Nothing Special   »   [go: up one dir, main page]

WO2018221063A1 - 不織布フィルター - Google Patents

不織布フィルター Download PDF

Info

Publication number
WO2018221063A1
WO2018221063A1 PCT/JP2018/016211 JP2018016211W WO2018221063A1 WO 2018221063 A1 WO2018221063 A1 WO 2018221063A1 JP 2018016211 W JP2018016211 W JP 2018016211W WO 2018221063 A1 WO2018221063 A1 WO 2018221063A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
resin
microfibers
fibers
fabric filter
Prior art date
Application number
PCT/JP2018/016211
Other languages
English (en)
French (fr)
Inventor
崇 西谷
直樹 柳岡
Original Assignee
日本バイリーン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本バイリーン株式会社 filed Critical 日本バイリーン株式会社
Priority to JP2019522020A priority Critical patent/JP7077515B2/ja
Publication of WO2018221063A1 publication Critical patent/WO2018221063A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/48Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation
    • D04H1/485Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation in combination with weld-bonding
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/498Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres entanglement of layered webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/559Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving the fibres being within layered webs

Definitions

  • the present invention relates to a nonwoven fabric filter suitable for mounting on an air conditioner provided in a vehicle or a living environment, and particularly to a technique capable of maintaining a low pressure loss over a long period of time.
  • Nonwoven fabric filters with a large area and low pressure loss are known.
  • it is mesh
  • a non-woven member (B) composed of a plurality of bulges bulged in the opposite direction to the basal base, the mesh having an average pore diameter of 1 mm to 30 mm,
  • a nonwoven fabric filter composed of a composite fiber sheet having an average diameter of 0.01 mm to 10 mm is disclosed.
  • the non-woven fabric filter described in Patent Document 1 has a structure that collects dust at a bulging portion provided from one surface of the striate body toward the other surface to ensure a dust holding amount. .
  • a nonwoven fabric filter collects dust at a high density on the upstream surface as the collection proceeds, so that the pressure loss increases quickly and the time to reach a certain pressure loss is practical. Above, there was still a problem that it was short. Furthermore, when the pressure loss increases, there is a problem that the filter medium is compressed by the wind pressure and breaks through in a very short time.
  • an object of the present invention is to provide a non-woven fabric filter that is highly resistant to deformation in the thickness direction even when wind pressure is applied and suppresses an increase in pressure loss and increases dust retention, and has high shape maintainability. To do.
  • the present invention provides the following.
  • (1) 1st aspect of this invention is a nonwoven fabric filter provided with the microfiber which has a fiber diameter smaller than the average fiber diameter of a nonwoven fabric base-material constituent fiber in the thickness direction of a nonwoven fabric base material, Comprising: The said microfiber Is oriented with a depth of 10% or more and 100% or less with respect to the apparent thickness of the non-woven fabric substrate, and is formed by the fine fibers or a combination of the fine fibers and the non-woven fabric substrate constituting fibers. It is characterized by forming.
  • the “apparent thickness” referred to in the present invention refers to a dimension measured in a state where no external force is applied to the nonwoven fabric filter.
  • a second aspect of the present invention is the nonwoven fabric filter according to (1), wherein in a filtration performance test by a mass method using ASHRAE dust defined in ASHRAE 52.1-1992, the wind speed is 0.30 m.
  • the average mass method efficiency is 80% or more and 99% or less at the time of / sec, and the dust holding amount when the pressure loss rises to 100 Pa is 10.0 g / m 2 or more. To do.
  • a third aspect of the present invention is the nonwoven fabric filter according to (1) or (2), wherein the microfiber is a polyacrylonitrile resin, a polyethersulfone resin, a polyolefin resin, a polyester resin, or polyvinyl alcohol. It is formed by either resin or cellulose.
  • a fourth aspect of the present invention is the nonwoven fabric filter according to any one of (1) to (3), wherein the nonwoven fabric base-constituting fibers are made of a polyester resin and a modified polyester resin. It is characterized by comprising a composite fiber.
  • the nonwoven fabric filter of the present invention has a nonwoven fabric substrate and microfibers, and the microfibers are oriented with a depth of 10% or more and 100% or less with respect to the apparent thickness of the nonwoven fabric substrate, A mesh portion is formed by a combination of fine fibers and non-woven fabric base constituent fibers.
  • the presence of the net-like portion oriented mainly in the thickness direction of the non-woven fabric base material serving as a base enables filtration utilizing the thickness, and clogging is less likely to occur.
  • the nonwoven fabric filter of the present invention suppresses an increase in pressure loss, increases the amount of dust, and is not easily crushed in the thickness direction even when wind pressure is applied, and has high shape maintainability.
  • FIG. 10 is an electron micrograph of a cross-section of a non-woven filter produced by a technique different from the microfiber formation technique shown in FIG. It is the electron micrograph which expanded the microfiber about Drawing 10A.
  • the nonwoven fabric filter of the present invention is a nonwoven fabric filter comprising fine fibers having a fiber diameter smaller than the average fiber diameter of the nonwoven fabric substrate constituting fibers in the thickness direction of the nonwoven fabric substrate, It is oriented with a depth of 10% or more and 100% or less with respect to the apparent thickness, and the mesh portion is formed by microfibers or a combination of microfibers and nonwoven fabric constituting fibers.
  • the filtration performance was evaluated by the mass method using ASHRAE dust according to the test method specified in ASHRAE 52.1-1992.
  • the average mass method efficiency was It is preferably 80% or more and 99% or less, and the dust holding amount at the time when the pressure loss rises to 100 Pa is preferably 10.0 g / m 2 or more.
  • the average mass method efficiency is 85% or more and 99% or less, the dust retention amount is more preferably 40.0 g / m 2 or more, and the average mass method efficiency is 90%. More preferably, the amount of dust is 99% or less, and the dust holding amount is 60.0 g / m 2 or more. Examples of suitable forms of each configuration are as follows.
  • the nonwoven fabric filter of the present invention has a nonwoven fabric substrate that retains the form of the nonwoven fabric filter and can support fine fibers.
  • the average fiber diameter of the nonwoven fabric base material constituting fiber is not particularly limited, but is preferably 7 ⁇ m or more, more preferably 10 ⁇ m or more, and further preferably 15 ⁇ m or more so as to be excellent in the above action. preferable.
  • the average fiber diameter is 15 ⁇ m or more, an increase in pressure loss is suppressed, the amount of dust retained is increased, and even if wind pressure is applied, the shape is not easily crushed and has high shape maintainability.
  • the upper limit of the average fiber diameter of a nonwoven fabric base constituent fiber is not specifically limited, It is preferable that it is 100 micrometers or less so that filtration efficiency may be excellent.
  • the “fiber diameter” in the present invention is a value obtained when a fiber existing on the surface of the substrate or inside the substrate is photographed and observed using a scanning electron microscope (SEM: Scanning Electron Microscope; hereinafter referred to as SEM) and visually read. Means fiber diameter.
  • SEM Scanning Electron Microscope
  • Nonwoven fabric base fibers include polyolefin resins (polyethylene, polypropylene, polymethylpentene, polyolefins having a structure in which a part of hydrocarbon is substituted with a cyano group or a halogen such as fluorine or chlorine), styrene resin, polyether resin (polyethylene).
  • polyolefin resins polyethylene, polypropylene, polymethylpentene, polyolefins having a structure in which a part of hydrocarbon is substituted with a cyano group or a halogen such as fluorine or chlorine
  • styrene resin polyether resin (polyethylene).
  • the organic polymer that becomes the nonwoven fabric base-constituting fiber either a linear polymer or a branched polymer may be used, and the organic polymer may be a block copolymer or a random copolymer. It does not matter whether the organic polymer has a three-dimensional structure or crystallinity.
  • the nonwoven fabric substrate constituting fiber one kind of resin component or a mixture of a plurality of resin components may be used. Also, it is possible to use a composite fiber in which a plurality of types of resin components are divided into different sections and combined non-uniformly.
  • the type of the composite fiber any of a core-sheath type, a sea-island type, a side-by-side type, and an orange type may be used. If so, durability can be imparted because the adhesive strength is high when the nonwoven fabric substrate is produced and when the nonwoven fabric filter is used, which is most preferable.
  • thermoplastic resin a thermoplastic resin
  • general-purpose regular fiber having a single component
  • latent crimpable property having a plurality of resins having different thermal shrinkage rates.
  • a composite fiber may be used.
  • nonwoven fabric base fiber is preferably composed of at least one kind of composite fiber made of a polyester resin and a modified polyester resin because the base material after heat bonding has high rigidity and is relatively inexpensive.
  • the basis weight of the nonwoven fabric base material is not particularly limited, but is preferably 50 g / m 2 or more and 450 g / m 2 or less so as to suppress an increase in pressure loss and increase the dust holding amount. It is more preferably 70 g / m 2 or more and 300 g / m 2 or less, and further preferably 100 g / m 2 or more and 200 g / m 2 or less. If the basis weight is lower than the lower limit of this preferable numerical range, the shape of the mesh portion becomes non-uniform, and it may be difficult to improve the dust holding amount. Moreover, when the said fabric weight is set higher than the said range, an early rise of pressure loss will be caused and the lifetime of a nonwoven fabric filter may become remarkably short.
  • the nonwoven fabric filter of the present invention is a nonwoven fabric filter comprising fine fibers having a fiber diameter smaller than the average fiber diameter of the nonwoven fabric substrate constituting fibers in the thickness direction of the nonwoven fabric substrate, Oriented with a depth of 10% or more and 100% or less with respect to the apparent thickness, and the net-like portion is formed by the microfiber or the combination of the microfiber and the non-woven fabric substrate constituent fiber.
  • This is a non-woven fabric filter with high shape-maintainability that prevents clogging, prevents pressure clogging, suppresses increase in pressure loss, increases dust retention, and does not collapse in the thickness direction even when wind pressure is applied. is there.
  • the “thickness maintaining ratio” when subjected to the above-mentioned filtration performance test is preferably 95% or more, more preferably 97% or more, and still more preferably 98% or more.
  • the above-mentioned “thickness direction” means a direction substantially perpendicular to the main surface of the nonwoven fabric filter.
  • the fine fibers may be present at any position on the nonwoven fabric substrate. For example, it can exist from at least one surface of the nonwoven fabric substrate to the inside, or can be present only within the nonwoven fabric substrate. In particular, if a form existing from at least one surface to the inside of the nonwoven fabric substrate is taken, a density gradient in which the upstream side becomes rough can be realized in the filter medium when the surface is used as the filtration downstream side. Furthermore, if the fiber diameter of the microfibers is smaller than the average fiber diameter of the nonwoven fabric base constituent fibers, dust that cannot be collected by the nonwoven fabric base material can be collected by the net-like portion.
  • the fiber diameter of the microfibers is not particularly limited as long as it is smaller than the average fiber diameter of the nonwoven fabric base constituent fibers. That is, when the average fiber diameter of the nonwoven fabric base constituent fiber is 7 ⁇ m or more, the fiber diameter of the microfiber is preferably 1 nm or more and less than 7 ⁇ m, and when the average fiber diameter of the nonwoven fabric base constituent fiber is 10 ⁇ m or more, The fiber diameter of the microfiber is preferably 1 nm or more and less than 10 ⁇ m. When the average fiber diameter of the nonwoven fabric base constituent fiber is 15 ⁇ m or more, the fiber diameter of the microfiber is preferably 1 nm or more and less than 15 ⁇ m, and preferably 1 nm or more.
  • the electron micrograph of FIG. 6 shows the fiber diameter of the microfiber.
  • Such microfibers are oriented with a depth of 10% or more and 100% or less with respect to the apparent thickness of the nonwoven fabric substrate, and form a net-like portion containing the microfibers, so that much dust is trapped. I can gather. The deeper the depth, the wider the range of the net-like portion containing the microfibers and the better the dust collecting ability. Therefore, the depth is 30% or more and 100% or less with respect to the apparent thickness of the nonwoven fabric substrate.
  • orientation with a depth more preferably with a depth of 40% or more and 100% or less, and even more preferably with a depth of 50% or more and 100% or less.
  • “orientation with a depth of 10% or more and 100% or less with respect to the apparent thickness” means 10% or more and 100% or less of the value of the thickness with respect to the apparent thickness of the substrate. The state where the “net-like part” has reached the depth.
