Nothing Special   »   [go: up one dir, main page]

WO2022083664A1 - 电场单元组件及电场吸附装置以及电场装置 - Google Patents

电场单元组件及电场吸附装置以及电场装置 Download PDF

Info

Publication number
WO2022083664A1
WO2022083664A1 PCT/CN2021/125123 CN2021125123W WO2022083664A1 WO 2022083664 A1 WO2022083664 A1 WO 2022083664A1 CN 2021125123 W CN2021125123 W CN 2021125123W WO 2022083664 A1 WO2022083664 A1 WO 2022083664A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric field
field unit
side wall
channel
adsorption mechanism
Prior art date
Application number
PCT/CN2021/125123
Other languages
English (en)
French (fr)
Inventor
王赞
奚勇
Original Assignee
上海必修福企业管理有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海必修福企业管理有限公司 filed Critical 上海必修福企业管理有限公司
Priority to CN202180068186.2A priority Critical patent/CN116745036A/zh
Publication of WO2022083664A1 publication Critical patent/WO2022083664A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/017Combinations of electrostatic separation with other processes, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/36Controlling flow of gases or vapour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/66Applications of electricity supply techniques
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/86Electrode-carrying means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B6/00Cleaning by electrostatic means

Definitions

  • the invention relates to the field of electric fields, in particular to an electric field unit assembly, an electric field adsorption device, and an electric field device.
  • electrostatic technology is widely used in the field of gas purification.
  • the gas passes through the electrostatic field, it is ionized. After the particles in the gas are combined with the charged ions, they tend to move and deposit by the electrode with the opposite polarity to the charged ions. It can be seen that the particle removal rate and the charging efficiency of the particles related.
  • the direction of gas entering the electric field in the electrostatic gas purification device is perpendicular to the direction of ion flow in the electric field, and there are defects such as short residence time of gas in the electric field and low charging efficiency.
  • the purpose of the present invention is to provide an electric field unit assembly, an electric field adsorption device, and an electric field device to solve the above-mentioned problems in the prior art.
  • an electric field unit is provided, the electric field unit has a channel extending in the axial direction, and a side wall is formed around the channel, and the side wall is provided with a gas for entering the
  • the air inlet hole of the channel and the air outlet hole for supplying gas to be discharged from the channel are arranged on different planes perpendicular to the axial direction.
  • the electric field unit includes a plurality of the air inlet holes and a plurality of the air outlet holes, the plurality of the air inlet holes are arranged in at least one row along the axial direction, and the plurality of the air outlet holes are arranged along the axis The holes are arranged in at least one row, wherein the hole center of any one of the air inlet holes and the hole center of any one of the air outlet holes are arranged on different planes perpendicular to the axial direction.
  • the plurality of air inlet holes are evenly distributed along the axial direction, and/or the plurality of the air outlet holes are evenly distributed along the axial direction.
  • a plurality of the air inlet holes and/or a plurality of the air outlet holes are arranged axially from one end of the side wall to the other end of the side wall.
  • the air inlet holes and/or the air outlet holes are circular holes; preferably, the air inlet holes and the air outlet holes have the same diameter.
  • the electric field unit includes a plurality of the side walls, and the air inlet holes and the air outlet holes are respectively arranged on different side walls.
  • the electric field unit includes a plurality of the side walls, and the plurality of the side walls are connected in sequence so that the channel has a regular polygonal cross-section; preferably, the electric field unit includes at least three the side walls; preferably, the electric field unit includes at least six of the side walls.
  • the electric field unit constitutes the cathode or anode of the electric field.
  • an electric field adsorption device includes a plurality of the electric field units according to any one of the embodiments, and the plurality of the electric field units are connected to form an integral structure.
  • two adjacent electric field units share one side wall, and two surfaces of the side wall face the two channels respectively.
  • the electric field adsorption device constitutes the cathode and/or the anode of the electric field.
  • a plurality of the electric field units includes a first group of electric field units and a second group of electric field units, the first group of electric field units forms the anode of the electric field, and the second group of electric field units forms the electric field the cathode.
  • an electric field device comprising a discharge electrode and an adsorption electrode, wherein the adsorption electrode is composed of the electric field unit described in any one of the embodiments, and the discharge electrode is composed of a A conductor is formed within and extending along the channel.
  • the discharge electrode is arranged parallel to the side wall of the channel and passes through the centerline of the channel, preferably, the channel has a regular polygonal cross-section, and the discharge electrode passes through the cross-section The center of the inscribed circle.
  • an electric field device comprising a discharge electrode and an adsorption electrode, wherein the adsorption electrode is composed of the electric field adsorption device described in any one of the embodiments, and the discharge electrode is provided with A conductor is formed within each of the channels and extending along the channels.
  • the electric field device further comprises a top plate and a bottom plate, the top plate and the bottom plate are respectively connected to two ends of the electric field device, and both ends of the channel are sealed.
  • the discharge electrode is arranged parallel to the side wall of the channel and passes through the centerline of the channel, preferably, the channel has a regular polygonal cross-section, and the discharge electrode passes through the cross-section The center of the inscribed circle.
  • an electric field device including a discharge electrode and an adsorption electrode, the adsorption electrode is composed of a hollow tube, the discharge electrode is penetrated in the hollow tube of the adsorption electrode, and the discharge electrode and the adsorption electrode are An electric field is formed between the electrodes, and it is characterized in that the hollow side wall of the adsorption electrode is provided with air inlet holes for gas to enter, and the gas inflow direction is not perpendicular to the direction of ion flow in the electric field.
  • an outlet hole for gas discharge is provided on the side wall of the adsorbent tube, and the inlet hole and the outlet hole are arranged in a staggered manner to form a cyclone structure.
  • the hollow section of the adsorbent tube adopts a circle or a polygon.
  • the polygons comprise trigons, quadrilaterals, pentagons or hexagons.
  • the air inlet hole and the air outlet hole of the adsorption electrode are located on different side walls.
  • the side wall with the air inlet or the air outlet opening on the adsorption electrode is formed of a venturi plate.
  • the discharge electrode and the adsorption electrode form an electric field generating unit; it includes two electric field generating units connected in series, and the adsorption electrode in the two electric field generating units shares a side with an air inlet or an air outlet. wall.
  • the two electric field generating units connected in series include a first electric field generating unit and a second electric field generating unit, and the side wall of the air hole opened on the adsorption electrode of the first electric field generating unit is used as the second electric field
  • One side wall of the adsorption electrode in the generating unit, and the other side wall of the second electric field generating unit is provided with an outlet hole for gas discharge.
  • At least one power source is further included, the adsorption electrode of the electric field generating unit is electrically connected to one electrode of the power source, and the discharge electrode of the electric field generating unit is electrically connected to the other electrode of the power source.
  • an electric field unit is provided, characterized in that the electric field unit has a channel extending in the axial direction, a side wall is formed around the channel, and the side wall is provided with a channel for gas to enter the channel The air inlet hole and the air outlet hole for the gas to be discharged from the channel.
  • an electric field unit assembly characterized in that, the electric field unit assembly includes an electric field unit and an auxiliary adsorption mechanism, and the electric field unit is provided with an air inlet for gas entry and/or a gas supply
  • the auxiliary adsorption mechanism has a porous structure and is arranged on one side of at least a part of the electric field unit, and the at least part is provided with the air inlet hole and/or the air outlet hole.
  • a distance between the auxiliary adsorption mechanism and the at least a part of the electric field unit is less than or equal to 50 mm.
  • the auxiliary adsorption mechanism is attached to the at least part of the surface of the electric field unit.
  • the auxiliary adsorption mechanism has a porous structure that overlaps and penetrates each other.
  • the auxiliary adsorption mechanism is made of conductive material and/or electret material.
  • the electric field unit constitutes the cathode or anode of the electric field.
  • the electric field unit constitutes an anode or cathode of the electric field, and the electric field unit has an inner surface facing the cathode or anode of the electric field and an outer surface opposite to the inner surface, and the auxiliary adsorption mechanism is arranged at one side of the outer surface of the electric field unit.
  • an electric field unit assembly characterized in that the electric field unit assembly includes an electric field unit and an auxiliary adsorption mechanism, the electric field unit has a channel extending in the axial direction, and a side is formed around the channel.
  • the side wall is provided with an air inlet hole for gas to enter the channel and an air outlet hole for gas to discharge from the channel, and the auxiliary adsorption mechanism has a porous structure and is arranged on the side wall of the electric field unit. At least a part of one side is provided with the air inlet hole and/or the air outlet hole.
  • a distance between the auxiliary adsorption mechanism and the at least a part of the electric field unit is less than or equal to 50 mm.
  • the auxiliary adsorption mechanism is attached to the at least part of the surface of the electric field unit.
  • the electric field unit has a plurality of the side walls, the air inlet holes and the air outlet holes are respectively arranged on different side walls of the electric field unit, and the auxiliary adsorption mechanism is arranged On the side of at least a part of the outer surface and/or the inner surface of the side wall provided with the air inlet and/or the air outlet.
  • the auxiliary adsorption mechanism is made of conductive material and/or electret material.
  • the auxiliary adsorption mechanism has a porous structure that overlaps and penetrates each other.
  • the electric field unit includes a plurality of the side walls, and the plurality of side walls are connected in sequence so that the channel has a regular polygonal cross-section; preferably, the electric field unit includes at least three of the side walls. sidewalls; preferably, the electric field unit includes at least six of the sidewalls.
  • the electric field unit constitutes the cathode or anode of the electric field.
  • an electric field adsorption device including a plurality of electric field units and an auxiliary adsorption mechanism, and the electric field units have a channel extending in the axial direction, surrounding the channel A side wall is formed, and the side wall is provided with an air inlet hole for gas to enter the channel and an air outlet hole for gas to be discharged from the channel, and the auxiliary adsorption mechanism has a porous structure and is arranged at least one of the electric field units. At least one side of at least a part of the side wall, the at least part is provided with the air inlet hole and/or the air outlet hole.
  • the electric field adsorption device includes a first type of sidewall and a second type of sidewall, one side of the first type of sidewall is arranged with the channel, and two sides of the second type of sidewall are arranged Each of the channels is arranged, the first type side wall has an inner surface facing the channel and an outer surface opposite to the inner surface, and the auxiliary adsorption mechanism is arranged on the first type side wall of the first type side wall. one side of the at least a portion of the outer surface.
  • the auxiliary adsorption mechanism is attached to the at least a part of the outer surface of the first type side wall.
  • the auxiliary adsorption mechanism is further arranged on one side of the at least a portion of the second type side wall.
  • the auxiliary adsorption mechanism is disposed in contact with the at least a portion of the second type side wall.
  • each of the passages is surrounded by a plurality of the side walls; preferably, the passage has a polygonal cross-section; Hexagon; preferably, the polygon is a regular polygon.
  • the auxiliary adsorption mechanism has a porous structure that overlaps and penetrates each other.
  • the auxiliary adsorption mechanism is made of conductive material and/or electret material.
  • the electric field unit constitutes the cathode and/or anode of the electric field.
  • an electric field device comprising a discharge electrode and an adsorption electrode, wherein the adsorption electrode is composed of the electric field unit assembly described in any one of the embodiments, and the discharge electrode is composed of a conductor constitute.
  • an electric field device comprising a discharge electrode and an adsorption electrode, wherein the adsorption electrode is composed of the electric field unit assembly described in any one of the embodiments, and the discharge electrode is composed of a set of Constructed of conductors within and extending along the channel.
  • the discharge electrode is arranged parallel to the side wall of the channel and passes through the centerline of the channel; preferably, the channel has a regular polygonal cross-section, and the discharge electrode passes through the cross-section The center of the inscribed circle.
  • an electric field device comprising a discharge electrode and an adsorption electrode, wherein the adsorption electrode is composed of the electric field adsorption device described in any one of the embodiments, and the discharge electrode is provided with A conductor is formed within each of the channels and extending along the channels.
  • the discharge electrode is arranged parallel to the side wall of the channel and passes through the centerline of the channel; preferably, the channel has a regular polygonal cross-section, and the discharge electrode passes through the cross-section The center of the inscribed circle.
  • the gas processing electric field device further includes a top plate and a bottom plate, the top plate and the bottom plate are respectively connected to two ends of the electric field adsorption device and seal both ends of the channel.
  • an electric field unit characterized in that, the electric field unit has a channel extending in an axial direction, and a plurality of side walls are formed around the channel, and the plurality of side walls are connected in sequence by connecting pieces. At least one side wall is connected and provided with an air inlet hole for gas to enter the channel and at least one side wall is provided with an air outlet hole for gas to flow out of the channel.
  • each of the side walls has a side wall main body and a folded edge portion formed by bending the side wall main body along two ends perpendicular to the channel, respectively, and the connecting member is disposed on two adjacent two sides.
  • the folded portion of each side wall is used to connect two adjacent side walls fixedly.
  • the plurality of side walls are sequentially riveted by rivets.
  • the electric field unit includes three sidewalls, and the three sidewalls are connected in sequence to form a channel with a triangular cross-section; or
  • the electric field unit includes six side walls, and the six side walls are sequentially connected to form a channel with a hexagonal cross section.
  • the three side walls are connected in sequence to form a channel with an equilateral triangular cross-section.
  • the six side walls are connected in sequence to form a channel with a regular hexagonal cross-section.
  • a plurality of through holes are respectively provided on the folded portion along the extending direction of the channel, and the connecting member is penetrated in the through holes.
  • the plurality of air inlet holes and/or the plurality of air outlet holes are evenly distributed along the axial direction of the passage.
  • the shape of the air inlet hole and/or the air outlet hole is a circle, an ellipse and/or a polygon, and the polygon includes any one of a triangle, a quadrilateral, a pentagon and a hexagon one or more.
  • an electric field device characterized in that, the electric field device includes a discharge electrode and an adsorption electrode, the adsorption electrode is the electric field unit described in any one of the embodiments, and the discharge electrode is provided at In the channel of the electric field unit, an electric field is formed between the discharge electrode and the adsorption electrode.
  • the discharge electrode is disposed parallel to the sidewall of the channel and passes through the centerline of the channel.
  • the channel has a regular polygonal cross-section, and the discharge electrode passes through the center of a circle inscribed in the cross-section.
  • an electric field adsorption device characterized in that, the electric field adsorption device is formed by connecting a plurality of electric field units according to any one of the embodiments.
  • the plurality of electric field units are connected by connectors.
  • the plurality of electric field units are riveted by rivets.
  • two adjacent channels of the plurality of electric field units share one sidewall.
  • an electric field device which is characterized in that it includes a discharge electrode and an adsorption electrode, the adsorption electrode is the electric field adsorption device according to any one of the embodiments, and the discharge electrode is arranged in the electric field. In the channel of the unit, an electric field is formed between the discharge electrode and the electric field unit.
  • the discharge electrode is in the shape of an elongated strip and is made of any one of 304 stainless steel, titanium, tungsten, and iridium.
  • an electric field adsorption device which is characterized by comprising a plurality of electric field units, a plurality of connecting members and at least one auxiliary adsorption part, wherein the electric field units are provided with air inlet holes for gas to enter and /or an air outlet for gas discharge, the auxiliary adsorption member has a porous structure and is arranged on at least a part of the surface of the electric field unit through the connecting member, the at least part is provided with the air inlet and/or outlet stomata.
  • the electric field unit has a channel extending in the axial direction, a plurality of side walls are formed around the channel, the plurality of side walls are sequentially connected by the connecting member, and at least one side wall is provided with a supply for The gas inlet hole for gas entering the channel and at least one side wall are provided with gas outlet holes for gas to flow out of the channel.
  • the connecting member is any one or a combination of an elastic member, a connecting assembly and a clip.
  • the inner section of the clip is groove-shaped.
  • connection components include rivets or bolts.
  • the electric field unit has a plurality of sidewalls, two ends of the sidewalls have bent folded edges, and the folded edges of two adjacent sidewalls in the electric field unit are formed by connecting together. Connecting ends, the folded edges in the connecting ends of two adjacent electric field units are aligned in sequence to form a unit connecting end, and two adjacent electric field units are connected at the unit connecting ends, and the auxiliary adsorption member It is arranged on the outer side of the unit connecting end, and a plurality of the folded edge portions and the auxiliary suction parts in the unit connecting end are connected and fixed by rivets.
  • a spacer is further included, and the spacer is disposed between the rivet and the auxiliary suction member.
  • the spacer is in the form of a sheet.
  • the cross section of the gasket is L-shaped.
  • an electric field unit characterized in that, the electric field unit has a channel extending in the axial direction, a plurality of side walls are formed around the channel, and the plurality of side walls are provided with gas supply The air inlet hole for entering the channel and the air outlet hole for supplying gas to be discharged from the channel, wherein at least one side wall of the plurality of side walls is not provided with the air inlet hole or the middle line extending along the channel direction. vent.
  • the air inlet hole and the air outlet hole are arranged on different side walls.
  • a plurality of the air inlet holes are arranged on the side wall where the air inlet holes are arranged, and/or a plurality of the air outlet holes are arranged on the side wall where the air outlet holes are arranged.
  • the air inlet hole or the air outlet hole is not provided within a predetermined range on both sides of the midline of each side wall extending along the channel direction.
  • the same side wall is provided with a plurality of the air inlet holes and/or a plurality of air outlet holes, and the plurality of air inlet holes and/or the plurality of air outlet holes are respectively along the axis of the passage. Arranged in multiple columns.
  • the plurality of the air inlet holes or the plurality of the air outlet holes on each side wall are respectively arranged in two rows along the axial direction and are respectively arranged on both sides of the center line of the side wall.
  • the plurality of air inlet holes or the plurality of air outlet holes are evenly distributed along the axial direction.
  • the shape of the air inlet hole and/or the air outlet hole is a circle, an ellipse, and a polygon.
  • the polygon includes a triangle, a quadrangle, a pentagon, and a hexagon. any one or more.
  • the ratio of the total area of the air inlet holes and/or the air outlet holes on one side wall to the total area of the side wall is less than or equal to 49%.
  • the cross-section of the channel is a polygon
  • the polygon includes a triangle, a quadrangle, a pentagon or a hexagon.
  • the side wall is made of a material containing stainless steel and/or aluminum.
  • an electric field unit characterized in that, the electric field unit has a channel extending in the axial direction, a plurality of side walls are formed around the channel, and the plurality of side walls are connected and arranged in sequence.
  • the two rows of air inlet holes or air outlet holes are arranged on both sides of the center line of the side wall along the channel direction.
  • the electric field unit has six side walls formed around the channel, and the channel has a regular hexagonal cross-section.
  • the electric field unit has three side walls formed around the channel, and the channel has an equilateral triangular cross-section.
  • an electric field device which is characterized by comprising a discharge electrode and an adsorption electrode, and the adsorption electrode is the electric field unit according to any one of the embodiments, wherein the discharge electrode and the adsorption electrode An electric field is formed between the poles.
  • the discharge electrode is arranged in the channel of the electric field unit.
  • an electric field device which is characterized in that it includes a discharge electrode and an adsorption electrode, the adsorption electrode is the electric field unit according to any one of the embodiments, and the discharge electrode is arranged in the electric field.
  • the air inlet hole or the air outlet hole is not provided on the closest distance between the discharge electrode and the side wall.
  • the discharge electrode is disposed parallel to the sidewall of the channel and passes through the centerline of the channel.
  • the channel has a regular polygonal cross-section, and the discharge electrode passes through the center of a circle inscribed in the cross-section.
  • an electric field adsorption device which is characterized by an overall structure formed by connecting a plurality of electric field units, and the electric field units are the electric field units described in any one of the embodiments.
  • two adjacent electric field units share one side wall, and two surfaces of the side wall face the channels of the two electric field units respectively.
  • an electric field device which is characterized in that it includes a discharge electrode and an adsorption electrode, the adsorption electrode is the electric field adsorption device according to any one of the embodiments, and the discharge electrode penetrates the In the channel of the electric field unit, an electric field is formed between the discharge electrode and the electric field unit.
  • the discharge electrode is in the shape of an elongated strip, and is made of any one or more of 304 stainless steel, titanium, tungsten, and iridium.
  • FIG. 1 is a schematic perspective view of an electric field device according to an embodiment of the present invention.
  • FIG. 2A is a schematic perspective view of an electric field unit according to an embodiment of the present invention.
  • FIG. 2B is a C-direction view of the electric field unit of FIG. 2A;
  • FIG. 3 is a schematic cross-sectional top view of an electric field device according to an embodiment of the present invention.
  • FIG. 4A is a schematic perspective view of an electric field device according to an embodiment of the present invention.
  • FIG. 4B is a schematic cross-sectional view of FIG. 4A;
  • FIG. 5 is a schematic front view of an electric field device including a top plate and a floor;
  • FIG. 6 is a schematic exploded cross-sectional view of an electric field unit assembly according to an embodiment of the present invention.
  • FIG. 7 is a schematic exploded perspective view of an electric field adsorption device according to an embodiment of the present invention.
  • FIG. 8 is a schematic exploded perspective view of an electric field adsorption device according to an embodiment of the present invention.
  • FIG. 9A is a schematic perspective view of an electric field adsorption device according to an embodiment of the present invention.
  • Figure 9B is a top view of Figure 9A;
  • FIG. 10 is a schematic perspective view of an electric field device according to an embodiment of the present invention.
  • FIG. 11 is a schematic perspective view of an electric field adsorption device according to an embodiment of the present invention.
  • Fig. 12 is the perspective exploded schematic diagram of Fig. 11;
  • FIG. 13 is a schematic cross-sectional view of a clip according to an embodiment of the present invention.
  • FIG. 14 is a schematic cross-sectional view of an elastic member according to an embodiment of the present invention.
  • FIG. 15 is a schematic cross-sectional view of an elastic member according to an embodiment of the present invention.
  • an electric field unit is provided, the electric field unit has a channel extending in an axial direction, a side wall is formed around the channel, and the side wall is provided with an air inlet hole for gas entering the channel and an air outlet hole for gas discharging the channel .
  • the gas does not flow in the axial direction of the channel, it can be understood that the gas does not flow from one end of the channel to the other end of the channel along the axial direction of the channel; the gas enters the channel through the air inlet, and then passes through the channel. Air outlet vent channel.
  • the above electric field unit can be used as the adsorption electrode of the electric field device.
  • the discharge electrode of the electric field device is discharged and ionized. After the particles in the gas are combined with the charged ions, the particles in the gas are charged, and the charged particles move to the adsorption electrode.
  • the invention increases the residence time of the gas in the electric field, can improve the charging efficiency of the particles, and more particles are deposited on the adsorption electrode, thereby improving the dust removal efficiency.
  • the gas flow in the channel can be disordered, which further increases the residence time of the gas in the electric field. Increase the frequency of close contact with the discharge electrode, improve the charging efficiency and charging amount of particulate matter; and when the gas forms a cyclone flow direction, it is conducive to the separation of large particles. Combining the above two points, it can effectively improve the dust removal efficiency.
  • the particulate matter includes, but is not limited to, solid particles, droplets, solid particles with liquid attached, aerosols, plasma solid particles or droplets, etc., and may also be microorganisms such as bacteria and fungi.
  • the electric field device 20 includes a discharge electrode 209 and an adsorption electrode 200.
  • the adsorption electrode 200 is composed of an electric field adsorption device.
  • the adsorption electrode 200 is also called an electric field Adsorption device 200 .
  • the electric field adsorption device 200 includes twelve electric field units 2000.
  • the twelve electric field units 2000 are arranged adjacent to each other.
  • the adjacent electric field units 2000 share one side wall.
  • the cross section perpendicular to the axial direction is an equilateral triangle.
  • the number of electric field units in the electric field adsorption device is not limited to this, and the number of electric field units can be adjusted according to the actual gas volume that needs to be purified, and,
  • the arrangement of the plurality of electric field units may be adjacent and/or non-adjacent in any direction of up, down, left, right, front, and back.
  • the structure and shape of the twelve electric field units are the same.
  • the structure and size of the plurality of electric field units may also be determined according to the storage conditions of the device space or other factors. not the same, and may also be partially the same.
  • the first electric field unit 2100 has a first channel 2110 extending along the axial direction, the axial direction is the same as the direction of the central axis of the electric field unit 2100 extending along the direction of the first channel 2110 , and a side wall 2120 is formed around the first channel 2110 .
  • the wall 2120 is provided with a first air inlet hole 213 for the gas inlet channel 2110 and a first air outlet hole 214 for the gas discharge channel.
  • the number of the first air inlet hole 213 and the first air outlet hole 214 is multiple, preferably,
  • the plurality of first air inlet holes 213 and the plurality of first air outlet holes 214 have the same aperture size, the plurality of first air inlet holes 213 are evenly arranged in a row on the first side wall 2121 in the axial direction, and the plurality of first air outlet holes 214 It is evenly arranged in a row on the second side wall 2122 in the axial direction, there are no air inlet holes or air outlet holes on the third side wall 2123, and the hole centers of the first air inlet holes 213 and the first air outlet holes 214 are arranged at on different planes perpendicular to the axis.
  • the first electric field unit 2100 and the second adsorption unit 2200 share the second side wall 2122 , and two surfaces of the second side wall 2122 face the first channel 2110 of the first electric field unit 2100 and the second channel of the second electric field unit 2200 respectively.
  • the first air outlet 214 on the second side wall 2122 of the first adsorption unit 2100 is used as the second air inlet hole of the second side wall 2122 of the second adsorption unit 2200, so as to ensure the gas from the first
  • the electric field unit 2100 directly enters the second electric field unit 2200
  • the fourth side wall 2222 of the second adsorption unit 2200 has a plurality of second air outlets 224 uniformly arranged in a row along the axial direction
  • the 2223 has no air inlet and/or air outlet.
  • each discharge electrode 209 is arranged in the channel of the corresponding electric field unit 2000 . Since the channel of each electric field unit 2000 is surrounded by the side wall and forms an equilateral triangle, the cross section perpendicular to the axial direction, the discharge electrode 209 It is preferably arranged parallel to the side wall of the channel and passing through the center of the inscribed circle of the cross-section of the electric field unit 2000 corresponding thereto, where the discharge efficiency is the highest. It should be noted that the cross section here refers to the cross section of the electric field unit 2000 perpendicular to the axial direction of the channel.
  • the first discharge electrode 219 is disposed in the channel of the first electric field unit 2100, and is preferably disposed parallel to the sidewall of the channel and passes through the center of the inscribed circle of the cross section of the first electric field unit 2100.
  • the relationship between the other discharge electrodes and the electric field unit is similar, and will not be described in detail here.
  • all the electric field units 2000 are electrically connected to the same pole of the power supply, and all the discharge electrodes 209 are electrically connected to the other pole of the power supply.
  • the unit 2100 is electrically connected to the anode of the power supply, and the first discharge electrode 219 is electrically connected to the cathode of the power supply; and the second electric field unit 2200 is electrically connected to the anode of the power supply, and the second discharge electrode 229 is electrically connected to the cathode of the power supply connect.
  • the first electric field unit 2100 and the first discharge electrode 219 form a first electric field
  • the second electric field unit 2200 and the second discharge electrode 229 form a second electric field.
  • the plurality of electric field units may be divided into two groups, the two groups of electric field units are arranged in more than two rows and combined together, the electric field units of each row are in the same group, and the electric field units of the first group are combined with
  • the anode of the power supply is electrically connected, and the corresponding first group of discharge electrodes is electrically connected to the cathode of the power supply;
  • the second group of electric field units is electrically connected to the cathode of the power supply, and the corresponding second group of discharge electrodes is electrically connected to the anode of the power supply Electrical connection.
  • the particles in the gas will acquire negative and positive charges respectively, so that the The negatively charged particles are deposited on the first group of electric field units, and the positively charged particles in the gas are deposited on the second group of electric field units, thereby improving the dust removal efficiency.
