及び撥水剤の付着量の割合は、湿潤付着量から換算して求めてもよい。すなわち、支持体に対するポリビニルアルコール、カチオン性界面活性剤及び撥水剤の付着量の割合(単位%)は、{(湿潤付着量×水溶液中のポリビニルアルコール、カチオン性界面活性剤及び撥水剤の合計の固形分濃度)/水溶液を付着させる前の支持体の質量}×100である。ここで、湿潤付着量は、水溶液を付着させた湿潤状態での支持体の質量と付着させる前の支持体の質量との差であり、乾燥工程の開始時に支持体に付着している水溶液の質量を意味する。このため、湿潤付着量は、乾燥工程の直前に測定した値であることが好ましく、例えば乾燥工程の開始前10分以内に測定することが好ましく、5分以内に測定することがより好ましい。
 含浸法は、例えば、支持体を水溶液に完全に浸漬する方法又は支持体の表面だけを浸す方法がある。支持体を水溶液に完全に浸漬する方法は、支持体の孔内の奥部まで水溶液を効率的に、かつ、確実に浸透することができるため、より均一なポリビニルアルコールのネットワークを形成できる点で優れている。また、支持体を水溶液に完全に浸漬したまま減圧すると、支持体内のエアーが抜けやすくなるため、水溶液を浸透させるにはより効果的である。なお、過剰に付着した水溶液は、ロール脱水機などで絞り出したり、吸水フェルト又は吸水紙などの吸水部材で除去したりすることが好ましい。支持体の表面だけを浸す方法は、支持体の厚み方向で、孔内のポリビニルアルコールのネットワーク構造の密度差(支持体の一方の面側ともう一方の面とでポリビニルアルコールのネットワーク構造の存在比率が異なる)を設ける場合に有効である。
 塗布法は、公知の塗布機または刷毛で水溶液を支持体表面に塗布する方法である。公知の塗布機は、例えば、カーテンコーター、ダイコーターである。塗布法は、支持体への水溶液の付着量の制御が容易な点で優れている。
 噴霧法は、霧吹き又はスプレーなどの公知の噴霧器を用いて水溶液を支持体表面に噴霧する方法である。噴霧法は、例えば、支持体の孔のうち、支持体の表面近傍にだけにポリビニルアルコールのネットワーク構造を形成したい場合、又は支持体に大量の含浸液、又は塗工機のロール若しくはバーを接触させたくない場合に有効である。
 本実施形態では、噴霧法がより好ましい。含浸法では、液の浸透に利点はあるが、過剰に付着した液を拭き取る際に、例えばガラス繊維間に付着した液が拭き取られてしまい、乾燥後に網目状のネットワークが形成しにくい。また、拭き取りではなく吸引機等で脱水すると、繊維間に液の膜が無くなってしまい、ネットワークが形成されず、フィルタ性能も上昇しない。一方、噴霧法であれば、液の付着量をコントロールすることが可能であるため、過剰な液を付着させる必要もなく、安定してフィルタ性能が上昇することができる。
<乾燥工程>
 本実施形態では、前述のようにして水溶液を支持体に付着させ、支持体を湿潤状態とした後、140℃以上で乾燥を行う。好ましくは140~250℃であり、さらに好ましくは170~220℃である。尚、ここでの乾燥温度とは、乾燥過程における乾燥装置の最高乾燥温度を示す。
 本実施形態では、乾燥設備としてドラム型熱乾燥機、熱風乾燥機、赤外線乾燥機などが好ましい。また、これらの乾燥方法を組み合わせてもよい。尚、ここでの乾燥は常圧で行われる。
 本実施形態では、乾燥工程において、湿潤状態の支持体に付着しているポリビニルアルコール水溶液の溶媒の蒸発速度が支持体1mあたり100g/分以上であることが好ましい。より好ましくは、120g/分以上である。100g/分未満であると乾燥速度が遅いため、ポリビニルアルコールの網目状のネットワークを形成できない場合がある。なお、蒸発速度の上限は、例えば、300g/分である。
 本実施形態では、乾燥時に風を使用しても良い。風を使用する目的としては、蒸発した水蒸気が支持体周辺に留まるのを防ぐ役割や、液の揮発を促進させる為である。しかし、濾材の内部を貫通するような強力な風であると、繊維間に付着している液の膜が破壊される可能性がある為、適度な風量が好ましい。
 ポリビニルアルコール水溶液にカチオン性界面活性剤を含有させた場合、含有させない場合と比較して支持体への水溶液の付着量が低減される。カチオン性界面活性剤を含有させた場合、濾水が良くなり、その結果、付着量が少なくなると推測される。そして、水溶液の付着量が低減されると、熱乾燥時の負荷の低減及び乾燥時間の短縮が図られ、生産性が向上する。
 本実施形態では、乾燥後に得られたポリビニルアルコールの固形の形状が繊維状であり、ナノファイバーであることが好ましく、数平均繊維径が10~500nmのナノファイバーであることがより好ましく、さらに好ましくは数平均繊維径が10~100nmである。高い粒子捕集性能と低圧力損失とを両立させるエアフィルタとするためには、繊維径の極めて細いポリビニルアルコールによる均一な繊維ネットワークを支持体中に形成することが重要である。ナノファイバー、特に数平均繊維径が500nm以下である極細のポリビニルアルコールを用いると、エアフィルタ用濾材中の単位体積あたりの繊維の本数が著しく増加し、気体中の粒子を捕捉しやすくなり、高い捕集性能を得ることが可能となる。また、スリップフロー効果によって、単繊維の通気抵抗が極めて低くなり、エアフィルタとしての圧力損失が上昇しにくくなる。