  • This microfiber depth measurement method uses 10 electron micrographs of a non-woven fabric filter cross section, and in each photo, select 10 points that are equal in the plane direction of the non-woven fabric filter, and stretch the mesh portion in the thickness direction. Is measured with three significant figures on the photograph. The 10-point average is calculated 10 times, and the average is defined as “depth” (2 significant digits). “Depth” as used herein does not necessarily match the length of the microfiber, and is defined as the deepest distance of the fiber from the surface closer to the microfiber existing portion at the location selected as the observation site of the cross-sectional photograph. To do. For example, when different microfibers are continuously observed from one surface to the other surface in the base material, the deepest portion is defined as “depth”. In addition, with respect to the “apparent thickness” of the nonwoven fabric substrate, the nonwoven fabric substrate is averaged using the same method as the average thickness of the nonwoven fabric substrate extending in the thickness direction. The apparent thickness of the substrate (2 significant digits) was used.
  • the net part in the present invention may be a case where the net part is composed of fine fibers and non-woven fabric base constituent fibers. More specifically, as the form of the “net-like part”, (A) A state in which microfibers having branches are connected mainly in the thickness direction across the nonwoven fabric base constituent fibers as shown in FIGS. 10A and 10B described later, for example. (B) Microfibers having relatively few branches However, as shown in FIG. 9 to be described later, for example, a state (columnar shape) connected across the thickness direction of the nonwoven fabric substrate (C) The state in which the branched microfibers are connected in the form of pockets within the nonwoven fabric substrate as shown in FIG. It is possible to improve the shape maintaining property of the nonwoven fabric filter in any state.
  • the microfibers can be bonded and connected, or can be simply contacted and connected without bonding.
  • positioning position in the thickness direction of this mesh part may be any of the deeper positions than the surface part of the nonwoven fabric filter.
  • the density gradient can be provided in the nonwoven fabric filter by variously selecting the arrangement position in the thickness direction of the mesh portion.
  • the life of the filter can be improved by using this for the inflow surface.
  • the average hole diameter read with the photograph by SEM in the surface (filtration surface) used for the inflow surface of a nonwoven fabric filter is 5 micrometers or more, and it is preferable that it is 10 micrometers or more.
  • the “average hole diameter” as used herein refers to, for example, arbitrarily selecting 10 openings in an electron micrograph of the filtration surface taken at a predetermined magnification as shown in FIG. 1B, and configuring each opening.
  • the diameter of a perfect circle inscribed in the fibers to be treated is regarded as “open hole diameter”, and the average value at 10 locations is defined as “average open hole diameter”.
  • the perfect circle for reading the aperture diameter is to be read on a generally two-dimensional plane (front side in the electron micrograph), and the perfect circle for the aperture observed on the back side in the electron micrograph is from the object to be measured. Shall be excluded.
  • the constituent resin of the microfiber is not particularly limited, for example, polyvinylidene fluoride (PVDF) resin, polyvinylidene fluoride-hexafluoropropylene copolymer resin, polyacrylonitrile (PAN) resin, polyacrylonitrile-methacrylate copolymer Resin, polymethacrylic acid resin, polymethyl methacrylate resin, polyvinyl chloride resin, polyvinylidene chloride-acrylate copolymer resin, polycarbonate resin, polystyrene resin, polyethylene resin, polyethersulfone resin, polyolefin resin, polyester resin, polypropylene resin Nylon resin such as nylon 12, nylon-4, 6, etc., aramid resin, polyimide resin, polybenzimidazole resin, carbon nanotube, cellulose, cellulose acetate resin, acetic acid Rulose butyrate resin, polyvinylpyrrolidone-vinyl acetate resin, poly (bis- (2- (2-methoxy-eth
  • the pitch-based resin can be given.
  • the resin is composed of any one selected from a polyacrylonitrile resin, a polyethersulfone resin, a polyolefin resin, a polyester resin, a polyvinyl alcohol resin, and a cellulose having good fiber-forming properties.
  • the basis weight of the microfiber is not particularly limited, but is preferably 0.1 g / m 2 or more and 50 g / m 2 or less so as to suppress an increase in pressure loss and to increase the dust holding amount.
  • 0.2 g / more preferably m is 2 or more 40 g / m 2 or less, further preferably 1.0 g / m 2 or more 30 g / m 2 or less, 2.0 g / m 2 or more 15 g / m 2
  • any means may be adopted as long as it is a well-known manufacturing method capable of realizing a nonwoven fabric as a base of a mesh portion containing microfibers.
  • nonwoven fabric substrate production methods include dry spinning, wet spinning, direct spinning (melt blow, spunbond, flash span), wet, or dry (eg card, airlay) )
  • After forming the fiber web for example, a method in which the fibers constituting the fiber web are fused under pressure or no pressure, a method of bonding with a binder, a method of intertwining with a water stream or a needle, etc.
  • a known method such as the above can be used.
  • the method of bonding fibers together can form a relatively bulky nonwoven fabric substrate and form a fine fiber network within the nonwoven fabric substrate. It is suitable because it is easy to do.
  • nonwoven fabric substrate made of fibers having an average fiber diameter of 7 ⁇ m or more, more preferably a nonwoven fabric substrate made of fibers having an average fiber diameter of 10 ⁇ m or more, and an average fiber diameter of It is most preferable to prepare a nonwoven fabric substrate composed of fibers of 15 ⁇ m or more.
  • the non-woven fabric filter of the present invention is formed by orienting the net-like portion containing microfibers with respect to the non-woven fabric substrate with a depth of 10% or more and 100% or less with respect to the apparent thickness of the non-woven fabric substrate. be able to.
  • Examples of a method for forming a mesh-like portion containing microfibers include, for example, (a) a technique in which pulp-like microfibers are placed inside a substrate by a wet method and then fused and fixed (b) a solvent such as water or an organic solvent (C) A technique for discharging and spinning a synthetic resin dissolved in a base material by high-speed air and fixing it inside the base material (c) Dispersing fine fibers such as cellulose fibers having a nano-order fiber diameter in a solvent such as water, A technique of freeze-drying in a state in which at least a portion of the prepared nonwoven fabric base material is soaked (d) A resin material that is a raw material of microfibers is dissolved in a solvent, applied to at least a portion of the nonwoven fabric substrate, and freeze-dried Technology (e) A solution in which a resin material of microfibers is dissolved in a nonwoven fabric base material is applied, and an air flow is applied in the thickness direction of the base material to generate a
  • Technology Rukoto can. In selecting these technologies, by adopting a manufacturing method in which microfibers are easily oriented in the thickness direction of the base material, the shape maintenance property of the nonwoven fabric filter is increased, and the densification of the filter medium due to wind pressure is reduced.
  • a manufacturing technique capable of preventing the decrease can be employed.
  • the structure of the above-described microfibers is formed by a die used for melt spinning or flash spinning, which is disposed at a distance of 100 mm or less from one surface of the nonwoven fabric substrate. While spraying the resin, suction may be performed from the other surface of the nonwoven fabric substrate.
  • the constituent resin of the microfibers discharged from the base must be carried out in a state where the fluidity remains without solidifying until reaching the nonwoven fabric base constituent fibers, and the formation depth of the microfibers Therefore, the distance between the surface of the nonwoven fabric substrate and the die is more preferably 50 mm or less.
  • Example 6 90% by mass of a commercially available core-sheath composite fiber (fineness 2.2 dtex, fiber length 51 mm) made of a polyester resin and a modified polyester resin, and a commercially available core-sheath composite fiber (fineness of 6.
  • a non-woven fabric substrate (average fiber diameter of 15 ⁇ m) obtained by the same method as above using 6 dtex, fiber length 51 mm) and 10 mass% was used in Example 6.
  • Example 7 It consists of 50% by mass of a commercially available core-sheath type composite fiber (fineness 17.0 dtex, fiber length 51 mm) made of polyester resin and modified polyester resin, and 50% by mass of a commercially available polyester fiber (fineness 33 dtex, fiber length 76 mm).
  • a nonwoven fabric substrate (average fiber diameter of 54 ⁇ m) was prepared by the same method as described above and used in Example 7.
  • Comparative Example 2 As a base material other than the non-woven fabric, a commercially available polyester resin mesh disclosed in Patent Document 1 described above (a pore diameter of 3 mm and a wire diameter of 0.8 mm defined by the mesh) is prepared. Using.
  • a net-like portion containing microfibers that is, a net-like portion where fibers constituting the microfibers are bonded to each other is confirmed. it can.
  • Example 1D shown in FIG. 4 or FIG. 5 in which the main part of FIG. 5 is enlarged a number of substantially bag-like nets are formed as pocket-shaped components on one surface side of the nonwoven fabric filter.
  • FIG. 7 in the nonwoven fabric filter according to Comparative Example 1A it is understood that the mesh portion is hardly formed, and the microfibers formed by ejection are laminated and deposited on the surface of the nonwoven fabric substrate. it can.
  • the nonwoven fabric filter according to Comparative Example 2 the above-mentioned commercially available polyester resin mesh is used as a base material, and a net-like part containing microfibers in the thickness direction of the base material, that is, a microscopic part.
  • a net-like portion in which fibers are bonded to each other is not formed, and is formed so that a convex protrusion rises on the back side of the base material on which fine fibers are discharged and deposited.
  • the viscosity of the polymer solution for forming microfibers hereinafter abbreviated as “viscosity”) was lower than that in each Example, or because the absolute resin concentration was low, the droplets were coated on the substrate. It was not possible to form a net-like part.
  • the nonwoven fabric filter comprised only with the nonwoven fabric base material without having a microfiber was used for the comparative example 4 as a blank.
  • the main one is a thickness when a compression load of 20 g / cm 2 specified in JIS L 1096 is applied by a commercially available Maeda type compression elasticity measuring instrument, and a thickness without any load.
  • the ratio with (apparent thickness) was obtained as a percentage and recorded as the thickness retention rate.
  • Table 1 shows the configuration of the nonwoven fabric substrate described above, the discharge formation conditions and configuration of the mesh portion formed thereon, and the thickness maintenance ratio.
  • Example 1A the basis weight of the mesh portion is 5 g / m 2 , the depth of the mesh portion is 2.8 mm, the thickness maintenance rate is as high as 99.3%, and it is good without almost being crushed. Was in good condition.
  • Example 1D configured with the same basis weight as that of Example 1A has a thickness maintenance ratio of 97.0% even when the depth of the mesh part is relatively shallow, 0.8 mm. Like 1A, it was not crushed by the wind pressure and maintained a good state. As shown in FIG. 1B, such a small pressure loss means that a relatively large opening of 5 ⁇ m or more is formed and the pressure loss is low as seen from the filtration surface side.
  • Comparative Example 1B (mesh portion depth 0.26 mm) in which microfibers are provided only on the surface of the base material, the thickness of the mesh portion is small even if the basis weight of the microfibers is increased. The retention rate was as low as 93.5%. Furthermore, in Comparative Example 2 prepared by imitating the technique of Patent Document 1 described above, since there is no base material skeleton for maintaining the thickness of the entire microfiber, the thickness maintenance ratio is 37.5%, It was judged that good filtration performance could not be exhibited.
  • the initial pressure loss (Pa) was a value measured without supplying dust at the above wind speed.
  • Table 2 shows measurement results of average mass efficiency, initial pressure loss, and dust retention.
  • any of ⁇ , ⁇ , ⁇ is described according to the following criteria, and since Comparative Example 4 does not include microfibers, “-” is described in the evaluation column. is doing.
  • Double-circle Average mass method efficiency was 85% or more, and the dust holding amount was 40 g / m ⁇ 2 > or more.
  • A The average mass method efficiency was 80% or more, and the dust retention amount was 10 g / m 2 or more and less than 40 g / m 2 .
  • X The average mass method efficiency was less than 80%, or the dust retention amount was less than 10 g / m 2 .
  • the dust holding amount was extremely small.
  • Comparative Example 3 since the viscosity prepared as described above is low or the absolute resin concentration is low, the microfibers cannot be ejected, and as a result, there is no network part. Equally low value.
  • FIG. 9 shows a case in which a solution of polyvinyl alcohol resin using water as a solvent is applied to the surface of a nonwoven fabric substrate made of a core-sheath type composite fiber used in the above-described embodiment, and high-speed air is applied by a commercially available blower. It is the photograph which image
  • the nonwoven fabric filter shown as FIG. 10A and FIG. 10B is prepared by impregnating a commercially available nanocellulose fiber dispersion into the same nonwoven fabric substrate and then removing the water of the dispersion medium with a freeze vacuum dryer. .
  • a net-like net-like portion was confirmed in a region surrounded by a one-dot chain line. From this, it can be expected that the present structure improves a high thickness maintenance rate and collection performance, and the same excellent filtration performance can be exhibited by the above-described measurement test.
  • the form of the microfiber defined in the present invention can be obtained by arbitrarily selecting the viscosity of the solution in which the resin is dispersed and the technology for fiberizing, so that the columnar shape (see FIG. 9) and the mesh shape (see FIG. 1A, FIG. 1B, FIG. 1C, FIG. 2, FIG. 3, FIG. 10A, FIG. 10B, etc.) or a bag shape (see FIG. 5). Even if the thickness maintenance ratio is improved and the aperture diameter of the nonwoven fabric base material is increased, it is possible to collect fine dust by providing a net-like part, and to achieve excellent filtration performance. did it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filtering Materials (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

