WO2022231190A1 - Coating-type high-temperature electrostatic chuck - Google Patents
Coating-type high-temperature electrostatic chuck Download PDFInfo
- Publication number
- WO2022231190A1 WO2022231190A1 PCT/KR2022/005521 KR2022005521W WO2022231190A1 WO 2022231190 A1 WO2022231190 A1 WO 2022231190A1 KR 2022005521 W KR2022005521 W KR 2022005521W WO 2022231190 A1 WO2022231190 A1 WO 2022231190A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dielectric layer
- base member
- electrostatic chuck
- type high
- support member
- Prior art date
Links
- 239000010410 layer Substances 0.000 claims description 114
- 238000000034 method Methods 0.000 claims description 33
- 238000010438 heat treatment Methods 0.000 claims description 26
- 239000011248 coating agent Substances 0.000 claims description 19
- 238000000576 coating method Methods 0.000 claims description 19
- 238000001816 cooling Methods 0.000 claims description 19
- 239000007921 spray Substances 0.000 claims description 16
- 230000000903 blocking effect Effects 0.000 claims description 13
- 238000009792 diffusion process Methods 0.000 claims description 13
- 239000000919 ceramic Substances 0.000 claims description 11
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 11
- 239000010936 titanium Substances 0.000 claims description 11
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 10
- 238000007750 plasma spraying Methods 0.000 claims description 10
- 229910052719 titanium Inorganic materials 0.000 claims description 10
- 239000010703 silicon Substances 0.000 claims description 9
- 229910052710 silicon Inorganic materials 0.000 claims description 9
- 239000002131 composite material Substances 0.000 claims description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 6
- 239000011247 coating layer Substances 0.000 claims description 6
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 6
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 6
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 description 11
- 239000011521 glass Substances 0.000 description 8
- 235000012431 wafers Nutrition 0.000 description 8
- 229910001069 Ti alloy Inorganic materials 0.000 description 7
- 239000004065 semiconductor Substances 0.000 description 7
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 5
- LTPBRCUWZOMYOC-UHFFFAOYSA-N Beryllium oxide Chemical compound O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- FRWYFWZENXDZMU-UHFFFAOYSA-N 2-iodoquinoline Chemical compound C1=CC=CC2=NC(I)=CC=C21 FRWYFWZENXDZMU-UHFFFAOYSA-N 0.000 description 3
- 229910000505 Al2TiO5 Inorganic materials 0.000 description 3
- 239000000443 aerosol Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- AABBHSMFGKYLKE-SNAWJCMRSA-N propan-2-yl (e)-but-2-enoate Chemical compound C\C=C\C(=O)OC(C)C AABBHSMFGKYLKE-SNAWJCMRSA-N 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 229910018487 Ni—Cr Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000011491 glass wool Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011490 mineral wool Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- ULEWOPXGNWLKFY-UHFFFAOYSA-M oxygen(2-) yttrium(3+) fluoride Chemical compound [O--].[F-].[Y+3] ULEWOPXGNWLKFY-UHFFFAOYSA-M 0.000 description 1
- 239000010451 perlite Substances 0.000 description 1
- 235000019362 perlite Nutrition 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229940098458 powder spray Drugs 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- VXPLXMJHHKHSOA-UHFFFAOYSA-N propham Chemical compound CC(C)OC(=O)NC1=CC=CC=C1 VXPLXMJHHKHSOA-UHFFFAOYSA-N 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q3/00—Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
- B23Q3/15—Devices for holding work using magnetic or electric force acting directly on the work
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/10—Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
- C23C4/134—Plasma spraying
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N13/00—Clutches or holding devices using electrostatic attraction, e.g. using Johnson-Rahbek effect
Definitions
- the present disclosure relates to a coating type high temperature electrostatic chuck.
- an electrostatic chuck is used to fix a wafer or a glass panel at a predetermined position in a vacuum chamber of semiconductor and display manufacturing equipment.
- a vacuum adsorption method is used to fix a substrate, but
- most of the electrostatic chucks adsorb and hold the wafer or glass panel by the electrostatic force generated therein. That is, the electrostatic chuck is configured to fix the substrate in a horizontal state by generating static electricity in the electrode layer.
- the size or area of the electrostatic chuck inevitably increases.
- An object to be solved according to the present disclosure is to provide a large-area coating-type high-temperature electrostatic chuck that does not warp even in a high-temperature environment and has excellent flatness.
- a coating-type high-temperature electrostatic chuck includes a base member; and a support member comprising a first dielectric layer directly coated on the base member without a bonding layer, an electrode layer formed on the first dielectric layer, and a second dielectric layer coated on the first dielectric layer and the electrode layer, wherein
- the standard deviation of the coefficient of thermal expansion between the base member and the support member may be 0.01% to 10%.
- the coating type high temperature electrostatic chuck may be used in a range of 200°C to 800°C.
- the base member and the support member may be rectangular or circular when viewed from above.
- the length of one side of the support member may be 400 mm to 3500 mm, or the diameter of the support member may be 100 mm to 400 mm.
- the first dielectric layer may be directly coated on the base member by atmospheric pressure plasma spraying.
- the second dielectric layer may be directly coated on the electrode layer and the first dielectric layer by atmospheric pressure plasma spraying.
- the base member may include a cooling line formed in a lower region; and a heating line formed in the upper region.
- it may further include a plasma-resistant coating layer formed on the second dielectric layer.
- a coating-type high-temperature electrostatic chuck includes a base member; and a support member comprising a first dielectric layer directly coated on the base member without a bonding layer, an electrode layer formed on the first dielectric layer, and a second dielectric layer coated on the first dielectric layer and the electrode layer, wherein
- the base member may include titanium or a metal-ceramic composite, and the support member may include aluminum oxide.
- a coating-type high-temperature electrostatic chuck includes a base member; and a support member comprising a first dielectric layer directly coated on the base member without a bonding layer, an electrode layer formed on the first dielectric layer, and a second dielectric layer coated on the first dielectric layer and the electrode layer, wherein
- the base member may further include a heat blocking area or a heat spreading area.
- the base member may include a cooling line formed in a lower region; and a heating line formed in the upper region, wherein the heat blocking region may be provided in the form of a cavity between the lower region and the upper region.
- the lower region and the upper region may be connected through a connection region provided between the heat blocking region.
- the heat diffusion region may be provided on the base member.
- the thermal diffusion region may include silicon carbide, aluminum nitride, metal-ceramic composite, silicon carbide-aluminum, or silicon carbide-silicon.
- the present disclosure may provide a large-area coating-type high-temperature electrostatic chuck that does not warp even in a high-temperature environment and has excellent flatness.
- the present disclosure provides a structure and/or material of the base member and the support member such that the standard deviation for the coefficient of thermal expansion between the base member and the support member ranges from about 0.01% to about 10%, whereby the structure and/or material is provided at approximately 200°C.
- the base member and the support member do not bend similarly to the bimetal, thereby providing a large-area coating-type high-temperature electrostatic chuck having excellent flatness.
- a heat shielding region is further interposed between the lower region having a cooling line and an upper region having a heating line among the base member, so that energy consumed to maintain the set temperature of the lower region and the upper region can be reduced. It is possible to provide a high-temperature electrostatic chuck with
- a heat diffusion region is further provided on the base member, heat by the heating line is uniformly spread, and thus, it is possible to provide a high-temperature electrostatic chuck having a uniform temperature over the entire area of the support member.
- FIG. 1 is a cross-sectional view illustrating an exemplary coating type high temperature electrostatic chuck according to the present disclosure.
- 2A-2D are schematic diagrams illustrating a method of manufacturing an exemplary coating type high temperature electrostatic chuck according to the present disclosure.
- 3A to 3C are cross-sectional views illustrating another exemplary coating type high temperature electrostatic chuck according to the present disclosure.
- FIG. 4 is a cross-sectional view illustrating another exemplary coating type high temperature electrostatic chuck according to the present disclosure.
- first, second, etc. are used herein to describe various members, parts, regions, layers and/or parts, these members, parts, regions, layers, and/or parts are limited by these terms, so that It is self-evident that These terms are used only to distinguish one member, component, region, layer or portion from another region, layer or portion. Accordingly, a first member, component, region, layer, or portion discussed below may refer to a second member, component, region, layer or portion without departing from the teachings of the present invention.
- Space-related terms such as “beneath”, “below”, “lower”, “above”, and “upper” refer to an element or feature shown in the drawings and It may be used to facilitate understanding of other elements or features. These space-related terms are for easy understanding of the present invention according to various process conditions or usage conditions of the present invention, and are not intended to limit the present invention. For example, if an element or feature in a figure is turned over, an element or feature described as “below” or “below” becomes “above” or “above”. Accordingly, “below” is a concept encompassing “above” or "below”.
- an exemplary coating type high temperature electrostatic chuck 100 may include a base member 110 and a support member 120 .
- the base member 110 may include a lower region 112 having a relatively large width and an upper region 114 having a relatively small width on the lower region 112 .
- a plurality of cooling lines 111 may be provided with a predetermined pitch in the lower region 112
- heating lines 113 may be provided in the upper region 114 with a predetermined pitch.
- a cooling medium flows through the cooling line 111 to cool the lower region 112 of the base member 110 to a predetermined temperature
- a current flows through the heating line 113 to the upper region 114 of the base member 110 .
- the heating line 113 may be formed of a nickel-chromium hot wire and an insulator surrounding it.
- the base member 110 may be provided of pure titanium or a titanium alloy.
- the coefficient of thermal expansion (Thermal Expansion Coefficient, unit m/m°C) may be about 8.6 x 10 -6
- the thermal expansion coefficient may be about 9.4 x 10 -6 .
- the support member 120 may be provided directly on the base without a bonding layer.
- the support member 120 may include a first dielectric layer 121 , an electrode layer 123 , and a second dielectric layer 122 .
- the first dielectric layer 121 may be provided by being directly coated on the base member 110 without a bonding layer.
- the electrode layer 123 may be provided on the first dielectric layer 121 .
- the second dielectric layer 122 may be coated on the first dielectric layer 121 and the electrode layer 123 .
- the first dielectric layer 121 may be directly coated on the base member 110 by atmospheric pressure plasma spraying.
- the second dielectric layer 122 may be directly coated on the electrode layer 123 and the first dielectric layer 121 by atmospheric pressure plasma spraying.
- methods of aerosol deposition, arc spray, high velocity oxyfuel spray, cold spray or flame spray may be used in addition to atmospheric pressure plasma spraying.
- At least one of the first and second dielectric layers 121 and 122 may be made of ceramic.
- at least one of the first and second dielectric layers 121 and 122 may include zirconia (ZrO2), beryllium oxide (BeO), aluminum oxide (Al2O3), aluminum nitride (AlN), silicon carbide (SiC), or silicon nitride (Si3N4). or aluminum titanate (Al2TiO5).
- at least one of the first and second dielectric layers 121 and 122 may include yttrium oxide (Y2O3) or yttrium oxide (YOF).