ここでのポリビニルアルコール数平均繊維径は、次によって算出する。カーボン膜被覆グリッド上にキャストした水溶性高分子を、透過型電子顕微鏡(TEM)を用いて電子顕微鏡画像による観察を行う。得られた観察画像に対し、1枚の画像あたり縦横2本ずつの無造作な軸を引き、軸に交差する繊維の繊維径を目視で読み取っていく。このとき、構成する繊維の大きさに応じて5000倍、10000倍又は50000倍のいずれかの倍率で観察を行う。なお、試料又は倍率は、20本以上の繊維が軸と交差する条件とする。こうして最低3枚の重なっていない表面部分の画像を電子顕微鏡で撮影し、各々二つの軸に交差する繊維の繊維径の値を読み取る。したがって、最低20本×2×3=120個の繊維情報が得られる。こうして得られた繊維径のデータから数平均繊維径を算出した。なお、枝分かれしている繊維については、枝分かれしている部分の長さが50nm以上であれば1本の繊維として繊維径の算出に組み込む。また、数平均繊維径は、次に従って算出してもよい。支持体表面又は内部に存在するポリビニルアルコールを、走査型電子顕微鏡(SEM)を用いて電子顕微鏡画像による観察を行う。得られた観察画像に対し、1枚の画像あたり縦横2本ずつの無作為な軸を引き、軸に交差する繊維の繊維径を目視で読み取っていく。このとき、構成する繊維の大きさに応じて5000~50000倍のいずれかの倍率で観察を行う。複数の重なっていない表面部分の画像を電子顕微鏡で撮影し、各々二つの軸に交差する繊維の繊維径の値を読み取る。少なくとも120本の繊維径データから数平均繊維径を算出する。なお、枝分かれしている繊維については、枝分かれしている部分の長さが50nm以上であれば1本の繊維として繊維径の算出に組み込む。尚、試料は歪みのない観察画像を得るため、予め導電性コーティングを行うか、コーティング膜厚による影響も考慮する。例えば、イオンスパッター(E-1045、日立ハイテクノロジー社製)を用いる場合、放電電流15mA、試料-ターゲット間距離30mm、真空度6Pa、コーティング時間2分とすると、コーティング膜厚は12nmである。ただし、繊維径を測定する際は、コーティング膜の堆積方向が想定される方向と垂直になるため、繊維径を測定する際は、コーティング膜厚は想定の半分とする。つまり、上記条件でコーティングした場合、SEMから求めた繊維径から両端のコーティング膜厚12nm(6nm+6nm)分を除く。
 本実施形態に係る製造方法で得られるエアフィルタ用濾材は、流体透過性を有する支持体と、該支持体の流体透過経路となる孔に形成されているポリビニルアルコールの網目状のネットワークと、を有し、前記網目状のネットワークは、ナノファイバーからなり、前記ポリビニルアルコールの重合度は1500~6000であり、前記ポリビニルアルコールのケン化度は60~90mol%であり、前記支持体に対するポリビニルアルコールの付着量が0.05~1.00質量%であり、かつ、カチオン性界面活性剤及び撥水剤を含有し、前記ポリビニルアルコール以外のバインダー樹脂を含有していない。ここでカチオン性界面活性剤は、ポリビニルアルコール100質量部に対して1~30質量部添加されていることが好ましい。また撥水剤は、ポリビニルアルコール100質量部に対して5~50質量部添加されていることが好ましい。ここでエアフィルタ用濾材は前記ポリビニルアルコール以外のバインダー樹脂を含有していない。エアフィルタ用濾材はポリビニルアルコール以外の他のバインダー樹脂をさらに含有すると、支持体のみで測定したPF値を基準としてPF値の向上はみられない。ポリビニルアルコール以外の他のバインダー樹脂をさらに含有するとポリビニルアルコールの網目状のネットワークが形成されなくなってしまうためである。また、カチオン性界面活性剤及び撥水剤を含有していることで、含有させない場合よりもPF値及び撥水性がより高められている。本実施形態に係る製造方法で得られるエアフィルタ用濾材は、支持体に対するポリビニルアルコール、カチオン性界面活性剤及び撥水剤の合計付着量が0.05~1.50質量%であることが好ましい。さらに、ナノファイバーは数平均繊維径が10~500nmのナノファイバーであることが好ましい。
 本実施形態に係る製造方法で得られるエアフィルタ用濾材のPF値は、面風速5.3cm/秒、対象粒子0.10~0.15μmの条件で、支持体のPF値より0.5以上高いことが好ましい。PF値は、圧力損失と粒子捕集性能とのバランスの優劣を評価する指標であり、数1に示す式を用いて計算される。PF値が高いほど、対象粒子の粒子透過率が低くかつ低圧力損失のエアフィルタ用濾材であることを示す。
Figure JPOXMLDOC01-appb-M000001
 数1において、圧力損失は、例えば、マノメーターを用いて測定される。また、粒子透過率は、ラスキンノズルで発生させた多分散ポリアルファオレフィン(PAO)粒子を含む空気を通過させたときの、PAO粒子がエアフィルタ又はエアフィルタ用濾材を透過する割合である。粒子透過率は、例えば、レーザーパーティクルカウンターを用いて測定される。