  • the gas directions of the other electric field units are similar to the second, and will not be described in detail. Since the hole centers of the first air inlet holes 213 and the first air outlet holes 214 in the first electric field are arranged on different planes perpendicular to the axial direction, the hole centers of the second air inlet holes and the second air outlet holes 224 are arranged in the second electric field On different planes perpendicular to the axial direction, the gas flow direction of the gas passing through the first electric field and the second electric field is disordered, which further increases the residence time of the gas in the two electric fields, and increases the distance between the first discharge electrode 219 and the second discharge electrode 219 and the second electric field.
  • the frequency of contact of the discharge electrode 229 the closer the distance to the discharge electrode 209, the higher the gas ionization efficiency, which improves the charging efficiency and charge amount of the particulate matter; and when the gas forms a cyclone flow direction, it is conducive to the separation of large particles. Combining the above two points , effectively improve the dust removal efficiency.
  • an air inlet hole can also be opened on the fifth side wall 2223 of the second electric field unit 2200 , so that the air flow of the second electric field unit 2200 and the third electric field unit 2300 communicate with each other, and the gas can flow from the third electric field unit 2300 flow to the second electric field unit 2200 .
  • the side wall of each electric field unit may be provided with air inlet holes or air outlet holes, so that the gas of each electric field unit may originate from a plurality of adjacent electric field units, or may flow to a plurality of adjacent electric field units.
  • the gas flow direction is highly turbulent, and the air flow near the discharge electrode increases, which increases the charging efficiency and charging amount of the particles in the gas, and improves the dust removal efficiency.
  • FIG. 2A is a schematic perspective view of an electric field unit according to an embodiment of the present invention
  • the electric field unit 710 has a channel 711 extending in the axial direction, a side wall 712 is formed around the channel 711, and the side wall 712 is provided with an inlet for gas to enter the channel 711
  • the air hole 713 and the air outlet hole 714 of the gas supply and discharge passage 711, the hole center of the air inlet hole 713 and the hole center of the air outlet hole 714 are arranged on different planes perpendicular to the axial direction.
  • the electric field unit 710 has a channel 711 extending in the axial direction, which is the same as the direction of the central axis of the electric field unit 710 extending in the channel direction.
  • Three sidewalls 712 are formed around the channel 711 , including a first sidewall 7121 , a second sidewall 7122 and a third sidewall 7123 .
  • the first sidewall 7121 , the second sidewall 7122 and the third sidewall 7123 are along the electric field unit 710
  • the axial lengths of the channels 711 are equal, and the cross section of the channel 711 surrounded by the first side wall 7121, the second side wall 7122 and the third side wall 7123 is preferably an equilateral triangle, and the cross section refers to a cross section perpendicular to the axial direction.
  • the electric field unit may also include more than three side walls, for example, the electric field unit may include three, four, five or six, or even more side walls, and the channel is surrounded by the side walls to form
  • the cross-section can be triangular, quadrilateral, pentagonal, or hexagonal, as well as other polygons.
  • the cross section of the channel surrounded by the side wall is a regular polygon; the electric field unit may also include only one side wall, that is, the cross section of the channel surrounded by the side wall is a circle or an ellipse;
  • the inner angle of the section of the regular polygon surrounded by the sidewall is an integer divisor of 360, which facilitates 360-degree seamless splicing of a plurality of electric field units in one plane, and simplifies the manufacturing process; more preferably, the channel is surrounded by the sidewall to form a shape.
  • the cross section is a regular triangle or a regular hexagon.
  • the first sidewall 7121 , the second sidewall 7122 and the third sidewall 7123 have sidewall bodies and folds formed by bending the sidewall bodies along two ends perpendicular to the channel respectively.
  • the connecting piece is arranged on the folded portion of the two adjacent side walls to fixedly connect the two adjacent side walls. Because the side walls connected by the connector can not only achieve standardized and mass production, convenient processing and high efficiency, but also the connector connection has the advantages of simple assembly, detachable and convenient packaging and transportation.
  • the first side wall 7121 has a first side wall body 71211 and a first side wall left folded portion 71212 and a first side wall right folded portion 71213 formed by bending from both ends of the first side wall body 71211, respectively
  • the second side wall 7122 has a second side wall body 71221 and a second side wall left folded portion 71222 and a second side wall right folded portion 71223 respectively formed by bending two ends of the second side wall body 71221.
  • the third side wall The 7123 has a third sidewall body 71231 and a third sidewall left folded portion 71232 and a third sidewall right folded portion 71233 formed by bending from both ends of the third sidewall body 71231, respectively.
  • the left folded portion 71212 of the first side wall and the right folded portion 71213 of the first side wall are parallel to each other, the left folded portion 71222 of the second side wall and the right folded portion 71223 of the second side wall are parallel to each other, and the left folded portion 71232 of the third side wall is parallel to each other.
  • the right folded edge portion 71233 of the third side wall is parallel to each other and perpendicular to the third side wall main body 71231 . It should be noted that the "left” and "right” here are only for distinguishing the two folded edge portions, and do not constitute a limitation on the orientation.
  • each side wall extends along the extending direction of the channel 711 , and the folded portions of two adjacent side walls are aligned and matched and connected by connecting pieces, so that the folded portions and the connecting pieces connect the
  • the two adjacent side walls are fixedly connected.
  • a plurality of through holes 718 arranged along the extending direction of the channel are respectively provided on each folded edge portion, and the connecting piece is inserted through the through holes 718 and fixed, so as to fixedly connect the adjacent side walls.
  • through holes 718 are respectively provided in each folded edge portion along both ends of the channel.
  • through-hole connectors are provided at the ends of each folded portion, which may be rivets, screws, etc., and the two adjacent side walls are connected by rivets, bolts, screws, and the like.
  • two adjacent side walls are riveted in turn by rivets.
  • the first side wall right folded portion 71213 of the first side wall 7121 and the second side wall right folded portion 71223 of the second side wall 7122 are riveted by rivets 99 to form a connection top .
  • the left folded edge portion 71222 of the second side wall 7122 and the left folded edge portion 71232 of the third side wall 7123 are riveted by rivets 99 to form a first connection bottom end.
  • the left edge portion 71212 of the first side wall 7121 and the right edge portion 71233 of the third side wall 7123 are riveted by rivets 99 to form a second connection bottom end.
  • the side wall 712 is provided with an inlet hole 713 for supplying gas into the passage 711 and an outlet hole 714 for supplying gas out of the passage 711 , and the inlet hole 713 and the outlet hole 714 are preferably arranged in different
  • the air inlet hole 713 is arranged on the third side wall 7123
  • the air outlet hole 714 includes a first air outlet hole 7141 and a second air outlet hole 7142
  • the first air outlet hole 7141 is arranged on the first side wall 7121
  • the first air outlet hole 7141 is arranged on the first side wall 7121.
  • Two air outlet holes 7142 are arranged on the second side wall 7122 .
  • the three side walls of the electric field unit 710 are all arranged with air inlet holes 713 or air outlet holes 714, however, it should be understood that in other embodiments, the air inlet holes and/or the air outlet holes may be arranged in On a part of the side wall of the electric field unit, for example, the air inlet hole 713 is arranged on the third side wall 7123, the first air outlet hole 7141 is arranged on the first side wall 7121, and the second air outlet hole is no longer arranged on the second side wall 7122 7142, or the air inlet hole 713 is arranged on the third side wall 7123, the second air outlet hole 7142 is arranged on the second side wall 7122, and the first air outlet hole 7141 is no longer arranged on the first side wall 7121.
  • the air inlet holes and the air outlet holes can also be arranged at different positions of the same side wall, for example, the air inlet holes are arranged in the upper part of the side wall, the air outlet holes are arranged in the lower part of the side wall, or the air inlet holes are arranged in the lower part of the side wall.
  • the holes are arranged on the left side of the side wall, and the air outlet holes are arranged on the right side of the side wall. It should be understood by those skilled in the art that the positions of the air inlet holes and the air outlet holes are not limited to the manners listed above.
  • At least one side wall of the plurality of side walls is not provided with an air inlet or air outlet hole on a center line extending along the channel direction, and the distance between the center line on the side wall and the channel center line is the shortest .
  • the air inlet holes or the air outlet holes are not provided within the range of 2-50 mm on both sides of the midline extending along the channel direction of each side wall.
  • the side walls where the air inlet holes are provided for example, the third side wall 7123 is provided with a plurality of air inlet holes 713 ; the side walls where the air outlet holes are provided, such as the first side wall 7121 and the second side wall 7122 , are provided with multiple A vent hole 714.
  • the plurality of air inlet holes 713 are evenly arranged in two rows on the third side wall 7123 in the axial direction, the plurality of first air outlet holes 7141 are evenly arranged in two rows on the first side wall 7121 in the axial direction, and the plurality of second outlet holes 7141 are evenly arranged in two rows on the first side wall 7121 in the axial direction.
  • the air holes 7142 are evenly arranged in two rows on the second side wall 7122 in the axial direction.
  • two rows of air inlet holes and/or air outlet holes are respectively arranged on both sides of the midline of the side wall.
  • a plurality of first air inlet holes 7141 are arranged in two rows and are arranged at a certain distance from the midline of the first side wall 7121.
  • Two rows of first air intake holes 7141 are preferably arranged symmetrically to the centerline of the first side wall 7121.
  • a plurality of air intake holes and/or air outlet holes can also be arranged in the axial direction.
  • the air inlet holes and/or the air outlet holes can also be arranged on the side wall in a non-uniform form.
  • the plurality of air inlet holes 713 are arranged from one end of the third side wall 7123 to the other end of the third side wall 7123 in the axial direction
  • the plurality of first air outlet holes 7141 are axially arranged from one end of the first side wall 7121 to the other end of the third side wall 7123
  • One end is arranged to the other end of the first side wall 7121
  • the plurality of second air outlet holes 7142 are arranged from one end of the second side wall 7122 to the other end of the second side wall 7122 in the axial direction.
  • the air intake holes or the air outlet holes can also be distributed in a part of the side wall along the axial direction.
  • FIG. 2B is a C-direction view of the electric field unit of FIG. 2A.
  • the center of the air inlet hole 713 and the center of the air outlet hole 714 are arranged on different planes perpendicular to the axial direction, that is, the air inlet
  • the line connecting the hole center of the hole 713 and the hole center of the air outlet hole 714 is not perpendicular to the axial direction.
  • This structure allows the gas to enter the inner channel of the electric field unit 710 through the gas inlet hole 713 when the gas is fed in a direction not parallel to the side wall of the electric field unit, and the gas cannot be directly discharged through the gas outlet hole, so that the gas flow direction is disordered, and the increase in the gas flow in the channel
  • the residence time is longer, and even a cyclone gas flow direction is formed, and then the electric field unit 710 is discharged through the air outlet 714 .
  • the hole center of the air inlet hole 713 and the hole center of the first air outlet hole 7141 and the second air outlet hole 7142 are arranged on different planes perpendicular to the axial direction.
  • the hole cores can be arranged on the same plane perpendicular to the axial direction, or can be arranged on different planes perpendicular to the axial direction.
  • the number of the air inlet holes 713 and the air outlet holes 714 is multiple, preferably, the hole center of any one air inlet hole and the hole center of any one air outlet hole are arranged on different planes perpendicular to the axial direction.
  • the air inlet hole 713 and the air outlet hole 714 are circular holes with the same diameter.
  • the inlet and outlet holes may be elliptical holes, triangular holes, quadrangular holes or pentagonal holes; the diameters of the inlet holes and the gas outlet holes may also be different, but it is necessary to ensure that the gas cannot be unobstructed direct discharge through the air outlet, i.e.
  • the air inlet and air outlet do not completely overlap or one air inlet/outlet completely contains the other air outlet or air inlet, thus It is ensured that the gas will encounter obstacles when flowing, so that when the air flows in and out of the air outlet, the air changes its direction and forms a cyclone path in the channel, and then discharges the electric field unit through the air outlet.
  • the ratio of the total area of the air inlet holes or the air outlet holes on one side wall to the total area of the side wall is less than or equal to a certain value.
  • the side wall is made of a conductive material, for example, a material containing stainless steel and/or aluminum.
  • the aluminum material has the advantage of low energy consumption.
  • the electric field device 700 includes a discharge electrode 719 and an adsorption electrode 710.
  • the adsorption electrode 710 is composed of electric field units.
  • the adsorption electrode 710 can also be called as It is the electric field unit 710, and the similarities between the electric field unit and the above will not be repeated, and only the differences will be described in this embodiment.
  • the channel 711 of the electric field unit 710 is provided with a discharge electrode 719.
  • the cross-section of the channel 711 surrounded by the sidewall and perpendicular to the axial direction is an equilateral triangle, and the discharge electrode 719 is preferably parallel to the channel.
  • the sidewall of and passes through the center of the inscribed circle of the section, where the discharge efficiency is the highest.
  • the cross-section perpendicular to the axial direction of the channel surrounded by the sidewalls may be other polygons, and the discharge electrodes are arranged parallel to the sidewalls of the channel and pass through the centerline of the channel, which is along the channel A line extending in the axial direction and passing through the midpoint of the polygonal cross-section.
  • the centerline is the line extending in the axial direction of the channel and passing through the long-side symmetry axis of the rectangular cross-section. Line of intersection with the axis of symmetry of the short side.
  • the centerline is a line extending along the axial direction of the channel and passing through the intersection of the angle bisectors of the triangular section.
  • the discharge electrode is arranged parallel to the side wall of the channel and passes through the center of the inscribed circle of the section. It can be understood by those skilled in the art that, due to the limitation of actual processing conditions, the discharge electrode may be arranged at a position slightly deviated from the centerline of the channel or the center of the inscribed circle of the cross-section.
  • the discharge electrode 719 is an elongated needle-shaped conductor. In other embodiments, the discharge electrode can also be a polygonal, burr-shaped, threaded rod-shaped or columnar conductor. In this embodiment, the diameter of the discharge electrode 719 is 0.1-10 mm, preferably, the diameter of the discharge electrode 719 is 0.2-5 mm.
  • the discharge electrode 719 is elongated and made of any one of 304 stainless steel, titanium, tungsten, and iridium.
  • the discharge electrode is made of iridium.
  • the electric field unit 710 is electrically connected to one electrode of the power supply
  • the discharge electrode 719 is electrically connected to the other electrode of the power supply
  • the electric field unit 710 and the discharge electrode 719 form an active electric field.
  • the anode is electrically connected
  • the discharge electrode 719 is electrically connected to the cathode of the power supply, that is, the electric field unit 710 is the anode
  • the discharge electrode 719 is the cathode.
  • the electric field unit 710 may also be electrically connected to the cathode of the power source
  • the discharge electrode 719 may be electrically connected to the anode of the power source, that is, the electric field unit 710 is the cathode and the discharge electrode 719 is the anode.
  • the gas is fed in a direction not parallel to the side wall of the electric field unit 710, and the discharge electrode 719 is discharged and ionized, causing the gas
  • the negatively charged particles acquire negative charges, and the negatively charged particles move toward the electric field unit 710 and deposit on the electric field unit 710 .
  • the center of the air inlet hole and the center of the air outlet hole on the side wall of the electric field unit 710 are arranged on different planes perpendicular to the axial direction, the flow direction of the gas in the channel 711 can be disordered, which further increases the amount of gas in the channel 711.
  • FIG. 4A is a schematic perspective view of an electric field device according to an embodiment of the present invention.
  • the electric field device 80 includes a discharge electrode and an adsorption electrode.
  • the similarities between the adsorption electrode and the discharge electrode are not repeated, and only the differences are described in this embodiment.
  • the adsorption electrode is composed of an electric field adsorption device 800 .
  • the electric field adsorption device 800 includes eight electric field units, which are a first electric field unit 810 , a second electric field unit 820 , a third electric field unit 830 , a fourth electric field unit 840 , a fifth electric field unit 850 , a sixth electric field unit 860 , and a seventh electric field unit 860 .
  • the electric field unit 870 and the eighth electric field unit 880, the eight electric field units are arranged adjacent to each other on the left and right, the adjacent electric field units share one side wall, and the channel of each electric field unit is surrounded by the side wall to form a section perpendicular to the axial direction It is an equilateral triangle.
  • the number of electric field units in the electric field adsorption device is not limited to this.
  • the number of electric field units can be adjusted according to the actual air volume that needs to be purified.
  • the arrangement of multiple electric field units The adjacent arrangement and/or the non-adjacent arrangement can be performed in any direction of up, down, left, right, front and rear.
  • the structures and shapes of the eight electric field units are all the same.
  • the structures, structures and sizes of the plurality of electric field units may vary according to the storage conditions of the device space or other factors. may be different or partially the same.
  • the discharge electrode 809 includes a first discharge electrode 819, a second discharge electrode 829, a third discharge electrode 839, a fourth discharge electrode 849, a fifth discharge electrode 859, a sixth discharge electrode 869, a seventh discharge electrode 879,
  • the eighth discharge electrode 889, each discharge electrode is arranged in the channel of the corresponding electric field unit, because the channel of each electric field unit is surrounded by the side wall and the cross section perpendicular to the axial direction is an equilateral triangle, the discharge electrode 809 is preferably It is arranged parallel to the side wall of the channel and passes through the center of the inscribed circle of the corresponding electric field unit cross-section, where the discharge efficiency is the highest.
  • the first discharge electrode 819 is disposed in the channel of the first electric field unit 810, preferably parallel to the side wall of the channel and passing through the center of the inscribed circle of the cross section of the first electric field unit 810, and so on, and so on. Relationship.
  • the first electric field unit 810 includes a first channel 811 extending in the axial direction, and a side wall 812 is formed around the first channel 811.
  • the first air outlet 814 of a channel 811 has a plurality of first air inlet holes 813 and first air outlet holes 814 , and the plurality of first air inlet holes 813 are evenly arranged in two rows on the first side wall 8121 in the axial direction.
  • the plurality of first air outlet holes 814 are evenly arranged in two rows on the second side wall 8122 in the axial direction, and there are no air inlet holes or air outlet holes distributed on the third side wall 8123.
  • the hole centers of the first air outlet holes 814 are arranged on different planes perpendicular to the axial direction.
  • the first electric field unit 810 and the second electric field unit 810 share the second side wall 8122, and two surfaces of the second side wall 8122 face the first channel 811 of the first electric field unit 810 and the second channel of the second electric field unit 820, respectively.
  • the first air outlet 814 on the second side wall 8122 of the first electric field unit 810 is used as the second air inlet hole of the second side wall 8122 of the second electric field unit 820, so as to ensure the gas from the first
  • the electric field unit 810 directly enters the second electric field unit 820
  • the fourth side wall 8222 of the second electric field unit 820 has a plurality of second air outlets 824 uniformly arranged in two rows along the axial direction
  • the fifth side of the second electric field unit 820 The wall 8223 has no air inlet and/or air outlet.
  • all electric field units are electrically connected to the same pole of the power supply, and all discharge electrodes are electrically connected to the other pole of the power supply.
  • the first electric field unit 810 and the second electric field unit 820 as an example, the first electric field unit 810 is electrically connected to the anode of the power supply, the first discharge electrode 819 is electrically connected to the cathode of the power supply; the second electric field unit 820 is electrically connected to the anode of the power supply, and the second discharge electrode 829 is electrically connected to the cathode of the power supply sexual connection.
  • the first electric field unit 810 and the first discharge electrode 819 form a first electric field
  • the second electric field unit 820 and the second discharge electrode 829 form a second electric field
  • the plurality of electric field units are divided into two groups, the two groups of electric field units are arranged in more than two rows and combined together, the electric field units of each row are in the same group, and the first group of electric field units and the power supply
  • the anode of the power supply is electrically connected, and the corresponding first group of discharge electrodes is electrically connected to the cathode of the power supply;
  • the second group of electric field units is electrically connected to the cathode of the power supply, and the corresponding second group of discharge electrodes is electrically connected to the anode of the power supply.
  • the particles in the gas will acquire negative and positive charges respectively, and the particles in the gas will be charged. Negatively charged particles are deposited on the first group of electric field units, and particles that are easily and positively charged in the gas are deposited on the second group of electric field units, thereby improving the dust removal efficiency.
  • the gas directions of the first electric field unit 810 and the second electric field unit 820 are deduced by analogy.
  • the gas enters the first electric field through the first air inlet hole 813 , then enters the second electric field through the first air outlet hole 814 , and finally is discharged through the second air outlet hole 824 .
  • the hole center of the second gas outlet hole 824 is arranged on a different plane perpendicular to the axial direction, and the gas flow direction of the gas passing through the first electric field and the second electric field is disordered, which further increases the residence time of the gas in the two electric fields, and increases nearly
  • an air inlet hole is provided on the fifth side wall 8223 of the second electric field unit 820 , so that the air flow of the second electric field unit 820 and the third electric field unit 830 communicate with each other, and the gas can flow from the third electric field unit 830 to the second electric field unit 830 Electric field unit 820 .
  • the side wall of each electric field unit may be provided with air inlet holes or air outlet holes, so that the gas of each electric field unit may originate from a plurality of adjacent electric field units, or may flow to a plurality of adjacent electric field units.
  • the gas flow direction is highly turbulent, and the air flow near the discharge electrode increases, which increases the charging efficiency and charging amount of the particles in the gas, and improves the dust removal efficiency.
  • the electric field device 80 further includes a top plate 81 and a bottom plate 82.
  • the top plate 81 and the bottom plate 82 are respectively connected to the two ends of the electric field adsorption device 800, that is, to the electric field adsorption device 80 respectively. Both ends of each electric field unit are sealed, so as to ensure that the gas only enters and exits from the air inlet or air outlet of each electric field unit.
  • the top plate 81 and the bottom plate 82 are only for the convenience of description and are not intended to limit their orientations.
  • the top plate 81 does not need to be located at the top, and the bottom plate 82 does not need to be located at the bottom.
  • the placement orientation of 80 is set at both ends of the electric field adsorption device 800 to seal the channel of each electric field unit.
  • the electric field unit assembly 900 includes an electric field unit 910 and an auxiliary adsorption mechanism 920.
  • the electric field unit 910 has a channel 911 extending in the axial direction, and a side wall is formed around the channel 911 912, the side wall 912 is provided with an air inlet hole for the gas inlet channel and an air outlet hole for the gas discharge channel, the auxiliary adsorption mechanism 920 has a porous structure and is arranged on one side of at least a part of the side wall 912 of the electric field unit 910, the At least a part is provided with air inlet holes and/or air outlet holes.
  • the same points of the electric field unit as above will not be repeated, and only the differences will be described in this embodiment.
  • the side wall 912 of the electric field unit 910 includes an inner surface 9121 of the side wall and an outer surface 9122 of the side wall.
  • the auxiliary adsorption mechanism 920 is preferably arranged in the electric field unit 910 provided with air inlets and/or On one side of the entire outer surface 9122 of the side wall 912 of the air outlet, the gas passes through in a manner that is not parallel to the side wall 912 of the electric field unit 910, and the auxiliary adsorption mechanism 920 of the porous structure can be physically filtered at the intake end and the gas outlet.
  • the auxiliary adsorption mechanism can also be arranged on a part of the inner surface and/or the outer surface of the electric field unit provided with the side walls of the air inlet and/or the air outlet. side.
  • the auxiliary adsorption mechanism 920 is adhered to the entire outer surface 9122 of the side wall 912 of the electric field unit 910 in an adhesive manner.
  • the adhesion can be understood as the theoretical relationship between the auxiliary adsorption mechanism 920 and the electric field unit 910 There is no gap.
  • the bonding method can also be selected from mortise and tenon fixing, rivet fixing or other mechanical fixing methods, wherein mortise and tenon fixing can be, firstly, the auxiliary adsorption mechanism is fixed on the frame, and then the frame is attached to the frame.
  • the electric field unit is fixed by tenon and mortise.
  • those skilled in the art can understand that, due to the limitation of actual processing conditions, there may be a certain gap when the auxiliary adsorption mechanism 920 is attached to the side wall 912 of the electric field unit 910, and the gap can be ignored. .
  • the auxiliary adsorption mechanism 920 is composed of a 60-mesh polytetrafluoroethylene film. Since polytetrafluoroethylene is an electret material, when the electret material is electretically charged by the electric field, the electret material itself The electret electric field can electrostatically adsorb charged particles, and when the electric field suddenly disappears, the electret electric field will not disappear, and the dust removal can continue.
  • the aperture of the auxiliary adsorption mechanism can also be selected from one or more of 40 meshes to 100 meshes. The finer the aperture, the greater the wind resistance of the gas and the greater the energy consumption.
  • the aperture of the auxiliary adsorption mechanism It can also be selected from one or more of 40 meshes to 80 meshes; it can also be a combination of multi-layer films, and the porous structures overlap and penetrate each other.
  • the material of the auxiliary adsorption mechanism may be selected from one or more of conductive materials or electret materials, wherein the conductive material may be selected from one or more of metals or alloys, and the electret material may be selected from From inorganic compounds with electret properties and/or organic compounds with electret properties, the inorganic compounds are selected from silica, barium titanate, lead zirconate titanate, zinc oxide, tantalum oxide, aluminum oxide, titanium oxide, One or more combinations of silicon nitride, the organic compound is selected from one or more of fluorocarbon polymer, polycarbonate, polypropylene, polyethylene, polyvinyl chloride, natural wax, resin, rosin In combination, the fluorocarbon polymer is selected from one or more combinations
  • An embodiment of the present invention provides an electric field unit assembly, and the similarities between the electric field adsorption assembly and the above will not be repeated, and only the differences will be described in this embodiment.
  • the electric field adsorption assembly includes an electric field unit and an auxiliary adsorption mechanism, the electric field unit is provided with an air inlet hole for gas entry and/or an air outlet hole for gas discharge, and the auxiliary adsorption mechanism has a porous structure and is arranged on at least a part of the side wall of the electric field unit. On one side, the at least one part is provided with the air inlet hole and/or the air outlet hole.
  • there is a distance between the auxiliary adsorption mechanism and at least a part of the electric field unit that is less than or equal to 50mm, and the gas in the space will be mixed again.
  • the mixed gas is further removed by the electric field unit or the auxiliary adsorption mechanism.
  • the auxiliary adsorption mechanism may also be attached to at least a part of the surface of the side wall of the electric field unit.
  • the electric field unit can be in the shape of a flat plate.
  • the flat electric field unit can be used as one pole for forming the electric field, and has an inner surface facing the other pole of the electric field and an outer surface opposite to the inner surface.
  • the auxiliary adsorption mechanism is arranged in the flat electric field.
  • a flat electric field unit is used as an anode for forming an electric field.
  • the gas passes through in a manner that is not parallel to the side wall of the electric field unit, and the auxiliary adsorption mechanism of the porous structure can filter out a part of the particles in the gas at the inlet and outlet ends by means of physical filtration.
  • the auxiliary adsorption mechanism is composed of an electret material
  • the electret electric field of the electret material itself can electrostatically adsorb the charged particles, and when the electric field suddenly disappears, the electret electric field It won't disappear either, and you can continue to dust off.
  • the electric field adsorption device 1000 includes 8 electric field units and an auxiliary adsorption mechanism 1020.
  • the electric field unit has a channel extending in the axial direction, and a side wall is formed around the channel.
  • the side wall is provided with an air inlet hole for the gas inlet channel and an air outlet hole for the gas discharge channel
  • the auxiliary adsorption mechanism 1020 has a porous structure and is arranged on one side of at least a part of at least one side wall 1010 of at least one electric field unit , the at least one part is provided with the air inlet hole and/or the air outlet hole
  • the auxiliary adsorption mechanism 1020 is composed of a 60-mesh polytetrafluoroethylene film.
  • the sidewall 1010 of the electric field adsorption device 1000 includes a first-type sidewall 1011 and a second-type sidewall 1012 , a channel is arranged on one side of the first-type sidewall 1011 , and a channel is arranged on each side of the second-type sidewall 1012 ,
  • the first type side wall 1011 has an inner surface facing the channel and an outer surface opposite to the inner surface, and the auxiliary adsorption mechanism 1020 is arranged on one side of at least a part of the outer surface of the first type side wall 1011 .
  • the auxiliary adsorption mechanism 1020 is arranged on one side of at least a part of the outer surface of the first type side wall 1011 and there is a gap between the auxiliary adsorption mechanism 1020 and the outer surface of the first type side wall 1011 , preferably, The distance between the auxiliary adsorption mechanism 1020 and the outer surface of the first type side wall 1011 is less than or equal to 50 mm. The gas in this distance space will be mixed again, and the mixed gas will then be removed by the electric field unit or the auxiliary adsorption mechanism.
  • the auxiliary adsorption mechanism 1020 is disposed in contact with at least a part of the outer surface of the first type side wall 1011 .
  • the electric field adsorption device has 10 first-type side walls 1011 , among which there are 8 first-type side walls 1011 provided with air inlet holes and/or air outlet holes, and the 8 auxiliary adsorption mechanisms 1020 are respectively arranged in 8 One side of the outer surface of the first type side wall 1011 provided with air inlet and/or air outlet holes.