- the coefficient of thermal expansion of zirconia is approximately 11 ⁇ 10 ⁇ 6 . In some examples, the coefficient of thermal expansion of beryllium oxide is approximately 8 ⁇ 10 ⁇ 6 . In some examples, the coefficient of thermal expansion of aluminum oxide is approximately 7.3 x 10 -6 . In some examples, the coefficient of thermal expansion of aluminum nitride is approximately 4.4 x 10 -6 . In some examples, the coefficient of thermal expansion of silicon carbide is approximately 3.7 x 10 -6 . In some examples, the coefficient of thermal expansion of aluminum nitride is approximately 3.4 ⁇ 10 ⁇ 6 . In some examples, the coefficient of thermal expansion of aluminum titanate is approximately 1 ⁇ 10 ⁇ 6 . In some examples, the coefficient of thermal expansion of yttrium oxide and yttrium oxide fluoride is between about 10 and about 10.5 x 10 -6 .
- the base member 110 and/or the support member 120 may be provided in an approximately square shape when viewed from the top for a display glass and approximately circular when viewed from the top for a semiconductor wafer. may be provided in the form.
- the length of one side of the support member 120 may be about 400 mm to about 3500 mm. In some examples, when the electrostatic chuck is used for manufacturing a semiconductor, the diameter of the support member 120 may be about 100 mm to about 400 mm.
- the electrostatic chuck may be used in a temperature range of approximately 200°C to approximately 800°C.
- the standard deviation of the coefficient of thermal expansion between the base member 110 and the support member 120 may be between approximately 0.01% and approximately 10%. Accordingly, in the range of about 200° C. to about 800° C., which is the operating temperature of the electrostatic chuck, a warping phenomenon due to a difference in the coefficient of thermal expansion between the base member 110 and the support member 120 may be minimized, and accordingly, electrostatic discharge in a high-temperature environment The flatness of the chuck can be maintained excellently.
- the base member 110 when the base member 110 is provided with pure titanium (CTE: 8.6) and the first and second dielectric layers 121 and 122 constituting the support member 120 are provided with beryllium oxide (CTE: 8), The standard deviation of the CTE may be approximately 0.4%. In some examples, when the base member 110 is provided with pure titanium (CTE: 8.6) and the first and second dielectric layers 121 and 122 constituting the support member 120 are provided with aluminum oxide (CTE: 7.3), The standard deviation of the CTE may be approximately 0.9%.
- the base member 110 when the base member 110 is provided with a titanium alloy (CTE: 9.4) and the first and second dielectric layers 121 and 122 constituting the support member 120 are provided with beryllium oxide (CTE: 8), The standard deviation of the CTE may be approximately 1%. In some examples, when the base member 110 is provided with a titanium alloy (CTE: 9.4), and the first and second dielectric layers 121 and 122 constituting the support member 120 are provided with aluminum oxide (CTE: 7.3), The standard deviation of the CTE may be approximately 1.5%.
- the base member 110 is provided with a titanium alloy (CTE: 9.4) and the first and second dielectric layers 121 and 122 constituting the support member 120 are provided with yttrium oxide (CTE: 10),
- the standard deviation of the CTE may be approximately 1.9%.
- the standard deviation of the coefficient of thermal expansion between the base member 110 and the support member 120 is less than about 2%. , it is possible to maintain excellent flatness with almost no warpage.
- the base member 110 is provided with aluminum (CTE: 23), and the first and second dielectric layers 121 and 122 constituting the support member 120 are provided with aluminum oxide (CTE: 7.3),
- the standard deviation of the CTE is approximately 11%.
- the electrostatic chuck is used in the above-described high-temperature environment, a warpage phenomenon occurs greatly due to a difference in CTE between the base member 110 and the support member 120 , and thus flatness is deteriorated for display glass or semiconductor wafer.
- the electrostatic chuck cannot be fixed with strong force.
- 2A-2D are schematic diagrams illustrating a method of manufacturing an exemplary coating-type high-temperature electrostatic chuck 100 according to the present disclosure.
- the base member 110 in which a plurality of cooling lines 111 are provided in the lower region 112 and a plurality of heating lines 113 in the upper region 114 may be provided.
- the base member 110 may be provided of pure titanium or a titanium alloy.
- the first dielectric layer 121 may be directly coated on the base member 110 .
- aluminum oxide powder may be coated on the base member 110 by atmospheric pressure plasma spraying. Accordingly, there is no bonding layer between the base member 110 and the first dielectric layer 121 , and the first dielectric layer 121 may be provided directly on the base member 110 .
- Reference numeral 150 in the drawings denotes a powder spray nozzle.
- An electrode layer 123 may be provided on the first dielectric layer 121 .
- the electrode layer 123 may also be provided by a plating method or various spray methods described above.
- the electrode layer 123 may include tungsten (W) and/or titanium (Ti).
- the second dielectric layer 122 may be directly coated on the first dielectric layer 121 and the electrode layer 123 .
- aluminum oxide powder may be coated on the first dielectric layer 121 and the electrode layer 123 by atmospheric pressure plasma spraying.
- the first dielectric layer 121 , the electrode layer 123 , and the second dielectric layer 122 may be defined or referred to as the support member 120 .
- the base member 110 includes titanium and the support member 120 includes aluminum oxide
- the standard deviation of the coefficients of thermal expansion between the base member 110 and the support member 120 is less than approximately 2%. Therefore, even when the electrostatic chuck is used in a high temperature environment of about 200° C. to about 800° C., the bending phenomenon of the base member 110 and the support member 120 hardly occurs and excellent flatness is maintained. Accordingly, the holding force of the glass or wafer by the electrostatic chuck may be excellently maintained.
- 3A to 3C are cross-sectional views illustrating other exemplary coating-type high-temperature electrostatic chucks 200A, 200B, and 200C according to the present disclosure.
- the base member 110 includes a cooling line 111 (a lower region or cooling system). It may further include thermal blocking regions 230A, 230B, and 230C interposed between the region 112) and the heating line 113 (the upper region or the heating region 114).
- the lower region 112 may be maintained at a temperature of approximately 60° C. due to the cooling line 111
- the upper region 114 may be maintained at a temperature of approximately 600° C. due to the heating line 113 .
- thermal energy is exchanged with each other, so that more energy is input to maintain the set temperature of the lower region 112 and the upper region 114, respectively. Needs to be.
- the thermal energy between the cooling line 111 and the heating line 113 is Since the flow is blocked, energy for maintaining the set temperatures of the lower region 112 and the upper region 114 may be further input.
- the thermal barrier regions 230A, 230B, 230C include a cavity, or a cavity and an insulating material filled therein (eg, airgel, perlite, foamed glass, mineral wool, glass wool, etc.) or a cavity and a metal-ceramic composite (MMC) filled therein.
- an insulating material eg, airgel, perlite, foamed glass, mineral wool, glass wool, etc.
- MMC metal-ceramic composite
- one heat blocking region 230A may be provided horizontally between the cooling line 111 and the heating line 113 .
- a plurality of heat blocking regions 230B may be provided in a horizontal direction between the cooling line 111 and the heating line 113 .
- a plurality of heat blocking regions 230C are provided in a horizontal direction between the cooling line 111 and the heating line 113 , and the lower region 112 and the upper region 114 are provided. ) may be connected to each other through the connection region 115 between the heat blocking regions 230C.
- the present disclosure further interposes the heat blocking regions 230A, 230B, and 230C between the cooling line 111 and the heating line 113, so that the set temperature of the lower region 112 by the cooling line 111 is Relatively little energy (eg, electrical energy) is required to maintain and maintain the set temperature of the upper region 114 by the heating line 113 .
- energy eg, electrical energy
- FIG 4 is a cross-sectional view illustrating another exemplary coating type high temperature electrostatic chuck 300 according to the present disclosure.
- another exemplary coating type high temperature electrostatic chuck 300 may further include a heat diffusion region 340 interposed between the base member 110 and the support member 120 . have.
- the temperature of the upper region 114 of the base member 110 may be different for each region.
- the temperature of the region close to the heating line 113 may be relatively high, and the temperature of the region far from the heating line 113 may be relatively low.
- the heat diffusion region 340 may be provided on the base member 110 .
- the heat diffusion region 340 is interposed between the upper region 114 provided with the heating line 113 and the support member 120 , thereby reducing a temperature difference for each region.
- the heat diffusion region 340 may be formed of a material having a higher thermal conductivity than that of the base member 110 .
- the thermal diffusion region 340 may be provided of silicon carbide, aluminum nitride, metal-ceramic composite, silicon carbide-aluminum, silicon carbide-silicon, or metal-ceramic composite (MMC).
- the thermal conductivity (unit: W/mK) of the thermal diffusion region 340 may be greater than approximately 100.
- the thermal conductivity of silicon carbide is approximately 190
- the thermal conductivity of aluminum nitride is approximately 275.
- the thermal conductivity is about 17.
- the heat diffusion region 340 having high thermal conductivity is provided on the base member 110 having low thermal conductivity, the temperature deviation with respect to the upper region 114 of the base member 110 by the heating line 113 is reduced and , it is possible to maintain a uniform temperature over the entire upper region 114 provided in the base member 110 . That is, since the temperature of the support member 120 for fixing the glass or wafer is made uniformly without deviation by region, various problems (difference in deposition rate or etching rate according to temperature) due to temperature deviation in the manufacturing process do not occur. .
- a plasma-resistant coating layer may be further provided on the second dielectric layer 122 .
- the plasma coating layer is a ceramic powder on the second dielectric layer arc spray (Arc Spray), HVOF (High Velocity Oxy-Fuel Spraying), plasma spray (Plasma Spray), cold spray (Cold Spray), flame spray ( Flame Spray), it may be formed using a method such as aerosol deposition (Aerosol Deposition).
- the ceramic powder is an etchant-resistant yttrium-based oxide, fluoride, nitride, Y 2 O 3 -Al 2 O 3 based compound (YAG, YAP, YAM), B 4 C, ZrO 2 , alumina (Al 2 O) 3 ) may be one or a mixture of two selected from the group consisting of.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Plasma & Fusion (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Abstract
The present disclosure relates to a coating-type high-temperature electrostatic chuck, and the objective of the present disclosure is to provide a large-area coating-type high-temperature electrostatic chuck which has excellent flatness and does not bend even in a high-temperature environment. To that end, the present disclosure provides a coating-type high-temperature electrostatic chuck comprising: a base member; and a support member made of a first dielectric layer directly coated on the base member, without a bonding layer therebetween, an electrode layer formed on the first dielectric layer, and a second dielectric layer coated on the first dielectric layer and the electrode layer, wherein the standard deviation in the thermal expansion coefficients between the base member and the support member is 0.01% to 10%.
Description
본 개시(disclosure)는 코팅 타입 고온 정전척에 관한 것이다.The present disclosure relates to a coating type high temperature electrostatic chuck.