 エアフィルタ用濾材のPF値は、支持体の種類や構成によっても影響を受けるが、ポリビニルアルコールの充填密度又はポリビニルアルコールによるネットワークの形成度合いが大きく影響する。本実施形態に係る製造方法で得られるエアフィルタ用濾材は、支持体に付着させるポリビニルアルコールの水溶液濃度が0.01~0.20質量%であるのが好ましいが、このような付着濃度であっても、例えば、支持体の孔の内部及び/又は表面にポリビニルアルコールの付着が集中し、部分的に過度にポリビニルアルコールの充填密度が高くなると、圧力損失の過度な上昇を招き、結果的にPF値は低下する。エアフィルタ用濾材は、支持体の内部及び/又は表面にポリビニルアルコールの網目状のネットワークを有し、ポリビニルアルコールのフィルム状の構造体を有さないことが好ましい。ポリビニルアルコールのフィルム状の構造体について、より具体的には、ポリビニルアルコールの濃度が高い水溶液を支持体に付着させた場合、支持体の孔の内部及び/又は表面にポリビニルアルコールの付着が集中し、支持体孔の内部及び/又は表面でポリビニルアルコール分子が積層して、フィルム状になることが考えられる。その結果、支持体の表層ではポリビニルアルコールの網目状のネットワークが形成されず、フィルム状の構造体が生じることがある。このようなフィルム状の構造体が部分的にでも生じたエアフィルタ用濾材を用いると、圧力損失の上昇や、粒子捕集性能の低下(すなわちPF値の低下)が生じ、場合によってはエアフィルタとしての通気性を保持できなくなる。尚、支持体の表層付近のみにポリビニルアルコールの付着が集中したとしても、ポリビニルアルコールのネットワークが適度に形成されていれば(過度にポリビニルアルコールの充填密度が高くなければ)圧力損失はそれほど上昇せず、エアフィルタとして好適なPF値を得ることができる。本実施形態において、「流体透過経路となる孔にポリビニルアルコールの網目状のネットワークを有する」形態としては、例えば、ポリビニルアルコールからなるナノファイバーが網目状に絡み合って形成されたネットワーク構造が、流体透過経路となる孔の内部、表面、又は、内部及び表面の両方に存在する3つの形態がある。カチオン性界面活性剤及び撥水剤をポリビニルアルコール水溶液に含有させて、エアフィルタ用濾材を製造した場合には、ポリビニルアルコールの網目状のネットワークの形成がより最適化されて、PF値及び撥水性がより高まる。
 次に、実施例を挙げて本発明をより具体的に説明するが、本発明はこれら実施例に限定されるものではない。また、例中の「部」、「%」は、特に断らない限りそれぞれ「質量部」、「質量%」を示す。なお、添加部数は、固形分換算の値である。
[ポリビニルアルコール水溶液の調製工程]
 1000mlビーカーの中へ水を998.0g投入し、次いでポリビニルアルコール(鹸化度88mol%、重合度3500、PVA95-88、クラレ社製)の粉体を2.0g投入し、プロペラ型撹拌機で10分間攪拌する。次いで、攪拌中に温度を95℃にし、2時間攪拌し溶解した。水溶液の全質量に対するポリビニルアルコールの固形分濃度は0.20%であり、実施例と比較例の各濃度になるように水で希釈した。なお、水溶液の調整に使用した水は全て蒸留水である。
(実施例1)
[ポリビニルアルコールの付着・乾燥]
 ポリビニルアルコール(鹸化度88mol%、重合度3500、PVA95-88、クラレ社製)の濃度が0.07%、界面活性剤(パーフルオロアルキルトリアルキルアンモニウム塩、フッ素系・カチオン性界面活性剤、サーフロンS-221、AGCセイミケミカル社製)の濃度が0.0105%、撥水剤(フッ素系・カチオン性撥水剤、AG-E310、AGC社製、ゼータ電位:30.8mV)の濃度が0.0035%)となるようにポリビニルアルコール水溶液を準備し、支持体として目付が51g/mであり、圧力損失が67Paのガラス繊維(平均繊維径0.65μmの極細ガラス繊維22部と、平均繊維径2.4μmの極細ガラス繊維63部と、平均繊維径6μmのチョップドガラス繊維15部から成る)からなる不織布(以降、「支持体」という)にポリビニルアルコール水溶液を2流体ノズルスプレー噴霧にて表1に示した量を付着させ、熱風乾燥機にて190℃にて乾燥し、エアフィルタ用濾材を得た。支持体に対するポリビニルアルコール及び界面活性剤の合計付着量は0.43%であった。
(実施例2)
 撥水剤の濃度が0.0105%となるようにポリビニルアルコール水溶液を変更し、ポリビニルアルコールの水溶液の付着量を表1に示した量に変更した以外は、実施例1と同様にしてエアフィルタ用濾材を得た。支持体に対するポリビニルアルコール及び界面活性剤の合計付着量は0.45%であった。
(実施例3)
 撥水剤の濃度が0.0140%となるようにポリビニルアルコール水溶液を変更し、ポリビニルアルコールの水溶液の付着量を表1に示した量に変更した以外は、実施例1と同様にしてエアフィルタ用濾材を得た。支持体に対するポリビニルアルコール及び界面活性剤の合計付着量は0.47%であった。
(実施例4)
 撥水剤の濃度が0.0350%となるようにポリビニルアルコール水溶液を変更し、ポリビニルアルコールの水溶液の付着量を表1に示した量に変更した以外は、実施例1と同様にしてエアフィルタ用濾材を得た。支持体に対するポリビニルアルコール及び界面活性剤の合計付着量は0.55%であった。
(実施例5)
