Nothing Special   »   [go: up one dir, main page]

WO2022038835A1 - リチウム2次電池 - Google Patents

リチウム2次電池 Download PDF

Info

Publication number
WO2022038835A1
WO2022038835A1 PCT/JP2021/016226 JP2021016226W WO2022038835A1 WO 2022038835 A1 WO2022038835 A1 WO 2022038835A1 JP 2021016226 W JP2021016226 W JP 2021016226W WO 2022038835 A1 WO2022038835 A1 WO 2022038835A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
lithium
secondary battery
negative electrode
lithium secondary
Prior art date
Application number
PCT/JP2021/016226
Other languages
English (en)
French (fr)
Inventor
雅継 中野
健 緒方
浩 井本
Original Assignee
TeraWatt Technology株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TeraWatt Technology株式会社 filed Critical TeraWatt Technology株式会社
Priority to EP21857987.8A priority Critical patent/EP4203090A1/en
Priority to JP2022543276A priority patent/JP7335022B2/ja
Priority to KR1020237007436A priority patent/KR20230043216A/ko
Priority to CN202180056811.1A priority patent/CN116034494A/zh
Publication of WO2022038835A1 publication Critical patent/WO2022038835A1/ja
Priority to US18/111,339 priority patent/US20230216044A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/497Ionic conductivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium secondary battery.
  • a secondary battery that charges and discharges by moving metal ions between a positive electrode and a negative electrode is known to exhibit high voltage and high energy density, and is typically a lithium ion secondary battery. It has been known.
  • an active material capable of holding lithium is introduced into the positive electrode and the negative electrode, and charging / discharging is performed by exchanging lithium ions between the positive electrode active material and the negative electrode active material.
  • a lithium metal secondary battery that holds lithium by precipitating lithium metal on the surface of the negative electrode has been developed.
  • Patent Document 1 describes a high energy density, high power lithium metal anode having a volumetric energy density of greater than 1000 Wh / L and / or a mass energy density of greater than 350 Wh / kg when discharged at room temperature at a rate of at least 1 C. Secondary batteries are disclosed. Patent Document 1 discloses the use of an ultrathin lithium metal anode in order to realize such a lithium metal anode secondary battery.
  • Patent Document 2 in a lithium secondary battery including a positive electrode, a negative electrode, a separation film interposed between them, and an electrolyte, in the negative electrode, metal particles are formed on a negative electrode current collector, and the negative electrode is charged.
  • a lithium secondary battery that is moved from the positive electrode and forms a lithium metal on the negative electrode current collector in the negative electrode is disclosed.
  • Patent Document 2 provides a lithium secondary battery in which such a lithium secondary battery solves a problem caused by the reactivity of a lithium metal and a problem generated in the assembly process, and has improved performance and life. Discloses what can be done.
  • a typical secondary battery that charges and discharges by exchanging metal ions between a positive electrode active material and a negative electrode active material does not have sufficient energy density.
  • a conventional lithium metal secondary battery that holds lithium by precipitating lithium metal on the surface of the negative electrode as described in the above patent document has a dendrite shape on the surface of the negative electrode by repeating charging and discharging. Lithium metal is likely to be formed, and short circuit and capacity reduction are likely to occur. As a result, the cycle characteristics are not sufficient. Further, since the lithium metal secondary battery as described above tends to increase the internal resistance by repeating charging and discharging, the rate characteristic also deteriorates.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a lithium secondary battery having a high energy density and excellent cycle characteristics or rate characteristics.
  • the lithium secondary battery according to the embodiment of the present invention is formed on a positive electrode, a negative electrode having no negative electrode active material, a separator arranged between the positive electrode and the negative electrode, and a surface of the separator facing the negative electrode. It is provided with a buffering functional layer having a fibrous or porous ionic conductivity, and the positive electrode causes an oxidation reaction with the positive electrode active material in the charge / discharge potential range of the positive electrode active material, and substantially performs a reduction reaction.
  • the particle size D 50 (S) corresponding to the cumulative degree of 50% of the lithium-containing compound is 1.0 ⁇ m or more and 20 ⁇ m or less in the particle size distribution measured by the laser diffraction / scattering method, including the lithium-containing compound that does not occur.
  • the particle size D 95 (S) corresponding to the cumulative degree of 95% of the lithium-containing compound is 1.0 ⁇ m or more and 30 ⁇ m or less.
  • the cushioning functional layer of the lithium secondary battery according to the embodiment of the present invention functions as a buffering layer for relaxing or suppressing the volume expansion of the battery due to charging / discharging in the lithium secondary battery.
  • the above-mentioned lithium secondary battery has the above-mentioned lithium-containing compound as a sacrificial positive electrode agent in the positive electrode.
  • the sacrificial positive electrode agent as described above causes an oxidation reaction (that is, releases lithium ions) during the initial charge of the lithium secondary battery, while substantially does not cause a reduction reaction (that is, discharge) during the subsequent discharge.
  • the previous lithium-containing compound is not formed.
  • the lithium element derived from the lithium-containing compound remains as a lithium metal on the surface of the negative electrode.
  • the sacrificial positive electrode agent has a particle diameter D 50 (S) corresponding to a cumulative degree of 50% having a particle diameter D 50 (S) of 1.0 ⁇ m or more and 20 ⁇ m or less, and the cumulative degree is 95%.
  • the corresponding particle size D 95 (S) is 1.0 ⁇ m or more and 30 ⁇ m or less.
  • the sacrificial positive electrode agent having such a particle size can make the lithium metal deposited on the surface of the negative electrode more uniform while maintaining its interfacial resistance low.
  • the lithium metals uniformly deposited on the surface of the negative electrode are not dissolved at the time of discharge, and some lithium metals remain on the surface of the negative electrode even after the discharge is completed. It is thought that. Since the residual lithium metal serves as a scaffold for further lithium metal to be deposited on the surface of the negative electrode during the subsequent charging, the lithium metal is more likely to be deposited more uniformly on the surface of the negative electrode during the charging. Therefore, in the above-mentioned lithium secondary battery, the growth of dendrite-like lithium metal on the negative electrode is suppressed, and the cycle characteristics are excellent.
  • the lithium secondary battery according to another embodiment of the present invention has a positive electrode, a negative electrode having no negative electrode active material, a separator arranged between the positive electrode and the negative electrode, and a surface of the separator facing the negative electrode.
  • the formed fiber-like or porous buffer functional layer having ionic conductivity is provided, and the positive electrode causes an oxidation reaction with the positive electrode active material in the charge / discharge potential range of the positive electrode active material, and a reduction reaction.
  • D 50 in the particle size distribution measured by the laser diffraction / scattering method, which contains a lithium-containing compound that substantially does not generate A) is 5.0 ⁇ m or more and 20 ⁇ m or less
  • D 50 (A) / D 50 (S) which is the particle size ratio of D 50 (A) of the positive electrode active material to D 50 (S) of the lithium-containing compound, is It is 2.0 or more and 10.0 or less.
  • Such a lithium secondary battery includes a negative electrode having no negative electrode active material, a buffer function layer, and a lithium-containing compound as a sacrificial positive electrode agent, the energy density is high and the cycle characteristics are excellent for the same reason as described above. ..
  • the lithium-containing compound used as the sacrificial positive electrode agent has a lower electrical conductivity than the positive electrode active material, when the sacrificial positive electrode agent is added to the positive electrode, the internal resistance of the entire positive electrode tends to increase.
  • the D 50 (A) of the positive electrode active material is 5.0 ⁇ m or more and 20 ⁇ m or less in the particle size distribution measured by the laser diffraction / scattering method, and the lithium-containing compound D 50 (S).
  • the particle size ratio of D 50 (A) of the positive electrode active material, D 50 (A) / D 50 (S) is 2.0 or more and 10.0 or less, so that contact between the positive electrode active materials is sacrificed. As a result, the electrical conductivity in the positive electrode is high. Therefore, the above-mentioned lithium secondary battery has a sufficiently small internal resistance in the positive electrode and is excellent in rate characteristics.
  • the above-mentioned lithium secondary having a positive electrode active material D 50 (A) of 5.0 ⁇ m or more and 20 ⁇ m or less and a particle size ratio D 50 (A) / D 50 (S) of 2.0 or more and 10.0 or less.
  • the lithium-containing compound D 50 (S) is preferably 1.0 ⁇ m or more and 10 ⁇ m or less. According to such an embodiment, the lithium metal deposited on the surface of the negative electrode becomes more uniform, and the dendrite-like lithium metal can be suppressed from being deposited on the negative electrode, so that the cycle characteristics are further improved.
  • the above-mentioned lithium secondary having a positive electrode active material D 50 (A) of 5.0 ⁇ m or more and 20 ⁇ m or less and a particle size ratio D 50 (A) / D 50 (S) of 2.0 or more and 10.0 or less.
  • the electrode density of the positive electrode is preferably 3.0 g / cc or more. According to such an aspect, the capacity of the lithium secondary battery can be further increased.
  • the lithium secondary battery contains the sacrificial positive electrode agent in an amount of 1.0% by mass or more and 15% by mass or less with respect to the total mass of the positive electrode. According to such an embodiment, the effect of the sacrificial positive electrode agent described above is more effectively and reliably exerted, so that the cycle characteristics of the lithium secondary battery are further improved.
  • the ratio of the irreversible capacity of the lithium-containing compound is preferably 1.0% or more and 30% or less with respect to the cell capacity of the lithium secondary battery. According to such an embodiment, the amount of residual lithium remaining on the surface of the negative electrode after the completion of discharge becomes a more appropriate amount, so that the cycle characteristics and energy density of the lithium secondary battery are further improved.
  • the porosity of the buffer function layer is preferably 50% or more. According to such an embodiment, the effect of the buffer function layer described above is more effectively and reliably exerted, so that the cycle characteristics and energy density of the lithium secondary battery are further improved.
  • the cushioning function layer preferably has further electrical conductivity.
  • the cushioning functional layer having fibrous or porous ionic conductivity and electrical conductivity is not only on the surface of the negative electrode. Since the lithium metal can be deposited even inside, the surface area of the reaction field of the lithium metal precipitation reaction is increased, and the reaction rate of the lithium metal precipitation reaction is moderately controlled. As a result, the growth of dendrite-like lithium metal on the negative electrode is further suppressed, and the cycle characteristics of the battery tend to be further improved.
  • the sacrificial positive electrode agent is preferably a compound containing Fe. According to such an embodiment, the effect of the sacrificial positive electrode agent described above is more effectively and reliably exerted, so that the cycle characteristics of the lithium secondary battery are further improved.
  • the present invention it is possible to provide a lithium secondary battery having a high energy density and excellent cycle characteristics or rate characteristics.
  • the present embodiments will be described in detail with reference to the drawings as necessary.
  • the same elements are designated by the same reference numerals, and duplicate description will be omitted.
  • the positional relationship such as up, down, left, and right shall be based on the positional relationship shown in the drawings unless otherwise specified.
  • the dimensional ratios in the drawings are not limited to the ratios shown.
  • FIG. 1 is a schematic cross-sectional view of a lithium secondary battery according to the first embodiment.
  • the lithium secondary battery 100 of the first embodiment has a positive electrode 110, a negative electrode 140 having no negative electrode active material, and a separator 120 arranged between the positive electrode 110 and the negative electrode 140. And a buffer function layer 130 formed on the surface of the negative electrode 140 facing the separator 120.
  • the positive electrode 110 has a positive electrode current collector 150 on a surface opposite to the surface facing the separator 120.
  • the negative electrode 140 does not have a negative electrode active material.
  • the "negative electrode active material” is a substance that causes an electrode reaction, that is, an oxidation reaction and a reduction reaction at the negative electrode.
  • examples of the negative electrode active material of the present embodiment include a lithium metal and a host material of a lithium element (lithium ion or lithium metal).
  • the host substance of the lithium element means a substance provided for holding lithium ions or lithium metal in the negative electrode.
  • the mechanism of such holding is not particularly limited, and examples thereof include intercalation, alloying, and occlusion of metal clusters, and typically, intercalation.
  • the negative electrode does not have a negative electrode active material before the initial charge of the battery, lithium metal is deposited on the negative electrode, and the deposited lithium metal is electrolyzed to charge and discharge. Is done. Therefore, in the lithium secondary battery of the present embodiment, the volume occupied by the negative electrode active material and the mass of the negative electrode active material are reduced, and the volume and mass of the entire battery are smaller than those of the lithium secondary battery having the negative electrode active material. Therefore, the energy density is high in principle.
  • the negative electrode 140 does not have a negative electrode active material before the initial charge of the battery, lithium metal is deposited on the negative electrode by charging the battery, and the deposited lithium metal is deposited by the discharge of the battery. Elutes electrolytically. Therefore, in the lithium secondary battery of the present embodiment, the negative electrode acts as a negative electrode current collector.
  • the lithium secondary battery 100 of the present embodiment Comparing the lithium secondary battery 100 of the present embodiment with a lithium ion battery (LIB) and a lithium metal battery (LMB), they differ in the following points.
  • a lithium ion battery (LIB) the negative electrode has a host substance of a lithium element (lithium ion or lithium metal), the substance is filled with the lithium element by charging the battery, and the host substance releases the lithium element to form a battery. Is discharged.
  • the LIB differs from the lithium secondary battery 100 of the present embodiment in that the negative electrode has a host substance of a lithium element.
  • a lithium metal battery (LMB) is manufactured by using an electrode having a lithium metal on its surface or a lithium metal alone as a negative electrode.
  • the LMB differs from the lithium secondary battery 100 of the present embodiment in that the negative electrode has a lithium metal which is a negative electrode active material immediately after assembling the battery, that is, before the initial charge of the battery.
  • the LMB uses an electrode containing a highly flammable and highly reactive lithium metal for its production, but the lithium secondary battery 100 of the present embodiment uses a negative electrode having no lithium metal, so that it is safer and more productive. It is excellent in.
  • the negative electrode has no negative electrode active material means that the negative electrode 140 has no negative electrode active material or substantially no negative electrode active material.
  • the fact that the negative electrode 140 does not substantially have the negative electrode active material means that the content of the negative electrode active material in the negative electrode 140 is 10% by mass or less with respect to the entire negative electrode.
  • the content of the negative electrode active material in the negative electrode is preferably 5.0% by mass or less, 1.0% by mass or less, or 0.1% by mass or less with respect to the entire negative electrode 140. It may be 0.0% by mass or less.
  • “before the initial charge” of the battery means the state from the time when the battery is assembled to the time when the battery is charged for the first time. Further, “at the end of discharge” of the battery means a state in which the voltage of the battery is 1.0 V or more and 3.8 V or less, preferably 1.0 V or more and 3.0 V or less.
  • the term "lithium secondary battery having a negative electrode having no negative electrode active material” means that the negative electrode 140 does not have a negative electrode active material before the initial charge of the battery. Therefore, the phrase “negative electrode without negative electrode active material” includes “negative electrode without negative electrode active material before the initial charge of the battery” and “negative electrode active material other than lithium metal regardless of the state of charge of the battery”. However, it may be paraphrased as "a negative electrode having no lithium metal before the initial charge” or "a negative electrode current collector having no lithium metal before the initial charge”. Further, the "lithium secondary battery provided with a negative electrode having no negative electrode active material” may be paraphrased as an anode-free lithium battery, a zero anode lithium battery, or an anodeless lithium battery.
  • the content of the negative electrode active material other than the lithium metal is 10% by mass or less, preferably 5.0% by mass or less, based on the entire negative electrode, regardless of the state of charge of the battery. , 1.0% by mass or less, 0.1% by mass or less, 0.0% by mass or less, or 0% by mass.
  • the negative electrode 140 of the present embodiment has a lithium metal content of 10% by mass or less, preferably 5.0% by mass or less, and 1.0% by mass, based on the entire negative electrode, before initial charging. It may be less than or equal to, 0.1% by mass or less, 0.0% by mass or less, or 0% by mass.
  • the lithium metal content when the battery voltage is 1.0 V or more and 3.5 V or less, the lithium metal content may be 10% by mass or less with respect to the entire negative electrode 140. (Preferably 5.0% by mass or less, and may be 1.0% by mass or less.); When the battery voltage is 1.0V or more and 3.0V or less, the lithium metal content is It may be 10% by mass or less with respect to the entire negative electrode 140 (preferably 5.0% by mass or less, and may be 1.0% by mass or less); or the battery voltage is 1.0V. When the voltage is 2.5 V or less, the lithium metal content may be 10% by mass or less with respect to the entire negative electrode 140 (preferably 5.0% by mass or less, 1.0% by mass or less). It may be.).
  • the ratio M 3.0 / M 4.2 of the mass M 3.0 of the lithium metal deposited on the negative electrode is preferably 40% or less, more preferably 38% or less, still more preferably 35%. It is as follows.
  • the ratio M 3.0 / M 4.2 may be 1.0% or more, 2.0% or more, 3.0% or more, 4.0% or more. May be.
  • Examples of the negative electrode active material of the present embodiment include lithium metal and alloys containing lithium metal, carbon-based substances, metal oxides, metals alloyed with lithium, and alloys containing the metal.
  • the carbon-based substance is not particularly limited, and examples thereof include graphene, graphite, hard carbon, mesoporous carbon, carbon nanotubes, and carbon nanohorns.
  • the metal oxide is not particularly limited, and examples thereof include titanium oxide-based compounds, tin oxide-based compounds, and cobalt oxide-based compounds.
  • Examples of the metal alloying with lithium include silicon, germanium, tin, lead, aluminum, and gallium.
  • the negative electrode 140 of the present embodiment is not particularly limited as long as it does not have a negative electrode active material and can be used as a current collector, but reacts with, for example, Cu, Ni, Ti, Fe, and other Li.
  • Examples include metals that do not, and alloys thereof, and those consisting of at least one selected from the group consisting of stainless steel (SUS), preferably Cu, Ni, and alloys thereof, and stainless steel.
  • SUS stainless steel
  • the energy density and productivity of the battery tend to be further improved.
  • various conventionally known types of SUS can be used.
  • the “metal that does not react with Li” means a metal that does not react with lithium ions or lithium metal to form an alloy under the operating conditions of the lithium secondary battery.
  • the average thickness of the negative electrode 140 is preferably 4 ⁇ m or more and 20 ⁇ m or less, more preferably 5 ⁇ m or more and 18 ⁇ m or less, and further preferably 6 ⁇ m or more and 15 ⁇ m or less. According to such an embodiment, the volume occupied by the negative electrode 140 in the lithium secondary battery 100 is reduced, so that the energy density of the lithium secondary battery 100 is further improved.
  • the positive electrode active material is a substance that causes an electrode reaction, that is, an oxidation reaction and a reduction reaction, at the positive electrode.
  • examples of the positive electrode active material of the present embodiment include a host material of a lithium element (typically, lithium ion).
  • examples of such a positive electrode active material include, but are not limited to, metal oxides and metal phosphates.
  • the metal oxide is not particularly limited, and examples thereof include a cobalt oxide-based compound, a manganese oxide-based compound, and a nickel oxide-based compound.
  • the metal phosphate is not particularly limited, and examples thereof include iron phosphate compounds and cobalt phosphate compounds.
  • the positive electrode active material as described above one type may be used alone or two or more types may be used in combination.
  • the positive electrode 110 contains a lithium-containing compound (that is, a sacrificial positive electrode agent) that causes an oxidation reaction in the charge / discharge potential range of the positive electrode active material and substantially does not cause a reduction reaction.
  • a lithium-containing compound that is, a sacrificial positive electrode agent
  • the positive electrode active material and the sacrificial positive electrode agent release lithium ions and cause an oxidation reaction, and emit electrons to the negative electrode 140 through an external circuit.
  • lithium ions derived from the positive electrode active material and the sacrificial positive electrode agent are deposited on the surface of the negative electrode.
  • the lithium secondary battery 100 when such a lithium secondary battery 100 is discharged (that is, initially discharged) after the initial charge is completed, the lithium metal deposited on the surface of the negative electrode is electrolytically eluted, and electrons move from the negative electrode 140 to the positive electrode 110 through an external circuit. do.
  • the positive electrode active material receives lithium ions and causes a reduction reaction, while the sacrificial positive electrode agent substantially does not cause a reduction reaction within the range of the discharge potential of the positive electrode active material, and before the oxidation reaction occurs. It is virtually impossible to return to the state. That is, it may be said that the positive electrode 110 has a sacrificial positive electrode agent before the initial charge.
  • the "initial charge” means the first charge step after assembling the battery.
  • the lithium secondary battery 100 when the lithium secondary battery 100 is discharged after the initial charge, most of the lithium metal derived from the positive electrode active material is electrolytically eluted from the negative electrode, whereas most of the lithium metal derived from the sacrificial positive electrode agent is on the negative electrode. Even after the battery is completely discharged, a part of the lithium metal remains on the negative electrode. Since the residual lithium metal serves as a scaffold for further lithium metal to be deposited on the negative electrode in the charging step following the initial discharge, the lithium metal is likely to be uniformly deposited on the negative electrode in the charging step after the initial discharge. .. As a result, the growth of dendrite-like lithium metal on the negative electrode is suppressed, so that the lithium secondary battery 100 has excellent cycle characteristics.
  • the sacrificial positive electrode agent in the positive electrode 110 is a lithium-containing compound that causes an oxidation reaction in the charge / discharge potential range of the positive electrode active material and substantially does not cause a reduction reaction.
  • causing an oxidation reaction in the charge / discharge potential range of the positive electrode active material means that an oxidation reaction is generated in the charge / discharge potential range of the positive electrode active material to release lithium ions and electrons (by the oxidation reaction). It means that it can be decomposed and release lithium ions.).
  • substantially no reduction reaction occurs in the charge / discharge potential range of the positive electrode active material means that a reduction reaction occurs in the charge / discharge potential range of the positive electrode active material under normal reaction conditions for those skilled in the art.
  • the "normal reaction conditions for those skilled in the art” mean, for example, the conditions for discharging a lithium secondary battery.
  • “it is practically impossible for the sacrificial positive electrode agent to undergo a reduction reaction to receive lithium ions and electrons, or to be generated through the reduction reaction” is a sacrifice oxidized by charging the battery.
  • the positive electrode agents 80% or more (for example, 80% or more, 85% or more, 90% or more, 95% or more, 99% or more, or 100%) of the sacrificial positive electrode agents cause a reduction reaction. It means that it cannot receive lithium ions and electrons, or it cannot be generated through a reduction reaction.
  • the capacity of the initial discharge with respect to the capacity of the initial charge in the sacrificial positive electrode agent is 20% or less (for example, 20% or less, 15% or less, 10% or less, 5% or less, 1% or less, or 0%). ..
  • the "charge / discharge potential range of the positive electrode active material” means the potential range in which the oxidation reaction and the reduction reaction of the positive electrode active material contained in the positive electrode 110 can be performed.
  • the specific value depends on the type of positive electrode active material contained in the positive electrode 110, but is typically 2.5 V or higher, 2.7 V or higher, or 3.0 V or higher with respect to the Li + / Li reference electrode. 3.2V or more, or 3.5V or more, and 4.5V or less, 4.4V or less, 4.3V or less, 4.2V or less, 4.1V or less, or 4.0V or less.
  • a typical range of charge / discharge potential range of the positive electrode active material is 3.0 V or more and 4.2 V or less (vs.
  • the operating voltage range of the lithium secondary battery 100 may be referred to.
  • the operating voltage of the lithium secondary battery 100 is 3.0 V or more.
  • the charge / discharge potential range of the positive electrode active material with respect to the Li + / Li reference electrode can be estimated to be 3.0 V or more and 4.2 V or less. That is, the sacrificial positive electrode agent may be paraphrased as "a lithium-containing compound that causes an oxidation reaction and substantially no reduction reaction in the operating voltage range of the lithium secondary battery".
  • Examples of the sacrificial positive electrode agent are not particularly limited, and are, for example, a lithium oxide such as Li 2 O 2 ; a lithium nitride such as Li 3 N; Li 2 SP 2 S 5 , Li 2 S-LiCl.
  • Li 2 S-LiBr Lithium sulfide-based solid solutions such as Li 2 S-Li I; Li 1 + x (Ti 1-y F y ) 1-x O 2 (0 ⁇ x ⁇ 0.25, 0.4 ⁇ y ⁇ 0.9), Li 2-x Ti 1-z Fe z O 3-y (0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 1, 0.05 ⁇ z ⁇ 0.95), Li 5 FeO 4
  • iron-based lithium oxides From the viewpoint of more effectively and surely exerting the effect as a sacrificial positive electrode agent, a lithium-containing compound containing Fe is preferably used, more preferably an iron-based lithium oxide is used, and even more preferably Li 5 FeO 4 is used.
  • sacrificial positive electrode agent used as the sacrificial positive electrode agent as described above, one type may be used alone or two or more types may be used in combination. Further, as the sacrificial positive electrode agent as described above, a commercially available one may be used, or a conventionally known method may be used for production.
  • the present inventors have conducted a positive electrode of a lithium secondary battery that uses a negative electrode that does not have a negative electrode active material, unlike a conventional lithium ion battery that has a negative electrode active material and a lithium metal battery that uses a lithium metal for the negative electrode. It has been found that even if a sacrificial positive electrode agent as disclosed in the present specification is added, a sufficient effect may not be obtained. Furthermore, the present inventors have described that the sacrificial positive electrode agent contained in the positive electrode 110 has a particle size D 50 (S) of 1.0 ⁇ m or more corresponding to a cumulative degree of 50% in the particle size distribution measured by the laser diffraction / scattering method.
  • S particle size D 50
  • the particle size D 95 (S) corresponding to the cumulative degree of 95% is 20 ⁇ m or less and the particle size D 95 (S) is 1.0 ⁇ m or more and 30 ⁇ m or less, the effect of the sacrificial positive electrode agent for improving the cycle characteristics is remarkably exhibited. I found.
  • the factors are inferred as follows, but the factors are not limited to this.
  • the particles of the sacrificial positive electrode have a particle size D 50 (hereinafter, also referred to as “particle size D 50 (S)”) of 1.0 ⁇ m corresponding to a cumulative degree of 50% in the particle size distribution measured by the laser diffraction / scattering method. If it is less than, the interfacial resistance between the sacrificial positive electrode agent and other components constituting the positive electrode increases, so that the electric resistance increases and the conductivity of the positive electrode decreases. Therefore, it is considered that the function as a sacrificial positive electrode agent cannot be sufficiently exerted and the cycle characteristics are difficult to be improved.
  • the sacrificial positive electrode agent When the particle diameter D 50 (S) of the sacrificial positive electrode agent exceeds 20 ⁇ m, the sacrificial positive electrode agent is localized in the positive electrode and concentrated on the negative electrode portion facing the localized sacrificial positive electrode agent to become the sacrificial positive electrode agent.
  • the derived lithium metal will be deposited. As a result, it is considered that the lithium metal on the negative electrode is unevenly deposited, that is, the lithium metal grows like a dendrite, which adversely affects the cycle characteristics of the lithium secondary battery.
