Nothing Special   »   [go: up one dir, main page]

WO2022083663A1 - 电场单元组件和电场装置 - Google Patents

电场单元组件和电场装置 Download PDF

Info

Publication number
WO2022083663A1
WO2022083663A1 PCT/CN2021/125122 CN2021125122W WO2022083663A1 WO 2022083663 A1 WO2022083663 A1 WO 2022083663A1 CN 2021125122 W CN2021125122 W CN 2021125122W WO 2022083663 A1 WO2022083663 A1 WO 2022083663A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric field
adsorption
field unit
chamber
unit assembly
Prior art date
Application number
PCT/CN2021/125122
Other languages
English (en)
French (fr)
Inventor
王赞
奚勇
Original Assignee
上海必修福企业管理有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海必修福企业管理有限公司 filed Critical 上海必修福企业管理有限公司
Priority to CN202180068173.5A priority Critical patent/CN116917044A/zh
Publication of WO2022083663A1 publication Critical patent/WO2022083663A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/017Combinations of electrostatic separation with other processes, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/47Collecting-electrodes flat, e.g. plates, discs, gratings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/66Applications of electricity supply techniques
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/86Electrode-carrying means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B6/00Cleaning by electrostatic means

Definitions

  • the present invention relates to the field of electric fields, in particular to an electric field unit assembly and an electric field device.
  • electrostatic technology is widely used in the field of gas purification.
  • the gas passes through the electrostatic field, it is ionized. After the particles in the gas are combined with the charged ions, they tend to move and deposit by the electrode with the opposite polarity to the charged ions. It can be seen that the particle removal rate and the charging efficiency of the particles related.
  • the direction of gas entering the electric field in the electrostatic gas purification device is perpendicular to the direction of ion flow in the electric field, and there are defects such as short residence time of gas in the electric field and low charging efficiency.
  • the purpose of the present invention is to provide an electric field unit assembly and an electric field device to solve the above-mentioned problems in the prior art.
  • an electric field unit assembly characterized in that, the electric field unit assembly includes an electric field unit and an auxiliary adsorption mechanism, and the auxiliary adsorption mechanism is arranged on at least one of the electric field units. At least one chamber is formed on the side and with the electric field unit, wherein the auxiliary adsorption mechanism has a porous structure to fluidly communicate the exterior of the chamber with the interior of the chamber.
  • the electric field unit is composed of a plurality of adsorption plates, and the cavity is formed between at least two of the adsorption plates.
  • the auxiliary adsorption mechanism includes a first auxiliary adsorption mechanism and a second auxiliary adsorption mechanism, the first auxiliary adsorption mechanism and the second auxiliary adsorption mechanism are arranged opposite to each other and form an interlayer space, and the electric field unit arranged in the interlayer space.
  • the electric field unit forms an undulating structure and includes a peak portion and a valley portion, the first auxiliary adsorption mechanism is arranged near the peak portion, and the second auxiliary adsorption mechanism is arranged near the valley portion, so The chamber is arranged between two adjacent peaks or adjacent two valleys.
  • the cavity is formed between two adjacent peaks and one of the valleys, and/or the cavity is formed between two adjacent valleys and one of the peaks Chamber.
  • two of the adsorption plates are connected to each other to form the peak portion or the valley portion, and two adjacent adsorption plates are connected to each other to form a certain angle, and the range of the included angle is 30° Between -90°; preferably, the included angle is 60°.
  • two adjacent adsorption plates are arranged in parallel, and at least a part of the first auxiliary adsorption mechanism and the second auxiliary adsorption mechanism is formed with at least one extending along the axis of the chamber.
  • the chamber of quadrilateral cross-section.
  • the adsorption plate forms a certain angle ⁇ with the first auxiliary adsorption mechanism and/or the second auxiliary adsorption mechanism, wherein 0° ⁇ 90°.
  • a plurality of the adsorption plates are sequentially connected by connecting pieces to form the electric field unit.
  • each of the adsorption plates has a main body and a folded edge portion formed by bending two parallel ends of the main body along the axial direction of the chamber, respectively, and the connecting members are provided on two adjacent ones The folded portion of the suction plate is used to fix one end of two adjacent suction plates.
  • the connecting member is a rivet
  • the plurality of adsorption plates are riveted in sequence through the rivet.
  • the adsorption plate is provided with a plurality of ventilation holes.
  • the holes of the ventilation holes on two adjacent adsorption plates are arranged on different planes perpendicular to the axial direction of the chamber.
  • the holes of the ventilation holes on the two adjacently arranged adsorption plates are arranged on different planes perpendicular to the adsorption plates and parallel to the axial direction of the chamber.
  • each of the adsorption plates includes a plurality of the ventilation holes, and the plurality of the ventilation holes are axially arranged in at least one row, wherein one of the two adjacent adsorption plates has the ventilation holes.
  • the hole center of any one of the ventilation holes on the adsorption plate and the hole center of any one of the ventilation holes on the other adsorption plate are arranged on different planes perpendicular to the axial direction.
  • each of the adsorption plates includes a plurality of the ventilation holes, and the plurality of the ventilation holes are arranged in at least one row along the axial direction, wherein, among the two adjacent adsorption plates arranged in parallel
  • the hole center of any one of the ventilation holes on one of the adsorption plates and the hole center of any one of the ventilation holes on the other adsorption plate are arranged perpendicular to the adsorption plate and axially to the chamber. on different parallel planes.
  • a plurality of the ventilation holes are evenly distributed along the axial direction.
  • a plurality of the ventilation holes are axially arranged from one end of the adsorption plate to the other end of the adsorption plate.
  • the ventilation holes are circular holes; preferably, the ventilation holes have the same diameter.
  • the auxiliary adsorption mechanism has a porous structure that overlaps and penetrates each other.
  • the auxiliary adsorption mechanism is made of a porous structural material with electret properties.
  • the electric field unit assembly further includes a top plate and a bottom plate, which are respectively connected to the top and bottom ends of the electric field unit and seal the top and bottom ends of the chamber.
  • the electric field unit assembly further includes an end plate and a reinforcing member, the reinforcing member is arranged on the outer surface of the auxiliary adsorption mechanism and is fixedly connected with the end plate.
  • the electric field unit constitutes the cathode or anode of the electric field.
  • the adsorption electrode is composed of the electric field unit assembly described in any one of the embodiments, and the discharge electrode is composed of a conductor arranged in at least one of the chambers.
  • the discharge electrode is formed of a conductor disposed within each of the chambers and extending in the axial direction of the chamber.
  • the discharge electrode is formed by a conductor passing through the longitudinal centerline of the chamber, preferably, the chamber has a regular polygonal cross-section, and the discharge electrode passes through a circle inscribed in the cross-section. the center of the circle.
  • At least two of the discharge electrodes are arranged in at least one of the chambers.
  • the electric field unit is composed of a plurality of adsorption plates
  • the chamber is formed between at least two of the adsorption plates
  • the at least two discharge electrodes are respectively attached to each of the adsorption plates constituting the chamber. The distances between the plates are equal.
  • At least two of the discharge electrodes are uniformly distributed within the chamber along a transverse centerline of the chamber.
  • FIG. 1A is a schematic top view of an electric field unit assembly according to an embodiment of the present invention.
  • FIG. 1B is an exploded perspective view of the electric field unit assembly of FIG. 1A;
  • FIG. 2 is an exploded schematic top view of an electric field unit assembly according to an embodiment of the present invention
  • FIG. 3 is a schematic exploded perspective view of an electric field device according to an embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional top view of an electric field device according to an embodiment of the present invention.
  • an electric field unit assembly includes an electric field unit and an auxiliary adsorption mechanism, the auxiliary adsorption mechanism is disposed on at least one side of the electric field unit and forms at least one chamber with the electric field unit, wherein the auxiliary adsorption mechanism
  • the adsorption mechanism has a porous structure to fluidly communicate the exterior of the chamber with the interior of the chamber.
  • the above-mentioned electric field unit assembly can be used as the adsorption electrode of the electric field device.
  • the auxiliary adsorption mechanism of the porous structure can filter out a part of the particles in the gas at the inlet end and/or the outlet end by means of physical filtration.
  • the discharge electrode of the electric field device corona discharges and ionizes the gas in the chamber, so that the particles in the gas gain electric charge, and the charged particles move to the electric field unit and the auxiliary adsorption mechanism, and are deposited in the electric field unit and the auxiliary adsorption mechanism.
  • the present invention increases.
  • the residence time of the gas in the electric field can improve the charging efficiency of the particles, and more particles are deposited on the adsorption electrode, thereby improving the dust removal efficiency.
  • the auxiliary adsorption mechanism is made of a porous structure material with electret properties
  • the auxiliary adsorption mechanism is arranged in the active electric field formed by the discharge electrode and the electric field unit, that is, the auxiliary adsorption mechanism is arranged in the discharge electrode and the electric field.
  • the space charges can enter the auxiliary adsorption mechanism with electret performance and then electret the auxiliary adsorption mechanism.
  • the auxiliary adsorption mechanism after electret can form an electret electric field in the surrounding space,
  • the electrostatic adsorption of electret electric field can enhance the purification of particulate matter. When the active electric field suddenly disappears, the electret electric field will not disappear, and the purification of particulate matter can continue.
  • the invention utilizes the dual electric fields of the electret electric field and the active electric field to remove particles, thereby improving the dust removal efficiency.
  • the holes of the ventilation holes on the two adjacent adsorption plates of the same chamber are arranged on different planes perpendicular to the axial direction of the chamber, which can make the gas flow in the chamber disorderly, further increasing the The residence time of the gas in the electric field increases the frequency of close contact with the discharge electrode, and improves the charging efficiency and charging amount of the particulate matter; and when the gas forms a cyclonic flow direction, it is conducive to the separation of large particles. Combining the above two points, effectively improve dust removal efficiency.
  • a plurality of adsorption plates are connected in sequence through connectors to form an electric field unit.
  • the adsorption plates connected by connectors can not only achieve standardized and mass production, convenient processing and high efficiency, but also the connection of connectors has the advantages of simple assembly and disassembly. The advantages of easy packaging and transportation.
  • the particulate matter described in the present invention includes, but is not limited to, solid particles, droplets, solid particles with liquid attached, aerosols, plasma solid particles or droplets, etc., and can also be microorganisms such as bacteria and fungi.
  • the electric field unit assembly 1000 includes an electric field unit 1100 and an auxiliary adsorption mechanism 1200 .
  • the auxiliary adsorption mechanism 1200 is disposed on at least one side of the electric field unit 1100 and surrounds the electric field unit 1100 .
  • the auxiliary adsorption mechanism 1200 includes a first auxiliary adsorption mechanism 1210 and a second auxiliary adsorption mechanism 1220 , the first auxiliary adsorption mechanism 1210 and the second auxiliary adsorption mechanism 1220 are arranged opposite to each other and form an interlayer space 1230 , and the electric field unit 1100 is arranged in the interlayer In the space 1230, preferably, the first auxiliary adsorption mechanism 1210 and the second auxiliary adsorption mechanism 1220 are arranged in parallel and opposite to each other.
  • the electric field unit assembly may include a plurality of auxiliary adsorption mechanisms, the plurality of auxiliary adsorption mechanisms may be arranged in parallel to each other to form a plurality of interlayer spaces, and the electric field unit is arranged in the plurality of interlayer spaces and surrounds at least one with the auxiliary adsorption mechanism. chamber; in addition, a plurality of auxiliary adsorption mechanisms can also be arranged in a non-parallel manner to each other and enclose at least one chamber with the electric field unit according to the conditions of the actual storage space or other factors.
  • A is the air inlet direction
  • B is the air outlet direction
  • the first auxiliary adsorption mechanism 1210 is located at the air outlet end of the electric field unit assembly 1000
  • the second auxiliary adsorption mechanism 1220 is located at the air inlet end of the electric field unit assembly 1000
  • the mechanism 1210 and the second auxiliary adsorption mechanism 1220 have a porous structure to fluidly communicate the outside and the inside of the 7 chambers, and the auxiliary adsorption mechanism 1200 of the porous structure can filter out a part at the air inlet and/or the air outlet by means of physical filtration particles in the gas.
  • the auxiliary adsorption mechanism may be arranged only at the air inlet end or the air outlet end, that is, the electric field unit assembly may only have the first auxiliary adsorption mechanism or the second auxiliary adsorption mechanism.
  • the electric field unit 1100 and the first auxiliary adsorption mechanism 1210 and the second auxiliary adsorption mechanism 1220 enclose 7 chambers, taking the structures of the first chamber 1110 , the second chamber 1120 and the third chamber 1130 as an example For illustration, the structures of other chambers are analogous.
  • the electric field unit 1100 is composed of a plurality of adsorption plates and forms an undulating structure.
  • the process of the electric field unit with an undulating structure formed by splicing a plurality of adsorption plates is not only convenient to process, high efficiency, but also standardized and mass-produced .
  • the first adsorption plate 1101, the second adsorption plate 1102 and the second auxiliary adsorption mechanism 1220 enclose a first chamber 1110
  • the first adsorption plate 1101, the third adsorption plate 1103 and the first auxiliary adsorption mechanism 1210 enclose a second chamber 1120
  • the second suction plate 1102 and the fourth suction plate 1104 and the first auxiliary suction mechanism 1210 enclose a third chamber 1130 .
  • Two adjacent adsorption plates are connected to each other and form a certain angle, and the range of the included angle is between 30°-90°, preferably, the included angle is 60°, that is to say, the first adsorption plate 1101 and the
  • the second suction plate 1102 is connected to each other and forms a certain angle
  • the first suction plate 1101 and the third suction plate 1103 are connected to each other and form a certain angle
  • the second suction plate 1102 and the fourth suction plate 1104 are connected to each other and form a certain angle