 界面活性剤の濃度が0.0070%、撥水剤の濃度が0.0070%となるようにポリビニルアルコール水溶液を変更し、ポリビニルアルコールの水溶液の付着量を表2に示した量に変更した以外は、実施例1と同様にしてエアフィルタ用濾材を得た。支持体に対するポリビニルアルコール及び界面活性剤の合計付着量は0.43%であった。
(実施例6)
 界面活性剤の濃度が0.0070%、撥水剤の濃度が0.0140%)となるようにポリビニルアルコール水溶液を変更し、ポリビニルアルコールの水溶液の付着量を表2に示した量に変更した以外は、実施例1と同様にしてエアフィルタ用濾材を得た。支持体に対するポリビニルアルコール及び界面活性剤の合計付着量は0.44%であった。
(実施例7)
 界面活性剤の濃度が0.0070%、撥水剤の濃度が0.0350%)となるようにポリビニルアルコール水溶液を変更し、ポリビニルアルコールの水溶液の付着量を表2に示した量に変更した以外は、実施例1と同様にしてエアフィルタ用濾材を得た。支持体に対するポリビニルアルコール及び界面活性剤の合計付着量は0.57%であった。
(実施例8)
 界面活性剤をアルキルトリメチルアンモニウムクロライド、カチオン性界面活性剤、カチオゲンTML、第一工業製薬社製に変更し、界面活性剤の濃度が0.0070%、撥水剤の濃度が0.0070%)となるようにポリビニルアルコール水溶液を変更し、ポリビニルアルコールの水溶液の付着量を表2に示した量に変更した以外は、実施例1と同様にしてエアフィルタ用濾材を得た。支持体に対するポリビニルアルコール及び界面活性剤の合計付着量は0.43%であった。
(実施例9)
 界面活性剤をアルキルトリメチルアンモニウムクロライド、カチオン性界面活性剤、カチオゲンTML、第一工業製薬社製に変更し、界面活性剤の濃度が0.0070%、撥水剤の濃度が0.0140%)となるようにポリビニルアルコール水溶液を変更し、ポリビニルアルコールの水溶液の付着量を表2に示した量に変更した以外は、実施例1と同様にしてエアフィルタ用濾材を得た。支持体に対するポリビニルアルコール及び界面活性剤の合計付着量は0.46%であった。
(実施例10)
 界面活性剤をアルキルトリメチルアンモニウムクロライド、カチオン性界面活性剤、カチオゲンTML、第一工業製薬社製に変更し、界面活性剤の濃度が0.0070%、撥水剤の濃度が0.0350%)となるようにポリビニルアルコール水溶液を変更し、ポリビニルアルコールの水溶液の付着量を表2に示した量に変更した以外は、実施例1と同様にしてエアフィルタ用濾材を得た。支持体に対するポリビニルアルコール及び界面活性剤の合計付着量は0.55%であった。
(比較例1)
 実施例1のガラス繊維からなる「支持体」をそのままエアフィルタ濾材とした。
(比較例2)
 ポリビニルアルコール(鹸化度88mol%、重合度3500、PVA95-88、クラレ社製)の濃度が0.07%、界面活性剤の濃度が0%、撥水剤の濃度が0%となるようにポリビニルアルコール水溶液を変更し、ポリビニルアルコールの水溶液の付着量を表1に示した量に変更した以外は、実施例1と同様にしてエアフィルタ用濾材を得た。支持体に対するポリビニルアルコール及び界面活性剤の合計付着量は0.39%であった。
(比較例3)
 界面活性剤の濃度が0%、撥水剤の濃度が0.0070%となるようにポリビニルアルコール水溶液を変更し、ポリビニルアルコールの水溶液の付着量を表3に示した量に変更した以外は、実施例1と同様にしてエアフィルタ用濾材を得た。支持体に対するポリビニルアルコール及び界面活性剤の合計付着量は0.38%であった。
(比較例4)
 界面活性剤の濃度が0%、撥水剤の濃度が0.0140%となるようにポリビニルアルコール水溶液を変更し、ポリビニルアルコールの水溶液の付着量を表3に示した量に変更した以外は、実施例1と同様にしてエアフィルタ用濾材を得た。支持体に対するポリビニルアルコール及び界面活性剤の合計付着量は0.40%であった。
(比較例5)
 界面活性剤の濃度が0%、撥水剤の濃度が0.0350%となるようにポリビニルアルコール水溶液を変更し、ポリビニルアルコールの水溶液の付着量を表3に示した量に変更した以外は、実施例1と同様にしてエアフィルタ用濾材を得た。支持体に対するポリビニルアルコール及び界面活性剤の合計付着量は0.53%であった。
(比較例6)
 界面活性剤の濃度が0%、撥水剤の濃度が0.0420%となるようにポリビニルアルコール水溶液を変更し、ポリビニルアルコールの水溶液の付着量を表3に示した量に変更した以外は、実施例1と同様にしてエアフィルタ用濾材を得た。支持体に対するポリビニルアルコール及び界面活性剤の合計付着量は0.57%であった。
(比較例7)
 界面活性剤の濃度が0%、撥水剤の濃度が0.0490%となるようにポリビニルアルコール水溶液を変更し、ポリビニルアルコールの水溶液の付着量を表3に示した量に変更した以外は、実施例1と同様にしてエアフィルタ用濾材を得た。支持体に対するポリビニルアルコール及び界面活性剤の合計付着量は0.62%であった。
(比較例8)