  • the particle diameter D 50 (S) is 1.0 ⁇ m or more and 20 ⁇ m or less, so that the above-mentioned problems do not occur, and the effect of the sacrificial positive electrode agent is effective. It will be played reliably. Further, the sacrificial positive electrode agent contained in the positive electrode 110 has a particle size D 95 (S) corresponding to a cumulative degree of 95% in the particle size distribution measured by the laser diffraction / scattering method (hereinafter, “particle size D 95 (S)).
  • the particle size distribution of the sacrificial positive electrode agent becomes more uniform, and the growth of the lithium metal in a dendrite shape is suppressed. As a result, it is considered that the effect of the above-mentioned sacrificial positive electrode agent is fully exhibited.
  • the sacrificial positive electrode agent contained in the positive electrode 110 has a particle diameter D 50 (S) of 1.0 ⁇ m or more and 20 ⁇ m or less.
  • the particle size D 50 (S) of the sacrificial positive electrode agent contained in the positive electrode 110 is preferably 2.0 ⁇ m or more, more preferably 3.0 ⁇ m or more, still more preferably 5.0 ⁇ m or more, and even more preferably. Is 8.0 ⁇ m or more.
  • the particle size D 50 (S) of the sacrificial positive electrode agent contained in the positive electrode 110 is preferably 18 ⁇ m or less, more preferably 15 ⁇ m or less, still more preferably 14 ⁇ m or less, still more preferably 12 ⁇ m or less. be.
  • the sacrificial positive electrode agent contained in the positive electrode 110 has a particle size D 95 (S) of 1.0 ⁇ m or more and 30 ⁇ m or less.
  • the particle size D 95 (S) of the sacrificial positive electrode agent contained in the positive electrode 110 is preferably 3.0 ⁇ m or more, more preferably 5.0 ⁇ m or more, still more preferably 8.0 ⁇ m or more, and even more preferably. Is 10.0 ⁇ m or more.
  • the particle size D 95 (S) of the sacrificial positive electrode agent contained in the positive electrode 110 is preferably 29 ⁇ m or less, more preferably 28 ⁇ m or less, still more preferably 27 ⁇ m or less, still more preferably 26 ⁇ m or less. be.
  • the particle size distribution by the laser diffraction / scattering method can be measured by a known method.
  • the measurement may be performed using a particle size distribution measuring device such as MT3000EX manufactured by Microtrac Bell.
  • the particle size DX corresponding to the cumulative degree X % means that the proportion of particles having a particle size of DX or less in the measured particle size distribution is X % of the whole particles. ..
  • the positive electrode 110 may contain components other than the positive electrode active material and the sacrificial positive electrode agent.
  • Such components include, but are not limited to, known conductive aids, binders, solid electrolytes (polymer electrolytes, gel electrolytes, inorganic solid electrolytes, etc., and typically polymer electrolytes or gel electrolytes. Is mentioned.).
  • solid electrolyte for example, a polymer electrolyte or a gel electrolyte described later may be used.
  • the conductive auxiliary agent in the positive electrode 110 is not particularly limited, and examples thereof include carbon black, single-wall carbon nanotubes (SWCNT), multi-wall carbon nanotubes (MWCNT), carbon nanofibers (CF), and acetylene black.
  • the binder is not particularly limited, and examples thereof include polyvinylidene fluoride, polytetrafluoroethylene, styrene butadiene rubber, acrylic resin, and polyimide resin.
  • the above-mentioned conductive aids and binders one type may be used alone or two or more types may be used in combination.
  • As the gel electrolyte those described later can be used.
  • the total content of the positive electrode active material and the sacrificial positive electrode agent in the positive electrode 110 may be, for example, 50% by mass or more and 100% by mass or less with respect to the total mass of the positive electrode 110.
  • the total content of the positive electrode active material and the sacrificial positive electrode agent is preferably 60% by mass or more, more preferably 70% by mass or more, still more preferably 80% by mass or more, based on the total mass of the positive electrode 110. Yes, and even more preferably 90% by mass or more.
  • the total content of the positive electrode active material and the sacrificial positive electrode agent is preferably 100% by mass or less, more preferably 99% by mass or less, still more preferably 98% by mass or less, based on the total mass of the positive electrode 110. be.
  • the content of the sacrificial positive electrode agent may be 1.0% by mass or more and 15% by mass or less with respect to the total mass of the positive electrode 110.
  • the content of the sacrificial positive electrode agent is preferably 1.0% by mass or more, more preferably 2.0% by mass or more, still more preferably 3.0% by mass or more, based on the total mass of the positive electrode 110. be.
  • the content of the sacrificial positive electrode agent is preferably 12% by mass or less, more preferably 10% by mass or less, and may be 8.0% by mass or less with respect to the total mass of the positive electrode 110.
  • the above content is effective when the sacrificial positive electrode agent is a compound containing Fe, and particularly effective when the sacrificial positive electrode agent is a compound containing Li 5 FeO 4 .
  • the content of the sacrificial positive electrode agent is preferably defined by the ratio of the irreversible capacity of the sacrificial positive electrode agent to the cell capacity of the lithium secondary battery 100.
  • the "cell capacity of the lithium secondary battery” means a value obtained by calculating the total charge capacity of the positive electrode active material and the sacrificial positive electrode agent contained in the positive electrode 110.
  • the cell capacity of the lithium secondary battery 100 is such that for each positive electrode active material and each sacrificial positive electrode agent, a cell having a positive electrode active material or a sacrificial positive electrode agent as a positive electrode and a lithium metal foil as a negative electrode is used as lithium 2.
  • the “irreversible capacity of the sacrificial positive electrode agent” means that for each sacrificial positive electrode agent, a cell having the sacrificial positive electrode agent as the positive electrode and the lithium metal foil as the negative electrode is used as the driving voltage of the lithium secondary battery 100 (for example, 3.
  • the irreversible capacity density A (mAh / g), which is the difference (A1-A2) between the charge capacity density A1 and the discharge capacity density A2 is obtained. It is obtained by calculating the product with the mass (g) contained in the positive electrode 110 and obtaining the sum of the above products for all the sacrificial positive electrode agents contained in the positive electrode 110.
  • the ratio X of the irreversible capacity of the sacrificial positive electrode agent to the cell capacity of the lithium secondary battery 100 is the charge capacity density A1 k (mAh / g) of each positive electrode active material and each sacrificial positive electrode agent and the content x k (mass) in the positive electrode 110. %) To the sum of the products of the irreversible volume density A j (mAh / g) of each sacrificial positive electrode agent and the content x j (mass%) in the positive electrode 110, as the ratio of the product of the following formula (1). You may ask according to.
  • each positive electrode active material and each sacrificial positive electrode agent and the theoretical irreversible volume density (mAh / g) of each sacrificial positive electrode agent are known, the known values may be used. good.
  • the charge capacity density, the discharge capacity density, and the content in the positive electrode 110 of each positive electrode active material and each sacrificial positive electrode agent can be measured by a conventionally known method, and the charge capacity density and the discharge capacity density are shown in Examples. It may be measured by the method described in 1.
  • the content of the positive electrode active material and the sacrificial positive electrode agent in the positive electrode 110 can be measured by, for example, X-ray diffraction measurement (XRD).
  • the content of the sacrificial positive electrode agent is preferably adjusted so that the ratio of the irreversible capacity of the sacrificial positive electrode agent to the cell capacity of the lithium secondary battery 100 is 1.0% or more and 40% or less, preferably 2.0% or more. It is more preferable to adjust the content to 38% or less, and further preferably to adjust the content to 3.0% or more and 35% or less.
  • the ratio of the irreversible capacity of the sacrificial positive electrode agent to the cell capacity of the lithium secondary battery 100 may be 4.0% or more and 33% or less, or 8.0% or more and 20% or less.
  • the ratio of the irreversible capacity of the sacrificial positive electrode agent By adjusting the ratio of the irreversible capacity of the sacrificial positive electrode agent to the cell capacity of the lithium secondary battery 100, the lithium metal remaining after the initial discharge with respect to the total amount of the lithium metal deposited by the initial charge in the lithium secondary battery 100. Since it is presumed that the ratio can be controlled, if the ratio of the irreversible capacity is within the above range, the amount of the residual lithium metal becomes appropriate, and the cycle characteristics and energy density of the lithium secondary battery 100 become appropriate. It will be even better.
  • the content of the conductive auxiliary agent may be, for example, 0.5% by mass, 30% by mass or less, 1% by mass, 20% by mass or less, or 1.5% by mass, 10% by mass, based on the entire positive electrode 110.
  • the following may be present.
  • the content of the binder may be, for example, 0.5% by mass, 30% by mass or less, 1% by mass, 20% by mass or less, or 1.5% by mass, 10% by mass or less, based on the entire positive electrode 110. You may.
  • the total content of the solid electrolyte may be, for example, 0.5% by mass, 30% by mass or less, 1% by mass, 20% by mass or less, or 1.5% by mass, 10% by mass, based on the entire positive electrode 110. It may be less than%.
  • a positive electrode current collector 150 is formed on one side of the positive electrode 110.
  • the positive electrode current collector 150 is not particularly limited as long as it is a conductor that does not react with lithium ions in the battery. Examples of such a positive electrode current collector include aluminum.
  • the average thickness of the positive electrode current collector 150 is preferably 4 ⁇ m or more and 20 ⁇ m or less, more preferably 5 ⁇ m or more and 18 ⁇ m or less, and further preferably 6 ⁇ m or more and 15 ⁇ m or less. According to such an embodiment, the volume occupied by the positive electrode current collector 150 in the lithium secondary battery 100 is reduced, so that the energy density of the lithium secondary battery 100 is further improved.
  • the buffer function layer 130 is formed on the surface of the separator 120 facing the negative electrode 140, and the buffer function layer has a fibrous or porous ion conductivity.
  • the buffer function layer 130 is in the form of a fiber or a porous form, it is agreed with a solid portion having ion conductivity and a pore portion formed by a gap between the solid portions (hereinafter, agreed with “gap portion”). It is the same in this specification.).
  • the "solid portion" in the buffer function layer includes a gel-like portion.
  • the buffer function layer 130 of the lithium secondary battery 100 of the present embodiment has ionic conductivity, and serves as an electrolyte that conducts lithium ions while fulfilling a function of preventing such volume expansion as a buffer layer. Also fulfills. That is, the buffer function layer 130 functions as the above-mentioned buffer layer while suppressing an increase in internal resistance.
  • lithium metal precipitates on the negative electrode is described later as being formed on the surface of the negative electrode, the pored portion of the buffer function layer, and the surface of the negative electrode, unless otherwise specified. It means that the lithium metal is deposited on at least one place on the surface of the solid electrolyte interface layer (SEI layer). Therefore, in the lithium secondary battery 100, the lithium metal may be deposited, for example, on the surface of the negative electrode 140 (the interface between the negative electrode and the buffer function layer), and inside the buffer function layer 130 (the vacant portion of the buffer function layer). ) May be deposited.
  • SEI layer solid electrolyte interface layer
  • the cushioning function layer 130 is not particularly limited as long as it is fibrous or porous and has ionic conductivity.
  • the member constituting the buffer function layer is not limited as long as it can conduct ions, and examples thereof include a polymer electrolyte containing an inorganic or organic salt or a gel electrolyte, and a gel electrolyte is preferable.
  • the member constituting the buffer function layer preferably contains a polymer and a lithium salt.
  • Preferred embodiments of the members constituting the buffer functional layer include polymer electrolytes and gel electrolytes. Both the polymer electrolyte and the gel electrolyte are electrolytes containing a polymer, and a gel-like electrolyte obtained by containing an electrolytic solution or a solvent is particularly referred to as a gel electrolyte.
  • the material constituting the polymer electrolyte and the gel electrolyte is not particularly limited as long as it is generally used for a lithium secondary battery, and a known material can be appropriately selected.
  • the polymer (resin) constituting the polymer electrolyte or gel electrolyte is not particularly limited, but for example, a resin such as polyethylene oxide (PEO) having an ethylene oxide unit in the main chain and / or the side chain, an acrylic resin, or vinyl.
  • PEO polyethylene oxide
  • Resin ester resin, nylon resin, polyvinylidene fluoride (PVDF), polyacrylonitrile (PAN), polysiloxane, polyphosphazene, polymethylmethacrylate, polyamide, polyimide, aramid, polylactic acid, polyethylene, polystyrene, polyurethane, polypropylene, Examples thereof include polybutylene, polyacetal, polysulfone, polytetrafluoroethylene and the like.
  • the above resins may be used alone or in combination of two or more.
  • Examples of the salt contained in the polymer electrolyte or the gel electrolyte include salts of Li, Na, K, Ca, and Mg.
  • the lithium salt is not particularly limited, but is not particularly limited, for example, LiI, LiCl, LiBr, LiF, LiBF 4 , LiPF 6 , LiAsF 6 , LiSO 3 CF 3 , LiN (SO 2 F) 2 , LiN (SO 2 CF 3 ) 2 .
  • the above-mentioned salt or lithium salt may be used alone or in combination of two or more.
  • the content ratio of the resin and the lithium salt in the polymer electrolyte or the gel electrolyte may be determined by the ratio of the oxygen atom of the resin to the lithium atom of the lithium salt ([Li] / [O]).
  • the content ratio of the resin to the lithium salt is such that the above ratio ([Li] / [O]) is, for example, 0.02 or more and 0.20 or less, 0.03 or more and 0.15 or less. , Or may be adjusted to be 0.04 or more and 0.12 or less.
  • the polymer electrolyte or gel electrolyte may contain a solvent that can be contained in the lithium secondary battery 100 in addition to the resin and the salt.
  • a solvent that can be contained in the electrolytic solution described later can be used.
  • FIG. 3A shows a schematic cross-sectional view of the fiber-shaped cushioning function layer.
  • the buffer function layer 130 shown in FIG. 3A is made of an ion conductive fiber 310, which is a fiber having ion conductivity. That is, in the present embodiment, "the buffer function layer is in the form of a fiber” means that the buffer function layer contains a fiber or is composed of a fiber, and the gap between the solid portion and the solid portion causes the buffer function layer to be in the form of a fiber. It means that it has a formed pore portion. Further, it is presumed that when the lithium secondary battery 100 is charged, the lithium metal 320 is deposited in the pore portion of the buffer function layer 130, as shown in FIG. 3 (B). However, the precipitation mode of the lithium metal is not limited to this.
  • FIG. 4C An embodiment of the ion conduction fiber 310 is shown in FIG. 4C as a schematic cross-sectional view.
  • the ion conduction fiber 310 is composed of a fiber-like ion conduction layer 400.
  • the ion conductive layer 400 has, for example, the above-mentioned configuration as a member constituting the buffer function layer.
  • the fiber average diameter of the fibrous ion conductive layer 400 is preferably 30 nm or more and 5000 nm or less, more preferably 50 nm or more and 2000 nm or less, still more preferably 70 nm or more and 1000 nm or less, and further preferably 80 nm or more and 500 nm or less. Is.
  • the surface area of the reaction field where the lithium metal can be deposited becomes a more appropriate range, so that the cycle characteristics tend to be further improved.
  • the buffer function layer 130 of the lithium secondary battery 100 shown in FIG. 3 may be porous.
  • the porous buffer function layer may be provided with, for example, a porous ionic conduction layer having communication holes.
  • the cushioning function layer is fibrous or porous, it has pores.
  • the porosity of the buffer function layer is not particularly limited, but is preferably 50% or more, more preferably 60% or more, still more preferably 70% or more, or 80% or more in volume%.
  • the porosity of the buffer function layer is within the above range, the surface area of the reaction field where the lithium metal can be deposited is further increased, so that the cycle characteristics tend to be further improved. Further, according to such an aspect, the effect of suppressing the cell volume expansion tends to be more effectively and surely exerted.
  • the porosity of the buffer function layer is not particularly limited, but may be 99% or less or 95% or less in volume%.
  • the average thickness of the buffer function layer is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, and further preferably 30 ⁇ m or less. When the average thickness of the buffer function layer is within the above range, the volume occupied by the buffer function layer 130 in the lithium secondary battery 100 is reduced, so that the energy density of the battery is further improved.
  • the average thickness of the buffer function layer is preferably 1 ⁇ m or more, more preferably 4 ⁇ m or more, and further preferably 7 ⁇ m or more. When the average thickness of the buffer function layer is within the above range, the surface area of the reaction field where the lithium metal can be deposited is further increased, so that the cycle characteristics tend to be further improved. Further, according to such an aspect, the effect of suppressing the cell volume expansion tends to be more effectively and surely exerted.
  • the fiber diameter of the fibrous ion conductive layer, the porosity of the buffer function layer, and the thickness of the buffer function layer can be measured by a known measuring method.
  • the thickness of the buffer function layer is determined by etching the surface of the buffer function layer with a focused ion beam (FIB) to expose its cross section, and observing the thickness of the buffer function layer on the exposed cut surface by SEM or TEM. It can be measured by
  • the fiber diameter of the fibrous ion conductive layer and the porosity of the buffer function layer can be measured by observing the surface of the buffer function layer with a transmission electron microscope.
  • the porosity of the buffer function layer is calculated by binary analysis of the observed image of the surface of the buffer function layer using image analysis software and obtaining the ratio of the buffer function layer to the total area of the image. do it.
  • Each of the above measured values is calculated by calculating the average of the measured values measured 3 times or more, preferably 10 times or more.
  • the buffer function layer contains a metal capable of reacting with lithium
  • the total capacity of the negative electrode 140 and the buffer function layer 130 is sufficiently smaller than the capacity of the positive electrode 110, for example, 20% or less, 15% or less, 10 It may be% or less, or 5% or less.
  • the capacities of the positive electrode 110, the negative electrode 140, and the buffer function layer 130 can be measured by a conventionally known method.
  • the separator 120 is a member for ensuring the ionic conductivity of lithium ions serving as charge carriers between the positive electrode 110 and the negative electrode 140 while preventing the battery from short-circuiting by separating the positive electrode 110 and the negative electrode 140. be. That is, the separator 120 has a function of separating the positive electrode 110 and the negative electrode 140 and a function of ensuring the ion conductivity of lithium ions. As such a separator, one kind of member having the above-mentioned two functions may be used alone, or two or more kinds of the above-mentioned members having one function may be used in combination.
  • the separator is not particularly limited as long as it has the above-mentioned functions, and examples thereof include a porous member having an insulating property, a polymer electrolyte, and a gel electrolyte.
  • the separator When the separator contains an insulating porous member, the member exhibits ion conductivity by filling the pores of the member with a substance having ion conductivity.
  • the substance to be filled include an electrolytic solution, a polymer electrolyte, and a gel electrolyte, which will be described later.
  • the separator 120 may use an insulating porous member, a polymer electrolyte, or a gel electrolyte alone or in combination of two or more. However, when a porous member having an insulating property is used alone as the separator 120, the lithium secondary battery 100 needs to further include an electrolytic solution.
  • the material constituting the above-mentioned porous member having an insulating property is not particularly limited, and examples thereof include an insulating polymer material, and specific examples thereof include polyethylene (PE) and polypropylene (PP). .. That is, the separator 120 may be a porous polyethylene (PE) film, a porous polypropylene (PP) film, or a laminated structure thereof.
  • PE polyethylene
  • PP polypropylene
  • the separator 120 may be a porous polyethylene (PE) film, a porous polypropylene (PP) film, or a laminated structure thereof.
  • the polymer electrolyte or gel electrolyte in the separator 120 those described above can be used in the section of the ion conductive layer of the buffer function layer, and the polymer electrolyte and the polymer, salt and other components that can be contained in the gel electrolyte can also be used. The same is true.
  • the separator 120 may be covered with a separator coating layer.
  • the separator coating layer may cover both sides of the separator 120, or may cover only one side.
  • the separator coating layer is not particularly limited as long as it is a member that does not react with lithium ions, but it is preferable that the separator 120 and the layer adjacent to the separator 120 can be firmly adhered to each other.
  • the separator coating layer is not particularly limited, and is, for example, polyvinylidene fluoride (PVDF), a mixture of styrene-butadiene rubber and carboxymethyl cellulose (SBR-CMC), polyacrylic acid (PAA), and lithium polyacrylic acid.
  • Examples include those containing binders such as (Li-PAA), polyimide (PI), polyamideimide (PAI), and aramid.
  • binders such as (Li-PAA), polyimide (PI), polyamideimide (PAI), and aramid.
  • inorganic particles such as silica, alumina, titania, zirconia, magnesium oxide, magnesium hydroxide, and lithium nitrate may be added to the binder.
  • the average thickness of the separator 120 is preferably 20 ⁇ m or less, more preferably 18 ⁇ m or less, and further preferably 15 ⁇ m or less. According to such an embodiment, the volume occupied by the separator 120 in the lithium secondary battery 100 is reduced, so that the energy density of the lithium secondary battery 100 is further improved.
  • the average thickness of the separator 120 is preferably 5 ⁇ m or more, more preferably 7 ⁇ m or more, and further preferably 10 ⁇ m or more. According to such an aspect, the positive electrode 110 and the negative electrode 140 can be more reliably isolated, and the short circuit of the battery can be further suppressed.
  • the lithium secondary battery 100 preferably has an electrolytic solution.
  • the electrolytic solution may be infiltrated into the separator 120, or the electrolytic solution may be sealed together with the lithium secondary battery 100 as a finished product.
  • the electrolytic solution is a solution containing an electrolyte and a solvent and having ionic conductivity, and acts as a conductive path for lithium ions. Therefore, in the lithium secondary battery 100 having an electrolytic solution, the internal resistance is further reduced, and the energy density, capacity, and cycle characteristics are further improved.
  • the electrolyte is not particularly limited as long as it is a salt, and examples thereof include salts of Li, Na, K, Ca, and Mg.
  • a lithium salt is preferably used as the electrolyte.
  • the lithium salt is not particularly limited, but LiI, LiCl, LiBr, LiF, LiBF 4 , LiPF 6 , LiAsF 6 , LiSO 3 CF 3 , LiN (SO 2 F) 2 , LiN (SO 2 CF 3 ) 2 , LiN.
  • the lithium salt is preferably LiN (SO2 F) 2 .
  • the above lithium salts may be used alone or in combination of two or more.
  • the solvent examples include a fluorinated solvent and a non-fluorinated solvent.
  • the fluorination solvent is not particularly limited, but for example, 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether, 1,1,2,2-tetrafluoroethyl- Examples thereof include 2,2,2-trifluoroethyl ether, 1H, 1H, 5H-octafluoropentyl-1,1,2,2-tetrafluoroethyl ether.
  • the non-fluorine solvent described above is not particularly limited, and for example, ethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, 1,2-dimethoxyethane, dimethoxyethane, dimethoxypropane, dimethoxybutane, diethylene glycol dimethyl ether, acetonitrile, etc.
  • Dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, ethylene carbonate, propylene carbonate, chloroethylene carbonate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, trimethyl phosphate, triethyl phosphate, and 12- Crown-4 and the like can be mentioned.
  • the fluorinated solvent and the non-fluorinated solvent can be used alone or in any combination of two or more at any ratio.
  • the ratio of the content of the fluorinated solvent and the non-fluorinated solvent is not particularly limited, but for example, the ratio of the fluorinated solvent to the whole solvent may be 0 to 100% by volume, and the ratio of the non-fluorinated solvent to the whole solvent may be 0 to 100% by volume. The ratio may be 0 to 100% by volume.
  • FIG. 2 shows one usage mode of the lithium secondary battery of the present embodiment.
  • a positive electrode terminal 220 and a negative electrode terminal 210 for connecting the lithium secondary battery 200 to an external circuit are bonded to the positive electrode current collector 150 and the negative electrode 140, respectively.
  • the lithium secondary battery 200 is charged and discharged by connecting the negative electrode terminal 210 to one end of the external circuit and the positive electrode terminal 220 to the other end of the external circuit.
  • a solid electrolyte interface layer may be formed at the interface between the buffer function layer 130 and the separator 120 by initial charging.
  • the SEI layer may not be formed, and may be formed at the interface between the negative electrode 140 and the buffer function layer 130.
  • the SEI layer to be formed is not particularly limited, but may contain, for example, an inorganic compound containing lithium, an organic compound containing lithium, and the like.
  • the typical average thickness of the SEI layer is 1 nm or more and 10 ⁇ m or less.
  • the lithium secondary battery 200 is charged by applying a voltage between the positive electrode terminal 220 and the negative electrode terminal 210 so that a current flows from the negative electrode terminal 210 to the positive electrode terminal 220 through an external circuit. Charging the lithium secondary battery 200 causes precipitation of lithium metal on the surface of the negative electrode. The precipitation of the lithium metal occurs at least at one of the interface between the negative electrode 140 and the buffer function layer 130, the inside of the buffer function layer 130, and the interface between the buffer function layer 130 and the separator 120.
  • the lithium secondary battery 200 when the positive electrode terminal 220 and the negative electrode terminal 210 are connected, the lithium secondary battery 200 is discharged. As a result, the precipitation of lithium metal generated on the surface of the negative electrode is electrolytically eluted.
  • the method for manufacturing the lithium secondary battery 100 as shown in FIG. 1 is not particularly limited as long as it can manufacture a lithium secondary battery having the above configuration, and examples thereof include the following methods. ..
  • the positive electrode 110 is formed on the positive electrode current collector 150, for example, as follows.
  • a known conductive auxiliary agent, a solid electrolyte, and a known binder are optionally mixed to obtain a positive electrode mixture.
  • the compounding ratio may be appropriately adjusted so that the contents of the positive electrode active material, the sacrificial positive electrode agent, the conductive auxiliary agent, the solid electrolyte, and the binder are within the above-mentioned range.
  • the lithium secondary battery 100 It is possible to control the ratio of the irreversible volume of the sacrificial positive electrode agent to the cell volume of the cell.
  • the obtained positive electrode mixture is applied to one side of a metal foil (for example, Al foil) as a positive electrode current collector having a predetermined thickness (for example, 5 ⁇ m or more and 1 mm or less), and press-molded.
  • the obtained molded body is punched to a predetermined size by punching to obtain a positive electrode 110.
  • the particle size of the sacrificial positive electrode agent can be controlled by a known method. Examples of such a method include a method using a crusher such as a blade mill, a jet mill or a ball mill.
  • the particle size D 50 (S) and the particle size D 95 (S) can be made smaller by lengthening the crushing time by the crusher. From the viewpoint that the particle size can be easily controlled, it is preferable to use a jet mill as the crusher.
  • the separator 120 may be manufactured by a conventionally known method, or a commercially available one may be used.
  • the above-mentioned negative electrode material for example, a metal foil of 1 ⁇ m or more and 1 mm or less (for example, an electrolytic Cu foil) is washed with a solvent containing sulfamic acid, punched to a predetermined size, and further ultrasonically washed with ethanol.
  • the negative electrode 140 is obtained by drying.
  • the method for producing the buffer function layer 130 described above is not particularly limited as long as a layer having fibrous or porous ion conductivity can be obtained, but may be, for example, as follows.
  • a fiber-shaped buffer functional layer having an ion-conducting fiber 310 composed of a fiber-shaped ion-conducting layer 400 can be manufactured as follows. First, a solution prepared by dissolving the above-mentioned resin (for example, PVDF) in an appropriate organic solvent (for example, N-methylpyrrolidone) is applied to the surface of the separator 120 prepared in advance by using a bar coater or a doctor blade. Next, the separator 120 coated with the resin solution is immersed in a water bath and then sufficiently dried at room temperature to form a fibrous ion conductive layer on the separator 120 (note that the ion conductive layer is, for example, assembled into a battery). Occasionally, the electrolytic solution may be injected to exert an ionic conduction function), whereby a fiber-shaped cushioning function layer can be obtained.
  • a solution prepared by dissolving the above-mentioned resin for example, PVDF
  • an appropriate organic solvent for example, N-methylpyrrolidone