  • the range of the included angle is between 30°-90°, preferably, the included angle is 60°.
  • first suction plate 1101 and the second suction plate 1102 form a first peak portion 1301
  • first suction plate 1101 and the third suction plate 1103 form a first valley portion 1302
  • second suction plate 1102 and the fourth suction plate 1104 form The second valley portion 1303 , that is, the first cavity 1110 is formed between the first valley portion 1302 and the second valley portion 1303 and the first peak portion 1301
  • fourth adsorption plate 1104 and the fifth adsorption plate 1105 form the second peak portion 1304 , that is, the third chamber 1130 is formed between the first peak portion 1301 , the second peak portion 1304 and the second valley portion 1303 .
  • the electric field unit may be composed of an adsorption plate, and the adsorption plate may be bent and processed according to the shape and structure of the actual cavity formed by a process such as 3D printing or casting.
  • the number of chambers in the electric field unit assembly is not limited to this, and the number of chambers can be adjusted according to the actual gas volume that needs to be purified. Adjacent and/or non-adjacent settings in any direction of down, left, right, front, and back.
  • the structures and shapes of the seven chambers are all the same.
  • the structures and sizes of the multiple chambers may be different according to the storage conditions of the device space or other factors. the same, and may be partially the same.
  • the adsorption plates respectively have a main body and a folded portion formed by bending two ends of the main body in parallel with the axial direction of the chamber, and the connecting pieces are arranged on the folded portions of two adjacent adsorption plates, to connect one end of two adjacent suction plates fixedly.
  • the adsorption plate connected by the connector can not only achieve standardized and batch production, convenient processing and high efficiency, but also the connector connection has the advantages of simple assembly, detachable and convenient packaging and transportation.
  • the structures of the first adsorption plate 1101 , the second adsorption plate 1102 and the third adsorption plate 1103 are taken as examples for description, and the structures of other adsorption plates are deduced by analogy.
  • the first suction plate 1101 has a first suction plate body 11011, a first suction plate left folded portion 11012 and a first suction plate right folded portion 11013 formed by bending from both ends of the first suction plate body 11011, respectively.
  • the second suction plate 1102 has a second suction plate body 11021 and a second suction plate left folded portion 11022 and a second suction plate right folded portion 11023 formed by bending both ends of the second suction plate body 11021 respectively.
  • the third suction plate 1103 has a third suction plate.
  • the suction plate main body 11031 and the third suction plate left folded portion 11032 and the third suction plate right folded portion 11033 are respectively formed by bending both ends of the third suction plate main body 11031 .
  • the left folded portion 11012 of the first suction plate and the right folded portion 11013 of the first suction plate are parallel to each other and form an angle of about 120° with the main body 11011 of the first suction plate, and the left folded portion 11022 of the second suction plate and the right folded edge of the second suction plate
  • the parts 11023 are parallel to each other and form an angle of about 120° with the second suction plate main body 11021
  • the third suction plate left folded part 11032 and the third suction plate right folded part 11033 are parallel to each other and form an angle of about 120° with the third suction plate main body 11031 .
  • the "left” and "right” are only for distinguishing the two folded edge portions, and do not constitute a limitation on the orientation.
  • each suction plate extends along the axial direction of the chamber, and the folded portions of two adjacent suction plates are aligned and matched and connected by a connecting piece 1400 , so that the folded portion and the connecting piece are aligned and fitted together.
  • 1400 fixedly connect one end of two adjacent adsorption plates.
  • at least a part of two adjacent adsorption plates and at least one auxiliary adsorption mechanism form at least one chamber with a triangular cross-section
  • the adjacent two adsorption plates form at least one chamber with a triangular cross-section.
  • the triangular cross-sections of the two chambers are arranged upside down, and the cross-section is a cross-section perpendicular to the axial direction of the chambers.
  • the first chamber 1110 , the second chamber 1120 and the third chamber 1130 have three sides and the triangular cross-sections of the first chamber 1110 and the second chamber 1120 or the third chamber 1130 are arranged in opposite directions, while the triangular cross-sections of the second chamber 1120 and the third chamber 1130 are arranged in opposite directions.
  • the range of the angle is between 30°-90°, preferably, the angle is 60°, also That is to say, the first adsorption plate main body 11011 and the second adsorption plate main body 11021 are connected to each other and form a certain angle, the first adsorption plate main body 11011 and the third adsorption plate main body 11031 are connected to each other and form a certain angle, and the second adsorption plate main body 11021 and the fourth adsorption plate main body 11041 is connected to each other and forms a certain angle, and the range of the included angle is between 30°-90°, preferably, the included angle is 60°.
  • a plurality of through holes arranged along the extending direction of the chamber are respectively set on each folded edge portion, and the connecting member 1400 is penetrated and fixed in the through holes, so as to fixedly connect one end of the adjacent adsorption plates.
  • each folded edge portion is respectively provided with through holes along both ends of the chamber.
  • through-hole connectors are provided at the ends of each folded portion, which may be rivets, screws, etc., and the two adjacent adsorption plates are connected by rivets, bolts, screws, and the like.
  • the two adjacent side walls are riveted in sequence by rivets, and the sealing performance of the riveted is better.
  • the structures of the first adsorption plate 1101 , the second adsorption plate 1102 and the third adsorption plate 1103 are taken as examples for description, and the structures of other adsorption plates are deduced by analogy.
  • the right folded portion 11013 of the first suction plate and the left folded portion 11022 of the second suction plate are aligned with each other.
  • the plate 1101 and the second suction plate 1102 are fixedly connected; the left folded part 11012 of the first suction plate and the right folded part 11033 of the third suction plate are aligned with each other.
  • the right folded portion 11033 of the suction plate is used to fix the connection between the first suction plate 1101 and the third suction plate 1103 .
  • FIG. 1B is an exploded schematic view of the electric field unit assembly of FIG. 1A .
  • the structures of the first chamber 1110 and the third chamber 1130 are taken as examples for description, and the structures of other chambers are deduced by analogy.
  • the first adsorption plate 1101, the second adsorption plate 1102 and the second auxiliary adsorption mechanism 1220 enclose a first chamber 1110
  • the second adsorption plate 1102, the fourth adsorption plate 1104 and the first auxiliary adsorption mechanism 1210 enclose a third chamber
  • the first adsorption plate 1101, the second adsorption plate 1102 and the fourth adsorption plate 1104 are provided with a plurality of ventilation holes 1500, and the hole centers of the ventilation holes 1500 on the adjacent two adsorption plates are arranged in a direction perpendicular to the axial direction of the chamber.
  • the center of the first vent hole 1510 on the first adsorption plate 1101 and the center of the second vent hole 1520 on the second adsorption plate 1102 are arranged in the axial direction of the first chamber 1110
  • the center of the second ventilation hole 1520 on the second adsorption plate 1102 and the center of the third ventilation hole 1530 on the fourth adsorption plate 1104 are arranged in a direction perpendicular to the axial direction of the third chamber 1130 . on different planes.
  • each adsorption plate includes a plurality of ventilation holes, and the plurality of ventilation holes are arranged in at least one row along the axial direction, wherein the hole center of any one of the ventilation holes on one of the adjacent adsorption plates is the same as the other one.
  • the hole centers of any one of the ventilation holes on one adsorption plate are arranged on different planes perpendicular to the axial direction.
  • the center of the first vent hole 1510 on the first adsorption plate 1101 and the center of the third vent hole 1530 on the fourth adsorption plate 1104 are arranged on the same plane perpendicular to the axial direction of the chamber
  • the hole center of the first ventilation hole 1510 on the first adsorption plate 1101 and the hole center of the third ventilation hole 1530 on the fourth adsorption plate 1104 can also be arranged in the axial direction of the chamber. on different vertical planes.
  • the first ventilation holes 1510 on the first adsorption plate 1101 are evenly distributed in two rows along the axial direction and are arranged from one end of the first adsorption plate 1101 to the other end of the first adsorption plate 1101, and the second adsorption plate 1102
  • the second ventilation holes 1520 are evenly distributed in two rows along the axial direction and are arranged from one end of the second adsorption plate 1102 to the other end of the second adsorption plate 1102
  • the third ventilation holes 1530 on the fourth adsorption plate 1104 are arranged in the axial direction It is evenly distributed in two rows and arranged from one end of the fourth adsorption plate 1104 to the other end of the fourth adsorption plate 1104.
  • the ventilation holes can also be distributed along the axial direction according to the actual needs of air intake or air outlet. Part of the adsorption plate.
  • the first ventilation hole 1510, the second ventilation hole 1520 and the third ventilation hole 1530 are circular holes with the same diameter.
  • the ventilation holes may be oval holes, triangular holes, and quadrangular holes.
  • the diameter of the ventilation holes on different adsorption plates can also be different, but it is necessary to ensure that the gas cannot be directly discharged from the chamber through the ventilation holes without obstruction, that is, if two adsorption plates of the same chamber are overlapped together, different
  • the ventilation holes on the adsorption plate do not completely overlap or the ventilation holes on one adsorption plate completely contain the ventilation holes on the adjacent adsorption plate, so as to ensure that the gas will encounter obstacles when flowing, so that the air flow on one adsorption plate When flowing into and out of the vent holes on other adsorption plates in the same chamber, the airflow changes direction even after forming a cyclone path within the chamber, and then exits the chamber through the vent holes.
  • the gas directions of the first chamber 1110 and the third chamber 1130 can be deduced by analogy.
  • the gas enters the first chamber 1110 through the porous structure of the second auxiliary mechanism 1220, then enters the third chamber through the second ventilation hole 1520, and finally enters the fourth chamber 1140 through the third ventilation hole 1530 or through the first auxiliary adsorption mechanism 1210 discharge.
  • the gas flow direction of the gas passing through the third chamber 1130 is disordered, which further increases the The residence time of the gas in the two chambers is beneficial to increase the frequency of contact with the discharge electrode at a close distance.
  • the dust removal efficiency is effectively improved.
  • the ventilation holes on different adsorption plates of the same chamber are arranged on different planes perpendicular to the axial direction of the chamber, resulting in the ventilation holes of each chamber.
  • the gas can originate from multiple adjacent chambers, or flow to multiple adjacent chambers.
  • the gas flow direction is highly turbulent, and the gas flow near the discharge electrode increases, which increases the charging efficiency and charge amount of the particles in the gas, and improves the dust removal efficiency.
  • the auxiliary adsorption mechanism 1200 is composed of a 60-mesh polytetrafluoroethylene film. Since PTFE is an electret material, the auxiliary adsorption mechanism 1200 is arranged in the active electric field formed by the discharge electrode and the electric field unit, that is, the auxiliary adsorption mechanism 1200 is arranged in the space charge generated by corona discharge between the discharge electrode and the electric field unit, the space charge can enter the auxiliary adsorption mechanism 1200 with electret performance and then electret the auxiliary adsorption mechanism 1200, and the auxiliary adsorption mechanism after electret 1200 can form an electret electric field in the surrounding space, and the electrostatic adsorption of the electret electric field can strengthen the purification of particulate matter.
  • PTFE is an electret material
  • the auxiliary adsorption mechanism 1200 is arranged in the active electric field formed by the discharge electrode and the electric field unit, that is, the auxiliary adsorption mechanism 1200 is arranged in
  • the invention utilizes the dual electric fields of the electret electric field and the active electric field to remove particles, thereby improving the dust removal efficiency.
  • the aperture of the auxiliary adsorption mechanism can also be selected from one or more of 40 meshes to 100 meshes. The finer the aperture, the greater the wind resistance of the gas and the greater the energy consumption.
  • the aperture of the auxiliary adsorption mechanism It can also be selected from one or more of 40 meshes to 80 meshes; it can also be a combination of multi-layer films, and the porous structures overlap and penetrate each other.
  • the material of the auxiliary adsorption mechanism may be selected from one or more of conductive materials or electret materials, wherein the conductive material may be selected from one or more of metals or alloys, and the electret material may be selected from From inorganic compounds with electret properties and/or organic compounds with electret properties, the inorganic compounds are selected from silica, barium titanate, lead zirconate titanate, zinc oxide, tantalum oxide, aluminum oxide, titanium oxide, One or more combinations of silicon nitride, the organic compound is selected from one or more of fluorocarbon polymer, polycarbonate, polypropylene, polyethylene, polyvinyl chloride, natural wax, resin, rosin In combination, the fluorocarbon polymer is selected from one or more combinations of polytetrafluoroethylene, polyvinylidene fluoride, polyperfluoroethylene propylene, soluble polyperfluoroethylene propylene, and soluble polytetrafluoroethylene.
  • the electric field unit assembly 1000 further includes a top plate and a bottom plate (not shown in the figure), which are respectively connected to the top and bottom ends of the electric field unit and seal the top and bottom of the chamber.
  • the electric field unit assembly 1000 further includes an end plate 1600 and a reinforcement member 1700 .
  • the reinforcement member 1700 is arranged on the outer surface of the auxiliary adsorption mechanism 1200 and is fixedly connected to the end plate 1600 .
  • the electric field unit assembly 3000 includes an electric field unit 3100 and an auxiliary adsorption mechanism 3200.
  • the auxiliary adsorption mechanism 3200 is disposed on at least one side of the electric field unit 3100 and is surrounded by the electric field unit 3100.
  • At least one chamber is formed, wherein the auxiliary adsorption mechanism 3200 has a porous structure to fluidly communicate the exterior of the chamber with the interior of the chamber.
  • the auxiliary adsorption mechanism includes a first auxiliary adsorption mechanism 3210 and a second auxiliary adsorption mechanism 3220, and the auxiliary adsorption mechanism 3200 is composed of a 60-mesh polytetrafluoroethylene film.
  • the electric field unit 3100, the first auxiliary adsorption mechanism 3210 and the second auxiliary adsorption mechanism 3220 form four chambers.
  • the structure of the chamber is analogous. The similarities between the electric field unit components and the above will not be repeated, and only the differences will be described in this embodiment.