圧力損失の上昇を抑え、かつ、じん埃保持量を大きくすることにより、風圧が加わっても厚さ方向に潰れにくく形状維持性が高い不織布フィルターを提供する。不織布基材の厚さ方向に、不織布基材構成繊維の平均繊維径よりも小さい繊維径を有する微小繊維を備える不織布フィルターであって、微小繊維は、不織布基材の見掛けの厚さに対して10%以上100%以下の深さを以て配向し、微小繊維により、又は、微小繊維と不織布基材構成繊維の組み合わせにより、網状部が形成されてなる、不織布フィルターを提供する。

Description

不織布フィルター
 本発明は、車両又は住環境に備えられた空調装置への装着に適した不織布フィルターに関し、特に長期に亘って低い圧力損失を維持することが可能な技術に関する。
 従来から、長期使用を目的とした不織布フィルターとして、相対的に太い構成繊維と相対的に細い構成繊維とから構成された複合繊維を基材とし、斯かる基材をプリーツ形状に加工して濾材面積を大きくし、圧力損失を低くした不織布フィルターが知られている。また、特許文献1では、線条体で構成された平板状ネット部材(A)、及び線条体に対して融着した網目状基底部と、平板状ネット部材(A)の各網目において網目状基底部とは反対方向に膨出した複数の膨出部とで構成された不織布部材(B)を備え、網目状基底部の網目の平均孔径が1mm以上30mm以下であり、線条体の平均径が0.01mm以上10mm以下である複合繊維シート、から構成された不織布フィルターが開示されている。
特開2009-263811号公報
 特許文献1に記載の不織布フィルターは、線条体の一方の面から他方の面に向かって設けられた膨出部でじん埃を捕集し、じん埃保持量を確保する構造となっている。しかしながら、このような不織布フィルターは、捕集が進むにつれて上流側表面でじん埃が高密度に捕集されるため、圧力損失が早く高くなり、一定の圧力損失に到達するまでの時間が、実用上、未だ短いという問題があった。さらに、圧力損失が上昇することによって、濾材が風圧によって圧縮され、きわめて短い時間で破過してしまうという問題があった。
 そこで、本発明は、圧力損失の上昇を抑え、かつ、じん埃保持量を大きくすることにより、風圧が加わっても厚さ方向に潰れにくく形状維持性が高い不織布フィルターを提供することを目的とする。
 本発明の発明者らは、上記課題に鑑み、鋭意研究を行った。その結果、不織布基材に微小繊維を有する不織布フィルターにおいて、不織布基材に対する微小繊維の態様を調整することにより、上記課題を解決できることを見出し、本発明を完成するに至った。具体的には、本発明は、以下のものを提供する。
 (1)本発明の第1の態様は、不織布基材の厚さ方向に、不織布基材構成繊維の平均繊維径よりも小さい繊維径を有する微小繊維を備える不織布フィルターであって、前記微小繊維は、前記不織布基材の見掛けの厚さに対して10%以上100%以下の深さを以て配向し、前記微小繊維により、又は、前記微小繊維と前記不織布基材構成繊維の組み合わせにより、網状部を形成していることを特徴とするものである。
 なお、本発明に言う「見掛けの厚さ」とは、不織布フィルターに外力が加わらない状態で測定した寸法を言う。
 (2)本発明の第2の態様は、(1)に記載の不織布フィルターであって、ASHRAE52.1-1992に規定されるASHRAEダストを用いた質量法による濾過性能試験において、風速0.30m/秒のときに、平均質量法効率が80%以上99%以下であり、圧力損失が100Paにまで上昇した時点でのじん埃保持量が、10.0g/m以上であることを特徴とするものである。
 (3)本発明の第3の態様は、(1)又は(2)に記載の不織布フィルターであって、前記微小繊維が、ポリアクリロニトリル樹脂、ポリエーテルスルホン樹脂、ポリオレフィン樹脂、ポリエステル樹脂、ポリビニルアルコール樹脂、又はセルロースのいずれかにより形成されてなることを特徴とするものである。
 (4)本発明の第4の態様は、(1)から(3)のいずれかに記載の不織布フィルターであって、前記不織布基材構成繊維が、ポリエステル樹脂及び変性ポリエステル樹脂からなる少なくとも一種の複合繊維により構成されてなることを特徴とするものである。
 本発明の不織布フィルターは、不織布基材と微小繊維を有し、微小繊維は、不織布基材の見掛けの厚さに対して10%以上100%以下の深さを以て配向し、微小繊維により、又は、微小繊維と不織布基材構成繊維の組み合わせにより、網状部を形成している。このように、ベースとなる不織布基材の主として厚さ方向に配向した網状部が存在することで、厚さを活かした濾過が可能となり、目詰まりが起こりづらくなる。このため、本発明の不織布フィルターは、圧力損失の上昇が抑制され、じん埃保持量が大きくなり、風圧が加わっても厚さ方向に潰れにくく形状維持性が高い。
本発明の実施例1Aに係る不織布フィルターの概要断面を撮影した電子顕微鏡写真である。 本発明の実施例1Aに係る不織布フィルターの濾過面に相当する表面の電子顕微鏡写真である。 本発明の実施例1Aに係る不織布フィルターの断面を拡大した電子顕微鏡写真である。 本発明の実施例1Bに係る不織布フィルターの概要断面を図1Aと同様に示す電子顕微鏡写真である。 本発明の実施例1Cに係る不織布フィルターの概要断面を図1Aと同様に示す電子顕微鏡写真である。 本発明の実施例1Dに係る不織布フィルターの概要断面を図1Aと同様に示す電子顕微鏡写真である。 図4に示す不織布フィルターのうち、網状部のみに着目し、拡大撮影した電子顕微鏡写真である。 図4に示した不織布フィルターの網状部のみを更に拡大し、視野内の微小繊維の寸法を付した電子顕微鏡写真である。 比較例1Aに係る不織布フィルターを図1Aと同様に撮影した電子顕微鏡写真である。 比較例2に係る不織布フィルターを図1Aと同様に撮影した電子顕微鏡写真である。 他の微小繊維形成技術で作製した不織布フィルターの断面を撮影したものであって、不織布基材に実質的に単一の微小繊維が形成されている網状部の領域に着目した電子顕微鏡写真である。 図9に示す微小繊維形成技術とは異なる技術で作製した不織布フィルターの断面で、微小繊維が分岐を持つ網状部として形成された領域に着目した電子顕微鏡写真である。 図10Aについて、微小繊維を拡大した電子顕微鏡写真である。
 本発明の不織布フィルターは、不織布基材の厚さ方向に、不織布基材構成繊維の平均繊維径よりも小さい繊維径を有する微小繊維を備える不織布フィルターであって、微小繊維は、不織布基材の見掛けの厚さに対して10%以上100%以下の深さを以て配向し、微小繊維により、又は、微小繊維と不織布基材構成繊維の組み合わせにより、網状部を形成している。また、その濾過性能は、ASHRAE52.1-1992に規定される試験方法により、ASHRAEダストを用いた質量法で評価した際、試験条件が風速0.30m/秒のときに、平均質量法効率が80%以上99%以下であって、圧力損失が100Paにまで上昇した時点でのじん埃保持量が、10.0g/m以上であることが好ましい。また、上記の平均質量法効率が85%以上99%以下であって、上記のじん埃保持量が、40.0g/m以上であることがより好ましく、上記の平均質量法効率が90%以上99%以下であって、上記のじん埃保持量が、60.0g/m以上であることがより好ましい。各構成の好適な形態を例示すれば、以下のとおりである。
 [不織布基材]
 本発明の不織布フィルターは不織布フィルターの形態を保持し、微小繊維を担持できる不織布基材を有する。この不織布基材構成繊維の平均繊維径は特に限定するものではないが、上記作用に優れるように、7μm以上であることが好ましく、10μm以上であることがより好ましく、15μm以上であることが更に好ましい。特に、平均繊維径を15μm以上にすることで、圧力損失の上昇が抑えられ、じん埃保持量が大きくなり、風圧が加わっても厚さ方向に潰れにくく形状維持性が高い。なお、不織布基材構成繊維の平均繊維径の上限は特に限定するものではないが、濾過効率が優れるように、100μm以下であることが好ましい。本発明における「繊維径」は、基材表面または基材内部に存在する繊維を走査型電子顕微鏡(SEM:Scanning Electron Microscope;以下SEMと称する)を用いて撮影観察し、目視で読み取った際の繊維径を意味する。また、「平均繊維径」は無作為に抽出した30本の繊維を同様な方法で読み取った繊維径の数平均値を意味する。
 不織布基材構成繊維としては、ポリオレフィン樹脂(ポリエチレン、ポリプロピレン、ポリメチルペンテン、炭化水素の一部をシアノ基又はフッ素若しくは塩素といったハロゲンで置換した構造のポリオレフィン等)、スチレン樹脂、ポリエーテル樹脂(ポリエーテルエーテルケトン、ポリアセタール、フェノール、メラミン、ユリア、エポキシ、変性ポリフェニレンエーテル、芳香族ポリエーテルケトン等)、ポリエステル樹脂(ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリカーボネート、ポリアリレート、全芳香族ポリエステル、不飽和ポリエステル等)、変性ポリエステル樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリアミド樹脂(例えば、芳香族ポリアミド、芳香族ポリエーテルアミド、ナイロン等)、ニトリル基を有する樹脂(例えば、ポリアクリロニトリル等)、ウレタン樹脂、エポキシ樹脂、ポリスルホン樹脂(ポリスルホン、ポリエーテルスルホン等)、フッ素樹脂(ポリテトラフルオロエチレン、ポリフッ化ビニリデン等)、セルロース樹脂、ポリベンゾイミダゾール樹脂、アクリル樹脂(例えば、アクリル酸エステル若しくはメタクリル酸エステル等を共重合したポリアクリロニトリル、アクリロニトリルと塩化ビニル又は塩化ビニリデンを共重合したモダアクリル等)等の、公知の有機ポリマーを含む有機繊維や、ガラス繊維、金属繊維等の公知の無機繊維を用いることができる。