 界面活性剤の濃度が0%、撥水剤を非フッ素系・カチオン性炭化水素系ポリマー系撥水剤、メイシールドP-350K、明成化学工業社製、ゼータ電位:37.8mVに変更し、撥水剤の濃度が0.0007%となるようにポリビニルアルコール水溶液を変更し、ポリビニルアルコールの水溶液の付着量を表3に示した量に変更した以外は、実施例1と同様にしてエアフィルタ用濾材を得た。支持体に対するポリビニルアルコール及び界面活性剤の合計付着量は0.33%であった。
(比較例9)
 界面活性剤の濃度が0%、撥水剤を非フッ素系・カチオン性炭化水素系ポリマー系撥水剤、メイシールドP-350K、明成化学工業社製、ゼータ電位:37.8mVに変更し、撥水剤の濃度が0.0070%となるようにポリビニルアルコール水溶液を変更し、ポリビニルアルコールの水溶液の付着量を表3に示した量に変更した以外は、実施例1と同様にしてエアフィルタ用濾材を得た。支持体に対するポリビニルアルコール及び界面活性剤の合計付着量は0.41%であった。
(比較例10)
 界面活性剤の濃度が0%、撥水剤を非フッ素系・カチオン性炭化水素系ポリマー系撥水剤、メイシールドZ-1、明成化学工業社製、ゼータ電位:13.7mVに変更し、撥水剤の濃度が0.0007%となるようにポリビニルアルコール水溶液を変更し、ポリビニルアルコールの水溶液の付着量を表3に示した量に変更した以外は、実施例1と同様にしてエアフィルタ用濾材を得た。支持体に対するポリビニルアルコール及び界面活性剤の合計付着量は0.34%であった。
(比較例11)
 界面活性剤の濃度が0%、撥水剤を非フッ素系・カチオン性炭化水素系ポリマー系撥水剤、メイシールドZ-1、明成化学工業社製、ゼータ電位:13.7mVに変更し、撥水剤の濃度が0.0070%となるようにポリビニルアルコール水溶液を変更し、ポリビニルアルコールの水溶液の付着量を表3に示した量に変更した以外は、実施例1と同様にしてエアフィルタ用濾材を得た。支持体に対するポリビニルアルコール及び界面活性剤の合計付着量は0.36%であった。
(比較例12)
 ポリビニルアルコールの水溶液に、更にアクリル系樹脂(商品名:ウルトラゾールFB-19/アイカ工業株式会社製)を水溶液中の濃度が0.0007%となるように添加し、アクリル系樹脂を含むポリビニルアルコールの水溶液の付着量を表4に示した量に変更した以外は実施例1と同様にしてエアフィルタ用濾材を得た。支持体に対するポリビニルアルコールとアクリル系樹脂の合計付着量は0.42%であった。
(比較例13)
 乾燥温度を120℃へ変更し、ポリビニルアルコールの水溶液の付着量を表4に示した量に変更した以外は実施例1と同様にエアフィルタ用濾材を得た。支持体に対するポリビニルアルコールの付着量は0.42%であった。
(比較例14)
 界面活性剤をパーフルオロアルキル化合物、フッ素系・両性界面活性剤、サーフロンS-232、AGCセイミケミカル社製に変更し、界面活性剤の濃度が0.0105%、となるようにポリビニルアルコール水溶液を変更し、ポリビニルアルコールの水溶液の付着量を表4に示した量に変更した以外は、実施例1と同様にしてエアフィルタ用濾材を得た。支持体に対するポリビニルアルコール及び界面活性剤の合計付着量は0.43%であった。
(比較例15)
 界面活性剤をポリオキシエチレントリデシルエーテル硫酸エステルナトリウム塩、アニオン性界面活性剤、ハイテノール330T、第一工業製薬社製に変更し、界面活性剤の濃度が0.0105%、となるようにポリビニルアルコール水溶液を変更し、ポリビニルアルコールの水溶液の付着量を表4に示した量に変更した以外は、実施例1と同様にしてエアフィルタ用濾材を得た。支持体に対するポリビニルアルコール及び界面活性剤の合計付着量は0.42%であった。
 各実施例及び比較例で得られたエアフィルタ用濾材の作製条件と物性値を表1~表4に示す。尚、各物性値は次に示す方法で測定した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
「PF値」
 PF値は、圧力損失及び粒子透過率の測定値から、数1に示す式を用いて計算した。なお、対象粒子径は、0.10~0.15μmとした。PF値が高いほど、対象粒子の粒子透過率が低くかつ低圧力損失のエアフィルタであることを示す。
Figure JPOXMLDOC01-appb-M000006
「ネットワークの観察」
 ネットワークの観察は、エアフィルタ用濾材を走査型電子顕微鏡(SEMと略す、日立ハイテクノロジー社製、SU8010)を用いて倍率5千~1万倍で観察して行った。観察前に、イオンスパッター(E-1045、日立ハイテクノロジー社製)を用いて、放電電流15mA、試料-ターゲット間距離30mm、真空度6Pa、コーティング時間2分の条件で導電性コーティングを行った。
「ガーレー剛度測定方法」
 JAPAN TAPPI紙パルプ試験方法No.40:2000紙及び板紙―荷重曲げによるこわさ試験方法―ガーレー法に準じて測定した。使用機器はガーレーステフネステスター(熊谷理機工業株式会社製)とした。
「引張強度測定方法」
 JIS P8113:2006紙及び板紙―引張特性の試験方法に準じて測定した。使用機器はオートグラフAGX(株式会社島津製作所製)とした。
 実施例1~実施例10及び比較例2~比較例11において、ポリビニルアルコールのナノファイバーが形成されて、流体透過経路となる孔にポリビニルアルコールの網目状のネットワークを有することが確認できた。また、ナノファイバーの数平均繊維径は、おおよそ40nmであった。なお、比較例2~比較例11では、ポリビニルアルコールの網目状のネットワークの形成量は少なかった。