  • the auxiliary adsorption mechanism may also be disposed on one side of at least a part of the surface of the second type side wall. Preferably, there is a certain distance between the auxiliary adsorption mechanism and at least a part of the surface of the second type side wall. Distance; preferably, there is a distance less than or equal to 50mm between the auxiliary adsorption mechanism and at least a part of the surface of the second type side wall. In other embodiments, the auxiliary adsorption mechanism is disposed in contact with at least a portion of the surface of the second type of sidewall.
  • the electric field adsorption device 1100 includes 12 electric field units and an auxiliary adsorption mechanism 1120. In other embodiments, the electric field adsorption device 1100 may only include 12 electric fields. unit.
  • the electric field unit has a channel extending in the axial direction, and a side wall 1110 is formed around the channel. The side wall 1110 is provided with an air inlet hole for the gas inlet channel and an air outlet hole for the gas discharge channel.
  • the auxiliary adsorption mechanism 1120 has a porous structure and is arranged At least one side of at least one side wall 1110 of at least one electric field unit is provided with the air inlet hole or the air outlet hole, and the auxiliary adsorption mechanism 1020 is made of a 60-mesh polytetrafluoroethylene film.
  • the electric field unit, the auxiliary adsorption mechanism, and the electric field adsorption method device are not repeated here, and only the differences are described in this embodiment.
  • the sidewall 1110 of the electric field adsorption device 1100 includes a first-type sidewall 1111 and a second-type sidewall 1112 , a channel is arranged on one side of the first-type sidewall 1111 , and a channel is arranged on each side of the second-type sidewall 1112 ,
  • the first type side wall 1111 has an inner surface facing the channel and an outer surface opposite to the inner surface.
  • the auxiliary adsorption mechanism 1120 is arranged on one side of the outer surface of the first type side wall 1111.
  • the auxiliary adsorption mechanism 1120 Arranged on one side of at least a part of the outer surface of the first type side wall 1111 and there is a gap between the auxiliary adsorption mechanism 1120 and the outer surface of the first type side wall 1111, preferably, the auxiliary adsorption mechanism 1120 is arranged on the first type side There is a distance between one side of at least a part of the outer surface of the wall 1111 and the auxiliary adsorption mechanism 1120 and the outer surface of the first type side wall 1111 of less than or equal to 50 mm. The gas in this distance space will be mixed again, and the mixed gas will then be removed by the electric field unit or the auxiliary adsorption mechanism.
  • the auxiliary adsorption mechanism 1120 is disposed in contact with at least a part of the outer surface of the first type side wall 1111 .
  • the two auxiliary adsorption mechanisms 1120 are respectively arranged in an integral form on one side of the outer surface of the first type side wall 1111 provided with the air inlet holes or the air outlet holes.
  • the auxiliary adsorption mechanism may also be disposed on one side of at least a part of the surface of the second type side wall, preferably, there is a gap between the auxiliary adsorption mechanism and the surface of the second type side wall; preferably, There is a distance between the auxiliary adsorption mechanism and the surface of the second type side wall of less than or equal to 50 mm.
  • the auxiliary adsorption mechanism is disposed in contact with at least a portion of the surface of the second type of sidewall.
  • An embodiment of the present invention provides an electric field device, which includes a discharge electrode and an adsorption electrode.
  • the adsorption electrode is composed of the electric field adsorption component described in the above embodiment. Only the differences are described.
  • the discharge electrode can be composed of a slender or flat conductor, and is arranged on one side of the flat adsorption electrode. When the discharge electrode is a flat conductor, the side wall of the discharge electrode can be provided with a plurality of air holes for gas circulation.
  • the adsorption electrode can also be composed of an electric field unit component with a polygonal cross-section perpendicular to the axial direction in which the channel of the electric field unit is surrounded by the sidewall in the above embodiment, and the discharge electrode is arranged parallel to the sidewall of the channel and Passing through the centerline of the channel, the centerline is a line extending in the axial direction of the channel and passing through the midpoint of the polygonal cross-section.
  • the adsorption electrode is electrically connected with one pole of the power supply, and the discharge electrode is electrically connected with the other pole of the power supply.
  • the adsorption electrode is electrically connected to the anode of the power supply
  • the discharge electrode is electrically connected to the cathode of the power supply
  • the adsorption electrode and the discharge electrode form an electric field
  • the gas is fed in a direction not parallel to the side wall of the adsorption electrode, and a part of the gas
  • the particles are filtered by the auxiliary adsorption mechanism arranged on the side of the air inlet.
  • the particles that are not adsorbed by the electric field can also be filtered by the auxiliary adsorption mechanism arranged on the side of the side wall of the air outlet, which improves the dust removal efficiency.
  • the auxiliary adsorption mechanism is composed of an electret material, after the electret material is electretically charged by the electric field, the electret electric field of the electret material itself can electrostatically adsorb the charged particles, and when the electric field suddenly disappears, the electret electric field It will not disappear, and you can continue to dust it.
  • An embodiment of the present invention provides an electric field device, which includes a discharge electrode and an adsorption electrode.
  • the adsorption electrode is composed of the electric field adsorption device described in the above embodiment.
  • the electric field adsorption device and the electric field device are not repeated here. In this embodiment, only the differences are described.
  • the discharge electrode is arranged in the channel of each electric field unit in the electric field adsorption device.
  • the cross section perpendicular to the axial direction formed by the channel is a regular polygon
  • the discharge electrode is arranged parallel to the side wall of the channel and passes through the cross section. The center of the inscribed circle, where the discharge efficiency is the highest.
  • the auxiliary adsorption mechanism of the porous material can filter out the particles in a part of the gas at the inlet and outlet ends by means of physical filtration, and the electric field can hold the electret material. After the electrode is charged, the electret electric field of the electret material can electrostatically adsorb the charged particles, and the dust removal efficiency is increased by 10-20% compared with the case without an auxiliary adsorption mechanism. Since PTFE is an electret material, when the active electric field suddenly disappears, the electret electric field of the auxiliary adsorption mechanism can also be used for dust removal. It can be seen from experiments that when the active electric field of the electric field adsorption device suddenly disappears, only the auxiliary adsorption The dust removal efficiency of the mechanism for dust removal can reach 30%.
  • the electric field adsorption device 800 is formed by connecting a plurality of electric field units through connectors.
  • the electric field adsorption device 800 is formed by connecting eight electric field units.
  • the electric field adsorption device 800 is composed of two rows of electric field units as a whole.
  • the row with the side wall facing the lower part is called the first row
  • the row with the side wall facing the upper part is referred to as the first row.
  • One row is called the second row.
  • the first row is formed by connecting the first electric field unit 810, the third electric field unit 830, the fifth electric field unit 850 and the seventh electric field unit 870 with the same size and structure in sequence through their respective sidewalls located at the bottom. parallel to each other and in the same plane.
  • the second row is formed by sequentially connecting the second electric field unit 820 , the fourth electric field unit 840 , the sixth electric field unit 860 and the eighth electric field unit 880 with the same size and structure through their respective top sidewalls.
  • the side walls of the first electric field unit 810 , the third electric field unit 830 , the fifth electric field unit 850 and the seventh electric field unit 870 which are located at the bottom, are all provided with folded edges, and each adjacent two The folded edges of the two electric field units located on the side walls of the bottom are aligned with each other, and two adjacent electric field units are fixedly connected by connecting the connecting pieces to the folded edges, for example, by using rivets to connect two adjacent electric field units.
  • the folded portion of the electric field unit is riveted to fixedly connect two adjacent electric field units. Riveting with rivets is not only convenient for processing. Moreover, the sealing performance is good.
  • the riveting not only provides good sealing performance between the mutually connected side walls, but also the rivet will expand in the rivet hole during riveting, so that the rivet and the hole also have high sealing performance.
  • the sidewalls of the second electric field unit 820 , the fourth electric field unit 840 , the sixth electric field unit 860 and the eighth electric field unit 880 located at the top are also provided with folded edges, and the folded edges of the two adjacent electric field units located at the top are also provided with folded edges.
  • the sides are aligned with each other, and two adjacent electric field units are fixedly connected by connecting the connecting piece on the folded side.
  • connection manner of adjacent electric field units is described by taking the connection manner of the first electric field unit 810 , the third electric field unit 830 and the fifth electric field unit 850 in the first row as an example.
  • the bottom side wall of the third electric field unit 830 is provided with a first folded edge portion 891 bent downward, and the bottom side wall of the first electric field unit 810 is provided with a second folded edge portion 892 bent downward.
  • the first electric field unit 810 and the third electric field unit 830 are fixedly connected by passing the connecting piece through the first folded edge portion 891 and the second folded edge portion 892, and the third electric field unit 830 is connected.
  • the bottom side wall of the electric field unit 830 is provided with a second folded edge portion 893 bent downward, and the bottom side wall of the fifth electric field unit 850 is provided with a first folded edge portion 894 bent downward.
  • the first hemming portion 894 and the second hemming portion 893 are used to fixedly connect the third electric field unit and the fifth electric field unit.
  • the respective first hemming portions of the plurality of electric field units and the second hemming portions of the adjacent units are preferably riveted by rivets.
  • the connection manner of the fifth electric field unit 850 and the seventh electric field unit 870 is similar to the second one, and will not be described in detail.
  • the first electric field unit 810 and the second electric field unit 820 share the second side wall 8122 , that is, two sides of the second side wall 8122 face the first electric field unit 810 respectively. channel and the channel of the second electric field unit 820 .
  • the upper and lower ends of the second side wall 8122 are respectively provided with an upper folded portion 895 and a lower folded portion 896.
  • the upper folded portion 895 and the lower folded portion 896 are respectively bent in different directions.
  • the sides are respectively aligned with the folded edge portions of the third side wall 8123 of the first electric field unit 810 and the fourth side wall 8222 of the second electric field unit 820, and are fixedly connected by connecting members such as rivets.
  • the fourth side wall 8222 of the second electric field unit 820 is respectively connected to the first electric field unit 810 and the third electric field unit 830 , and the fourth side wall 8222 , the second side wall 8122 and the fifth side wall 8223 constitute the second electric field unit 820 .
  • each side wall of each electric field unit is provided with a folded edge at both ends perpendicular to the axial direction, and the same electric field unit passes through the folded edge of the adjacent side wall. Then, the fixed connection is achieved by means of riveting such as rivets. Different electric field units are connected by sharing one side wall and fixing the other side wall with the common side wall.
  • the first electric field unit 810 and the second electric field unit 810 The second side wall 8122 shared by the two electric field units 820 is fixedly connected to the third side wall 8123 of the first electric field unit 810 and the fourth side wall 8222 of the second electric field unit 820 at the same time.
  • the folded edge portions of the side wall at the top (eg, the fourth side wall 8222 ) and the side wall at the bottom (eg, the first side wall 8121 ) are roughly along the edges of the side walls where they are located.
  • the main part of the side wall is bent in a vertical direction
  • the folded edge of the middle side wall (such as the second side wall 8122) connecting the top side wall and the bottom side wall is roughly along the main body of the side wall where it is located. Parts are bent in a 120-degree direction.
  • Such arrangement can facilitate the stable placement of the electric field adsorption device, and facilitate the stacking of multiple layers.
  • FIG. 9A shows an electric field adsorption device 1100 according to an embodiment of the present invention.
  • the electric field adsorption device 1100 includes 12 identical electric field units, from left to right are the second electric field unit 620 , the first electric field unit 610 , the third electric field unit 630 , the fourth electric field unit 640 , and the fifth electric field unit 650, sixth electric field unit 660, seventh electric field unit 670, eighth electric field unit 680, ninth electric field unit 690, tenth electric field unit 691, eleventh electric field unit 692, twelfth electric field unit 693. 12 identical
  • the electric field units are arranged adjacent to the left and right, and the adjacent electric field units share a side wall.
  • each electric field unit is surrounded by the side wall and the cross section perpendicular to the axial direction is a regular hexagon.
  • the electric field adsorption The number of electric field units in the device is not limited to this, and the number of electric field units can be adjusted according to the actual air volume to be purified, and the arrangement of multiple electric field units can be up, down, left, right, front, Arrange adjacent and/or non-adjacent in any direction.
  • the structures and shapes of the twelve electric field units are the same.
  • the structures, structures, and sizes of the plurality of electric field units may vary according to the storage conditions of the device space or other factors. They may not be the same or may be partially the same.
  • FIG. 9B is a top view of FIG. 9A .
  • the first electric field unit 610 , the second electric field unit 620 , and the third electric field unit 630 are respectively disposed adjacent to each other.
  • the first electric field unit 610 is enclosed by a first side wall 611, a second side wall 612, a third side wall 613, a fourth side wall 614, a fifth side wall 615, and a sixth side wall 616, and its cross section is hexagon.
  • Each side wall is provided with a plurality of air inlet holes and/or air outlet holes.
  • the first electric field unit 610 and the second electric field unit 620 share the first side wall 613 of the first electric field unit 610
  • the first electric field unit 610 and the third electric field unit 630 share the fifth side wall 615 of the first electric field unit 610 .
  • the centerline of each side wall of each electric field unit extending along the channel direction is not provided with an air inlet or air outlet.
  • the centerline 617 of each side wall of the first electric field unit 610 is not provided with air intake holes or air outlet holes, so that the position of the center line of the side wall forms a dust accumulation portion.
  • the distance between the discharge electrode and the center line of the side wall is the shortest distance between the discharge electrode and the side wall, so that the dust collection efficiency of this part is the highest, and the best dust collection can be achieved. Vacuuming effect.
  • each side wall of each electric field unit is not provided with air intake holes or air outlet holes, however, it may be only in one or more of the electric field units.
  • the centerline portion of one or more side walls is not provided with air intake holes or air outlet holes.
  • center line in the present invention refers to the center line extending along the channel on the side wall, and the distance between the center line and the side wall where the center line is perpendicular to both ends of the channel is equal.
  • FIG. 10 is a schematic perspective view of an electric field device according to an embodiment of the present invention, and the electric field device includes a discharge electrode and an adsorption electrode.
  • the electric field device includes a plurality of discharge electrodes and adsorption electrodes
  • the discharge electrodes include a first discharge electrode 619, a second discharge electrode 629, a third discharge electrode 639, a fourth discharge electrode 649 and the remaining eight discharge electrodes 9A and 9B shown in the electric field adsorption device 1100
  • the electric field adsorption device 1100 has the same structure of a plurality of electric field units.
  • the adsorption electrode reference is made to the relevant description of the electric field adsorption device shown in FIG. 9A and FIG. 9B , which will not be described in detail here. As shown in FIG.
  • the portion of each side wall of each electric field unit at the shortest distance 617 from the discharge electrode is not provided with air intake holes or air outlet holes, for example, when the cross section of the channel of the electric field unit perpendicular to the axis is a regular polygon , and no air inlet or air outlet is provided on the midline of each side wall (the electric field adsorption device shown in FIGS. 9A and 9B ).
  • the part of each side wall of the first electric field unit 610 that is closest to the discharge electrode 619 is not provided with an air inlet or air outlet, so that this part forms a dust accumulation part.
  • the first discharge electrode 619 passes through the channel of the first electric field unit 610 , a first electric field is formed between the first discharge electrode 619 and the first electric field unit 610 , the second electric field unit 620 and the third electric field unit 630 , the fourth electric field unit 640 and the second discharge electrode 629, the third discharge electrode 639, and the fourth discharge electrode 649 respectively form the second electric field, the third electric field, the fourth electric field, and so on, the remaining electric field units are respectively connected with one discharge electrode The electrodes respectively form an electric field.
  • the discharge electrode is preferably arranged parallel to the side wall of the channel and passes through the center of the inscribed circle of the corresponding electric field unit section, The discharge efficiency is highest here.
  • the first discharge electrode 619 is disposed in the channel of the first electric field unit 610, preferably parallel to the side wall of the channel and passing through the center of the inscribed circle of the cross section of the first electric field unit 610, and so on, and so on for other discharge electrodes and electric field units Relationship.
  • A is the air inlet direction
  • B is the air outlet direction.
  • the gas flows in the first electric field, the second electric field, and the third electric field as an example for description. And so on.
  • the gas enters the first electric field through the gas inlet holes on the first side wall 611 , the second side wall 612 , and the sixth side wall 616 in the first electric field unit 610 , and the gas entering direction is the same as that of the ions in the first electric field.
  • the flow direction is not vertical; due to the air inlet holes on the first side wall 611 , the second side wall 612 and the sixth side wall 616 and the air outlet holes on the third side wall 613 , the fourth side wall 614 and the fifth side wall 615 Dislocation arrangement, the air flow can flow to a plurality of adjacent electric field units, the air flow in the hollow electric field unit 610 is turbulent, the more particles passing through the vicinity of the first discharge electrode 619, the more collisions with the discharge electrode 619, the more charged particles , improving the adsorption efficiency.
  • the first electric field has two inclined surfaces, the air intake from the inclined surfaces makes the air flow in the hollow first electric field unit 610 more turbulent.
  • the frequency of passing the vicinity of the first discharge electrode 619 is increased, thereby increasing the frequency of passing through the vicinity of the first discharge electrode 619.
  • the adsorption efficiency is higher.
  • After being treated by the first electric field it is discharged from the air outlet holes on the third side wall 613 , the fourth side wall 614 and the fifth side wall 615 respectively, and enters through the air outlet holes on the third side wall 613 and the fifth side wall 615 .
  • the second electric field and the third electric field are the third electric field.
  • the gas inlet holes on the fourth side wall 624 and the fifth side wall 625 in the adsorption unit 620 of the second electric field a part of the gas enters the second electric field through the gas inlet holes on the fourth side wall 624 and the fifth side wall 625 in the adsorption unit 620 of the second electric field, and another part of the gas from the first electric field passes through the first electric field
  • the holes on the third side wall 613 in the unit 610 enter the second electric field, and the entering direction of these gases is not perpendicular to the direction of ion flow in the second electric field.
  • the internal flow is turbulent, and the more airflow passing near the discharge electrode 629, the more particles collide with the second discharge electrode 629, and the more charged particles, and the adsorption efficiency is improved.
  • the second electric field also has an inclined plane, similarly, the inclined plane makes the air flow in the hollow second electric field unit 620 more turbulent, and the adsorption efficiency is higher.
  • the air is discharged from the air outlet holes on the first side wall 621, the second side wall 622, and the third side wall 623 in the second electric field unit 620, respectively.
  • a part of the gas enters the third electric field through the gas inlet hole on the fifth side wall 635 in the third electric field unit 630 , and the other part comes from the third electric field through the hole on the fifth side wall 615 in the first electric field unit 610
  • the gas in an electric field and the gas from the fourth electric field through the holes on the fourth side wall 634 in the third electric field unit 630 enter the third electric field, and the entering direction of these gases is not perpendicular to the direction of ion flow in the third electric field.
  • the holes and the air outlet holes are dislocated, and the air flow in the hollow third electric field unit 630 is turbulent.
  • the air is discharged from the air outlet holes on the first side wall 631 , the second side wall 632 and the third side wall 633 in the third electric field unit 630 respectively.
  • the electric field unit of the electric field device of this embodiment has a structure of openings on the side wall.
  • the gas flow in the electric field is disturbed by the side air intake, and the collision with the third discharge electrode 639 increases, and the charged particles increase, which improves the overall adsorption efficiency.
  • FIG. 11 is a schematic perspective view of an electric field adsorption device according to an embodiment of the present invention.
  • FIG. 12 is a schematic exploded perspective view of FIG. 11 .
  • the electric field adsorption device includes a plurality of electric field units, a plurality of connecting members and at least one auxiliary adsorption piece.
  • the electric field unit has a channel extending in the axial direction, and a plurality of side walls are formed around the channel, and the plurality of side walls are sequentially passed through the connecting members.
  • At least one side wall is connected and provided with an air inlet hole for gas to enter the channel and at least one side wall is provided with an air outlet hole for gas to flow out of the channel
  • the auxiliary adsorption mechanism has a porous structure and is arranged on at least one of the at least one side wall through the connecting member.
  • At least a part of the surface of at least one side wall of the electric field unit is provided with the air inlet hole and/or the air outlet hole, and the auxiliary adsorption member is composed of a 60-mesh polytetrafluoroethylene film.
  • the electric field unit, the auxiliary adsorption member, and the electric field adsorption method device are not repeated here, and only the differences are described in this embodiment.
  • the electric field adsorption device includes a plurality of electric field units, a plurality of connecting members, and at least one auxiliary adsorption part, and the auxiliary adsorption part is arranged on at least a part of the outer surface of the side wall.
  • the electric field adsorption device includes a plurality of electric field units, a plurality of connecting members and at least one auxiliary adsorption part, the auxiliary adsorption part is arranged on at least a part of the outer surface of the side wall, and the auxiliary adsorption part is connected to the surface of the electric field unit. There are gaps in between.
  • the auxiliary adsorbent is composed of a 60-mesh polytetrafluoroethylene film.
  • the connecting member is any one or a combination of an elastic member, a connecting assembly and a clip.
  • connection components include rivets or bolts.
  • the electric field unit has a plurality of side walls, two ends of the side walls have folded edge portions, and the edge portions of two adjacent side walls of the electric field unit are connected to form connection ends , in the connection ends of two adjacent electric field units, the folded edges are aligned in sequence to form unit connection ends, the adjacent two electric field units are connected at the unit connection ends, and the auxiliary adsorption member is arranged at the unit connection end.
  • the plurality of the folded edges and the auxiliary suction parts in the unit connection end are connected and fixed by rivets.
  • the electric field adsorption device further includes a gasket, and the gasket is arranged between the rivet and the auxiliary adsorption member.
  • the section of the gasket is L-shaped.
  • the electric field adsorption device 1200 includes 6 electric field units, 12 spacers 500 , a plurality of rivets 99 and two auxiliary adsorption members 1220 .
  • the 6 electric field units include a first electric field unit 810 , a second electric field unit 820 , a third electric field unit 830 , a fourth electric field unit 840 , a fifth electric field unit 850 , a sixth electric field unit 850 , and a sixth electric field unit 830 Electric field unit 860.
  • the row with the side wall facing the lower part is called the first row
  • the row with the side wall facing the upper part is called the second row.
  • the first row is formed by connecting the first electric field unit 810, the third electric field unit 830, and the fifth electric field unit 850 with the same size and structure through their respective sidewalls located at the bottom.
  • the axes of the channels are parallel to each other and in the same plane. superior.
  • the second row is formed by sequentially connecting the second electric field unit 820 , the fourth electric field unit 840 , and the sixth electric field unit 860 with the same size and structure through their respective top sidewalls.
  • the sidewalls of the first electric field unit 810 , the third electric field unit 830 , and the fifth electric field unit 850 located at the bottom are each provided with a folded edge, and each adjacent two electric field units are located at the bottom.
  • the folds on the side walls of the s are aligned with each other.
  • the sidewalls of the second electric field unit 820 , the fourth electric field unit 840 , and the sixth electric field unit 860 located at the top are also provided with folded portions.
  • connection D of the first electric field unit 810 and the third electric field unit 830 in the first row as an example to illustrate the connection between the electric field unit and the auxiliary adsorption mechanism 1020 through the gasket 500 .
  • the bottom side wall of the third electric field unit 830 is provided with a first folded edge portion 891 bent downward
  • the bottom side wall of the first electric field unit 810 is provided with a second folded edge portion 892 bent downward
  • the second side wall The upper and lower ends of the 8122 are respectively provided with an upper folded portion 895 and a lower folded portion 896
  • the upper folded portion 895 and the lower folded portion 896 are respectively bent in different directions
  • the upper and lower ends of the fifth side wall 8223 are respectively provided with
  • the second folded edge portion 892 of the bottom side wall of the first electric field unit 810 , the lower folded edge portion 896 of the second side wall 8122 , and the lower folded edge portion of the fifth side wall 8223 898 and the first folded portion 891 of the bottom side wall of the third electric field unit 830 are aligned with each other, and are connected by connecting members such as rivets, in this embodiment, the connecting members include rivets and spacers.
  • the auxiliary suction member 1220 is disposed between the first hemming portion 891 or the second hemming portion 892 and the gasket.
  • rivets By using rivets to rivete the folded edge portions and the auxiliary suction parts of the two adjacent electric field units, the two adjacent electric field units and the auxiliary suction parts are fixedly connected. Riveting with rivets is not only convenient for processing. In addition, the sealing performance is good. The riveting not only provides good sealing performance between the mutually connected side walls, but also the rivet will expand in the rivet hole during riveting, so that the rivet and the hole also have high sealing performance.
  • the gasket 500 is in the shape of a straight bar with a cross section of an "L" shape.
  • the two gaskets 500 are respectively disposed on the first hemming portion 891 and the second hemming portion along the axis direction of the channel. 892, the right-angled first side (the side is parallel to the first folded portion 891) and the first folded portion 891 or the second folded portion 892 clamp the auxiliary suction member 1220, and the right-angled second side (the The side wall is perpendicular to the first folded edge portion 891 ) and the side wall of the bottom of the electric field unit to clamp the auxiliary suction member 1220 .
  • a plurality of electric field units, a plurality of spacers, a plurality of rivets, and two auxiliary suction parts are connected through the above-mentioned methods to form the electric field suction device 1200 .
  • the right-angled first side of the gasket (the side is parallel to the first hemming portion 891 ) and the first hemming portion 891 or the second hemming portion 892 clamp the auxiliary suction member 1220 , the second side of the right angle has a distance from the side wall of the bottom of the electric field unit.
  • the auxiliary adsorption member 1220 is fixed to the first side of the right angle of the two gaskets through the first folded portion 899 and the second folded portion 892 of the bottom side wall of the first electric field unit 810, respectively.
  • the auxiliary suction member 1220 When the auxiliary suction member 1220 is tightened, the second side of the right angle abuts against the auxiliary suction member 1220, so that there is a certain distance between the auxiliary suction member 1220 and the outer surface of the side wall 8121.
  • the auxiliary suction member 1220 is arranged At least a part of the outer surface of the side wall 8121 and the auxiliary adsorption member 1220 and the outer surface of the side wall 8121 have a distance of less than or equal to 50 mm.
  • the gas in this distance space will be mixed again, and the mixed gas will then be removed by the electric field unit or the auxiliary adsorption mechanism.
  • the charged amount of the auxiliary suction member increases accordingly.
  • the gasket is in the shape of a sheet. During assembly, one side of the gasket and the first folded portion 891 or the second folded portion 892 clamp the auxiliary suction member 1220, and one long side of the gasket is connected to the electric field unit. The bottom side wall surface is snug.
  • the gasket is in the shape of a sheet. During assembly, one side of the gasket and the first folded portion 891 or the second folded portion 892 clamp the auxiliary suction member 1220, and one long side of the gasket is connected to the electric field unit.
  • the side wall surface of the bottom has a gap.
  • the inner section of the clip 501 is groove-shaped, and the clip 501 is sleeved on the plurality of folded edge portions of the connecting end for fixing the plurality of folded edge portions of the connecting end and the auxiliary suction member 1220
  • the inner section of the clip 501 matches the thickness of the folded portion and the thickness of the auxiliary suction member 1220 and fits tightly with it, and the open end 5011 of the clip 501 is in close contact with the sidewall surface of the bottom of the electric field unit.
  • the clip 501 may be provided in multiple sections, and preferably, the clip 501 is a whole.
  • the elastic member 502 has an opening, and the elastic member 502 is sleeved on the outer side of the hemming portion of the connecting end for fixing the plurality of hemming portions of the connecting end and the auxiliary suction member 1220.
  • the suction member 1220 is clamped and fixed.
  • a gasket 5021 is provided at the open end of the elastic member 502 .
  • the gasket can be provided in multiple sections.
  • the gasket is a whole.
  • the gasket 5021 is in the shape of a sheet. During assembly, one side of the gasket and the first folded portion 891 or the second folded portion 892 clamp the auxiliary suction member 1220, and one long side 5022 of the gasket is connected to The sidewall surfaces of the bottom of the electric field unit are in close contact with each other.
  • a long side 5022 of the spacer has a gap with the sidewall surface of the bottom of the electric field unit.
  • the gasket 503 is L-shaped. During assembly, the right-angled first surface of the gasket and the first folded portion 891 or the second folded portion 892 clamp the auxiliary suction member 1220 , the second surface 5031 at the right angle of the gasket is in close contact with the sidewall surface of the bottom of the electric field unit.

