Nothing Special   »   [go: up one dir, main page]

WO2022004510A1 - 重合体の硬化に用いる硬化触媒及びその製造方法、湿気硬化型組成物、硬化物の製造方法 - Google Patents

重合体の硬化に用いる硬化触媒及びその製造方法、湿気硬化型組成物、硬化物の製造方法 Download PDF

Info

Publication number
WO2022004510A1
WO2022004510A1 PCT/JP2021/023728 JP2021023728W WO2022004510A1 WO 2022004510 A1 WO2022004510 A1 WO 2022004510A1 JP 2021023728 W JP2021023728 W JP 2021023728W WO 2022004510 A1 WO2022004510 A1 WO 2022004510A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
complex
curing catalyst
curing
polymer
Prior art date
Application number
PCT/JP2021/023728
Other languages
English (en)
French (fr)
Inventor
侑哉 中川
和則 難波
春香 吉山
裕士 今田
奈那恵 菊井
Original Assignee
日東化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東化成株式会社 filed Critical 日東化成株式会社
Priority to US18/002,569 priority Critical patent/US20230257487A1/en
Priority to JP2022533906A priority patent/JPWO2022004510A1/ja
Priority to CN202180031504.8A priority patent/CN115461414B/zh
Priority to EP21833879.6A priority patent/EP4174052A4/en
Publication of WO2022004510A1 publication Critical patent/WO2022004510A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/72Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from metals not provided for in group C08F4/44
    • C08F4/74Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from metals not provided for in group C08F4/44 selected from refractory metals
    • C08F4/76Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from metals not provided for in group C08F4/44 selected from refractory metals selected from titanium, zirconium, hafnium, vanadium, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/10Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing hydrolysable silane groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0211Oxygen-containing compounds with a metal-oxygen link
    • B01J31/0212Alkoxylates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/28Titanium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/08Preparatory processes characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/19Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/458Block-or graft-polymers containing polysiloxane sequences containing polyurethane sequences