  • the electric field unit 3100 is composed of a plurality of adsorption plates and forms an undulating structure.
  • the process of the electric field unit with an undulating structure formed by splicing a plurality of adsorption plates is not only convenient to process, high efficiency, but also standardized and mass-produced.
  • the first suction plate 3101, the second suction plate 1102, the third suction plate 3103 and the second auxiliary suction mechanism 3220 enclose the first chamber 3110.
  • the first suction plate 1101, the fourth suction plate 3103 and the fifth suction plate 3105 are connected with The first auxiliary adsorption mechanism 3210 encloses a second chamber 3120 , and the third adsorption plate 3103 , the sixth adsorption plate 3106 , and the seventh adsorption plate 3107 and the first auxiliary adsorption mechanism 3210 enclose a third chamber 3130 .
  • the two adjacent adsorption plates are connected to each other and form a certain angle, and the range of the included angle is between 90° and 179°.
  • the included angle is 120°, and the included angle is between the adsorption plate and the adsorption plate.
  • the angle between the plates not the angle formed by the suction plate and the line where the suction plate is located.
  • the first suction plate 3101 and the second suction plate 3102 are connected to each other and form a certain angle
  • the second suction plate 3102 and the third suction plate 3103 are connected to each other and form a certain angle
  • the third suction plate 3103 and the sixth suction plate 3106 are connected to each other.
  • Connect and form a certain included angle the range of the included angle is between 90°-179°, preferably, the included angle is 120°.
  • first adsorption plate 3101, the second adsorption plate 1102 and the third adsorption plate 3103 form the first peak portion 3301
  • first adsorption plate 1101, the fourth adsorption plate 3103 and the fifth adsorption plate 3105 form the first valley portion 3302
  • the third suction plate 3103 , the sixth suction plate 3106 and the seventh suction plate 3107 form the second valley 3303 , that is, the first valley 3302 and the second valley 3303 and the first peak 3301 form the first valley Chamber 3110.
  • the seventh adsorption plate 3107 , the eighth adsorption plate 3108 and the ninth adsorption plate 3109 form the second peak portion 3304 , that is, between the first peak portion 3301 and the second peak portion 3304 and the second valley portion 3303
  • a third chamber 3130 is formed.
  • the electric field unit may be composed of an adsorption plate, and the adsorption plate may be bent and processed according to the shape and structure of the actual cavity formed by a process such as 3D printing or casting.
  • the number of chambers in the electric field unit assembly is not limited to this, and the number of chambers can be adjusted according to the actual gas volume that needs to be purified.
  • Adjacent and/or non-adjacent settings can be performed in any direction down, left, right, front, or back.
  • the structures and shapes of the four chambers are all the same.
  • the structures and sizes of the multiple chambers may be different according to the storage conditions of the device space or other factors. the same, and may also be partially the same.
  • the first adsorption plate 3101, the third adsorption plate 3103, the fifth adsorption plate 3105, the seventh adsorption plate 3107 and the ninth adsorption plate 3109 are evenly provided with two rows of ventilation holes
  • the plate 3104, the sixth adsorption plate 3106 and the eighth adsorption plate 3108 are not provided with ventilation holes. This design allows the gas to pass through at least two chambers before being discharged.
  • the gas enters the first chamber 3110 from the second auxiliary mechanism 3220, Enter the second chamber 3120 or the third chamber 3130 through the first adsorption plate 3101 or the third adsorption plate 3103, respectively, and then part of the gas is directly discharged from the first auxiliary adsorption mechanism 3210, and part of the gas enters other chambers and then flows out of the first chamber.
  • the auxiliary adsorption mechanism 3210 is discharged.
  • the design can make the gas in the electric field unit assembly highly turbulent, further increase the residence time of the gas in the chamber, and improve the dust removal efficiency.
  • the electric field device 2000 includes an adsorption electrode 2100 and a discharge electrode 2200, wherein the adsorption electrode 2100 is composed of an electric field unit component, so the adsorption electrode 2100 can also be called an electric field unit component 2100, the electric field unit assembly 2100 includes an electric field unit 2110 and an auxiliary adsorption mechanism 2120.
  • the auxiliary adsorption mechanism includes a first auxiliary adsorption mechanism 2121 and a second auxiliary adsorption mechanism 2122.
  • the first auxiliary adsorption mechanism 2121 and the second auxiliary adsorption mechanism 2122 are arranged opposite to each other.
  • An interlayer space 2123 is formed, the electric field unit 2110 is arranged in the interlayer space 2123, the auxiliary adsorption mechanism 2120 and the electric field unit 2110 enclose at least one chamber, wherein the auxiliary adsorption mechanism 2120 has a porous structure to connect the outside of the chamber with the inner fluid of the chamber communication, wherein, the auxiliary adsorption mechanism 2120 is composed of a 60-mesh polytetrafluoroethylene film.
  • the electric field unit 2110 is composed of a plurality of adsorption plates.
  • the electric field unit 2110 , the first auxiliary adsorption mechanism 2121 and the second auxiliary adsorption mechanism 2122 enclose 8 chambers, and the structure of the first chamber 2310 is taken as an example for description. , and so on for other chambers.
  • Two adjacent adsorption plates are arranged in parallel, that is to say, the first adsorption plate 2111 and the second adsorption plate 2112 are arranged in parallel, and together with the first auxiliary adsorption mechanism 2121 and the second auxiliary adsorption 2122 form a first chamber 2310.
  • a chamber 2310 has a quadrangular cross-section, and the direction of the cross-section is perpendicular to the axis direction of the first chamber 2310 .
  • the adsorption plates of the electric field unit are not placed in parallel, and the electric field unit and the auxiliary adsorption mechanism may also enclose a chamber with a polygonal cross-section, the cross-sectional direction is perpendicular to the axial direction of the chamber, and the polygon may be five polygon, hexagon, etc.
  • the section of the chamber is a regular polygon.
  • the number of chambers in the electric field unit assembly is not limited to this, and the number of chambers can be adjusted according to the actual gas volume that needs to be purified.
  • the structures and shapes of the eight chambers are all the same.
  • the structures and sizes of the multiple chambers may be different according to the storage conditions of the device space or other factors. the same, and may be partially the same.
  • the discharge electrode 2200 is arranged in each chamber and is formed by a conductor extending along the axial direction of the chamber.
  • the discharge electrode may be arranged in part of the chamber.
  • the chamber has a quadrilateral cross-section, and the discharge electrode passes through the longitudinal centerline of the chamber. Wire.
  • the cross-section of the chamber may be of other polygonal shapes, with the discharge electrode passing through a longitudinal centerline of the chamber, the longitudinal centerline being a line extending in the axial direction of the chamber and passing through the midpoint of the polygonal cross-section, such as , when the section of the chamber is triangular, the longitudinal centerline is the line extending along the axial direction of the chamber and passing through the intersection of the angle bisectors of the triangular section.
  • the discharge electrode passes through the center of the inscribed circle of the cross-section.
  • the discharge electrode may be arranged at a position slightly deviated from the longitudinal centerline of the chamber or the center of the inscribed circle of the cross-section.
  • the above-mentioned cross-sectional directions are all perpendicular to the axial direction of the chamber.
  • the discharge electrode 2200 is an elongated needle-shaped conductor. In other embodiments, the discharge electrode can also be a polygonal, burr-shaped, threaded rod-shaped or columnar conductor. In this embodiment, the diameter of the discharge electrode 2200 is 0.1-10 mm, preferably, the diameter of the discharge electrode 2200 is 0.2-5 mm. In one embodiment, the discharge electrode 2200 is in the shape of an elongated strip and is made of any one of 304 stainless steel, titanium, tungsten, and iridium. Preferably, the discharge electrode is made of iridium.
  • the electric field unit 2110 is electrically connected to one electrode of the power source
  • the discharge electrode 2200 is electrically connected to the other electrode of the power source
  • the electric field unit 2110 and the discharge electrode 2200 form an active electric field.
  • the anode is electrically connected
  • the discharge electrode 2200 is electrically connected to the cathode of the power source, that is, the electric field unit 2110 is the anode
  • the discharge electrode 2200 is the cathode.
  • the electric field unit 2110 may also be electrically connected to the cathode of the power source, and the discharge electrode 2200 may be electrically connected to the anode of the power source, that is, the electric field unit 2110 is the cathode and the discharge electrode 2200 is the anode.
  • the auxiliary adsorption mechanism 2120 with electret performance is arranged in the active electric field formed by the discharge electrode and the electric field unit, that is, auxiliary adsorption
  • the mechanism 2120 is arranged in the space charge generated by the corona discharge between the discharge electrode and the electric field unit, the space charge can enter the auxiliary adsorption mechanism 2120 with electret performance and then electret the auxiliary adsorption mechanism 2120, and the auxiliary adsorption after electret
  • the mechanism 2120 can form an electret electric field in the surrounding space.
  • the auxiliary adsorption mechanism 2120 can not only filter out a part of the particles in the gas at the gas inlet and/or gas outlet by means of physical filtration, but also use the electrostatic adsorption of the electret electric field. The effect can strengthen the purification of particles in the gas, and because the discharge electrode 2200 is discharged and ionized, the particles in the gas obtain negative charges, and the negatively charged particles move to the electric field unit 2110 and/or the auxiliary adsorption mechanism 2120, and are deposited in the electric field unit 2110 and/or the auxiliary adsorption mechanism 2120.
  • the invention utilizes the dual electric fields of the electret electric field and the active electric field to remove particles, thereby improving the dust removal efficiency.
  • FIG. 4 is a schematic top sectional view of the electric field device of the present invention.
  • the electric field device 4000 includes an adsorption electrode 4100 and a discharge electrode 4200, wherein the adsorption electrode 4100 is composed of an electric field unit component, so the adsorption electrode 4100 can also be called an electric field unit component 4100.
  • the unit assembly 4100 includes an electric field unit 4110 and an auxiliary adsorption mechanism 4120.
  • the auxiliary adsorption mechanism includes a first auxiliary adsorption mechanism 4121 and a second auxiliary adsorption mechanism 4122.
  • the first auxiliary adsorption mechanism 4121 and the second auxiliary adsorption mechanism 4122 are arranged opposite to each other and form an interlayer space , the electric field unit 4110 is arranged in the interlayer space, the auxiliary adsorption mechanism 4120 and the electric field unit 4110 enclose at least one chamber, wherein the auxiliary adsorption mechanism 4120 has a porous structure to fluidly communicate the outside of the chamber with the inside of the chamber, wherein the auxiliary adsorption mechanism 4120
  • the adsorption mechanism 4120 is composed of a 60-mesh polytetrafluoroethylene film.
  • the electric field unit 4110 is composed of two adsorption plates, the first adsorption plate 4111 and the second adsorption plate 4112 are arranged in parallel, and together with the first auxiliary adsorption mechanism 4121 and the second auxiliary adsorption mechanism 4122 form a chamber 4310, the chamber 4310 has a quadrangular cross-section, and the cross-section direction is perpendicular to the axial direction of the chamber 4310 .
  • first auxiliary mechanism 4121 and the second auxiliary adsorption mechanism 4122 are arranged in parallel, and the first adsorption plate 4111 and the second adsorption plate 4112 form a certain angle ⁇ with the first auxiliary adsorption mechanism 4121 and the second auxiliary adsorption mechanism 4122 , where 0° ⁇ 90°, that is to say, the chamber 4310 has a parallelogram or rectangular cross-section.
  • the first adsorption plate 4111 is provided with a first ventilation hole 4131 and a second ventilation hole 4132
  • the second adsorption plate 4112 is provided with a third ventilation hole 4133 and a fourth ventilation hole 4134
  • two adjacent adsorption holes arranged in parallel
  • the holes of the ventilation holes on the plate 4110 are arranged on different planes perpendicular to the adsorption plate 4110 and parallel to the axial direction of the chamber 4310. In this embodiment, the above planes are planes along the arrow M direction.
  • each of the adsorption plates includes a plurality of ventilation holes, and the plurality of ventilation holes are arranged in at least one row along the axial direction, wherein any one of the two adjacent adsorption plates arranged in parallel can be placed on any one of the adsorption plates.
  • the hole center of one ventilation hole and the hole center of any one of the ventilation holes on the other adsorption plate are arranged on different planes perpendicular to the adsorption plate and parallel to the axial direction of the chamber.
  • the dashed arrow is a schematic path of part of the gas. Since the third ventilation hole 4133 and the second ventilation hole 4132 are arranged on different planes perpendicular to the adsorption plate 4110 and parallel to the axial direction of the chamber 4310, part of the gas flows from the first ventilation hole 4133 and the second ventilation hole 4132.
  • the three air holes 4133 enter the chamber 4310, pass through the first adsorption plate 4111 and the second adsorption plate 4112 to block the turbulent flow at least twice, and finally discharge from the second air hole 4132, and the gas flow is more turbulent, which further increases the gas in the cavity.
  • the residence time in the chamber is beneficial to increase the frequency of close contact with the discharge electrode. The closer the distance is to the discharge electrode, the higher the gas ionization efficiency, the higher the particle charging efficiency and the charge amount, and the more effective the dust removal efficiency.
  • the discharge electrode 4200 passes through the longitudinal centerline of the chamber, and the longitudinal centerline extends along the axial direction of the chamber 4310 and passes through the long-side symmetry axis and the short-side symmetry axis of the parallelogram or rectangular cross-section The line at the intersection of , where the discharge efficiency is the highest.
  • At least two discharge electrodes are arranged in at least one chamber; preferably, the electric field unit is composed of a plurality of adsorption plates, a chamber is formed between the at least two adsorption plates, and the at least two discharge electrodes are respectively formed with The distance between each adsorption electrode of the chamber is equal, and this design is beneficial to further increase the discharge efficiency; more preferably, at least two discharge electrodes are evenly distributed in the chamber along the lateral centerline of the chamber.
  • the intersection points of the first adsorption plate 4111 and the second adsorption plate 4112 and the first auxiliary adsorption mechanism 4121 and the second auxiliary adsorption mechanism 4122 are respectively a, b, c and d.
  • the horizontal centerline is the connection between the midpoint of line segment ab and the midpoint of line segment cd, or the connection between the midpoint of line segment ac and the midpoint of line segment bd; the short horizontal centerline is the connection between the midpoint of line segment ab and the midpoint of line segment cd.
  • at least two discharge electrodes are evenly arranged on the short transverse center line.