최근 반도체 장치와 LCD, OLED, FPD 산업 등 디스플레이 산업이 급격한 발전을 거듭하고 있다. 이러한 발전 속도는 반도체 메모리의 고집적화, 디스플레이 장치의 대면적화를 의미하고 있기 때문에 이들을 제조하는 장비 역시 고기능, 대면적화가 요구되고 있다.Recently, the display industry, such as semiconductor devices, LCD, OLED, and FPD industries, is rapidly developing. Since this development speed means high integration of semiconductor memories and large area of display devices, equipment for manufacturing them is also required to have high function and large area.
일반적으로, 정전척(electrostatic chuck)은 반도체 및 디스플레이 제조 장비의 진공 챔버 내부에서 웨이퍼나 글래스 패널을 일정한 위치에 고정시키기 위해 사용되는 것으로, 종래에는 기판을 고정하기 위하여 진공 흡착 방식 등이 사용되었으나, 최근 들어서는 대부분 정전척에 의해 그 내부에서 발생되는 정전기력에 의해 웨이퍼나 글래스 패널을 흡착하여 잡아주는 역할을 한다. 즉, 정전척은 전극층에서 정전기를 발생시켜 기판을 수평 상태로 고정시킬 수 있도록 구성되며, 이는 반도체 웨이퍼나 디스플레이용 글래스 패널의 사이즈가 증가할수록 정전척의 크기나 면적 역시 증가할 수밖에 없다.In general, an electrostatic chuck is used to fix a wafer or a glass panel at a predetermined position in a vacuum chamber of semiconductor and display manufacturing equipment. Conventionally, a vacuum adsorption method is used to fix a substrate, but In recent years, most of the electrostatic chucks adsorb and hold the wafer or glass panel by the electrostatic force generated therein. That is, the electrostatic chuck is configured to fix the substrate in a horizontal state by generating static electricity in the electrode layer. As the size of the semiconductor wafer or the glass panel for display increases, the size or area of the electrostatic chuck inevitably increases.
위와 같이, 웨이퍼나 디스플레이 기판이 대형화되어 가는 추세에 따라 이를 가공하기 위한 대면적 정전척에 대한 필요성이 요구되고 있고, 또한 설정된 수치 이내의 평탄도도 요구되고 있다. 예를 들면, 금속재 베이스 부재 위에 전극층과 세라믹층이 제공되어 있는 정전척은 그 면적이 커질수록 고온 환경 하에서 야기되는 열응력이나 열팽창 계수 차이와 같은 요인으로 인하여 정전척이 구조적으로 변형되어 그 위에 장착되는 기판에 대한 평탄도가 저하될 가능성이 높으며, 그러한 평탄도의 저하로 인하여 기판을 잡는 힘, 즉 척력(chucking force)이 약해진다는 문제점이 있다.As described above, as wafers or display substrates are becoming larger, there is a need for a large-area electrostatic chuck for processing them, and flatness within a set value is also required. For example, in an electrostatic chuck in which an electrode layer and a ceramic layer are provided on a metal base member, as the area increases, the electrostatic chuck is structurally deformed due to factors such as thermal stress or thermal expansion coefficient difference caused in a high-temperature environment and is mounted thereon. There is a high possibility that the flatness of the substrate to be used is lowered, and there is a problem in that the force holding the substrate, that is, the chucking force, is weakened due to the lowering of the flatness.
위와 같은 이유로, 각각의 정전척은 전체적으로 평탄도가 상이하여 이러한 변형을 제어하여 전 평면에 걸쳐 평탄도를 균일하게 하는데 많은 어려움이 있으며, 실제로 대면적의 정전척일수록 기판을 지지하게 되는 힘이 불균일하게 되는 문제점이 많이 발생한다. 다시 말해 정전척의 구조가 불균일하게 되면 정전척의 표면은 설정된 수치 이내의 평탄도를 가지지 않게 되므로, 기판을 강하게 잡아주질 못하게 된다.For the above reasons, since the overall flatness of each electrostatic chuck is different, it is difficult to control the deformation to make the flatness uniform over the entire plane. There are a lot of problems to do. In other words, when the structure of the electrostatic chuck is non-uniform, the surface of the electrostatic chuck does not have a flatness within a set value, and thus the substrate cannot be strongly held.
이러한 발명의 배경이 되는 기술에 개시된 상술한 정보는 본 발명의 배경에 대한 이해도를 향상시키기 위한 것뿐이며, 따라서 종래 기술을 구성하지 않는 정보를 포함할 수도 있다.The above-described information disclosed in the background technology of the present invention is only for improving the understanding of the background of the present invention, and thus may include information that does not constitute the prior art.
본 개시에 따른 해결하고자 하는 과제는 고온 환경에서도 휘지 않고 평탄도가 우수한 대면적 코팅 타입 고온 정전척을 제공하는데 있다.An object to be solved according to the present disclosure is to provide a large-area coating-type high-temperature electrostatic chuck that does not warp even in a high-temperature environment and has excellent flatness.
본 개시에 따른 코팅 타입 고온 정전척은 베이스 부재; 및 상기 베이스 부재 상에 본딩층없이 직접 코팅된 제1유전층과, 상기 제1유전층 상에 형성된 전극층과, 상기 제1유전층 및 상기 전극층 상에 코팅된 제2유전층으로 이루어진 지지 부재를 포함하고, 상기 베이스 부재와 상기 지지 부재 사이의 열팽창 계수의 표준편차는 0.01% 내지 10%일 수 있다.A coating-type high-temperature electrostatic chuck according to the present disclosure includes a base member; and a support member comprising a first dielectric layer directly coated on the base member without a bonding layer, an electrode layer formed on the first dielectric layer, and a second dielectric layer coated on the first dielectric layer and the electrode layer, wherein The standard deviation of the coefficient of thermal expansion between the base member and the support member may be 0.01% to 10%.
일부 예들에서, 상기 코팅 타입 고온 정전척은 200℃ 내지 800℃의 범위에서 사용될 수 있다.In some examples, the coating type high temperature electrostatic chuck may be used in a range of 200°C to 800°C.
일부 예들에서, 상기 베이스 부재 및 상기 지지 부재는 상부에서 보았을 때 사각형 또는 원형일 수 있다.In some examples, the base member and the support member may be rectangular or circular when viewed from above.
일부 예들에서, 상기 지지 부재중 한변의 길이는 400mm 내지 3500mm이거나, 또는 상기 지지 부재의 직경은 100mm 내지 400mm일 수 있다.In some examples, the length of one side of the support member may be 400 mm to 3500 mm, or the diameter of the support member may be 100 mm to 400 mm.
일부 예들에서, 상기 제1유전층은 베이스 부재 상에 상압 플라즈마 스프레이 방식으로 직접 코팅될 수 있다.In some examples, the first dielectric layer may be directly coated on the base member by atmospheric pressure plasma spraying.
일부 예들에서, 상기 제2유전층은 상기 전극층 및 상기 제1유전층 상에 상압 플라즈마 스프레이 방식으로 직접 코팅될 수 있다.In some examples, the second dielectric layer may be directly coated on the electrode layer and the first dielectric layer by atmospheric pressure plasma spraying.
일부 예들에서, 상기 베이스 부재는 하부 영역에 형성된 쿨링 라인; 및 상부 영역에 형성된 히팅 라인을 더 포함할 수 있다.In some examples, the base member may include a cooling line formed in a lower region; and a heating line formed in the upper region.
일부 예들에서, 상기 제2유전층상에 형성된 내플라즈마 코팅층을 더 포함할 수 있다.In some examples, it may further include a plasma-resistant coating layer formed on the second dielectric layer.
본 개시에 따른 코팅 타입 고온 정전척은 베이스 부재; 및 상기 베이스 부재 상에 본딩층없이 직접 코팅된 제1유전층과, 상기 제1유전층 상에 형성된 전극층과, 상기 제1유전층 및 상기 전극층 상에 코팅된 제2유전층으로 이루어진 지지 부재를 포함하고, 상기 베이스 부재는 티타늄 또는 금속-세라믹 복합체를 포함하고, 상기 지지 부재는 산화알루미늄을 포함할 수 있다.A coating-type high-temperature electrostatic chuck according to the present disclosure includes a base member; and a support member comprising a first dielectric layer directly coated on the base member without a bonding layer, an electrode layer formed on the first dielectric layer, and a second dielectric layer coated on the first dielectric layer and the electrode layer, wherein The base member may include titanium or a metal-ceramic composite, and the support member may include aluminum oxide.
본 개시에 따른 코팅 타입 고온 정전척은 베이스 부재; 및 상기 베이스 부재 상에 본딩층없이 직접 코팅된 제1유전층과, 상기 제1유전층 상에 형성된 전극층과, 상기 제1유전층 및 상기 전극층 상에 코팅된 제2유전층으로 이루어진 지지 부재를 포함하고, 상기 베이스 부재는 열 차단 영역 또는 열 확산 영역을 더 포함할 수 잇다.A coating-type high-temperature electrostatic chuck according to the present disclosure includes a base member; and a support member comprising a first dielectric layer directly coated on the base member without a bonding layer, an electrode layer formed on the first dielectric layer, and a second dielectric layer coated on the first dielectric layer and the electrode layer, wherein The base member may further include a heat blocking area or a heat spreading area.
일부 예들에서, 상기 베이스 부재는 하부 영역에 형성된 쿨링 라인; 및 상부 영역에 형성된 히팅 라인을 더 포함하고, 상기 열 차단 영역은 상기 하부 영역과 상기 상부 영역의 사이에 캐비티 형태로 제공될 수 있다.In some examples, the base member may include a cooling line formed in a lower region; and a heating line formed in the upper region, wherein the heat blocking region may be provided in the form of a cavity between the lower region and the upper region.
일부 예들에서, 상기 하부 영역과 상기 상부 영역은 상기 열 차단 영역의 사이에 제공되는 연결 영역을 통해 연결될 수 있다.In some examples, the lower region and the upper region may be connected through a connection region provided between the heat blocking region.
일부 예들에서, 상기 열 확산 영역은 상기 베이스 부재 상에 제공될 수 있다.In some examples, the heat diffusion region may be provided on the base member.
일부 예들에서, 상기 열 확산 영역은 실리콘카바이드, 알루미늄질화물, 금속-세라믹 복합체, 실리콘카바이드-알루미늄 또는 실리콘카바이드-실리콘을 포함할 수 있다.In some examples, the thermal diffusion region may include silicon carbide, aluminum nitride, metal-ceramic composite, silicon carbide-aluminum, or silicon carbide-silicon.