 図1に実施例8のエアフィルタのSEM観察画像を示した。図1によれば、190℃の高温により鹸化度88mol%のポリビニルアルコールを高速乾燥させることで、綺麗なナノファイバーネットワークを有し、好適なPF値を得ることができた。図2に実施例9のエアフィルタのSEM観察画像を示した。図2によれば、190℃の高温により鹸化度88mol%のポリビニルアルコールを高速乾燥させることで、綺麗なナノファイバーネットワークを有し、好適なPF値を得ることができた。
 実施例1~10は全て比較例1の支持体と比べ、高いPF値を示していることが分かる。本実施形態に係るエアフィルタ用濾材では、例えば、0.10-0.15μmのPF値は、11.0以上が得られる。本実施例においては0.10-0.15μmのPF値は11.3以上が得られた。
 比較例12では、ポリビニルアルコールの水溶液に、更にバインダー樹脂としてアクリル系樹脂を僅かの量(PVAに対してアクリル系樹脂を1%添加)を添加したため、ポリビニルアルコールの網目状のネットワークが形成されず、PF値は比較例1のPF値とほぼ同様であり、向上しなかった。
 比較例13では乾燥温度が140℃未満のため、乾燥量が足りず、綺麗な網目状のネットワークが形成せず、PF値も上昇しなかった。
 比較例3~比較例7では、比較例2と比べて撥水性は得られるものの、PF値が低かった。すなわち、ポリビニルアルコールの水溶液に界面活性剤を配合せずに撥水剤を配合した例が、ポリビニルアルコールの水溶液にカチオン性界面活性剤及び撥水剤の両方を配合しない例と比較してPF値が下がる。図3に比較例4のエアフィルタをSEMにより観察した画像を示した。カチオン性界面活性剤が添加されていないため、ポリビニルアルコールの網目状のネットワークが形成されていない。一方、ポリビニルアルコールの水溶液にカチオン性界面活性剤及び撥水剤の両方を配合した実施例1~10では、撥水性が得られると共に高いPF値も得られている。この現象の理由は定かではないが、ポリビニルアルコール、カチオン性界面活性剤及び撥水剤を水溶液に配合する実施例は、撥水性が得られ、高PF値が得られる点において、有用であることが示された。
 比較例8~比較例11もポリビニルアルコールの水溶液に界面活性剤を配合せずに撥水剤を配合した例である。図4に比較例9のエアフィルタをSEMにより観察した画像を示した。カチオン性界面活性剤が添加されていないため、ポリビニルアルコールの網目状のネットワークが形成されていない。PF値は比較例3~7と同様の値しか得られず、比較例2よりはPF値が低い。また、非フッ素系撥水剤をポリビニルアルコールの水溶液に配合しているにもかかわらず、撥水性が得られていない。比較例8~比較例11と実施例1~10との比較によっても、実施例は、撥水性が得られ、高PF値が得られる点において、有用であることが示された。比較例8及び比較例10は、撥水性が発現していない。比較例8に対して撥水剤を増添した比較例9と、比較例10に対して撥水剤を増添した比較例11は、いずれも、撥水剤を増添したにもかかわらず、撥水性が発現していない。
 比較例14では、ポリビニルアルコール水溶液にフッ素系・両性界面活性剤が添加されているが、PF値は比較例1のPF値とほぼ同等であり、界面活性剤を添加していない比較例2のPF値よりも低いPF値しか得られていない。このことから、フッ素系・両性界面活性剤ではなく、カチオン性界面活性剤を添加した方が、高PF値を得るために有用であることがわかった。
 比較例15では、ポリビニルアルコール水溶液にカチオン性界面活性剤の代わりにアニオン性界面活性剤が添加されているが、PF値は比較例1のPF値より低く、界面活性剤を添加していない比較例2のPF値よりもかなり低い。このことから、アニオン性界面活性剤ではなく、カチオン性界面活性剤を添加した方が、高PF値を得るために有用であることがわかった。図5に比較例15のエアフィルタをSEMにより観察した画像を示した。アニオン性界面活性剤が添加されているが、ポリビニルアルコールの網目状のネットワークが形成されていない。
 通常、フィルタの剛度や引っ張り強度を高める方法としては、バインダー樹脂を添加することによるが、これはPF値の低下を招く。したがって、通常は剛度とPF値とはトレードオフの関係であった。本発明によれば表1~表2に示されるようにPF値を大きく低下させることなく剛度や引張強度を向上させることができる。例えば、比較例1に対して実施例1~10はガーレー剛度が1mN以上向上しており、引張強度が0.2kN/m以上向上している。比較例1に対して剛度や引っ張り強度が向上すると、プリーツ加工後の通風時にフィルタに変形が生じて構造圧損が大きくなることを抑制できる。例えば、使用しているとフィルタが経時でへたってきて変形を起こすことを防止できる。
 以上の結果から、本実施形態に係るエアフィルタ用濾材の製造方法は、ポリビニルアルコール、カチオン性界面活性剤及び撥水剤を用い、フィルタ性能、特に粒子捕集性能を向上させ、また撥水性が良好なエアフィルタ用濾材を比較的短時間で製造する方法を提供できることがわかる。