Landscapes

  • Electrostatic Separation (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

一种电场单元组件(1000)和电场装置(2000)。该电场单元组件(1000)包括电场单元(1100)和辅助吸附机构(1200),辅助吸附机构(1200)设置于电场单元(1100)的至少一侧并与电场单元(1100)围成至少一个腔室(1110,1120,1130,1140),其中辅助吸附机构(1200)具有多孔结构以将腔室(1110,1120,1130,1140)的外部与腔室(1110,1120,1130,1140)的内部流体连通。该电场单元组件(1000)和电场装置(2000)增加了气体在电场中的停留时间,可以提高颗粒物的带电效率,更多的颗粒物沉积在吸附极(2100),从而提高了除尘效率。

Description

电场单元组件和电场装置 技术领域
本发明涉及电场领域,具体涉及一种电场单元组件和电场装置。
背景技术
目前静电技术被广泛应用于气体净化领域,气体经过静电场时被电离,气体中颗粒物与带电离子结合后,趋向与带电离子极性相反的电极运动而沉积,可见颗粒物去除率与颗粒物的带电效率相关。目前静电气体净化装置中气体进入电场方向与电场内离子流方向垂直,存在气体在电场内停留时间短,带电效率低等缺陷。
发明内容
本发明的目的是提供一种电场单元组件和电场装置,以解决上述现有技术中存在的问题。
为了解决上述问题,根据本发明的一个方面,提供一种电场单元组件,其特征在于,所述电场单元组件包括电场单元和辅助吸附机构,所述辅助吸附机构设置于所述电场单元的至少一侧并与所述电场单元围成至少一个腔室,其中所述辅助吸附机构具有多孔结构以将所述腔室的外部与所述腔室的内部流体连通。
在一个实施例中,所述电场单元由多个吸附板构成,至少两个所述吸附板之间形成所述腔室。
在一个实施例中,所述辅助吸附机构包括第一辅助吸附机构和第二辅助吸附机构,所述第一辅助吸附机构和所述第二辅助吸附机构相对布置并形成夹层空间,所述电场单元布置于所述夹层空间内。
在一个实施例中,所述电场单元形成起伏结构并包括峰部和谷部,所述第一辅助吸附机构靠近所述峰部布置,所述第二辅助吸附机构靠近所述谷部布置,所述腔室布置于相邻两个所述峰部或相邻两个所述谷部之间。
在一个实施例中,相邻两个所述峰部和一个所述谷部之间形成所述腔室,和/或相邻两个所述谷部和一个所述峰部之间形成所述腔室。
在一个实施例中,两个所述吸附板相互连接形成所述峰部或所述谷部,相邻两个所述吸附板相互连接并形成一定夹角,所述夹角的范围位于30°-90°之间;较佳地,所述夹角为60°。
在一个实施例中,三个所述吸附板依次连接形成所述峰部或所述谷部,相邻两个所述吸附板相互连接并形成一定夹角α,其中,90°≤α<180°;较佳地,α=120°。
在一个实施例中,相邻两个所述吸附板平行布置,并且与所述第一辅助吸附机构和所述第二辅助吸附机构的至少一部分形成至少一个沿所述腔室的轴线延伸的具有四边形截面的所述腔室。
在一个实施例中,所述吸附板与所述第一辅助吸附机构和/或所述第二辅助吸附机构形成一定夹角β,其中0°<β≤90°。
在一个实施例中,多个所述吸附板通过连接件依次连接并形成所述电场单元。
在一个实施例中,每一个所述吸附板具有主体和从所述主体沿所述腔室的轴向平行的两端分别弯折形成的折边部,所述连接件设置于相邻两个所述吸附板的所述折边部,以将相邻两个所述吸附板的其中一端固定连接。
在一个实施例中,所述连接件为铆钉,所述多个吸附板通过所述铆钉依次铆接。
在一个实施例中,所述吸附板设有多个通气孔。
在一个实施例中,相邻两个所述吸附板上的所述通气孔的孔心布置在与所述腔室的轴向垂直的不同平面上。
在一个实施例中,相邻平行布置的两个所述吸附板上的所述通气孔的孔心布置在与所述吸附板垂直且与所述腔室轴向平行的不同平面上。
在一个实施例中,每一个所述吸附板包括多个所述通气孔,多个所述通气孔沿轴向布置成至少一列,其中,相邻两个所述吸附板上的其中一个所述吸附板上的任意一个所述通气孔的孔心与另一个所述吸附板上的任意一个所述通气孔的孔心布置在与轴向垂直的不同平面上。
在一个实施例中,每一个所述吸附板包括多个所述通气孔,多个所述通气孔沿轴向布置成至少一列,其中,相邻平行布置的两个所述吸附板上的其中一个所述吸附板上的任意一个所述通气孔的孔心与另一个所述吸附板上的任意一个所述通气孔的孔心布置在与所述吸附板垂直且与所述腔室轴向平行的不同平面上。
在一个实施例中,多个所述通气孔沿轴向均匀分布。
在一个实施例中,多个所述通气孔沿轴向从所述吸附板的一端布置到所述吸附板的另一端。
在一个实施例中,所述通气孔为圆形孔;较佳地,所述通气孔具有相同的直径。
在一个实施例中,所述辅助吸附机构具有相互交叠贯通的多孔结构。
在一个实施例中,所述辅助吸附机构由具有驻极性能的多孔结构材料制成。
在一个实施例中,所述电场单元组件还包括顶板和底板,所述顶板和所述底板分别连接于所述电场单元的顶端和底端并对所述腔室的顶端和底端进行密封。
在一个实施例中,所述电场单元组件还包括端板和加强件,所述加强件布置于所述辅助吸附机构的外表面并与所述端板固定连接。
在一个实施例中,所述电场单元构成电场的阴极或阳极。
在一个实施例中,所述吸附极由任一项实施例所述的电场单元组件构成,所述放电极由布置于至少一个所述腔室内的导体构成。
在一个实施例中,所述放电极由布置于每一个所述腔室内并沿所述腔室的轴向延伸的导体构成。
在一个实施例中,所述放电极由经过所述腔室的纵向中心线的导体构成,较佳地,所述腔室具有正多边形横截面,所述放电极经过所述横截面内切圆的圆心。
在一个实施例中,至少一个所述腔室内至少布置两个所述放电极。
在一个实施例中,所述电场单元由多个吸附板构成,至少两个所述吸附板之间形成所述腔室,至少两个所述放电极分别与构成所述腔室的每一个吸附板之间的距离相等。
在一个实施例中,至少两个所述放电极在所述腔室内沿所述腔室的横向中心线均匀分布。
附图说明
图1A是本发明一个实施例的电场单元组件的俯视示意图;
图1B是图1A的电场单元组件的立体分解示意图;
图2是本发明一个实施例的电场单元组件的俯视分解示意图;
图3是本发明一个实施例的电场装置的立体分解示意图;
图4是本发明一个实施例的电场装置的俯视剖视示意图。
具体实施方式
以下将结合附图对本发明的较佳实施例进行详细说明,以便更清楚理解本发明的目的、特点和优点。应理解的是,附图所示的实施例并不是对本发明范围的限制,而只是为了说明本发明技术方案的实质精神。
在下文的描述中,出于说明各种公开的实施例的目的阐述了某些具体细节以提供对各种公开实施例的透彻理解。但是,相关领域技术人员将认识到可在无这些具体细节中的一个或多个细节的情况下来实践实施例。在其它情形下,与本申请相关联的熟知的装置、结构和技术可能并未详细地示出或描述从而避免不必要地混淆实施例的描述。
在整个说明书中对“一个实施例”或“一实施例”的提及表示结合实施例所描述的特定特点、结构或特征包括于至少一个实施例中。因此,在整个说明书的各个位置“在一个实施例中”或“在一实施例”中的出现无需全都指相同实施例。另外,特定特点、结构或特征可在一个或多个实施例中以任何方式组合。
在以下描述中,为了清楚展示本发明的结构及工作方式,将借助诸多方向性词语进行描述,但是应当将“前”、“后”、“左”、“右”、“外”、“内”、“向外”、“向内”、“上”、“下”等词语理解为方便用语,而不应当理解为限定性词语。
根据本发明的一个方面,提供一种电场单元组件,该电场单元组件包括电场单元和辅助吸附机构,辅助吸附机构设置于电场单元的至少一侧并与电场单元围成至少一个腔室,其中辅助吸附机构具有多孔结构以将腔室的外部与腔室的内部流体连通。
需要说明的是,上述电场单元组件可以作为电场装置的吸附极。首先,多孔结构的辅助吸附机构可以通过物理过滤的方式在进气端和/或出气端过滤掉一部分气体中的颗粒。其次,电场装置的放电极电晕放电并电离腔室内的气体,使气体中的颗粒物获得电荷,带电荷的颗粒物向电场单元和辅助吸附机构移动,并沉积在电场单元和辅助吸附机构,当气体以不平行于电场单元和/或辅助吸附机构的方向进气时,也就是说气体进入方向与电场内离子流方向不垂直,相比较气体进入方向与离子流方向垂直的电场,本发明增加了气体在电场中的停留时间,可以提高了颗粒物的带电效率,更多的颗粒物沉积在吸附极,从而提高了除尘效率。
还需要注意的是,当辅助吸附机构由具有驻极性能的多孔结构材料制成时,辅助吸附机构布置于放电极和电场单元形成的有源电场中,即辅助吸附机构布置于放电极和电场单元之间因电晕放电产生的空间电荷中,该空间电荷可以进入具有驻极性能的辅助吸附机构进而对辅助吸附机构驻极,驻极后的辅助吸附机构可以在周围空间形成驻极电场,利用驻极电场的静电吸附作用可以加强对颗粒物的净化。当有源电场突然消失时,驻极电场不会消失,还可以继续进行颗粒物的净化。本发明利用驻极电场和有源电场的双重电场进行颗粒物去除,提高了除尘效率。
进一步需要注意的是,同一个腔室相邻两个吸附板上的通气孔的孔心布置在与腔室的轴向垂直的不同平面上,可以使腔室中的气体流向紊乱,进一步增加了气体在电场中的停留时间,增加近距离与放电极接触的频次,提高颗粒物带电效率和带电量;而且当气体形成旋风式流向时,有利于大颗粒的分离,综合以上两点,有效提高除尘效率。另外,多个吸附板通过连接件依次连接并形成电场单元,使用连接件连接的吸附板不仅可以做到标准化、批量化的生产,加工方便,效率高,而且连接件连接具有装配简单,可拆卸便于包装运输的优点。
本发明中所述的颗粒物包括但不限于固体颗粒、液滴、附着有液体的固体颗粒、气溶胶、等离子态的固体颗粒或液滴等,也可以为细菌、真菌等微生物。
图1A是本发明一个实施例的电场单元组件的俯视示意图,电场单元组件1000包括电场单元1100和辅助吸附机构1200,辅助吸附机构1200设置于电场单元1100的 至少一侧并与电场单元1100围成至少一个腔室,其中辅助吸附机构1200具有多孔结构以将腔室的外部与腔室的内部流体连通。
参照图1A,辅助吸附机构1200包括第一辅助吸附机构1210和第二辅助吸附机构1220,第一辅助吸附机构1210和第二辅助吸附机构1220相对布置并形成夹层空间1230,电场单元1100布置于夹层空间1230内,较佳地,第一辅助吸附机构1210与第二辅助吸附机构1220平行相对布置。在其他实施例中,电场单元组件可以包括多个辅助吸附机构,多个辅助吸附机构可以相互平行布置形成多个夹层空间,电场单元布置于多个夹层空间内并与辅助吸附机构围成至少一个腔室;另外,多个辅助吸附机构也可以根据实际存放空间的条件或其他因素以相互不平行的方式布置在一起并与电场单元围成至少一个腔室。
参照图1A,A为进气方向、B为出气方向,第一辅助吸附机构1210位于电场单元组件1000的出气端、第二辅助吸附机构1220位于电场单元组件1000的进气端,第一辅助吸附机构1210和第二辅助吸附机构1220具有多孔结构以将7个腔室的外部与内部流体连通,多孔结构的辅助吸附机构1200可以通过物理过滤的方式在进气端和/或出气端过滤掉一部分气体中的颗粒。在其他实施例中,也可以只在进气端或出气端布置辅助吸附机构,也就是说,电场单元组件可以只有第一辅助吸附机构或第二辅助吸附机构。