Definitions

  • the present invention relates to a curing catalyst used for curing a polymer, a method for producing the same, a moisture-curable composition, and a method for producing a cured product.
  • the one-component moisture-curable rubber composition generally has a high curing rate, and it is not necessary to weigh and mix various additives such as a base polymer, a cross-linking agent, and a catalyst before use, so that the one-component type is a two-component type. It is superior in terms of workability.
  • silicone-based rubbers silicone-based rubbers, modified silicone-based rubbers, urethane-based rubbers, polysulfide-based rubbers, and the like are known.
  • An organopolysiloxane composition is widely used as a one-component moisture-curable rubber composition of a silicone-based rubber, and is cured at room temperature to form a rubber elastic body.
  • the polymer compound of siloxane having a —Si—O— bond as the main chain, which is cross-linked and polymerized by organosiloxane has excellent properties such as water repellency, heat resistance, weather resistance, cold resistance, and electrical insulation. Widely used in fields such as civil engineering, electricity, electronics, and automobile industry.
  • a one-component moisture-curable rubber composition of modified silicone-based rubber there is a composition containing a polymer having a crosslinkable reactive hydrolyzable silicon functional group having a polyether as a main chain.
  • the curable composition of this polymer has better storage stability, weather resistance, foaming resistance and discoloration resistance than those of polyurethane-based rubber, and is superior in curability to surroundings as compared with polysulfide-based ones. It is less contaminated and non-toxic.
  • the reaction mechanism in the process of the silicone-based rubber and the modified silicone-based rubber becoming a cured product is said to be due to the condensation reaction or addition reaction of the reactive hydrolyzable silicon-containing group in the coexistence of water, and the polymerization proceeds. It is believed that a cured polymer with a three-dimensional network structure is formed. Curing catalysts are used in order to accelerate curing in this reaction (Patent Documents 1 to 5).
  • Japanese Unexamined Patent Publication No. 8-41358 Japanese Unexamined Patent Publication No. 60-161457 Special Publication No. 63-42942 Japanese Patent Application Laid-Open No. 2003-147220 Japanese Patent No. 5446265
  • tin carboxylate compounds As a curing catalyst for the curing composition of the silicone-based rubber having the reactive hydrolyzable silicon-containing group and the modified silicone-based rubber, tin carboxylate compounds, alkyl tin salt compounds and the like have been conventionally used, but endocrine disruption is disrupted. Since there is concern about the effect on the living body as a substance, a combined catalyst of carboxylic acid and amine (Patent Document 1) has been proposed as a moisture-curable composition that does not use such a substance, but it is sufficiently cured at the time of construction. There is a problem that speed cannot be obtained.
  • Patent Document 2 and Patent Document 3 it is proposed to use a titanium acid ester compound such as diisopropoxytitanium bis (alkylacetoacetonate) as a catalyst, but it is contained in the additive or filler in the composition. It is easily decomposed by the moisture, and the curing speed varies depending on the humidity at the time of construction, so that there is a problem that a stable cured product cannot be obtained.
  • a titanium acid ester compound such as diisopropoxytitanium bis (alkylacetoacetonate)
  • Patent Document 4 proposes to use a titanium tetracarboxylic dian compound as a catalyst, but there is a problem that practical satisfaction with respect to the curing rate cannot be obtained.
  • Patent Document 5 proposes to use a quaternary ammonium salt as a catalyst, but there is a problem that a sufficient curing rate cannot be obtained at the time of construction.
  • an object of the present invention is to provide a curing catalyst having high safety and a practical curing rate.
  • the curing catalyst [B] used for curing a polymer [A] having a reactive hydrolyzable silicon-containing group.
  • the curing catalyst [B] contains a complex [C] of a titanium compound [B1] and an ammonium hydroxide [B2].
  • the titanium compound [B1] is represented by the chemical formula (1).
  • the ammonium hydroxide [B2] is provided with a curing catalyst [B] represented by the chemical formula (2).
  • the present inventor has found that when a curing catalyst [B] containing a complex [C] of a titanium compound [B1] and an ammonium hydroxide [B2] is used, the polymer [A] is used.
  • the curing rate is significantly increased, and have reached the completion of the present invention. Since this catalyst does not contain tin, it is highly safe. In addition, it can be manufactured at low cost. Further, since the complex [C] is less likely to precipitate crystals, the curing catalyst [B] is excellent in storage stability.
  • the curing catalyst [B] of the present invention is used for curing a polymer [A] having a reactive hydrolyzable silicon-containing group.
  • the polymer [A] is preferably liquid at room temperature.
  • the polymer [A] has at least one reactive hydrolyzable silicon-containing group per molecule at the terminal or side chain.
  • the reactive hydrolyzable silicon-containing group may be present at the terminal of the polymer [A] molecule, at the side chain, or at both the terminal and the side chain.
  • the number of reactive hydrolyzable silicon-containing groups may be at least one per molecule of the polymer [A], but the number is 1.5 or more per molecule on average in terms of curing rate and cured physical characteristics. Is preferable.
  • a known method can be adopted as a method for binding the reactive hydrolyzable silicon-containing group to the main chain polymer.
  • a reactive hydrolyzable silicon-containing group is a group having a silicon atom bonded to a hydrolyzable group (eg, halogen, alkoxy, alkenyloxy, asyloxy, amino, aminooxy, oxime, amide) or a reactive group consisting of a hydroxyl group. It has the property of causing a condensation reaction by using a catalyst or the like as needed in the presence of moisture or a cross-linking agent. Specific examples thereof include a halide silyl group, an alkoxysilyl group, an alkenyloxysilyl group, an acyloxysilyl group, an aminosilyl group, an aminooxysilyl group, an oximsilyl group, and an amidosilyl group.
  • the number of reactive hydrolyzable groups bonded to one silicon atom is selected from the range of 1 to 3. Further, the reactive hydrolyzable group bonded to one silicon atom may be one kind or a plurality of kinds. Further, the reactive hydrolyzable group and the non-reactive hydrolyzable group may be bonded to one silicon atom, or the hydrolyzable group and the hydroxyl group may be bonded to one silicon atom.
  • the reactive hydrolyzable silicon-containing group an alkoxysilyl group (including a monoalkoxysilyl group, a dialkoxysilyl group, and a trialkoxysilyl group) is particularly preferable because it is easy to handle.
  • the trialkoxysilyl group is preferable because it has high activity and good curability can be obtained, and the obtained cured product is excellent in restorability, durability and creep resistance.
  • the dialkoxysilyl group and the monoalkoxysilyl group are preferable because they have excellent storage stability and the obtained cured product has high elongation and high strength.
  • Examples of the polymer [A] include an organic polymer [A1] and an organopolysiloxane [A2].
  • Organic polymer [A1] The main chain of the organic polymer [A1] used in the present invention is one having a carbon atom, for example, an alkylene oxide polymer, a polyester polymer, an ether / ester block copolymer, a polymer of an ethylenically unsaturated compound, or a diene. Examples thereof include polymers of system compounds.
  • the alkylene oxide polymer [CH 2 CH 2 O] n [CH (CH 3 ) CH 2 O] n [CH (C 2 H 5 ) CH 2 O] n [CH 2 CH 2 CH 2 CH 2 O] n
  • n is the same or different integer of 2 or more.
  • These alkylene oxide polymers may be used alone or in combination of two or more. Further, a copolymer containing two or more of the above repeating units can also be used.
  • polyester polymer examples include carboxylic acids such as acetic acid, propionic acid, maleic acid, phthalic acid, citric acid, pyruvate, and lactic acid and their anhydrides, and their intramolecular and / or intermolecular esters and their substitutions. Examples are those having as a repeating unit.
  • ether / ester block copolymer examples include those having both the repeating unit used for the above-mentioned alkylene oxide polymer and the repeating unit used for the above-mentioned polyester polymer as the repeating unit.
  • the polymers of the ethylenically unsaturated compound and the diene compound include ethylene, propylene, acrylic acid ester, methacrylic acid ester, vinyl acetate, acrylonitrile, styrene, isobutylene, butadiene, isoprene, chloroprene and other homopolymers, or Examples thereof include these two or more kinds of copolymers. More specifically, polybutadiene, styrene-butadiene copolymer, acrylonitrile-butadiene copolymer, ethylene-butadiene copolymer, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, ethylene- (meth) acrylic acid.
  • Ester copolymer polyisoprene, styrene-isoprene copolymer, isobutylene-isoprene copolymer, polychloroprene, styrene-chloroprene copolymer, acrylonitrile-chloroprene copolymer, polyisobutylene, polyacrylic acid ester, polymethacrylic acid Examples include esters. These may be used alone or in combination of two or more.
  • an organic polymer having a polar group such as a nitrogen-containing characteristic group in the molecule can also be used.
  • the nitrogen-containing characteristic group include a (thio) urethane group-derived linking group such as a (thio) urethane group, an allophanate group, another N-substituted urethane group, and an N-substituted allophanate group, and a (thio) urea group.
  • Biling group derived from (thio) urea group such as biuret group, other N-substituted urea group, N, N'-substituted urea group, N-substituted biuret group, N, N'-substituted biuret group, amide group
  • examples thereof include a amide group-derived binding group such as an N-substituted amide group, a nitrogen-containing characteristic group typified by an imino group-derived binding group, a (thio) ester group, and a (thio) ether group, but the present invention is limited thereto. Not done.
  • a nitrogen-containing characteristic group is preferable because of its high curability, and a (thio) urethane group-derived binding group and a (thio) urea-derived binding group are more preferable because of its ease of synthesis. Further, only one nitrogen-containing characteristic group may be contained in the organic polymer [A1], and one or more nitrogen-containing characteristic groups may be further contained.
  • the notations of "(thio)" and "N-substitution" are the same as above.
  • the organic polymer [A1] contains a polar group such as the nitrogen-containing characteristic group
  • the toughness of the cured product is improved, and the curability and the adhesive strength are enhanced.
  • the crosslinkable silicon group is linked to the main chain via a polar group such as a nitrogen-containing characteristic group
  • the curability is further enhanced.
  • the polar groups of the nitrogen-containing characteristic groups are strongly attracted to each other by an interaction such as a hydrogen bond. It is considered that the polar groups of the nitrogen-containing characteristic groups are strongly attracted to each other, so that the molecules of the curable resin are also strongly bound to each other (domain formation), thereby exhibiting toughness in the cured product.
  • the crosslinkable silicon groups are also close to each other when forming a domain between the nitrogen-containing characteristic groups.
  • the contact probability between the crosslinkable silicon groups is also improved, and further, the condensation reactivity between the crosslinkable silicon groups is improved by catalytic curing by the polar group in the nitrogen-containing characteristic group.
  • Such an organic polymer [A1] (modified silicone-based polymer) can be produced by a known method such as the method described in Japanese Patent Publication No. 61-18569, or is commercially available. ..
  • Commercially available products include, for example, Kaneka MS Polymer series (MS Polymer S203, MS Polymer S303, MS Polymer S903, MS Polymer S911, MS Polymer SAX520, etc.) and Cyril Series (Cyril Polymer SAT200, Cyril) manufactured by Kaneka Corporation.
  • Polymer MA430, Cyril Polymer MAX447, etc.), MA series, SA series, OR series; ES series (ES-GX3440ST, etc.) manufactured by Asahi Glass Co., Ltd., ESGX series, etc. are exemplified.
  • the number average molecular weight of the organic polymer [A1] used in the present invention is not particularly limited, but an excessively high polymer has a high viscosity and is difficult to use in the case of a curable composition, so 30,000.
  • the following is desirable.
  • Such an organic polymer can be produced by a known method, but a commercially available product such as the above-mentioned Kaneka MS Polymer manufactured by Kaneka Corporation may be used.
  • the organopolysiloxane [A2] used in the present invention has a main chain composed of a siloxane bond represented by Si—O, and further has an organic group bonded to a silicon atom constituting the siloxane bond.
  • an organic group include an alkyl group such as methyl, ethyl, propyl and butyl; a cycloalkyl group such as cyclohexyl; an alkenyl group such as vinyl, isopropenyl and substituted vinyl; an allyl group, crotyl, methallyl and the like.
  • Substituentally substituted allyl groups aryl groups such as phenyl, toluyl, xylyl; aralkyl groups such as benzyl, phenylethyl; and groups in which all or part of the hydrogen atoms of these organic groups are substituted with halogen atoms, such as chloromethyl groups, Examples thereof include 3,3,3-trifluoropropyl groups.
  • the organopolysiloxane [A2] may be composed of a single main chain, or may be composed of two or more types of main chains.
  • the organopolysiloxane may be linear or branched, including trifunctional (R'SiO 1.5 ) or tetrafunctional (SiO 2). Also, the physical properties and applications of the cured product, difunctional shaped as needed (R may be combined '2 SiO) and 1 functional type (R' a 3 SiO 0.5) (wherein, R 'is an organic radical ). Further, the hydrolyzable silicon-containing group may be bonded to either the end of the molecule or the middle of the molecular chain.
  • the organopolysiloxane is generally represented by Ra SiO 4-a / 2 as an average composition formula (for example, JP-A-2005-194399, JP-A-8-151521, etc.). The above notation followed this.
  • the viscosity of the organopolysiloxane [A2] used in the present invention is not particularly limited, but an excessively high viscosity may reduce workability or impair the physical properties of the obtained cured product. It is desirable that the viscosity at ° C is in the range of 0.025 to 100 Pa ⁇ s.
  • Such organopolysiloxanes can be produced by known methods, but are manufactured by GE Toshiba Silicone Co., Ltd.'s Tosseal series, Shin-Etsu Chemical Co., Ltd.'s sealant series, and Toray Dow Corning Co., Ltd. Commercially available products such as SH series can be used.
  • the curing catalyst [B] contains a complex [C] of a titanium compound [B1] and an ammonium hydroxide [B2].
  • the complex [C] is a reaction product that can be obtained by reacting the titanium compound [B1] with the ammonium hydroxide [B2].
  • the titanium compound [B1] is represented by the chemical formula (1).
  • R 1 is a substituted or unsubstituted hydrocarbon group, n is 1 to 4, A is a ⁇ -diketone group, and at least one of R 1 is an alkyl group having 8 or more carbon atoms.
  • R 6- represents an oxyalkylene group represented by the chemical formula (3)
  • R 6- represents a substituted or unsubstituted hydrocarbon group having 1 to 10 carbon atoms
  • R 7 represents a substituted or unsubstituted hydrocarbon group having 2 to 10 carbon atoms
  • m represents an integer of 1 to 10.
  • N is, for example, 1, 1.5, 2, 2.5, 3, 3.5, and 4, and may be within the range between any two of the numerical values exemplified here.
  • At least one of R 1 is an alkyl group having 8 or more carbon atoms or an oxyalkylene group. At least one of R 1 is preferably a hydrocarbon group (other hydrocarbon group) that is neither an alkyl group having 8 or more carbon atoms nor an oxyalkylene group.
  • the carbon number of the other hydrocarbon group is, for example, 1 to 7, preferably 1 to 5. Specifically, the number of carbon atoms is, for example, 1, 2, 3, 4, 5, 6, and 7, and may be within the range between any two of the numerical values exemplified here.
  • the other hydrocarbon group is preferably an alkyl group, more preferably a branched alkyl group. The number of other hydrocarbon groups is 0, 1, 2, 3 or 4.
  • alkyl group having 8 or more carbon atoms for example, octyl, 2-ethylhexyl, nonyl, decyl and the like are preferable.
  • the alkyl group has, for example, 8 to 20 carbon atoms, preferably 8 to 15 carbon atoms.