  • the porous buffer function layer provided with the porous ion conductive layer can be manufactured as follows. Using a solution in which the above-mentioned resin (for example, PVDF) is dissolved in an appropriate solvent (for example, N-methylpyrrolidone), a conventionally known method (for example, a method using phase separation with a solvent, and a foaming agent) are used. (Method to be used, etc.), a porous ionic conduction layer having communication holes is formed on the surface of the separator 120 (note that the ionic conduction layer has an ionic conduction function by injecting an electrolytic solution, for example, when assembling a battery. It may be exerted), whereby a porous buffer function layer can be obtained.
  • an appropriate solvent for example, N-methylpyrrolidone
  • a porous ionic conduction layer having communication holes is formed on the surface of the separator 120 (note that the ionic conduction layer has an ionic conduction function by injecting an electrolytic solution,
  • a laminated body is obtained by laminating the positive electrode 110, the separator 120 on which the buffer function layer 130 is formed, and the negative electrode 140 obtained as described above so that the buffer function layer 130 faces the negative electrode 140 in this order.
  • the lithium secondary battery 100 can be obtained by enclosing the obtained laminate together with the electrolytic solution in a closed container.
  • the closed container is not particularly limited, and examples thereof include a laminated film.
  • the lithium secondary battery of the second embodiment is arranged between the positive electrode, the negative electrode having no negative electrode active material, and the positive electrode and the negative electrode.
  • the separator is provided with a buffering function layer formed on a surface facing the separator of the negative electrode.
  • the positive electrode has a positive electrode current collector on the surface opposite to the surface facing the separator.
  • the configurations of the positive electrode current collector, the positive electrode, the separator, and the negative electrode and their preferred embodiments are the same as those of the lithium secondary battery 100 of the first embodiment, except for the points described later.
  • the lithium secondary battery of the embodiment has the same effect as that of the lithium secondary battery of the first embodiment, or exhibits further performance.
  • the lithium secondary battery of the second embodiment may contain the electrolytic solution as described above, similarly to the lithium secondary battery 100.
  • the cushioning functional layer in the lithium secondary battery of the second embodiment has fibrous or porous ionic conductivity and electrical conductivity. That is, in the present embodiment, the buffer function layer is the one in which the buffer function layer 130 of the first embodiment further has electrical conductivity. Since the lithium secondary battery of the second embodiment is provided with such a cushioning function layer, the cycle characteristics are further excellent as compared with the lithium secondary battery of the first embodiment.
  • the buffer function layer of the present embodiment since the buffer function layer of the present embodiment has both ionic conductivity and electrical conductivity, when the lithium secondary battery is charged, electrons from the negative electrode are generated on the surface and / or inside of the buffer function layer. Lithium ions from the separator and / or the electrolytic solution are supplied. Further, since the buffer functional layer in the present embodiment is fibrous or porous, it has a solid portion having ionic conductivity and electrical conductivity, and a pore portion formed by a gap between the solid portions. Therefore, in the buffer function layer in the present embodiment, the electrons and lithium ions supplied as described above react on the surface of the solid portion inside the buffer function layer, and the pore portion (surface of the solid portion). Lithium metal is deposited on the surface. As described above, the "solid portion" in the buffer function layer includes a gel-like portion.
  • the place where the lithium metal is deposited is limited to the surface of the negative electrode, so that the growth direction of the lithium metal is limited to the direction of the separator from the surface of the negative electrode, and the lithium metal tends to grow like a dendrite. ..
  • the lithium secondary battery provided with the buffer function layer of the second embodiment lithium metal can be deposited not only on the surface of the negative electrode but also on the surface of the solid portion of the buffer function layer, and lithium. The surface area of the reaction field of the metal precipitation reaction increases.
  • the reaction rate of the lithium metal precipitation reaction is slowly controlled, so that the lithium metal grows heterogeneously, that is, the lithium metal grown in a dendrite shape. It is presumed that the formation is suppressed more reliably.
  • the present inventors can exert the effect of the sacrificial positive electrode agent more remarkably by introducing a buffer function layer having both ionic conductivity and electrical conductivity. I found.
  • the lithium metal that is uniform in the surface direction is deposited on the surface of the solid portion and the surface of the negative electrode during the initial charging, so that it becomes a scaffold for the precipitation of the lithium metal in the subsequent charging and suppresses the growth of the lithium metal in a dendrite shape. It is presumed that this is because it is done.
  • the factors are not limited to the above.
  • lithium metal precipitates on the negative electrode means that the surface of the negative electrode, the surface of the solid portion of the buffer function layer, and the negative electrode and / or buffer are not specified unless otherwise specified. It means that the lithium metal is deposited on at least one place on the surface of the SEI layer formed on the surface of the solid portion of the functional layer. Therefore, in the second lithium secondary battery of the present embodiment, the lithium metal may be deposited, for example, on the surface of the negative electrode (the interface between the negative electrode and the buffer function layer), and inside the buffer function layer (buffer function layer). It may be deposited on the surface of the solid portion of the above.
  • a non-limiting example of such a buffering functional layer is, for example, a fibrous or porous ion conductive layer in which all or part of the surface is coated with an electric conductive layer; fibrous or porous. All or part of the surface of the electric conductive layer of the above is coated with an ionic conductive layer; and the entanglement of a fibrous ionic conductive layer and a fibrous electric conductive layer and the like can be mentioned.
  • the ion conductive layer the same one as the ion conductive layer 400 that can be possessed by the buffer function layer 130 of the first embodiment can be used.
  • the electrically conductive layer may be any one capable of conducting electrons, and examples thereof include a metal film.
  • metals that can be contained in the electrically conductive layer include, for example, SUS, Si, Sn, Sb, Al, Ni, Cu, Sn, Bi, Ag, Au, Pt, Pb, Zn, In, Bi. -Sn, In-Sn and the like can be mentioned.
  • the metal contained in the electric conductive layer Si, Sn, Zn, Bi, Ag, In, Pb, Sb, and Al are preferable from the viewpoint of enhancing the affinity with the lithium metal.
  • one kind may be used alone or two or more kinds may be used in combination.
  • the buffer function layer in the second embodiment there is a fiber-like buffer function layer similar to the embodiment described with reference to FIG. 3 as one embodiment of the buffer function layer of the first embodiment. Be done.
  • the fiber-shaped cushioning function layer may be composed of, for example, an ionic electric conductive fiber 410 which is a fiber having ionic conductivity and electric conductivity.
  • An embodiment of such an ion electric conduction fiber 410 is shown as a schematic cross-sectional view in FIG. 4 (D). As shown in FIG.
  • the ion electric conduction fiber 410 includes a fiber-like ion conduction layer 400 and an electric conduction layer 420 that covers the surface of the ion conduction layer 400.
  • the ionic conductive layer 400 may have, for example, the above-mentioned structure as an ionic conductive layer
  • the electric conductive layer 420 may have, for example, the above-mentioned structure as an electric conductive layer.
  • the average thickness of the electrical conductive layer 420 is preferably 1 nm or more and 300 nm or less, more preferably 5 nm or more and 200 nm or less, and further preferably 10 nm or more and 150 nm or less.
  • the average thickness of the electrical conductive layer 420 may be 10 nm or more and 100 nm or less.
  • the average thickness and porosity of the buffer function layer may be the same as that of the buffer function layer 130 of the first embodiment.
  • the thickness of the electrical conductive layer in the second embodiment can be measured by a known measuring method or the like. For example, it can be measured by observing the surface of the electrically conductive layer with a transmission electron microscope, and the surface of the electrically conductive layer is etched with a focused ion beam (FIB) to expose its cross section and exposed.
  • the thickness of the cushioning functional layer on the cut surface can be measured by observing with SEM or TEM. Each measured value is calculated by calculating the average of the measured values measured 3 times or more, preferably 10 times or more.
  • the buffer function layer contains a metal capable of reacting with lithium
  • the total capacity of the negative electrode and the buffer function layer is sufficiently small with respect to the capacity of the positive electrode, for example, 20% or less, 15% or less, 10% or less. Alternatively, it may be 5% or less.
  • the manufacture of the configuration other than the buffer function layer and the assembly of each configuration shall be carried out in the same manner as the method for manufacturing the lithium secondary battery of the first embodiment. Can be done.
  • the method for producing the buffer functional layer provided with the above-mentioned electric conductive layer is not particularly limited as long as a fibrous or porous layer having ionic conductivity and electric conductivity can be obtained, but may be, for example, as follows.
  • the fiber-like buffer function layer having the ion-electric conduction fiber 410 including the fiber-like ion conduction layer 400 and the electric conduction layer 420 covering the surface of the ion conduction layer 400 is as follows. Can be manufactured as. First, as described above, the separator coated with the resin solution is immersed in a water bath and then sufficiently dried at room temperature to form a fibrous ion conductive layer on the separator (note that the ion conductive layer can be formed).
  • the ionic conduction function may be exhibited by injecting an electrolytic solution at the time of assembling the battery.) Subsequently, a fiber-shaped buffer functional layer can be obtained by depositing an appropriate metal (for example, Ni) on the separator on which the fiber-shaped ion conductive layer is formed under vacuum conditions.
  • an appropriate metal for example, Ni
  • the porous buffer function layer including the porous ion conductive layer and the electric conductive layer covering the surface of the ion conductive layer can be manufactured as follows. First, as described above, a porous ionic conductive layer having communication holes is formed on the surface of the separator by a conventionally known method (in addition, the ionic conductive layer is injected with an electrolytic solution, for example, when assembling a battery. By doing so, the ion conduction function may be exhibited). Subsequently, a porous buffer function layer can be obtained by depositing an appropriate metal (for example, Ni) on the separator on which the porous ion conductive layer is formed under vacuum conditions.
  • an appropriate metal for example, Ni
  • the lithium secondary battery of the third embodiment has a positive electrode, a negative electrode having no negative electrode active material, a separator arranged between the positive electrode and the negative electrode, and a negative electrode separator. It is provided with a cushioning function layer formed on a surface facing the surface thereof.
  • the positive electrode has a positive electrode current collector on the surface opposite to the surface facing the separator.
  • the configurations of the positive electrode current collector, the positive electrode, the separator, the buffer function layer, and the negative electrode and their preferred embodiments are the same as those of the lithium secondary battery 100 of the first embodiment, except for the points described later.
  • the third lithium secondary battery of the present embodiment has the same effect as that of the lithium secondary battery 100, or exhibits further performance. Further, the lithium secondary battery of the third embodiment may contain an electrolytic solution as described above, similarly to the lithium secondary battery 100.
  • the positive electrode in the lithium secondary battery of the third embodiment causes an oxidation reaction in the charge / discharge potential range of the positive electrode active material in addition to the positive electrode active material, and is reduced.
  • the definitions, examples, and preferred embodiments of the positive electrode active material, the sacrificial positive electrode agent, and other components that can be contained in the positive electrode are the same as in the first embodiment.
  • the present inventors have determined that the positive electrode active material D 50 (A) is obtained when the particle size corresponding to the cumulative degree of 50% is set to D 50 in the particle size distribution measured by the laser diffraction / scattering method.
  • D 50 (A) / D 50 (S) which is 5.0 ⁇ m or more and 20 ⁇ m or less and is the particle size ratio of D 50 (A) of the positive electrode active material to D 50 (S) of the lithium-containing compound, is 2. It was found that the rate characteristics were particularly excellent when the content was 0.0 or more and 10.0 or less. The factors are inferred as follows, but the factors are not limited to this.
  • the positive electrode active material D 50 (A) is 5.0 ⁇ m or more and 20 ⁇ m or less, and the particle size ratio D 50 (A) / D 50 (S) is 2. Since it is precisely controlled so as to be within the range of 0.0 or more and 10.0 or less, the contact area between the positive electrode active materials is kept sufficiently high, and the filling density of the positive electrode is increased. That is, the positive electrode in the lithium secondary battery of the third embodiment exists so as to fill the gap between the positive electrode active material and the positive electrode active material that are sufficiently in contact with each other to the extent that the internal resistance inside the positive electrode is sufficiently small.
  • the lithium secondary battery of the third embodiment has a high energy density.
  • the lithium secondary battery of the third embodiment has a high energy density.
  • the rate characteristic means the performance of being able to charge and discharge with a large current, and it is known that the rate performance is excellent when the internal resistance of the battery is low. More specifically, it means that the discharge capacity when discharging at high speed (for example, 3C) is maintained sufficiently higher than the discharging capacity when discharging at low speed (for example, 0.1C). ..
  • excellent rate characteristics means, for example, that the discharge capacity when discharging at 3C is 60% or more or 65% as compared with the discharging capacity when discharging at 0.1C. It means that it is more than or equal to 70% or more.
  • the positive electrode active material contained in the positive electrode has a particle size D 50 (A) of 5.0 ⁇ m or more and 20 ⁇ m or less.
  • the particle size D 50 (A) of the positive electrode active material contained in the positive electrode of the present embodiment is preferably 6.0 ⁇ m or more, more preferably 7.0 ⁇ m or more, still more preferably 8.0 ⁇ m or more. Even more preferably, it is 9.0 ⁇ m or more.
  • the particle size D 50 (A) of the positive electrode active material contained in the positive electrode of the present embodiment is preferably 19 ⁇ m or less, more preferably 18 ⁇ m or less, still more preferably 17 ⁇ m or less, and even more preferably. It is 15 ⁇ m or less.
  • the particle size ratio of the positive electrode active material D 50 (A) to the sacrificial positive electrode agent D 50 (S) is D 50 (A) / D 50 (S). ) Is 2.0 or more and 10.0 or less.
  • the particle size ratio D 50 (A) / D 50 (S) is preferably 2.5 or more, more preferably 3.0 or more, still more preferably 3.5 or more, and even more preferably. It is 4.0 or more.
  • the particle size ratio D 50 (A) / D 50 (S) is preferably 9.5 or less, more preferably 9.0 or less, still more preferably 8.5 or less, and even more. It is preferably 8.0 or less.
  • the sacrificial positive electrode agent contained in the positive electrode has, for example, a particle size D 50 (S) of 0.5 ⁇ m or more and 10 ⁇ m or less.
  • the particle size D 50 (S) of the sacrificial positive electrode agent contained in the positive electrode of the present embodiment may be 1.0 ⁇ m or more, 1.5 ⁇ m or more, or 2.0 ⁇ m or more.
  • the particle diameter D 50 (S) of the sacrificial positive electrode agent contained in the positive electrode of the present embodiment may be 9.0 ⁇ m or less, 8.0 ⁇ m or less, 7.0 ⁇ m or less, or 6.0 ⁇ m or less. In the present embodiment, by setting the particle diameter D 50 (S) of the sacrificial positive electrode agent within the above range, the cycle characteristics of the battery tend to be further improved.
  • the electrode density of the positive electrode is, for example, 3.0 g / cc or more.
  • the electrode density of the positive electrode may be 3.2 g / cc or more, 3.3 g / cc or more, 3.4 g / cc or more, or 3.5 g / cc or more.
  • the filling density of the positive electrode is increased, so that the energy density of the battery tends to be further improved.
  • the "electrode density” represents the mass included in the unit volume of the electrode. Therefore, as the unit, g / cc, g / cm 3 , g / mL and the like are used.
  • the electrode density depends on the density, arrangement, and the like of the materials constituting the electrode. Therefore, in the positive electrode of the present embodiment, it may change depending on the particle size of the positive electrode active material and the sacrificial positive electrode agent. In the present embodiment, as the particle size ratio D 50 (A) / D 50 (S) increases, the electrode density of the positive electrode tends to increase. Further, it can be controlled by adjusting the volume ratio of the contents of the sacrificial positive electrode agent and the positive electrode active material. As the electrode density increases, the capacity per volume of the lithium secondary battery increases, so that the energy density of the lithium secondary battery tends to increase further.
  • the content of the positive electrode active material, the sacrificial positive electrode agent, and other components that can be contained in the positive electrode in the positive electrode is the same as that in the first embodiment.
  • the D 50 (A) of the positive electrode active material is 5.0 ⁇ m or more and 20 ⁇ m or less, and the particle size ratio of the positive electrode active material D 50 (A) to the lithium-containing compound D 50 (S) is D 50 (A).
  • ) / D 50 (S) is 2.0 or more and 10.0 or less, and it is preferable that the contents of the sacrificial positive electrode agent and the positive electrode active material are within the above range because the packing density of the positive electrode is further improved. ..
  • the lithium secondary battery of the third embodiment can be implemented in the same manner as the method for manufacturing the lithium secondary battery of the first embodiment.
  • the control of the particle size of the positive electrode active material and the sacrificial positive electrode agent is the same as that of the first method for manufacturing the lithium secondary battery of the present embodiment, and can be carried out by using a crusher.
  • the present embodiment is an example for explaining the present invention, and the present invention is not limited to the present embodiment.
  • the present invention can be modified in various ways as long as it does not deviate from the gist thereof. ..
  • the lithium secondary battery of the third embodiment includes the buffer function layer of the first embodiment, but the buffer function layer of the second embodiment may be used as the buffer function layer. good. According to such an embodiment, it is provided a battery having excellent rate characteristics in the lithium secondary battery of the third embodiment and further excellent cycle characteristics in the lithium secondary battery of the second embodiment. Can be done.
  • the lithium secondary battery of the present embodiment may or may not have a current collector arranged so as to be in contact with the negative electrode on the surface of the negative electrode.
  • the current collector is not particularly limited, and examples thereof include those that can be used as a negative electrode material.
  • the lithium secondary battery of the present embodiment does not have to have a positive electrode current collector.
  • the positive electrode and the negative electrode themselves act as current collectors, respectively.
  • terminals for connecting to an external circuit may be attached to the positive electrode current collector and / or the negative electrode.
  • metal terminals of 10 ⁇ m or more and 1 mm or less may be bonded to one or both of the positive electrode current collector and the negative electrode.
  • the joining method a conventionally known method may be used, and for example, ultrasonic welding may be used.
  • high energy density or “high energy density” means that the total volume of the battery or the capacity per total mass is high, but preferably 700 Wh / L or more or 300 Wh. It is / kg or more, more preferably 800 Wh / L or more or 350 Wh / kg or more, and further preferably 900 Wh / L or more or 400 Wh / kg or more.
  • excellent in cycle characteristics means that the rate of decrease in battery capacity is low before and after the number of charge / discharge cycles that can be expected in normal use. That is, when comparing the first discharge capacity after the initial charge / discharge with the capacity after the charge / discharge cycle of the number of times that can be expected in normal use, the capacity after the charge / discharge cycle is the capacity after the initial charge / discharge. It means that there is almost no decrease with respect to the first discharge capacity of.
  • the "number of times that can be assumed in normal use” depends on the application in which the lithium secondary battery is used, but is, for example, 30 times, 50 times, 70 times, 100 times, 300 times, or 500 times. be.
  • the capacity after the charge / discharge cycle is hardly reduced with respect to the capacity of the first discharge after the initial charge / discharge", depending on the application in which the lithium secondary battery is used, for example, charge.
  • the capacity after the discharge cycle is 60% or more, 65% or more, 70% or more, 75% or more, 80% or more, or 85% or more with respect to the first discharge capacity after the initial charge / discharge. means.
  • the numerical range described as a preferable range or the like may be replaced with a numerical range obtained by arbitrarily combining the described upper limit value and lower limit value.
  • a parameter is preferably 50 or more, more preferably 60 or more, preferably 100 or less, and more preferably 90 or less
  • the parameter is 50 or more and 100 or less, 50 or more and 90 or less, 60 or more and 100. It may be either the following, or 60 or more and 90 or less.
  • the ionic conduction layer and the electrical conduction layer are not limited to the layered ones, but may be fibrous, lumpy, or porous. Therefore, the terms ionic conduction layer and electrical conduction layer may be paraphrased as ionic conduction phase and electrical conduction phase, respectively.
  • a separator having a predetermined size was prepared in which both sides of a 12 ⁇ m polyethylene microporous membrane were coated with 2 ⁇ m polyvinylidene fluoride (PVDF).
  • PVDF polyvinylidene fluoride
  • Test Example 1 commercially available Li 2 O 3 and Li 3 N were used. Further, in Test Examples 1 and 2, Li 5 FeO 4 was used in Chem. Mater. It was manufactured by the method described in 2010, 22, 1263 to 1270. That is, a sacrificial positive electrode agent was obtained by pulverizing and mixing LiOH ⁇ H 2 O and Fe 2 O 3 and firing them in a nitrogen atmosphere at 800 ° C. for 72 hours. The particle sizes of the prepared positive electrode active material and the sacrificial positive electrode agent were adjusted by pulverizing using a jet mill.
  • the mixing ratio of the positive electrode active material and the sacrificial positive electrode agent is the charge capacity density (mAh / g) of the positive electrode active material and the sacrificial positive electrode agent measured as follows, and the irreversible volume density A (mAh / g) of the sacrificial positive electrode agent.
  • the mixing ratio of the positive electrode active material and the sacrificial positive electrode agent is such that the ratio of the irreversible capacity of the sacrificial positive electrode agent to the cell capacity of the battery is set to each value described as "addition rate (cell capacity ratio%)" in Table 1. Adjusted to be.
  • the content of the sacrificial positive electrode agent with respect to the entire positive electrode of Test Example 1 is shown in Table 1 as "addition amount (% by mass)". Further, in Test Example 2, the mixing ratio of the positive electrode active material and the sacrificial positive electrode agent was adjusted so that the irreversible capacity of the sacrificial positive electrode agent with respect to the cell capacity of the battery was 10%. The content of the sacrificial positive electrode agent with respect to the entire positive electrode of Test Example 2 was 3.3% by mass. In Test Examples 1 and 2, the total amount of the positive electrode active material and the sacrificial positive electrode agent was adjusted so that the cell capacity of the lithium secondary battery was 60 mAh.
  • a positive electrode active material or a sacrificial positive electrode agent, PVDF, a conductive auxiliary agent, and N-methylpyrrolidone (NMP) were mixed to prepare a slurry, which was applied, dried, and pressed on an aluminum foil.
  • a test cell using lithium metal as the counter electrode is prepared, charged with a current of 0.2 mAh / cm 2 until the voltage reaches 4.2 V, and then discharged until the voltage reaches 3.0 V.
  • mAh / g) and / or the irreversible capacitance density A (mAh / g) were determined.
  • Ni was vapor-deposited under vacuum conditions on the separator on which the fibrous ion conductive layer was formed.
  • the ion conduction layer after Ni vapor deposition was observed using an SEM with an energy dispersive X-ray analyzer (EDX), it was confirmed that Ni was distributed so as to cover the fiber-like ion conduction layer. It was confirmed that a fibrous cushioning functional layer was obtained in which the surface of the ionic conductive layer was covered with an electric conductive layer.
  • the cross section of the buffer function layer was prepared by FIB and observed by SEM, the average thickness of the buffer function layer was 10 ⁇ m.
  • the average thickness of the Ni thin film as the electrical conduction layer and the porosity of the buffer function layer were 20 nm and 90%, respectively.
  • a dimethoxyethane (DME) solution of 4M LiN (SO 2 F) 2 (LFSI) was prepared.
  • the positive electrode, the separator on which the buffer function layer was formed, and the negative electrode were laminated in this order to obtain a laminated body.
  • the lamination was carried out so that the cushioning function layer faced the negative electrode.
  • a 100 ⁇ m Al terminal and a 100 ⁇ m Ni terminal were bonded to the positive electrode current collector and the negative electrode by ultrasonic welding, respectively, and then inserted into the outer body of the laminate.
  • the above electrolytic solution was injected into the above exterior body.
  • a lithium secondary battery was obtained by sealing the exterior body.
  • Example 1 A lithium secondary battery was obtained in the same manner as in Example 1 except that the sacrificial positive electrode agent was not used.
  • Example 2 A lithium secondary battery was obtained in the same manner as in Example 1 except that a sacrificial positive electrode agent having a D 50 (S) of 0.5 ⁇ m was used.
  • Example 6 A lithium secondary battery was obtained in the same manner as in Example 8 except that the sacrificial positive electrode agent of Li 2 O 2 whose D 50 (S) and D 95 (S) were the values shown in Table 1 was used.
  • the prepared lithium secondary battery was charged at 0.2 mAh / cm 2 until the voltage reached 4.2 V (initial charge), and then discharged at 0.2 mAh / cm 2 until the voltage reached 3.0 V. (Initial discharge).
  • a charge / discharge cycle of charging at 1.0 mAh / cm 2 until the voltage reaches 4.2 V and then discharging at 1.0 mAh / cm 2 until the voltage reaches 3.0 V is performed in an environment at a temperature of 25 ° C. Then, 99 cycles were repeated.
  • the capacity (initial capacity) obtained from the initial charge was 60 mAh.
  • the ratio of the discharge capacity obtained from the discharge in the 100th cycle of the charge / discharge cycle to the discharge capacity obtained from the discharge in the second cycle of the charge / discharge cycle is maintained. It was calculated as a rate (%) and used as an index of cycle characteristics. The higher the capacity retention rate, the better the cycle characteristics. Table 1 shows the capacity retention rate in each example.
  • a lithium ion battery was prepared by using a 10 ⁇ m electrolytic Cu foil on which graphite containing 10% by mass of Si was supported as a negative electrode active material as a negative electrode.
  • the separator, positive electrode, buffering function layer, and electrolytic solution were the same as in Test Example 1.
  • the amount and particle size of the sacrificial positive electrode agent added were adjusted to be the values shown in Table 2.
  • the cycle characteristics of the lithium-ion battery produced as Reference Example 1 were measured in the same manner as in Test Example 1. The results are shown in Table 2.
  • Test Example 2 (Examples 10 to 16) A lithium secondary battery was produced in the same manner as in the example of Test Example 1 except that the positive electrode containing the positive electrode active material and the sacrificial positive electrode agent having the characteristics shown in Table 3 was used. Further, in Test Example 2, the mixing ratio of the positive electrode active material and the sacrificial positive electrode agent was adjusted so that the ratio of the irreversible capacity of the sacrificial positive electrode agent to the cell capacity of the battery was 10%. The content of the sacrificial positive electrode agent with respect to the entire positive electrode of Test Example 2 was 3.3% by mass.
  • Example 7 A lithium secondary battery was obtained in the same manner as in Example 10 except that the sacrificial positive electrode agent was not used.
  • the rate characteristics of the lithium secondary batteries produced in each Example and Comparative Example were evaluated as follows. After CC-charging the prepared lithium secondary battery at 3.0 mA to 4.2 V, in each process, 0.05C, 0.1C, 0.5C, 1.0C, 2.0C, or 3 in order. CC discharge was performed at a discharge rate of 0.0 C. At this time, the lower limit voltage was set to 3.0V. In addition, between each discharge, CC charging was performed again at 3.0 mA to 4.2 V, and after charging was completed, CC discharge was performed at the next discharge rate.
  • the ratio of the discharge capacity at the discharge rate of 3.0 C to the value of the discharge capacity at the discharge rate of 0.1 C obtained as described above was calculated as the rate characteristic (%) and used as an index of the rate characteristic.
  • the particle size D 50 (A) of the positive electrode active material is 5.0 ⁇ m or more and 20 ⁇ m or less, and the particle size ratio D 50 (A) / D 50 (S) is 2.0 or more and 10.0 or less. It can be seen that Examples 10 to 16 have higher rate characteristics (%) and are excellent in rate characteristics as compared with Comparative Examples 7 to 11 which do not.
  • the lithium secondary battery of the present invention has a high energy density and is excellent in cycle characteristics or rate characteristics, it has industrial applicability as a power storage device used in various applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)