参照图1A,电场单元1100与第一辅助吸附机构1210和第二辅助吸附机构1220围成7个腔室,以第一腔室1110、第二腔室1120和第三腔室1130的结构为例进行说明,其他腔室的结构以此类推。本实施例中,电场单元1100由多个吸附板构成并形成起伏结构,由多个吸附板拼接形成的具有起伏结构的电场单元的工艺不仅加工方便、效率高,而且可以标准化、批量化的生产。第一吸附板1101和第二吸附板1102与第二辅助吸附机构1220围成第一腔室1110,第一吸附板1101和第三吸附板1103与第一辅助吸附机构1210围成第二腔室1120,第二吸附板1102和第四吸附板1104与第一辅助吸附机构1210围成第三腔室1130。相邻两个吸附板相互连接并形成一定夹角,所述夹角的范围位于30°-90°之间,较佳地,所述夹角为60°,也就是说第一吸附板1101和第二吸附板1102相互连接并形成一定夹角、第一吸附板1101和第三吸附板1103相互连接并形成一定夹角以及第二吸附板1102和第四吸附板1104相互连接并形成一定夹角,所述夹角的范围是30°-90°之间,较佳地,所述夹角为60°。另外,第一吸附板1101和第二吸附板1102形成第一峰部1301,第一吸附板1101和第三吸附板1103形成第一谷部1302,第二吸附板1102和第四吸附板1104形成第二谷部1303,也就是说,第一谷部1302和第二谷部1303以及第一峰部1301之间形成第一腔室1110。同理,第四吸附板1104和第五吸附板1105形成第二峰部1304,也就是说,第一峰部1301和第二峰部1304以及第二谷部1303之间形成第三腔室1130。本领域技术人员可以理解的是,在其他实施例中,电场单元可以由一个吸附板构成,该吸附板可以通过3D打印或者铸造等工艺根据实际形成腔室的形状和结构进行弯折加工。在其他实施例中,电场单元组件中的腔室的数量不限于此,可以根据实际的需要净化的气体风量对腔室的数量进行调整,而且,多个腔室的排布方式可以是上、下、左、右、前、后任意方向进行相邻设置和/或不相邻设置。在本实施例中,为了便于生产加工,7个腔室的结构和形状均相同,然而,在其他实施例中,根据装置空间存放条件或其他因素,多个腔室的结构、大小也可以不相同、也可以部分相同。
参照图1A,吸附板分别具有主体和从所述主体沿所述腔室的轴向平行的两端分别弯折形成的折边部,连接件设置于相邻两个吸附板的折边部,以将相邻两个吸附板的其中一端固定连接。由于使用连接件连接的吸附板不仅可以做到标准化、批量化的生 产,加工方便,效率高,而且连接件连接具有装配简单,可拆卸便于包装运输的优点。以第一吸附板1101、第二吸附板1102和第三吸附板1103的结构为例进行说明,其他吸附板的结构以此类推。第一吸附板1101具有第一吸附板主体11011和从第一吸附板主体11011的两端分别弯折形成的第一吸附板左折边部11012和第一吸附板右折边部11013,第二吸附板1102具有第二吸附板主体11021和从第二吸附板主体11021的两端分别弯折形成的第二吸附板左折边部11022和第二吸附板右折边部11023,第三吸附板1103具有第三吸附板主体11031和从第三吸附板主体11031的两端分别弯折形成的第三吸附板左折边部11032和第三吸附板右折边部11033。其中,第一吸附板左折边部11012和第一吸附板右折边部11013相互平行且与第一吸附板主体11011成角约120°,第二吸附板左折边部11022和第二吸附板右折边部11023相互平行且与第二吸附板主体11021成角约120°,第三吸附板左折边部11032和第三吸附板右折边部11033相互平行且与第三吸附板主体11031成角约120°。需要说明的是,此处的“左”和“右”仅仅是为了将两个折边部区别开来,不构成对方位的限定。
参照图1A,每一个吸附板的折边部都沿腔室的轴向方向延伸,以及相邻两个吸附板的折边部对齐配合并通过连接件1400连接,从而通过折边部和连接件1400将相邻的两个吸附板的其中一端固定连接,本实施例中,相邻两个吸附板与至少一个辅助吸附机构的至少一部分形成至少一个具有三边形截面的腔室,且相邻两个腔室的三边形截面呈上下颠倒排布,所述截面为垂直于腔室轴向方向的截面,例如第一腔室1110、第二腔室1120和第三腔室1130具有三边形截面的腔室且第一腔室1110与第二腔室1120或第三腔室1130的三边形截面呈相反方向排布,而第二腔室1120与第三腔室1130的三角形截面呈相同方向排布,具体地,相邻两个吸附板相互连接并形成一定夹角,所述夹角的范围位于30°-90°之间,较佳地,所述夹角为60°,也就是说第一吸附板主体11011和第二吸附板主体11021相互连接并形成一定夹角、第一吸附板主体11011和第三吸附板主体11031相互连接并形成一定夹角以及第二吸附板主体11021和第四吸附板主体11041相互连接并形成一定夹角,所述夹角的范围是30°-90°之间,较佳地,所述夹角为60°。各个折边部上分别设置多个沿腔室的延伸方向排列的通孔,连接件1400穿设于通孔内并固定,从而将相邻的吸附板的其中一端固定连接。较佳地,各个折边部沿腔室的两个端部均分别设有通孔。较佳地,在各个折边部端部均设有通孔连接件可以是铆钉、螺钉等,相邻的两个吸附板通过铆钉连接、螺栓连接、螺钉连接等实现连接。在本实施例中,相邻的两个侧壁通过铆钉依次铆接,铆接的密封性更好。以第一吸附板1101、第二吸附板1102和第三吸附板1103的结构为例进行说明,其他吸附板的结构以此类推。第一吸附板右折边部11013与第二吸附板左折边部11022相互对齐,通过将连接件1400穿设于第一吸附板右折边部11013和第二吸附板左折边部11022以将第一吸附板1101和第二吸附板1102固定连接;第一吸附板左折边部11012与第三吸附板右折边部11033相互对齐,通过将连接件1400穿设于第一吸附板左折边部11012与第三吸附板右折边部11033以将第一吸附板1101和第三吸附板1103固定连接。
图1B是图1A的电场单元组件的分解示意图,以第一腔室1110、第三腔室1130的结构为例进行说明,其他腔室的结构以此类推。第一吸附板1101和第二吸附板1102与第二辅助吸附机构1220围成第一腔室1110,第二吸附板1102和第四吸附板1104与第一辅助吸附机构1210围成第三腔室,第一吸附板1101、第二吸附板1102和第四吸附板1104设有多个通气孔1500,相邻两个吸附板上的通气孔1500的孔心布置在与腔室的轴向垂直的不同平面上,也就是说,第一吸附板1101上的第一通气孔1510的孔心与第二吸附板1102上的第二通气孔1520的孔心布置在与第一腔室1110的轴向垂 直的不同平面上,第二吸附板1102上的第二通气孔1520的孔心与第四吸附板1104上的第三通气孔1530的孔心布置在与第三腔室1130的轴向垂直的不同平面上。优选地,每一个吸附板包括多个通气孔,多个通气孔沿轴向布置成至少一列,其中,相邻两个吸附板上的其中一个吸附板上的任意一个通气孔的孔心与另一个吸附板上的任意一个所述通气孔的孔心布置在与轴向垂直的不同平面上。在本实施例中,第一吸附板1101上的第一通气孔1510的孔心与第四吸附板1104上的第三通气孔1530的孔心布置在与腔室的轴向垂直的相同平面上,然而,在其他实施例中,第一吸附板1101上的第一通气孔1510的孔心与第四吸附板1104上的第三通气孔1530的孔心也可以布置在与腔室的轴向垂直的不同平面上。本实施例中,第一吸附板1101上的第一通气孔1510沿轴向均匀分布成两列并从第一吸附板1101的一端布置到第一吸附板1101的另一端,第二吸附板1102上的第二通气孔1520沿轴向均匀分布成两列并从第二吸附板1102的一端布置到第二吸附板1102的另一端,第四吸附板1104上的第三通气孔1530沿轴向均匀分布成两列并从第四吸附板1104的一端布置到第四吸附板1104的另一端,在其他实施例中,可以根据实际进气或出气的需要,通气孔也可以沿轴向分布于吸附板的一部分。在本实施例中,第一通气孔1510、第二通气孔1520和第三通气孔1530为直径相同的圆形孔,在其他实施例中,通气孔可以是椭圆形孔、三角形孔、四边形孔或五边形孔;不同吸附板上通气孔的直径也可以不同,但是需要保证气体不能无阻挡地通过通气孔直接排出腔室,即如果将同一腔室的两个吸附板重叠在一起,不同吸附板上的通气孔不会完全重叠或一个吸附板上的通气孔完全包含与其相邻的吸附板上的通气孔的情况,从而保证气体在流动时会遇到阻挡,使得气流在一个吸附板流入并从同一腔室的其他吸附板上的通气孔流出时,气流改变了方向甚至在腔室内形成旋风路径后,再通过出气孔排出腔室。
参照图1B,以第一腔室1110、第三腔室1130的气体走向为例,其他电场单元的气体走向以此类推。气体通过第二辅助机构1220的多孔结构进入第一腔室1110,而后通过第二通气孔1520进入第三腔室,最后通过第三通气孔1530进入第四腔室1140或通过第一辅助吸附机构1210排出。由于第二通气孔1520的孔心和第三通气孔1530的孔心布置在与第三腔室1130的轴向垂直的不同平面上,气体经过第三腔室1130的气体流向紊乱,进一步增加了气体在两个腔室中的停留时间,有利于增加近距离与放电极接触的频次,距离放电极越近的地方,气体电离效率越高,提高颗粒物带电效率和带电量;而且当气体形成旋风式流向时,有利于大颗粒的分离,综合以上两点,有效提高除尘效率。在本实施例中,由于每个腔室的吸附板都可以开设通气孔,同一腔室不同吸附板上的通气孔布置在与腔室的轴向垂直的不同平面上,导致每个腔室的气体可以来源于多个相邻的腔室,也可以流向多个相邻的腔室,气体流向高度紊乱,经过放电极附近的气流变多,增加了气体中的颗粒物带电效率和带电量,提高了除尘效率。
参照图1B,辅助吸附机构1200由60目的聚四氟乙烯薄膜构成,由于聚四氟乙烯是驻极材料,辅助吸附机构1200布置于放电极和电场单元形成的有源电场中,即辅助吸附机构1200布置于放电极和电场单元之间因电晕放电产生的空间电荷中,该空间电荷可以进入具有驻极性能的辅助吸附机构1200进而对辅助吸附机构1200驻极,驻极后的辅助吸附机构1200可以在周围空间形成驻极电场,利用驻极电场的静电吸附作用可以加强对颗粒物的净化。当有源电场突然消失时,驻极电场不会消失,还可以继续进行颗粒物的净化。本发明利用驻极电场和有源电场的双重电场进行颗粒物去除,提高了除尘效率。在其他实施例中,辅助吸附机构的孔径也可以选自40目-100目中的一个或多个,孔径越细,气体的风阻越大,能耗越大,优选地,辅助吸附机构的孔径也 可以选自40目-80目中的一个或多个;也可以是多层薄膜组合而成,且多孔结构相互交叠贯通。在其他实施例中,辅助吸附机构的材料可以选自导电材料或驻极材料中的一种或多种,其中导电材料可以选自金属或合金中的一种或多种,驻极材料可以选自具有驻极性能的无机化合物和/或具有驻极性能的有机化合物,所述无机化合物选自二氧化硅、钛酸钡、锆钛酸铅、氧化锌、氧化钽、氧化铝、氧化钛、氮化硅中的一种或多种组合,所述有机化合物选自氟碳聚合物、聚碳酸酯、聚丙烯、聚乙烯、聚氯乙烯、天然蜡、树脂、松香中的一种或多种组合,所述氟碳聚合物选自聚四氟乙烯、聚偏氟乙烯、聚全氟乙丙烯、可溶性聚全氟乙丙烯、可溶性聚四氟乙烯中的一种或多种组合。
参照图1B,电场单元组件1000还包括顶板和底板(图中未示出),顶板和底板分别连接于电场单元的顶端和底端并对腔室的顶部和底部进行密封。较佳地,电场单元组件1000还包括端板1600和加强件1700,加强件1700布置于辅助吸附机构1200的外表面并与端板1600固定连接。
图2是本发明一个实施例的电场单元组件的俯视分解示意图,电场单元组件3000包括电场单元3100和辅助吸附机构3200,辅助吸附机构3200设置于电场单元3100的至少一侧并与电场单元3100围成至少一个腔室,其中辅助吸附机构3200具有多孔结构以将腔室的外部与腔室的内部流体连通。辅助吸附机构包括第一辅助吸附机构3210和第二辅助吸附机构3220,辅助吸附机构3200由60目的聚四氟乙烯薄膜构成。电场单元3100与第一辅助吸附机构3210和第二辅助吸附机构3220围成4个腔室,以第一腔室3110、第二腔室3120和第三腔室3130的结构为例进行说明,其他腔室的结构以此类推。电场单元组件与上文相同之处不再赘述,本实施例仅对不同之处加以叙述。