Landscapes

  • Electrostatic Separation (AREA)

Abstract

一种电场单元组件及电场吸附装置(200、800、1000、1100、1200)以及电场装置(20、700、80)。电场单元组件包括电场单元(2000、710、910)和辅助吸附机构(920、1020、1120),电场单元(2000、710、910)设有供气体进入的进气孔和/或供气体排出的出气孔,辅助吸附机构(920、1020、1120)具有多孔结构且布置于电场单元(2000、710、910)的至少一部分的一侧,该至少一部分设有进气孔和/或出气孔。该电场单元组件可以提高除尘效率。

Description

电场单元组件及电场吸附装置以及电场装置 技术领域
本发明涉及电场领域,具体涉及一种电场单元组件及电场吸附装置以及电场装置。
背景技术
目前静电技术被广泛应用于气体净化领域,气体经过静电场时被电离,气体中颗粒物与带电离子结合后,趋向与带电离子极性相反的电极运动而沉积,可见颗粒物去除率与颗粒物的带电效率相关。目前静电气体净化装置中气体进入电场方向与电场内离子流方向垂直,存在气体在电场内停留时间短,带电效率低等缺陷。
发明内容
本发明的目的是提供一种电场单元组件及电场吸附装置以及电场装置,以解决上述现有技术中存在的问题。
为了解决上述问题,根据本发明的一个方面,提供了一种电场单元,所述电场单元具有沿轴向延伸的通道,环绕所述通道形成侧壁,所述侧壁设有供气体进入所述通道的进气孔和供气体排出所述通道的出气孔,所述进气孔的孔心与所述出气孔的孔心布置在与轴向垂直的不同平面上。
在一个实施例中,所述电场单元包括多个所述进气孔和多个所述出气孔,多个所述进气孔沿轴向布置成至少一列,以及多个所述出气孔沿轴向布置成至少一列,其中任意一个所述进气孔的孔心与任意一个所述出气孔的孔心布置在与轴向垂直的不同平面上。
在一个实施例中,多个所述进气孔沿轴向均匀分布,和/或多个所述出气孔沿轴向均匀分布。
在一个实施例中,多个所述进气孔和/或多个所述出气孔沿轴向从所述侧壁的一端布置到所述侧壁的另一端。
在一个实施例中,所述进气孔和/或所述出气孔为圆形孔;较佳地,所述进气孔和所述出气孔具有相同的直径。
在一个实施例中,所述电场单元包括多个所述侧壁,所述进气孔和所述出气孔分别布置于不同的所述侧壁上。
在一个实施例中,所述电场单元包括多个所述侧壁,所述多个所述侧壁依次连接并使得所述通道具有正多边形截面;较佳地,所述电场单元包括至少三个所述侧壁;较佳地,所述电场单元包括至少六个所述侧壁。
在一个实施例中,所述电场单元构成电场的阴极或阳极。
根据本发明的另一个方面,提供一种电场吸附装置,所述电场吸附装置包括多个任一项实施例所述的电场单元,多个所述电场单元连接成一个整体结构。
在一个实施例中,相邻两个所述电场单元共用一个侧壁,所述侧壁的两个表面分别面对两个所述通道。
在一个实施例中,所述电场吸附装置构成电场的阴极和/或阳极。
在一个实施例中,较佳地,多个所述电场单元包括第一组电场单元和第二组电场单元,所述第一组电场单元形成电场的阳极,所述第二组电场单元形成电场的阴极。
根据本发明的另一个方面,提供一种电场装置,包括放电极和吸附极,其特征在于,所述吸附极由任一项实施例所述的电场单元构成,以及所述放电极由设置于所述通道内并沿所述通道延伸的导体构成。
在一个实施例中,所述放电极平行于所述通道的侧壁设置并经过所述通道的中心 线,较佳地,所述通道具有正多边形横截面,所述放电极经过所述横截面内切圆的圆心。
根据本发明的另一个方面,提供一种电场装置,包括放电极和吸附极,其特征在于,所述吸附极由任一项实施例所述的电场吸附装置构成,以及所述放电极由设置于每一个所述通道内并沿所述通道延伸的导体构成。
在一个实施例中,所述电场装置还包括顶板和底板,所述顶板和所述底板分别连接于所述电场装置的两端,并对所述通道的两端进行密封。
在一个实施例中,所述放电极平行于所述通道的侧壁设置并经过所述通道的中心线,较佳地,所述通道具有正多边形横截面,所述放电极经过所述横截面内切圆的圆心。
根据本发明的另一个方面,提供一种电场装置,包括放电极和吸附极,所述吸附极由中空的管组成,所述放电极穿设于吸附极中空的管内,所述放电极和吸附极之间形成电场,其特征在于,所述吸附极中空的侧壁上设有供气体进入的进气孔,气体进入方向与所述电场内离子流方向不垂直。
在一个实施例中,所述吸附极管的侧壁上设有供气体排放的出气孔,所述进气孔与所述出气孔错位排布,形成旋风结构。
在一个实施例中,所述吸附极管的中空的截面采用圆形或多边形。
在一个实施例中,所述多边形包括三边形、四边形、五边形或六边形。
在一个实施例中,所述吸附极的进气孔、出气孔位于不同侧壁上。
在一个实施例中,所述吸附极上开设有进气孔或出气孔的侧壁由文氏板构成。
在一个实施例中,所述放电极和所述吸附极组成电场发生单元;包括两个串联的电场发生单元,所述两个电场发生单元中吸附极共用一开设进气孔或出气孔的侧壁。
在一个实施例中,所述两个串联的电场发生单元包括第一电场发生单元和第二电场发生单元,以所述第一电场发生单元的吸附极上开设出气孔的侧壁作为第二电场发生单元中吸附极的一侧壁,所述第二电场发生单元其他侧壁上开设有供气体排出的出气孔。
在一个实施例中,还包括至少一个电源,所述电场发生单元的吸附极与电源的一个电极电性连接,电场发生单元的放电极与电源的另一个电极电性连接。
根据本发明的另一个方面,提供一种电场单元,其特征在于,所述电场单元具有沿轴向延伸的通道,环绕所述通道形成侧壁,所述侧壁设有供气体进入所述通道的进气孔和供气体排出所述通道的出气孔。
根据本发明的另一个方面,提供一种电场单元组件,其特征在于,所述电场单元组件包括电场单元和辅助吸附机构,所述电场单元设有供气体进入的进气孔和/或供气体排出的出气孔,所述辅助吸附机构具有多孔结构且布置于所述电场单元的至少一部分的一侧,所述至少一部分设有所述进气孔和/或出气孔。
在一个实施例中,所述辅助吸附机构与所述电场单元的所述至少一部分之间具有间隙。
在一个实施例中,所述辅助吸附机构与所述电场单元的所述至少一部分之间具有小于或等于50mm的距离。
在一个实施例中,所述辅助吸附机构贴合于所述电场单元的表面的所述至少一部分。
在一个实施例中,所述辅助吸附机构具有相互交叠贯通的多孔结构。
在一个实施例中,所述辅助吸附机构由导电材料和/或驻极材料制成。
在一个实施例中,所述电场单元构成电场的阴极或阳极。
在一个实施例中,所述电场单元构成电场的阳极或阴极,以及所述电场单元具有朝向电场的阴极或阳极的内表面以及与所述内表面相对的外表面,所述辅助吸附机构布置于所述电场单元的所述外表面的一侧。
根据本发明的另一个方面,提供一种电场单元组件,其特征在于,所述电场单元组件包括电场单元和辅助吸附机构,所述电场单元具有沿轴向延伸的通道,环绕所述通道形成侧壁,所述侧壁设有供气体进入所述通道的进气孔和供气体排出所述通道的出气孔,所述辅助吸附机构具有多孔结构且布置于所述电场单元的所述侧壁的至少一部分的一侧,所述至少一部分设有所述进气孔和/或所述出气孔。
在一个实施例中,所述辅助吸附机构与所述电场单元的所述至少一部分之间具有间隙。
在一个实施例中,所述辅助吸附机构与所述电场单元的所述至少一部分之间具有小于或等于50mm的距离。
在一个实施例中,所述辅助吸附机构贴合于所述电场单元的表面的所述至少一部分。
在一个实施例中,所述电场单元具有多个所述侧壁,所述进气孔和所述出气孔分别布置于所述电场单元的不同的所述侧壁上,所述辅助吸附机构布置于设有所述进气孔和/或出气孔的所述侧壁的外表面和/或内表面至少一部分的一侧。
在一个实施例中,所述辅助吸附机构由导电材料和/或驻极材料制成。
在一个实施例中,所述辅助吸附机构具有相互交叠贯通的多孔结构。
在一个实施例中,所述电场单元包括多个所述侧壁,多个所述侧壁依次连接并使得所述通道具有正多边形截面;较佳地,所述电场单元包括至少三个所述侧壁;较佳地,所述电场单元包括至少六个所述侧壁。
在一个实施例中,所述电场单元构成电场的阴极或阳极。
根据本发明的另一个方面,提供一种电场吸附装置,其特征在于,所述电场吸附装置包括多个电场单元以及辅助吸附机构,所述电场单元具有沿轴向延伸的通道,环绕所述通道形成侧壁,所述侧壁设有供气体进入所述通道的进气孔和供气体排出所述通道的出气孔,所述辅助吸附机构具有多孔结构且布置于至少一个所述电场单元的的至少一个所述侧壁的至少一部分的一侧,所述至少一部分设有所述进气孔和/或所述出气孔。
在一个实施例中,所述电场吸附装置包括第一类侧壁和第二类侧壁,所述第一类侧壁的其中一侧布置所述通道,所述第二类侧壁的两侧各布置一个所述通道,所述第一类侧壁具有面向所述通道的内表面以及与所述内表面相对的外表面,所述辅助吸附机构布置于所述第一类侧壁的所述外表面的所述至少一部分的一侧。
在一个实施例中,所述辅助吸附机构与所述第一类侧壁的外表面的所述至少一部分之间具有间隙。
在一个实施例中,所述辅助吸附机构与所述第一类侧壁的外表面的所述至少一部分之间具有小于或等于50mm的距离。
在一个实施例中,所述辅助吸附机构贴合于所述第一类侧壁的外表面的所述至少一部分。
在一个实施例中,所述辅助吸附机构还布置于所述第二类侧壁的所述至少一部分的一侧。
在一个实施例中,所述辅助吸附机构与所述第二类侧壁的所述至少一部分之间具有间隙。
在一个实施例中,所述辅助吸附机构与所述第二类侧壁的所述至少一部分之间具 有小于或等于50mm的距离。
在一个实施例中,所述辅助吸附机构贴合于所述第二类侧壁的所述至少一部分布置。
在一个实施例中,每一个所述通道由多个所述侧壁围成;较佳地,所述通道具有多边形截面;较佳地,所述多边形为三边形、四边形、五边形或六边形;较佳地,所述多边形为正多边形。
在一个实施例中,所述辅助吸附机构具有相互交叠贯通的多孔结构。
在一个实施例中,所述辅助吸附机构由导电材料和/或驻极材料制成。
在一个实施例中,所述电场单元构成电场的阴极和/或阳极。
根据本发明的另一个方面,提供一种电场装置,包括放电极和吸附极,其特征在于,所述吸附极由任一项实施例所述的电场单元组件构成,以及所述放电极由导体构成。
根据本发明的另一个方面,提供一种电场装置,包括放电极和吸附极,其特征在于,所述吸附极由任一项实施例所述的电场单元组件构成,以及所述放电极由设置于所述通道内并沿所述通道延伸的导体构成。
在一个实施例中,所述放电极平行于所述通道的侧壁设置并经过所述通道的中心线;较佳地,所述通道具有正多边形横截面,所述放电极经过所述横截面内切圆的圆心。
根据本发明的另一个方面,提供一种电场装置,包括放电极和吸附极,其特征在于,所述吸附极由任一项实施例所述的电场吸附装置构成,以及所述放电极由设置于每一个所述通道内并沿所述通道延伸的导体构成。
在一个实施例中,所述放电极平行于所述通道的侧壁设置并经过所述通道的中心线;较佳地,所述通道具有正多边形横截面,所述放电极经过所述横截面内切圆的圆心。
在一个实施例中,所述气体处理电场装置还包括顶板和底板,所述顶板和所述底板分别连接于所述电场吸附装置的两端并对所述通道的两端进行密封。
根据本发明的另一个方面,提供一种电场单元,其特征在于,所述电场单元具有沿轴向延伸的通道,环绕所述通道形成多个侧壁,所述多个侧壁通过连接件依次连接并在至少一个侧壁设有供气体进入所述通道的进气孔和至少一个侧壁设有供气体流出所述通道的出气孔。
在一个实施例中,每一个所述侧壁具有侧壁主体和从所述侧壁主体沿垂直于所述通道的两端分别弯折形成的折边部,所述连接件设置于相邻两个侧壁的折边部,以将相邻两个侧壁固定连接。
在一个实施例中,所述多个侧壁通过铆钉依次铆接。
在一个实施例中,所述的电场单元包括三个侧壁,所述三个侧壁依次连接形成具有三角形截面的通道;或
所述的电场单元包括六个侧壁,所述六个侧壁依次连接形成具有六边形截面的通道。
在一个实施例中,所述三个侧壁依次连接形成具有正三角形截面的通道。
在一个实施例中,所述六个侧壁依次连接形成具有正六边形截面的通道。
在一个实施例中,所述折边部沿所述通道的延伸方向分别设置有多个通孔,所述连接件穿设于所述通孔内。
在一个实施例中,多个进气孔和/或多个出气孔沿所述通道的轴向均匀分布。
在一个实施例中,所述进气孔和/或出气孔的形状为圆形、椭圆形和/或多边形,所 述多边形包括三边形、四边形、五边形和六边形中的任意一种或多种。
根据本发明的另一个方面,提供一种电场装置,其特征在于,所述电场装置包括放电极和吸附极,所述吸附极为任一项实施例所述的电场单元,所述放电极设于所述电场单元的通道内,所述放电极和所述吸附极之间形成电场。
在一个实施例中,所述放电极平行于所述通道的侧壁设置并经过所述通道的中心线。
在一个实施例中,所述通道具有正多边形横截面,所述放电极经过所述横截面内切圆的圆心。
根据本发明的另一个方面,提供一种电场吸附装置,其特征在于,所述电场吸附装置由多个任一项实施例所述的电场单元连接构成。
在一个实施例中,所述多个电场单元通过连接件连接。
在一个实施例中,所述多个电场单元通过铆钉铆接。
在一个实施例中,所述多个电场单元的相邻的两个通道共用一个侧壁。
根据本发明的另一个方面,提供一种电场装置,其特征在于,包括放电极和吸附极,所述吸附极为任一项实施例所述的电场吸附装置,所述放电极设于所述电场单元的通道内,所述放电极和电场单元之间形成电场。
在一个实施例中,所述放电极呈细长条状并采用304不锈钢、钛、钨、铱金中的任意一种制成。
根据本发明的另一个方面,提供一种电场吸附装置,其特征在于,包括多个电场单元、多个连接构件和至少一个辅助吸附件,所述电场单元设有供气体进入的进气孔和/或供气体排出的出气孔,所述辅助吸附件具有多孔结构且通过所述连接构件布置于所述电场单元的表面的至少一部分,所述至少一部分设有所述进气孔和/或出气孔。
在一个实施例中,所述辅助吸附件与所述电场单元的表面之间具有间隙。
在一个实施例中,所述电场单元具有沿轴向延伸的通道,环绕所述通道形成多个侧壁,所述多个侧壁通过所述连接构件依次连接并在至少一个侧壁设有供气体进入所述通道的进气孔和至少一个侧壁设有供气体流出所述通道的出气孔。
在一个实施例中,所述连接构件为弹性构件、连接组件以及卡件中的任意一种或组合。
在一个实施例中,所述卡件的内剖面呈槽形。
在一个实施例中,所述连接组件包括铆钉或螺栓。
在一个实施例中,所述电场单元具有多个侧壁,所述侧壁的两端具有弯折的折边部,所述电场单元中相邻两个所述侧壁的折边部相连形成连接端,相邻的两个所述电场单元的连接端中所述折边部依次对齐形成单元连接端,相邻的两个所述电场单元在所述单元连接端连接,所述辅助吸附件设置在所述单元连接端的外侧,所述单元连接端中多个所述折边部以及所述辅助吸附件通过铆钉连接并固定。
在一个实施例中,还包括垫片,所述垫片设置在所述铆钉与所述辅助吸附件之间。
在一个实施例中,所述垫片呈片状。
在一个实施例中,所述垫片的剖面呈L形。
根据本发明的另一个方面,提供一种电场单元,其特征在于,所述电场单元具有沿轴向延伸的通道,环绕所述通道形成多个侧壁,所述多个侧壁设有供气体进入所述通道的进气孔和供气体排出所述通道的出气孔,其中,所述多个侧壁中的至少一个侧壁沿通道方向延伸的中线上不设置所述进气孔或所述出气孔。
在一个实施例中,所述进气孔与所述出气孔设置于不同的侧壁上。
在一个实施例中,设置所述进气孔的侧壁上设置多个所述进气孔,和/或设置所述 出气孔的侧壁上设置多个所述出气孔。
在一个实施例中,每一个侧壁沿通道方向延伸的中线两侧预定范围内不设置所述进气孔或所述出气孔。
在一个实施例中,同一个侧壁设有多个所述进气孔和/或多个出气孔,所述多个进气孔和/或所述多个出气孔分别沿所述通道的轴向布置成多列。
在一个实施例中,每一个侧壁上的多个所述进气孔或多个所述出气孔分别沿轴向布置成两列且分别设置在所述侧壁中线的两侧。
在一个实施例中,多个进气孔或多个出气孔沿轴向均匀分布。
在一个实施例中,所述进气孔和/或出气孔的形状为圆形、椭圆形、多边形,较佳地,所述多边形包括三边形、四边形、五边形和六边形中的任意一种或多种。
在一个实施例中,一个侧壁上所述进气孔和/或所述出气孔的总面积与所述侧壁总面积之比小于或等于49%。
在一个实施例中,所述通道的截面为多边形,所述多边形包括三边形、四边形、五边形或六边形。
在一个实施例中,所述侧壁采用含有不锈钢和/或铝的材料制成。
根据本发明的另一个方面,提供一种电场单元,其特征在于,所述电场单元具有沿轴向延伸的通道,环绕所述通道形成多个侧壁,所述多个侧壁依次连接并设有供气体进入所述通道的进气孔和供气体排出所述通道的出气孔,其中,每一个侧壁上沿轴向设置两列进气孔或出气孔,以及每一侧壁上的所述两列进气孔或出气孔布置于该侧壁沿通道方向的中线两侧。
在一个实施例中,所述电场单元具有环绕所述通道形成的六个侧壁,以及所述通道具有正六边形截面。
在一个实施例中,所述电场单元具有环绕所述通道形成的三个侧壁,以及所述通道具有正三角形截面。
根据本发明的另一个方面,提供一种电场装置,其特征在于,包括放电极和吸附极,所述吸附极为中任一项实施例所述的电场单元,其中所述放电极和所述吸附极之间形成电场。
在一个实施例中,所述放电极设于所述电场单元的通道内。
根据本发明的另一个方面,提供一种电场装置,其特征在于,包括放电极和吸附极,所述吸附极为中任一项实施例所述的电场单元,所述放电极设于所述电场单元的通道内,所述放电极与所述侧壁最近距离上不设置所述进气孔或所述出气孔。
在一个实施例中,所述放电极平行于所述通道的侧壁设置并经过所述通道的中心线。
在一个实施例中,所述通道具有正多边形横截面,所述放电极经过所述横截面内切圆的圆心。
根据本发明的另一个方面,提供一种电场吸附装置,其特征在于,由多个电场单元连接构成的整体结构,所述电场单元为任一项实施例所述的电场单元。
在一个实施例中,相邻两个所述电场单元共用一个侧壁,所述侧壁的两个表面分别面对两个所述电场单元的通道。
根据本发明的另一个方面,提供一种电场装置,其特征在于,包括放电极和吸附极,所述吸附极为任一项实施例所述的电场吸附装置,所述放电极穿设于所述电场单元的通道内,所述放电极和电场单元之间形成电场。
在一个实施例中,所述放电极呈细长条状,采用304不锈钢、钛、钨、铱金中的任意一种或多种制成。
附图说明
图1是本发明的一个实施例的电场装置的立体示意图;
图2A是本发明的一个实施例的电场单元的立体示意图;
图2B是图2A的电场单元的C向视图;
图3是本发明的一个实施例的电场装置的俯视剖面示意图;
图4A是本发明的一个实施例的电场装置的立体示意图;
图4B是图4A的横截面示意图;
图5是包括顶板和地板的电场装置的主视示意图;
图6是本发明的一个实施例的电场单元组件的剖面分解示意图;
图7是本发明的一个实施例的电场吸附装置的立体分解示意图;
图8是本发明的一个实施例的电场吸附装置的立体分解示意图;
图9A是本发明的一个实施例的电场吸附装置立体示意图;
图9B是图9A的俯视图;
图10是本发明的一个实施例的电场装置的立体示意图;
图11是本发明的一个实施例的电场吸附装置的立体示意图;
图12是图11的立体分解示意图;
图13是本发明的一个实施例的卡件剖面示意图;
图14是本发明的一个实施例的弹性件剖面示意图;
图15是本发明的一个实施例的弹性件剖面示意图。
具体实施方式
以下将结合附图对本发明的较佳实施例进行详细说明,以便更清楚理解本发明的目的、特点和优点。应理解的是,附图所示的实施例并不是对本发明范围的限制,而只是为了说明本发明技术方案的实质精神。
在下文的描述中,出于说明各种公开的实施例的目的阐述了某些具体细节以提供对各种公开实施例的透彻理解。但是,相关领域技术人员将认识到可在无这些具体细节中的一个或多个细节的情况下来实践实施例。在其它情形下,与本申请相关联的熟知的装置、结构和技术可能并未详细地示出或描述从而避免不必要地混淆实施例的描述。
在整个说明书中对“一个实施例”或“一实施例”的提及表示结合实施例所描述的特定特点、结构或特征包括于至少一个实施例中。因此,在整个说明书的各个位置“在一个实施例中”或“在一实施例”中的出现无需全都指相同实施例。另外,特定特点、结构或特征可在一个或多个实施例中以任何方式组合。
在以下描述中,为了清楚展示本发明的结构及工作方式,将借助诸多方向性词语进行描述,但是应当将“前”、“后”、“左”、“右”、“外”、“内”、“向外”、“向内”、“上”、“下”等词语理解为方便用语,而不应当理解为限定性词语。
根据本发明的一个方面,提供一种电场单元,该电场单元具有沿轴向延伸的通道,环绕通道形成侧壁,侧壁设有供气体进入通道的进气孔和供气体排出通道的出气孔。
需要说明的是,气体不沿着通道的轴向方向流动,可以理解为,气体不沿着通道的轴向方向从通道的一端流向通道的另一端;气体是通过进气孔进入通道,再通过出气孔排出通道。
需要注意的是,上述电场单元可以作为电场装置的吸附极,电场装置的放电极放电电离,气体中颗粒物与带电离子结合后,使气体中的颗粒物获得电荷,带电荷的颗 粒物向吸附极移动,并沉积在吸附极,当气体以不平行于电场单元的侧壁的方向进气时,也就是说气体进入方向与电场内离子流方向不垂直,相比较气体进入方向与离子流方向垂直的电场,本发明增加了气体在电场中的停留时间,可以提高颗粒物的带电效率,更多的颗粒物沉积在吸附极,从而提高了除尘效率。
还需要注意的是,当进气孔的孔心与出气孔的孔心布置在与轴向垂直的不同平面上,可以使通道中的气体流向紊乱,进一步增加了气体在电场中的停留时间,增加近距离与放电极接触的频次,提高颗粒物带电效率和带电量;而且当气体形成旋风式流向时,有利于大颗粒的分离,综合以上两点,能够有效提高除尘效率。另外需要注意的是,多个侧壁中的至少一个侧壁沿通道方向延伸的中线上不设置进气孔或所述出气孔,可以使得中线位置上的面积不缺损,颗粒物带电后,直接吸附到吸附极中线附近位置,增加了颗粒物在吸附极上的吸附量,从而提高除尘效率。其中,所述颗粒物包括但不限于固体颗粒、液滴、附着有液体的固体颗粒、气溶胶、等离子态的固体颗粒或液滴等,也可以为细菌、真菌等微生物。
图1是本发明一个实施例的电场装置的立体示意图,电场装置20包括放电极209和吸附极200,吸附极200由电场吸附装置构成,在本实施例中,吸附极200也称之为电场吸附装置200。其中,电场吸附装置200包括十二个电场单元2000,十二个电场单元2000以左右相邻排布,相邻的电场单元2000共用一个侧壁,每个电场单元2000的通道被侧壁环绕成的与轴向方向垂直的截面为正三角形,在其他实施例中,电场吸附装置中的电场单元的数量不限于此,可以根据实际的需要净化的气体风量对电场单元的数量进行调整,而且,多个电场单元的排布方式可以是上、下、左、右、前、后任意方向进行相邻设置和/或不相邻设置。在本实施例中,为了便于生产加工,十二个电场单元的结构和形状均相同,然而,在其他实施例中,根据装置空间存放条件或其他因素,多个电场单元的结构、大小也可以不相同、也可以部分相同。
参照图1,以第一电场单元2100和第二电场单元2200的结构为例进行说明,其他电场单元的结构以此类推。第一电场单元2100具有沿轴向延伸的第一通道2110,所述轴向即与电场单元2100沿第一通道2110方向延伸的中心轴的方向相同,环绕第一通道2110形成侧壁2120,侧壁2120设有供气体进入通道2110的第一进气孔213和供气体排出通道的第一出气孔214,第一进气孔213和第一出气孔214的数量为多个,较佳地,多个第一进气孔213和多个第一出气孔214孔径大小相同,多个第一进气孔213沿轴向均匀布置成一列于第一侧壁2121上,多个第一出气孔214沿轴向均匀布置成一列于第二侧壁2122上,第三侧壁2123上未设置进气孔或出气孔,第一进气孔213的孔心与第一出气孔214的孔心布置在与轴向垂直的不同平面上。第一电场单元2100和第二吸附单元2200共用第二侧壁2122,第二侧壁2122的两个表面分别面对第一电场单元2100的第一通道2110和第二电场单元2200的第二通道2210,也就是说,以第一吸附单元2100的第二侧壁2122上的第一出气孔214作为第二吸附单元2200的第二侧壁2122的第二进气孔,以保证气体从第一电场单元2100直接进入第二电场单元2200,第二吸附单元2200的第四侧壁2222上开设多个沿轴向均匀布置成一列的第二出气孔224,第二吸附单元2200的第五侧壁2223上没有开设进气孔和/或出气孔。
参照图1,每个放电极209设置于与之对应的电场单元2000的通道内,由于每个电场单元2000的通道被侧壁环绕成的与轴向方向垂直的截面为正三角形,放电极209优选平行于通道的侧壁设置并经过与之对应的电场单元2000的截面内切圆的圆心,此处的放电效率最高。需要说明的是,这里的截面指的是电场单元2000的垂直于通道的轴向方向的截面。例如,第一放电极219设置于第一电场单元2100的通道内,且优选 平行于通道的侧壁设置并经过第一电场单元2100的截面内切圆的圆心。其他放电极与电场单元的关系与此类似,此处不再详述。