Abstract

本発明は、エネルギー密度が高く、サイクル特性に優れるリチウム2次電池を提供する。本発明は、正極と、負極活物質を有しない負極と、正極と負極との間に配置されているセパレータと、負極のセパレータの負極に対向する表面に形成されているファイバ状又は多孔質状のイオン伝導性を有する緩衝機能層と、を備え、正極が、正極活物質と、正極活物質の充放電電位範囲において酸化反応を生じ、かつ、還元反応を実質的に生じないリチウム含有化合物と、を含み、リチウム含有化合物のレーザ回折・散乱法により測定される粒度分布において、累積度50%に対応する粒子径D50(S)が1.0μm以上20μm以下であり、リチウム含有化合物の累積度95%に対応する粒子径D95(S)が1.0μm以上30μm以下である、リチウム2次電池等に関する。

Description

リチウム2次電池
 本発明は、リチウム2次電池に関する。
 近年、太陽光又は風力等の自然エネルギーを電気エネルギーに変換する技術が注目されている。これに伴い、安全性が高く、かつ多くの電気エネルギーを蓄えることができる蓄電デバイスとして、様々な2次電池が開発されている。
 その中でも、正極及び負極の間を金属イオンが移動することで充放電を行う2次電池は、高電圧及び高エネルギー密度を示すことが知られており、典型的には、リチウムイオン2次電池が知られている。典型的なリチウムイオン2次電池としては、正極及び負極にリチウムを保持することのできる活物質を導入し、正極活物質及び負極活物質の間でのリチウムイオンの授受によって充放電をおこなうものが挙げられる。また、負極に活物質を用いない2次電池として、負極表面上にリチウム金属を析出させることでリチウムを保持するリチウム金属2次電池が開発されている。
 例えば、特許文献1には、室温で少なくとも1Cのレートでの放電時に、1000Wh/Lを越える体積エネルギー密度及び/又は350Wh/kgを越える質量エネルギー密度を有する、高エネルギー密度、高出力リチウム金属アノード2次電池が開示されている。特許文献1は、そのようなリチウム金属アノード2次電池を実現するため、極薄リチウム金属アノードを用いることを開示している。
 また、特許文献2には、正極、負極、これらの間に介在された分離膜及び電解質を含むリチウム2次電池において、前記負極は、負極集電体上に金属粒子が形成され、充電によって前記正極から移動され、負極内の負極集電体上にリチウム金属を形成する、リチウム2次電池が開示されている。特許文献2は、そのようなリチウム2次電池は、リチウム金属の反応性による問題と、組み立ての過程で発生する問題点を解決し、性能及び寿命が向上されたリチウム二次電池を提供することができることを開示している。
特表2019-517722号公報 特表2019-537226号公報
 しかしながら、本発明者らが、上記特許文献に記載のものを始めとする従来の電池を詳細に検討したところ、エネルギー密度、サイクル特性、及びレート特性の少なくともいずれかが十分でないことがわかった。
 例えば、正極活物質及び負極活物質の間での金属イオンの授受によって充放電をおこなう典型的な2次電池は、エネルギー密度が十分でない。また、上記特許文献に記載されているような、負極表面上にリチウム金属を析出させることでリチウムを保持する従来のリチウム金属2次電池は、充放電を繰り返すことにより負極表面上にデンドライト状のリチウム金属が形成されやすく、短絡及び容量低下が生じやすい。その結果、サイクル特性が十分でない。また、上記のようなリチウム金属2次電池は充放電を繰り返すことで、内部抵抗が増加する傾向にあるため、レート特性も低下する。
 更に、リチウム金属2次電池において、リチウム金属析出時の離散的な成長を抑制するために、電池に大きな物理的圧力をかけて負極とセパレータとの界面を高圧に保つ方法も開発されている。しかしながら、そのような高圧の印加には大きな機械的機構が必要であるため、電池全体としては、重量及び体積が大きくなり、エネルギー密度が低下する。
 本発明は、上記問題点に鑑みてなされたものであり、エネルギー密度が高く、サイクル特性又はレート特性に優れるリチウム2次電池を提供することを目的とする。
 本発明の一実施形態に係るリチウム2次電池は、正極と、負極活物質を有しない負極と、正極と負極との間に配置されているセパレータと、セパレータの負極に対向する表面に形成されているファイバ状又は多孔質状のイオン伝導性を有する緩衝機能層と、を備え、正極が、正極活物質と、正極活物質の充放電電位範囲において酸化反応を生じ、かつ、還元反応を実質的に生じないリチウム含有化合物と、を含み、レーザ回折・散乱法により測定される粒度分布において、リチウム含有化合物の累積度50%に対応する粒子径D50(S)が1.0μm以上20μm以下であり、リチウム含有化合物の累積度95%に対応する粒子径D95(S)が1.0μm以上30μm以下である。
 そのようなリチウム2次電池は、負極活物質を有しない負極を備えることにより、リチウム金属が負極の表面に析出し、及び、その析出したリチウム金属が電解溶出することによって充放電が行われるため、エネルギー密度が高い。
 また、本発明の一実施形態に係るリチウム2次電池の緩衝機能層は、リチウム2次電池において、充放電に伴う電池の体積膨張を緩和、抑制する緩衝層として機能すると推測される。
 更に、上記のリチウム2次電池は、上記のようなリチウム含有化合物を犠牲正極剤として正極に有する。上記のような犠牲正極剤は、リチウム2次電池の初期充電時に酸化反応を生じる(すなわち、リチウムイオンを放出する。)一方で、その後の放電時には還元反応を実質的に生じず(すなわち、放電前のリチウム含有化合物が形成されない。)、当該リチウム含有化合物に由来するリチウム元素は、負極表面上にリチウム金属として残留する。また、当該犠牲正極剤は、レーザ回折・散乱法により測定される粒度分布において、累積度50%に対応する粒子径D50(S)が1.0μm以上20μm以下であり、累積度95%に対応する粒子径D95(S)が1.0μm以上30μm以下である。このような粒子径を有する犠牲正極剤は、その界面抵抗を低く維持したまま、負極表面上に析出するリチウム金属をより均一化することができる。
 したがって、上記のリチウム2次電池は、放電の際に、負極表面上に均一に析出しているリチウム金属が全て溶解することなく、放電完了後においても一部のリチウム金属が負極表面上に残留すると考えられる。当該残留リチウム金属は、その後の充電時において、更なるリチウム金属が負極表面上に析出する際の足場となるため、当該充電時においてリチウム金属は負極表面上に一層均一に析出しやすくなる。したがって、上記のリチウム2次電池は、負極上にデンドライト状のリチウム金属が成長することが抑制され、サイクル特性に優れたものとなる。
 本発明の別の一実施形態に係るリチウム2次電池は、正極と、負極活物質を有しない負極と、正極と負極との間に配置されているセパレータと、セパレータの負極に対向する表面に形成されているファイバ状又は多孔質状のイオン伝導性を有する緩衝機能層と、を備え、正極が、正極活物質と、正極活物質の充放電電位範囲において酸化反応を生じ、かつ、還元反応を実質的に生じないリチウム含有化合物と、を含み、レーザ回折・散乱法により測定される粒度分布において、累積度50%に対応する粒子径をD50とした場合、正極活物質のD50(A)が5.0μm以上20μm以下であり、リチウム含有化合物のD50(S)に対する正極活物質のD50(A)の粒径比であるD50(A)/D50(S)が、2.0以上10.0以下である。
 そのようなリチウム2次電池は、負極活物質を有しない負極、緩衝機能層、及び犠牲正極剤としてのリチウム含有化合物を備えるため、上述と同様の理由から、エネルギー密度が高く、サイクル特性に優れる。
 ここで、犠牲正極剤として用いられるリチウム含有化合物は、正極活物質に比べその電気伝導度が低いため、正極に犠牲正極剤を添加すると、正極全体における内部抵抗が高くなる傾向にある。一方、上記のリチウム2次電池は、レーザ回折・散乱法により測定される粒度分布において、正極活物質のD50(A)が5.0μm以上20μm以下であり、リチウム含有化合物のD50(S)に対する正極活物質のD50(A)の粒径比D50(A)/D50(S)が、2.0以上10.0以下であるため、正極活物質同士の接触が犠牲正極剤により阻害されることが抑制され、その結果正極内の電気伝導性が高い。したがって、上記のリチウム2次電池は、正極内の内部抵抗が十分小さく、レート特性に優れるものである。
 上記の、正極活物質のD50(A)が5.0μm以上20μm以下であり、粒径比D50(A)/D50(S)が2.0以上10.0以下であるリチウム2次電池において、リチウム含有化合物のD50(S)は、好ましくは、1.0μm以上10μm以下である。そのような態様によれば、負極表面上に析出するリチウム金属がより均一化し、負極上にデンドライト状のリチウム金属が析出することを抑制できるため、サイクル特性に一層優れたものとなる。
 上記の、正極活物質のD50(A)が5.0μm以上20μm以下であり、粒径比D50(A)/D50(S)が2.0以上10.0以下であるリチウム2次電池において、正極の電極密度は、好ましくは、3.0g/cc以上である。そのような態様によれば、リチウム2次電池の容量を一層高くすることができる。
 上記のリチウム2次電池は、上記犠牲正極剤を、好ましくは、上記正極の総質量に対して、1.0質量%以上15質量%以下で含む。そのような態様によれば、上述した犠牲正極剤の効果が一層有効かつ確実に奏されるため、リチウム2次電池のサイクル特性が一層優れたものとなる。
 上記リチウム含有化合物の不可逆容量の割合は、リチウム2次電池のセル容量に対して、好ましくは、1.0%以上30%以下である。そのような態様によれば、放電完了後に負極表面上に残留する残留リチウムが一層適切な量となるため、リチウム2次電池のサイクル特性及びエネルギー密度が一層向上する。
 緩衝機能層の空孔率は、好ましくは、50%以上である。そのような態様によれば、上述した緩衝機能層の効果が一層有効かつ確実に奏されるため、リチウム2次電池のサイクル特性及びエネルギー密度が一層向上する。
 緩衝機能層は、好ましくは、電気伝導性を更に有するものである。リチウム2次電池がセパレータ表面に、電気伝導性を更に有する緩衝機能層を有する場合、負極の表面上だけでなく、ファイバ状又は多孔質状のイオン伝導性及び電気伝導性を有する緩衝機能層の内部でもリチウム金属が析出することができるため、リチウム金属析出反応の反応場の表面積が増加し、リチウム金属析出反応の反応速度が緩やかに制御される。その結果、負極上にデンドライト状のリチウム金属が成長することが一層抑制され、電池のサイクル特性が一層向上する傾向にある。
 上記犠牲正極剤は、好ましくは、Feを含む化合物である。そのような態様によれば、上述した犠牲正極剤の効果が一層有効かつ確実に奏されるため、リチウム2次電池のサイクル特性が一層優れたものとなる。
 本発明によれば、エネルギー密度が高く、サイクル特性又はレート特性に優れるリチウム2次電池を提供することができる。
第1の本実施形態に係るリチウム2次電池の概略断面図である。 第1の本実施形態に係るリチウム2次電池の使用の概略断面図である。 第1の本実施形態に係るリチウム2次電池における緩衝機能層の概略断面図であり、(A)は緩衝機能層の一実施形態であるファイバ状の緩衝機能層を示し、(B)はファイバ状の緩衝機能層にリチウム金属が析出する析出態様を示す。 第1及び第2の本実施形態に係るリチウム2次電池における緩衝機能層の概略断面図であり、ファイバ状の緩衝機能層を構成する部材の一実施形態を示す。
 以下、必要に応じて図面を参照しつつ、本発明の実施の形態(以下、「本実施形態」という。)について詳細に説明する。なお、図面中、同一要素には同一符号を付すこととし、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。さらに、図面の寸法比率は図示の比率に限られるものではない。
[第1の本実施形態]
(リチウム2次電池)
 図1は、第1の本実施形態に係るリチウム2次電池の概略断面図である。図1に示すように、第1の本実施形態のリチウム2次電池100は、正極110と、負極活物質を有しない負極140と、正極110と負極140との間に配置されているセパレータ120と、負極140のセパレータ120に対向する表面に形成されている緩衝機能層130と、を備える。正極110は、セパレータ120に対向する面とは反対側の面に正極集電体150を有する。
(負極)
 負極140は、負極活物質を有しないものである。本明細書において、「負極活物質」とは、負極において電極反応、すなわち酸化反応及び還元反応を生じる物質である。具体的には、本実施形態の負極活物質としては、リチウム金属、及びリチウム元素(リチウムイオン又はリチウム金属)のホスト物質が挙げられる。リチウム元素のホスト物質とは、リチウムイオン又はリチウム金属を負極に保持するために設けられる物質を意味する。そのような保持の機構としては、特に限定されないが、例えば、インターカレーション、合金化、及び金属クラスターの吸蔵等が挙げられ、典型的には、インターカレーションである。
 本実施形態のリチウム2次電池は、電池の初期充電前に負極が負極活物質を有しないため、負極上にリチウム金属が析出し、及び、その析出したリチウム金属が電解溶出することによって充放電が行われる。したがって、本実施形態のリチウム2次電池は、負極活物質を有するリチウム2次電池と比較して、負極活物質が占める体積及び負極活物質の質量が削減され、電池全体の体積及び質量が小さくなるため、エネルギー密度が原理的に高い。
 本実施形態のリチウム2次電池100は、電池の初期充電前に負極140が負極活物質を有せず、電池の充電により負極上にリチウム金属が析出し、電池の放電によりその析出したリチウム金属が電解溶出する。したがって、本実施形態のリチウム2次電池において、負極は負極集電体として働く。
 本実施形態のリチウム2次電池100をリチウムイオン電池(LIB)及びリチウム金属電池(LMB)と比較すると、以下の点で異なるものである。
 リチウムイオン電池(LIB)において、負極はリチウム元素(リチウムイオン又はリチウム金属)のホスト物質を有し、電池の充電によりかかる物質にリチウム元素が充填され、ホスト物質がリチウム元素を放出することにより電池の放電が行われる。LIBは、負極がリチウム元素のホスト物質を有する点で、本実施形態のリチウム2次電池100とは異なる。
 リチウム金属電池(LMB)は、その表面にリチウム金属を有する電極か、あるいはリチウム金属単体を負極として用いて製造される。すなわち、LMBは、電池を組み立てた直後、すなわち電池の初期充電前に、負極が負極活物質であるリチウム金属を有する点で、本実施形態のリチウム2次電池100とは異なる。LMBは、その製造に、可燃性及び反応性が高いリチウム金属を含む電極を用いるが、本実施形態のリチウム2次電池100は、リチウム金属を有しない負極を用いるため、より安全性及び生産性に優れるものである。
 本明細書において、負極が「負極活物質を有しない」とは、負極140が負極活物質を有しないか、実質的に有しないことを意味する。負極140が負極活物質を実質的に有しないとは、負極140における負極活物質の含有量が、負極全体に対して10質量%以下であることを意味する。負極における負極活物質の含有量は、負極140全体に対して、好ましくは5.0質量%以下であり、1.0質量%以下であってもよく、0.1質量%以下であってもよく、0.0質量%以下であってもよい。負極140が負極活物質を有せず、又は、負極140における負極活物質の含有量が上記の範囲内にあることにより、リチウム2次電池100のエネルギー密度が高いものとなる。
 本明細書において、電池が「初期充電前である」とは、電池が組み立てられてから第1回目の充電をするまでの状態を意味する。また、電池が「放電終了時である」とは、電池の電圧が1.0V以上3.8V以下、好ましくは1.0V以上3.0V以下である状態を意味する。
 本明細書において、「負極活物質を有しない負極を備えるリチウム2次電池」とは、電池の初期充電前に、負極140が負極活物質を有しないことを意味する。したがって、「負極活物質を有しない負極」との句は、「電池の初期充電前に負極活物質を有しない負極」、「電池の充電状態に依らずリチウム金属以外の負極活物質を有せず、かつ、初期充電前においてリチウム金属を有しない負極」、又は「初期充電前においてリチウム金属を有しない負極集電体」等と換言してもよい。また、「負極活物質を有しない負極を備えるリチウム2次電池」は、アノードフリーリチウム電池、ゼロアノードリチウム電池、又はアノードレスリチウム電池と換言してもよい。
 本実施形態の負極140は、電池の充電状態によらず、リチウム金属以外の負極活物質の含有量が、負極全体に対して10質量%以下であり、好ましくは5.0質量%以下であり、1.0質量%以下であってもよく、0.1質量%以下であってもよく、0.0質量%以下であってもよく、0質量%であってもよい。
 また、本実施形態の負極140は、初期充電前において、リチウム金属の含有量が、負極全体に対して10質量%以下であり、好ましくは5.0質量%以下であり、1.0質量%以下であってもよく、0.1質量%以下であってもよく、0.0質量%以下であってもよく、0質量%であってもよい。
 本実施形態のリチウム2次電池100は、電池の電圧が1.0V以上3.5V以下である場合において、リチウム金属の含有量が、負極140全体に対して10質量%以下であってもよく(好ましくは5.0質量%以下であり、1.0質量%以下であってもよい。);電池の電圧が1.0V以上3.0V以下である場合において、リチウム金属の含有量が、負極140全体に対して10質量%以下であってもよく(好ましくは5.0質量%以下であり、1.0質量%以下であってもよい。);又は、電池の電圧が1.0V以上2.5V以下である場合において、リチウム金属の含有量が、負極140全体に対して10質量%以下であってもよい(好ましくは5.0質量%以下であり、1.0質量%以下であってもよい。)。
 また、本実施形態のリチウム2次電池100において、電池の電圧が4.2Vの状態において負極上に析出しているリチウム金属の質量M4.2に対する、電池の電圧が3.0Vの状態において負極上に析出しているリチウム金属の質量M3.0の比M3.0/M4.2は、好ましくは40%以下であり、より好ましくは38%以下であり、更に好ましくは35%以下である。比M3.0/M4.2は、1.0%以上であってもよく、2.0%以上であってもよく、3.0%以上であってもよく、4.0%以上であってもよい。
 本実施形態の負極活物質の例としては、リチウム金属及びリチウム金属を含む合金、炭素系物質、金属酸化物、並びにリチウムと合金化する金属及び該金属を含む合金等が挙げられる。上記炭素系物質としては、特に限定されないが、例えば、グラフェン、グラファイト、ハードカーボン、メソポーラスカーボン、カーボンナノチューブ、及びカーボンナノホーン等が挙げられる。上記金属酸化物としては、特に限定されないが、例えば、酸化チタン系化合物、酸化スズ系化合物、及び酸化コバルト系化合物等が挙げられる。上記リチウムと合金化する金属としては、例えば、ケイ素、ゲルマニウム、スズ、鉛、アルミニウム、及びガリウムが挙げられる。
 本実施形態の負極140としては、負極活物質を有せず、集電体として用いることができるものであれば特に限定されないが、例えば、Cu、Ni、Ti、Fe、及び、その他Liと反応しない金属、及び、これらの合金、並びに、ステンレス鋼(SUS)からなる群より選択される少なくとも1種からなるものが挙げられ、好ましくは、Cu、Ni、及び、これらの合金、並びに、ステンレス鋼(SUS)からなる群より選択される少なくとも1種からなるものが挙げられる。このような負極を用いると、電池のエネルギー密度、及び生産性が一層優れたものとなる傾向にある。なお、負極にSUSを用いる場合、SUSの種類としては従来公知の種々のものを用いることができる。上記のような負極材料は、1種を単独で又は2種以上を併用して用いられる。なお、本明細書中、「Liと反応しない金属」とは、リチウム2次電池の動作条件においてリチウムイオン又はリチウム金属と反応して合金化することがない金属を意味する。
 負極140の平均厚さは、好ましくは4μm以上20μm以下であり、より好ましくは5μm以上18μm以下であり、更に、好ましくは6μm以上15μm以下である。そのような態様によれば、リチウム2次電池100における負極140の占める体積が減少するため、リチウム2次電池100のエネルギー密度が一層向上する。
(正極)
 正極110は、正極活物質を含むため、リチウム2次電池100は、安定性に優れ、高い出力電圧を有するものとなる。
 本明細書において、「正極活物質」とは、正極において電極反応、すなわち酸化反応及び還元反応を生じる物質である。具体的には、本実施形態の正極活物質としてはリチウム元素(典型的には、リチウムイオン)のホスト物質が挙げられる。そのような正極活物質としては、特に限定されないが、例えば、金属酸化物及び金属リン酸塩が挙げられる。上記金属酸化物としては、特に限定されないが、例えば、酸化コバルト系化合物、酸化マンガン系化合物、及び酸化ニッケル系化合物等が挙げられる。上記金属リン酸塩としては、特に限定されないが、例えば、リン酸鉄系化合物、及びリン酸コバルト系化合物が挙げられる。典型的な正極活物質としては、LiCoO、LiNiCoMnO(x+y+z=1)、LiNiMnO(x+y=1)、LiNiO、LiMn、LiFePO、LiCoPO、LiFeOF、LiNiOF、及びTiSが挙げられる。上記のような正極活物質は、1種を単独で又は2種以上を併用して用いられる。
 正極110は、正極活物質に加えて、該正極活物質の充放電電位範囲において酸化反応を生じ、かつ、還元反応を実質的に生じないリチウム含有化合物(すなわち、犠牲正極剤)を含む。そのような正極110を備えるリチウム2次電池100を初期充電すると、正極活物質及び犠牲正極剤はリチウムイオンを放出すると共に酸化反応を生じ、外部回路を通じて負極140に電子を放出する。その結果、正極活物質及び犠牲正極剤に由来するリチウムイオンは、負極の表面に析出する。また、そのようなリチウム2次電池100を初期充電完了後に放電する(すなわち、初期放電する)と、負極表面に析出したリチウム金属が電解溶出し、外部回路を通じて負極140から正極110に電子が移動する。それに伴い、正極活物質は、リチウムイオンを受け取ると共に還元反応を生じる一方で、犠牲正極剤は、正極活物質の放電電位の範囲内では還元反応を実質的に生じず、酸化反応を生じる前の状態に戻ることが実質的に不可能である。すなわち、正極110は、初期充電前に犠牲正極剤を有すると換言してもよい。なお、「初期充電」とは、電池を組み立てた後の第1回目の充電ステップを意味する。