 また、不織布基材構成繊維となる有機ポリマーとしては、直鎖状ポリマー又は分岐状ポリマーのいずれを用いてもよく、さらに、有機ポリマーがブロック共重合体又はランダム共重合体でもよい。また、有機ポリマーの立体構造や結晶性の有無を問わない。
 不織布基材構成繊維としては、一種類の樹脂成分又は複数の樹脂成分が混合されたものでもよい。また、複数の種類の樹脂成分を異なる区画に区分して不均一に組み合わせた複合繊維を用いることもできる。複合繊維の種類としては、芯鞘型、海島型、サイドバイサイド型、オレンジ型のいずれを用いてもよいが、繊維同士の接着可能な部分を実質的に全表面とすることが可能な芯鞘型であれば、不織布基材の製造時並びに不織布フィルターの使用時に接着強度が高いため耐久性を付与することができ、最も好ましい。さらに、一方の繊維が熱可塑性樹脂等の熱接着成分を備えた複合繊維と単一成分からなる汎用のレギュラー繊維との組み合わせや、熱収縮率の異なる複数の樹脂を備えた潜在捲縮性の複合繊維を用いてもよい。
 なお、不織布基材構成繊維は、熱接着後の基材の剛性が高く、比較的安価であるため、ポリエステル樹脂及び変性ポリエステル樹脂からなる少なくとも一種の複合繊維により構成されることが好ましい。
 また、不織布基材の目付は特に限定するものではないが、圧力損失の上昇を抑制し、じん埃保持量を大きくできるように、50g/m以上450g/m以下であることが好ましく、70g/m以上300g/m以下であることがより好ましく、100g/m以上200g/m以下とすることが更に好ましい。この好適な数値範囲の下限よりも低い目付では網状部の形態が不均一になり、じん埃保持量を向上させることが難しくなる場合がある。また、当該目付を上記範囲よりも高く設定した場合には、圧力損失の早期上昇を招き、不織布フィルターの寿命が著しく短くなる場合がある。
 [微小繊維]
 本発明の不織布フィルターは、不織布基材の厚さ方向に、不織布基材構成繊維の平均繊維径よりも小さい繊維径を有する微小繊維を備える不織布フィルターであって、微小繊維は、不織布基材の見掛けの厚さに対して10%以上100%以下の深さを以て配向し、微小繊維により、又は、微小繊維と不織布基材構成繊維の組み合わせにより、網状部を形成されていることで、厚さ方向での濾過が可能となり、目詰まりが起こりづらくなり、圧力損失の上昇が抑制され、じん埃保持量が大きくなり、風圧が加わっても厚さ方向に潰れにくく形状維持性が高い不織布フィルターである。この形状維持性に関しては後段で詳述するが、前述の濾過性能試験にかけた際の「厚さ維持率」が、好ましくは95%以上、より好ましくは97%以上、更に好ましくは98%以上となるように、網状部の配向及び目付を任意好適に設計するのが好適である。
 上述の「厚さ方向」とは不織布フィルター主面に対して略直角方向を意味する。なお、微小繊維は不織布基材のどの位置に存在していてもよい。例えば、不織布基材の少なくとも一方の表面から内部にかけて存在していることができるし、不織布基材の内部にのみ存在していることもできる。特に、不織布基材の少なくとも一方の表面から内部にかけて存在する形態を採れば、当該面を濾過下流側として利用すると、濾材に上流側が粗となる密度勾配を実現することができる。さらに、微小繊維の繊維径は不織布基材構成繊維の平均繊維径よりも小さければ、不織布基材では捕集できないじん埃を網状部で捕集することができる。微小繊維の繊維径は不織布基材構成繊維の平均繊維径よりも小さければよく、特に限定するものではない。
 つまり、不織布基材構成繊維の平均繊維径が7μm以上である場合、微小繊維の繊維径は1nm以上7μm未満であることが好ましく、不織布基材構成繊維の平均繊維径が10μm以上である場合、微小繊維の繊維径は1nm以上10μm未満であることが好ましく、不織布基材構成繊維の平均繊維径が15μm以上である場合、微小繊維の繊維径は1nm以上15μm未満であることが好ましく、1nm以上12μm以下であることがより好ましく、0.1μm以上10μm以下であることが更に好ましい。図6の電子顕微鏡写真には微小繊維の繊維径を示してある。このような微小繊維は、不織布基材の見掛けの厚さに対して10%以上100%以下の深さを以て配向し、微小繊維を含む網状部を形成しているため、多くのじん埃を捕集できる。この深さが深い程、微小繊維を含む網状部の存在範囲が広く、じん埃の捕集性に優れているため、不織布基材の見掛けの厚さに対して30%以上100%以下の深さを以て配向しているのが好ましく、40%以上100%以下の深さを以て配向しているのがより好ましく、50%以上100%以下の深さを以て配向しているのが更に好ましい。ここで、「見掛けの厚さに対して10%以上100%以下の深さを以て配向」するとは、基材の見掛けの厚さに対して、当該厚さの値の10%以上100%以下の深さにまで「網状部」が到達している状態を言う。
 この微小繊維の深さの計測方法は不織布フィルター断面の電子顕微鏡写真10枚を用いて、各々の写真で不織布フィルターの平面方向に均等な任意の10点を選び出し、厚さ方向に伸びた網状部の長さを写真上において有効数字3桁で計測する。その10点平均を10回算出し、さらに、その平均値を以て「深さ」(有効数字2桁)と定義する。ここで言う「深さ」とは、微小繊維の長さと必ずしも一致する必要はなく、断面写真の観察部位として選択した箇所で、微小繊維存在部により近い表面から、当該繊維の最も深い距離として定義する。例えば、基材内で一方の表面から他方の表面に向かって、異なる微小繊維が連なって観察された場合には、その最深部を「深さ」とした。また、不織布基材の「見掛けの厚さ」に関しても同様の方法で、厚さ方向に伸びる不織布基材の平均厚さとし、さらに、10枚の断面写真で求めた平均値を使って、その不織布基材の見掛けの厚さ(有効数字2桁)とした。
 本発明における網状部は、微小繊維と不織布基材構成繊維とで網状部を構成する場合であってもよい。より具体的には、「網状部」の存在形態として、
(A)分岐を有する微小繊維が、例えば後述する図10A及び図10Bに示すように、不織布基材構成繊維に亘って主として厚さ方向に繋がっている状態
(B)比較的分岐が少ない微小繊維が、例えば後述する図9に示すように、不織布基材の厚さ方向に渡って繋がっている状態(柱状)
(C)分岐を有する微小繊維が、例えば後述する図5に示すように、不織布基材内でポケット状に繋がっている状態(袋状)
を例示することができ、何れの状態でも不織布フィルターの形状維持性を向上させることが可能である。微小繊維同士は接着して繋がっていることができるし、接着することなく単に接触して繋がっていることもできる。なお、微小繊維は、他の微小繊維または不織布基材構成繊維の何れかに固定されているのが好ましい。これにより、ダスト負荷時の圧力損失上昇により、通気に伴う網状部の動きを抑制し、捕集ダストの再飛散を抑制することができる。また、この網状部の厚さ方向における配設位置は不織布フィルターの表面部より深い位置の何れであってもよい。例えば、網状部の厚さ方向での配設位置を種々に選択することで不織布フィルターに密度勾配を設けることができる。このように微小繊維が比較的少ない低密度面を有する場合には、これを流入面に使用すればフィルターの寿命を向上させることができる。さらに、不織布フィルターの流入面に使用する表面(濾過面)における、SEMによる写真で読み取った平均開孔径が、5μm以上であることが好ましく、10μm以上であることが好ましい。平均開孔径を大きく採ることで、圧力損失が低く、じん埃を保持する空間が大きくなり、目詰まりを生じにくい。ここに言う「平均開孔径」とは、例えば、図1Bに示すように所定の倍率で濾過面を撮影した電子顕微鏡写真において、任意で10箇所の開孔を選択し、各々の開孔を構成する繊維に内接する真円の直径を「開孔径」とみなし、10箇所の平均値を「平均開孔径」とする。但し、この開孔径を読みとる真円は、概ね2次元的な平面(電子顕微鏡写真において手前側)で読みとるものとし、電子顕微鏡写真において奥側に観察される開孔に係る真円は測定対象から除外するものとする。
 微小繊維の構成樹脂は特に限定するものではないが、例えば、ポリフッ化ビニリデン(PVDF)樹脂、ポリフッ化ビニリデン-ヘキサフルオロプロピレン共重合体樹脂、ポリアクリロニトリル(PAN)樹脂、ポリアクリロニトリル-メタクリレート共重合体樹脂、ポリメタクリル酸樹脂、ポリメタクリル酸メチル樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン-アクリレート共重合体樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、ポリエチレン樹脂、ポリエーテルスルホン樹脂、ポリオレフィン樹脂、ポリエステル樹脂、ポリプロピレン樹脂、ナイロン12、ナイロン-4,6等のナイロン系樹脂、アラミド樹脂、ポリイミド樹脂、ポリベンズイミダゾール樹脂、カーボンナノチューブ、セルロース、酢酸セルロース樹脂、酢酸セルロースブチレート樹脂、ポリビニルピロリドン-酢酸ビニル樹脂、ポリ(ビス-(2-(2-メトキシ-エトキシエトキシ))ホスファゼン)(poly(bis-(2-(2-methoxy-ethoxyethoxy))phosphazene);MEEP)樹脂、ポリプロピレンオキサイド樹脂、ポリエチレンイミド(PEI)樹脂、ポリこはく酸エチレン(poly(ethylenesuccinate))樹脂、ポリアニリン樹脂、ポリエチレンサルファイド樹脂、ポリオキシメチレン-オリゴ-オキシエチレン(poly(oxymethylene-oligo-oxyethylene))樹脂、SBS共重合体樹脂、ポリヒドロキシ酪酸樹脂、ポリ酢酸ビニル樹脂、ポリエチレングリコール樹脂、ポリビニルアルコール樹脂(部分けん化ポリビニルアルコール、完全けん化ポリビニルアルコール)、ポリビニルピロリドン樹脂、ポリエチレンテレフタレート樹脂、ポリエチレンオキサイド樹脂、コラーゲン樹脂、ポリ乳酸樹脂、ポリグリコール酸樹脂、ポリD,L-乳酸-グリコール酸共重合体樹脂、ポリアリレート樹脂、ポリプロピレンフマラート(poly(propylene fumalates))樹脂、ポリカプロラクトン、キチン、キトサン等の生分解性高分子、ポリペプチド、タンパク質等の水溶性樹脂、又はコールタールピッチ、石油ピッチ等のピッチ系樹脂等を例示することができる。これらの中でも、繊維形成性が良好なポリアクリロニトリル樹脂、ポリエーテルスルホン樹脂、ポリオレフィン樹脂、ポリエステル樹脂、ポリビニルアルコール樹脂、又はセルロースから選ばれた樹脂のいずれかにより構成されているのが好ましい。