继续参照图1,所有电场单元2000与电源的同一极电连接,所有放电极209与电源的另一极电连接,比如,以第一电场单元2100和第二电场单元2200为例,第一电场单元2100与电源的阳极电性连接,而第一放电极219与电源的阴极电性连接;以及第二电场单元2200与电源的阳极电性连接,而第二放电极229与电源的阴极电性连接。第一电场单元2100与第一放电极219形成第一电场,第二电场单元2200与第二放电极229形成第二电场。
然而,在其他实施例中,多个电场单元可以分为两组,两组电场单元排成两排以上的形式组合在一起,每一排的电场单元在同一组中,第一组电场单元与电源的阳极电性连接、与之对应的第一组放电极与电源的阴极电性连接;第二组电场单元与电源的阴极电性连接、与之对应的第二组放电极与电源的阳极电性连接。当气流先后经过第一组电场单元和第一组放电极形成的电场与第二组电场单元和第二组放电极形成的电场时,分别使气体中的颗粒物获得负电荷和正电荷,使气体中带负电荷的颗粒物被沉积于第一组电场单元上,气体中带正电荷的颗粒物被沉积于第二组电场单元上,提高了除尘效率。
参照图1,以第一电场单元2100和第二电场单元2200的气体走向为例,其他电场单元的气体走向与次类似,不再详述。由于第一电场中第一进气孔213与第一出气孔214的孔心布置在与轴向垂直的不同平面上,第二电场中第二进气孔与第二出气孔224的孔心布置在与轴向垂直的不同平面上,气体先后经过第一电场和第二电场的气体流向紊乱,进一步增加了气体在两个电场中的停留时间,增加近距离与第一放电极219和第二放电极229接触的频次,距离放电极209越近的地方,气体电离效率越高,提高颗粒物带电效率和带电量;而且当气体形成旋风式流向时,有利于大颗粒的分离,综合以上两点,有效提高了除尘效率。
在其他实施例中,也可以在第二电场单元2200的第五侧壁2223上开设进气孔,那么第二电场单元2200和第三电场单元2300的气流相通,气体可以从第三电场单元2300流向第二电场单元2200。然而,在其他实施例中,每个电场单元的侧壁都可以开设进气孔或出气孔,导致每个电场单元的气体可以来源于多个相邻的电场单元,也可以流向多个相邻的电场单元,气体流向高度紊乱,经过放电极附近的气流变多,增加了气体中的颗粒物带电效率和带电量,提高了除尘效率。
图2A是本发明的一个实施例的电场单元的立体示意图,所述电场单元710具有沿轴向延伸的通道711,环绕通道711形成侧壁712,侧壁712设有供气体进入通道711的进气孔713和供气体排出通道711的出气孔714,进气孔713的孔心与出气孔714的孔心布置在与轴向垂直的不同平面上。
参照图2A,电场单元710具有沿轴向延伸的通道711,所述轴向即与电场单元710沿通道方向延伸的中心轴的方向相同。环绕通道711形成三个侧壁712,包括第一侧壁7121、第二侧壁7122和第三侧壁7123,第一侧壁7121、第二侧壁7122和第三侧壁7123沿电场单元710的轴向长度相等,通道711被第一侧壁7121、第二侧壁7122和第三侧壁7123环绕成的截面优选为正三角形,所述截面是指与轴向方向垂直的截面。然而,在其他实施例中,电场单元也可以包括三个以上侧壁,例如,电场单元可以包括三个、四个、五个或六个、甚至更多个侧壁,通道被侧壁环绕成的截面可以是三边形、四边形、五边形、或六边形、以及其他多边形。较佳地,通道被侧壁环绕成的截面为正多边形;电场单元也可以只包括一个侧壁,也就是说,通道被侧壁环绕成的截面为圆形或椭圆形;优选地,通道被侧壁环绕成的正多边形的截面的内角角度是 数字360的整除数,这有利于多个电场单元在一个平面内360度无缝拼接,简化制造工艺;更优选地,通道被侧壁环绕呈的截面为正三角形或正六边形。
在一个实施例中,第一侧壁7121、第二侧壁7122和第三侧壁7123具有侧壁主体和从所述侧壁主体沿垂直于所述通道的两端分别弯折形成的折边部,所述连接件设置于相邻两个侧壁的折边部,以将相邻两个侧壁固定连接。由于使用连接件连接的侧壁不仅可以做到标准化、批量化的生产,加工方便,效率高,而且连接件连接具有装配简单,可拆卸便于包装运输的优点。
参照图2A,第一侧壁7121具有第一侧壁主体71211和从第一侧壁主体71211的两端分别弯折形成的第一侧壁左折边部71212和第一侧壁右折边部71213,第二侧壁7122具有第二侧壁主体71221和从第二侧壁主体71221的两端分别弯折形成的第二侧壁左折边部71222和第二侧壁右折边部71223,第三侧壁7123具有第三侧壁主体71231和从第三侧壁主体71231的两端分别弯折形成的第三侧壁左折边部71232和第三侧壁右折边部71233。其中,第一侧壁左折边部71212和第一侧壁右折边部71213相互平行,第二侧壁左折边部71222和第二侧壁右折边部71223相互平行,第三侧壁左折边部71232和第三侧壁右折边部71233相互平行且垂直于第三侧壁主体71231。需要说明的是,此处的“左”和“右”仅仅是为了将两个折边部区别开来,不构成对方位的限定。
继续参照图2A,每一个侧壁的折边部都沿通道711的延伸方向延伸,以及相邻两个侧壁的折边部对齐配合并通过连接件连接,从而通过折边部和连接件将相邻的两个侧壁固定连接。例如,各个折边部上分别设置多个沿通道的延伸方向排列的通孔718,连接件穿设于通孔718内并固定,从而将相邻的侧壁固定连接。较佳地,各个折边部沿通道的两个端部均分别设有通孔718。较佳地,在各个折边部端部均设有通孔连接件可以是铆钉、螺钉等,相邻的两个侧壁通过铆钉连接、螺栓连接、螺钉连接等实现连接。在本施例中,相邻的两个侧壁通过铆钉依次铆接。
参照图2A、图3,在本实施例中,第一侧壁7121的第一侧壁右折边部71213与第二侧壁7122的第二侧壁右折边部71223通过铆钉99铆接并形成连接顶端。第二侧壁7122的左折边部71222与第三侧壁7123的左折边部71232通过铆钉99铆接并形成第一连接底端。第一侧壁7121的左折边部71212与第三侧壁7123的右折边部71233通过铆钉99铆接并形成第二连接底端。
在一个实施例中,参照图2A,侧壁712设有供气体进入通道711的进气孔713和供气体排出通道711的出气孔714,进气孔713和出气孔714优选分别布置于不同的侧壁上,例如,进气孔713布置在第三侧壁7123上,出气孔714包括第一出气孔7141和第二出气孔7142,第一出气孔7141布置于第一侧壁7121上,第二出气孔7142布置于第二侧壁7122上。在本实施例中,电场单元710的三个侧壁都布置有进气孔713或出气孔714,然而,需要理解的是,在其他实施例中,进气孔和/或出气孔可以布置于电场单元的部分侧壁上,比如,进气孔713布置在第三侧壁7123上,第一出气孔7141布置于第一侧壁7121上,第二侧壁7122上不再布置第二出气孔7142,或进气孔713布置在第三侧壁7123上,第二出气孔7142布置于第二侧壁7122上,第一侧壁7121上不再布置第一出气孔7141。此外,在其他实施例中,进气孔和出气孔也可以布置于同一个侧壁的不同位置,例如,进气孔布置于侧壁的上部、出气孔布置于侧壁的下部,或者进气孔布置于侧壁的左侧、出气孔布置于侧壁的右侧。本领域技术人员需要理解的是,进气孔和出气孔的位置不限于上述列举的方式。
在一个实施例中,参见图2A,多个侧壁中的至少一个侧壁沿通道方向延伸的中线上不设置进气孔或出气孔,该侧壁上中线与通道中心线的距离是最短的。较佳地,每 一个侧壁沿通道方向延伸的中线两侧2-50mm范围内不设置所述进气孔或所述出气孔。
参照图2A,设置进气孔的侧壁,例如第三侧壁7123设置有多个进气孔713;设置出气孔的侧壁,例如第一侧壁7121和第二侧壁7122,设置有多个出气孔714。多个进气孔713沿轴向均匀布置成两列于第三侧壁7123上,多个第一出气孔7141沿轴向均匀布置成两列于第一侧壁7121上,多个第二出气孔7142沿轴向均匀布置成两列于第二侧壁7122上。较佳地,两列进气孔和/或出气孔分别设置在侧壁中线的两侧,例如,多个第一进气孔7141布置成两列并设置于第一侧壁7121的中线一定距离的两侧,并优选将两列第一进气孔7141布置对称于第一侧壁7121的中线进行布置在其他实施例中,多个进气孔和/或出气孔也可以沿轴向布置成一列或一列以上任意列数,进气孔和/或出气孔也可以以非均匀的形式布置于侧壁上。本实施例中,多个进气孔713沿轴向从第三侧壁7123的一端布置到第三侧壁7123的另一端,多个第一出气孔7141沿轴向从第一侧壁7121的一端布置到第一侧壁7121的另一端,多个第二出气孔7142沿轴向从第二侧壁7122的一端布置到第二侧壁7122的另一端,在其他实施例中,可以根据实际进气或出气的需要,将进气孔或出气孔也可以沿轴向分布于侧壁的一部分。
图2B是图2A的电场单元的C向视图,如图2B所示,进气孔713的孔心与出气孔714的孔心布置在与轴向垂直的不同平面上,也就是说,进气孔713的孔心与出气孔714的孔心的连线与轴向不垂直。该结构使得气体以不平行于电场单元的侧壁的方向进气时,气体通过进气孔713进入电场单元710的内部通道,气体不能通过出气孔直接排出,使得气体流向紊乱,增加在通道内的停留时间,甚至形成旋风式气体流向,再通过出气孔714排出电场单元710。本实施例中,进气孔713的孔心与第一出气孔7141和第二出气孔7142的孔心布置在与轴向垂直的不同平面上,第一出气孔7141和第二出气孔7142的孔心可以布置在与轴向垂直的相同平面上、也可以布置在与轴向垂直的不同平面上。当进气孔713和出气孔714的数量为多个时,优选地,任意一个进气孔的孔心与任意一个出气孔的孔心布置在与轴向垂直的不同平面上。
参照图2B,进气孔713和出气孔714为直径相同的圆形孔。然而,在其他实施例中,进气孔和出气孔可以是椭圆形孔、三角形孔、四边形孔或五边形孔;进气孔和出气孔的直径也可以不同,但是需要保证气体不能无阻挡地通过出气孔直接排出,即如果将两个侧壁重叠在一起,进气孔和出气孔不会完全重叠或一个进气孔/出气孔完全包含另一个出气孔或进气孔的情况,从而保证气体在流动时会遇到阻挡,使得气流在进气孔流入并从出气孔流出时,改变了方向并在通道内形成旋风路径后,再通过出气孔排出电场单元。
在一个实施例中,一个侧壁上的进气孔或出气孔的总面积与该侧壁总面积之比小于或等于一定数值。发明人经过大量实验和深入研究后意外发现,将一个侧壁上的进气孔或出气孔的总面积设置成该侧壁总面积之比小于或等于49%时,较佳地,在40%-49%区间内,更佳地,等于49%,既增加了通风量,又可以最大限度保证侧壁的强度和刚性。
在一个实施例中,侧壁采用导电材料制成,例如采用含有不锈钢和/或铝的材料制成,较佳地,采用铝材料具有能耗小的优点。
图3是本发明的一个实施例的电场装置的俯视剖面示意图,电场装置700包括放电极719和吸附极710,吸附极710由电场单元构成,在本实施例中,吸附极710也可以称之为电场单元710,电场单元与上文相同之处不再赘述,本实施例仅对不同之处加以叙述。
如图3所示,电场单元710的通道711内设有放电极719,本实施例中,通道711被侧壁环绕成的与轴向方向垂直的截面为正三角形,放电极719优选平行于通道的侧 壁设置并经过截面内切圆的圆心,此处的放电效率最高。然而,在其他实施例中,通道被侧壁环绕成的与轴向方向垂直的截面可以为其他多边形,放电极平行于通道的侧壁设置并经过通道的中心线,所述中心线为沿通道轴向方向延伸并经过多边形截面中点的线,例如,通道被侧壁环绕成的与轴向方向垂直的截面为矩形时,中心线为沿通道轴向方向延伸并经过矩形截面长边对称轴与短边对称轴的交点的线。通道被侧壁环绕成的与轴向方向垂直的截面为三角形时,中心线为沿通道轴向方向延伸并经过三角形截面的角平分线的交点的线。优选地,通道被侧壁环绕成的与轴向方向垂直的截面为正多边形时,放电极平行于通道的侧壁设置并经过截面内切圆的圆心。本领域技术人员可以理解的是,由于实际加工条件的限制,放电极可能布置于稍微偏离通道的中心线或截面内切圆的圆心处。
本实施例中,放电极719为细长状针状导体,在其他实施例中,放电极也可以为多角状、毛刺状、螺纹杆状或柱状导体。本实施例中,放电极719的直径为0.1-10mm,较佳地,放电极719的直径为0.2-5mm。
在一个实施例中,放电极719呈细长条状并采用304不锈钢、钛、钨、铱金中的任意一种制成,较佳地,放电极采用铱金制成。
参照图3,电场单元710与电源的一个电极电性连接,放电极719与电源的另一个电极电性连接,电场单元710和放电极719形成有源电场,优选地,电场单元710与电源的阳极电性连接,放电极719与电源的阴极电性连接,即电场单元710为阳极,放电极719为阴极。然而,在其他实施例中,电场单元710也可以与电源的阴极电性连接,放电极719与电源的阳极电性连接,即电场单元710为阴极,放电极719为阳极。当电场单元710与电源的阳极电性连接,放电极719与电源的阴极电性连接时,气体以不平行于电场单元710的侧壁的方向进气,放电极719放电并电离,使气体中的颗粒物获得负电荷,带负电的颗粒物向电场单元710移动,并沉积在电场单元710上。当电场单元710侧壁上的进气孔的孔心与出气孔的孔心布置在与轴向垂直的不同平面上时,可以使通道711中的气体流向紊乱,进一步增加了气体在通道711中的停留时间,增加近距离与放电极719接触的频次,距离放电极719越近的地方,气体电离效率越高,从而提高颗粒物带电效率和带电量;而且当气体形成旋风式流向时,有利于大颗粒的分离,综合以上两点,有效提高了除尘效率。
图4A是本发明的一个实施例的电场装置的立体示意图,电场装置80包括放电极和吸附极。在本实施例中,吸附极和放电极与上文相同之处不再赘述,本实施例仅对不同之处加以叙述。
参照图4A,吸附极由电场吸附装置800构成。电场吸附装置800包括八个电场单元,分别是第一电场单元810、第二电场单元820、第三电场单元830、第四电场单元840、第五电场单元850、第六电场单元860、第七电场单元870和第八电场单元880,八个电场单元以左右相邻排布,相邻的电场单元共用一个侧壁,每个电场单元的通道被侧壁环绕成的与轴向方向垂直的截面为正三角形,在其他实施例中,电场吸附装置中的电场单元的数量不限于此,可以根据实际的需要净化的气体风量对电场单元的数量进行调整,而且,多个电场单元的排布方式可以是上、下、左、右、前、后任意方向进行相邻设置和/或不相邻设置。在本实施例中,为了便于生产加工,八个电场单元的结构和形状均相同,然而,在其他实施例中,根据装置空间存放条件或其他因素,多个电场单元的结构、结构、大小也可以不相同、也可以部分相同。
参照图4A,放电极809包括第一放电极819、第二放电极829、第三放电极839、第四放电极849、第五放电极859、第六放电极869、第七放电极879、第八放电极889,每个放电极设置于与之对应的电场单元的通道内,由于每个电场单元的通道被侧壁环 绕成的与轴向方向垂直的截面为正三角形,放电极809优选平行于通道的侧壁设置并经过与之对应的电场单元截面内切圆的圆心,此处的放电效率最高。例如,第一放电极819设置于第一电场单元810的通道内,且优选平行于通道的侧壁设置并经过第一电场单元810截面内切圆的圆心,以此类推其他放电极与电场单元的关系。
参照图4A,以第一电场单元810和第二电场单元820的结构为例进行说明,其他电场单元的结构以此类推。第一电场单元810包括具有沿轴向延伸的第一通道811,环绕第一通道811形成侧壁812,侧壁812上设有供气体进入通道811的第一进气孔813和供气体排出第一通道811的第一出气孔814,第一进气孔813和第一出气孔814的数量为多个,多个第一进气孔813沿轴向均匀布置成两列于第一侧壁8121上,多个第一出气孔814沿轴向均匀布置成两列于第二侧壁8122上,没有进气孔或出气孔分布于第三侧壁8123上,第一进气孔813的孔心与第一出气孔814的孔心布置在与轴向垂直的不同平面上。第一电场单元810和第二电场单元810共用第二侧壁8122,第二侧壁8122的两个表面分别面对第一电场单元810的第一通道811和第二电场单元820的第二通道821,也就是说,以第一电场单元810的第二侧壁8122上的第一出气孔814作为第二电场单元820的第二侧壁8122的第二进气孔,以保证气体从第一电场单元810直接进入第二电场单元820,第二电场单元820的第四侧壁8222上开设多个沿轴向均匀布置成两列的第二出气孔824,第二电场单元820的第五侧壁8223上没有开设进气孔和/或出气孔。
参照图4A,本实施例中,所有电场单元与电源的同一极进行电连接,所有放电极与电源的另一极进行电连接,比如,以第一电场单元810和第二电场单元820为例,第一电场单元810与电源的阳极电性连接、第一放电极819与电源的阴极电性连接;第二电场单元820与电源的阳极电性连接、第二放电极829与电源的阴极电性连接。第一电场单元810与第一放电极819形成第一电场,第二电场单元820与第二放电极829形成第二电场。然而,在其他实施例中,多个电场单元分为两组,两组电场单元排成两排以上的形式组合在一起,每一排的电场单元在同一组中,第一组电场单元与电源的阳极电性连接、与之对应的第一组放电极与电源的阴极电性连接;第二组电场单元与电源的阴极电性连接、与之对应的第二组放电极与电源的阳极电性连接。当气流先后经过第一组电场单元和第一组放电极形成的电场和第二组电场单元和第二组放电极形成的电场时,分别使气体中的颗粒物获得负电荷和正电荷,使气体中带负电荷的颗粒物被沉积于第一组电场单元上,气体中易与正电荷的颗粒物被沉积于第二组电场单元上,提高了除尘效率。
参照图4A,以第一电场单元810和第二电场单元820的气体走向为例,其他电场单元的气体走向以此类推。气体通过第一进气孔813进入第一电场,而后通过第一出气孔814进入第二电场,最后通过第二出气孔824排出。由于第一进气孔813与第一出气孔814的孔心布置在与轴向垂直的不同平面上且第二进气孔(在本实施例中第二进气孔为第一出气孔814)与第二出气孔824的孔心布置在与轴向垂直的不同平面上,气体先后经过第一电场和第二电场的气体流向紊乱,进一步增加了气体在两个电场中的停留时间,增加近距离与第一放电极819和第二放电极829接触的频次,距离放电极809越近的地方,气体电离效率越高,提高颗粒物带电效率和带电量;而且当气体形成旋风式流向时,有利于大颗粒的分离,综合以上两点,有效提高了除尘效率。在其他实施例中,第二电场单元820的第五侧壁8223上开设进气孔,那么第二电场单元820和第三电场单元830的气流相通,气体可以从第三电场单元830流向第二电场单元820。然而,在其他实施例中,每个电场单元的侧壁都可以开设进气孔或出气孔,导致每个电场单元的气体可以来源于多个相邻的电场单元,也可以流向多个相邻的电 场单元,气体流向高度紊乱,经过放电极附近的气流变多,增加了气体中的颗粒物带电效率和带电量,提高了除尘效率。
图5是包括顶板和地板的电场装置的主视示意图,电场装置80还包括顶板81和底板82,顶板81和底板82分别连接电场吸附装置800的两端,也就是说分别连接电场吸附装置80中每一个电场单元的两端,并对两端进行密封,以保证气体只从每一个电场单元的进气孔或出气孔进出。需要说明的是,顶板81和底板82只是为了描述上的方便,并不旨在限制其方位,也就是说,顶部81并不需要位于顶部,底板82也不需要位于底部,具体可以根据电场装置80的摆放方位设置于电场吸附装置800的两端,以对每一个电场单元的通道进行密封。
图6是本发明的一个实施例的电场单元组件的剖面分解示意图,电场单元组件900包括电场单元910和辅助吸附机构920,电场单元910具有沿轴向延伸的通道911,环绕通道911形成侧壁912,侧壁912设有供气体进入通道的进气孔和供气体排出通道的出气孔,辅助吸附机构920具有多孔结构且布置于电场单元910的侧壁912的至少一部分的一侧,所述至少一部分设有进气孔和/或出气孔。电场单元与上文相同之处不再赘述,本实施例仅对不同之处加以叙述。
参照图6,电场单元910的侧壁912包括侧壁的内表面9121和侧壁的外表面9122,在本实施例中,辅助吸附机构920优选布置于电场单元910设有进气孔和/或出气孔的侧壁912的全部外表面9122的一侧,气体以不平行于电场单元910的侧壁912的方式通过,多孔结构的辅助吸附机构920可以通过物理过滤的方式在进气端和出气端过滤掉一部分气体中的颗粒,而在其他实施例中,辅助吸附机构也可以布置于电场单元的设有进气孔和/或出气孔侧壁的内表面和/或外表面的一部分的一侧。在本实施例中,辅助吸附机构920与电场单元910之间具有间隙,优选地,辅助吸附机构920与电场单元910之间具有小于或等于50mm的距离,在该距离空间中的气体会再次混合,混合后的气体进而通过电场单元910或辅助吸附机构920进行颗粒去除。在辅助吸附机构920与电场单元910之间的一定距离范围之内,随辅助吸附机构920与电场单元910的距离增加,辅助吸附机构910的带电荷量随之增加。在其他实施例中,辅助吸附机构920以胶粘的方式贴合于电场单元910的侧壁912的全部外表面9122,所述贴合可以理解为辅助吸附机构920与电场单元910之间理论上没有间隙,在其他实施例中,贴合方式也可以选自榫卯固定、铆钉固定或其他的机械固定方式,其中榫卯固定可以是,先将辅助吸附机构固定在框架上,再将框架与电场单元进行榫卯固定,然而,本领域技术人员可以理解的是,由于实际加工条件的限制,辅助吸附机构920贴合于电场单元910的侧壁912时可能存在一定间隙,该间隙可以忽略不计。
参照图6,在本实施例中,辅助吸附机构920由60目的聚四氟乙烯薄膜构成,由于聚四氟乙烯是驻极材料,当电场对驻极材料进行驻极充电后,驻极材料自身的驻极电场可以对带电的颗粒物有静电吸附作用,而且当电场突然消失时,驻极电场也不会消失,还可以继续进行除尘。在其他实施例中,辅助吸附机构的孔径也可以选自40目-100目中的一个或多个,孔径越细,气体的风阻越大,能耗越大,优选地,辅助吸附机构的孔径也可以选自40目-80目中的一个或多个;也可以是多层薄膜组合而成,且多孔结构相互交叠贯通。在其他实施例中,辅助吸附机构的材料可以选自导电材料或驻极材料中的一种或多种,其中导电材料可以选自金属或合金中的一种或多种,驻极材料可以选自具有驻极性能的无机化合物和/或具有驻极性能的有机化合物,所述无机化合物选自二氧化硅、钛酸钡、锆钛酸铅、氧化锌、氧化钽、氧化铝、氧化钛、氮化硅中的一种或多种组合,所述有机化合物选自氟碳聚合物、聚碳酸酯、聚丙烯、聚乙烯、聚氯乙烯、天然蜡、树脂、松香中的一种或多种组合,所述氟碳聚合物选自聚 四氟乙烯、聚偏氟乙烯、聚全氟乙丙烯、可溶性聚全氟乙丙烯、可溶性聚四氟乙烯中的一种或多种组合。
本发明的一个实施例提供一种电场单元组件,电场吸附组件与上文相同之处不再赘述,本实施例仅对不同之处加以叙述。
电场吸附组件包括电场单元和辅助吸附机构,电场单元设有供气体进入的进气孔和/或供气体排出的出气孔,辅助吸附机构具有多孔结构且布置于电场单元的侧壁的至少一部分的一侧,所述至少一部分设有所述进气孔和/或出气孔。较佳地,辅助吸附机构与电场单元的至少一部分之间具有间隙,优选地,辅助吸附机构与电场单元的至少一部分之间具有小于或等于50mm的距离,在该距离空间中的气体会再次混合,混合后的气体进而通过电场单元或辅助吸附机构进行颗粒去除。在辅助吸附机构与电场单元之间的一定距离范围之内,随辅助吸附机构与电场单元的距离增加,辅助吸附机构的带电荷量随之增加。在其他实施例中,辅助吸附机构也可以贴合于电场单元的侧壁的表面的至少一部分。
其中电场单元可以为平板状,平板状的电场单元可以作为形成电场的一极,且具有朝向电场的另一极的内表面以及与内表面相对的外表面,辅助吸附机构布置于平板状的电场单元的外表面的一侧。优选地,平板状的电场单元作为形成电场的阳极。气体以不平行于电场单元的侧壁的方式通过,多孔结构的辅助吸附机构可以通过物理过滤的方式在进气端和出气端过滤掉一部分气体中的颗粒。当辅助吸附机构由驻极材料构成时,当电场对驻极材料进行驻极充电后,驻极材料自身的驻极电场可以对带电的颗粒物有静电吸附作用,而且电场突然消失时,驻极电场也不会消失,还可以继续进行除尘。
图7是本发明的一个实施例的电场吸附装置的立体分解示意图,电场吸附装置1000包括8个电场单元和辅助吸附机构1020,电场单元具有沿轴向延伸的通道,环绕所述通道形成侧壁1010,侧壁设有供气体进入通道的进气孔和供气体排出通道的出气孔,辅助吸附机构1020具有多孔结构且布置于至少一个电场单元的的至少一个侧壁1010的至少一部分的一侧,所述至少一部分设有所述进气孔和/或所述出气孔,辅助吸附机构1020由60目的聚四氟乙烯薄膜构成。其中电场单元、辅助吸附机构以及电场吸附法装置与上文相同之处不再赘述,本实施例仅对不同之处加以叙述。