본 개시는 고온 환경에서도 휘지 않고 평탄도가 우수한 대면적 코팅 타입 고온 정전척을 제공할 수 있다. 일부 예들에서, 본 개시는 베이스 부재와 지지 부재 사이의 열팽창 계수에 대한 표준편차가 대략 0.01% 내지 대략 10%의 범위를 갖도록 베이스 부재와 지지 부재의 구조 및/또는 재료가 제공됨으로써, 대략 200℃ 내지 대략 800℃의 고온 환경에서, 베이스 부재와 지지 부재가 바이메탈과 유사하게 휘지 않게 되고, 이에 따라 평탄도가 우수한 대면적 코팅 타입 고온 정전척을 제공할 수 있다.The present disclosure may provide a large-area coating-type high-temperature electrostatic chuck that does not warp even in a high-temperature environment and has excellent flatness. In some examples, the present disclosure provides a structure and/or material of the base member and the support member such that the standard deviation for the coefficient of thermal expansion between the base member and the support member ranges from about 0.01% to about 10%, whereby the structure and/or material is provided at approximately 200°C. In a high-temperature environment of about 800° C. to about 800° C., the base member and the support member do not bend similarly to the bimetal, thereby providing a large-area coating-type high-temperature electrostatic chuck having excellent flatness.
또한, 본 개시는 베이스 부재 중에서 쿨링 라인을 갖는 하부 영역과 히팅 라인을 갖는 상부 영역의 사이에 열 차단 영역이 더 개재됨으로서, 하부 영역과 상부 영역의 설정 온도를 유지하는데 소비되는 에너지를 절감할 수 있는 고온 정전척을 제공할 수 있다. In addition, according to the present disclosure, a heat shielding region is further interposed between the lower region having a cooling line and an upper region having a heating line among the base member, so that energy consumed to maintain the set temperature of the lower region and the upper region can be reduced. It is possible to provide a high-temperature electrostatic chuck with
또한, 본 개시는 베이스 부재 상에 열 확산 영역이 더 제공됨으로서, 히팅 라인에 의한 열이 균일하게 확산되고, 이에 따라 지지 부재의 전체 영역이 균일한 온도를 갖는 고온 정전척을 제공할 수 있다.In addition, according to the present disclosure, since a heat diffusion region is further provided on the base member, heat by the heating line is uniformly spread, and thus, it is possible to provide a high-temperature electrostatic chuck having a uniform temperature over the entire area of the support member.
도 1은 본 개시에 따른 예시적 코팅 타입 고온 정전척을 도시한 단면도이다.1 is a cross-sectional view illustrating an exemplary coating type high temperature electrostatic chuck according to the present disclosure.
도 2a 내지 도 2d는 본 개시에 따른 예시적 코팅 타입 고온 정전척의 제조 방법을 도시한 개략도이다.2A-2D are schematic diagrams illustrating a method of manufacturing an exemplary coating type high temperature electrostatic chuck according to the present disclosure.
도 3a 내지 도 3c는 본 개시에 따른 다른 예시적 코팅 타입 고온 정전척을 도시한 단면도이다.3A to 3C are cross-sectional views illustrating another exemplary coating type high temperature electrostatic chuck according to the present disclosure.
도 4는 본 개시에 따른 다른 예시적 코팅 타입 고온 정전척을 도시한 단면도이다.4 is a cross-sectional view illustrating another exemplary coating type high temperature electrostatic chuck according to the present disclosure.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본 개시들은 당해 기술 분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위하여 제공되는 것이며, 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 오히려, 이들 실시예는 본 개시를 더욱 충실하고 완전하게 하고, 당업자에게 본 발명의 사상을 완전하게 전달하기 위하여 제공되는 것이다.The present disclosure is provided to more completely explain the present invention to those of ordinary skill in the art, and the following examples may be modified in various other forms, and the scope of the present invention is limited to the following examples It is not limited. Rather, these examples are provided so that this disclosure will be more thorough and complete, and will fully convey the spirit of the invention to those skilled in the art.
또한, 이하의 도면에서 각 층의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장된 것이며, 도면상에서 동일 부호는 동일한 요소를 지칭한다. 본 명세서에서 사용된 바와 같이, 용어 "및/또는"은 해당 열거된 항목 중 어느 하나 및 하나 이상의 모든 조합을 포함한다. 또한, 본 명세서에서 "연결된다"라는 의미는 A 부재와 B 부재가 직접 연결되는 경우뿐만 아니라, A 부재와 B 부재의 사이에 C 부재가 개재되어 A 부재와 B 부재가 간접 연결되는 경우도 의미한다.In addition, in the following drawings, the thickness or size of each layer is exaggerated for convenience and clarity of description, and the same reference numerals in the drawings refer to the same elements. As used herein, the term “and/or” includes any one and any combination of one or more of those listed items. In addition, in the present specification, "connected" means not only when member A and member B are directly connected, but also when member A and member B are indirectly connected by interposing member C between member A and member B. do.
본 명세서에서 사용된 용어는 특정 실시예를 설명하기 위하여 사용되며, 본 발명을 제한하기 위한 것이 아니다. 본 명세서에서 사용된 바와 같이, 단수 형태는 문맥상 다른 경우를 분명히 지적하는 것이 아니라면, 복수의 형태를 포함할 수 있다. 또한, 본 명세서에서 사용되는 경우 "포함한다(comprise, include)" 및/또는 "포함하는(comprising, including)"은 언급한 형상들, 숫자, 단계, 동작, 부재, 요소 및/또는 이들 그룹의 존재를 특정하는 것이며, 하나 이상의 다른 형상, 숫자, 동작, 부재, 요소 및 /또는 그룹들의 존재 또는 부가를 배제하는 것이 아니다.The terminology used herein is used to describe specific embodiments, not to limit the present invention. As used herein, the singular form may include the plural form unless the context clearly dictates otherwise. Also, as used herein, “comprise, include” and/or “comprising, including” refer to the referenced shapes, numbers, steps, actions, members, elements and/or groups thereof. It specifies the presence and does not exclude the presence or addition of one or more other shapes, numbers, movements, members, elements and/or groups.
본 명세서에서 제1, 제2 등의 용어가 다양한 부재, 부품, 영역, 층들 및/또는 부분들을 설명하기 위하여 사용되지만, 이들 부재, 부품, 영역, 층들 및/또는 부분들은 이들 용어에 의해 한정되어서는 안 됨은 자명하다. 이들 용어는 하나의 부재, 부품, 영역, 층 또는 부분을 다른 영역, 층 또는 부분과 구별하기 위하여만 사용된다. 따라서, 이하 상술할 제1부재, 부품, 영역, 층 또는 부분은 본 발명의 가르침으로부터 벗어나지 않고서도 제2부재, 부품, 영역, 층 또는 부분을 지칭할 수 있다.Although the terms first, second, etc. are used herein to describe various members, parts, regions, layers and/or parts, these members, parts, regions, layers, and/or parts are limited by these terms, so that It is self-evident that These terms are used only to distinguish one member, component, region, layer or portion from another region, layer or portion. Accordingly, a first member, component, region, layer, or portion discussed below may refer to a second member, component, region, layer or portion without departing from the teachings of the present invention.
"하부(beneath)", "아래(below)", "낮은(lower)", "상부(above)", "위(upper)"와 같은 공간에 관련된 용어가 도면에 도시된 한 요소 또는 특징과 다른 요소 또는 특징의 용이한 이해를 위해 이용될 수 있다. 이러한 공간에 관련된 용어는 본 발명의 다양한 공정 상태 또는 사용 상태에 따라 본 발명의 용이한 이해를 위한 것이며, 본 발명을 한정하기 위한 것은 아니다. 예를 들어, 도면의 요소 또는 특징이 뒤집어지면, "하부" 또는 "아래"로 설명된 요소 또는 특징은 "상부" 또는 "위에"로 된다. 따라서, "아래"는 "상부" 또는 "아래"를 포괄하는 개념이다.Space-related terms such as “beneath”, “below”, “lower”, “above”, and “upper” refer to an element or feature shown in the drawings and It may be used to facilitate understanding of other elements or features. These space-related terms are for easy understanding of the present invention according to various process conditions or usage conditions of the present invention, and are not intended to limit the present invention. For example, if an element or feature in a figure is turned over, an element or feature described as "below" or "below" becomes "above" or "above". Accordingly, "below" is a concept encompassing "above" or "below".
도 1에 도시된 예에서, 본 개시에 따른 예시적 코팅 타입 고온 정전척(100)은 베이스 부재(110) 및 지지 부재(120)를 포함할 수 있다.In the example shown in FIG. 1 , an exemplary coating type high temperature electrostatic chuck 100 according to the present disclosure may include a base member 110 and a support member 120 .
베이스 부재(110)는 폭이 상대적으로 큰 하부 영역(112)과, 하부 영역(112) 상에 폭이 상대적으로 작은 상부 영역(114)을 포함할 수 있다. 일부 예들에서, 하부 영역(112)에는 다수의 쿨링 라인(111)이 소정 피치를 가지며 제공될 수 있고, 상부 영역(114)에는 히팅 라인(113)이 소정 피치를 가지며 제공될 수 있다. 쿨링 라인(111)에는 쿨링 매체가 흘러 베이스 부재(110)의 하부 영역(112)을 소정 온도까지 쿨링시킬 수 있고, 히팅 라인(113)에는 전류가 흘러 베이스 부재(110)의 상부 영역(114)을 소정 온도까지 히팅시킬 수 있다. 일부 예들에서, 히팅 라인(113)은 니켈-크롬 열선과, 이를 감싸는 절연체로 이루어질 수 있다.The base member 110 may include a lower region 112 having a relatively large width and an upper region 114 having a relatively small width on the lower region 112 . In some examples, a plurality of cooling lines 111 may be provided with a predetermined pitch in the lower region 112 , and heating lines 113 may be provided in the upper region 114 with a predetermined pitch. A cooling medium flows through the cooling line 111 to cool the lower region 112 of the base member 110 to a predetermined temperature, and a current flows through the heating line 113 to the upper region 114 of the base member 110 . can be heated to a predetermined temperature. In some examples, the heating line 113 may be formed of a nickel-chromium hot wire and an insulator surrounding it.
일부 예들에서, 베이스 부재(110)는 순수 티타늄 또는 티타늄 합금으로 제공될 수 있다. 순수 티타늄의 경우 열팽창 계수(Thermal Exapansion Coefficient, 단위는 m/m℃)는 대략 8.6 x 10-6일 수 있고, 티타늄 합금의 경우 열팽창 계수는 대략 9.4 x 10-6일 수 있다.In some examples, the base member 110 may be provided of pure titanium or a titanium alloy. In the case of pure titanium, the coefficient of thermal expansion (Thermal Expansion Coefficient, unit m/m°C) may be about 8.6 x 10 -6 , and in the case of titanium alloy, the thermal expansion coefficient may be about 9.4 x 10 -6 .
지지 부재(120)는 베이스 상에 본딩층없이 직접 제공될 수 있다. 일부 예들에서, 지지 부재(120)는 제1유전층(121), 전극층(123) 및 제2유전층(122)을 포함할 수 있다. 제1유전층(121)은 베이스 부재(110) 상에 본딩층없이 직접 코팅되어 제공될 수 있다. 전극층(123)은 제1유전층(121) 상에 제공될 수 있다. 제2유전층(122)은 제1유전층(121) 및 전극층(123) 상에 코팅되어 제공될 수 있다.The support member 120 may be provided directly on the base without a bonding layer. In some examples, the support member 120 may include a first dielectric layer 121 , an electrode layer 123 , and a second dielectric layer 122 . The first dielectric layer 121 may be provided by being directly coated on the base member 110 without a bonding layer. The electrode layer 123 may be provided on the first dielectric layer 121 . The second dielectric layer 122 may be coated on the first dielectric layer 121 and the electrode layer 123 .