参照图2,电场单元3100由多个吸附板构成并形成起伏结构,由多个吸附板拼接形成的具有起伏结构的电场单元的工艺不仅加工方便、效率高,而且可以标准化、批量化的生产。第一吸附板3101、第二吸附板1102和第三吸附板3103与第二辅助吸附机构3220围成第一腔室3110,第一吸附板1101、第四吸附板3103和第五吸附板3105与第一辅助吸附机构3210围成第二腔室3120,第三吸附板3103、第六吸附板3106和第七吸附板3107与第一辅助吸附机构3210围成第三腔室3130。相邻两个吸附板相互连接并形成一定夹角,所述夹角的范围位于90°-179°之间,较佳地,所述夹角为120°,所述夹角为吸附板与吸附板之间的夹角,而不是吸附板与吸附板所在直线形成的夹角。第一吸附板3101和第二吸附板3102相互连接并形成一定夹角、第二吸附板3102和第三吸附板3103相互连接并形成一定夹角、第三吸附板3103和第六吸附板3106互连接并形成一定夹角,所述夹角的范围位于90°-179°之间,较佳地,所述夹角为120°。另外,第一吸附板3101、第二吸附板1102和第三吸附板3103形成第一峰部3301,第一吸附板1101、第四吸附板3103和第五吸附板3105形成第一谷部3302,第三吸附板3103、第六吸附板3106和第七吸附板3107形成第二谷部3303,也就是说,第一谷部3302和第二谷部3303以及第一峰部3301之间形成第一腔室3110。同理,第七吸附板3107、第八吸附板3108和第九吸附板3109形成第二峰部3304,也就是说,第一峰部3301和第二峰部3304以及第二谷部3303之间形成第三腔室3130。本领域技术人员可以理解的是,在其他实施例中,电场单元可以由一个吸附板构成,该吸附板可以通过3D打印或者铸造等工艺根据实际形成腔室的形状和结构进行弯折加工。在其他实施例中,电场单元组件中的腔室的数量不限于此,可以根据实际的需要净化的气体风量对腔室的数量进行调整,而且,多个腔室的排布方式可以是上、下、左、右、前、后任意方向进行相邻设置和/或不相邻设置。在本实施例中,为了便于生产加工,4个腔室的结构和形状均相同,然而,在其他实施例中,根据装置空间存放条件 或其他因素,多个腔室的结构、大小也可以不相同、也可以部分相同。参照图2,第一吸附板3101、第三吸附板3103、第五吸附板3105、第七吸附板3107以及第九吸附板3109均匀设有两列通气孔,第二吸附板3102、第四吸附板3104、第六吸附板3106和第八吸附板3108未设有通气孔,该设计可以使气体至少经过两个腔室后再排出,例如气体从第二辅助机构3220进入第一腔室3110,通过第一吸附板3101或第三吸附板3103分别进入第二腔室3120或第三腔室3130,而后部分气体直接从第一辅助吸附机构3210排出,部分气体进入其他腔室后再从第一辅助吸附机构3210排出。该设计可以使电场单元组件内的气体高度紊乱,进一步增加了气体在腔室中的停留时间,提高除尘效率。
图3是本发明一个实施例的电场装置的立体分解示意图,电场装置2000包括吸附极2100和放电极2200,其中吸附极2100由电场单元组件构成,所以吸附极2100也可以称之为电场单元组件2100,电场单元组件2100包括电场单元2110和辅助吸附机构2120,辅助吸附机构包括第一辅助吸附机构2121和第二辅助吸附机构2122,第一辅助吸附机构2121和第二辅助吸附机构2122相对布置并形成夹层空间2123,电场单元2110布置于夹层空间2123内,辅助吸附机构2120与电场单元2110围成至少一个腔室,其中辅助吸附机构2120具有多孔结构以将腔室的外部与腔室的内部流体连通,其中,辅助吸附机构2120由60目的聚四氟乙烯薄膜构成。电场单元组件与上文相同之处不再赘述,本实施例仅对不同之处加以叙述。
参照图3,电场单元2110由多个吸附板构成,电场单元2110与第一辅助吸附机构2121和第二辅助吸附机构2122围成8个腔室,以第一腔室2310的结构为例进行说明,其他腔室的结构以此类推。相邻两个吸附板平行布置,也就是说,第一吸附板2111和第二吸附板2112平行布置,并且与第一辅助吸附机构2121和第二辅助吸附2122围成第一腔室2310,第一腔室2310具有四边形截面,所述截面方向与第一腔室2310的轴线方向垂直。在其他实施例中,电场单元的吸附板不平行放置,电场单元也可以与辅助吸附机构围成具有多边形截面的腔室,所述截面方向与腔室的轴线方向垂直,所述多边形可以是五边形、六边形等,较佳地,腔室的截面为正多边形。在其他实施例中,电场单元组件中的腔室的数量不限于此,可以根据实际的需要净化的气体风量对腔室的数量进行调整,而且,多个腔室的排布方式可以是上、下、左、右、前、后任意方向进行相邻设置和/或不相邻设置。在本实施例中,为了便于生产加工,8个腔室的结构和形状均相同,然而,在其他实施例中,根据装置空间存放条件或其他因素,多个腔室的结构、大小也可以不相同、也可以部分相同。
参照图3,本实施例中,电场单元2110的吸附板上未设有通气孔,也就是说,不同腔室的气体不能相互流通,每个腔室的气体均来通过辅助吸附机构进入腔室,再通过辅助吸附机构排出腔室,气流流动的阻力变小,可以降低能耗、提高通风量。
参照图3,放电极2200布置于每一个腔室内并沿腔室的轴向延伸的导体构成,在其他实施例中,放电极可以布置于部分腔室内。本实施例中,腔室具有四边形截面,放电极经过腔室的纵向中心线,所述纵向中心线为沿腔室轴向方向延伸并经过矩形截面长边对称轴与短边对称轴的交点的线。然而,在其他实施例中,腔室的截面可以为其他多边形,放电极经过腔室的纵向中心线,所述纵向中心线为沿腔室轴向方向延伸并经过多边形截面中点的线,例如,腔室的截面为三角形时,纵向中心线为沿腔室轴向方向延伸并经过三角形截面的角平分线的交点的线。优选地,腔室的截面为正多边形时,放电极经过截面内切圆的圆心,例如,腔室的截面为正三角形,放电极优选经过截面内切圆的圆心,此处的放电效率最高。本领域技术人员可以理解的是,由于实际加工条件的限制,放电极可能布置于稍微偏离腔室的纵向中心线或截面内切圆的圆 心处。上述截面方向均与腔室的轴线方向垂直。
本实施例中,放电极2200为细长状针状导体,在其他实施例中,放电极也可以为多角状、毛刺状、螺纹杆状或柱状导体。本实施例中,放电极2200的直径为0.1-10mm,较佳地,放电极2200的直径为0.2-5mm。在一个实施例中,放电极2200呈细长条状并采用304不锈钢、钛、钨、铱金中的任意一种制成,较佳地,放电极采用铱金制成。
参照图3,电场单元2110与电源的一个电极电性连接,放电极2200与电源的另一个电极电性连接,电场单元2110和放电极2200形成有源电场,优选地,电场单元2110与电源的阳极电性连接,放电极2200与电源的阴极电性连接,即电场单元2110为阳极,放电极2200为阴极。然而,在其他实施例中,电场单元2110也可以与电源的阴极电性连接,放电极2200与电源的阳极电性连接,即电场单元2110为阴极,放电极2200为阳极。当电场单元2110与电源的阳极电性连接,放电极2200与电源的阴极电性连接时,具有驻极性能的辅助吸附机构2120布置于放电极和电场单元形成的有源电场中,即辅助吸附机构2120布置于放电极和电场单元之间因电晕放电产生的空间电荷中,该空间电荷可以进入具有驻极性能的辅助吸附机构2120进而对辅助吸附机构2120驻极,驻极后的辅助吸附机构2120可以在周围空间形成驻极电场。气体通过辅助吸附机构2120进入或排出腔室时,辅助吸附机构2120不仅可以通过物理过滤的方式在进气端和/或出气端过滤掉一部分气体中的颗粒,还可以利用驻极电场的静电吸附作用可以加强对气体中颗粒物的净化,而且由于放电极2200放电并电离,使气体中的颗粒物获得负电荷,带负电的颗粒物向电场单元2110和/或辅助吸附机构2120移动,并沉积在电场单元2110和/或辅助吸附机构2120上。当有源电场突然消失时,驻极电场不会消失,辅助吸附机构2120还可以继续进行颗粒物的净化。本发明利用驻极电场和有源电场的双重电场进行颗粒物去除,提高了除尘效率。
图4是本发明电场装置的俯视剖视示意图,电场装置4000包括吸附极4100和放电极4200,其中吸附极4100由电场单元组件构成,所以吸附极4100也可以称之为电场单元组件4100,电场单元组件4100包括电场单元4110和辅助吸附机构4120,辅助吸附机构包括第一辅助吸附机构4121和第二辅助吸附机构4122,第一辅助吸附机构4121和第二辅助吸附机构4122相对布置并形成夹层空间,电场单元4110布置于夹层空间内,辅助吸附机构4120与电场单元4110围成至少一个腔室,其中辅助吸附机构4120具有多孔结构以将腔室的外部与腔室的内部流体连通,其中,辅助吸附机构4120由60目的聚四氟乙烯薄膜构成。电场单元组件或放电极或电场装置与上文相同之处不再赘述,本实施例仅对不同之处加以叙述。
参照图4,电场单元4110由两个吸附板构成,第一吸附板4111和第二吸附板4112平行布置,并且与第一辅助吸附机构4121和第二辅助吸附4122围成腔室4310,腔室4310具有四边形截面,所述截面方向与腔室4310的轴线方向垂直。本实施例中,第一辅助机构4121和第二辅助吸附机构4122平行布置,第一吸附板4111和第二吸附板4112与第一辅助吸附机构4121和第二辅助吸附机构4122形成一定夹角β,其中0°<β≤90°,也就是说腔室4310具有平行四边形或矩形截面。
参照图4,第一吸附板4111设有第一通气孔4131和第二通气孔4132,第二吸附板4112设有第三通气孔4133和第四通气孔4134,相邻平行布置的两个吸附板4110上的通气孔的孔心布置在与吸附板4110垂直且与腔室4310轴向平行的不同平面上,在本实施例中,上述平面为沿箭头M方向的平面。例如,第三通气孔4133与第一通气孔4131布置在与吸附板4110垂直且与腔室4310轴向平行的不同平面上,第三通气孔4133与第二通气孔4132布置在与吸附板4110垂直且与腔室4310轴向平行的不同平面上。在其他实施例中,每一个所述吸附板包括多个通气孔,多个通气孔沿轴向布 置成至少一列,其中,相邻平行布置的两个吸附板上的其中一个吸附板上的任意一个通气孔的孔心与另一个吸附板上的任意一个通气孔的孔心布置在与吸附板垂直且与所述腔室轴向平行的不同平面上。
参照图4,虚线箭头为部分气体走向的示意路径,由于第三通气孔4133与第二通气孔4132布置在与吸附板4110垂直且与腔室4310轴向平行的不同平面上,部分气体从第三通气孔4133进入腔室4310,经过第一吸附板4111和第二吸附板4112的至少两次阻挡扰流,最后从第二通气孔4132排出,气体流向更佳紊乱,进一步增加了气体在腔室中的停留时间,有利于增加近距离与放电极接触的频次,距离放电极越近的地方,气体电离效率越高,提高颗粒物带电效率和带电量,有效提高除尘效率。
参照图4,本实施例中,放电极4200经过腔室的纵向中心线,所述纵向中心线为沿腔室4310轴向方向延伸并经过平行四边形或矩形截面长边对称轴与短边对称轴的交点的线,此处的放电效率最高。然而,在其他实施例中,至少一个腔室内至少布置两个放电极;优选地,电场单元由多个吸附板构成,至少两个吸附板之间形成腔室,至少两个放电极分别与构成腔室的每一个吸附极之间的距离相等,该设计有利于进一步增加放电效率;更优选地,至少两个放电极在腔室内沿腔室的横向中心线均匀分布。参照图4,由于腔室4310具有平行四边形或矩形截面,第一吸附板4111和第二吸附板4112与第一辅助吸附机构4121和第二辅助吸附机构4122的交点分别为a、b、c和d,横向中心线为线段ab中点与线段cd中点的连线,或线段ac中点与线段bd中点的连线;其中短横向中心线为线段ab中点与线段cd中点的连线,至少两个放电极均匀布置于短横向中心线上。
以上已详细描述了本发明的较佳实施例,但应理解到,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改。这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (28)