  • the carbon number is, for example, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, and is between any two of the numerical values exemplified here. It may be within the range of.
  • the number of atoms in the main chain of the oxyalkylene group represented by the chemical formula (3) is, for example, 4 to 20, more preferably 6 to 14. Specifically, the number of atoms is, for example, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 and is exemplified here. It may be within the range between any two of the given numerical values.
  • R 6 is a substituted or unsubstituted hydrocarbon group having 1 to 10 carbon atoms, preferably 1 to 6 and more preferably 1 to 4.
  • the hydrocarbon group of R 6 is preferably an alkyl group.
  • R 7 is a substituted or unsubstituted hydrocarbon group having 2 to 10 carbon atoms, preferably 2 to 6 and more preferably 2 to 3.
  • m is an integer of 1 to 10, preferably 1 to 6, and more preferably 1 to 2.
  • the hydrocarbon group of R 7 is preferably an alkylene group.
  • Examples of the oxyalkylene group include a group obtained by removing the terminal hydroxyl group from the alcohol shown below.
  • examples of such alcohols include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monopentyl ether, ethylene glycol monoisopropyl ether, ethylene glycol monot-butyl ether, and diethylene glycol monomethyl.
  • the oxyalkylene group becomes 2- (2-butoxyethoxy) ethyl, and the alcohol is butyl cellosolve (also known as 2-butoxyethanol). ),
  • the oxyalkylene group is 2-butoxyethyl.
  • the other substituted or unsubstituted hydrocarbon group represented by R 1 is a substituted or unsubstituted aliphatic or aromatic hydrocarbon group, and an aliphatic hydrocarbon group is preferable.
  • the aliphatic hydrocarbon group include saturated or unsaturated hydrocarbon groups.
  • As the saturated hydrocarbon group a linear or branched alkyl group is preferable.
  • the hydrocarbon group has 1 to 10 carbon atoms, preferably 1 to 6 and even more preferably 1 to 4. Specifically, the number of carbon atoms is, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10, and is within the range between any two of the numerical values exemplified here. May be good.
  • hydrocarbon group examples include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, heptyl, octyl, 2-ethylhexyl, nonyl and decyl.
  • the ⁇ -diketone group represented by A includes 2,4-pentandione, 2,4-hexanedione, 2,4-pentadecandione, 2,2,6,6-tetramethyl-3,5-heptandione, 1 -Phenyl-1,3-butandione, 1-aryl-1,3-butandione such as 1- (4-methoxyphenyl) -1,3-butandione, 1,3-diphenyl-1,3-propanedione, 1, 1,3-Diaryl-1,3-propanedione such as 3-bis (2-pyridyl) -1,3-propanedione, 1,3-bis (4-methoxyphenyl) -1,3-propanedione, 3 -Diketones such as benzyl-2,4-pentandione, ketoesters such as methylacetate, ethylacetate, butylacetate, t-butylacetate, ethyl-3
  • titanium compounds represented by the chemical formula (1) tetraisopropoxytitanium, triisopropoxyoctoxytitanium, triisopropoxy2- (2-butoxyethoxy) from the viewpoint of catalytic activity, compound stability, and handleability.
  • Ethoxytitanium, triisopropoxy2-butoxyethoxytitanium and the like are preferable.
  • the above titanium compound [B1] may be used alone or in combination of two or more.
  • Ammonium hydroxide [B2] is represented by the following formula.
  • R 2 , R 3 , R 4 , and R 5 represent substituted or unsubstituted hydrocarbon groups having 1 to 8 carbon atoms, which are the same or different from each other.
  • X represents a hydroxyl group.
  • the substituted or unsubstituted hydrocarbon group represented by R 2 , R 3 , R 4 , R 5 is a substituted or unsubstituted aliphatic or aromatic hydrocarbon group, and an aliphatic hydrocarbon group is preferable.
  • an aliphatic hydrocarbon group a linear or branched alkyl group is preferable.
  • the hydrocarbon group has 1 to 8 carbon atoms, preferably 1 to 6 and even more preferably 1 to 4. Specifically, the number of carbon atoms is, for example, 1, 2, 3, 4, 5, 6, 7, and 8, and may be within the range between any two of the numerical values exemplified here.
  • Examples of the aliphatic hydrocarbon group include a saturated hydrocarbon group such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group and an octyl group, and vinyl.
  • Examples thereof include an unsaturated hydrocarbon group such as a group, an allyl group, a prenyl group, a crotyl group and a cyclopentadienyl group, and a methyl group, an ethyl group and a butyl group are preferable.
  • aromatic hydrocarbon group examples include a phenyl group, a tolyl group, a benzyl group and the like.
  • substituent of the hydrocarbon group examples include a methoxy group, an ethoxy group, a hydroxy group, an acetoxy group and the like.
  • Substituted aliphatic or aromatic hydrocarbon groups include alkoxyalkyl groups such as methoxymethyl group, methoxyethyl group, ethoxymethyl group and ethoxyethyl group, hydroxymethyl group, hydroxyethyl group and 3-hydroxypropyl. Examples thereof include a hydroxyalkyl group such as a group and a 2-acetoxyethyl group.
  • ammonium hydroxide represented by the chemical formula (2) examples include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, trimethylbenzylammonium hydroxide, and benzyltriethylammonium hydroxy.
  • trimethylphenylammonium hydroxide, tris (2-hydroxyethyl) methylammonium hydroxide and the like can be mentioned, and tetrabutylammonium hydroxide is particularly preferable.
  • the complex [C] of the titanium compound [B1] and the ammonium hydroxide [B2] is, for example, a transparent liquid, and can be obtained by reacting a mixture of both at, for example, 40 to 100 ° C. Specifically, this temperature is, for example, 40, 50, 60, 70, 80, 90, 100 ° C., and may be in the range between any two of the numerical values exemplified here.
  • the molar ratio of the titanium compound [B1] to the ammonium hydroxide [B2] in the mixture is, for example, 0.1 to 100, 0.1, 0.5, 1, 2, 3, 4, 5, 6 , 7, 8, 9, 10, 20, 50, 100, and may be within the range between any two of the numerical values exemplified here.
  • the curing catalyst [B] is a composite of a titanium compound [Ba] other than the titanium compound [B1] and an ammonium hydroxide [B2] in addition to the composite [C] of the titanium compound [B1] and the ammonium hydroxide [B2].
  • [Ca] may be contained.
  • titanium compound [Ba] examples include those represented by the chemical formula (4).
  • (R 1 -O) n Ti- A 4-n (4) (In the formula, R 1 , substituted or unsubstituted hydrocarbon group, n is 1 to 4, A is a ⁇ -diketone group, R 1 is an alkyl group having 8 or more carbon atoms, and is represented by the chemical formula (3). It is neither of the oxyalkylene groups to be formed.)
  • the carbon number of R 1 is preferably 7 or less, and more preferably 5 or less.
  • R 1 is preferably an alkyl group, more preferably a branched alkyl group.
  • Other explanations for the chemical formula (4) are the same as those for the chemical formula (1).
  • titanium compound [Ba] examples include tetramethoxytitanium, trimethoxyethoxytitanium, trimethoxyisopropoxytitanium, trimethoxybutoxytitanium, dimethoxydiethoxytitanium, dimethoxydiisopropoxytitanium, dimethoxydibutoxytitanium, methoxytriethoxytitanium, and methoxy.
  • the complex [C] has a feature that crystals are less likely to precipitate than the complex [Ca], but the catalytic performance may deteriorate. Therefore, by using the complex [Ca] having excellent catalytic performance and the complex [C] in combination, it is possible to obtain a curing catalyst [B] which is less likely to precipitate crystals and has excellent catalytic performance.
  • the ratio of the complex [C] to the total of the complex [C] and the complex [Ca] is, for example, 10 to 90 mol%, preferably 30 to 80 mol%. Specifically, this ratio is, for example, 10, 20, 30, 40, 50, 60, 70, 80, 90 mol%, and may be within the range between any two of the numerical values exemplified here. ..
  • the curing catalyst [B] containing the complex [C] and the complex [Ca] can be obtained by reacting the titanium compound [B1] and the titanium compound [Ba] with ammonium hydroxide [B2], respectively.
  • the ratio of the titanium compound [B1] to the total of the titanium compound [B1] and the titanium compound [Ba] is, for example, 10 to 90 mol%, preferably 30 to 80 mol%. Specifically, this ratio is, for example, 10, 20, 30, 40, 50, 60, 70, 80, 90 mol%, and may be within the range between any two of the numerical values exemplified here. ..
  • the titanium compound [B1] can be obtained by substituting at least one of the ligands of the titanium compound [Ba] with an alkyl group or an oxyalkylene group having 8 or more carbon atoms by an alkoxy exchange reaction.
  • the moisture-curable composition of the present invention contains the above-mentioned curing catalyst [B] and polymer [A], and may contain other additives described later, if necessary.
  • the moisture-curable composition of the present invention may be prepared by mixing the two under dry conditions, and the mixing form thereof is not particularly limited. Usually, it may be mixed in an atmosphere of about 15 to 30 ° C. and 60% RH or less.
  • the content of the curing catalyst [B] is 0.1 to 20 parts by weight, more particularly 0.5 to 10 parts by weight, based on 100 parts by weight of the polymer [A]. 3 to 8 parts by weight is preferable. If the content of the curing catalyst [B] is less than 0.1 parts by weight, the curing performance is insufficient, and if it exceeds 20 parts by weight, the restoration rate of the cured product after curing, physical properties such as weather resistance, and stability during storage. May get worse.
  • the content of the curing catalyst [B] is, for example, 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, with respect to 100 parts by weight of the polymer [A]. It is 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, and 20 parts by mass, and may be within the range between any two of the numerical values exemplified here.
  • the filler [C] may be further added to the moisture-curable composition of the present invention.
  • the filler include calcium carbonate, kaolin, talc, fumed silica, precipitated silica, silicic acid anhydride, hydrous silicic acid, clay, calcined clay, glass, bentonite, organic bentonite, silasburn, glass fiber, asbestos, and the like. Examples thereof include glass filament, crushed quartz, diatomaceous earth, aluminum silicate, aluminum hydroxide, zinc oxide, magnesium oxide, titanium dioxide and the like.
  • the filler may be used alone or in combination of two or more.
  • the addition of the filler improves the handling of the moisture-curable composition. It also works as a rubber reinforcing agent for cured products. The biggest merit is that the amount of resin used can be reduced by adding it as a bulking agent, so that the cost can be reduced.
  • calcium carbonate and titanium oxide are preferable from the viewpoint of maintaining excellent surface non-tack, 50% modulus, workability, weather resistance and the like of the curable composition after curing.
  • the ratio thereof is preferably 1 to 200 parts by weight, more preferably 50 to 200 parts by weight, based on 100 parts by weight of the polymer [A]. Within the above range, the characteristics after curing are not impaired.
  • the moisture-curable composition of the present invention other curing catalysts, curing accelerators, colorants, plasticizers, curing retarders, sagging inhibitors, antiaging agents, solvents and the like are usually added to the curable composition. Additives may be added.
  • curing catalysts examples include organic tin compounds such as dibutyltin dilaurate and dibutyltin bis (acetylacetonate), organic aluminum compounds such as aluminumtris (acetylacetonate) and aluminumtris (ethylacetoacetate), and zirconium tetra (acetyl).
  • organic tin compounds such as dibutyltin dilaurate and dibutyltin bis (acetylacetonate)
  • organic aluminum compounds such as aluminumtris (acetylacetonate) and aluminumtris (ethylacetoacetate)
  • zirconium tetra acetyl
  • organic zirconium compounds such as zirconite tetrabutyrate
  • metal curing catalysts such as 1-amino-2-ethylhexane, 3- (trimethoxysilyl) propylamine, N-2-aminoethyl-3-aminopropyl Trimethoxysilane, N, N, N', N'-tetramethyl-N''-[3- (trimethoxysilyl) propyl] guanidine, 1,5,7-triazabicyclo- [4,4,0]
  • Examples thereof include amine compounds such as deca-5-ene and 3-triethoxysilyl-N- (1,3-dimethylbutylidene) propylamine.
  • the curing accelerator for example, various known amino group-substituted alkoxysilane compounds or condensates thereof can be used. Specifically, ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, N- (trimethoxysilylpropyl) ethylenediamine, ⁇ -aminobutyl (methyl) diethoxysilane, N, N-bis (tri). Examples thereof include methoxysilylpropyl) ethylenediamine and partial hydrolysis of these, which also have the effect of improving the adhesion to the substrate.
  • iron oxide, carbon black, phthalocyanine blue, phthalocyanine green, etc. are used as the colorant.
  • plasticizer examples include phthalates such as dibutylphthalate, dioctylphthalate, and butylbenzylphthalate; fatty acid carboxylic acid esters such as dioctyl adipate, dioctyl succinate, diisodecyl succinate, and butyl oleate; penta.
  • Glycol esters such as erythritol esters; phosphate esters such as trioctyl phosphate and tricresyl phosphate; epoxy plasticizers such as epoxidized soybean oil and benzyl epoxy stearate; chlorinated paraffin and the like are used.
  • hydrogenated castor oil silicic acid anhydride, organic bentonite, colloidal silica, etc. are used as the sagging preventive agent.
  • adhesion-imparting agents such as phenol resins and epoxy resins, ultraviolet absorbers, radical chain inhibitors, peroxide decomposition agents, various antiaging agents, etc. are used.
  • the curable composition of the present invention is sufficiently stable at room temperature and therefore has excellent storability, and when it comes into contact with moisture, the curing reaction spontaneously proceeds by the compounded curing catalyst [B].
  • the snap time (time until semi-gelation and loss of fluidity) and tack free time (time until surface tack disappears) are short, and workability is excellent.
  • the curable composition of the present invention can be used as a one-component sealing material. Specifically, it is suitably used for applications such as sealing materials for vehicles such as buildings, ships, and automobiles, adhesives, sealing agents, and sealing materials for waterproofing.
  • the chemical shift of 3.42-3.38 of complex 3 belongs to the ⁇ -hydrogen atom (hydrogen atom of N-CH2) of the butyl group of TBAH. In the complex 3, it was confirmed that the chemical shift of the ⁇ -hydrogen atom was + 0.07 ppm as compared with TBAH.
  • the chemical shift of 3.42-3.38 of complex 4 belongs to the ⁇ -hydrogen atom (hydrogen atom of N-CH2) of the butyl group of TBAH. In the complex 4, it was confirmed that the chemical shift of the ⁇ -hydrogen atom was + 0.07 ppm as compared with TBAH.
  • the chemical shift of 3.42-3.38 of the complex 13 belongs to the ⁇ -hydrogen atom (hydrogen atom of N-CH2) of the butyl group of TBAH. In the complex 13, it was confirmed that the chemical shift of the ⁇ -hydrogen atom was + 0.07 ppm as compared with TBAH.
  • tack-free time (the time required from the end of kneading until the sample did not adhere to the fingertips by lightly touching three points on the surface with a fingertip cleaned with ethyl alcohol) was measured for the obtained moisture-curable composition. ..
  • the results of the tack free time measurement are shown in Tables 1 and 2.
  • the titanium compound [B1] and the titanium compound [Ba] coexist in the system, and when the reaction with the ammonium hydroxide [B2] is allowed to proceed in this state, the complex [C] and the complex [Ca] are allowed to proceed. ] Both are generated. Therefore, the complex 2 is a mixture of the complex [C] and the complex [Ca]. Since the complex [Ca] has a higher catalytic activity than the complex [C], the tack free time of Example 2 is shorter than that of Example 1.
  • MS Polymer SAX520 Organic Polymer Containing a Cyril Group (manufactured by Kaneka Corporation)
  • MS Polymer S303 Cyril group-containing organic polymer (manufactured by Kaneka Corporation)
  • STP-E15 Cyril group-containing organic polymer (manufactured by WACKER Chemical Corporation)
  • KE-66 Organopolysiloxane (manufactured by Shin-Etsu Chemical Co., Ltd.)
  • Tetraisopropoxytitanium manufactured by Tokyo Chemical Industry Co., Ltd.
  • Tetrabutylammonium hydroxide 37% tetrabutylammonium hydroxide manufactured by Tokyo Chemical Industry Co., Ltd.
  • Carlex 300 Calcium carbonate (manufactured by Maruo Calcium Co., Ltd.)
  • FR-41 Titanium oxide (manufactured by Furukawa Chemicals Co., Ltd.)
  • REOLOSIL PM-20 Fumed Silica (manufactured by Tokuyama Corporation)
  • DINP Plasticizer (manufactured by J-PLUS Co., Ltd.)
  • PPG1000 Plasticizer (manufactured by Kishida Chemical Co., Ltd.)
  • Disparon 6500 Anti-sauce agent (manufactured by Kusumoto Chemical Co., Ltd.)
  • Hydrogenated castor oil anti-sauce agent (manufactured by Itoh Oil Chemicals, Inc.)
  • Songsorb 3260P UV absorber (manufactured by SONGWON) Sabostab UV70: Light stabilizer (manufactured by SONGWON)
  • Irganox245 Antioxidant (manufactured by BASF Japan Ltd.)
  • KBM-1003 Dehydrating agent (manufactured by Shinetsu Silicone Industry Co., Ltd.)
  • KBM-903 Adhesive-imparting agent (manufactured by Shin-Etsu Silicone Industry Co., Ltd.)
  • KBM-603 Adhesive-impart