电场吸附装置1000的侧壁1010包括第一类侧壁1011和第二类侧壁1012,第一类侧壁1011的其中一侧布置通道,第二类侧壁1012的两侧各布置一个通道,第一类侧壁1011具有面向通道的内表面以及与内表面相对的外表面,辅助吸附机构1020布置于第一类侧壁1011的外表面的至少一部分的一侧。在本实施例中,辅助吸附机构1020布置于第一类侧壁1011的外表面的至少一部分的一侧且辅助吸附机构1020与第一类侧壁1011的外表面之间具有间隙,优选地,辅助吸附机构1020与第一类侧壁1011的外表面之间具有小于或等于50mm的距离。在该距离空间中的气体会再次混合,混合后的气体进而通过电场单元或辅助吸附机构进行颗粒去除。在辅助吸附机构与电场单元之间的一定距离范围之内,随辅助吸附机构与电场单元的距离增加,辅助吸附机构的带电荷量随之增加。在其他实施例中,辅助吸附机构1020贴合于第一类侧壁1011的外表面的至少一部分布置。本实施例中,电场吸附装置具有10个第一类侧壁1011,其中设有进气孔和/或出气孔的第一类侧壁1011有8个,8个辅助吸附机构1020分别布置于8个设有进气孔和/或出气孔的第一类侧壁1011的外表面的一侧。在其他实施例中,辅助吸附机构还可以设置于第二类侧壁的表面的至少一部分的一侧,较佳地,辅助吸附机构与第二类侧壁的表面的至少一部分之间具有一定的距离;优选地,所述辅助吸附机构与所述第二类侧壁的表面的至少一部分之间具有小于或等于50mm的距 离。在其他实施例中,辅助吸附机构贴合于第二类侧壁的表面的至少一部分布置。
图8是本发明的一个实施例的电场吸附装置的立体分解示意图,电场吸附装置1100包括12个电场单元和辅助吸附机构1120,在其他实施例中,电场吸附装置1100也可以只包括12个电场单元。电场单元具有沿轴向延伸的通道,环绕所述通道形成侧壁1110,侧壁1110设有供气体进入通道的进气孔和供气体排出通道的出气孔,辅助吸附机构1120具有多孔结构且布置于至少一个电场单元的的至少一个侧壁1110的至少一部分的一侧,所述至少一部分设有所述进气孔或所述出气孔,辅助吸附机构1020由60目的聚四氟乙烯薄膜构成。其中电场单元、辅助吸附机构以及电场吸附法装置与上文相同之处不再赘述,本实施例仅对不同之处加以叙述。
电场吸附装置1100的侧壁1110包括第一类侧壁1111和第二类侧壁1112,第一类侧壁1111的其中一侧布置通道,第二类侧壁1112的两侧各布置一个通道,第一类侧壁1111具有面向通道的内表面以及与内表面相对的外表面,辅助吸附机构1120布置于第一类侧壁1111的外表面的一侧,在本实施例中,辅助吸附机构1120布置于第一类侧壁1111的外表面的至少一部分的一侧且辅助吸附机构1120与第一类侧壁1111的外表面之间具有间隙,优选地,辅助吸附机构1120布置于第一类侧壁1111的外表面的至少一部分的一侧且辅助吸附机构1120与第一类侧壁1111的外表面之间具有小于或等于50mm的距离。在该距离空间中的气体会再次混合,混合后的气体进而通过电场单元或辅助吸附机构进行颗粒去除。在辅助吸附机构与电场单元之间的一定距离范围之内,随辅助吸附机构与电场单元的距离增加,辅助吸附机构的带电荷量随之增加。在其他实施例中,辅助吸附机构1120贴合于第一类侧壁1111的外表面的至少一部分布置。本实施例中,2个辅助吸附机构1120分别以整体形式布置于设有进气孔或出气孔的第一类侧壁1111的外表面的一侧。在其他实施例中,辅助吸附机构还可以设置于第二类侧壁的表面的至少一部分的一侧,较佳地,辅助吸附机构与第二类侧壁的表面之间具有间隙;优选地,所述辅助吸附机构与所述第二类侧壁的表面之间具有小于或等于50mm的距离。在其他实施例中,辅助吸附机构贴合于第二类侧壁的表面的至少一部分布置。
本发明的一个实施例提供一种电场装置,包括放电极和吸附极,吸附极由上述实施例中所述的电场吸附组件构成,电场吸附组件与上文相同之处不再赘述,本实施例仅对不同之处加以叙述。放电极可以由细长状或平板状导体构成,并布置于平板状吸附极的一侧,当放电极为平板状导体时,放电极的侧壁可以设有多个气孔以便气体的流通。在其他实施例中,吸附极也可以由上述实施例中电场单元的通道被侧壁环绕成的与轴向方向垂直的截面为多边形的电场单元组件构成,放电极平行于通道的侧壁设置并经过通道的中心线,所述中心线为沿通道轴向方向延伸并经过多边形截面中点的线,例如,通道被侧壁环绕成的与轴向方向垂直的截面为矩形时,中心线为沿通道轴向方向延伸并经过矩形截面长边对称轴与短边对称轴的交点的线;通道被侧壁环绕成的与轴向方向垂直的截面为三角形时,中心线为沿通道轴向方向延伸并经过三角形截面的角平分线的交点的线;优选地,通道被侧壁环绕成的与轴向方向垂直的截面为正多边形时,放电极平行于通道的侧壁设置并经过截面内切圆的圆心,此处的放电效率最高。
吸附极与电源的一极电性连接,放电极与电源的另一极电性连接。优选地,吸附极与电源的阳极电性连接,放电极与电源的阴极电性连接,吸附极和放电极形成电场,气体以不平行于吸附极的侧壁的方向进气,气体中的一部分颗粒物在进入电场前被布置在设有进气口侧壁的一侧的辅助吸附机构过滤,进入电场中的颗粒物由于电离放电而获得负电荷,带负电的颗粒物向吸附极移动,并沉积在吸附极上,没有被电场吸附 的颗粒物在离开电场后,也可以被布置在设有出气口侧壁的一侧的辅助吸附机构过滤,提高了除尘效率。当辅助吸附机构由驻极材料构成时,当电场对驻极材料进行驻极充电后,驻极材料自身的驻极电场可以对带电的颗粒物有静电吸附作用,而且电场突然消失时,驻极电场不会消失,也可以继续进行除尘。
本发明的一个实施例提供一种电场装置,包括放电极和吸附极,吸附极由上述实施例中所述的电场吸附装置构成,电场吸附装置和电场装置与上文相同之处不再赘述,本实施例仅对不同之处加以叙述。放电极设于电场吸附装置中每一个电场单元的通道内,优选地,通道被侧壁环绕成的与轴向方向垂直的截面为正多边形时,放电极平行于通道的侧壁设置并经过截面内切圆的圆心,此处的放电效率最高。当辅助吸附机构的材料为60目的聚四氟乙烯时,多孔材料的辅助吸附机构可以通过物理过滤的方式在进气端和出气端过滤掉一部分气体中的颗粒,且电场对驻极材料进行驻极充电后,驻极材料自身的驻极电场可以对带电的颗粒物有静电吸附作用,相比没有辅助吸附机构的情况下,除尘效率提高了10-20%。由于聚四氟乙烯是驻极材料,在有源电场突然消失时,辅助吸附机构的驻极电场也可以进行除尘,通过实验可知,当电场吸附装置的有源电场突然消失时,仅通过辅助吸附机构进行除尘的除尘效率可达30%。
在一个实施例中,参照图4B,电场吸附装置800由多个电场单元通过连接件连接形成。在本实施例中,电场吸附装置800由八个电场单元连接形成。具体地,电场吸附装置800整体上由两排电场单元构成,为了描述方便,以图4B所示的方向为参考,将侧壁面向下部的一排称为第一排,将侧壁面向上部的一排称为第二排。其中,第一排由大小结构均相同的第一电场单元810、第三电场单元830、第五电场单元850以及第七电场单元870通过其各自位于底部的侧壁依次连接形成,其通道的轴线相互平行且在同一平面上。第二排由大小结构相同的第二电场单元820、第四电场单元840、第六电场单元860以及第八电场单元880通过其各自位于顶部的侧壁依次连接形成。具体地,在本实施例中,第一电场单元810、第三电场单元830、第五电场单元850以及第七电场单元870的各自位于底部的侧壁都设有折边部,每相邻两个电场单元的位于底部的侧壁上的折边部相互对准,通过将连接件连接于折边部上,从而将相邻两个电场单元固定连接,例如,通过利用铆钉将相邻两个电场单元的折边部铆接,以将相邻两个电场单元固定连接。利用铆钉铆接,不仅便于加工。而且密封性好,铆接不仅使得相互连接的侧壁之间密封性好,而且铆钉在铆接时会在铆钉孔内膨胀,使得铆钉与孔之间也具有高密封的性能。类似地,第二电场单元820、第四电场单元840、第六电场单元860以及第八电场单元880位于顶部的侧壁也都设有折边部,相邻两个电场单元的位于顶部的折边部相互对准,通过将连接件连接于折边部上,从而将相邻两个电场单元固定连接。具体地,以第一排的第一电场单元810、第三电场单元830和第五电场单元850的连接方式为例说明相邻的电场单元的连接方式。第三电场单元830的底部侧壁设有向下弯折的第一折边部891,第一电场单元810的底部侧壁设有向下弯折的第二折边部892,第一折边部891和第二折边部892相互对齐,通过将连接件穿设于第一折边部891和第二折边部892以将第一电场单元810和第三电场单元830固定连接,第三电场单元830的底部侧壁设有向下弯折的第二折边部893,第五电场单元850底部侧壁设有向下弯折的第一折边部894,通过将连接件穿设于第一折边部894和第二折边部893以将第三电场单元和第五电场单元固定连接。在本实施例中,多个电场单元的各自的第一折边部和相邻单元的第二折边部优选通过铆钉铆接。第五电场单元850与第七电场单元870的连接方式与次类似,不再详述。
继续参照图4B,在本实施例中,第一电场单元810与第二电场单元820共用第二侧壁8122,也就是说,第二侧壁8122的两侧分别面对第一电场单元810的通道和第 二电场单元820的通道。第二侧壁8122的上端和下端分别设有上折边部895和下折边部896,上折边部895和下折边部896分别向不同的方向弯折,上折边部895的两侧分别与第一电场单元810的第三侧壁8123和第二电场单元820的第四侧壁8222的折边部对齐,并通过诸如铆钉的连接件固定连接。第二电场单元820的第四侧壁8222分别连接第一电场单元810和第三电场单元830,第四侧壁8222、第二侧壁8122以及第五侧壁8223构成第二电场单元820。
类似地,多个电场单元通过上述方式实现连接并形成电场吸附装置800。需要说明的是,在图4B所示的实施例中,每一个电场单元的每一个侧壁垂直于轴向的两端都设有折边部,同一个电场单元通过相邻侧壁的折边部配合,然后通过诸如铆钉铆接的方式实现固定连接,不同电场单元之间通过共用一块侧壁并将各自的另一块侧壁与共用侧壁固定连接实现连接,例如,第一电场单元810和第二电场单元820共用的第二侧壁8122与第一电场单元810的第三侧壁8123和第二电场单元820的第四侧壁8222同时固定连接。
需要说明的是,在图4B所示的实施例中,位于顶部的侧壁(例如第四侧壁8222)以及位于底部的侧壁(例如第一侧壁8121)的折边部大致沿与其所在的侧壁的主体部分垂直的方向弯折,而连接顶部的侧壁和底部的侧壁的位于中间的侧壁(例如第二侧壁8122)的折边部大致沿与其所在的侧壁的主体部分呈120度方向弯折。如此布置,可以方便电场吸附装置的平稳放置,并便于多层叠加放置。
图9A示出本发明一个实施例的电场吸附装置1100。参照图9A,电场吸附装置1100包括12个相同的电场单元,从左至右分别为第二电场单元620、第一电场单元610、第三电场单元630、第四电场单元640、第五电场单元650、第六电场单元660、第七电场单元670、第八电场单元680、第九电场单元690、第十电场单元691、第十一电场单元692、第十二电场单元693。12个相同的电场单元左右相邻排布,相邻的电场单元共用一个侧壁,每个电场单元的通道被侧壁环绕成的与轴向方向垂直的截面为正六边形,在其他实施例中,电场吸附装置中的电场单元的数量不限于此,可以根据实际的需要净化的气体风量对电场单元的数量进行调整,而且,多个电场单元的排布方式可以是上、下、左、右、前、后任意方向进行相邻设置和/或不相邻设置。在本实施例中,为了便于生产加工,十二个电场单元的结构和形状均相同,然而,在其他实施例中,根据装置空间存放条件或其他因素,多个电场单元的结构、结构、大小也可以不相同、也可以部分相同。
图9B是图9A的俯视图,参照图9B,本实施例中,第一电场单元610与第二电场单元620、第三电场单元630分别相邻设置。第一电场单元610由第一侧壁611、第二侧壁612、第三侧壁613、第四侧壁614、第五侧壁615、第六侧壁616围合而成,其横截面为正六边形。每个侧壁上均设有多个进气孔和/或出气孔。第一电场单元610与第二电场单元620共用第一电场单元610的第一侧壁613,第一电场单元610与第三电场单元630共用第一电场单元610的第五侧壁615。
在图9A和9B所示的实施例中,每一个电场单元的每一个侧壁沿通道方向延伸的中线都不设置进气孔或出气孔。具体地,以第一电场单元610为例进行说明,第一电场单元610的每一个侧壁的中线617上都不设置进气孔或出气孔,从而使得侧壁中线的位置形成积尘部分。当电场单元的通道的中心线设置放电极时,放电极与侧壁的中线之间的距离是放电极与侧壁之间的最短距离,从而该部分的吸尘效率最高,可以实现最好的吸尘效果。
需要说明的是,虽然图9A所示的实施例中,每一个电场单元的每一个侧壁的中线都不设进气孔或出气孔,然而,也可以仅仅在一个或多个电场单元的其中一个或多 个侧壁的中线部分不设置进气孔或出气孔,这些情况虽然效果没有图9A所示的实施例的优异,但是也具有一定的技术效果,与在中线位置设置进气孔或出气孔的方案相比,中线都不设进气孔或出气孔可以实现更高效率的积尘。
此外,还需要说明的是,本发明中的中线指的是侧壁上沿通道方向延伸的中线,中线与中线所在的侧壁垂直于通道的两端的距离相等。
图10是本发明一个实施例的电场装置的立体示意图,该电场装置包括放电极和吸附极。
在本实施例中,电场装置包括多个放电极和吸附极,放电极包括第一放电极619、第二放电极629、第三放电极639、第四放电极649以及其余的八个放电极,吸附极为图9A和图9B所示电场吸附装置1100,电场吸附装置1100中的多个电场单元结构形式相同。其中,吸附极参考图9A和图9B所示的电场吸附装置的相关描述,此处不再详述。如图10所示,每一个电场单元的每一个侧壁上与放电极最短距离617处的部分不设置进气孔或出气孔,例如当电场单元的通道的垂直于轴线的截面为正多边形时,每一个侧壁的中线上不设置进气孔或出气孔(如图9A和9B所示的电场吸附装置)。例如第一电场单元610的每一个侧壁上与放电极619距离最近的部分都不设置进气孔或出气孔,从而使得该部分形成积尘部分。
参照图10,第一放电极619穿设于第一电场单元610的通道内,第一放电极619和第一电场单元610之间形成第一电场,第二电场单元620、第三电场单元630、第四电场单元640与第二放电极629、第三放电极639、第四放电极649分别形成第二电场、第三电场、第四电场,以此类推,其余的电场单元分别与一个放电极分别形成电场。
由于每个电场单元的通道被侧壁环绕成的与轴向方向垂直的截面为正六边形,放电极优选平行于通道的侧壁设置并经过与之对应的电场单元截面内切圆的圆心,此处的放电效率最高。例如,第一放电极619设置于第一电场单元610的通道内,且优选平行于通道的侧壁设置并经过第一电场单元610截面内切圆的圆心,以此类推其他放电极与电场单元的关系。
参照图9B、图10,本实施例中,A为进气方向,B为出气方向,以气体在第一电场、第二电场、第三电场中流动的情况为例进行说明,其他电场的情况以此类推。
对于第一电场,气体通过第一电场单元610中的第一侧壁611、第二侧壁612、第六侧壁616上的进气孔进入第一电场,气体进入方向与第一电场内离子流方向不垂直;由于第一侧壁611、第二侧壁612、第六侧壁616上的进气孔与第三侧壁613、第四侧壁614、第五侧壁615上的出气孔错位排布,气流可以流向多个相邻的电场单元,气流在中空的电场单元610内流动紊乱,经过第一放电极619附近的颗粒物越多,与放电极619碰撞越多,带电粒子越多,提高了吸附效率。另外,由于第一电场具有两个斜面,斜面进风使得气流在中空的第一电场单元610内流动更加紊乱,与侧壁的碰撞增多后,提高了经过第一放电极619附近的频次,从而吸附效率更高。经过第一电场处理后分别由第三侧壁613、第四侧壁614、第五侧壁615上的出气孔排出,并通过第三侧壁613、第五侧壁615上的出气孔进入到第二电场、第三电场。
对于第二电场,一部分气体通过第二电场的吸附单元620中的第四侧壁624、第五侧壁625上的进气孔进入第二电场,另一部分来自第一电场的气体通过第一电场单元610中的第三侧壁613上的孔进入第二电场,这些气体进入方向与第二电场内离子流方向不垂直,由于进气孔与出气孔错位排布,气流在中空的电场单元620内流动紊乱,经过放电极629附近的气流越多,颗粒物与第二放电极629碰撞越多,带电粒子越多,提高了吸附效率。另外,由于第二电场还具有一个斜面,同理,斜面进风使得气流在中空的第二电场单元620内流动更加紊乱,吸附效率更高。经过第二电场处理 后分别由第二电场单元620中的第一侧壁621、第二侧壁622、第三侧壁623上的出气孔排出。
对于第三电场,一部分气体通过第三电场单元630中的第五侧壁635上的进气孔进入第三电场,另一部分通过第一电场单元610中的第五侧壁615上的孔来自第一电场的气体以及通过第三电场单元630中的第四侧壁634上的孔来自第四电场的气体进入第三电场,这些气体进入方向与第三电场内离子流方向不垂直,由于进气孔与出气孔错位排布,气流在中空的第三电场单元630内流动紊乱,经过放电极639附近的气流越多,颗粒物与第三放电极639碰撞越多,带电粒子越多,提高了吸附效率。经过第三电场处理后分别由第三电场单元630中的第一侧壁631、第二侧壁632、第三侧壁633上的出气孔排出。
同理,以此类推出气体进入其他电场发生单元的过程。
本实施例电场装置的电场单元具有在侧壁上开孔的结构,通过侧面进风使得气体在电场内流动紊乱,与第三放电极639碰撞增多,带电粒子增多,提高了整体的吸附效率。
图11是本发明的一个实施例的电场吸附装置的立体示意图。
图12是图11的立体分解示意图。
电场吸附装置包括多个电场单元、多个连接构件和至少一个辅助吸附件,电场单元具有沿轴向延伸的通道,环绕所述通道形成多个侧壁,多个侧壁通过所述连接构件依次连接并在至少一个侧壁设有供气体进入所述通道的进气孔和至少一个侧壁设有供气体流出所述通道的出气孔,辅助吸附机构具有多孔结构且通过连接构件布置于至少一个电场单元的的至少一个侧壁的表面的至少一部分,所述至少一部分设有所述进气孔和/或所述出气孔,辅助吸附件由60目的聚四氟乙烯薄膜构成。其中电场单元、辅助吸附件以及电场吸附法装置与上文相同之处不再赘述,本实施例仅对不同之处加以叙述。
在一个实施例中,电场吸附装置包括多个电场单元、多个连接构件和至少一个辅助吸附件,辅助吸附件布置于侧壁的外表面的至少一部分。
在一个实施例中,电场吸附装置包括多个电场单元、多个连接构件和至少一个辅助吸附件,辅助吸附件布置于侧壁的外表面的至少一部分,所辅助吸附件与所电场单元的表面之间具有间隙。
在一个实施例中,辅助吸附件由60目的聚四氟乙烯薄膜构成。
在一个实施例中,所述连接构件为弹性构件、连接组件以及卡件中的任意一种或组合。
在一个实施例中,连接组件包括铆钉或螺栓。
在一个实施例中,电场单元具有多个侧壁,所述侧壁的两端具有弯折的折边部,所述电场单元中相邻两个所述侧壁的折边部相连形成连接端,相邻的两个所述电场单元的连接端中所述折边部依次对齐形成单元连接端,相邻的两个所述电场单元在所述单元连接端连接,所述辅助吸附件设置在所述单元连接端的外侧,所述单元连接端中多个所述折边部以及所述辅助吸附件通过铆钉连接并固定。
在一个实施例中,电场吸附装置还包括垫片,垫片设置在所述铆钉与所述辅助吸附件之间。
较佳地,所述垫片的剖面呈L形。
在一个实施例中,如图11、12所示,电场吸附装置1200包括6个电场单元、12个垫片500、多个铆钉99和两个辅助吸附件1220。
在一个实施例中,参照图4B、图11,6个电场单元包括第一电场单元810、第二 电场单元820、第三电场单元830、第四电场单元840、第五电场单元850、第六电场单元860。
为了描述方便,以图11所示的方向为参考,将侧壁面向下部的一排称为第一排,将侧壁面向上部的一排称为第二排。其中,第一排由大小结构均相同的第一电场单元810、第三电场单元830、第五电场单元850通过其各自位于底部的侧壁依次连接形成,其通道的轴线相互平行且在同一平面上。第二排由大小结构相同的第二电场单元820、第四电场单元840、第六电场单元860通过其各自位于顶部的侧壁依次连接形成。具体地,在本实施例中,第一电场单元810、第三电场单元830、第五电场单元850的各自位于底部的侧壁都设有折边部,每相邻两个电场单元的位于底部的侧壁上的折边部相互对准。第二电场单元820、第四电场单元840、第六电场单元860位于顶部的侧壁也都设有折边部。
具体地,以第一排的第一电场单元810、第三电场单元830连接处D为例说明电场单元与辅助吸附机构1020通过垫片500的连接方式。
第三电场单元830的底部侧壁设有向下弯折的第一折边部891,第一电场单元810的底部侧壁设有向下弯折的第二折边部892,第二侧壁8122的上端和下端分别设有上折边部895和下折边部896,上折边部895和下折边部896分别向不同的方向弯折,第五侧壁8223的上端和下端分别设有上折边部897和下折边部898,上折边部895和下折边部896分别向不同的方向弯折。
参照图12,连接处D从左至右,第一电场单元810底部侧壁的第二折边部892、第二侧壁8122的下折边部896、第五侧壁8223的下折边部898以及第三电场单元830的底部侧壁的第一折边部891相互对齐,并通过诸如铆钉的连接构件连接,本实施例中,连接构件包括铆钉和垫片。其中,辅助吸附件1220设置在第一折边部891或第二折边部892与垫片之间。
通过利用铆钉将相邻两个电场单元的折边部、辅助吸附件铆接,以将相邻两个电场单元以及辅助吸附件固定连接。利用铆钉铆接,不仅便于加工。而且密封性好,铆接不仅使得相互连接的侧壁之间密封性好,而且铆钉在铆接时会在铆钉孔内膨胀,使得铆钉与孔之间也具有高密封性能。
实施例中,垫片500呈横截面为“L”形的直条形状,在连接处D,两个垫片500分别沿通道的轴线方向设置在第一折边部891、第二折边部892上,其直角的第一边(该边与第一折边部891平行)与第一折边部891或第二折边部892将辅助吸附件1220夹紧,直角的第二边(该边与第一折边部891垂直)与电场单元底部的侧壁将辅助吸附件1220夹紧。
类似地,多个电场单元、多个垫片、多个铆钉和两个辅助吸附件通过上述方式实现连接并形成电场吸附装置1200。
在一个实施例中,装配时,垫片的直角的第一边(该边与第一折边部891平行)与第一折边部891或第二折边部892将辅助吸附件1220夹紧,直角的第二边与电场单元底部的侧壁具有距离。在D和E两端,辅助吸附件1220通过第一电场单元810的底部侧壁第一折边部899、第二折边部892分别与两个垫片的直角的第一边进行固定,当拉紧辅助吸附件1220时,直角的第二边抵住并紧贴辅助吸附件1220,使得辅助吸附件1220与侧壁8121的外表面之间具有一定的距离,优选地,辅助吸附件1220布置于侧壁8121的外表面的至少一部分且辅助吸附件1220与侧壁8121的外表面之间具有小于或等于50mm的距离。在该距离空间中的气体会再次混合,混合后的气体进而通过电场单元或辅助吸附机构进行颗粒去除。在辅助吸附件与电场单元之间的一定距离范围之内,随辅助吸附件与电场单元的距离增加,辅助吸附件的带电荷量随之增加。
在一个实施例中,垫片呈片状,装配时,垫片的一面与第一折边部891或第二折边部892将辅助吸附件1220夹紧,垫片的一条长边与电场单元底部的侧壁面紧贴。
在一个实施例中,垫片呈片状,装配时,垫片的一面与第一折边部891或第二折边部892将辅助吸附件1220夹紧,垫片的一条长边与电场单元底部的侧壁面具有间隙。
在一个实施例中,如图13所示,卡件501的内剖面呈槽形,卡件501套装在连接端的多个折边部上用于固定连接端的多个折边部以及辅助吸附件1220,装配时,卡件501的内剖面与折边部的厚度以及辅助吸附件1220厚度相匹配并与之紧配合,卡件501开口端5011与电场单元底部的侧壁面紧贴。
在一个实施例中,装配时,卡件501开口端5011与电场单元底部的侧壁面具有间隙。
在一个实施例中,卡件501可以为多段设置,较佳地,卡件501为一整体。
在一个实施例中,弹性件502具有开口,弹性件502套装在连接端的折边部的外侧用于固定连接端的多个折边部以及辅助吸附件1220,通过弹性将多个折边部以及辅助吸附件1220夹紧固定。
较佳地,如图14所示,弹性件502开口端设有垫片5021。
较佳地,垫片可以为多段设置。
较佳地,垫片为一整体。
在一个实施例中,垫片5021呈片状,装配时,垫片的一面与第一折边部891或第二折边部892将辅助吸附件1220夹紧,垫片的一条长边5022与电场单元底部的侧壁面紧贴。
在一个实施例中,装配时,垫片的一条长边5022与电场单元底部的侧壁面具有间隙。
在一个实施例中,如图15所示,垫片503呈L状,装配时,垫片直角的第一面与第一折边部891或第二折边部892将辅助吸附件1220夹紧,垫片直角的第二面5031与电场单元底部的侧壁面紧贴。
在一个实施例中,装配时,垫片直角的第二面5031与电场单元底部的侧壁面具有间隙。
以上已详细描述了本发明的较佳实施例,但应理解到,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改。这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (33)