  1. 一种电场单元组件,其特征在于,所述电场单元组件包括电场单元和辅助吸附机构,所述辅助吸附机构设置于所述电场单元的至少一侧并与所述电场单元围成至少一个腔室,其中所述辅助吸附机构具有多孔结构以将所述腔室的外部与所述腔室的内部流体连通。
  2. 根据权利要求1所述的电场单元组件,其特征在于,所述电场单元由多个吸附板构成,至少两个所述吸附板之间形成所述腔室。
  3. 根据权利要求1所述的电场单元组件,其特征在于,所述辅助吸附机构包括第一辅助吸附机构和第二辅助吸附机构,所述第一辅助吸附机构和所述第二辅助吸附机构相对布置并形成夹层空间,所述电场单元布置于所述夹层空间内。
  4. 根据权利要求3所述的电场单元组件,其特征在于,所述电场单元形成起伏结构并包括峰部和谷部,所述第一辅助吸附机构靠近所述峰部布置,所述第二辅助吸附机构靠近所述谷部布置,所述腔室布置于相邻两个所述峰部或相邻两个所述谷部之间。
  5. 根据权利要求4所述的电场单元组件,其特征在于,两个所述吸附板相互连接形成所述峰部或所述谷部,相邻两个所述吸附板相互连接并形成一定夹角,所述夹角的范围位于30°-90°之间;较佳地,所述夹角为60°。
  6. 根据权利要求4所述的电场单元组件,其特征在于,三个所述吸附板依次连接形成所述峰部或所述谷部,相邻两个所述吸附板相互连接并形成一定夹角α,其中,90°≤α<180°;较佳地,α=120°。
  7. 根据权利要求3所述的电场单元组件,其特征在于,相邻两个所述吸附板平行布置,并且与所述第一辅助吸附机构和所述第二辅助吸附机构的至少一部分形成至少一个沿所述腔室的轴线延伸的具有四边形截面的所述腔室。
  8. 根据权利要求7所述的电场单元组件,其特征在于,所述吸附板与所述第一辅助吸附机构和/或所述第二辅助吸附机构形成一定夹角β,其中0°<β≤90°。
  9. 根据权利要求2至6任一项所述的电场单元组件,其特征在于,多个所述吸附板通过连接件依次连接并形成所述电场单元。
  10. 根据权利要求9所述的电场单元组件,其特征在于,每一个所述吸附板具有主体和从所述主体沿所述腔室的轴向平行的两端分别弯折形成的折边部,所述连接件设置于相邻两个所述吸附板的所述折边部,以将相邻两个所述吸附板的其中一端固定连接。
  11. 根据权利要求9或10所述的电场单元组件,其特征在于,所述连接件为铆钉,所述多个吸附板通过所述铆钉依次铆接。
  12. 根据权利要求1至11任一项所述的电场单元组件,其特征在于,所述吸附板设有多个通气孔。
  13. 根据权利要求12所述的电场单元组件,其特征在于,相邻两个所述吸附板上的所述通气孔的孔心布置在与所述腔室的轴向垂直的不同平面上。
  14. 根据权利要求12所述的电场单元组件,其特征在于,相邻平行布置的两个所述吸附板上的所述通气孔的孔心布置在与所述吸附板垂直且与所述腔室轴向平行的不同平面上。
  15. 根据权利要求13所述的电场单元组件,其特征在于,每一个所述吸附板包括多个所述通气孔,多个所述通气孔沿轴向布置成至少一列,其中,相邻两个所述吸附板上的其中一个所述吸附板上的任意一个所述通气孔的孔心与另一个所述吸附板上的任意一个所述通气孔的孔心布置在与轴向垂直的不同平面上。
  16. 根据权利要求14所述的电场单元组件,其特征在于,每一个所述吸附板包括 多个所述通气孔,多个所述通气孔沿轴向布置成至少一列,其中,相邻平行布置的两个所述吸附板上的其中一个所述吸附板上的任意一个所述通气孔的孔心与另一个所述吸附板上的任意一个所述通气孔的孔心布置在与所述吸附板垂直且与所述腔室轴向平行的不同平面上。
  17. 根据权利要求15或16所述的电场单元组件,其特征在于,多个所述通气孔沿轴向均匀分布。
  18. 根据权利要求17所述的电场单元组件,其特征在于,多个所述通气孔沿轴向从所述吸附板的一端布置到所述吸附板的另一端。
  19. 根据权利要求12至18任一项所述的电场单元组件,其特征在于,所述通气孔为圆形孔;较佳地,所述通气孔具有相同的直径。
  20. 根据权利要求1至19任一项所述的电场单元组件,其特征在于,所述辅助吸附机构具有相互交叠贯通的多孔结构。
  21. 根据权利要求1至20任一项所述的电场单元组件,其特征在于,所述辅助吸附机构由具有驻极性能的多孔结构材料制成。
  22. 根据权利要求1至21任一项所述的电场单元组件,其特征在于,所述电场单元组件还包括顶板和底板,所述顶板和所述底板分别连接于所述电场单元的顶端和底端并对所述腔室的顶端和底端进行密封;
    较佳地,所述电场单元组件还包括端板和加强件,所述加强件布置于所述辅助吸附机构的外表面并与所述端板固定连接。
  23. 根据权利要求1至22任一项所述的电场单元组件,其特征在于,所述电场单元构成电场的阴极或阳极。
  24. 一种电场装置,包括放电极和吸附极,其特征在于,所述吸附极由权利要求1至23任一项所述的电场单元组件构成,所述放电极由布置于至少一个所述腔室内的导体构成。
  25. 根据权利要求24所述的电场装置,其特征在于,所述放电极由布置于每一个所述腔室内并沿所述腔室的轴向延伸的导体构成。
  26. 根据权利要求24所述的电场装置,其特征在于,所述放电极由经过所述腔室的纵向中心线的导体构成,较佳地,所述腔室具有正多边形横截面,所述放电极经过所述横截面内切圆的圆心。
  27. 根据权利要求24所述的电场装置,其特征在于,至少一个所述腔室内至少布置两个所述放电极。
  28. 根据权利要求27所述的电场装置,其特征在于,所述电场单元由多个吸附板构成,至少两个所述吸附板之间形成所述腔室,至少两个所述放电极分别与构成所述腔室的每一个吸附板之间的距离相等;
    较佳地,至少两个所述放电极在所述腔室内沿所述腔室的横向中心线均匀分布。
PCT/CN2021/125122 2020-10-21 2021-10-21 电场单元组件和电场装置 WO2022083663A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180068173.5A CN116917044A (zh) 2020-10-21 2021-10-21 电场单元组件和电场装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011135523.9A CN114377857A (zh) 2020-10-21 2020-10-21 电场单元组件和电场装置
CN202011135523.9 2020-10-21