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

安全性が高く、実用的な硬化速度を有する硬化触媒を提供する。 本発明によれば、反応性加水分解性ケイ素含有基を有する重合体[A]の硬化に用いる硬化触媒[B]であって、 前記硬化触媒[B]は、チタン化合物[B1]とアンモニウムヒドロキシド[B2]の複合体[C]を含有し、 前記チタン化合物[B1]は、化学式(1)で表され、 前記アンモニウムヒドロキシド[B2]は、化学式(2)で表される、硬化触媒[B]が提供される。

Description

重合体の硬化に用いる硬化触媒及びその製造方法、湿気硬化型組成物、硬化物の製造方法
 本発明は、重合体の硬化に用いる硬化触媒及びその製造方法、湿気硬化型組成物、硬化物の製造方法に関する。
 1液型の湿気硬化型ゴム組成物は、一般に硬化速度が速く、また使用前にベースポリマー、架橋剤および触媒等の各種添加剤を秤量して混合する必要がないため、2液型のものに比べ作業性の点で優れている。
 これらの1液型の湿気硬化型ゴム組成物としては、シリコーン系ゴム、変成シリコーン系ゴム、ウレタン系ゴム、ポリサルファイド系ゴム等のものが知られている。
 シリコーン系ゴムの1液型の湿気硬化型ゴム組成物として、オルガノポリシロキサン組成物が広範囲に使用されており、室温で硬化してゴム弾性体を生成する。オルガノシロキサンが架橋重合した-Si-O-結合を主鎖とするシロキサンの高分子化合物は、撥水性、耐熱性、耐候性、耐寒性、電気絶縁性等の性質に優れていることから建築、土木工業、電気、電子工業、自動車工業等の分野で広く使用されている。
 変成シリコーン系ゴムの1液型の湿気硬化型ゴム組成物としては、ポリエーテルを主鎖とする架橋可能な反応性加水分解性ケイ素官能基を有する重合体を含む組成物がある。この重合体の硬化型組成物は、ポリウレタン系ゴムのものに比べて貯蔵安定性、耐候性、耐発泡性および変色性が良好であり、ポリサルファイド系のものに比べて硬化性に優れ、周囲への汚染性が少なく毒性がない。
 前記シリコーン系ゴムおよび変成シリコーン系ゴムが、硬化物となる過程における反応機構は、水共存下における反応性加水分解性ケイ素含有基の縮合反応もしくは付加反応によるとされており、ポリマー化が進行し3次元網目構造のポリマー硬化体が形成されるものと考えられている。この反応において硬化を速やかに進行させるために、硬化触媒が使用される(特許文献1~5)。
特開平8-41358号公報 特開昭60-161457号公報 特公昭63-42942号公報 特開2003-147220号公報 特許5446265号公報
 この反応性加水分解性ケイ素含有基を有するシリコーン系ゴムおよび変成シリコーン系ゴムの硬化組成物の硬化触媒として、従来から錫カルボン酸塩化合物、アルキル錫塩化合物などが使用されてきたが、内分泌撹乱物質として生体への影響が懸念されていることから、こうした物質を使用しない湿気硬化型組成物として、カルボン酸とアミンの併用触媒(特許文献1)が提案されているが、施工時に充分な硬化速度が得られないという問題点がある。
 特許文献2および特許文献3では、ジイソプロポキシチタンビス(アルキルアセトアセトネート)等のチタン酸エステル化合物を触媒として使用することが提案されているが、組成物中の添加剤や充填剤中に含まれる水分で分解されやすく、また、施工時の湿度により、硬化速度にばらつきが生じるため、安定した硬化物が得られない等の問題点がある。
 特許文献4では、テトラカルボン酸チタン化合物を触媒として使用することが提案されているが、硬化速度について実用的な満足度は得られないという問題点がある。
 特許文献5では、第4級アンモニウム塩を触媒として使用することが提案されているが、施工時に充分な硬化速度が得られないという問題点がある。
 そこで、安全性が高く(毒性、環境汚染性が低く)、実用的な硬化速度を有する硬化触媒の開発が望まれていた。
 前記従来技術に鑑みて、本発明は、安全性が高く、実用的な硬化速度を有する硬化触媒を提供することを目的とする。
 本発明によれば、反応性加水分解性ケイ素含有基を有する重合体[A]の硬化に用いる硬化触媒[B]であって、
 前記硬化触媒[B]は、チタン化合物[B1]とアンモニウムヒドロキシド[B2]の複合体[C]を含有し、
 前記チタン化合物[B1]は、化学式(1)で表され、
 前記アンモニウムヒドロキシド[B2]は、化学式(2)で表される、硬化触媒[B]が提供される。
 本発明者は鋭意検討を行ったところ、チタン化合物[B1]とアンモニウムヒドロキシド[B2]の複合体[C]を含有する硬化触媒[B]を用いた場合には、重合体[A]の硬化速度が大幅に高まることを見出し、本発明の完成に到った。この触媒は、錫を含まないので、安全性が高い。また、廉価に製造が可能である。さらに、複合体[C]は、結晶析出されにくいので、硬化触媒[B]は、貯蔵安定性に優れている。
 以下、本発明を詳細に説明する。
 本発明の硬化触媒[B]は、反応性加水分解性ケイ素含有基を有する重合体[A]の硬化に用いられる。重合体[A]は、室温で液状のものが好ましい。
1.重合体[A]
 重合体[A]は、反応性加水分解性ケイ素含有基を、分子末端または側鎖に1分子当たり少なくとも1個有する。反応性加水分解性ケイ素含有基は、重合体[A]分子の末端に存在していても、側鎖に存在していてもよく、さらに末端と側鎖の両方に存在していてもよい。反応性加水分解性ケイ素含有基は、重合体[A]の1分子当たり少なくとも1個あればよいが、硬化速度、硬化物性の点からは、1分子当たり平均して1.5個以上あるのが好ましい。反応性加水分解性ケイ素含有基を前記主鎖重合体に結合させる方法としては公知の方法が採用できる。
 反応性加水分解性ケイ素含有基は、加水分解性基(例:ハロゲン、アルコキシ、アルケニルオキシ、アシロキシ、アミノ、アミノオキシ、オキシム、アミド)又は水酸基からなる反応性基と結合したケイ素原子を有する基であり、湿気や架橋剤の存在下、必要に応じて触媒などを使用することにより縮合反応を起こす性質を有する。具体的には、ハロゲン化シリル基、アルコキシシリル基、アルケニルオキシシリル基、アシロキシシリル基、アミノシリル基、アミノオキシシリル基、オキシムシリル基、アミドシリル基などが挙げられる。
 ここで、1つのケイ素原子に結合した反応性加水分解性基の数は1~3の範囲から選択される。また、1つのケイ素原子に結合した反応性加水分解性基は1種であってもよく、複数種であってもよい。さらに反応性加水分解性基と非反応性加水分解性基が1つのケイ素原子に結合していてもよく、加水分解性基と水酸基が1つのケイ素原子に結合していてもよい。反応性加水分解性ケイ素含有基としては、取り扱いが容易である点で、特にアルコキシシリル基(モノアルコキシシリル基、ジアルコキシシリル基、トリアルコキシシリル基を含む)が好ましい。
 また上記のアルコキシシリル基のうち、トリアルコキシシリル基は、活性が高く良好な硬化性が得られること、また、得られる硬化物の復元性、耐久性、耐クリープ性に優れることから好ましい。一方、ジアルコキシシリル基、モノアルコキシシリル基は、貯蔵安定性に優れ、また、得られる硬化物が高伸び、高強度であることから好ましい。
 反応性加水分解性ケイ素含有基がジアルコキシシリル基である重合体[A]と、トリアルコキシシリル基である重合体[A]を併用すると、硬化物の物性と硬化性とのバランスが取れ好ましい。
 重合体[A]としては、有機重合体[A1]、オルガノポリシロキサン[A2]が例示される。
(有機重合体[A1])
 本発明に用いる有機重合体[A1]の主鎖としては炭素原子を有するもの、例えば、アルキレンオキシド重合体、ポリエステル重合体、エーテル・エステルブロック共重合体、エチレン性不飽和化合物の重合体、ジエン系化合物の重合体などが挙げられる。
 前記アルキレンオキシド重合体としては、
〔CHCHO〕
〔CH(CH)CHO〕
〔CH(C)CHO〕
〔CHCHCHCHO〕
などの繰り返し単位の1種または2種以上を有するものが例示される。ここで、nは同一又は異なって2以上の整数である。これらアルキレンオキシド重合体は単独で用いてもよく、2種以上を併用してもよい。また、上記の繰り返し単位を2種以上含む共重合体も使用できる。
 ポリエステル重合体としては、酢酸、プロピオン酸、マレイン酸、フタル酸、クエン酸、ピルビン酸、乳酸等のカルボン酸およびその無水物ならびにそれらの分子内および/または分子間エステルおよびそれらの置換体等を繰返し単位として有するものが例示される。
 エーテル・エステルブロック共重合体としては、上述したアルキレンオキシド重合体に用いられる繰り返し単位および上述したポリエステル重合体に用いられる繰り返し単位の両方を繰返し単位として有するものが例示される。
 また、エチレン性不飽和化合物及びジエン系化合物の重合体としては、エチレン、プロピレン、アクリル酸エステル、メタクリル酸エステル、酢酸ビニル、アクリロニトリル、スチレン、イソブチレン、ブタジエン、イソプレン、クロロプレンなどの単独重合体、またはこれらの2種以上の共重合体が挙げられる。より具体的にはポリブタジエン、スチレン-ブタジエン共重合体、アクリロニトリル-ブタジエン共重合体、エチレン-ブタジエン共重合体、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体、エチレン-(メタ)アクリル酸エステル共重合体、ポリイソプレン、スチレン-イソプレン共重合体、イソブチレン-イソプレン共重合体、ポリクロロプレン、スチレン-クロロプレン共重合体、アクリロニトリル-クロロプレン共重合体、ポリイソブチレン、ポリアクリル酸エステル、ポリメタクリル酸エステルなどが挙げられる。これらは単独で用いてもよく、あるいは2種類以上を併用してもよい。
 有機重合体[A1]としては、分子内に含窒素特性基等の極性基を有する有機重合体を用いることもできる。上記含窒素特性基の具体例としては(チオ)ウレタン基,アロファネート基,その他のN-置換ウレタン基,N-置換アロファネート基等の(チオ)ウレタン基由来の結合基、(チオ)ウレア基,ビウレット基,それ以外のN-置換ウレア基,N,N'-置換ウレア基、N-置換ビウレット基,N,N'-置換ビウレット基等の(チオ)ウレア基由来の結合基、アミド基、N-置換アミド基等のアミド基由来の結合基、イミノ基由来の結合基に代表される含窒素特性基や、(チオ)エステル基、(チオ)エーテル基等が挙げられるが、これらに限定されるわけではない。これらのなかでは、硬化性の高さから含窒素特性基が好ましく、合成の容易さから、(チオ)ウレタン基由来の結合基、(チオ)ウレア由来の結合基がより好ましい。また、該含窒素特性基は、上記有機重合体[A1]中に1個だけ含まれていてもよく、さらに1種又は2種以上の含窒素特性基が複数含まれていてもよい。ここで「(チオ)」及び「N-置換」の表記は上記と同様である。
 有機重合体[A1]中に上記含窒素特性基等の極性基が含まれると、硬化物の強靱性が向上するうえ、硬化性及び接着強さが高まる。特に、上記架橋性ケイ素基が含窒素特性基等の極性基を介して主鎖に連結されている場合、より硬化性が高まる。その理由としては、該含窒素特性基の極性基同士が、水素結合等の相互作用により強く引き合うことが挙げられる。該含窒素特性基の極性基同士が強く引き合うことにより、硬化性樹脂の分子同士も強く結びつく(ドメイン形成する)ことで硬化物に強靱性が発現すると考えられるのである。また、上記架橋性ケイ素基が含窒素特性基等の極性基を介して主鎖に連結されている場合、該含窒素特性基同士ドメイン形成に際し、それに伴って該架橋性ケイ素基同士も近接することによって、該架橋性ケイ素基同士の接触確率も向上し、さらに、該含窒素特性基中の極性基による触媒硬化によって該架橋性ケイ素基同士の縮合反応性が向上することが考えられる。
 このような有機重合体[A1](変成シリコーン系ポリマー)は、例えば、特公昭61-18569号公報に記載されている方法等の公知の方法によって製造することができるか、或いは市販されている。市販品としては、例えば、株式会社 カネカ製のカネカMSポリマーシリーズ(MSポリマーS203、MSポリマーS303、MSポリマーS903、MSポリマーS911、MSポリマーSAX520等)、サイリルシリーズ(サイリルポリマーSAT200、サイリルポリマーMA430、サイリルポリマーMAX447等)、MAシリーズ、SAシリーズ、ORシリーズ;旭硝子株式会社製のESシリーズ(ES-GX3440ST等),ESGXシリーズ等、が例示される。
 本発明で用いる有機重合体[A1]の数平均分子量は、特に制限はないが、過度に高分子のものは高粘度であり、硬化性組成物とした場合、使用上困難となる為、30000以下が望ましい。このような有機重合体は、公知の方法によって製造することができるが、上記した株式会社カネカ製のカネカMSポリマー等の市販品を使用してもよい。
(オルガノポリシロキサン[A2])
 本発明に用いるオルガノポリシロキサン[A2]は、主鎖がSi-Oで表されるシロキサン結合で構成されたものであり、さらにシロキサン結合を構成するケイ素原子に有機基が結合している。このような有機基としては、具体的にはメチル、エチル、プロピル、ブチル等のアルキル基;シクロヘキシル等のシクロアルキル基;ビニル、イソプロペニル、置換ビニル等のアルケニル基;アリル基、クロチル、メタリル等の置換アリル基;フェニル、トルイル、キシリル等のアリール基;ベンジル、フェニルエチル等のアラルキル基;及びこれら有機基の水素原子の全部もしくは一部がハロゲン原子で置換された基、例えばクロロメチル基、3,3,3-トリフルオロプロピル基などが挙げられる。
 オルガノポリシロキサン[A2]としては、
(-Si(R)-O-)
(式中、Rは同一又は異なって有機基、mは2以上の整数を示す。)
で表される繰り返し単位を有するものが例示される。具体例としては、
(-Si(CH-O-)
(-Si(C-O-)
(-Si(Ph)-O-)
(-Si(-CH=CH-O-)
などの繰り返し単位の1種または2種以上を有するものが例示される。ここでmは同一又は異なって2以上の整数である。オルガノポリシロキサン[A2]は単独の主鎖から構成されていてもよく、あるいは2種以上の主鎖から構成されていてもよい。
 オルガノポリシロキサンは直鎖状であっても、3官能形(R'SiO1.5)または4官能形(SiO)を含む分岐状のものであってもよい。また、硬化物の物性や用途により、必要に応じて2官能形(R'SiO)や1官能形(R'SiO0.5)を組み合わせてもよい(ここで、R'は有機基)。さらに加水分解性ケイ素含有基は分子末端、分子鎖の途中の何れに結合していてもよい。
 なお、オルガノポリシロキサンは一般的に平均組成式としてRSiO4-a/2で示される(例えば、特開2005-194399号や特開平8-151521号公報等)。上記の表記はこれに従った。
 本発明で用いるオルガノポリシロキサン[A2]の粘度は特に制約はないが過度に高粘度のものは、作業性が低下したり、得られる硬化物の物性が損なわれたりするおそれがあるので、25℃における粘度が0.025~100Pa・sの範囲にあるのが望ましい。このようなオルガノポリシロキサンは、公知の方法によって製造することができるが、GE東芝シリコーン(株)製のトスシールシリーズ、信越化学工業(株)製のシーラントシリーズ、東レダウコーニング(株)製のSHシリーズ等の市販品を使用することができる。
2.硬化触媒[B]
 硬化触媒[B]は、チタン化合物[B1]とアンモニウムヒドロキシド[B2]の複合体[C]を含有する。複合体[C]は、チタン化合物[B1]とアンモニウムヒドロキシド[B2]を反応させることによって得ることができる反応生成物である。
<チタン化合物[B1]>
チタン化合物[B1]は、化学式(1)で表される。
  (R-O)Ti-A4-n   (1)
(式中Rは、置換又は非置換の炭化水素基、nは1~4であり、Aはβジケトン基であり、且つ、Rの少なくとも1つは、炭素数8以上のアルキル基、または、化学式(3)で表されるオキシアルキレン基を表す)
 R-(O-R-  (3)
(式中Rは炭素原子数1~10の置換または非置換の炭化水素基、Rは炭素原子数2~10の置換または非置換の炭化水素基、mは1~10の整数を表す)
 nは、例えば、1、1.5、2、2.5、3、3.5、4であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
 Rの少なくとも1つは、炭素数8以上のアルキル基、または、オキシアルキレン基である。Rの少なくとも1つは、炭素数8以上のアルキル基とオキシアルキレン基のどちらでもない炭化水素基(その他炭化水素基)であることが好ましい。その他炭化水素基の炭素数は、例えば1~7であり、1~5が好ましい。この炭素数は、具体的には例えば、1、2、3、4、5、6、7であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。その他炭化水素基は、アルキル基であることが好ましく、分岐アルキル基であることがさらに好ましい。その他炭化水素基の数は、0、1,2,3又は4である。
 炭素数8以上アルキル基は、例えば、オクチル、2-エチルヘキシル、ノニル、デシル等が好ましい。このアルキル基の炭素数は、例えば8~20であり、8~15が好ましい。この炭素数は、具体的には例えば、8、9、10、11、12、13、14、15、16、17、18、19、20であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
 化学式(3)で表されるオキシアルキレン基の主鎖の原子数は、例えば、4~20であり、6~14がさらに好ましい。この原子数は、具体的には例えば、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
 式(3)中、Rは炭素原子数1~10の置換または非置換の炭化水素基であり、1~6が好ましく、1~4がより好ましい。Rの炭化水素基は、アルキル基が好ましい。
 式(3)中、Rは炭素原子数2~10の置換または非置換の炭化水素基であり、2~6が好ましく、2~3がより好ましい。式中、mは1~10の整数であり、1~6が好ましく、1~2がより好ましい。Rの炭化水素基は、アルキレン基が好ましい。