일부 예들에서, 제1유전층(121)은 베이스 부재(110) 상에 상압 플라즈마 스프레이 방식으로 직접 코팅되어 제공될 수 있다. 일부 예들에서, 제2유전층(122)은 전극층(123) 및 제1유전층(121) 상에 상압 플라즈마 스프레이 방식으로 직접 코팅될 수 있다. 일부 예들에서, 상압 플라즈마 스프레이 방식 외에 에어로졸 데포지션, 아크 스프레이, 고속 산소연료 스프레이, 콜드 스프레이 또는 플레임 스프레이의 방식이 이용될 수 있다.In some examples, the first dielectric layer 121 may be directly coated on the base member 110 by atmospheric pressure plasma spraying. In some examples, the second dielectric layer 122 may be directly coated on the electrode layer 123 and the first dielectric layer 121 by atmospheric pressure plasma spraying. In some examples, methods of aerosol deposition, arc spray, high velocity oxyfuel spray, cold spray or flame spray may be used in addition to atmospheric pressure plasma spraying.
일부 예들에서, 제1,2유전층(121,122)중 적어도 하나는 세라믹으로 제공될 수 있다. 일부 예들에서, 제1,2유전층(121,122)중 적어도 하나는 지르코니아(ZrO2), 산화베릴륨(BeO), 산화알루미늄(Al2O3), 질화알루미늄(AlN), 실리콘카바이드(SiC), 질화실리콘(Si3N4) 또는 티탄산알루미늄(Al2TiO5)을 포함할 수 있다. 일부 예들에서, 제1,2유전층(121,122)중 적어도 하나는 산화이트륨(Y2O3) 또는 산불화이트륨(YOF)을 포함할 수 있다.In some examples, at least one of the first and second dielectric layers 121 and 122 may be made of ceramic. In some examples, at least one of the first and second dielectric layers 121 and 122 may include zirconia (ZrO2), beryllium oxide (BeO), aluminum oxide (Al2O3), aluminum nitride (AlN), silicon carbide (SiC), or silicon nitride (Si3N4). or aluminum titanate (Al2TiO5). In some examples, at least one of the first and second dielectric layers 121 and 122 may include yttrium oxide (Y2O3) or yttrium oxide (YOF).
일부 예들에서, 지르코니아의 열팽창 계수는 대략 11 x 10-6이다. 일부 예들에서, 산화베릴륨의 열팽창 계수는 대략 8 x 10-6이다. 일부 예들에서, 산화알루미늄의 열팽창 계수는 대략 7.3 x 10-6이다. 일부 예들에서, 질화알루미늄의 열팽창 계수는 대략 4.4 x 10-6이다. 일부 예들에서, 실리콘카바이드의 열팽창 계수는 대략 3.7 x 10-6이다. 일부 예들에서, 질화알루미늄의 열팽창 계수는 대략 3.4 x 10-6이다. 일부 예들에서, 티탄산알루미늄의 열팽창 계수는 대략 1 x 10-6이다. 일부 예들에서, 산화이트륨 및 산불화이트륨의 열팽창 계수는 대략 10 내지 대략 10.5 x 10-6이다.In some examples, the coefficient of thermal expansion of zirconia is approximately 11×10 −6 . In some examples, the coefficient of thermal expansion of beryllium oxide is approximately 8×10 −6 . In some examples, the coefficient of thermal expansion of aluminum oxide is approximately 7.3 x 10 -6 . In some examples, the coefficient of thermal expansion of aluminum nitride is approximately 4.4 x 10 -6 . In some examples, the coefficient of thermal expansion of silicon carbide is approximately 3.7 x 10 -6 . In some examples, the coefficient of thermal expansion of aluminum nitride is approximately 3.4×10 −6 . In some examples, the coefficient of thermal expansion of aluminum titanate is approximately 1×10 −6 . In some examples, the coefficient of thermal expansion of yttrium oxide and yttrium oxide fluoride is between about 10 and about 10.5 x 10 -6 .
일부 예들에서, 베이스 부재(110) 및/또는 지지 부재(120)는 디스플레이용 글래스를 위한 것일 경우 상부에서 보았을 때 대략 사각 형태로 제공될 수 있고 반도체용 웨이퍼를 위한 것일 경우 상부에서 보았을 때 대략 원 형태로 제공될 수 있다.In some examples, the base member 110 and/or the support member 120 may be provided in an approximately square shape when viewed from the top for a display glass and approximately circular when viewed from the top for a semiconductor wafer. may be provided in the form.
일부 예들에서, 정전척이 디스플레이 제조용으로 이용될 경우, 지지 부재(120)중 한변의 길이는 대략 400mm 내지 대략 3500mm일 수 있다. 일부 예들에서, 정전척이 반도체 제조용으로 이용될 경우, 지지 부재(120)의 직경은 대략 100mm 내지 대략 400mm일 수 있다.In some examples, when the electrostatic chuck is used for manufacturing a display, the length of one side of the support member 120 may be about 400 mm to about 3500 mm. In some examples, when the electrostatic chuck is used for manufacturing a semiconductor, the diameter of the support member 120 may be about 100 mm to about 400 mm.
일부 예들에서, 정전척은 대략 200℃ 내지 대략 800℃의 온도 범위에서 사용될 수 있다. 일부 예들에서, 베이스 부재(110)와 지지 부재(120) 사이의 열팽창 계수의 표준편차(standard deviation)는 대략 0.01% 내지 대략 10%일 수 있다. 따라서, 정전척의 사용 온도인 대략 200℃ 내지 대략 800℃의 범위에서, 베이스 부재(110)와 지지 부재(120) 사이의 열팽창 계수 차이로 인한 휨 현상이 최소화될 수 있고, 이에 따라 고온 환경에서 정전척의 평평도가 우수하게 유지될 수 있다.In some examples, the electrostatic chuck may be used in a temperature range of approximately 200°C to approximately 800°C. In some examples, the standard deviation of the coefficient of thermal expansion between the base member 110 and the support member 120 may be between approximately 0.01% and approximately 10%. Accordingly, in the range of about 200° C. to about 800° C., which is the operating temperature of the electrostatic chuck, a warping phenomenon due to a difference in the coefficient of thermal expansion between the base member 110 and the support member 120 may be minimized, and accordingly, electrostatic discharge in a high-temperature environment The flatness of the chuck can be maintained excellently.
일부 예들에서, 베이스 부재(110)가 순수 티타늄(CTE: 8.6)으로 제공되고, 지지 부재(120)를 구성하는 제1,2유전층(121,122)이 산화베릴륨(CTE: 8)으로 제공될 경우, CTE의 표준편차는 대략 0.4%일 수 있다. 일부 예들에서, 베이스 부재(110)가 순수 티타늄(CTE: 8.6)으로 제공되고, 지지 부재(120)를 구성하는 제1,2유전층(121,122)이 산화알루미늄(CTE: 7.3)으로 제공될 경우, CTE의 표준편차는 대략 0.9%일 수 있다. In some examples, when the base member 110 is provided with pure titanium (CTE: 8.6) and the first and second dielectric layers 121 and 122 constituting the support member 120 are provided with beryllium oxide (CTE: 8), The standard deviation of the CTE may be approximately 0.4%. In some examples, when the base member 110 is provided with pure titanium (CTE: 8.6) and the first and second dielectric layers 121 and 122 constituting the support member 120 are provided with aluminum oxide (CTE: 7.3), The standard deviation of the CTE may be approximately 0.9%.
일부 예들에서, 베이스 부재(110)가 티타늄 합금(CTE: 9.4)으로 제공되고, 지지 부재(120)를 구성하는 제1,2유전층(121,122)이 산화베릴륨(CTE: 8)으로 제공될 경우, CTE의 표준편차는 대략 1%일 수 있다. 일부 예들에서, 베이스 부재(110)가 티타늄 합금(CTE: 9.4)으로 제공되고, 지지 부재(120)를 구성하는 제1,2유전층(121,122)이 산화알루미늄(CTE: 7.3)으로 제공될 경우, CTE의 표준편차는 대략 1.5%일 수 있다. In some examples, when the base member 110 is provided with a titanium alloy (CTE: 9.4) and the first and second dielectric layers 121 and 122 constituting the support member 120 are provided with beryllium oxide (CTE: 8), The standard deviation of the CTE may be approximately 1%. In some examples, when the base member 110 is provided with a titanium alloy (CTE: 9.4), and the first and second dielectric layers 121 and 122 constituting the support member 120 are provided with aluminum oxide (CTE: 7.3), The standard deviation of the CTE may be approximately 1.5%.
일부 예들에서, 베이스 부재(110)가 티타늄 합금(CTE: 9.4)으로 제공되고, 지지 부재(120)를 구성하는 제1,2유전층(121,122)이 산화이트륨(CTE: 10)으로 제공될 경우, CTE의 표준편차는 대략 1.9%일 수 있다.In some examples, when the base member 110 is provided with a titanium alloy (CTE: 9.4) and the first and second dielectric layers 121 and 122 constituting the support member 120 are provided with yttrium oxide (CTE: 10), The standard deviation of the CTE may be approximately 1.9%.
이와 같이 하여, 본 개시에 따른 정전척은 대략 200℃ 내지 대략 800℃의 고온 환경에서 사용되어도, 베이스 부재(110)와 지지 부재(120) 사이의 열팽창 계수의 표준편차가 대략 2%보다 작기 때문에, 휨 현상이 거의 일어나지 않고 우수한 평탄도를 유지할 수 있다.In this way, even when the electrostatic chuck according to the present disclosure is used in a high temperature environment of about 200° C. to about 800° C., the standard deviation of the coefficient of thermal expansion between the base member 110 and the support member 120 is less than about 2%. , it is possible to maintain excellent flatness with almost no warpage.
한편, 종래와 같이 베이스 부재(110)가 알루미늄(CTE: 23)으로 제공되고, 지지 부재(120)를 구성하는 제1,2유전층(121,122)이 산화알루미늄(CTE: 7.3)으로 제공될 경우, CTE의 표준편차는 대략 11%이다. 이 경우, 정전척이 상술한 고온 환경에서 사용될 경우, 베이스 부재(110)와 지지 부재(120) 사이의 CTE 차이로 인해 휨 현상이 크게 발생하고, 따라서 평탄도가 나빠져 디스플레이용 글래스 또는 반도체용 웨이퍼를 정전척이 강한 힘으로 고정할 수 없게 된다.Meanwhile, as in the prior art, when the base member 110 is provided with aluminum (CTE: 23), and the first and second dielectric layers 121 and 122 constituting the support member 120 are provided with aluminum oxide (CTE: 7.3), The standard deviation of the CTE is approximately 11%. In this case, when the electrostatic chuck is used in the above-described high-temperature environment, a warpage phenomenon occurs greatly due to a difference in CTE between the base member 110 and the support member 120 , and thus flatness is deteriorated for display glass or semiconductor wafer. The electrostatic chuck cannot be fixed with strong force.