 また、微小繊維の目付は特に限定するものではないが、圧力損失の上昇を抑制し、じん埃保持量を大きくできるように、0.1g/m以上50g/m以下であることが好ましく、0.2g/m以上40g/m以下であることがより好ましく、1.0g/m以上30g/m以下であることが更に好ましく、2.0g/m以上15g/m以下であることが最も好ましい。
 [不織布基材の製造方法]
本発明の不織布フィルターに用いる不織布基材の製法としては、微小繊維を含む網状部の下地となる不織布を実現できる周知の製法であれば、いずれの手段を採用してもよい。具体的な不織布基材の作製方法としては、乾式紡糸法、湿式紡糸法、直接紡糸法(メルトブロー法、スパンボンド法、フラッシュスパン法)、湿式法、又は乾式法(例えば、カード法、エアレイ法)により繊維ウエブを形成した後に、繊維同士を結合する方法(例えば、繊維ウエブ構成繊維を加圧下又は無圧下で融着させる方法、バインダーにより接着する方法、水流やニードルにより絡合する方法など)等の公知の方法を用いることができる。これらの中でも乾式法により繊維ウエブを形成した後に、繊維同士を結合する方法であると、比較的嵩高な不織布基材を形成することができ、不織布基材の内部に微小繊維の網状部を形成しやすいため好適である。これらの製法によって、平均繊維径が7μm以上の繊維からなる不織布基材を調製するのが好ましく、平均繊維径が10μm以上の繊維からなる不織布基材を調製するのがより好ましく、平均繊維径が15μm以上の繊維からなる不織布基材を調製するのが最も好ましい。
[不織布フィルターの製造方法]
 次いで、不織布基材に対して、微小繊維を含む網状部を不織布基材の見掛けの厚さに対して10%以上100%以下の深さを以て配向させることによって、本発明の不織布フィルターを形成することができる。この微小繊維を含む網状部の形成方法としては、例えば、(a)パルプ状の微小繊維を湿式法により基材内部に配置した後、融着固定する技術
(b)水や有機溶剤等の溶剤に溶解した合成樹脂を高速エアによって基材内部に吐出紡糸し、基材内部に固着させる技術
(c)水などの溶媒にナノオーダーの繊維径を持つセルロースファイバーなどの微小繊維を分散させ、予め調製した不織布基材の、少なくとも一部に染み込ませた状態で凍結乾燥させる技術
(d)微小繊維の原料となる樹脂材料を溶媒に溶解させ、不織布基材の少なくとも一部に付与し、凍結乾燥させる技術
(e)不織布基材に微小繊維の樹脂材料を溶解させた溶液を付与し、当該基材の厚さ方向に気流を作用させて不織布基材の内部に微小繊維を含む網状部を生成する技術
を挙げることができる。これら技術を選択するに当たり、微小繊維が基材の厚さ方向に配向しやすい製法を採用することにより、不織布フィルターの形状維持性を高くして、風圧による濾材の緻密化を軽減することによって性能低下を防止し得る製造技術を採用することができる。一例として、上述した(b)の技術を採用する場合には、不織布基材の一方の面から100mm以下の距離に配置された、溶融紡糸又はフラッシュ紡糸に用いる口金によって、上述した微小繊維の構成樹脂を吹き付けるとともに、この不織布基材の他方の面から吸引を行ってもよい。この際、口金から吐出された微小繊維の構成樹脂は、不織布基材構成繊維に到達するまで固化せずに流動性が残る状態で実施することが必要であり、又、微小繊維の形成深さを深くとる必要があるため、不織布基材の面と口金の距離は、50mm以下であることがより好ましい。
 以上、本発明を、実施形態を用いて説明したが、本発明の技術的範囲は上記の実施形態に記載の発明の範囲にのみ限定されないことは言うまでもなく、上記実施形態に、多様な変更又は改良を加えることが可能であることが当業者に明らかである。また、そのような変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
 以下、本発明について、実施例を挙げて説明する。なお、本発明は以下に示す実施例に何ら限定されるものではない。
 [不織布基材の調製]
 不織布基材となる嵩高な短繊維不織布の調製について説明する。
(実施例1から5、比較例1、比較例3及び4)
 ポリエステル樹脂及び変性ポリエステル樹脂からなる市販の芯鞘型複合繊維(繊度17.0デシテックス、繊維長51mm)80質量%と、ポリエステル樹脂及び変性ポリエステル樹脂からなる市販の芯鞘型複合繊維(繊度6.6デシテックス、繊維長51mm)20質量%と、を混綿した。これをカード機にかけてウエブ形成し、ニードルパンチ法で絡合した後、150℃の熱風ドライヤーで繊維間接着することによって不織布基材を得る。この基材の断面を電子顕微鏡で観察し、繊維同士の融着点を除く構成繊維部分のみを50本、計測観察したところ、平均繊維径は約37μmであった。当該不織布基材は実施例1から5、比較例1、比較例3及び4に用いた。
(実施例6)
 ポリエステル樹脂及び変性ポリエステル樹脂からなる市販の芯鞘型複合繊維(繊度2.2デシテックス、繊維長51mm)90質量%と、ポリエステル樹脂及び変性ポリエステル樹脂からなる市販の芯鞘型複合繊維(繊度6.6デシテックス、繊維長51mm)10質量%と、を用いて上記と同様の方法により得た不織布基材(平均繊維径15μm)を、実施例6に用いた。
(実施例7)
 ポリエステル樹脂及び変性ポリエステル樹脂からなる市販の芯鞘型複合繊維(繊度17.0デシテックス、繊維長51mm)50質量%と、市販のポリエステル繊維(繊度33デシテックス、繊維長76mm)50質量%とからなる不織布基材(平均繊維径54μm)を、上記と同様の方法により作製し、実施例7に用いた。
(比較例2)
 不織布以外の基材として、前述した特許文献1に開示されている市販のポリエステル樹脂製メッシュ(メッシュで画成される目合いの孔径3mm、線径0.8mm)を準備し、比較例2に用いた。なお、この比較例2ではメッシュの目合いによって微小繊維が基材裏側に抜けてしまうため、微小繊維吐出の初期段階ではサクション条件を抑え、吐出被着を数段階に分けて実施することで層を積み重ね、徐々にサクション条件を上げていくことで図8に示す形態を実現した。
 [溶液吐出による微小繊維の形成]
 上述した種々の基材に対する微小繊維の吐出形成は、特開2012-154009号公報に開示の製造装置を用いた。吐出する紡糸液は、ジメチルフォルムアミド(DMF)を溶媒として市販のポリアクリロニトリル樹脂を種々の所定粘度に調製し、装置に配設されたコンベアと口金との離間距離を各々変更し、評価用の不織布フィルターサンプルを調製した。なお、実施例1A、1B、1C、1D、並びに比較例1A、1B、比較例2に係る不織布フィルターについて、電子顕微鏡を用いて撮影し、厚さ方向に渡る断面状態を観察確認した。図1Aから図5までに示すように、実施例1A、1B、1C、1Dに係る不織布フィルターには、微小繊維を含む網状部、つまり、微小繊維を構成する繊維同士が接着した網状部を確認できる。特に図4に示す実施例1Dあるいは同図の要部を拡大した図5では、不織布フィルターの一方の表面側に、略袋状の網状部がポケット状の構成成分として多数形成されている。一方で、図7に示すように、比較例1Aに係る不織布フィルターには、網状部が殆ど形成されず、吐出形成された微小繊維は不織布基材の表面に積層被着されていることが理解できる。さらに、図8に示すように、比較例2に係る不織布フィルターでは、基材として上記市販のポリエステル樹脂製メッシュを用いており、基材の厚さ方向に微小繊維を含む網状部、つまり、微小繊維同士が接着した網状部は形成されず、微小繊維を吐出被着した基材の裏面側に凸状の突起が立ち上がるように形成されていた。比較例3では微小繊維を形成するためのポリマー溶液粘度(以下、粘度と略記)を各実施例に比べて低くしたため、又は、絶対的な樹脂濃度が低かったため、液滴状で基材に被着し網状部は形成できなかった。なお、微小繊維を有さずに不織布基材のみで構成された不織布フィルターを、ブランクとして比較例4に用いた。
 これら不織布フィルターサンプルのうち、主要なものについては市販の前田式圧縮弾性測定器により、JIS L 1096に規定された20g/cmの圧縮加重を掛けた場合の厚さと、無荷重での厚さ(見掛けの厚さ)との割合を百分率で求め、厚さ維持率として記録した。上述した不織布基材構成、並びに、これに形成した網状部の吐出形成条件と構成及び厚さ維持率を表1に示す。
 





Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1Aは網状部の目付が5g/m、網状部の深さが2.8mmであり、厚さ維持率は99.3%と高く、殆ど潰れずに良好な状態を維持していた。また、実施例1Aの網状部と同じ目付で構成した実施例1Dは、網状部の深さが比較的浅い0.8mmであっても、厚さ維持率が97.0%であり、実施例1Aと同様に風圧によって潰れず、良好な状態を維持していた。このような圧力損失が小さいことは、図1Bに示すように、濾過表面側から見ても、5μm以上の比較的大きな開孔が形成されており、圧力損失も低いものであった。これに対し、微小繊維を基材の表面にのみ設けた比較例1B(網状部の深さ0.26mm)では、微小繊維の目付を多くしても網状部の深さが小さいために、厚さ維持率は93.5%と低い値を示した。さらに、前述の特許文献1の技術を模して調製した比較例2では、微小繊維全体に厚さを維持するための基材骨格が存在しないため、厚さ維持率は37.5%となり、良好な濾過性能を発揮し得ないと判断した。
 [ダスト負荷試験]
 濾過性能はJIS B9908形式1に規定されるASHRAE52.1-1992の試験方法に則って実施した。まず、風速0.30m/秒で圧力損失が100Paになるまで市販のASHRAEダスト(組成:72%アリゾナ街路じん、23%カーボンブラック、5%コットンリンター;粒径範囲 0.3μm以上0.5μm以下)を供給した後、平均質量法効率及びじん埃保持量を求めた。この試験では、微小繊維を吐出被着した基材表面側が上流となるように試験装置に装着し、網状部のプレフィルターとしての性能を評価した。また、初期の圧力損失(Pa)は上記風速で粉じんを供給せずに測定した値を用いた。以下、表2に平均質量法効率、初期圧力損失、じん埃保持量の測定結果を示す。なお、表2に記載の判定の欄には、以下の基準により、◎、〇、×のいずれかを記載し、比較例4は微小繊維を含まないため、評価欄には「-」と記載している。
 ◎:平均質量法効率が85%以上であり、じん埃保持量が40g/m以上であった。
 〇:平均質量法効率が80%以上であり、じん埃保持量が10g/m以上40g/m未満であった。
 ×:平均質量法効率が80%未満、若しくは、じん埃保持量が10g/m未満であった。
 



