Claims (10)

  1.  流体透過性を有する支持体に、ポリビニルアルコール水溶液を付着させ、前記支持体を湿潤状態とする付着工程と、
     湿潤状態の前記支持体に付着している前記ポリビニルアルコール水溶液を140℃以上で乾燥させる乾燥工程と、を有し、
     前記ポリビニルアルコール水溶液は、カチオン性界面活性剤及び撥水剤を含有し、かつ、ポリビニルアルコール以外のバインダー樹脂を含有しておらず、
     前記乾燥工程を経た前記支持体は、前記ポリビニルアルコール水溶液が乾燥させられることによって、流体透過経路となる孔にポリビニルアルコールの網目状のネットワークを有することを特徴とするエアフィルタ用濾材の製造方法。
  2.  前記網目状のネットワークは、ナノファイバーからなることを特徴する請求項1に記載のエアフィルタ用濾材の製造方法。
  3.  前記ナノファイバーは、数平均繊維径が10~500nmのナノファイバーであることを特徴する請求項2に記載のエアフィルタ用濾材の製造方法。
  4.  前記支持体に付着させる前記ポリビニルアルコール水溶液の量は、支持体1mあたり50g以上であることを特徴とする請求項1~3のいずれか一つに記載のエアフィルタ用濾材の製造方法。
  5.  前記乾燥工程において、湿潤状態の前記支持体に付着している前記ポリビニルアルコール水溶液の溶媒の蒸発速度が支持体1mあたり100g/分以上であること特徴とする請求項1~4のいずれか一つに記載のエアフィルタ用濾材の製造方法。
  6.  前記ポリビニルアルコール水溶液中の前記カチオン性界面活性剤は、ポリビニルアルコール100質量部に対して1~30質量部添加されていることを特徴とする請求項1~5のいずれか一つに記載のエアフィルタ用濾材の製造方法。
  7.  前記ポリビニルアルコール水溶液中の前記撥水剤は、ポリビニルアルコール100質量部に対して5~50質量部添加されていることを特徴とする請求項1~6のいずれか一つに記載のエアフィルタ用濾材の製造方法。
  8.  前記乾燥工程を経た前記支持体に対するポリビニルアルコール、カチオン性界面活性剤及び撥水剤の合計付着量が0.05~1.50質量%であることを特徴とする請求項1~7のいずれか一つに記載のエアフィルタ用濾材の製造方法。
  9.  前記支持体が、ガラス繊維を主成分とする濾材用不織布であることを特徴とする請求項1~8のいずれか一つに記載のエアフィルタ用濾材の製造方法。
  10.  流体透過性を有する支持体と、
     該支持体の流体透過経路となる孔に形成されているポリビニルアルコールの網目状のネットワークと、を有し、
     前記網目状のネットワークは、ナノファイバーからなり、
     前記ポリビニルアルコールの重合度は1500~6000であり、
     前記ポリビニルアルコールのケン化度は60~90mol%であり、
     前記支持体に対するポリビニルアルコールの付着量が0.05~1.00質量%であり、かつ、
     カチオン性界面活性剤及び撥水剤を含有し、
     前記ポリビニルアルコール以外のバインダー樹脂を含有していないことを特徴とするエアフィルタ用濾材。