도 2a 내지 도 2d는 본 개시에 따른 예시적 코팅 타입 고온 정전척(100)의 제조 방법을 도시한 개략도이다. 2A-2D are schematic diagrams illustrating a method of manufacturing an exemplary coating-type high-temperature electrostatic chuck 100 according to the present disclosure.
도 2a는 본 개시에 따른 예시적 코팅 타입 고온 정전척(100)의 제조 초기 단계를 도시한 것이다. 하부 영역(112)에 다수의 쿨링 라인(111)이 구비되고, 상부 영역(114)에 다수의 히팅 라인(113)이 구비된 베이스 부재(110)가 제공될 수 있다. 일부 예들에서, 베이스 부재(110)는 순수 티타늄 또는 티타늄 합금으로 제공될 수 있다.2A illustrates an initial stage of manufacturing an exemplary coating type high temperature electrostatic chuck 100 according to the present disclosure. The base member 110 in which a plurality of cooling lines 111 are provided in the lower region 112 and a plurality of heating lines 113 in the upper region 114 may be provided. In some examples, the base member 110 may be provided of pure titanium or a titanium alloy.
도 2b는 본 개시에 따른 예시적 코팅 타입 고온 정전척(100)의 제조 후기 단계를 도시한 것이다. 베이스 부재(110) 상에 제1유전층(121)이 직접 코팅될 수 있다. 일부 예들에서, 산화알루미늄 파우더를 상압 플라즈마 스프레이 방식으로 베이스 부재(110) 상에 코팅할 수 있다. 이에 따라, 베이스 부재(110)와 제1유전층(121)의 사이에 본딩층이 존재하지 않고, 베이스 부재(110) 상에 직접 제1유전층(121)이 제공될 수 있다. 도면중 미설명 부호 150은 파우더 스프레이 노즐이다.2B illustrates a later stage of manufacture of an exemplary coated-type high-temperature electrostatic chuck 100 according to the present disclosure. The first dielectric layer 121 may be directly coated on the base member 110 . In some examples, aluminum oxide powder may be coated on the base member 110 by atmospheric pressure plasma spraying. Accordingly, there is no bonding layer between the base member 110 and the first dielectric layer 121 , and the first dielectric layer 121 may be provided directly on the base member 110 . Reference numeral 150 in the drawings denotes a powder spray nozzle.
도 2c는 본 개시에 따른 예시적 코팅 타입 고온 정전척(100)의 제조 후기 단계를 도시한 것이다. 제1유전층(121) 상에 전극층(123)이 제공될 수 있다. 전극층(123) 역시 도금 방식 또는 상술한 다양한 스프레이 방식으로 제공될 수 있다. 전극층(123)은 텅스텐(W) 및/또는 티타늄(Ti)을 포함할 수 있다.2C illustrates a later stage of manufacture of an exemplary coating type high temperature electrostatic chuck 100 according to the present disclosure. An electrode layer 123 may be provided on the first dielectric layer 121 . The electrode layer 123 may also be provided by a plating method or various spray methods described above. The electrode layer 123 may include tungsten (W) and/or titanium (Ti).
도 2d는 본 개시에 따른 예시적 코팅 타입 고온 정전척(100)의 제조 후기 단계를 도시한 것이다. 제1유전층(121) 및 전극층(123) 상에 제2유전층(122)이 직접 코팅될 수 있다. 일부 예들에서, 산화알루미늄 파우더를 상압 플라즈마 스프레이 방식으로 제1유전층(121) 및 전극층(123) 상에 코팅할 수 있다. 여기서, 제1유전층(121), 전극층(123) 및 제2유전층(122)이 지지 부재(120)로 정의 또는 지칭될 수 있다.2D illustrates a later stage of manufacture of an exemplary coated-type high-temperature electrostatic chuck 100 according to the present disclosure. The second dielectric layer 122 may be directly coated on the first dielectric layer 121 and the electrode layer 123 . In some examples, aluminum oxide powder may be coated on the first dielectric layer 121 and the electrode layer 123 by atmospheric pressure plasma spraying. Here, the first dielectric layer 121 , the electrode layer 123 , and the second dielectric layer 122 may be defined or referred to as the support member 120 .
이와 같이, 베이스 부재(110)는 티타늄을 포함하고, 지지 부재(120)는 산화알루미늄을 포함함으로써, 베이스 부재(110)와 지지 부재(120)의 열팽창 계수의 표준편차가 대략 2%보다 작게 되고, 따라서 대략 200℃ 내지 대략 800℃의 고온 환경에서 정전척이 사용되어도, 베이스 부재(110)와 지지 부재(120)의 휨 현상이 거의 일어나지 않고 우수한 평탄도를 유지하게 된다. 따라서, 정전척에 의한 글래스 또는 웨이퍼의 고정력이 우수하게 유지될 수 있다.As such, since the base member 110 includes titanium and the support member 120 includes aluminum oxide, the standard deviation of the coefficients of thermal expansion between the base member 110 and the support member 120 is less than approximately 2%. Therefore, even when the electrostatic chuck is used in a high temperature environment of about 200° C. to about 800° C., the bending phenomenon of the base member 110 and the support member 120 hardly occurs and excellent flatness is maintained. Accordingly, the holding force of the glass or wafer by the electrostatic chuck may be excellently maintained.
도 3a 내지 도 3c는 본 개시에 따른 다른 예시적 코팅 타입 고온 정전척(200A,200B,200C)을 도시한 단면도이다.3A to 3C are cross-sectional views illustrating other exemplary coating-type high-temperature electrostatic chucks 200A, 200B, and 200C according to the present disclosure.
도 3a 내지 도 3c에 도시된 바와 같이, 본 개시에 따른 다른 예시적 코팅 타입 고온 정전척(200A,200B,200C)은, 특히, 베이스 부재(110)는 쿨링 라인(111)(하부 영역 또는 쿨링 영역(112))과 히팅 라인(113)(상부 영역 또는 히팅 영역(114))의 사이에 개재된 열 차단 영역(230A,230B,230C)을 더 포함할 수 있다. 3A to 3C , other exemplary coating-type high-temperature electrostatic chucks 200A, 200B, and 200C according to the present disclosure, in particular, the base member 110 includes a cooling line 111 (a lower region or cooling system). It may further include thermal blocking regions 230A, 230B, and 230C interposed between the region 112) and the heating line 113 (the upper region or the heating region 114).
일부 예들에서, 하부 영역(112)은 쿨링 라인(111)으로 인해 대략 60℃의 온도로 유지될 수 있고, 상부 영역(114)은 히팅 라인(113)으로 인해 대략 600℃의 온도로 유지될수 있다. 그런데, 하부 영역(112)과 상부 영역(114)이 직접 연결되어 있으면, 상호간 열 에너지가 교환됨으로서, 하부 영역(112) 및 상부 영역(114)의 설정 온도를 각각 유지하기 위해 더 많은 에너지가 투입할 필요가 있다.In some examples, the lower region 112 may be maintained at a temperature of approximately 60° C. due to the cooling line 111 , and the upper region 114 may be maintained at a temperature of approximately 600° C. due to the heating line 113 . . However, when the lower region 112 and the upper region 114 are directly connected, thermal energy is exchanged with each other, so that more energy is input to maintain the set temperature of the lower region 112 and the upper region 114, respectively. Needs to be.
그러나, 상술한 바와 같이 쿨링 라인(111)과 히팅 라인(113) 사이에 열 차단 영역(230A,230B,230C)이 개재되면, 쿨링 라인(111)과 히팅 라인(113)의 사이에서 열 에너지의 흐름이 차단되어, 하부 영역(112) 및 상부 영역(114)의 설정 온도를 각각 유지하기 위한 에너지를 더 투입할 수 있다.However, as described above, when the heat blocking regions 230A, 230B, and 230C are interposed between the cooling line 111 and the heating line 113 , the thermal energy between the cooling line 111 and the heating line 113 is Since the flow is blocked, energy for maintaining the set temperatures of the lower region 112 and the upper region 114 may be further input.
일부 예들에서, 열 차단 영역(230A,230B,230C)은 캐비티(cavity)를 포함하거나, 캐비티 및 여기에 충진된 단열재(예를 들면, 에어로겔, 펄라이트, 발포 유리, 미네랄울, 글래스울 등) 또는 캐비티 및 여기에 충진된 금속-세라믹 복합체(MMC)를 포함할 수 있다. In some examples, the thermal barrier regions 230A, 230B, 230C include a cavity, or a cavity and an insulating material filled therein (eg, airgel, perlite, foamed glass, mineral wool, glass wool, etc.) or a cavity and a metal-ceramic composite (MMC) filled therein.
도 3a에 도시된 정전척(200A)에서, 열 차단 영역(230A)은 쿨링 라인(111)과 히팅 라인(113) 사이에 수평 방향으로 길게 하나가 제공될 수 있다. 도 3b에 도시된 정전척(200B)에서, 열 차단 영역(230B)은 쿨링 라인(111)과 히팅 라인(113) 사이에 수평 방향으로 다수가 제공될 수 있다. 도 3c에 도시된 정전척(200C)에서, 열 차단 영역(230C)은 쿨링 라인(111)과 히팅 라인(113) 사이에 수평 방향으로 다수가 제공되되, 하부 영역(112)과 상부 영역(114)은 열 차단 영역(230C) 사이의 연결 영역(115)을 통해 서로 연결될 수 있다.In the electrostatic chuck 200A illustrated in FIG. 3A , one heat blocking region 230A may be provided horizontally between the cooling line 111 and the heating line 113 . In the electrostatic chuck 200B shown in FIG. 3B , a plurality of heat blocking regions 230B may be provided in a horizontal direction between the cooling line 111 and the heating line 113 . In the electrostatic chuck 200C shown in FIG. 3C , a plurality of heat blocking regions 230C are provided in a horizontal direction between the cooling line 111 and the heating line 113 , and the lower region 112 and the upper region 114 are provided. ) may be connected to each other through the connection region 115 between the heat blocking regions 230C.
이와 같이 하여 본 개시는 쿨링 라인(111)과 히팅 라인(113)의 사이에 열 차단 영역(230A,230B,230C)이 더 개재됨으로써, 쿨링 라인(111)에 의한 하부 영역(112)의 설정 온도 유지와 히팅 라인(113)에 의한 상부 영역(114)의 설정 온도 유지에 상대적으로 적은 에너지(예를 들면, 전기 에너지)를 필요로 한다.In this way, the present disclosure further interposes the heat blocking regions 230A, 230B, and 230C between the cooling line 111 and the heating line 113, so that the set temperature of the lower region 112 by the cooling line 111 is Relatively little energy (eg, electrical energy) is required to maintain and maintain the set temperature of the upper region 114 by the heating line 113 .