Figure JPOXMLDOC01-appb-T000002
 表2に示すように、平均質量法効率、初期圧力損失及びじん埃保持量の各数値を上記の基準により判定した結果、各実施例では、いずれも良好な結果であった。とりわけ、実施例1A、1B、1C、1D、1E、1F、1G、4、5及び7は、より良好な結果であった。比較例1A、1Bは、微小繊維の被着位置が非常に浅く、不織布フィルター上流側表面での濾過となるため、じん埃保持量が非常に小さかった。比較例2は、他のサンプルと同様に微小繊維の吐出形成表面、すなわち凸状突起の起立面とは相異なる表面を上流としてダスト負荷を実施したが、極めて緻密な表面構造のため、比較例1A、1Bと同様に、じん埃保持量は著しく小さかった。比較例3では、前述のとおり調製した粘度が低く、又は、絶対的な樹脂濃度が低いため、微小繊維を吐出できず、結果として網状部が存在しないため、平均質量法効率は比較例4と同等の低い値であった。
 以上に確認したとおり、本発明を適用した各実施例では、不織布基材の厚さ方向の内部空間に網状部が形成されているため、比較的小粒径のじん埃を保持する容積を大きくとることができ、効率的な不織布フィルターを実現できた。これに対して、各比較例は、微細な繊維による繊維集合体が不織布基材の表面に平面的に形成されているか、又は、網状部が形成されていなかった。このため、平均質量法効率とじん埃保持量との双方を満足するものではなく、主としてサイズの小さいじん埃により早期に破過し易かった。
 微小繊維を形成する他の技術を利用した不織布フィルターについて、図9及び図10A、図10Bを参照して説明する。図9は、上述した実施例に用いた芯鞘型複合繊維からなる不織布基材に、水を溶媒としたポリビニルアルコール樹脂の溶液を表面に塗布し、市販のブロアーによって高速の空気を作用させて当該樹脂を繊維化し、微小繊維を形成したサンプル断面を電子顕微鏡で撮影した写真である。同図の一点鎖線で囲んだ領域からも見て採れる様に、不織布基材構成繊維間に、分岐が少ない微小繊維が多数の柱状に形成されている。この柱状の微小繊維を設けた構成によって高い厚さ維持率及び、捕集性能が向上されることが期待でき、前述の測定試験によって、同様の優れた濾過性能を発揮することができた。
 さらに、図10A及び図10Bとして示す不織布フィルターは、市販のナノセルロースファイバー分散液を同じ不織布基材に染みこませた後、凍結真空乾燥機で分散媒の水を除去して調製したものである。同図に一点鎖線で囲んだ領域に網目状の網状部が確認できた。このことから、本構造により、高い厚さ維持率、及び、捕集性能が向上されることが期待でき、前述の測定試験によって、同様の優れた濾過性能を発揮することができた。以上に述べたとおり、本発明に規定した微小繊維の形態は、樹脂を分散調製した溶液の粘度、繊維化する技術を任意好適に選択することによって、柱状(図9参照)、網目状(図1A、図1B、図1C、図2、図3、図10A、図10B等を参照)、あるいは袋状(図5参照)といった種々の形態で設けることができ、不織布基材に網状部を設けることによって厚さ維持率を向上させ、不織布基材の開孔径を大きく採っても、網状部を備えることで微細な粉じんも捕集することが可能であり、優れた濾過性能を実現することができた。