 前記オキシアルキレン基としては、例えば、以下に示すアルコールから末端の水酸基を除いて得られる基が挙げられる。このようなアルコールとしては、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノペンチルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノt-ブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノペンチルエーテル、ジエチレングリコールモノイソプロピルエーテル、ジエチレングリコールモノt-ブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノペンチルエーテル、プロピレングリコールモノイソプロピルエーテル及びプロピレングリコールモノt-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノブチルエーテル、ジプロピレングリコールモノペンチルエーテル、ジプロピレングリコールモノイソプロピルエーテル及びジプロピレングリコールモノt-ブチルエーテル等が挙げられる。例えば、アルコールがブチルカルビトール(別名:2-(2-ブトキシエトキシ)エタノール)の場合、前記オキシアルキレン基は、2-(2-ブトキシエトキシ)エチルとなり、アルコールがブチルセロソルブ(別名:2-ブトキシエタノール)の場合、オキシアルキレン基は、2-ブトキシエチルとなる。
 その他のRで示される置換又は非置換の炭化水素基は、置換又は非置換の、脂肪族又は芳香族の炭化水素基であり、脂肪族炭化水素基が好ましい。脂肪族炭化水素基としては、飽和又は不飽和炭化水素基が挙げられる。飽和炭化水素基としては、直鎖又は分岐アルキル基が好ましい。炭化水素基の炭素数は、1~10であり、1~6が好ましく、1~4がさらに好ましい。この炭素数は、具体的には例えば、1、2、3、4、5、6、7、8、9、10であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。炭化水素基としては、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、2-エチルヘキシル、ノニル、デシルが挙げられる。
 Aで示されるβジケトン基としては、2,4-ペンタンジオン、2,4-ヘキサンジオン、2,4-ペンタデカンジオン、2,2,6,6-テトラメチル-3,5-ヘプタンジオン、1-フェニル-1,3-ブタンジオン、1-(4-メトキシフェニル)-1,3-ブタンジオン等の1-アリール-1,3-ブタンジオン、1,3-ジフェニル-1,3-プロパンジオン、1,3-ビス(2-ピリジル)-1,3-プロパンジオン、1,3-ビス(4-メトキシフェニル)-1,3-プロパンジオン等の1,3-ジアリール-1,3-プロパンジオン、3-ベンジル-2,4-ペンタンジオン等のジケトン類、メチルアセトアセテート、エチルアセトアセテート、ブチルアセトアセテート、t-ブチルアセトアセテート、エチル-3-オキソヘキサノエート等のケトエステル類、N,N-ジメチルアセトアセタミド、N,N-ジエチルアセトアセタミド、アセトアセトアニリド等のケトアミド類、ジメチルマロネート、ジエチルマロネート、ジフェニルマロネート等のマロン酸エステル類、N,N,N',N'-テトラメチルマロンアミド、N,N,N',N'-テトラエチルマロンアミド等のマロン酸アミド類が挙げられ、2,4-ペンタンジオン、1-アリール-1,3-ブタンジオン、1,3-ジアリール-1,3-プロパンジオン等のジケトン類が特に好ましい
 化学式(1)で表されるチタン化合物のうち、触媒活性、化合物の安定性、取扱い性の点から、テトライソプロポキシチタン、トリイソプロポキシオクトキシチタン、トリイソプロポキシ2-(2-ブトキシエトキシ)エトキシチタン、トリイソプロポキシ2-ブトキシエトキシチタン等が好ましい。
 上記のチタン化合物[B1]は、単独で使用してもよいし、2種以上を併用してもよい。
<アンモニウムヒドロキシド[B2]>
 アンモニウムヒドロキシド[B2]は、下記式で表される。
Figure JPOXMLDOC01-appb-C000003
(式中、R、R、R、Rは、相互に同一または異なって、炭素原子数1~8の置換又は非置換の炭化水素基を表す。Xは、水酸基を表す。)
 R、R、R、Rで示される置換又は非置換の炭化水素基は、置換又は非置換の、脂肪族又は芳香族の炭化水素基であり、脂肪族炭化水素基が好ましい。脂肪族炭化水素基としては、直鎖又は分岐アルキル基が好ましい。炭化水素基の炭素数は、1~8であり、1~6が好ましく、1~4がさらに好ましい。この炭素数は、具体的には例えば、1、2、3、4、5、6、7、8であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。脂肪族炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基などの飽和炭化水素基、ビニル基、アリル基、プレニル基、クロチル基、シクロペンタジエニル基などの不飽和炭化水素基が挙げられ、メチル基、エチル基、ブチル基が好ましい。
 前記芳香族炭化水素基としては、フェニル基、トリル基、ベンジル基などが挙げられる。
 炭化水素基の置換基としては、メトキシ基、エトキシ基、ヒドロキシ基、アセトキシ基などが挙げられる。置換されている、脂肪族又は芳香族の炭化水素基としては、メトキシメチル基、メトキシエチル基、エトキシメチル基、エトキシエチル基などのアルコキシアルキル基、ヒドロキシメチル基、ヒドロキシエチル基、3-ヒドロキシプロピル基などのヒドロキシアルキル基、2-アセトキシエチル基などが挙げられる。
 化学式(2)で表されるアンモニウムヒドロキシドの具体例としては、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド、ベンジルトリエチルアンモニウムヒドロキシド、トリメチルフェニルアンモニウムヒドロキシド、トリス(2-ヒドロキシエチル)メチルアンモニウムヒドロキシドなどが挙げられ、特にテトラブチルアンモニウムヒドロキシドが好ましい。
<チタン化合物[B1]とアンモニウムヒドロキシド[B2]の反応>
 チタン化合物[B1]とアンモニウムヒドロキシド[B2]の複合体[C]は、例えば透明液体であり、両者の混合物を例えば40~100℃で反応させることによって得ることができる。この温度は、具体的には例えば、40、50、60、70、80、90、100℃であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。混合物中での、アンモニウムヒドロキシド[B2]に対するチタン化合物[B1]のモル比は、例えば0.1~100であり、0.1、0.5、1、2、3、4、5、6、7、8、9、10、20、50、100であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
<複合体[C]以外の複合体>
 硬化触媒[B]は、チタン化合物[B1]とアンモニウムヒドロキシド[B2]の複合体[C]以外に、チタン化合物[B1]以外のチタン化合物[Ba]とアンモニウムヒドロキシド[B2]の複合体[Ca]を含んでもよい。
 チタン化合物[Ba]としては、化学式(4)で表されるものが挙げられる。
  (R-O)Ti-A4-n   (4)
(式中R、置換又は非置換の炭化水素基、nは1~4であり、Aはβジケトン基であり、Rは、炭素数8以上のアルキル基と、化学式(3)で表されるオキシアルキレン基の何れでもない。)
 Rの炭素数は、7以下であることが好ましく、5以下であることがさらに好ましい。Rは、アルキル基であることが好ましく、分岐アルキル基であることがさらに好ましい。化学式(4)についてのその他の説明は、化学式(1)での説明と同様である。
 チタン化合物[Ba]としては、テトラメトキシチタン、トリメトキシエトキシチタン、トリメトキシイソプロポキシチタン、トリメトキシブトキシチタン、ジメトキシジエトキシチタン、ジメトキシジイソプロポキシチタン、ジメトキシジブトキシチタン、メトキシトリエトキシチタン、メトキシトリイソプロポキシチタン、メトキシトリブトキシチタン、テトラエトキシチタン、トリエトキシイソプロポキシチタン、トリエトキシブトキシチタン、ジエトキシジイソプロポキシチタン、ジエトキシジブトキシチタン、エトキシトリイソプロポキシチタン、エトキシトリブトキシチタン、テトライソプロポキシチタン、トリイソプロポキシブトキシチタン、ジイソプロポキシジブトキシチタン、テトラブトキシチタン、ジイソプロポキシチタンビス(アセチルアセトナート)などがあげられ、触媒活性、化合物の安定性、取扱い性の点から、テトライソプロポキシチタンが更に好ましい。
 複合体[C]は、複合体[Ca]に比べて、結晶析出しにくいという特徴を有する一方で、触媒性能が落ちる場合がある。このため、触媒性能に優れた複合体[Ca]と、複合体[C]を併用することによって、結晶析出しにくく、且つ触媒性能に優れる硬化触媒[B]を得ることができる。
 複合体[C]と複合体[Ca]の合計に対する複合体[C]の割合は、例えば10~90mol%であり、30~80mol%が好ましい。この割合は、具体的には例えば、10、20、30、40、50、60、70、80、90mol%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
 複合体[C]と複合体[Ca]を含む硬化触媒[B]は、チタン化合物[B1]及びチタン化合物[Ba]をそれぞれアンモニウムヒドロキシド[B2]と反応させることによって得ることができる。チタン化合物[B1]とチタン化合物[Ba]の合計に対するチタン化合物[B1]の割合は、例えば10~90mol%であり、30~80mol%が好ましい。この割合は、具体的には例えば、10、20、30、40、50、60、70、80、90mol%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
 チタン化合物[B1]は、アルコキシ交換反応によって、チタン化合物[Ba]の配位子の少なくとも1つを炭素数8以上のアルキル基又はオキシアルキレン基に置換することによって得ることができる。
3.湿気硬化型組成物
 本発明の湿気硬化型組成物は、上記の硬化触媒[B]と重合体[A]を含み、必要に応じ後述する他の添加剤を含めても良い。本発明の湿気硬化型組成物の調製は、乾燥条件下で両者を混合すればよく、その混合形態は特に限定はない。通常、温度15~30℃程度、60%RH以下の雰囲気下で混合すればよい。
 本発明の湿気硬化型組成物中において、硬化触媒[B]の含有量は、重合体[A]100重量部に対して0.1~20重量部、さらに0.5~10重量部、特に3~8重量部が好ましい。硬化触媒[B]の含有量が0.1重量部未満では硬化性能が不十分であり、20重量部を超えると硬化後の硬化物の復元率、耐候性などの物性、貯蔵中の安定性が悪くなることがある。硬化触媒[B]の含有量は、具体的には例えば、重合体[A]100重量部に対して、0.1、0.5、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20質量部であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
 本発明の湿気硬化型組成物には、さらに充填剤[C]を配合しても良い。充填剤としては、例えば、炭酸カルシウム、カオリン、タルク、ヒュームドシリカ、沈降性シリカ、無水ケイ酸、含水ケイ酸、クレー、焼成クレー、ガラス、ベントナイト、有機ベントナイト、シラスバーン、ガラス繊維、石綿、ガラスフィラメント、粉砕石英、珪藻土、ケイ酸アルミニウム、水酸化アルミニウム、酸化亜鉛、酸化マグネシウム、二酸化チタン等があげられる。充填剤は、単独で用いてもよく、2種以上を併用してもよい。充填剤を加えることにより、湿気硬化型組成物のハンドリングが良くなる。また、硬化物のゴム補強剤としても働く。最大のメリットは、増量剤として添加することで使用する樹脂の量を減らす事が出来るためコストダウンが出来ることである。
 中でも、硬化後の硬化性組成物の優れた表面ノンタック、50%モジュラス、作業性および耐候性等を維持する点から、炭酸カルシウム、酸化チタンが好ましい。炭酸カルシウムを使用する場合は、その割合を、重合体[A]100重量部に対して、1~200重量部とするのが好ましく、50~200質量部とするのがさらに好ましい。上記範囲であると、硬化後の特性を損なわない。
 本発明の湿気硬化型組成物には、さらに他の硬化触媒、硬化促進剤、着色剤、可塑剤、硬化遅延剤、タレ防止剤、老化防止剤、溶剤等、硬化性組成物に通常添加される添加剤を加えてもよい。
 他の硬化触媒としては、例えば、ジブチルスズジラウレート、ジブチルスズビス(アセチルアセトネート)等の有機スズ化合物、アルミニウムトリス(アセチルアセトナート)、アルミニウムトリス(エチルアセトアセテート)等の有機アルミニウム化合物、ジルコニウムテトラ(アセチルアセトナート)、ジルコニウムテトラブチレート等の有機ジルコニウム化合物、等の金属硬化触媒、1-アミノ-2-エチルヘキサン、3-(トリメトキシシリル)プロピルアミン、N-2-アミノエチル-3-アミノプロピルトリメトキシシラン、N,N,N',N'-テトラメチル-N''-[3-(トリメトキシシリル)プロピル]グアニジン、1,5,7-トリアザビシクロ-[4,4,0]デカ-5-エン、3-トリエトキシシリル-N-(1,3-ジメチルブチリデン)プロピルアミン等のアミン化合物等が挙げられる。
 硬化促進剤としては、例えば、公知の種々のアミノ基置換アルコキシシラン化合物、またはその縮合物を使用することが出来る。具体的に例示すると、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-(トリメトキシシリルプロピル)エチレンジアミン、δ―アミノブチル(メチル)ジエトキシシラン、N,N-ビス(トリメトキシシリルプロピル)エチレンジアミンおよび、これらの部分加水分解等があげられ、これらは基材への密着性を向上させる効果もある。
 着色剤としては、具体的には、酸化鉄、カーボンブラック、フタロシアニンブルー、フタロシアニングリーン等が使用される。
 可塑剤としては、具体的には、ジブチルフタレート、ジオクチルフタレート、ブチルベンジルフタレート等のフタル酸エステル類;アジピン酸ジオクチル、コハク酸ジオクチル、コハク酸ジイソデシル、オレイン酸ブチル等の脂肪酸カルボン酸エステル類;ペンタエリスリトールエステル類等のグリコールエステル類;リン酸トリオクチル、リン酸トリクレジル等のリン酸エステル類;エポキシ化大豆油、エポキシステアリン酸ベンジル等のエポキシ可塑剤;塩素化パラフィン等が使用される。
 タレ防止剤としては、具体的には、水添ヒマシ油、無水ケイ酸、有機ベントナイト、コロイド状シリカ等が使用される。
 また、他の添加剤としては、フェノール樹脂、エポキシ樹脂等の接着付与剤、紫外線吸収剤、ラジカル連鎖禁止剤、過酸化物分解剤、各種の老化防止剤等が使用される。
 本発明の硬化型組成物は、室温で十分に安定であるため貯蔵性に優れ、かつ、湿気に接触すると配合された硬化触媒[B]により硬化反応が自発的に進行する。また、スナップタイム(半ゲル化し流動性が無くなるまでの時間)やタックフリータイム(表面タックの無くなるまでの時間)も短く作業性に優れる。
 上記の特性から、本発明の硬化型組成物は1液型シーリング材として用いることができる。具体的には、建築物、船舶、自動車等の車両のシーリング材、接着剤、密封剤、防水用の目止め材等の用途に好適に用いられる。
 次に実施例をあげて本発明を具体的に説明するが、本発明の範囲はこれによって限定されるものではない。
<製造例1(複合体1)>
 100mLナスフラスコに、テトライソプロポキシチタン:17.05g(0.06mol)、1-オクタノール:7.97g(0.06mol)の順に仕込み、窒素置換したのち、均一になるよう10分間攪拌した。その後、80℃のウォーターバスで加熱し、減圧濃縮(最終減圧度50mmHg)してイソプロパノール3.61g(0.06mol)を留出させて100mLナスフラスコ内に無色液体21.12gを得た。
 そこに37%テトラブチルアンモニウムヒドロキシドメタノール溶液14.0g(0.02mol)を量り込み、攪拌機にて充分に混合した。75℃のウォーターバスで加熱し、減圧濃縮(最終減圧度16mmHg)でイソプロパノールおよびメタノールを留去させて、黄色液体のテトラブチルアンモニウム塩(複合体1)を22.56g得た。
 複合体1のNMR測定を行ったところ、以下の結果が得られた。
1H NMR (400 MHz CDCl3): 3.42-3.37 (m, 8H), 1.73-1.65 (m, 8H), 1.47 (q, J = 7.4 Hz, 8H), 1.01 (t, J = 7.4 Hz, 12H), δ=0 (TMS)
 また、TBAHのNMR測定を行ったところ、以下の結果が得られた。
1H NMR (400 MHz CDCl3): δ=3.35-3.31 (m, 8H), δ=1.70-1.64(m, 8H), δ=1.46 (q, 7.4Hz,8H), δ=1.02 (t, 7.4Hz, 12H), δ=0 (TMS)
 TBAHの3.35-3.31の化学シフト、及び複合体1の3.42-3.37の化学シフトは、それぞれ、TBAHのブチル基のα水素原子(N-CH2の水素原子)に帰属する。このため、複合体1では、TBAHと比較して、α水素原子の化学シフトが+0.07ppmシフトしていることが確認された。
<製造例2(複合体2)>
 100mLナスフラスコに、テトライソプロポキシチタン:17.04g(0.06mol)、1-オクタノール:4.40g(0.034mol)の順に仕込み、窒素置換したのち、均一になるよう10分間攪拌した。その後、80℃のウォーターバスで加熱し、減圧濃縮(最終減圧度50mmHg)してイソプロパノール2.04g(0.034mol)を留出させて100mLナスフラスコ内に無色液体19.06gを得た。
 そこに37%テトラブチルアンモニウムヒドロキシドメタノール溶液14.0g(0.02mol)を量り込み、攪拌機にて充分に混合した。75℃のウォーターバスで加熱し、減圧濃縮(最終減圧度14mmHg)でイソプロパノールおよびメタノールを留去させて、黄色液体のテトラブチルアンモニウム塩(複合体2)を19.95g得た。
 複合体2のNMR測定を行ったところ、以下の結果が得られた。
1H NMR (400 MHz CDCl3): 3.41-3.35 (m, 8H), 1.78-1.65 (m, 8H), 1.47 (td, J = 14.8, 7.3 Hz, 8H), 1.01 (t, J = 7.4 Hz, 12H), δ=0 (TMS)