도 4는 본 개시에 따른 다른 예시적 코팅 타입 고온 정전척(300)을 도시한 단면도이다.4 is a cross-sectional view illustrating another exemplary coating type high temperature electrostatic chuck 300 according to the present disclosure.
도 4에 도시된 예에서, 본 개시에 따른 다른 예시적 코팅 타입 고온 정전척(300)은 베이스 부재(110)와 지지 부재(120) 사이에 개재된 열 확산 영역(340)을 더 포함할 수 있다. In the example shown in FIG. 4 , another exemplary coating type high temperature electrostatic chuck 300 according to the present disclosure may further include a heat diffusion region 340 interposed between the base member 110 and the support member 120 . have.
일부 예들에서, 히팅 라인(113)은 소정 피치를 가지며 배열되어 있으므로, 베이스 부재(110)의 상부 영역(114)은 영역마다 온도에 차이가 있을 수 있다. 예를 들면, 히팅 라인(113)과 가까운 영역의 온도는 상대적으로 높고, 히팅 라인(113)과 먼 영역의 온도는 상대적으로 낮을 수 있다.In some examples, since the heating lines 113 are arranged with a predetermined pitch, the temperature of the upper region 114 of the base member 110 may be different for each region. For example, the temperature of the region close to the heating line 113 may be relatively high, and the temperature of the region far from the heating line 113 may be relatively low.
열 확산 영역(340)은 베이스 부재(110) 상에 제공될 수 있다. 일부 예들에서, 열 확산 영역(340)은 히팅 라인(113)이 구비된 상부 영역(114)과 지지 부재(120)의 사이에 개재됨으로서, 영역별 온도 차이를 감소시킬 수 있다. 일부 예들에서, 열 확산 영역(340)은 베이스 부재(110)의 열전도율보다 높은 열전도율을 갖는 재료로 제공될 수 있다. 일부 예들에서, 열 확산 영역(340)은 실리콘카바이드, 알루미늄질화물, 금속-세라믹 복합체, 실리콘카바이드-알루미늄, 실리콘카바이드-실리콘 또는 금속-세라믹 복합체(MMC)로 제공될 수 있다. 일부 예들에서, 열 확산 영역(340)의 열전도율(단위: W/mK)은 대략 100보다 높을 수 있다. 일례로, 실리콘카바이드의 열전도율은 대략 190이고, 알루미늄질화물의 열전도율은 대략 275이다. 여기서, 베이스 부재(110)가 순수 티타늄 또는 티타늄 합금으로 제공될 경우, 열전도율은 대략 17이다. The heat diffusion region 340 may be provided on the base member 110 . In some examples, the heat diffusion region 340 is interposed between the upper region 114 provided with the heating line 113 and the support member 120 , thereby reducing a temperature difference for each region. In some examples, the heat diffusion region 340 may be formed of a material having a higher thermal conductivity than that of the base member 110 . In some examples, the thermal diffusion region 340 may be provided of silicon carbide, aluminum nitride, metal-ceramic composite, silicon carbide-aluminum, silicon carbide-silicon, or metal-ceramic composite (MMC). In some examples, the thermal conductivity (unit: W/mK) of the thermal diffusion region 340 may be greater than approximately 100. For example, the thermal conductivity of silicon carbide is approximately 190, and the thermal conductivity of aluminum nitride is approximately 275. Here, when the base member 110 is provided with pure titanium or a titanium alloy, the thermal conductivity is about 17.
따라서, 열전도율이 낮는 베이스 부재(110) 상에 열전도율이 높은 열 확산 영역(340)이 제공됨으로서, 히팅 라인(113)에 의한 베이스 부재(110)의 상부 영역(114)에 대한 온도 편차가 감소되고, 베이스 부재(110)에 구비된 상부 영역(114)의 전체에 대하여 균일한 온도 유지가 가능하다. 즉, 글래스 또는 웨이퍼를 고정하는 지지 부재(120)의 온도가 영역별 편차없이 균일하게 이루어짐으로써, 제조 공정 상의 온도 편차로 인한 다양한 문제(온도에 따른 증착율 또는 식각율의 차이)가 발생하지 않게 된다.Accordingly, since the heat diffusion region 340 having high thermal conductivity is provided on the base member 110 having low thermal conductivity, the temperature deviation with respect to the upper region 114 of the base member 110 by the heating line 113 is reduced and , it is possible to maintain a uniform temperature over the entire upper region 114 provided in the base member 110 . That is, since the temperature of the support member 120 for fixing the glass or wafer is made uniformly without deviation by region, various problems (difference in deposition rate or etching rate according to temperature) due to temperature deviation in the manufacturing process do not occur. .
일부 예들에서, 제2유전층(122) 상에 내플라즈마 코팅층이 더 제공될 수 있다. 일부 예들에서, 내플라즈마 코팅층은 세라믹 분말을 제2유전층 상에 아크 스프레이(Arc Spray), HVOF(High Velocity Oxy-Fuel Spraying), 플라즈마스프레이(Plasma Spray), 콜드스프레이(Cold Spray), 플레임스프레이(Flame Spray), 에어로졸디포지션(Aerosol Deposion) 등의 방법을 이용하여 형성될 수 있다. 일부 예들에서, 세라믹 분말은 식각 환경에 강인한 이트륨 계열 산화물, 불화물, 질화물, Y2O3-Al2O3계열 화합물(YAG, YAP, YAM), B4C, ZrO2, 알루미나(Al2O3 )로 이루어진 그룹으로부터 선택된 1종 또는 2종의 혼합물일 수 있다.In some examples, a plasma-resistant coating layer may be further provided on the second dielectric layer 122 . In some examples, the plasma coating layer is a ceramic powder on the second dielectric layer arc spray (Arc Spray), HVOF (High Velocity Oxy-Fuel Spraying), plasma spray (Plasma Spray), cold spray (Cold Spray), flame spray ( Flame Spray), it may be formed using a method such as aerosol deposition (Aerosol Deposition). In some examples, the ceramic powder is an etchant-resistant yttrium-based oxide, fluoride, nitride, Y 2 O 3 -Al 2 O 3 based compound (YAG, YAP, YAM), B 4 C, ZrO 2 , alumina (Al 2 O) 3 ) may be one or a mixture of two selected from the group consisting of.
이상에서 설명한 것은 본 발명에 따른 코팅 타입 고온 정전척을 실시하기 위한 하나의 실시예에 불과한 것으로서, 본 발명은 상기한 실시예에 한정되지 않고, 이하의 특허청구범위에서 청구하는 바와 같이 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변경 실시가 가능한 범위까지 본 발명의 기술적 정신이 있다고 할 것이다.What has been described above is only one embodiment for implementing the coating-type high-temperature electrostatic chuck according to the present invention, and the present invention is not limited to the above-described embodiment, and as claimed in the claims below, the present invention Without departing from the gist, it will be said that the technical spirit of the present invention exists to the extent that various modifications can be made by anyone with ordinary knowledge in the field to which the invention pertains.
Claims (27)
- 베이스 부재; 및base member; and상기 베이스 부재 상에 본딩층없이 직접 코팅된 제1유전층과, 상기 제1유전층 상에 형성된 전극층과, 상기 제1유전층 및 상기 전극층 상에 코팅된 제2유전층으로 이루어진 지지 부재를 포함하고,A support member comprising a first dielectric layer directly coated on the base member without a bonding layer, an electrode layer formed on the first dielectric layer, and a second dielectric layer coated on the first dielectric layer and the electrode layer,상기 베이스 부재와 상기 지지 부재 사이의 열팽창 계수의 표준편차는 0.01% 내지 10%인, 코팅 타입 고온 정전척.The standard deviation of the coefficient of thermal expansion between the base member and the support member is 0.01% to 10%.
- 제 1 항에 있어서,The method of claim 1,상기 코팅 타입 고온 정전척은 200℃ 내지 800℃의 범위에서 사용되는, 코팅 타입 고온 정전척.The coating-type high-temperature electrostatic chuck is used in a range of 200°C to 800°C.
- 제 1 항에 있어서,The method of claim 1,상기 베이스 부재 및 상기 지지 부재는 상부에서 보았을 때 사각형 또는 원형인, 코팅 타입 고온 정전척.wherein the base member and the support member are rectangular or circular when viewed from above.
- 제 1 항에 있어서,The method of claim 1,상기 지지 부재중 한변의 길이는 400mm 내지 3500mm이거나, 또는 상기 지지 부재의 직경은 100mm 내지 400mm인, 코팅 타입 고온 정전척.The length of one side of the support member is 400mm to 3500mm, or the diameter of the support member is 100mm to 400mm, a coating type high temperature electrostatic chuck.
- 제 1 항에 있어서,The method of claim 1,상기 제1유전층은 베이스 부재 상에 상압 플라즈마 스프레이 방식으로 직접 코팅된, 코팅 타입 고온 정전척.The first dielectric layer is directly coated on the base member by atmospheric pressure plasma spray method, a coating type high-temperature electrostatic chuck.
- 제 1 항에 있어서,The method of claim 1,상기 제2유전층은 상기 전극층 및 상기 제1유전층 상에 상압 플라즈마 스프레이 방식으로 직접 코팅된, 코팅 타입 고온 정전척.and the second dielectric layer is directly coated on the electrode layer and the first dielectric layer by atmospheric pressure plasma spraying.
- 제 1 항에 있어서,The method of claim 1,상기 베이스 부재는 the base member하부 영역에 형성된 쿨링 라인; 및a cooling line formed in the lower region; and상부 영역에 형성된 히팅 라인을 더 포함하는, 코팅 타입 고온 정전척.Coating type high temperature electrostatic chuck further comprising a heating line formed in the upper region.
- 제 1 항에 있어서,The method of claim 1,상기 제2유전층상에 형성된 내플라즈마 코팅층을 더 포함하는, 코팅 타입 고온 정전척.A coating-type high-temperature electrostatic chuck further comprising a plasma-resistant coating layer formed on the second dielectric layer.
- 베이스 부재; 및base member; and상기 베이스 부재 상에 본딩층없이 직접 코팅된 제1유전층과, 상기 제1유전층 상에 형성된 전극층과, 상기 제1유전층 및 상기 전극층 상에 코팅된 제2유전층으로 이루어진 지지 부재를 포함하고,A support member comprising a first dielectric layer directly coated on the base member without a bonding layer, an electrode layer formed on the first dielectric layer, and a second dielectric layer coated on the first dielectric layer and the electrode layer,상기 베이스 부재는 티타늄 또는 금속-세라믹 복합체를 포함하고, 상기 지지 부재는 산화알루미늄을 포함하는, 코팅 타입 고온 정전척.The base member comprises titanium or a metal-ceramic composite, and the support member comprises aluminum oxide.
- 제 9 항에 있어서,10. The method of claim 9,상기 코팅 타입 고온 정전척은 200℃ 내지 800℃의 범위에서 사용되는, 코팅 타입 고온 정전척.The coating-type high-temperature electrostatic chuck is used in a range of 200°C to 800°C.