 したがって、リチウム2次電池100を初期充電の後に放電させると、正極活物質に由来するリチウム金属が負極上から電解溶出するのに対し、犠牲正極剤に由来するリチウム金属は、そのほとんどが負極上に残留することとなり、電池の放電完了後においても、負極上に一部のリチウム金属が残留することとなる。当該残留リチウム金属は、初期放電に続く充電ステップにおいて、更なるリチウム金属が負極上に析出する際の足場となるため、初期放電後の充電ステップにおいてリチウム金属が負極上に均一に析出しやすくなる。その結果、負極上にデンドライト状のリチウム金属が成長することが抑制されるため、リチウム2次電池100はサイクル特性に優れたものとなる。
 正極110における犠牲正極剤は、正極活物質の充放電電位範囲において酸化反応を生じ、かつ、還元反応を実質的に生じないリチウム含有化合物である。本明細書において、「正極活物質の充放電電位範囲において酸化反応を生じる」とは、正極活物質の充放電電位範囲において、酸化反応を生じてリチウムイオン及び電子を放出すること(酸化反応により分解され、リチウムイオンを放出することも含む。)が可能であることを意味する。また、「正極活物質の充放電電位範囲において還元反応を実質的に生じない」とは、正極活物質の充放電電位範囲において、当業者にとって通常の反応条件では、還元反応を生じてリチウムイオン及び電子を受け取ること、又は還元反応を介して生成することが不可能、又は実質的に不可能であることを意味する。「当業者にとって通常の反応条件」とは、例えば、リチウム2次電池を放電する際の条件を意味する。また、「犠牲正極剤が、還元反応を生じてリチウムイオン及び電子を受け取ること、又は還元反応を介して生成することが実質的に不可能である」とは、電池の充電により酸化された犠牲正極剤のうち、容量比で、80%以上(例えば、80%以上、85%以上、90%以上、95%以上、99%以上、又は100%)の犠牲正極剤が、還元反応を生じてリチウムイオン及び電子を受け取ること、又は還元反応を介して生成することができないことを意味する。したがって、犠牲正極剤における、初期充電の容量に対する初期放電の容量は、20%以下(例えば、20%以下、15%以下、10%以下、5%以下、1%以下、又は0%)である。
 本明細書において、「正極活物質の充放電電位範囲」とは、正極110に含まれる正極活物質の酸化反応及び還元反応が行われ得る電位範囲を意味する。具体的な値は、正極110に含まれる正極活物質の種類に依存するが、典型的には、Li/Li基準電極に対して、2.5V以上、2.7V以上、3.0V以上、3.2V以上、又は3.5V以上であり、かつ、4.5V以下、4.4V以下、4.3V以下、4.2V以下、4.1V以下、又は4.0V以下である。正極活物質の充放電電位範囲の代表的な範囲は、3.0V以上4.2V以下(vs.Li/Li基準電極)であり、その上限及び下限は、上述した任意の数値に、独立に置き換えることができる。なお、Li/Li基準電極に対する正極活物質の充放電電位範囲は、リチウム2次電池100の動作電圧範囲を参照してもよく、例えば、リチウム2次電池100の動作電圧が3.0V以上4.2V以下である場合、Li/Li基準電極に対する正極活物質の充放電電位範囲を3.0V以上4.2V以下と見積もることができる。すなわち、犠牲正極剤は、「リチウム2次電池の動作電圧範囲において酸化反応を生じ、かつ、還元反応を実質的に生じないリチウム含有化合物」と換言してもよい。
 犠牲正極剤の例としては、特に限定されず、例えば、Liのようなリチウム酸化物;LiNのようなリチウム窒化物;LiS-P、LiS-LiCl、LiS-LiBr、及びLiS-LiIのようなリチウム硫化物系固溶体;Li1+x(Ti1-yFe1-x(0<x≦0.25、0.4<y≦0.9)、Li2-xTi1-zFe3-y(0≦x<2、0≦y≦1、0.05≦z≦0.95)、LiFeOのような鉄系リチウム酸化物等が挙げられる。犠牲正極剤としての効果を一層有効かつ確実に奏する観点から、好ましくは、Feを含むリチウム含有化合物が用いられ、より好ましくは鉄系リチウム酸化物が用いられ、より更に好ましくはLiFeOが用いられる。上記のような犠牲正極剤は、1種を単独で又は2種以上を併用して用いられる。また、上記のような犠牲正極剤は、市販のものを用いてもよく、従来公知の方法により製造してもよい。
 本発明者らは、鋭意研究の結果、従来の負極活物質を有するリチウムイオン電池や負極にリチウム金属を用いるリチウム金属電池とは異なり、負極活物質を有しない負極を用いるリチウム2次電池の正極に、本明細書において開示されるような犠牲正極剤を添加したとしても、それによる十分な効果が得られない場合があることを見出した。更に、本発明者らは、正極110に含まれる犠牲正極剤が、レーザ回折・散乱法により測定される粒度分布において、累積度50%に対応する粒子径D50(S)が1.0μm以上20μm以下であり、かつ、累積度95%に対応する粒子径D95(S)が1.0μm以上30μm以下である場合に、サイクル特性の向上という犠牲正極剤の効果が顕著に奏されることを見出した。その要因は、以下のように推察されるが、要因はこれに限られない。
 犠牲正極剤の粒子は、レーザ回折・散乱法により測定される粒度分布において累積度50%に対応する粒子径D50(以下、「粒子径D50(S)」ともいう。)が1.0μm未満であると、犠牲正極剤とその他の正極を構成する成分との界面抵抗が上昇することで、電気抵抗が大きくなり、正極の導電性を低下させてしまう。したがって、犠牲正極剤としての機能を十分に発揮することができず、サイクル特性が改善されにくくなると考えられる。
 また、犠牲正極剤の粒子径D50(S)が20μmを超えると、正極内に犠牲正極剤が局在化し、局在化した犠牲正極剤と対向する負極部分に集中して犠牲正極剤に由来するリチウム金属が析出することとなる。その結果、負極上のリチウム金属は不均一に析出し、すなわちリチウム金属がデンドライト状に成長し、リチウム2次電池のサイクル特性に悪影響を及ぼしてしまうと考えられる。
 本実施形態では、正極110に含まれる犠牲正極剤において、粒子径D50(S)は1.0μm以上20μm以下であるため、上記のような問題が生じず、犠牲正極剤の効果が有効かつ確実に奏される。更に、正極110に含まれる犠牲正極剤は、レーザ回折・散乱法により測定される粒度分布において、累積度95%に対応する粒子径D95(S)(以下、「粒子径D95(S)」ともいう。)が1.0μm以上30μm以下であるため、犠牲正極剤の粒子径の分布がより均一なものとなり、リチウム金属がデンドライト状に成長することが抑制される。その結果、上記の犠牲正極剤の効果が十分に発揮されると考えられる。
 正極110に含まれる犠牲正極剤は、粒子径D50(S)が1.0μm以上20μm以下である。正極110に含まれる犠牲正極剤の粒子径D50(S)は、好ましくは2.0μm以上であり、より好ましくは3.0μm以上であり、更に好ましくは5.0μm以上であり、更により好ましくは8.0μm以上である。また、正極110に含まれる犠牲正極剤の粒子径D50(S)は、好ましくは18μm以下であり、より好ましくは15μm以下であり、更に好ましくは14μm以下であり、更により好ましくは12μm以下である。
 更に、正極110に含まれる犠牲正極剤は、粒子径D95(S)が1.0μm以上30μm以下である。正極110に含まれる犠牲正極剤の粒子径D95(S)は、好ましくは3.0μm以上であり、より好ましくは5.0μm以上であり、更に好ましくは8.0μm以上であり、更により好ましくは10.0μm以上である。また、正極110に含まれる犠牲正極剤の粒子径D95(S)は、好ましくは29μm以下であり、より好ましくは28μm以下であり、更に好ましくは27μm以下であり、更により好ましくは26μm以下である。
 上記レーザ回折・散乱法による粒度分布は、公知の方法で測定することができる。例えば、マイクロトラック・ベル社製のMT3000EX等の粒度分布測定機器を用いて測定してもよい。なお、粒度分布において、累積度X%に対応する粒子径Dとは、測定された粒度分布において、粒径がD以下である粒子の割合が粒子全体のX%であることを意味する。
 正極110は、正極活物質及び犠牲正極剤以外の成分を含んでいてもよい。そのような成分としては、特に限定されないが、例えば、公知の導電助剤、バインダー、及び固体電解質(ポリマー電解質、ゲル電解質、及び無機固体電解質等が挙げられ、典型的にはポリマー電解質又はゲル電解質である。)が挙げられる。固体電解質としては、例えば後述するポリマー電解質又はゲル電解質を用いればよい。
 正極110における導電助剤としては、特に限定されないが、例えば、カーボンブラック、シングルウォールカーボンナノチューブ(SWCNT)、マルチウォールカーボンナノチューブ(MWCNT)、カーボンナノファイバー(CF)、及びアセチレンブラック等が挙げられる。また、バインダーとしては、特に限定されないが、例えば、ポリビニリデンフロライド、ポリテトラフルオロエチレン、スチレンブタジエンゴム、アクリル樹脂、及びポリイミド樹脂等が挙げられる。上記のような導電助剤、及びバインダーは、1種を単独で又は2種以上を併用して用いられる。ゲル電解質には、後述するものを用いることができる。
 正極110における、正極活物質及び犠牲正極剤の含有量の合計は、正極110の総質量に対して、例えば、50質量%以上100質量%以下であってもよい。正極活物質及び犠牲正極剤の含有量の合計は、正極110の総質量に対して、好ましくは60質量%以上であり、より好ましくは70質量%以上であり、更に好ましくは80質量%以上であり、更により好ましくは90質量%以上である。正極活物質及び犠牲正極剤の含有量の合計は、正極110の総質量に対して、好ましくは100質量%以下であり、より好ましくは99質量%以下であり、更に好ましくは98質量%以下である。
 犠牲正極剤の含有量は、正極110の総質量に対して、1.0質量%以上15質量%以下としてもよい。犠牲正極剤の含有量は、正極110の総質量に対して、好ましくは1.0質量%以上であり、より好ましくは2.0質量%以上であり、更に好ましくは3.0質量%以上である。また、犠牲正極剤の含有量は、正極110の総質量に対して、好ましくは12質量%以下であり、更に好ましくは10質量%以下であり、8.0質量%以下であってもよい。特に上記の含有量は、犠牲正極剤がFeを含む化合物の場合に有効であり、犠牲正極剤がLiFeOを含む化合物の場合に特に有効である。
 また、犠牲正極剤の含有量は、リチウム2次電池100のセル容量に対する犠牲正極剤の不可逆容量の割合により規定されることが好ましい。ここで、「リチウム2次電池のセル容量」とは、正極110に含まれる正極活物質及び犠牲正極剤の充電容量の総量を算出することにより得られる値を意味する。具体的には、リチウム2次電池100のセル容量は、各正極活物質及び各犠牲正極剤のそれぞれについて、正極活物質又は犠牲正極剤を正極、リチウム金属箔を負極としたセルを、リチウム2次電池100の駆動電圧(例えば、3.0V以上4.2V以下)において充放電することにより求められる充電容量密度(mAh/g)と正極110に含まれる正極活物質又は犠牲正極剤の質量(g)との積を計算し、正極110に含まれる全ての正極活物質及び犠牲正極剤についての上記積の和を求めることで得られる。また、「犠牲正極剤の不可逆容量」とは、各犠牲正極剤のそれぞれについて、犠牲正極剤を正極、リチウム金属箔を負極としたセルを、リチウム2次電池100の駆動電圧(例えば、3.0V以上4.2V以下)において充放電することにより、充電容量密度A1と、放電容量密度A2との差(A1-A2)である不可逆容量密度A(mAh/g)を求め、不可逆容量密度と正極110に含まれる質量(g)との積を計算し、正極110に含まれる全ての犠牲正極剤についての上記積の和を求めることで得られる。
 リチウム2次電池100のセル容量に対する犠牲正極剤の不可逆容量の割合Xは、各正極活物質及び各犠牲正極剤の充電容量密度A1(mAh/g)と正極110における含有量x(質量%)との積の和に対する、各犠牲正極剤の不可逆容量密度A(mAh/g)と正極110における含有量x(質量%)との積の和の比として、下記式(1)に従って求めてもよい。
Figure JPOXMLDOC01-appb-M000001
 各正極活物質及び各犠牲正極剤の理論充電容量密度(mAh/g)、並びに各犠牲正極剤の理論不可逆容量密度(mAh/g)が公知である場合は、当該公知の値を用いてもよい。各正極活物質及び各犠牲正極剤についての、充電容量密度、放電容量密度、及び正極110における含有量は従来公知の方法により測定することができ、充電容量密度、及び放電容量密度は、実施例に記載の方法により測定すればよい。正極110における正極活物質及び犠牲正極剤の含有量は、例えばX線回折測定(XRD)により測定することができる。
 犠牲正極剤の含有量は、リチウム2次電池100のセル容量に対する犠牲正極剤の不可逆容量の割合が1.0%以上40%以下になるように調整されることが好ましく、2.0%以上38%以下になるように調整されることがより好ましく、3.0%以上35%以下になるように調整されることが更に好ましい。リチウム2次電池100のセル容量の対する犠牲正極剤の不可逆容量の割合は、4.0%以上33%以下であってもよく、8.0%以上20%以下であってもよい。リチウム2次電池100のセル容量に対する犠牲正極剤の不可逆容量の割合を調整することにより、リチウム2次電池100において、初期充電により析出するリチウム金属の総量に対する、初期放電の後に残留するリチウム金属の割合を制御することができると推察されるため、上記不可逆容量の割合が上記の範囲内にあると、残留リチウム金属の量が適切なものとなり、リチウム2次電池100のサイクル特性及びエネルギー密度が一層優れたものとなると考えられる。
 導電助剤の含有量は、正極110全体に対して、例えば、0.5質量%30質量%以下あってもよく、1質量%20質量%以下あってもよく1.5質量%10質量%以下あってもよい。バインダーの含有量は、正極110全体に対して、例えば、0.5質量%30質量%以下あってもよく、1質量%20質量%以下あってもよく1.5質量%10質量%以下あってもよい。固体電解質の含有量の合計は、正極110全体に対して、例えば、0.5質量%30質量%以下あってもよく、1質量%20質量%以下あってもよく1.5質量%10質量%以下あってもよい。
(正極集電体)
 正極110の片側には、正極集電体150が形成されている。正極集電体150は、電池においてリチウムイオンと反応しない導電体であれば特に限定されない。そのような正極集電体としては、例えば、アルミニウムが挙げられる。
 正極集電体150の平均厚さは、好ましくは4μm以上20μm以下であり、より好ましくは5μm以上18μm以下であり、更に、好ましくは6μm以上15μm以下である。そのような態様によれば、リチウム2次電池100における正極集電体150の占める体積が減少するため、リチウム2次電池100のエネルギー密度が一層向上する。
(緩衝機能層)
 図1に示すように、緩衝機能層130は、セパレータ120の負極140に対向する表面に形成され、緩衝機能層は、ファイバ状又は多孔質状のイオン伝導性を有するものである。ここで、緩衝機能層130は、ファイバ状又は多孔質状であるため、イオン伝導性を有する固体部分と、該固体部分の隙間により構成される空孔部分(「間隙部分」と同意。以下、本明細書中において同じである。)を有する。なお、本明細書において、緩衝機能層における「固体部分」とは、ゲル状の部分を含むこととする。
 従来のリチウム2次電池では、リチウム金属が析出する場が負極表面に限られているため、リチウム金属の析出により、電池の膨れを生ずる傾向にある。本実施形態のリチウム2次電池100の緩衝機能層130は、イオン伝導性を有するものであり、緩衝層としてそのような体積膨張を防止する機能を果たしながら、リチウムイオンを伝導する電解質としての役割も果たす。すなわち、緩衝機能層130は、内部抵抗の上昇を抑制しつつ、上記の緩衝層としての機能を奏するものである。
 なお、第1の本実施形態において、「リチウム金属が負極上に析出する」とは、特に断りがない限りにおいて、負極の表面、緩衝機能層の空孔部分、及び負極表面に形成された後述する固体電解質界面層(SEI層)の表面の少なくとも1箇所に、リチウム金属が析出することを意味する。したがって、リチウム2次電池100において、リチウム金属は、例えば、負極140の表面(負極と緩衝機能層との界面)に析出してもよく、緩衝機能層130の内部(緩衝機能層の空孔部分)に析出してもよい。
 緩衝機能層130としては、ファイバ状又は多孔質状であり、イオン伝導性を有するものであれば特に限定されない。
 緩衝機能層を構成する部材としては、イオンを伝導することができるものである限り限定されないが、例えば、無機又は有機塩を含むポリマー電解質又はゲル電解質等が挙げられ、好ましくはゲル電解質である。緩衝機能層を構成する部材は、高分子及びリチウム塩を含むものであると好ましい。緩衝機能層を構成する部材の好ましい態様として、ポリマー電解質及びゲル電解質が挙げられる。ポリマー電解質及びゲル電解質は、いずれも高分子を含む電解質であり、電解液又は溶媒を含むことによりゲル状となったものを特にゲル電解質という。
 ポリマー電解質及びゲル電解質を構成する材料としては、一般的にリチウム2次電池に用いられるものであれば特に限定されず、公知の材料を適宜選択することができる。ポリマー電解質又はゲル電解質を構成する高分子(樹脂)としては、特に限定されないが、例えば、ポリエチレンオキサイド(PEO)のような主鎖及び/又は側鎖にエチレンオキサイドユニットを有する樹脂、アクリル樹脂、ビニル樹脂、エステル樹脂、ナイロン樹脂、ポリビニリデンフロライド(PVDF)、ポリアクリロニトリル(PAN)、ポリシロキサン、ポリホスファゼン、ポリメタクリル酸メチル、ポリアミド、ポリイミド、アラミド、ポリ乳酸、ポリエチレン、ポリスチレン、ポリウレタン、ポリプロピレン、ポリブチレン、ポリアセタール、ポリスルホン、及びポリテトラフロロエチレン等が挙げられる。上記のような樹脂は、1種を単独で又は2種以上を併用して用いられる。
 ポリマー電解質又はゲル電解質に含まれる塩としては、Li、Na、K、Ca、及びMgの塩等が挙げられる。リチウム塩としては、特に限定されないが、例えば、LiI、LiCl、LiBr、LiF、LiBF、LiPF、LiAsF、LiSOCF、LiN(SOF)、LiN(SOCF、LiN(SOCFCF、LiB(O、LiB(C、LiB(O)F、LiB(OCOCF、LiNO、及びLiSO等が挙げられる。上記のような塩、又はリチウム塩は、1種を単独で又は2種以上を併用して用いられる。
 ポリマー電解質又はゲル電解質における樹脂とリチウム塩との含有量比は、樹脂の有する酸素原子と、リチウム塩の有するリチウム原子の比([Li]/[O])によって定めてもよい。ポリマー電解質又はゲル電解質において、樹脂とリチウム塩との含有量比は、上記比([Li]/[O])が、例えば、0.02以上0.20以下、0.03以上0.15以下、又は0.04以上0.12以下になるように調整してもよい。
 ポリマー電解質又はゲル電解質は、樹脂及び塩以外に、リチウム2次電池100が含み得る溶媒を含んでいてもよい。具体的な溶媒については、後述する電解液中に含まれ得る溶媒を用いることができる。
 緩衝機能層130の一実施形態として、ファイバ状の緩衝機能層が挙げられる。図3(A)にファイバ状の緩衝機能層の概略断面図を示す。図3(A)に示す緩衝機能層130は、イオン伝導性を有するファイバである、イオン伝導ファイバ310からなる。すなわち、本実施形態において、「緩衝機能層がファイバ状である」とは、緩衝機能層がファイバを含むか、あるいは、ファイバにより構成されていることで、固体部分と、該固体部分の隙間により構成される空孔部分を有することを意味する。また、リチウム2次電池100が充電されることにより、図3(B)に示すように、緩衝機能層130の空孔部分にリチウム金属320が析出すると推測される。ただし、リチウム金属の析出態様はこれに限られない。
 イオン伝導ファイバ310の一実施形態を、図4(C)に概略断面図として示す。図4(C)に示すように、一実施形態において、イオン伝導ファイバ310は、ファイバ状のイオン伝導層400から構成される。イオン伝導層400は、例えば緩衝機能層を構成する部材として上述したような構成を備えるものである。
 ファイバ状のイオン伝導層400のファイバ平均直径は、好ましくは30nm以上5000nm以下であり、より好ましくは50nm以上2000nm以下であり、更に好ましくは70nm以上1000nm以下であり、更により好ましくは80nm以上500nm以下である。イオン伝導層のファイバ平均直径が上記の範囲内にあることにより、リチウム金属が析出できる反応場の表面積が一層適切な範囲となるため、サイクル特性が一層向上する傾向にある。
 別の実施形態において、図3に示すリチウム2次電池100の緩衝機能層130は、多孔質状であってもよい。多孔質状の緩衝機能層は、例えば、多孔質状、特に連通孔を有するイオン伝導層を備えるものであってもよい。
 緩衝機能層は、ファイバ状又は多孔質状であるため、空孔を有する。緩衝機能層の空孔率は、特に限定されないが、体積%で、好ましくは50%以上、より好ましくは60%以上、更に好ましくは70%以上、あるいは80%以上である。緩衝機能層の空孔率が上記の範囲内にあることにより、リチウム金属が析出できる反応場の表面積が一層上昇するため、サイクル特性が一層向上する傾向にある。また、そのような態様によれば、セル体積膨張を抑制する効果が一層有効かつ確実に奏される傾向にある。緩衝機能層の空孔率は、特に限定されないが、体積%で、99%以下であってもよく、95%以下であってもよい。