 TBAHの3.35-3.31の化学シフト、及び複合体2の3.41-3.35の化学シフトは、それぞれ、TBAHのブチル基のα水素原子(N-CH2の水素原子)に帰属する。このため、複合体2では、TBAHと比較して、α水素原子の化学シフトが+0.06ppmシフトしていることが確認された。
<製造例3(複合体3)>
 100mLナスフラスコに、テトライソプロポキシチタン:8.52g(0.03mol)、1-オクタノール:2.20g(0.017mol)の順に仕込み、窒素置換したのち、均一になるよう10分間攪拌した。その後、80℃のウォーターバスで加熱し、減圧濃縮(最終減圧度50mmHg)してイソプロパノール1.02g(0.017mol)を留出させて100mLナスフラスコ内に無色液体9.57gを得た。
 そこに37%テトラブチルアンモニウムヒドロキシドメタノール溶液10.51g(0.015mol)を量り込み、攪拌機にて充分に混合した。75℃のウォーターバスで加熱し、減圧濃縮(最終減圧度15mmHg)でイソプロパノールおよびメタノールを留去させて、黄色液体のテトラブチルアンモニウム塩(複合体3)を10.62g得た。
 複合体3のNMR測定を行ったところ、以下の結果が得られた。
1H NMR (400 MHz CDCl3): δ=3.42-3.38 (m, 8H), 1.72-1.68 (m, 8H), 1.50-1.44 (m, 8H), 1.01 (t, J = 7.4 Hz, 12H), δ=0 (TMS)
 複合体3の3.42-3.38の化学シフトは、TBAHのブチル基のα水素原子(N-CH2の水素原子)に帰属する。複合体3では、TBAHと比較して、α水素原子の化学シフトが+0.07ppmシフトしていることが確認された。
<製造例4(複合体4)>
 100mLナスフラスコに、テトライソプロポキシチタン:6.00g(0.021mol)、1-オクタノール:2.20g(0.017mol)の順に仕込み、窒素置換したのち、均一になるよう10分間攪拌した。その後、80℃のウォーターバスで加熱し、減圧濃縮(最終減圧度50mmHg)してイソプロパノール1.02g(0.017mol)を留出させて100mLナスフラスコ内に無色液体6.86gを得た。
 そこに37%テトラブチルアンモニウムヒドロキシドメタノール溶液14.80g(0.021mol)を量り込み、攪拌機にて充分に混合した。75℃のウォーターバスで加熱し、減圧濃縮(最終減圧度8mmHg)でイソプロパノールおよびメタノールを留去させて、黄色液体のテトラブチルアンモニウム塩(複合体4)を9.46g得た。
 複合体4のNMR測定を行ったところ、以下の結果が得られた。
1H NMR (400 MHz CDCl3): δ=3.42-3.38 (m, 8H), 1.71-1.68 (m, 8H), 1.50-1.44 (m, 8H), 1.01 (t, J = 7.4 Hz, 12H), δ=0 (TMS)
 複合体4の3.42-3.38の化学シフトは、TBAHのブチル基のα水素原子(N-CH2の水素原子)に帰属する。複合体4では、TBAHと比較して、α水素原子の化学シフトが+0.07ppmシフトしていることが確認された。
<製造例5(複合体5)>
 100mLナスフラスコに、テトライソプロポキシチタン:17.05g(0.06mol)、ブチルセロソルブ:7.09g(0.06mol)の順に仕込み、窒素置換したのち、均一になるよう10分間攪拌した。その後、80℃のウォーターバスで加熱し、減圧濃縮(最終減圧度50mmHg)してイソプロパノール3.61g(0.06mol)を留出させて100mLナスフラスコ内に無色液体20.54gを得た。
 そこに37%テトラブチルアンモニウムヒドロキシドメタノール溶液14.0g(0.02mol)を量り込み、攪拌機にて充分に混合した。75℃のウォーターバスで加熱し、減圧濃縮(最終減圧度17mmHg)でイソプロパノールおよびメタノールを留去させて、黄色液体のテトラブチルアンモニウム塩(複合体5)を22.08g得た。
 複合体5のNMR測定を行ったところ、以下の結果が得られた。
1H NMR (400 MHz CDCl3): 3.41-3.37 (m, 8H), 1.73-1.65 (m, 8H), 1.47 (td, J = 14.8, 7.5 Hz, 8H), 1.01 (t, J = 7.3 Hz, 12H), δ=0 (TMS)
 TBAHの3.35-3.31の化学シフト、及び複合体5の3.41-3.37の化学シフトは、それぞれ、TBAHのブチル基のα水素原子(N-CH2の水素原子)に帰属する。このため、複合体5では、TBAHと比較して、α水素原子の化学シフトが+0.06ppmシフトしていることが確認された。
<製造例6(複合体6)>
 100mLナスフラスコに、テトライソプロポキシチタン:17.05g(0.06mol)、ブチルセロソルブ:4.40g(0.037mol)の順に仕込み、窒素置換したのち、均一になるよう10分間攪拌した。その後、80℃のウォーターバスで加熱し、減圧濃縮(最終減圧度50mmHg)してイソプロパノール2.24g(0.037mol)を留出させて100mLナスフラスコ内に無色液体18.61gを得た。
 そこに37%テトラブチルアンモニウムヒドロキシドメタノール溶液14.0g(0.02mol)を量り込み、攪拌機にて充分に混合した。75℃のウォーターバスで加熱し、減圧濃縮(最終減圧度19mmHg)でイソプロパノールおよびメタノールを留去させて、黄色液体のテトラブチルアンモニウム塩(複合体6)を19.71g得た。
 複合体6のNMR測定を行ったところ、以下の結果が得られた。
1H NMR (400 MHz CDCl3): 3.41-3.37 (m, 8H), 1.71-1.67 (m, 8H), 1.47 (q, J = 7.3 Hz, 8H), 1.01 (t, J = 7.3 Hz, 12H),δ=0 (TMS)
 TBAHの3.35-3.31の化学シフト、及び複合体6の3.41-3.37の化学シフトは、それぞれ、TBAHのブチル基のα水素原子(N-CH2の水素原子)に帰属する。このため、複合体6では、TBAHと比較して、α水素原子の化学シフトが+0.06ppmシフトしていることが確認された。
<製造例7(複合体7)>
 100mLナスフラスコに、テトライソプロポキシチタン:8.52g(0.03mol)、メチルカルビトール:2.20g(0.018mol)の順に仕込み、窒素置換したのち、均一になるよう10分間攪拌した。その後、80℃のウォーターバスで加熱し、減圧濃縮(最終減圧度50mmHg)してイソプロパノール1.08g(0.018mol)を留出させて100mLナスフラスコ内に無色液体9.40gを得た。
 そこに37%テトラブチルアンモニウムヒドロキシドメタノール溶液7.0g(0.01mol)を量り込み、攪拌機にて充分に混合した。75℃のウォーターバスで加熱し、減圧濃縮(最終減圧度8mmHg)でイソプロパノールおよびメタノールを留去させて、淡黄色液体のテトラブチルアンモニウム塩(複合体7)を9.78g得た。
 複合体7のNMR測定を行ったところ、以下の結果が得られた。
1H NMR (400 MHz CDCl3): δ=3.42-3.38 (m, 8H), δ=1.74-1.66 (m, 8H), δ=1.47 (td, 7.4Hz,8H), δ=1.01 (t, 7.4Hz,12H), δ=0 (TMS)
 TBAHの3.35-3.31の化学シフト、及び複合体7の3.42-3.38の化学シフトは、それぞれ、TBAHのブチル基のα水素原子(N-CH2の水素原子)に帰属する。このため、複合体7では、TBAHと比較して、α水素原子の化学シフトが+0.07ppmシフトしていることが確認された。
<製造例8(複合体8)>
 窒素導入管を取り付けた200mL4つ口丸底フラスコに、テトライソプロポキシチタン:48.26g(0.17mol)、ブチルカルビトール:27.55g(0.17mol)の順に仕込み、油浴で加熱し内温80℃になるまで攪拌した。その後、減圧濃縮(最終減圧度12mmHg)してイソプロパノール10.2g(0.17mol)を留出させて200mL4つ口丸底フラスコ内に無色液体65.10gを得た。
 そこに35%テトラブチルアンモニウムヒドロキシドメタノール溶液41.5g(0.056mol)を量り込み、攪拌機にて充分に混合した。内温80℃になるまで加熱し、減圧濃縮(最終減圧度10mmHg)でイソプロパノールおよびメタノールを留去させて、黄色液体のテトラブチルアンモニウム塩(複合体8)を65.44g得た。
 複合体8のNMR測定を行ったところ、以下の結果が得られた。
1H NMR (400 MHz CDCl3): 3.48-3.43 (m, 5H), 3.41-3.37 (m, 8H),1.74-1.66 (m, 8H), 1.47 (td, J = 14.8, 7.4 Hz, 8H), 1.02 (t, J = 7.3 Hz, 12H), δ=0 (TMS)
 TBAHの3.35-3.31の化学シフト、及び複合体8の3.41-3.37の化学シフトは、それぞれ、TBAHのブチル基のα水素原子(N-CH2の水素原子)に帰属する。このため、複合体8では、TBAHと比較して、α水素原子の化学シフトが+0.06ppmシフトしていることが確認された。
<製造例9(複合体9)>
 窒素導入管を取り付けた200mL4つ口丸底フラスコに、テトライソプロポキシチタン:58.0g(0.20mol)、ブチルカルビトール:15.0g(0.092mol)の順に仕込み、油浴で加熱し内温80℃になるまで攪拌した。その後、減圧濃縮(最終減圧度7mmHg)してイソプロパノールを5.53g(0.092mol)留出させて200mL4つ口丸底フラスコ内に無色液体66.84gを得た。
 そこに35%テトラブチルアンモニウムヒドロキシドメタノール溶液50.0g(0.067mol)を量り込み、攪拌機にて充分に混合した。内温80℃になるまで加熱し、減圧濃縮(最終減圧度7mmHg)でイソプロパノールおよびメタノールを留去させて、黄色液体のテトラブチルアンモニウム塩(複合体9)を62.96g得た。
 複合体9のNMR測定を行ったところ、以下の結果が得られた。
1H NMR (400 MHz CDCl3): 3.42-3.37 (m, 8H), 1.73-1.65 (m, 8H), 1.61-1.41 (m, 1.5H), 1.47 (td, J = 14.8, 7.5 Hz, 8H), 1.01 (t, J = 7.4 Hz, 12H), δ=0 (TMS)
 TBAHの3.35-3.31の化学シフト、及び複合体9の3.42-3.37の化学シフトは、それぞれ、TBAHのブチル基のα水素原子(N-CH2の水素原子)に帰属する。このため、複合体9では、TBAHと比較して、α水素原子の化学シフトが+0.06ppmシフトしていることが確認された。
<製造例10(複合体10)>
 窒素導入管を取り付けた200mL4つ口丸底フラスコに、テトライソプロポキシチタン:50.0g(0.176mol)、ブチルカルビトール:57.08g(0.352mol)の順に仕込み、油浴で加熱し内温80℃になるまで攪拌した。その後、減圧濃縮(最終減圧度7mmHg)してイソプロパノール21.16g(0.352mol)を留出させて200mL4つ口丸底フラスコ内に無色液体85.92gを得た。
 そこに35%テトラブチルアンモニウムヒドロキシドメタノール溶液43.5g(0.059mol)を量り込み、攪拌機にて充分に混合した。内温80℃になるまで加熱し、減圧濃縮(最終減圧度7mmHg)でイソプロパノールおよびメタノールを留去させて、黄色液体のテトラブチルアンモニウム塩(複合体10)を91.31g得た。
 複合体10のNMR測定を行ったところ、以下の結果が得られた。
1H NMR (400 MHz CDCl3): 3.41-3.37 (m, 8H),1.74-1.66 (m, 8H), 1.47 (td, J = 14.8, 7.4 Hz, 8H), 1.02 (t, J = 7.3 Hz, 12H), δ=0 (TMS)
 TBAHの3.35-3.31の化学シフト、及び複合体10の3.41-3.37の化学シフトは、それぞれ、TBAHのブチル基のα水素原子(N-CH2の水素原子)に帰属する。このため、複合体10では、TBAHと比較して、α水素原子の化学シフトが+0.06ppmシフトしていることが確認された。
<製造例11(複合体11)>
 窒素導入管を取り付けた200mL4つ口丸底フラスコに、テトライソプロポキシチタン:48.26g(0.17mol)、ブチルカルビトール:27.55g(0.17mol)の順に仕込み、油浴で加熱し内温80℃になるまで攪拌した。その後、減圧濃縮(最終減圧度12mmHg)してイソプロパノール10.22g(0.17mol)を留出させて200mL4つ口丸底フラスコ内に無色液体65.10gを得た。
 そこに35%テトラブチルアンモニウムヒドロキシドメタノール溶液50.0g(0.067mol)を量り込み、攪拌機にて充分に混合した。内温80℃になるまで加熱し、減圧濃縮(最終減圧度10mmHg)でイソプロパノールおよびメタノールを留去させて、黄色液体のテトラブチルアンモニウム塩(複合体11)を67.15g得た。
 複合体11のNMR測定を行ったところ、以下の結果が得られた。
1H NMR (400 MHz CDCl3): 3.41-3.37 (m, 8H), 1.74-1.66 (m, 8H), 1.47 (td, J = 14.8, 7.4 Hz, 8H), 1.02 (t, J = 7.3 Hz, 12H), δ=0 (TMS)
 TBAHの3.35-3.31の化学シフト、及び複合体11の3.41-3.37の化学シフトは、それぞれ、TBAHのブチル基のα水素原子(N-CH2の水素原子)に帰属する。このため、複合体11では、TBAHと比較して、α水素原子の化学シフトが+0.06ppmシフトしていることが確認された。
<製造例12(複合体12)>
 窒素導入管を取り付けた200mL4つ口丸底フラスコに、テトライソプロポキシチタン:38.7g(0.136mol)、ブチルカルビトール:10.0g(0.062mol)の順に仕込み、油浴で加熱し内温80℃になるまで攪拌した。その後、減圧濃縮(最終減圧度7mmHg)してイソプロパノール3.73g(0.062mol)を留出させて200mL4つ口丸底フラスコ内に無色液体44.56gを得た。
 そこに35%テトラブチルアンモニウムヒドロキシドメタノール溶液40.0g(0.054mol)を量り込み、攪拌機にて充分に混合した。内温80℃になるまで加熱し、減圧濃縮(最終減圧度16mmHg)でイソプロパノールおよびメタノールを留去させて、黄色液体のテトラブチルアンモニウム塩(複合体12)を44.12g得た。
 複合体12のNMR測定を行ったところ、以下の結果が得られた。
1H NMR (400 MHz CDCl3): 3.41-3.37 (m, 8H), 1.73-1.65 (m, 8H), 1.47 (q, J = 7.3 Hz, 8H), 1.01 (t, J = 7.3 Hz, 12H), δ=0 (TMS)
 TBAHの3.35-3.31の化学シフト、及び複合体12の3.41-3.37の化学シフトは、それぞれ、TBAHのブチル基のα水素原子(N-CH2の水素原子)に帰属する。このため、複合体12では、TBAHと比較して、α水素原子の化学シフトが+0.06ppmシフトしていることが確認された。
<製造例13(複合体13)>
 窒素導入管を取り付けた200mL4つ口丸底フラスコに、テトライソプロポキシチタン:48.26g(0.17mol)、ブチルカルビトール:27.55g(0.17mol)の順に仕込み、油浴で加熱し内温80℃になるまで攪拌した。その後、減圧濃縮(最終減圧度12mmHg)してイソプロパノール10.22g(0.17mol)を留出させて200mL4つ口丸底フラスコ内に無色液体65.10gを得た。
 そこに35%テトラブチルアンモニウムヒドロキシドメタノール溶液62.5g(0.084mol)を量り込み、攪拌機にて充分に混合した。内温80℃になるまで加熱し、減圧濃縮(最終減圧度10mmHg)でイソプロパノールおよびメタノールを留去させて、黄色液体のテトラブチルアンモニウム塩(複合体13)を72.78g得た。
複合体13のNMR測定を行ったところ、以下の結果が得られた。
1H NMR (400 MHz CDCl3): δ=3.42-3.38 (m, 8H), 1.74-1.66 (m, 8H), 1.52-1.42 (m, 8H), 1.01 (t, 7.4 Hz, 12H), δ=0 (TMS)
 複合体13の3.42-3.38の化学シフトは、TBAHのブチル基のα水素原子(N-CH2の水素原子)に帰属する。複合体13では、TBAHと比較して、α水素原子の化学シフトが+0.07ppmシフトしていることが確認された。
(湿気硬化型組成物の調製)
 上記製造例で得た各成分及び市販の成分を用い、表1に示す配合割合(質量部)で配合し、混練して湿気硬化型組成物を調製した。なお、材料の配合、混練、硬化までの操作は25±1℃、50~60%RHの雰囲気下で行った。
<タックフリータイムの測定>
 得られた湿気硬化型組成物について、タックフリータイム(エチルアルコールで清浄した指先で、表面の3箇所に軽く触れ、混練終了時から試料が指先に付着しなくなるまでに要した時間)を測定した。タックフリータイムの測定の結果を表1~表2に示す。
 実施例・および比較例に示すように、それぞれ単独の時よりも、チタン化合物[B1]とアンモニウムヒドロキシド[B2]を併用した時に、顕著な活性向上が認められる。
 また、製造例1では、テトライソプロポキシチタンと1-オクタノールの配合モル数が同じであるので、ほぼ全てのテトライソプロポキシチタンにおいてアルコキシ交換反応が起こって、チタン化合物のほぼ全量がチタン化合物[B1]になっている。このため、得られる複合体1はほぼ全量が複合体[C]となっている。一方、製造例2では、1-オクタノールの配合モル数がテトライソプロポキシチタンの配合モル数よりも少ないので、一部のテトライソプロポキシチタンのみにおいてアルコキシ交換反応が起こる。このため、系中にチタン化合物[B1]とチタン化合物[Ba]が共存した状態となり、この状態でアンモニウムヒドロキシド[B2]との反応を進行させると、複合体[C]と複合体[Ca]の両方が生成される。このため、複合体2は、複合体[C]と複合体[Ca]の混合物となっている。複合体[Ca]は、複合体[C]よりも触媒活性が高いので、実施例1よりも実施例2の方が、タックフリータイムが短くなっている。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005