- 제 9 항에 있어서,10. The method of claim 9,상기 베이스 부재 및 상기 지지 부재는 상부에서 보았을 때 사각형 또는 원형인, 코팅 타입 고온 정전척.wherein the base member and the support member are rectangular or circular when viewed from above.
- 제 9 항에 있어서,10. The method of claim 9,상기 지지 부재중 한변의 길이는 400mm 내지 3500mm이거나, 또는 상기 지지 부재의 직경은 100mm 내지 400mm인, 코팅 타입 고온 정전척.The length of one side of the support member is 400mm to 3500mm, or the diameter of the support member is 100mm to 400mm, a coating type high temperature electrostatic chuck.
- 제 9 항에 있어서,10. The method of claim 9,상기 제1유전층은 베이스 부재 상에 상압 플라즈마 스프레이 방식으로 직접 코팅된, 코팅 타입 고온 정전척.The first dielectric layer is directly coated on the base member by atmospheric pressure plasma spray method, a coating type high-temperature electrostatic chuck.
- 제 9 항에 있어서,10. The method of claim 9,상기 제2유전층은 상기 전극층 및 상기 제1유전층 상에 상압 플라즈마 스프레이 방식으로 직접 코팅된, 코팅 타입 고온 정전척.and the second dielectric layer is directly coated on the electrode layer and the first dielectric layer by atmospheric pressure plasma spraying.
- 제 9 항에 있어서,10. The method of claim 9,상기 베이스 부재는 the base member하부 영역에 형성된 쿨링 라인; 및a cooling line formed in the lower region; and상부 영역에 형성된 히팅 라인을 더 포함하는, 코팅 타입 고온 정전척.Coating type high temperature electrostatic chuck further comprising a heating line formed in the upper region.
- 제 9 항에 있어서,10. The method of claim 9,상기 제2유전층상에 형성된 내플라즈마 코팅층을 더 포함하는, 코팅 타입 고온 정전척.A coating-type high-temperature electrostatic chuck further comprising a plasma-resistant coating layer formed on the second dielectric layer.
- 베이스 부재; 및base member; and상기 베이스 부재 상에 본딩층없이 직접 코팅된 제1유전층과, 상기 제1유전층 상에 형성된 전극층과, 상기 제1유전층 및 상기 전극층 상에 코팅된 제2유전층으로 이루어진 지지 부재를 포함하고,A support member comprising a first dielectric layer directly coated on the base member without a bonding layer, an electrode layer formed on the first dielectric layer, and a second dielectric layer coated on the first dielectric layer and the electrode layer,상기 베이스 부재는 열 차단 영역 또는 열 확산 영역을 더 포함하는, 코팅 타입 고온 정전척.The base member further includes a heat blocking area or a heat diffusion area.
- 제 17 항에 있어서,18. The method of claim 17,상기 코팅 타입 고온 정전척은 200℃ 내지 800℃의 범위에서 사용되는, 코팅 타입 고온 정전척.The coating-type high-temperature electrostatic chuck is used in a range of 200°C to 800°C.
- 제 17 항에 있어서,18. The method of claim 17,상기 베이스 부재 및 상기 지지 부재는 상부에서 보았을 때 사각형 또는 원형인, 코팅 타입 고온 정전척.wherein the base member and the support member are rectangular or circular when viewed from above.
- 제 17 항에 있어서,18. The method of claim 17,상기 지지 부재중 한변의 길이는 400mm 내지 3500mm이거나, 또는 상기 지지 부재의 직경은 100mm 내지 400mm인, 코팅 타입 고온 정전척.The length of one side of the support member is 400mm to 3500mm, or the diameter of the support member is 100mm to 400mm, a coating type high temperature electrostatic chuck.
- 제 17 항에 있어서,18. The method of claim 17,상기 제1유전층은 베이스 부재 상에 상압 플라즈마 스프레이 방식으로 직접 코팅된, 코팅 타입 고온 정전척.The first dielectric layer is directly coated on the base member by atmospheric pressure plasma spray method, a coating type high-temperature electrostatic chuck.
- 제 17 항에 있어서,18. The method of claim 17,상기 제2유전층은 상기 전극층 및 상기 제1유전층 상에 상압 플라즈마 스프레이 방식으로 직접 코팅된, 코팅 타입 고온 정전척.and the second dielectric layer is directly coated on the electrode layer and the first dielectric layer by atmospheric pressure plasma spraying.
- 제 17 항에 있어서,18. The method of claim 17,상기 베이스 부재는 the base member하부 영역에 형성된 쿨링 라인; 및a cooling line formed in the lower region; and상부 영역에 형성된 히팅 라인을 더 포함하고, Further comprising a heating line formed in the upper region,상기 열 차단 영역은 상기 하부 영역과 상기 상부 영역의 사이에 캐비티 형태로 제공된, 코팅 타입 고온 정전척.The heat blocking region is provided in the form of a cavity between the lower region and the upper region.
- 제 23 항에 있어서,24. The method of claim 23,상기 하부 영역과 상기 상부 영역은 상기 열 차단 영역의 사이에 제공되는 연결 영역을 통해 연결된, 코팅 타입 고온 정전척.and the lower region and the upper region are connected through a connection region provided between the heat blocking region.
- 제 17 항에 있어서,18. The method of claim 17,상기 열 확산 영역은 상기 베이스 부재 상에 제공된, 코팅 타입 고온 정전척.and the heat diffusion region is provided on the base member.
- 제 25 항에 있어서,26. The method of claim 25,상기 열 확산 영역은 실리콘카바이드, 알루미늄질화물, 금속-세라믹 복합체, 실리콘카바이드-알루미늄 또는 실리콘카바이드-실리콘을 포함하는, 코팅 타입 고온 정전척.wherein the thermal diffusion region comprises silicon carbide, aluminum nitride, metal-ceramic composite, silicon carbide-aluminum or silicon carbide-silicon.
- 제 17 항에 있어서,18. The method of claim 17,상기 제2유전층상에 형성된 내플라즈마 코팅층을 더 포함하는, 코팅 타입 고온 정전척.A coating-type high-temperature electrostatic chuck further comprising a plasma-resistant coating layer formed on the second dielectric layer.
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20210053819 | 2021-04-26 | ||
KR10-2021-0053819 | 2021-04-26 | ||
KR1020210081571A KR102635167B1 (en) | 2021-04-26 | 2021-06-23 | Coating type high temperature electrostatic chuck |
KR10-2021-0081573 | 2021-06-23 | ||
KR10-2021-0081571 | 2021-06-23 | ||
KR1020210081572A KR102635168B1 (en) | 2021-04-26 | 2021-06-23 | Coating type high temperature electrostatic chuck |
KR1020210081573A KR102635169B1 (en) | 2021-04-26 | 2021-06-23 | Coating type high temperature electrostatic chuck |
KR10-2021-0081572 | 2021-06-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022231190A1 true WO2022231190A1 (en) | 2022-11-03 |
Family
ID=83848224
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2022/005521 WO2022231190A1 (en) | 2021-04-26 | 2022-04-18 | Coating-type high-temperature electrostatic chuck |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022231190A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100793171B1 (en) * | 2006-08-30 | 2008-01-10 | 세메스 주식회사 | Bake process apparatus and method for cooling heating plate equipped by the apparatus |
KR101189815B1 (en) * | 2012-02-24 | 2012-10-10 | (주)코리아스타텍 | Large size electrostatic chuck and manufacturing method thereof |
KR20150127145A (en) * | 2013-03-08 | 2015-11-16 | 어플라이드 머티어리얼스, 인코포레이티드 | Chamber component with protective coating suitable for protection against fluorine plasma |
KR101585082B1 (en) * | 2014-09-24 | 2016-01-14 | 한국생산기술연구원 | The heating unit and method of fabricating the same and the ESC of controllable temperature using thereof |
KR20200023988A (en) * | 2018-08-27 | 2020-03-06 | 삼성전자주식회사 | Electro-static chuck and wafer etching device comprising the same |
-
2022
- 2022-04-18 WO PCT/KR2022/005521 patent/WO2022231190A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100793171B1 (en) * | 2006-08-30 | 2008-01-10 | 세메스 주식회사 | Bake process apparatus and method for cooling heating plate equipped by the apparatus |
KR101189815B1 (en) * | 2012-02-24 | 2012-10-10 | (주)코리아스타텍 | Large size electrostatic chuck and manufacturing method thereof |
KR20150127145A (en) * | 2013-03-08 | 2015-11-16 | 어플라이드 머티어리얼스, 인코포레이티드 | Chamber component with protective coating suitable for protection against fluorine plasma |
KR101585082B1 (en) * | 2014-09-24 | 2016-01-14 | 한국생산기술연구원 | The heating unit and method of fabricating the same and the ESC of controllable temperature using thereof |
KR20200023988A (en) * | 2018-08-27 | 2020-03-06 | 삼성전자주식회사 | Electro-static chuck and wafer etching device comprising the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI660453B (en) | Electrostatic chuck assembly for high temperature processes | |
TWI739307B (en) | Electrostatic puck assembly with metal bonded backing plate for high temperature processes | |
JP3222163U (en) | Multi-zone gasket for substrate support assembly | |
TWI730624B (en) | Electrostatic chuck having thermally isolated zones with minimal crosstalk | |
EP0628989B1 (en) | Sealing device and method useful in semiconductor processing apparatus for bridging materials having a thermal expansion differential | |
JP4331479B2 (en) | High toughness zirconia ceramic components and coatings in semiconductor processing equipment and methods of manufacturing the same | |
US6160244A (en) | Susceptors | |
US20070215596A1 (en) | Semiconductor Batch Heating Assembly | |
EP2071610A2 (en) | Corrosion-resistant multilayer ceramic member | |
WO2019093657A1 (en) | Mount, heater comprising the mount, and deposition apparatus comprising the heater | |
WO2014123323A1 (en) | Surface treatment method and ceramic structure using same | |
WO2022231190A1 (en) | Coating-type high-temperature electrostatic chuck | |
KR20220146991A (en) | Coating type high temperature electrostatic chuck | |
WO2010030102A2 (en) | Electrostatic chuck (esc) comprising a double buffer layer (dbl) to reduce thermal stress | |
WO2010030101A2 (en) | Electrostatic chuck comprising a double buffer layer (dbl) to reduce thermal stress | |
WO2013002571A2 (en) | Vacuum heat treatment apparatus | |
WO2024101896A1 (en) | High-temperature electrostatic chuck | |
WO2022145668A1 (en) | Ceramic susceptor | |
WO2022054989A1 (en) | Ceramic heater | |
WO2023163472A1 (en) | Low-temperature electrostatic chuck | |
WO2023027525A1 (en) | Ceramic susceptor | |
KR20240067753A (en) | Coating type high temperature electrostatic chuck | |
WO2023106445A1 (en) | Cryogenic susceptor and electric connector assembly used therein | |
WO2024214985A1 (en) | Support unit and substrate processing apparatus | |
WO2013129891A1 (en) | Heterojunction structure and method for manufacturing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22796023 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/02/2024) |