 緩衝機能層の平均厚さは、好ましくは100μm以下であり、より好ましくは50μm以下であり、更に、好ましくは30μm以下である。緩衝機能層の平均厚さが上記の範囲内にあることにより、リチウム2次電池100における緩衝機能層130の占める体積が減少するため、電池のエネルギー密度が一層向上する。また、緩衝機能層の平均厚さは、好ましくは1μm以上であり、より好ましくは4μm以上であり、更に、好ましくは7μm以上である。緩衝機能層の平均厚さが上記の範囲内にあることにより、リチウム金属が析出できる反応場の表面積が一層上昇するため、サイクル特性が一層向上する傾向にある。また、そのような態様によれば、セル体積膨張を抑制する効果が一層有効かつ確実に奏される傾向にある。
 ファイバ状のイオン伝導層のファイバ直径、緩衝機能層の空孔率、及び緩衝機能層の厚さは、公知の測定方法により測定することができる。例えば、緩衝機能層の厚さは、緩衝機能層の表面を集束イオンビーム(FIB)でエッチングして、その断面を露出させ、露出した切断面における緩衝機能層の厚さをSEM又はTEMにより観察することにより測定することができる。
 ファイバ状のイオン伝導層のファイバ直径、及び緩衝機能層の空孔率は、透過型電子顕微鏡で緩衝機能層の表面を観察することにより測定することができる。なお、緩衝機能層の空孔率は、画像解析ソフトを用いて、緩衝機能層の表面の観察画像を2値解析し、画像の総面積に対して緩衝機能層が占める割合を求めることで算出すればよい。
 上記の各測定値は3回以上、好ましくは10回以上測定した測定値の平均を求めることにより算出される。
 なお、緩衝機能層がリチウムと反応し得る金属を含む場合、負極140及び緩衝機能層130の容量の合計は、正極110の容量に対して十分小さく、例えば、20%以下、15%以下、10%以下、又は5%以下であってもよい。なお、正極110、負極140、及び緩衝機能層130の各容量は、従来公知の方法により測定することができる。
(セパレータ)
 セパレータ120は、正極110と負極140とを隔離することにより電池が短絡することを防ぎつつ、正極110と負極140との間の電荷キャリアとなるリチウムイオンのイオン伝導性を確保するための部材である。すなわち、セパレータ120は、正極110と負極140を隔離する機能、及びリチウムイオンのイオン伝導性を確保する機能を有する。このようなセパレータとして、上記の2つの機能を有する1種の部材を単独で用いてもよいし、上記の1つの機能を有する部材を2種以上組み合わせて用いてもよい。セパレータとしては、上述した機能を担うものであれば特に限定されないが、例えば、絶縁性を有する多孔質の部材、ポリマー電解質、及びゲル電解質が挙げられる。
 セパレータが絶縁性を有する多孔質の部材を含む場合、かかる部材の細孔にイオン伝導性を有する物質が充填されることにより、かかる部材はイオン伝導性を発揮する。充填される物質としては、後述する電解液、ポリマー電解質、及びゲル電解質が挙げられる。
 セパレータ120は、絶縁性を有する多孔質の部材、ポリマー電解質、又はゲル電解質を1種単独で、又は2種以上を組み合わせて用いることができる。ただし、セパレータ120として絶縁性を有する多孔質の部材を単独で用いる場合、リチウム2次電池100は電解液を更に備える必要がある。
 上記の絶縁性を有する多孔質の部材を構成する材料としては、特に限定されないが、例えば絶縁性高分子材料が挙げられ、具体的には、ポリエチレン(PE)、及びポリプロピレン(PP)が挙げられる。すなわち、セパレータ120は、多孔質のポリエチレン(PE)膜、多孔質のポリプロピレン(PP)膜、又はこれらの積層構造であってよい。
 セパレータ120におけるポリマー電解質、又はゲル電解質としては、緩衝機能層のイオン伝導層の項において上述したものを用いることができ、ポリマー電解質、及びゲル電解質が含み得る高分子、塩、その他の成分についても同様である。
 セパレータ120は、セパレータ被覆層により被覆されていてもよい。セパレータ被覆層は、セパレータ120の両面を被覆していてもよく、片面のみを被覆していてもよい。セパレータ被覆層は、リチウムイオンと反応しない部材であれば特に限定されないが、セパレータ120と、セパレータ120に隣接する層とを強固に接着させることができるものであると好ましい。そのようなセパレータ被覆層としては、特に限定されないが、例えば、ポリビニリデンフロライド(PVDF)、スチレンブタジエンゴムとカルボキシメチルセルロースの合材(SBR-CMC)、ポリアクリル酸(PAA)、ポリアクリル酸リチウム(Li-PAA)、ポリイミド(PI)、ポリアミドイミド(PAI)、及びアラミドのようなバインダーを含むものが挙げられる。セパレータ被覆層は、上記バインダーにシリカ、アルミナ、チタニア、ジルコニア、酸化マグネシウム、水酸化マグネシウム、硝酸リチウム等の無機粒子を添加させてもよい。
 セパレータ120の平均厚さは、好ましくは20μm以下であり、より好ましくは18μm以下であり、更に好ましくは15μm以下である。そのような態様によれば、リチウム2次電池100におけるセパレータ120の占める体積が減少するため、リチウム2次電池100のエネルギー密度が一層向上する。また、セパレータ120の平均厚さは、好ましくは5μm以上であり、より好ましくは7μm以上であり、更に好ましくは10μm以上である。そのような態様によれば、正極110と負極140とを一層確実に隔離することができ、電池が短絡することを一層抑止することができる。
(電解液)
 リチウム2次電池100は、電解液を有していると好ましい。電解液は、セパレータ120に浸潤させてもよく、リチウム2次電池100と共に電解液を封入したものを完成品としてもよい。電解液は、電解質及び溶媒を含有し、イオン伝導性を有する溶液であり、リチウムイオンの導電経路として作用する。このため、電解液を有するリチウム2次電池100は、内部抵抗が一層低下し、エネルギー密度、容量、及びサイクル特性が一層向上する。
 電解質は、塩であれば特に限定されないが、例えば、Li、Na、K、Ca、及びMgの塩等が挙げられる。電解質としては、好ましくはリチウム塩が用いられる。リチウム塩としては、特に限定されないが、LiI、LiCl、LiBr、LiF、LiBF、LiPF、LiAsF、LiSOCF、LiN(SOF)、LiN(SOCF、LiN(SOCFCF、LiB(O、LiB(O)F、LiB(OCOCF、LiNO、及びLiSO等が挙げられる。リチウム2次電池100のエネルギー密度、容量、及びサイクル特性が一層優れる観点から、リチウム塩は、LiN(SOF)が好ましい。なお、上記のリチウム塩は、1種を単独で又は2種以上を併用して用いられる。
 溶媒としては、例えばフッ素化溶媒及び非フッ素溶媒が挙げられる。フッ素化溶媒としては、特に限定されないが、例えば、1,1,2,2-テトラフルオロエチル-2,2,3,3-テトラフルオロプロピルエーテル、1,1,2,2-テトラフルオロエチル-2,2,2-トリフルオロエチルエーテル、1H,1H,5H-オクタフルオロペンチル-1,1,2,2-テトラフルオロエチルエーテル等が挙げられる。
 上述の非フッ素溶媒としては、特に限定されないが、例えば、エチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、1,2-ジメトキシエタン、ジメトキシエタン、ジメトキシプロパン、ジメトキシブタン、ジエチレングリコールジメチルエーテル、アセトニトリル、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル、エチレンカーボネート、プロピレンカーボネート、クロロエチレンカーボネート、メチルアセテート、エチルアセテート、プロピルアセテート、メチルプロピオネート、エチルプロピオネート、リン酸トリメチル、リン酸トリエチル、及び12-クラウン-4等が挙げられる。
 上記フッ素化溶媒と非フッ素溶媒は1種を単独で、又は、2種以上を任意の割合で自由に組み合わせて用いることができる。フッ素化溶媒と非フッ素溶媒の含有量の割合としては、特に限定されないが、例えば、溶媒全体に対するフッ素化溶媒の割合は、0~100体積%であってもよく、溶媒全体に対する非フッ素溶媒の割合は、0~100体積%であってもよい。
(リチウム2次電池の使用)
 図2に本実施形態のリチウム2次電池の1つの使用態様を示す。リチウム2次電池200は、正極集電体150及び負極140に、リチウム2次電池200を外部回路に接続するための正極端子220及び負極端子210がそれぞれ接合されている。リチウム2次電池200は、負極端子210を外部回路の一端に、正極端子220を外部回路のもう一端に接続することにより充放電される。
 リチウム2次電池200は、初期充電により、緩衝機能層130とセパレータ120との界面に固体電解質界面層(SEI層)が形成されていてもよい。あるいは、SEI層は形成されていなくてもよく、負極140と緩衝機能層130との界面に形成されていてもよい。形成されるSEI層としては、特に限定されないが、例えば、リチウムを含む無機化合物、及びリチウムを含む有機化合物等を含んでいてもよい。SEI層の典型的な平均厚さとしては、1nm以上10μm以下である。
 正極端子220及び負極端子210の間に、負極端子210から外部回路を通り正極端子220へと電流が流れるような電圧を印加することでリチウム2次電池200が充電される。リチウム2次電池200を充電することにより、負極表面にリチウム金属の析出が生じる。なお、当該リチウム金属の析出は、負極140と緩衝機能層130との界面、緩衝機能層130の内部、及び緩衝機能層130とセパレータ120との界面の少なくとも1箇所に生じる。
 充電後のリチウム2次電池200について、正極端子220及び負極端子210を接続するとリチウム2次電池200が放電される。これにより、負極表面に生じたリチウム金属の析出が電解溶出する。
(リチウム2次電池の製造方法)
 図1に示すようなリチウム2次電池100の製造方法としては、上述の構成を備えるリチウム2次電池を製造することができる方法であれば特に限定されないが、例えば以下のような方法が挙げられる。
 正極110は例えば以下のようにして、正極集電体150上に形成する。上述した正極活物質、及び犠牲正極剤に加えて、任意選択的に、公知の導電助剤、固体電解質、及び公知のバインダーを混合し、正極混合物を得る。その配合比は、正極活物質、犠牲正極剤、導電助剤、固体電解質、及びバインダーの含有量が上述した範囲内となるように適宜調整すればよい。また、正極活物質の充電容量密度及び犠牲正極剤の不可逆容量密度をあらかじめ測定しておくことで、正極活物質、及び犠牲正極剤の質量混合比を調整することのみによって、リチウム2次電池100のセル容量に対する犠牲正極剤の不可逆容量の割合を制御することができる。得られた正極混合物を、所定の厚さ(例えば、5μm以上1mm以下)を有する正極集電体としての金属箔(例えば、Al箔)の片面に塗布し、プレス成型する。得られた成型体を、打ち抜き加工により、所定のサイズに打ち抜き、正極110を得る。
 なお、犠牲正極剤の粒子径は、公知の方法で制御することができる。そのような方法としては、例えば、ブレードミル、ジェットミル又はボールミル等の粉砕機を用いた方法が挙げられる。粉砕機による粉砕時間を長時間とすることにより粒子径D50(S)及び粒子径D95(S)をより小さくすることができる。容易に粒子径の制御ができる観点から、粉砕機としてジェットミルを用いることが好ましい。
 次に、上述した構成を有するセパレータ120を準備する。セパレータ120は従来公知の方法で製造してもよく、市販のものを用いてもよい。
 次に、上述した負極材料、例えば1μm以上1mm以下の金属箔(例えば、電解Cu箔)を、スルファミン酸を含む溶剤で洗浄した後に所定の大きさに打ち抜き、更に、エタノールで超音波洗浄した後、乾燥させることにより負極140を得る。
 次に、上述した緩衝機能層130の製造方法は、ファイバ状又は多孔質状のイオン伝導性を有する層を得られる限り特に限定されないが、例えば以下のようにすればよい。
 図4(C)に示すような、ファイバ状のイオン伝導層400から構成されるイオン伝導ファイバ310を有するファイバ状の緩衝機能層は以下のように製造することができる。
 まず、上述した樹脂(例えば、PVDF)を適当な有機溶媒(例えば、N-メチルピロリドン)に溶解させた溶液を、事前に準備したセパレータ120の表面にバーコーター又はドクターブレードを用いて塗布する。次いで、樹脂溶液を塗付したセパレータ120を、水浴に浸漬した後、室温で十分乾燥させることで、セパレータ120上にファイバ状のイオン伝導層を形成し(なお、イオン伝導層は例えば電池の組立時に電解液が注液されることでイオン伝導機能を発揮するようにしてもよい。)、これによりファイバ状の緩衝機能層を得ることができる。
 また、多孔質状のイオン伝導層を備える多孔質状の緩衝機能層は以下のように製造することができる。
 上述した樹脂(例えば、PVDF)を適当な溶媒(例えば、N-メチルピロリドン)に溶解させた溶液を用いて、従来公知の方法により(例えば、溶媒との相分離を用いる方法、及び発泡剤を用いる方法等。)、連通孔を有する多孔質状のイオン伝導層をセパレータ120の表面に形成し(なお、イオン伝導層は例えば電池の組立時に電解液が注液されることでイオン伝導機能を発揮するようにしてもよい)、これにより多孔質状の緩衝機能層を得ることができる。
 以上のようにして得られる正極110、緩衝機能層130が形成されたセパレータ120、及び負極140を、この順に、緩衝機能層130が負極140と対向するように積層することで積層体を得る。得られた積層体を、電解液と共に密閉容器に封入することでリチウム2次電池100を得ることができる。密閉容器としては、特に限定されないが、例えば、ラミネートフィルムが挙げられる。
[第2の本実施形態]
(リチウム2次電池)
 第2の本実施形態のリチウム2次電池は、第1の本実施形態のリチウム2次電池100と同様、正極と、負極活物質を有しない負極と、正極と負極との間に配置されているセパレータと、負極のセパレータに対向する表面に形成されている緩衝機能層と、を備える。正極は、セパレータに対向する面とは反対側の面に正極集電体を有する。
 正極集電体、正極、セパレータ、及び負極の構成及びその好ましい態様は後述する点を除き、第1の本実施形態のリチウム2次電池100と同様であり、これらの構成について、第2の本実施形態のリチウム2次電池は、第1の本実施形態のリチウム2次電池と同様の効果を奏するか更なる性能を発揮するものである。また、第2の本実施形態のリチウム2次電池は、リチウム2次電池100と同様に、上述したような電解液を含んでいてもよい。
(緩衝機能層)
 第2の本実施形態のリチウム2次電池における緩衝機能層は、ファイバ状又は多孔質状のイオン伝導性及び電気伝導性を有するものである。すなわち、本実施形態において、緩衝機能層は、第1の本実施形態の緩衝機能層130が電気伝導性を更に有するものである。
 第2の本実施形態のリチウム2次電池は、そのような緩衝機能層を備えるため、第1の本実施形態のリチウム2次電池に比べてサイクル特性に一層優れる。
 すなわち、本実施形態の緩衝機能層は、イオン伝導性及び電気伝導性の両方を有するため、リチウム2次電池を充電すると、緩衝機能層の表面、及び/又は内部において、負極からの電子と、セパレータ及び/又は電解液からのリチウムイオンとが供給される。また、本実施形態における緩衝機能層は、ファイバ状又は多孔質状であるため、イオン伝導性及び電気伝導性を有する固体部分と、該固体部分の隙間により構成される空孔部分を有する。よって、本実施形態における緩衝機能層では、緩衝機能層の内部である上記固体部分の表面において、上述のようにして供給される電子及びリチウムイオンが反応し、空孔部分(固体部分の表面)にリチウム金属が析出する。なお、上述と同様、緩衝機能層における「固体部分」とは、ゲル状の部分を含むこととする。
 従来のリチウム2次電池では、リチウム金属が析出する場が負極表面に限られているため、リチウム金属の成長方向が負極表面からセパレータ方向に限られ、リチウム金属がデンドライト状に成長する傾向にある。一方、第2の本実施形態の緩衝機能層を備えるリチウム2次電池では、上述のとおり、負極表面だけでなく、緩衝機能層の固体部分の表面においてもリチウム金属が析出することができ、リチウム金属析出反応の反応場の表面積が増加する。その結果、第2の本実施形態におけるリチウム2次電池では、リチウム金属析出反応の反応速度が緩やかに制御されるため、リチウム金属の異方的な成長、すなわち、デンドライト状に成長したリチウム金属の形成が一層確実に抑制されると推察される。本発明者らは、正極に犠牲正極剤を含むリチウム2次電池において、イオン伝導性及び電気伝導性の両方を有する緩衝機能層を導入すると、犠牲正極剤の効果が一層顕著に奏されることを見出した。これは、初期充電の際、固体部分の表面及び負極表面に面方向に均一なリチウム金属が析出するため、その後の充電においてリチウム金属析出の足場となり、リチウム金属がデンドライト状に成長することが抑制されるからであると推察される。ただし、要因は上記に限られない。
 なお、第2の本実施形態において、「リチウム金属が負極上に析出する」とは、特に断りがない限りにおいて、負極の表面、緩衝機能層の固体部分の表面、並びに、負極及び/又は緩衝機能層の固体部分の表面に形成されたSEI層の表面の少なくとも1箇所に、リチウム金属が析出することを意味する。したがって、第2の本実施形態のリチウム2次電池において、リチウム金属は、例えば、負極の表面(負極と緩衝機能層との界面)に析出してもよく、緩衝機能層の内部(緩衝機能層の固体部分の表面)に析出してもよい。
 このような緩衝機能層の非限定的な例示としては、例えば、ファイバ状又は多孔質状のイオン伝導層の表面の全部又は一部に、電気伝導層を被覆したもの;ファイバ状又は多孔質状の電気伝導層の表面の全部又は一部に、イオン伝導層を被覆したもの;並びに、ファイバ状のイオン伝導層と、ファイバ状の電気伝導層とを交絡させたもの等が挙げられる。イオン伝導層としては、第1の本実施形態の緩衝機能層130が有し得るイオン伝導層400と同様のものを用いることができる。
 電気伝導層としては、電子を伝導することができるものであればよく、例えば、金属膜が挙げられる。電気伝導層に含まれ得る金属の非限定的な例示としては、例えば、SUS、Si、Sn、Sb、Al、Ni、Cu、Sn、Bi、Ag、Au、Pt、Pb、Zn、In、Bi-Sn、及びIn-Sn等が挙げられる。電気伝導層に含まれる金属としては、リチウム金属との親和性を高める観点から、Si、Sn、Zn、Bi、Ag、In、Pb、Sb、及びAlが好ましい。上記のような金属は、1種を単独で又は2種以上を併用して用いてもよい。
 第2の本実施形態における緩衝機能層の一実施形態として、第1の本実施形態の緩衝機能層の一実施形態として図3を用いて記述した態様と同様のファイバ状の緩衝機能層が挙げられる。例えば、図3(B)と同様に、緩衝機能層の空孔部分にリチウム金属が析出していてもよい。また、かかるファイバ状の緩衝機能層は、例えばイオン伝導性及び電気伝導性を有するファイバである、イオン電気伝導ファイバ410から構成されていてもよい。
 そのようなイオン電気伝導ファイバ410の一実施形態を、図4(D)に概略断面図として示す。図4(D)に示すように、一実施形態において、イオン電気伝導ファイバ410は、ファイバ状のイオン伝導層400と、イオン伝導層400の表面を被覆する電気伝導層420とを備える。イオン伝導層400は、例えばイオン伝導層として上述したような構成を備え、電気伝導層420は、例えば電気伝導層として上述したような構成を備えていてもよい。
 電気伝導層420の平均厚さは、好ましくは1nm以上300nm以下であり、より好ましくは5nm以上200nm以下であり、更に好ましくは10nm以上150nm以下である。電気伝導層420の平均厚さは、10nm以上100nm以下であってもよい。電気伝導層の平均厚さが上記の範囲内にあることにより、イオン電気伝導ファイバの電気伝導性を一層適切に保つことができるため、電池のサイクル特性が一層向上する傾向にある。
 緩衝機能層の平均厚さ、及び空孔率は、第1の本実施形態の緩衝機能層130と同様であってよい。
 第2の本実施形態における電気伝導層の厚さは、公知の測定方法等により測定することができる。例えば、透過型電子顕微鏡で電気伝導層の表面を観察することにより測定することができ、また、電気伝導層の表面を集束イオンビーム(FIB)でエッチングして、その断面を露出させ、露出した切断面における緩衝機能層の厚さをSEM又はTEMにより観察することにより測定することができる。各測定値は3回以上、好ましくは10回以上測定した測定値の平均を求めることにより算出される。
 なお、緩衝機能層がリチウムと反応し得る金属を含む場合、負極及び緩衝機能層の容量の合計は、正極の容量に対して十分小さく、例えば、20%以下、15%以下、10%以下、又は5%以下であってもよい。
(リチウム2次電池の製造方法)
 第2の本実施形態のリチウム2次電池の製造方法において、緩衝機能層以外の構成の製造及び各構成の組み立ては第1の本実施形態のリチウム2次電池の製造方法と同様に実施することができる。
 上述した電気伝導層を備える緩衝機能層の製造方法は、ファイバ状又は多孔質状のイオン伝導性及び電気伝導性を有する層を得られる限り特に限定されないが、例えば以下のようにすればよい。
 図4(D)に示すような、ファイバ状のイオン伝導層400と、イオン伝導層400の表面を被覆する電気伝導層420とを備えるイオン電気伝導ファイバ410を有するファイバ状の緩衝機能層は以下のように製造することができる。
 まず、上述したとおり、樹脂溶液を塗付したセパレータを、水浴に浸漬した後、室温で十分乾燥させることで、セパレータ上にファイバ状のイオン伝導層を形成させることができる(なお、イオン伝導層は例えば電池の組立時に電解液が注液されることでイオン伝導機能を発揮するようにしてもよい。)。続いて、ファイバ状のイオン伝導層が形成されたセパレータに対して、真空条件下で適当な金属(例えば、Ni)を蒸着させることにより、ファイバ状の緩衝機能層を得ることができる。
 また、多孔質状のイオン伝導層と、イオン伝導層の表面を被覆する電気伝導層とを備える多孔質状の緩衝機能層は以下のように製造することができる。
 まず、上述したように、従来公知の方法により、連通孔を有する多孔質状のイオン伝導層をセパレータの表面に形成する(なお、イオン伝導層は例えば電池の組立時に電解液が注液されることでイオン伝導機能を発揮するようにしてもよい)。続いて、多孔質状のイオン伝導層が形成されたセパレータに対して、真空条件下で適当な金属(例えば、Ni)を蒸着させることにより、多孔質状の緩衝機能層を得ることができる。