     
PCT/JP2022/012608 2022-03-18 2022-03-18 エアフィルタ用濾材及びその製造方法 WO2023175894A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280093228.2A CN118829479A (zh) 2022-03-18 2022-03-18 空气过滤器用过滤材料及其制造方法
KR1020247029767A KR20240147687A (ko) 2022-03-18 2022-03-18 에어 필터용 여과재 및 그 제조 방법
PCT/JP2022/012608 WO2023175894A1 (ja) 2022-03-18 2022-03-18 エアフィルタ用濾材及びその製造方法
JP2024507397A JPWO2023175894A1 (ja) 2022-03-18 2022-03-18

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/012608 WO2023175894A1 (ja) 2022-03-18 2022-03-18 エアフィルタ用濾材及びその製造方法

Publications (1)

Publication Number Publication Date
WO2023175894A1 true WO2023175894A1 (ja) 2023-09-21

Family

ID=88022955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012608 WO2023175894A1 (ja) 2022-03-18 2022-03-18 エアフィルタ用濾材及びその製造方法

Country Status (4)

Country Link
JP (1) JPWO2023175894A1 (ja)
KR (1) KR20240147687A (ja)
CN (1) CN118829479A (ja)
WO (1) WO2023175894A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008194584A (ja) 2007-02-09 2008-08-28 Hokuetsu Paper Mills Ltd エアフィルタ用濾材及びその製造方法
JP2010094580A (ja) * 2008-10-14 2010-04-30 Hokuetsu Kishu Paper Co Ltd エアフィルタ用濾材及びその製造方法
JP2017042762A (ja) * 2016-11-24 2017-03-02 北越紀州製紙株式会社 エアフィルタ用濾材及びその製造方法
WO2018221063A1 (ja) 2017-05-31 2018-12-06 日本バイリーン株式会社 不織布フィルター

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008194584A (ja) 2007-02-09 2008-08-28 Hokuetsu Paper Mills Ltd エアフィルタ用濾材及びその製造方法
JP2010094580A (ja) * 2008-10-14 2010-04-30 Hokuetsu Kishu Paper Co Ltd エアフィルタ用濾材及びその製造方法
JP2017042762A (ja) * 2016-11-24 2017-03-02 北越紀州製紙株式会社 エアフィルタ用濾材及びその製造方法
WO2018221063A1 (ja) 2017-05-31 2018-12-06 日本バイリーン株式会社 不織布フィルター

Also Published As

Publication number Publication date
JPWO2023175894A1 (ja) 2023-09-21
KR20240147687A (ko) 2024-10-08
CN118829479A (zh) 2024-10-22

Similar Documents

Publication Publication Date Title
JP5319380B2 (ja) 低坪量エアフィルタ用濾材
JP6212619B2 (ja) エアフィルタ用濾材及びそれを備えるエアフィルタ
JP6592518B2 (ja) エアフィルタ用濾材の製造方法
JP6721919B2 (ja) エアフィルタ用濾材
JP6951482B2 (ja) エアフィルタ用濾材及びその製造方法、並びにエアフィルタ
KR20140123954A (ko) 다공질체 및 그의 제조 방법
JP6691497B2 (ja) エアフィルタ用濾材の製造方法及びエアフィルタの製造方法
JP2018521847A (ja) セルロースフィラメントを含む濾過媒体
KR20200052687A (ko) 초발수, 초발유 기능이 부여된 여과체 및 이의 제조장치
JP6527800B2 (ja) フィルタ用濾紙及びその製造方法
JP7508704B2 (ja) エアフィルタ用濾材及びその製造方法
JP6087207B2 (ja) エアフィルタ用濾材及びその製造方法
WO2023175894A1 (ja) エアフィルタ用濾材及びその製造方法
JP2024029019A (ja) エアフィルタ用濾材の製造方法及びエアフィルタの製造方法
JP6270971B2 (ja) エアフィルタ用濾材及びその製造方法
CN117241869A (zh) 空气过滤器用过滤材料及其制造方法
JP5797175B2 (ja) エアフィルタ用濾材
JP7349414B2 (ja) エアフィルタ用濾材及びその製造方法
JP2019115873A (ja) エアフィルタ用濾材の製造方法
KR20200098031A (ko) 에어 필터 및 그 제조 방법
JP7453375B2 (ja) エアフィルタ用濾材及びその製造方法
WO2023037440A1 (ja) エアフィルタ用濾材
CN118139682A (zh) 高性能空气过滤器用过滤材料及其制造方法
JP2015085250A (ja) エアフィルタ用濾材及びその製造方法
JP2019051481A (ja) エアフィルタ用濾材及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22932167

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024507397

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20247029767

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247029767

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022932167

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022932167

Country of ref document: EP

Effective date: 20241018