Publications (1)

Publication Number Publication Date
WO2022083663A1 true WO2022083663A1 (zh) 2022-04-28

Family

ID=81194349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125122 WO2022083663A1 (zh) 2020-10-21 2021-10-21 电场单元组件和电场装置

Country Status (2)

Country Link
CN (2) CN114377857A (zh)
WO (1) WO2022083663A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114377857A (zh) * 2020-10-21 2022-04-22 上海必修福企业管理有限公司 电场单元组件和电场装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120047991A1 (en) * 2010-08-26 2012-03-01 Honda Motor Co., Ltd. Particulate matter detection device
CN103566753A (zh) * 2013-11-18 2014-02-12 沈阳工业大学 餐饮油烟一体化处理系统及方法
CN104165419A (zh) * 2014-08-20 2014-11-26 浙江共展环保科技有限公司 车载针孔静电式空气净化装置及其方法
CN105983486A (zh) * 2015-01-28 2016-10-05 上海思奈环保科技有限公司 一种空气净化高压离子驻极体净化装置及空气净化装置
CN106799307A (zh) * 2017-02-17 2017-06-06 白三妮 空气颗粒沉积吸附装置
CN209577023U (zh) * 2018-12-29 2019-11-05 深圳康德厨具科技有限公司 一种能高效净化油烟的家用抽油烟机

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101804383B (zh) * 2010-03-25 2012-02-08 江苏力洁达环保设备工程有限公司 一种微分电除尘器
BR112015018756B1 (pt) * 2013-02-07 2022-01-25 Mitsubishi Power Environmental Solutions, Ltd Coletor de poeira, sistema de coleta de poeira, e método de coleta de poeira
CN103878063A (zh) * 2014-04-10 2014-06-25 江苏天洁环境工程有限公司 一种微风电除尘器
CN103878064A (zh) * 2014-04-22 2014-06-25 金烈水 一种库仑电除尘器
CN105689140B (zh) * 2016-04-15 2018-04-10 湖北强达环保科技股份有限公司 一种高效静电除尘器
CN108421639A (zh) * 2018-05-10 2018-08-21 科创扬州环境工程科技有限公司 一种管网式高压电场
CN114377857A (zh) * 2020-10-21 2022-04-22 上海必修福企业管理有限公司 电场单元组件和电场装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120047991A1 (en) * 2010-08-26 2012-03-01 Honda Motor Co., Ltd. Particulate matter detection device
CN103566753A (zh) * 2013-11-18 2014-02-12 沈阳工业大学 餐饮油烟一体化处理系统及方法
CN104165419A (zh) * 2014-08-20 2014-11-26 浙江共展环保科技有限公司 车载针孔静电式空气净化装置及其方法
CN105983486A (zh) * 2015-01-28 2016-10-05 上海思奈环保科技有限公司 一种空气净化高压离子驻极体净化装置及空气净化装置
CN106799307A (zh) * 2017-02-17 2017-06-06 白三妮 空气颗粒沉积吸附装置
CN209577023U (zh) * 2018-12-29 2019-11-05 深圳康德厨具科技有限公司 一种能高效净化油烟的家用抽油烟机

Also Published As

Publication number Publication date
CN116917044A (zh) 2023-10-20
CN114377857A (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
TWI715255B (zh) 空氣除塵系統
ES2555660T3 (es) Purificador de aire mejorado de medio polarizado por campo activo
US20110094383A1 (en) Electric precipitator and air cleaner having the same
WO2022083666A1 (zh) 电场单元及电场吸附装置以及电场装置
WO2022083663A1 (zh) 电场单元组件和电场装置
WO2022083665A1 (zh) 电场单元及电场吸附装置以及电场装置
WO2022083664A1 (zh) 电场单元组件及电场吸附装置以及电场装置
WO2022000871A1 (zh) 电场单元及电场吸附装置以及电场装置
CN204620209U (zh) 静电式气体清净机
KR101512290B1 (ko) 전기 집진기
WO2021098776A1 (zh) 电场装置和气体净化装置以及净化方法
CN203648706U (zh) 集尘模块与静电空气净化装置
CN217473793U (zh) 集尘装置和净化设备
WO2022105889A1 (zh) 气体净化装置、系统及方法
KR20220085202A (ko) 미세먼지 집진용 필터 및 이를 포함하는 미세먼지 집진장치
CN112082221A (zh) 一种多段式离子风动力无耗材空气净化器
CN105665136A (zh) 一种使用柱状介电电泳电极的家用空气净化器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882078

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180068173.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21882078

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21882078

Country of ref document: EP

Kind code of ref document: A1