[第3の本実施形態]
(リチウム2次電池)
 第3の本実施形態のリチウム2次電池は、リチウム2次電池100と同様、正極と、負極活物質を有しない負極と、正極と負極との間に配置されているセパレータと、負極のセパレータに対向する表面に形成されている緩衝機能層と、を備える。正極は、セパレータに対向する面とは反対側の面に正極集電体を有する。
 正極集電体、正極、セパレータ、緩衝機能層、及び負極の構成及びその好ましい態様は後述する点を除き、第1の本実施形態のリチウム2次電池100と同様であり、これらの構成について、第3の本実施形態のリチウム2次電池は、リチウム2次電池100と同様の効果を奏するか更なる性能を発揮するものである。また、第3の本実施形態のリチウム2次電池は、リチウム2次電池100と同様に、上述したような電解液を含んでいてもよい。
 第3の本実施形態のリチウム2次電池における正極は、上述のリチウム2次電池100と同様、正極活物質に加えて、該正極活物質の充放電電位範囲において酸化反応を生じ、かつ、還元反応を実質的に生じないリチウム含有化合物(犠牲正極剤)を含む。ここで、正極活物質、犠牲正極剤、及びその他正極が含み得る成分の定義、例示、及び好ましい態様は第1の本実施形態と同様である。
 本発明者らは、鋭意研究の結果、レーザ回折・散乱法により測定される粒度分布において、累積度50%に対応する粒子径をD50とした場合、正極活物質のD50(A)が5.0μm以上20μm以下であり、かつ、リチウム含有化合物のD50(S)に対する正極活物質のD50(A)の粒径比であるD50(A)/D50(S)が、2.0以上10.0以下であるとき、レート特性が特に優れることを見出した。その要因は、以下のように推察されるが、要因はこれに限られない。
 第3の本実施形態のリチウム2次電池は、正極活物質のD50(A)が5.0μm以上20μm以下であり、かつ、粒径比D50(A)/D50(S)が2.0以上10.0以下の範囲内に入るように精密にコントロールされているため、正極活物質同士の接触面積が十分高く保たれると共に、正極の充填密度が高くなる。すなわち、第3の本実施形態のリチウム2次電池における正極は、正極内部の内部抵抗が十分小さくなる程度に互いに十分に接触した正極活物質と、その正極活物質の隙間を埋めるように存在する犠牲正極剤とを含むと考えられ、そのような正極は、エネルギー密度が高く、かつ、内部抵抗が小さくなるため、その結果、第3の本実施形態のリチウム2次電池は、エネルギー密度が高く、かつ、優れたレート特性を有すると考えられる。
 なお、本明細書において、「レート特性」とは、大電流にて充放電ができる性能を意味し、レート性能は、電池の内部抵抗が低い場合に優れることが知られている。より具体的には、高速(例えば3C)で放電をしたときの放電容量が、低速(例えば0.1C)で放電をしたときの放電容量に比べて、十分高く維持されていることを意味する。本明細書において、「レート特性が優れている」とは、例えば、3Cで放電をしたときの放電容量が、0.1Cで放電をしたときの放電容量に比べて、60%以上、65%以上、又は70%以上であることを意味する。
 第3の本実施形態のリチウム2次電池において、正極に含まれる正極活物質は、粒子径D50(A)が5.0μm以上20μm以下である。本実施形態の正極に含まれる正極活物質の粒子径D50(A)は、好ましくは6.0μm以上であり、より好ましくは7.0μm以上であり、更に好ましくは8.0μm以上であり、更により好ましくは9.0μm以上である。また、本実施形態の正極に含まれる正極活物質の粒子径D50(A)は、好ましくは19μm以下であり、より好ましくは18μm以下であり、更に好ましくは17μm以下であり、更により好ましくは15μm以下である。
 更に、第3の本実施形態のリチウム2次電池において、犠牲正極剤のD50(S)に対する正極活物質のD50(A)の粒径比であるD50(A)/D50(S)は2.0以上10.0以下である。該粒径比D50(A)/D50(S)は、好ましくは2.5以上であり、より好ましくは3.0以上であり、更に好ましくは3.5以上であり、更により好ましくは4.0以上である。また、該粒径比D50(A)/D50(S)は、好ましくは9.5以下であり、より好ましくは9.0以下であり、更に好ましくは8.5以下であり、更により好ましくは8.0以下である。
 第3の本実施形態のリチウム2次電池において、正極に含まれる犠牲正極剤は、例えば粒子径D50(S)が0.5μm以上10μm以下である。本実施形態の正極に含まれる犠牲正極剤の粒子径D50(S)は、1.0μm以上、1.5μm以上、又は2.0μm以上であってもよい。また、本実施形態の正極に含まれる犠牲正極剤の粒子径D50(S)は、9.0μm以下、8.0μm以下、7.0μm以下、又は6.0μm以下であってもよい。本実施形態において、犠牲正極剤の粒子径D50(S)を上記範囲内とすることにより、電池のサイクル特性が一層向上する傾向にある。
 第3の本実施形態のリチウム2次電池において、正極の電極密度は、例えば3.0g/cc以上である。本実施形態において、正極の電極密度は、3.2g/cc以上、3.3g/cc以上、3.4g/cc以上、又は3.5g/cc以上であってもよい。本実施形態において、正極の電極密度を上記範囲内とすることにより、正極の充填密度が高くなるため、電池のエネルギー密度が一層向上する傾向にある。
 本実施形態において、「電極密度」とは、電極の単位体積に含まれる質量を表す。よって、その単位としては、g/cc、g/cm、g/mL等が使用される。電極密度は、電極を構成する材料の密度、配置等に依存する。そのため、本実施形態の正極において、正極活物質と犠牲正極剤の粒径により変化し得る。本実施形態において、粒径比D50(A)/D50(S)が大きくなると、正極の電極密度が高くなる傾向にある。また、犠牲正極剤と正極活物質の含有量の体積比を調整することにより制御可能である。なお、電極密度が大きくなると、リチウム2次電池の体積当たりの容量が増加するため、リチウム2次電池のエネルギー密度が更に大きくなる傾向にある。
 本実施形態において、正極活物質、犠牲正極剤、及びその他正極が含み得る成分の正極における含有量は、第1の本実施形態と同様である。正極活物質のD50(A)が5.0μm以上20μm以下であり、かつ、リチウム含有化合物のD50(S)に対する正極活物質のD50(A)の粒径比であるD50(A)/D50(S)が、2.0以上10.0以下であるとき、犠牲正極剤及び正極活物質の含有量が上述の範囲内にあると、正極の充填密度が一層向上するため好ましい。
(リチウム2次電池の製造方法)
 第3の本実施形態のリチウム2次電池は、第1の本実施形態のリチウム2次電池の製造方法と同様に実施することができる。なお、正極活物質及び犠牲正極剤の粒子径の制御についても第1の本実施形態のリチウム2次電池の製造方法と同様であり、粉砕機を用いて実施することができる。
[変形例]
 上記本実施形態は、本発明を説明するための例示であり、本発明をその本実施形態のみに限定する趣旨ではなく、本発明は、その要旨を逸脱しない限り、様々な変形が可能である。
 例えば、第3の本実施形態のリチウム2次電池は、第1の本実施形態の緩衝機能層を備えているが、緩衝機能層として、第2の本実施形態の緩衝機能層を用いてもよい。そのような態様によれば、第3の本実施形態のリチウム2次電池における優れたレート特性と、第2の本実施形態のリチウム2次電池における一層優れたサイクル特性を有する電池を提供することができる。
 本実施形態のリチウム2次電池は、負極表面において、当該負極に接触するように配置される集電体を有していてもよく、有していなくてもよい。そのような集電体としては、特に限定されないが、例えば、負極材料に用いることのできるものが挙げられる。また、本実施形態のリチウム2次電池は、正極集電体を有していなくてもよい。なお、リチウム2次電池が正極集電体、及び負極集電体を有しない場合、それぞれ、正極、及び負極自身が集電体として働く。
 本実施形態のリチウム2次電池は、正極集電体及び/又は負極に、外部回路へと接続するための端子を取り付けてもよい。例えば10μm以上1mm以下の金属端子(例えば、Al、Ni等)を、正極集電体及び負極の片方又は両方にそれぞれ接合してもよい。接合方法としては、従来公知の方法を用いればよく、例えば超音波溶接を用いてもよい。
 なお、本明細書において、「エネルギー密度が高い」又は「高エネルギー密度である」とは、電池の総体積又は総質量当たりの容量が高いことを意味するが、好ましくは700Wh/L以上又は300Wh/kg以上であり、より好ましくは800Wh/L以上又は350Wh/kg以上であり、更に好ましくは900Wh/L以上又は400Wh/kg以上である。
 また、本明細書において、「サイクル特性に優れる」とは、通常の使用において想定され得る回数の充放電サイクルの前後において、電池の容量の減少率が低いことを意味する。すなわち、初期充放電の後の1回目の放電容量と、通常の使用において想定され得る回数の充放電サイクル後の容量とを比較した際に、充放電サイクル後の容量が、初期充放電の後の1回目の放電容量に対してほとんど減少していないことを意味する。ここで、「通常の使用において想定され得る回数」とは、リチウム2次電池が用いられる用途にもよるが、例えば、30回、50回、70回、100回、300回、又は500回である。また、「充放電サイクル後の容量が、初期充放電の後の1回目の放電容量に対してほとんど減少していない」とは、リチウム2次電池が用いられる用途にもよるが、例えば、充放電サイクル後の容量が、初期充放電の後の1回目の放電容量に対して、60%以上、65%以上、70%以上、75%以上、80%以上、又は85%以上であることを意味する。
 本明細書において、好ましい範囲等として記載した数値範囲は、記載した上限値及び下限値を任意に組み合わせて得られる数値範囲に置き換えてもよい。例えば、あるパラメータが、好ましくは50以上、より好ましくは60以上であり、好ましくは100以下、より好ましくは90以下である場合、当該パラメータは、50以上100以下、50以上90以下、60以上100以下、又は60以上90以下のいずれであってもよい。
 なお、本明細書中、イオン伝導層及び電気伝導層は、層状のものに限られず、ファイバ状、塊状、又は多孔質状であってもよい。したがって、イオン伝導層、電気伝導層との語は、それぞれイオン伝導相、電気伝導相と換言してもよい。
 以下、本発明を実施例及び比較例を用いてより具体的に説明する。本発明は、以下の実施例によって何ら限定されるものではない。
[リチウム2次電池の作製]
 リチウム2次電池の製造に関する各工程は以下のように実施した。
(負極の準備)
 10μmの電解Cu箔を、スルファミン酸を含む溶剤で洗浄した後に所定の大きさに打ち抜き、更に、エタノールで超音波洗浄した後、乾燥させて、負極を得た。
(セパレータの準備)
 セパレータとして、12μmのポリエチレン微多孔膜の両面に2μmのポリビニリデンフロライド(PVDF)がコーティングされた所定の大きさのセパレータを準備した。
(正極の作製)
 正極活物質及び犠牲正極剤の混合物を96質量部、導電助剤としてカーボンブラックを2質量部、及びバインダーとしてポリビニリデンフロライド(PVDF)を2質量部混合したものを、正極集電体としての12μmのAl箔の片面に塗布し、プレス成型した。得られた成型体を、打ち抜き加工により、所定の大きさに打ち抜き、正極を得た。
 正極活物質としては、LiNi0.85Co0.12Al0.03を用いた。後述の試験例1については、犠牲正極剤として表1に記載のものを用いた。後述の試験例2においては、犠牲正極剤としてLiFeOを用いた。試験例1及び2で用いた各犠牲正極剤の不可逆容量、粒子径D50(S)、粒子径D95(S)、含有量、及び正極活物質の粒子径D50(A)とD50(S)との比を、表1及び表3に示す。なお、各例において、D50粒子径、及びD95粒子径は、マイクロトラック・ベル社製のMT3000EXにより測定した。
 なお、試験例1において、Li、及びLiNは市販のものを用いた。また、試験例1及び2において、LiFeOは、Chem.Mater.2010,22,1263-1270に記載の方法により製造した。すなわち、LiOH・HO、及びFeを粉砕、混合したものを、窒素雰囲気下、800℃の条件にて、72時間の焼成することで、犠牲正極剤を得た。なお、準備した正極活物質及び犠牲正極剤の粒子径は、ジェットミルを用いて粉砕することで調整した。
 正極活物質及び犠牲正極剤の混合比は、以下のようにして測定した正極活物質及び犠牲正極剤の充電容量密度(mAh/g)、並びに犠牲正極剤の不可逆容量密度A(mAh/g)を用いて、電池のセル容量に対する犠牲正極剤の不可逆容量の割合が所定の値となるように調整した。試験例1において、正極活物質及び犠牲正極剤の混合比は、電池のセル容量に対する犠牲正極剤の不可逆容量の割合が表1に「添加率(セル容量比%)」として記載の各値になるように調整した。試験例1の正極全体に対する犠牲正極剤の含有量を「添加量(質量%)」として表1に記載する。また、試験例2において、正極活物質及び犠牲正極剤の混合比は、電池のセル容量に対する犠牲正極剤の不可逆容量が10%になるように調整した。試験例2の正極全体に対する犠牲正極剤の含有量は、3.3質量%であった。
 なお、試験例1及び2において、正極活物質及び犠牲正極剤の総量は、リチウム2次電池のセル容量が60mAhになるように調整した。
(正極材料の容量測定)
 正極活物質又は犠牲正極剤と、PVDFと、導電助剤と、N-メチルピロリドン(NMP)とを混合し、スラリーを作製して、アルミ箔上に塗布、乾燥、プレスした。対極をリチウム金属とするテストセルを作製し、0.2mAh/cmの電流で電圧が4.2Vになるまで充電した後、電圧が3.0Vになるまで放電することで、充電容量密度(mAh/g)、及び/又は、不可逆容量密度A(mAh/g)を求めた。
(緩衝機能層の形成)
 PVDF樹脂をN-メチルピロリドン(NMP)に溶解させた樹脂溶液をセパレータ上にバーコーターを用いて塗布した。次いで、樹脂溶液を塗付したセパレータを、水浴に浸漬した後、室温で十分乾燥させることで、セパレータ上にファイバ状のイオン伝導層を形成した(なお、イオン伝導層は、電池の組立時に後述する電解液(4M LiN(SOF)(LFSI)のジメトキシエタン(DME)溶液)が注液されることでイオン伝導機能を発揮する。)。
 セパレータ上に形成されたファイバ状のイオン伝導層のファイバ平均直径を走査型電子顕微鏡(SEM)で観察して測定したところ、100nmであった。
 続いて、ファイバ状のイオン伝導層が形成されたセパレータに対して、真空条件下でNiを蒸着させた。エネルギー分散型X線分析装置(EDX)付SEMを用いて、Ni蒸着後のイオン伝導層を観察したところ、Niはファイバ状のイオン伝導層を覆うように分布していることが確認され、ファイバ状のイオン伝導層の表面が電気伝導層に覆われているファイバ状の緩衝機能層が得られたことが確認された。
 また、緩衝機能層の断面をFIBで作製してSEMで観察したところ、緩衝機能層の平均厚さは10μmであった。透過型電子顕微鏡で緩衝機能層を観察したところ、電気伝導層であるNi薄膜の平均厚さ、及び緩衝機能層の空孔率は、それぞれ、20nm、及び90%であった。
(電池の組み立て)
 電解液として、4M LiN(SOF)(LFSI)のジメトキシエタン(DME)溶液を準備した。
 次いで、正極、緩衝機能層が形成されたセパレータ、及び負極を、この順に、積層することで積層体を得た。なお、緩衝機能層が負極と対向するようにして積層を実施した。更に、正極集電体及び負極に、それぞれ100μmのAl端子及び100μmのNi端子を超音波溶接で接合した後、ラミネートの外装体に挿入した。次いで、上記の電解液を上記の外装体に注入した。外装体を封止することにより、リチウム2次電池を得た。
[試験例1]
(実施例1~9)
 表1に記載の犠牲正極剤を用いて、上記の方法によりリチウム2次電池を作製した。なお、正極活物質及び犠牲正極剤の混合比は、電池のセル容量に対する犠牲正極剤の不可逆容量の割合が表1に「添加率(セル容量比%)」として記載されている各値になるように調整し、具体的には、正極全体に対する犠牲正極剤の含有量が表1に「添加量(質量%)」として記載されている各値になるように調整した。
(比較例1)
 犠牲正極剤を用いなかった以外は、実施例1と同様にしてリチウム2次電池を得た。
(比較例2)
 D50(S)が0.5μmである犠牲正極剤を用いたこと以外は実施例1と同様にして、リチウム2次電池を得た。
(比較例3~5)
 D50(S)及びD95(S)が表1に記載の値である犠牲正極剤を用いたこと以外は実施例1と同様にして、リチウム2次電池を得た。
(比較例6)
 D50(S)及びD95(S)が表1に記載の値であるLiの犠牲正極剤を用いたこと以外は実施例8と同様にして、リチウム2次電池を得た。
[エネルギー密度及びサイクル特性の評価]
 以下のようにして、各実施例及び比較例で作製したリチウム2次電池のエネルギー密度及びサイクル特性を評価した。
 作製したリチウム2次電池を、0.2mAh/cmで、電圧が4.2Vになるまで充電した(初期充電)後、0.2mAh/cmで、電圧が3.0Vになるまで放電した(初期放電)。次いで、1.0mAh/cmで、電圧が4.2Vになるまで充電した後、1.0mAh/cmで、電圧が3.0Vになるまで放電する充放電サイクルを、温度25℃の環境で更に99サイクル繰り返した。いずれの実施例及び比較例についても、初期充電から求められた容量(初期容量)は、60mAhであった。初期充放電サイクルを1サイクル目と数えたときの、充放電サイクルの2サイクル目における放電から求められる放電容量に対する、充放電サイクルの100サイクル目における放電から求められる放電容量の比を、容量維持率(%)として計算し、サイクル特性の指標として用いた。容量維持率が高いほど、サイクル特性に優れることを意味する。各例における容量維持率を表1に示す。
Figure JPOXMLDOC01-appb-T000002
 表1中、容量維持率において、「不安定」とは、充放電容量の測定中にその値が乱高下し安定して充放電容量を測定することが不可能であった状態を表す。
 表1から、粒子径D50(S)が1.0μm以上20μm以下であり、かつ、粒子径D95(S)が1.0μm以上30μm以下である犠牲正極剤を添加した実施例1~9は、そうでない比較例1~6と比較して、安定に動作し、容量維持率が高く、サイクル特性に優れることが分かる。
[参考試験例1]
 参考例として、10μmの電解Cu箔に負極活物質として10質量%のSiを含むグラファイトを担持したものを負極として用いてリチウムイオン電池を作製した。セパレータ、正極、緩衝機能層、及び電解液は試験例1と同様にした。なお、犠牲正極剤の添加量及び粒径は、表2に示す各値になるように調整した。
 参考例1として作製したリチウムイオン電池について、試験例1と同様にサイクル特性を測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000003
 表2の参考例1と表1の比較例4とを対比すると、同様の正極を用いたとしても、負極活物質を有する負極を備えるリチウムイオン電池では安定して充放電サイクルを行えているのに対し、負極活物質を有しない負極を備える本実施形態のリチウム2次電池では安定して充放電サイクルを行えていないことがわかる。すなわち、本実施形態のリチウム2次電池では、従来の負極活物質を有する負極を備えるリチウムイオン電池とは異なる正極設計が必要であることが示唆された。
[試験例2]
(実施例10~16)
 表3に記載の特徴を有する正極活物質及び犠牲正極剤を含む正極を用いたこと以外は試験例1の実施例と同様にして、リチウム2次電池を作製した。また、試験例2において、正極活物質及び犠牲正極剤の混合比は、電池のセル容量に対する犠牲正極剤の不可逆容量の割合が10%になるように調整した。試験例2の正極全体に対する犠牲正極剤の含有量は、3.3質量%であった。
(比較例7)
 犠牲正極剤を用いなかった以外は、実施例10と同様にしてリチウム2次電池を得た。
(比較例8~9)
 粒子径D50(S)が表3に記載の各値である犠牲正極剤を用いたこと以外は実施例10と同様にして、リチウム2次電池を得た。
(比較例10~11)
 粒子径D50(A)及び粒子径D50(S)が表3に記載の各値である正極活物質及び犠牲正極剤を用いたこと以外は実施例12と同様にして、リチウム2次電池を得た。
[レート特性の評価]
 以下のようにして、各実施例及び比較例で作製したリチウム2次電池のレート特性を評価した。
 作製したリチウム2次電池を、3.0mAで4.2VまでCC充電した後、各々の過程で、順に、0.05C、0.1C、0.5C、1.0C、2.0C、又は3.0Cの放電レートでCC放電を行った。なお、この時、下限電圧は3.0Vに設定した。また、各放電と放電の間は、3.0mAで再度4.2VまでCC充電し、充電完了後に次の放電レートでCC放電を実施した。以上のようにして得られた、放電レート0.1Cにおける放電容量の値に対する、放電レート3.0Cにおける放電容量の比を、レート特性(%)として計算し、レート特性の指標として用いた。放電電流を大きくすると、内部抵抗による電圧降下が大きくなり、放電容量が低下する傾向にあるため、レート特性の値が高いほど、レート特性に優れるリチウム2次電池となる。
Figure JPOXMLDOC01-appb-T000004
 表3から、正極活物質の粒子径D50(A)が5.0μm以上20μm以下であり、かつ、粒径比D50(A)/D50(S)が2.0以上10.0以下である実施例10~16は、そうでない比較例7~11と比較して、レート特性(%)が高く、レート特性に優れることがわかる。
 本発明のリチウム2次電池は、エネルギー密度が高く、サイクル特性又はレート特性に優れるため、様々な用途に用いられる蓄電デバイスとして、産業上の利用可能性を有する。
 100、200…リチウム2次電池、110…正極、120…セパレータ、130…緩衝機能層、140…負極、150…正極集電体、210…負極端子、220…正極端子、310…イオン伝導ファイバ、320…リチウム金属、400…イオン伝導層、410…イオン電気伝導ファイバ、420…電気伝導層。