Claims (4)

  1.  不織布基材の厚さ方向に、不織布基材構成繊維の平均繊維径よりも小さい繊維径を有する微小繊維を備える不織布フィルターであって、
     前記微小繊維は、前記不織布基材の見掛けの厚さに対して10%以上100%以下の深さを以て配向し、
     前記微小繊維により、又は、前記微小繊維と前記不織布基材構成繊維の組み合わせにより、網状部が形成されてなる、不織布フィルター。
  2.  ASHRAE52.1-1992に規定されるASHRAEダストを用いた質量法による濾過性能試験において、風速0.30m/秒のときに、平均質量法効率が80%以上99%以下であり、圧力損失が100Paにまで上昇した時点でのじん埃保持量が、10.0g/m以上である、請求項1に記載の不織布フィルター。
  3.  前記微小繊維が、ポリアクリロニトリル樹脂、ポリエーテルスルホン樹脂、ポリオレフィン樹脂、ポリエステル樹脂、ポリビニルアルコール樹脂、又はセルロースのいずれかにより形成されてなる、請求項1又は2に記載の不織布フィルター。
  4.  前記不織布基材構成繊維が、ポリエステル樹脂及び変性ポリエステル樹脂からなる少なくとも一種の複合繊維により構成されてなる、請求項1から3のいずれかに記載の不織布フィルター。
PCT/JP2018/016211 2017-05-31 2018-04-19 不織布フィルター WO2018221063A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019522020A JP7077515B2 (ja) 2017-05-31 2018-04-19 不織布フィルター

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017108811 2017-05-31
JP2017-108811 2017-05-31
JP2018013977 2018-01-30
JP2018-013977 2018-01-30

Publications (1)

Publication Number Publication Date
WO2018221063A1 true WO2018221063A1 (ja) 2018-12-06

Family

ID=64455375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016211 WO2018221063A1 (ja) 2017-05-31 2018-04-19 不織布フィルター

Country Status (2)

Country Link
JP (1) JP7077515B2 (ja)
WO (1) WO2018221063A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020001010A (ja) * 2018-06-29 2020-01-09 日本バイリーン株式会社 不織布フィルタ
WO2021039981A1 (ja) 2019-08-30 2021-03-04 ダイキン工業株式会社 エアフィルタ濾材およびエアフィルタ製品
WO2021234946A1 (ja) * 2020-05-22 2021-11-25 北越コーポレーション株式会社 エアフィルタ用濾材の製造方法及びエアフィルタの製造方法
WO2022239430A1 (ja) 2021-05-14 2022-11-17 北越コーポレーション株式会社 エアフィルタ用濾材及びその製造方法
WO2023175894A1 (ja) 2022-03-18 2023-09-21 北越コーポレーション株式会社 エアフィルタ用濾材及びその製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007245712A (ja) * 2006-02-20 2007-09-27 Japan Vilene Co Ltd 多層シート及びその製造方法
JP2009190269A (ja) * 2008-02-14 2009-08-27 Teijin Techno Products Ltd 繊維積層体およびそれを用いた空気清浄用フィルター
JP2010509056A (ja) * 2006-11-13 2010-03-25 リサーチ・トライアングル・インスティチュート ナノ繊維を組み込んだ粒子フィルタシステム
JP2012000550A (ja) * 2010-06-15 2012-01-05 Asahi Kasei Fibers Corp セルロース繊維から構成される濾材
JP2013022570A (ja) * 2011-07-25 2013-02-04 Shinshu Univ バグフィルター用濾材
JP2017080705A (ja) * 2015-10-30 2017-05-18 タイガースポリマー株式会社 不織布濾過材

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007245712A (ja) * 2006-02-20 2007-09-27 Japan Vilene Co Ltd 多層シート及びその製造方法
JP2010509056A (ja) * 2006-11-13 2010-03-25 リサーチ・トライアングル・インスティチュート ナノ繊維を組み込んだ粒子フィルタシステム
JP2009190269A (ja) * 2008-02-14 2009-08-27 Teijin Techno Products Ltd 繊維積層体およびそれを用いた空気清浄用フィルター
JP2012000550A (ja) * 2010-06-15 2012-01-05 Asahi Kasei Fibers Corp セルロース繊維から構成される濾材
JP2013022570A (ja) * 2011-07-25 2013-02-04 Shinshu Univ バグフィルター用濾材
JP2017080705A (ja) * 2015-10-30 2017-05-18 タイガースポリマー株式会社 不織布濾過材

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020001010A (ja) * 2018-06-29 2020-01-09 日本バイリーン株式会社 不織布フィルタ
JP7103871B2 (ja) 2018-06-29 2022-07-20 日本バイリーン株式会社 不織布フィルタ
WO2021039981A1 (ja) 2019-08-30 2021-03-04 ダイキン工業株式会社 エアフィルタ濾材およびエアフィルタ製品
WO2021234946A1 (ja) * 2020-05-22 2021-11-25 北越コーポレーション株式会社 エアフィルタ用濾材の製造方法及びエアフィルタの製造方法
JPWO2021234946A1 (ja) * 2020-05-22 2021-11-25
JP7453363B2 (ja) 2020-05-22 2024-03-19 北越コーポレーション株式会社 エアフィルタ用濾材の製造方法及びエアフィルタの製造方法
WO2022239430A1 (ja) 2021-05-14 2022-11-17 北越コーポレーション株式会社 エアフィルタ用濾材及びその製造方法
KR20230145116A (ko) 2021-05-14 2023-10-17 호쿠에츠 코포레이션 가부시키가이샤 에어 필터용 여과재 및 그 제조 방법
JP7508704B2 (ja) 2021-05-14 2024-07-01 北越コーポレーション株式会社 エアフィルタ用濾材及びその製造方法
WO2023175894A1 (ja) 2022-03-18 2023-09-21 北越コーポレーション株式会社 エアフィルタ用濾材及びその製造方法
KR20240147687A (ko) 2022-03-18 2024-10-08 호쿠에츠 코포레이션 가부시키가이샤 에어 필터용 여과재 및 그 제조 방법

Also Published As

Publication number Publication date
JPWO2018221063A1 (ja) 2020-04-02
JP7077515B2 (ja) 2022-05-31

Similar Documents

Publication Publication Date Title
WO2018221063A1 (ja) 不織布フィルター
KR102340662B1 (ko) 필터용 다층 여과재 및 그의 제조 방법 및 에어 필터
JP5490680B2 (ja) バグハウスフィルター及び媒体
JP6695420B2 (ja) 液体フィルター用ろ材および液体フィルター
KR101431346B1 (ko) 집진기용 여과포
CN111263835B (zh) 混纤无纺布及其制造方法、层叠体及滤材
CN114126742B (zh) 纤维结构体及其制造方法
CN110124413A (zh) 聚合物,聚合物微米纤维,聚合物纳米纤维和包括过滤器结构的用途
TWI758722B (zh) 包含聚醯胺奈米纖維層的過濾器介質
TWI778946B (zh) 袋濾器用過濾布及其製造方法及袋濾器
JP2017185422A (ja) デプスフィルター
JP7177394B2 (ja) 複合構造体、その製造方法及びその複合構造体を含む濾材
WO2020004007A1 (ja) フィルター用スパンボンド不織布およびその製造方法
JP4745815B2 (ja) 内燃機関空気取り入れ用フィルター材
JP4737039B2 (ja) 吸気用フィルター不織布
JP2019099946A (ja) 不織布およびバグフィルター用濾材
JPH11192406A (ja) フィルター用基材およびフィルター装置
JP2007152216A (ja) フィルター用不織布
JP7103871B2 (ja) 不織布フィルタ
JP4023042B2 (ja) フィルター基材及びフィルター装置
KR102115206B1 (ko) 복합섬유 제조장치
JP2022094613A (ja) 不織布、短カット熱接着性繊維およびフィルター
JP2023012165A (ja) マスク用濾材およびマスク
JP6157380B2 (ja) プレクリーナー
JP2018111085A (ja) 液体フィルター用ろ材および液体フィルター

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18809356

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019522020

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18809356

Country of ref document: EP

Kind code of ref document: A1