  1. 一种电场单元组件,其特征在于,所述电场单元组件包括电场单元和辅助吸附机构,所述电场单元设有供气体进入的进气孔和/或供气体排出的出气孔,所述辅助吸附机构具有多孔结构且布置于所述电场单元的至少一部分的一侧,所述至少一部分设有所述进气孔和/或出气孔。
  2. 根据权利要求1所述的电场单元组件,其特征在于,所述辅助吸附机构与所述电场单元的所述至少一部分之间具有间隙。
  3. 根据权利要求2所述的电场单元组件,其特征在于,所述辅助吸附机构与所述电场单元的所述至少一部分之间具有小于或等于50mm的距离。
  4. 根据权利要求1所述的电场单元组件,其特征在于,所述辅助吸附机构贴合于所述电场单元的表面的所述至少一部分。
  5. 根据权利要求1至4所述的电场单元组件,其特征在于,所述辅助吸附机构具有相互交叠贯通的多孔结构。
  6. 根据权利要求1至5任一项所述的电场单元组件,其特征在于,所述辅助吸附机构由导电材料和/或驻极材料制成。
  7. 根据权利要求1至6任一项所述的电场单元组件,其特征在于,所述电场单元构成电场的阴极或阳极。
  8. 根据权利要求7所述的电场单元组件,其特征在于,所述电场单元构成电场的阳极或阴极,以及所述电场单元具有朝向电场的阴极或阳极的内表面以及与所述内表面相对的外表面,所述辅助吸附机构布置于所述电场单元的所述外表面的一侧。
  9. 一种电场单元组件,其特征在于,所述电场单元组件包括电场单元和辅助吸附机构,所述电场单元具有沿轴向延伸的通道,环绕所述通道形成侧壁,所述侧壁设有供气体进入所述通道的进气孔和供气体排出所述通道的出气孔,所述辅助吸附机构具有多孔结构且布置于所述电场单元的所述侧壁的至少一部分的一侧,所述至少一部分设有所述进气孔和/或所述出气孔。
  10. 根据权利要求9所述的电场单元组件,其特征在于,所述辅助吸附机构与所述电场单元的所述至少一部分之间具有间隙。
  11. 根据权利要求10所述的电场单元组件,其特征在于,所述辅助吸附机构与所述电场单元的所述至少一部分之间具有小于或等于50mm的距离。
  12. 根据权利要求9所述的电场单元组件,其特征在于,所述辅助吸附机构贴合于所述电场单元的表面的所述至少一部分。
  13. 根据权利要求9至12任一项所述的电场单元组件,其特征在于,所述电场单元具有多个所述侧壁,所述进气孔和所述出气孔分别布置于所述电场单元的不同的所述侧壁上,所述辅助吸附机构布置于设有所述进气孔和/或出气孔的所述侧壁的外表面和/或内表面至少一部分的一侧。
  14. 根据权利要求9至13任一项所述的电场单元组件,其特征在于,所述辅助吸附机构由导电材料和/或驻极材料制成。
  15. 根据权利要求9至14任一项所述的电场单元组件,其特征在于,所述辅助吸附机构具有相互交叠贯通的多孔结构。
  16. 根据权利要求9至15任一项所述的电场单元组件,其特征在于,所述电场单元包括多个所述侧壁,多个所述侧壁依次连接并使得所述通道具有正多边形截面;较佳地,所述电场单元包括至少三个所述侧壁;较佳地,所述电场单元包括至少六个所述侧壁。
  17. 根据权利要求9至16任一项所述的电场单元组件,其特征在于,所述电场单 元构成电场的阴极或阳极。
  18. 一种电场吸附装置,其特征在于,所述电场吸附装置包括多个电场单元以及辅助吸附机构,所述电场单元具有沿轴向延伸的通道,环绕所述通道形成侧壁,所述侧壁设有供气体进入所述通道的进气孔和供气体排出所述通道的出气孔,所述辅助吸附机构具有多孔结构且布置于至少一个所述电场单元的的至少一个所述侧壁的至少一部分的一侧,所述至少一部分设有所述进气孔和/或所述出气孔。
  19. 根据权利要求18所述的电场吸附装置,其特征在于,所述电场吸附装置包括第一类侧壁和第二类侧壁,所述第一类侧壁的其中一侧布置所述通道,所述第二类侧壁的两侧各布置一个所述通道,所述第一类侧壁具有面向所述通道的内表面以及与所述内表面相对的外表面,所述辅助吸附机构布置于所述第一类侧壁的所述外表面的所述至少一部分的一侧。
  20. 根据权利要求19所述的电场单元组件,其特征在于,所述辅助吸附机构与所述第一类侧壁的外表面的所述至少一部分之间具有间隙。
  21. 根据权利要求20所述的电场单元组件,其特征在于,所述辅助吸附机构与所述第一类侧壁的外表面的所述至少一部分之间具有小于或等于50mm的距离。
  22. 根据权利要求18所述的电场单元组件,其特征在于,所述辅助吸附机构贴合于所述第一类侧壁的外表面的所述至少一部分。
  23. 根据权利要求18至22所述的电场吸附装置,其特征在于,所述辅助吸附机构还布置于所述第二类侧壁的所述至少一部分的一侧;
    较佳地,所述辅助吸附机构与所述第二类侧壁的所述至少一部分之间具有间隙;
    较佳地,所述辅助吸附机构与所述第二类侧壁的所述至少一部分之间具有小于或等于50mm的距离;
    较佳地,所述辅助吸附机构贴合于所述第二类侧壁的所述至少一部分布置。
  24. 根据权利要求18至23任一项所述的电场吸附装置,其特征在于,每一个所述通道由多个所述侧壁围成;较佳地,所述通道具有多边形截面;较佳地,所述多边形为三边形、四边形、五边形或六边形;较佳地,所述多边形为正多边形。
  25. 根据权利要求18至24任一项所述的电场吸附装置,其特征在于,所述辅助吸附机构具有相互交叠贯通的多孔结构。
  26. 根据权利要求18至25任一项所述的电场吸附装置,其特征在于,所述辅助吸附机构由导电材料和/或驻极材料制成。
  27. 根据权利要求18至26任一项所述的电场吸附装置,其特征在于,所述电场单元构成电场的阴极和/或阳极。
  28. 一种电场装置,包括放电极和吸附极,其特征在于,所述吸附极由权利要求1-8任一项所述的电场单元组件构成,以及所述放电极由导体构成。
  29. 一种电场装置,包括放电极和吸附极,其特征在于,所述吸附极由权利要求9-17任一项所述的电场单元组件构成,以及所述放电极由设置于所述通道内并沿所述通道延伸的导体构成。
  30. 根据权利要求29所述的电场装置,其特征在于,所述放电极平行于所述通道的侧壁设置并经过所述通道的中心线;较佳地,所述通道具有正多边形横截面,所述放电极经过所述横截面内切圆的圆心。
  31. 一种电场装置,包括放电极和吸附极,其特征在于,所述吸附极由权利要求18-27任一项所述的电场吸附装置构成,以及所述放电极由设置于每一个所述通道内并沿所述通道延伸的导体构成。
  32. 根据权利要求31所述的电场装置,其特征在于,所述放电极平行于所述通道 的侧壁设置并经过所述通道的中心线;较佳地,所述通道具有正多边形横截面,所述放电极经过所述横截面内切圆的圆心。
  33. 根据权利要求31或32所述电场装置,其特征在于,所述气体处理电场装置还包括顶板和底板,所述顶板和所述底板分别连接于所述电场吸附装置的两端并对所述通道的两端进行密封。
PCT/CN2021/125123 2020-10-21 2021-10-21 电场单元组件及电场吸附装置以及电场装置 WO2022083664A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180068186.2A CN116745036A (zh) 2020-10-21 2021-10-21 电场单元及电场吸附装置以及电场装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011135531.3A CN114377858A (zh) 2020-10-21 2020-10-21 电场单元组件及电场吸附装置以及电场装置
CN202011135531.3 2020-10-21