 表中の材料の詳細は次のとおりである。
(重合体[A])
 MSポリマー SAX520:シリル基含有有機重合体((株)カネカ製)
 MSポリマー S303:シリル基含有有機重合体((株)カネカ製)
 STP-E15:シリル基含有有機重合体(WACKER Chemical Corporation製)
 KE-66:オルガノポリシロキサン(信越化学工業(株)製)
(硬化触媒[B])
 複合体1:製造例1で製造したもの
 複合体2:製造例2で製造したもの
 複合体3:製造例3で製造したもの
 複合体4:製造例4で製造したもの
 複合体5:製造例5で製造したもの
 複合体6:製造例6で製造したもの
 複合体7:製造例7で製造したもの
 複合体8:製造例8で製造したもの
 複合体9:製造例9で製造したもの
 複合体10:製造例10で製造したもの
 複合体11:製造例11で製造したもの
 複合体12:製造例12で製造したもの
 複合体13:製造例13で製造したもの
(その他の触媒)
 テトライソプロポキシチタン:東京化成工業(株)製
 テトラブチルアンモニウムヒドロキシド:37%テトラブチルアンモニウムヒドロキシド、東京化成工業(株)製
(充填剤)
 カーレックス300:炭酸カルシウム(丸尾カルシウム(株)製)
 FR-41:酸化チタン(古河ケミカルズ(株)製)
 REOLOSIL PM-20:ヒュームドシリカ((株)トクヤマ製)
(その他添加剤)
 DINP:可塑剤(ジェイプラス(株)製)
 PPG1000:可塑剤(キシダ化学(株)製)
 ディスパロン6500:タレ止め剤(楠本化学(株)製)
 水添ひまし油:タレ止め剤(伊藤製油(株)製)
 Songsorb 3260P:紫外線吸収剤(SONGWON製)
 Sabostab UV70:光安定化剤(SONGWON製)
 Irganox245:酸化防止剤(BASFジャパン(株)製)
 KBM-1003:脱水剤(信越シリコーン工業(株)製)
 KBM-903:接着付与剤(信越シリコーン工業(株)製)
 KBM-603:接着付与剤(信越シリコーン工業(株)製)
 ノクラックNS-6:老化防止剤(大内新興化学工業(株)製)
 スモイルP-350:流動パラフィン(村松石油(株)製)
<低温下での結晶析出有無の確認試験>
 上記製造例の複合体と、テトライソプロポキシチタンを窒素雰囲気下にて、10℃1週間静置し、結晶析出の有無を確認した。その結果を表3に示す。
 表3に示すように、全ての実施例では、結晶が析出しなかったが、比較例3では、結晶が析出した。この結果は、本発明の複合体が結晶析出しにくく、貯蔵安定性に優れていることを示している。
Figure JPOXMLDOC01-appb-T000006