Claims (9)

  1.  正極と、
     負極活物質を有しない負極と、
     前記正極と前記負極との間に配置されているセパレータと、
     前記セパレータの前記負極に対向する表面に形成されているファイバ状又は多孔質状のイオン伝導性を有する緩衝機能層と、を備え、
     前記正極が、正極活物質と、前記正極活物質の充放電電位範囲において酸化反応を生じ、かつ、還元反応を実質的に生じないリチウム含有化合物と、を含み、
     レーザ回折・散乱法により測定される粒度分布において、
     前記リチウム含有化合物の累積度50%に対応する粒子径D50(S)が1.0μm以上20μm以下であり、
     前記リチウム含有化合物の累積度95%に対応する粒子径D95(S)が1.0μm以上30μm以下である、
     リチウム2次電池。
  2.  正極と、
     負極活物質を有しない負極と、
     前記正極と前記負極との間に配置されているセパレータと、
     前記セパレータの前記負極に対向する表面に形成されているファイバ状又は多孔質状のイオン伝導性を有する緩衝機能層と、を備え、
     前記正極が、正極活物質と、前記正極活物質の充放電電位範囲において酸化反応を生じ、かつ、還元反応を実質的に生じないリチウム含有化合物と、を含み、
     レーザ回折・散乱法により測定される粒度分布において、累積度50%に対応する粒子径をD50とした場合、
     前記正極活物質のD50(A)が5.0μm以上20μm以下であり、
     前記リチウム含有化合物のD50(S)に対する前記正極活物質のD50(A)の粒径比であるD50(A)/D50(S)が、2.0以上10.0以下である、
     リチウム2次電池。
  3.  前記リチウム含有化合物のD50(S)が1.0μm以上10μm以下である、請求項2に記載のリチウム2次電池。
  4.  前記正極の電極密度が3.0g/cc以上である、請求項2又は3に記載のリチウム2次電池。
  5.  前記リチウム含有化合物を、前記正極の総質量に対して1.0質量%以上15質量%以下で含む、請求項1~4のいずれか1項に記載のリチウム2次電池。
  6.  前記リチウム2次電池のセル容量に対する前記リチウム含有化合物の不可逆容量の割合が、1.0%以上30%以下である、請求項1~4のいずれか1項に記載のリチウム2次電池。
  7.  前記緩衝機能層の空孔率が、50%以上である、請求項1~6のいずれか1項に記載のリチウム2次電池。
  8.  前記緩衝機能層は、電気伝導性を更に有する、請求項1~7のいずれか1項に記載のリチウム2次電池。
  9.  前記リチウム含有化合物が、Feを含む化合物である、請求項1~8のいずれか1項に記載のリチウム2次電池。
PCT/JP2021/016226 2020-08-18 2021-04-21 リチウム2次電池 WO2022038835A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP21857987.8A EP4203090A1 (en) 2020-08-18 2021-04-21 Lithium secondary battery
JP2022543276A JP7335022B2 (ja) 2020-08-18 2021-04-21 リチウム2次電池
KR1020237007436A KR20230043216A (ko) 2020-08-18 2021-04-21 리튬 이차 전지
CN202180056811.1A CN116034494A (zh) 2020-08-18 2021-04-21 锂二次电池
US18/111,339 US20230216044A1 (en) 2020-08-18 2023-02-17 Lithium secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/031096 WO2022038670A1 (ja) 2020-08-18 2020-08-18 リチウム2次電池
JPPCT/JP2020/031096 2020-08-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/111,339 Continuation US20230216044A1 (en) 2020-08-18 2023-02-17 Lithium secondary battery

Publications (1)

Publication Number Publication Date
WO2022038835A1 true WO2022038835A1 (ja) 2022-02-24

Family

ID=80322612

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2020/031096 WO2022038670A1 (ja) 2020-08-18 2020-08-18 リチウム2次電池
PCT/JP2020/033590 WO2022038793A1 (ja) 2020-08-18 2020-09-04 リチウム2次電池
PCT/JP2021/016226 WO2022038835A1 (ja) 2020-08-18 2021-04-21 リチウム2次電池

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/JP2020/031096 WO2022038670A1 (ja) 2020-08-18 2020-08-18 リチウム2次電池
PCT/JP2020/033590 WO2022038793A1 (ja) 2020-08-18 2020-09-04 リチウム2次電池

Country Status (6)

Country Link
US (3) US20230216044A1 (ja)
EP (1) EP4203090A1 (ja)
JP (3) JP7335024B2 (ja)
KR (1) KR20230043216A (ja)
CN (1) CN116034494A (ja)
WO (3) WO2022038670A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220069150A (ko) * 2020-11-19 2022-05-27 삼성전자주식회사 전고체 전지 및 그 제조방법
WO2023242982A1 (ja) * 2022-06-15 2023-12-21 TeraWatt Technology株式会社 2次電池及び2次電池の製造方法
WO2024079848A1 (ja) * 2022-10-13 2024-04-18 TeraWatt Technology株式会社 リチウム2次電池及びその製造方法
WO2024089460A1 (ja) * 2022-10-27 2024-05-02 日産自動車株式会社 全固体電池
CN118156421B (zh) * 2024-03-25 2024-09-10 昆明理工大学 一种互穿型固态电解质界面的制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013175412A (ja) * 2012-02-27 2013-09-05 Sumitomo Electric Ind Ltd 非水電解質電池
JP2014143133A (ja) * 2013-01-25 2014-08-07 Toyota Motor Corp 二次電池用正極、二次電池用正極の製造方法、及び、全固体二次電池
JP2015519686A (ja) * 2012-04-10 2015-07-09 カリフォルニア インスティチュート オブ テクノロジー 電気化学システムの新規セパレータ
JP2018185906A (ja) * 2017-04-24 2018-11-22 トヨタ自動車株式会社 二次電池の製造方法
JP2019145299A (ja) * 2018-02-20 2019-08-29 三星電子株式会社Samsung Electronics Co.,Ltd. 全固体型二次電池
JP2019145401A (ja) * 2018-02-22 2019-08-29 株式会社豊田自動織機 正極活物質、Li5FeO4、結着剤及び溶剤を含む組成物の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3065797B2 (ja) * 1992-07-29 2000-07-17 新神戸電機株式会社 リチウム二次電池
WO2015030230A1 (ja) * 2013-09-02 2015-03-05 日本ゴア株式会社 保護膜、ならびにそれを用いたセパレータおよび二次電池
WO2017214276A1 (en) 2016-06-08 2017-12-14 SolidEnergy Systems High energy density, high power density, high capacity, and room temperature capable "anode-free" rechargeable batteries
JP6460143B2 (ja) * 2017-03-28 2019-01-30 Tdk株式会社 リチウム二次電池
KR102115602B1 (ko) 2017-06-21 2020-05-26 주식회사 엘지화학 리튬 이차전지
WO2019045399A2 (ko) * 2017-08-28 2019-03-07 주식회사 엘지화학 리튬 이차전지
US11024849B2 (en) 2018-06-12 2021-06-01 Global Graphene Group, Inc. Fast-chargeable lithium battery
CN113614977B (zh) 2019-03-22 2024-06-18 富士胶片株式会社 全固态锂离子二次电池及其制造方法、以及负极用层叠片
JP7304278B2 (ja) 2019-12-04 2023-07-06 株式会社Soken 全固体電池およびその製造方法
JP2021150152A (ja) 2020-03-18 2021-09-27 株式会社デンソー 全固体電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013175412A (ja) * 2012-02-27 2013-09-05 Sumitomo Electric Ind Ltd 非水電解質電池
JP2015519686A (ja) * 2012-04-10 2015-07-09 カリフォルニア インスティチュート オブ テクノロジー 電気化学システムの新規セパレータ
JP2014143133A (ja) * 2013-01-25 2014-08-07 Toyota Motor Corp 二次電池用正極、二次電池用正極の製造方法、及び、全固体二次電池
JP2018185906A (ja) * 2017-04-24 2018-11-22 トヨタ自動車株式会社 二次電池の製造方法
JP2019145299A (ja) * 2018-02-20 2019-08-29 三星電子株式会社Samsung Electronics Co.,Ltd. 全固体型二次電池
JP2019145401A (ja) * 2018-02-22 2019-08-29 株式会社豊田自動織機 正極活物質、Li5FeO4、結着剤及び溶剤を含む組成物の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEM. MATER., vol. 22, 2010, pages 1263 - 1270

Also Published As

Publication number Publication date
EP4203090A1 (en) 2023-06-28
CN116034494A (zh) 2023-04-28
US20230216044A1 (en) 2023-07-06
JP7335022B2 (ja) 2023-08-29
JPWO2022038793A1 (ja) 2022-02-24
US20230207790A1 (en) 2023-06-29
WO2022038793A1 (ja) 2022-02-24
JPWO2022038835A1 (ja) 2022-02-24
JPWO2022038670A1 (ja) 2022-02-24
JP7551169B2 (ja) 2024-09-17
JP7335024B2 (ja) 2023-08-29
KR20230043216A (ko) 2023-03-30
WO2022038670A1 (ja) 2022-02-24
US20230395939A1 (en) 2023-12-07

Similar Documents

Publication Publication Date Title
WO2022038835A1 (ja) リチウム2次電池
JP6196329B2 (ja) カソード活性材料、電極及びリチウムイオン移動度及び電池容量が改良された二次バッテリー
EP3580171B1 (en) Passivation of lithium metal by two-dimensional materials for rechargeable batteries
KR101982682B1 (ko) 리튬 2차 전지
CN111758176B (zh) 负极活性物质的预掺杂方法、负极的制造方法、以及蓄电装置的制造方法
CN111883815A (zh) 可再充电锂电池
US20060088767A1 (en) Battery with molten salt electrolyte and high voltage positive active material
US20130224599A1 (en) Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
WO2021250803A1 (ja) 2次電池及びその製造方法
WO2022054343A1 (ja) リチウム2次電池
KR20150065078A (ko) 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
JP2014022245A (ja) リチウムイオン二次電池およびその製造方法
WO2022054338A1 (ja) リチウム2次電池
WO2022254717A1 (ja) リチウム2次電池
WO2022244110A1 (ja) リチウム2次電池及びその使用方法、並びにリチウム2次電池の製造方法
JP2022002188A (ja) リチウムイオン電池用セパレータ
US20230137413A1 (en) Lithium secondary battery and method for using same
JP7340303B2 (ja) リチウム2次電池及びその製造方法
US20230378436A1 (en) Lithium secondary battery
WO2022091407A1 (ja) リチウム2次電池
WO2022215160A1 (ja) リチウム2次電池
WO2021245745A1 (ja) 電池及びその製造方法
JP4501638B2 (ja) リチウムイオン二次電池
TW202401877A (zh) 電極材
JP2022015971A (ja) 負極材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21857987

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022543276

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237007436

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021857987

Country of ref document: EP

Effective date: 20230320