Publications (1)

Publication Number Publication Date
WO2022083664A1 true WO2022083664A1 (zh) 2022-04-28

Family

ID=81193571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125123 WO2022083664A1 (zh) 2020-10-21 2021-10-21 电场单元组件及电场吸附装置以及电场装置

Country Status (2)

Country Link
CN (2) CN114377858A (zh)
WO (1) WO2022083664A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116193733A (zh) * 2023-04-25 2023-05-30 四川托璞勒科技有限公司 吸附件、堆叠板材的上料装置以及pcb的棕化处理装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101862705A (zh) * 2010-06-22 2010-10-20 浙江工商大学 一种混流式电除尘器
JP5705461B2 (ja) * 2010-05-27 2015-04-22 富士電機株式会社 電気集塵装置
CN205288702U (zh) * 2015-12-14 2016-06-08 杭州明旺环保科技有限公司 一种双孔插接式静电净化器除尘结构
CN107597438A (zh) * 2017-08-30 2018-01-19 上海联达节能科技有限公司 一种新型电除尘装置
CN108421639A (zh) * 2018-05-10 2018-08-21 科创扬州环境工程科技有限公司 一种管网式高压电场
CN108816517A (zh) * 2018-05-29 2018-11-16 武汉科技大学 一种低速侧流式横向双极静电除尘器
CN110876985A (zh) * 2019-12-23 2020-03-13 浙江大学 基于颗粒陷阱效应的收尘极板、新型极配形式及高效静电除尘器
CN210279498U (zh) * 2019-06-24 2020-04-10 江苏蓝博环保机械有限公司 一种蜂窝电场及除尘装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5705461B2 (ja) * 2010-05-27 2015-04-22 富士電機株式会社 電気集塵装置
CN101862705A (zh) * 2010-06-22 2010-10-20 浙江工商大学 一种混流式电除尘器
CN205288702U (zh) * 2015-12-14 2016-06-08 杭州明旺环保科技有限公司 一种双孔插接式静电净化器除尘结构
CN107597438A (zh) * 2017-08-30 2018-01-19 上海联达节能科技有限公司 一种新型电除尘装置
CN108421639A (zh) * 2018-05-10 2018-08-21 科创扬州环境工程科技有限公司 一种管网式高压电场
CN108816517A (zh) * 2018-05-29 2018-11-16 武汉科技大学 一种低速侧流式横向双极静电除尘器
CN210279498U (zh) * 2019-06-24 2020-04-10 江苏蓝博环保机械有限公司 一种蜂窝电场及除尘装置
CN110876985A (zh) * 2019-12-23 2020-03-13 浙江大学 基于颗粒陷阱效应的收尘极板、新型极配形式及高效静电除尘器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116193733A (zh) * 2023-04-25 2023-05-30 四川托璞勒科技有限公司 吸附件、堆叠板材的上料装置以及pcb的棕化处理装置
CN116193733B (zh) * 2023-04-25 2023-07-04 四川托璞勒科技有限公司 吸附件、堆叠板材的上料装置以及pcb的棕化处理装置

Also Published As

Publication number Publication date
CN114377858A (zh) 2022-04-22
CN116745036A (zh) 2023-09-12

Similar Documents

Publication Publication Date Title
WO2022083666A1 (zh) 电场单元及电场吸附装置以及电场装置
TWI710405B (zh) 空氣除塵系統
WO2022083664A1 (zh) 电场单元组件及电场吸附装置以及电场装置
WO2022083665A1 (zh) 电场单元及电场吸附装置以及电场装置
WO2022083663A1 (zh) 电场单元组件和电场装置
WO2022000871A1 (zh) 电场单元及电场吸附装置以及电场装置
CN210700629U (zh) 一种插卡式方形静电式净化器的电极结构
WO2022105889A1 (zh) 气体净化装置、系统及方法
CN214347210U (zh) 静电过滤器
CN108499738B (zh) 一种用于脱除低浓度烟尘污染物的阴极线装置及电除尘器
CN217989640U (zh) 一种空气净化装置
KR20210115511A (ko) 전기집진장치
TWI805084B (zh) 負離子產生設備
CN210632285U (zh) 一种电极片、净化组件和油烟净化设备
CN107774452B (zh) 一种静电除油烟装置
TWM646587U (zh) 靜電集塵裝置
KR20220085202A (ko) 미세먼지 집진용 필터 및 이를 포함하는 미세먼지 집진장치
CN105665136A (zh) 一种使用柱状介电电泳电极的家用空气净化器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882079

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180068186.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21882079

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21882079

Country of ref document: EP

Kind code of ref document: A1