Claims (6)

  1.  反応性加水分解性ケイ素含有基を有する重合体[A]の硬化に用いる硬化触媒[B]であって、
     前記硬化触媒[B]は、チタン化合物[B1]とアンモニウムヒドロキシド[B2]の複合体[C]を含有し、
     前記チタン化合物[B1]は、化学式(1)で表され、
     前記アンモニウムヒドロキシド[B2]は、化学式(2)で表される、硬化触媒[B]。
      (R-O)Ti-A4-n   (1)
    (式中Rは、置換又は非置換の炭化水素基、nは1~4であり、Aはβジケトン基であり、且つ、Rの少なくとも1つは、炭素数8以上のアルキル基、または、化学式(3)で表されるオキシアルキレン基を表す)
    Figure JPOXMLDOC01-appb-C000001
    (式中、R、R、R、Rは、相互に同一または異なって、炭素原子数1~8の置換又は非置換の炭化水素基を表す。Xは、水酸基を表す。)
     R-(O-R-  (3)
    (式中Rは炭素原子数1~10の置換または非置換の炭化水素基、Rは炭素原子数2~10の置換または非置換の炭化水素基、mは1~10の整数を表す)
  2.  請求項1に記載の硬化触媒[B]であって、
     前記複合体[C]は、前記チタン化合物[B1]と前記アンモニウムヒドロキシド[B2]の混合物を40~100℃で反応させて得られる複合体[C]である、硬化触媒[B]。
  3.  請求項2に記載の硬化触媒[B]であって、
     前記混合物中での、前記アンモニウムヒドロキシド[B2]に対する前記チタン化合物[B1]のモル比は、0.1~100である、硬化触媒[B]。
  4.  請求項1~請求項3の何れか1つに記載の硬化触媒[B]と、前記重合体[A]を含む湿気硬化型組成物。
  5.  請求項4に記載の湿気硬化型組成物を湿気と接触させる工程を備える、硬化物の製造方法。
  6.  反応性加水分解性ケイ素含有基を有する重合体[A]の硬化に用いる硬化触媒[B]の製造方法であって、
     チタン化合物[B1]とアンモニウムヒドロキシド[B2]を反応させることによって、その反応性生物として前記硬化触媒[B]を得る工程を備え、
     前記チタン化合物[B1]は、化学式(1)で表され、
     前記アンモニウムヒドロキシド[B2]は、化学式(2)で表される、硬化触媒[B]の製造方法。
      (R-O)Ti-A4-n   (1)
    (式中Rは、置換又は非置換の炭化水素基、nは1~4であり、Aはβジケトン基であり、且つ、Rの少なくとも1つは、炭素数8以上のアルキル基、または、化学式(3)で表されるオキシアルキレン基を表す)
    Figure JPOXMLDOC01-appb-C000002
    (式中、R、R、R、Rは、相互に同一または異なって、炭素原子数1~8の置換又は非置換の炭化水素基を表す。Xは、水酸基を表す。)
     R-(O-R-  (3)
    (式中Rは炭素原子数1~10の置換または非置換の炭化水素基、Rは炭素原子数2~10の置換または非置換の炭化水素基、mは1~10の整数を表す)
PCT/JP2021/023728 2020-06-29 2021-06-23 重合体の硬化に用いる硬化触媒及びその製造方法、湿気硬化型組成物、硬化物の製造方法 WO2022004510A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/002,569 US20230257487A1 (en) 2020-06-29 2021-06-23 Curing catalyst used for curing of polymer, production method for said curing catalyst, mositure-curable composition, and production method for cured product
JP2022533906A JPWO2022004510A1 (ja) 2020-06-29 2021-06-23
CN202180031504.8A CN115461414B (zh) 2020-06-29 2021-06-23 用于聚合物固化的固化催化剂及其制造方法、湿气固化型组合物、固化物的制造方法
EP21833879.6A EP4174052A4 (en) 2020-06-29 2021-06-23 CURING CATALYST FOR CURING A POLYMER, PRODUCTION PROCESS FOR SAID CURING CATALYST, MOISTURE CURING COMPOSITION AND PRODUCTION PROCESS FOR HARDENED PRODUCT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-111530 2020-06-29
JP2020111530 2020-06-29

Publications (1)

Publication Number Publication Date
WO2022004510A1 true WO2022004510A1 (ja) 2022-01-06

Family

ID=79316249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023728 WO2022004510A1 (ja) 2020-06-29 2021-06-23 重合体の硬化に用いる硬化触媒及びその製造方法、湿気硬化型組成物、硬化物の製造方法

Country Status (5)

Country Link
US (1) US20230257487A1 (ja)
EP (1) EP4174052A4 (ja)
JP (1) JPWO2022004510A1 (ja)
CN (1) CN115461414B (ja)
WO (1) WO2022004510A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4067338A4 (en) * 2019-11-29 2023-02-08 Nitto Kasei Co., Ltd. CURING CATALYST USED FOR CURING A POLYMER, PRODUCTION PROCESS FOR SUCH CURING CATALYST, MOISTURE-CURRABLE COMPOSITION AND PRODUCTION PROCESS FOR CURED ARTICLE

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115485336B (zh) * 2020-06-29 2024-07-02 日东化成株式会社 用于聚合物固化的固化催化剂及其制造方法、湿气固化型组合物、固化物的制造方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60161457A (ja) 1984-01-14 1985-08-23 ダウ・コーニング・リミテツド エラストマーへ硬化可能なオルガノポリシロキサン組成物及びその使用方法
JPS6118569A (ja) 1984-07-04 1986-01-27 Mazda Motor Corp 車両の4輪操舵装置
JPS6342942A (ja) 1986-08-01 1988-02-24 株式会社豊田自動織機製作所 織機における経糸送り出し異常検出方法
JPH0841358A (ja) 1994-08-01 1996-02-13 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JPH08151521A (ja) 1994-09-29 1996-06-11 Toray Dow Corning Silicone Co Ltd 金型成形用シリコーンゴム組成物
JP2003147220A (ja) 2001-11-15 2003-05-21 Nitto Kasei Co Ltd 湿気硬化型組成物
JP2004256505A (ja) * 2003-02-25 2004-09-16 Matsumoto Seiyaku Kogyo Kk 水性チタン組成物
JP2005194399A (ja) 2004-01-07 2005-07-21 Shin Etsu Chem Co Ltd シリコーンゴム組成物
JP2005314616A (ja) * 2004-04-30 2005-11-10 Shin Etsu Chem Co Ltd シリコーンコーティング組成物及び被覆物品
JP2007500775A (ja) * 2003-05-23 2007-01-18 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 離型組成物およびその方法
JP2009132762A (ja) * 2007-11-05 2009-06-18 Matsumoto Fine Chemical Co Ltd 水溶性チタンオリゴマー組成物
JP2012219184A (ja) * 2011-04-08 2012-11-12 Shin-Etsu Chemical Co Ltd シリコーン樹脂組成物及び当該組成物を使用した光半導体装置
JP5446265B2 (ja) 2006-08-22 2014-03-19 旭硝子株式会社 硬化性組成物
JP2015044886A (ja) * 2011-12-26 2015-03-12 日東化成株式会社 電着塗料組成物、電着塗料組成物用解離触媒
JP2018108677A (ja) * 2016-12-28 2018-07-12 日本板硝子株式会社 ガラス板の製造方法及び自動車用ガラス板

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3793031B2 (ja) * 2001-02-23 2006-07-05 日東化成株式会社 湿気硬化型組成物
US7625990B2 (en) * 2004-05-07 2009-12-01 Kaneka Corporation Curable composition
JP4559871B2 (ja) * 2005-02-10 2010-10-13 花王株式会社 固体酸触媒及び固体酸触媒によるニトリル化合物の製造方法
JP2010132514A (ja) * 2008-12-08 2010-06-17 Kao Corp チタン酸ナノシート分散液の製造方法
JP5952323B2 (ja) * 2014-02-18 2016-07-13 日東化成株式会社 新規チタン化合物、該チタン化合物を含有するウレタン樹脂製造用触媒、該触媒存在下で製造されるウレタン樹脂組成物、および該ウレタン樹脂組成物の製造方法
ES2904581T3 (es) * 2017-11-14 2022-04-05 Nitto Kasei Co Ltd Catalizador de curado para polímero orgánico u organopolisiloxano, composición curable con humedad, producto curado y método de producción para los mismos
CN109264774A (zh) * 2018-08-30 2019-01-25 中国石油天然气股份有限公司 一种粒径可控的具有分级结构的钛酸盐、钛酸以及二氧化钛的制备方法
WO2021106943A1 (ja) * 2019-11-29 2021-06-03 日東化成株式会社 重合体の硬化に用いる硬化触媒及びその製造方法、湿気硬化型組成物、硬化物の製造方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60161457A (ja) 1984-01-14 1985-08-23 ダウ・コーニング・リミテツド エラストマーへ硬化可能なオルガノポリシロキサン組成物及びその使用方法
JPS6118569A (ja) 1984-07-04 1986-01-27 Mazda Motor Corp 車両の4輪操舵装置
JPS6342942A (ja) 1986-08-01 1988-02-24 株式会社豊田自動織機製作所 織機における経糸送り出し異常検出方法
JPH0841358A (ja) 1994-08-01 1996-02-13 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JPH08151521A (ja) 1994-09-29 1996-06-11 Toray Dow Corning Silicone Co Ltd 金型成形用シリコーンゴム組成物
JP2003147220A (ja) 2001-11-15 2003-05-21 Nitto Kasei Co Ltd 湿気硬化型組成物
JP2004256505A (ja) * 2003-02-25 2004-09-16 Matsumoto Seiyaku Kogyo Kk 水性チタン組成物
JP2007500775A (ja) * 2003-05-23 2007-01-18 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 離型組成物およびその方法
JP2005194399A (ja) 2004-01-07 2005-07-21 Shin Etsu Chem Co Ltd シリコーンゴム組成物
JP2005314616A (ja) * 2004-04-30 2005-11-10 Shin Etsu Chem Co Ltd シリコーンコーティング組成物及び被覆物品
JP5446265B2 (ja) 2006-08-22 2014-03-19 旭硝子株式会社 硬化性組成物
JP2009132762A (ja) * 2007-11-05 2009-06-18 Matsumoto Fine Chemical Co Ltd 水溶性チタンオリゴマー組成物
JP2012219184A (ja) * 2011-04-08 2012-11-12 Shin-Etsu Chemical Co Ltd シリコーン樹脂組成物及び当該組成物を使用した光半導体装置
JP2015044886A (ja) * 2011-12-26 2015-03-12 日東化成株式会社 電着塗料組成物、電着塗料組成物用解離触媒
JP2018108677A (ja) * 2016-12-28 2018-07-12 日本板硝子株式会社 ガラス板の製造方法及び自動車用ガラス板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4174052A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4067338A4 (en) * 2019-11-29 2023-02-08 Nitto Kasei Co., Ltd. CURING CATALYST USED FOR CURING A POLYMER, PRODUCTION PROCESS FOR SUCH CURING CATALYST, MOISTURE-CURRABLE COMPOSITION AND PRODUCTION PROCESS FOR CURED ARTICLE

Also Published As

Publication number Publication date
EP4174052A4 (en) 2023-11-29
CN115461414A (zh) 2022-12-09
US20230257487A1 (en) 2023-08-17
JPWO2022004510A1 (ja) 2022-01-06
EP4174052A1 (en) 2023-05-03
CN115461414B (zh) 2024-06-25

Similar Documents

Publication Publication Date Title
JP7048138B2 (ja) 湿気硬化型組成物、硬化物の製造方法
JP7048139B2 (ja) 湿気硬化型組成物、硬化物の製造方法
JP7555613B2 (ja) 重合体の硬化に用いる硬化触媒及びその製造方法、湿気硬化型組成物、硬化物の製造方法
JP7251793B2 (ja) 有機重合体又はオルガノポリシロキサン用硬化触媒、湿気硬化型組成物、硬化物及びその製造方法
WO2022014430A1 (ja) 湿気硬化型組成物
WO2022004511A1 (ja) 重合体の硬化に用いる硬化触媒及びその製造方法、湿気硬化型組成物、硬化物の製造方法
WO2022004510A1 (ja) 重合体の硬化に用いる硬化触媒及びその製造方法、湿気硬化型組成物、硬化物の製造方法
WO2022004513A1 (ja) 重合体の硬化に用いる硬化触媒及びその製造方法、湿気硬化型組成物、硬化物の製造方法
WO2022004509A1 (ja) チタン化合物とアンモニウムヒドロキシドとの複合体の製造方法、組成物の製造方法、エステル化合物の製造方法、及びアンモニウムヒドロキシドの製造方法
WO2022024988A1 (ja) 重合体の硬化に用いる硬化触媒及びその製造方法、湿気硬化型組成物、硬化物の製造方法
JP5354511B2 (ja) 有機重合体用硬化触媒およびそれを含有する湿気硬化型有機重合体組成物
WO2022131116A1 (ja) 重合体の硬化に用いる硬化触媒、湿気硬化型組成物、硬化物の製造方法
JP5177809B2 (ja) 有機重合体用硬化触媒及びそれを含有する湿気硬化型組成物
JP7214221B2 (ja) 重合体の硬化に用いる硬化触媒、湿気硬化型組成物、硬化物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21833879

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022533906

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021833879

Country of ref document: EP

Effective date: 20230130