Nothing Special   »   [go: up one dir, main page]

WO2021166910A1 - ガスバリア性積層体 - Google Patents

ガスバリア性積層体 Download PDF

Info

Publication number
WO2021166910A1
WO2021166910A1 PCT/JP2021/005713 JP2021005713W WO2021166910A1 WO 2021166910 A1 WO2021166910 A1 WO 2021166910A1 JP 2021005713 W JP2021005713 W JP 2021005713W WO 2021166910 A1 WO2021166910 A1 WO 2021166910A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas barrier
barrier layer
barrier laminate
water vapor
inorganic compound
Prior art date
Application number
PCT/JP2021/005713
Other languages
English (en)
French (fr)
Inventor
三代子 田中
友史 磯▲崎▼
正啓 鶴原
裕太 社本
泰友 野一色
Original Assignee
王子ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王子ホールディングス株式会社 filed Critical 王子ホールディングス株式会社
Priority to JP2021516712A priority Critical patent/JPWO2021166910A1/ja
Publication of WO2021166910A1 publication Critical patent/WO2021166910A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Definitions

  • the present invention relates to a gas barrier laminate having paper as a support.
  • packaging materials that use paper as a base material and have water vapor barrier properties and gas barrier properties (particularly oxygen barrier properties) have been known.
  • Such packaging materials are used in packaging of foods, medical products, electronic parts, etc. in order to prevent deterioration of the quality of the contents.
  • Patent Documents 1 and 2 disclose a paper barrier material in which a water vapor barrier layer and a gas barrier layer are provided in this order on a paper base material.
  • the water vapor barrier layer contains a water vapor barrier resin and a water repellent
  • the gas barrier layer contains a water-soluble polymer and a surfactant.
  • Patent Document 2 discloses that the water vapor barrier layer and the gas barrier layer have a water-soluble polymer or a water-suspendable polymer.
  • the binder resin for the gas barrier layer in Patent Document 2 is a polyvinyl alcohol resin.
  • Patent Document 3 describes at least one of paper barrier base papers having a water vapor barrier layer and a gas barrier layer containing a water-soluble polymer on a paper substrate having a basis weight of 25 g / m 2 or more and 400 g / m 2 or less.
  • a paper barrier material having a protective layer is disclosed on the surface of the paper.
  • a gas barrier laminate in which a water vapor barrier layer and a gas barrier layer are provided in this order on a paper base material is known, and the gas barrier layer contains polyvinyl alcohol as a water-soluble polymer.
  • the gas barrier layer contains polyvinyl alcohol as a water-soluble polymer.
  • the present inventors have proceeded with studies for the purpose of providing a gas barrier laminate capable of exhibiting sufficient gas barrier even in a high humidity environment.
  • the present invention has the following configuration.
  • a gas-barrier laminate having a water vapor barrier layer and a gas barrier layer on at least one surface of the paper support in this order.
  • the water vapor barrier layer contains a layered inorganic compound, a cationic resin and an anionic binder,
  • the water-suspendable polymer is at least one selected from a urethane resin and a vinylidene chloride resin.
  • the water-suspendable polymer is derived from a polymer dispersed in the emulsion, and the gas barrier layer is a coating layer of the emulsion.
  • the water-suspendable polymer is a urethane-based resin.
  • the oxygen permeability becomes 100mL / (m 2 ⁇ day ⁇ atm) or less at 50% relative humidity, any of [1] to [3] The gas barrier laminate described in Crab.
  • the water-suspendable polymer is a urethane-based resin.
  • the urethane-based resin is described in any one of [1] to [4], which contains at least one selected from the group consisting of a structural unit derived from metaxylylene diisocyanate and a structural unit derived from hydrogenated metaxylylene diisocyanate.
  • Gas barrier laminate [6] The total number of constituent units derived from metaxylylene diisocyanate and the number of constituent units derived from hydrogenated metaxylylene diisocyanate is 50% or more of the number of constituent units derived from polyisocyanate in the urethane resin. 5] The gas barrier laminate according to. [7] The water-suspendable polymer is a urethane-based resin.
  • the gas barrier laminate according to [8] or [9], wherein the layered inorganic compound contained in the gas barrier layer is at least one selected from the group consisting of mica, bentonite and kaolin.
  • the anionic binder is at least one selected from the group consisting of styrene-butadiene copolymers, styrene-acrylic copolymers and olefin / unsaturated carboxylic acid copolymers, [1] to The gas barrier laminate according to any one of [12]. [14] The gas barrier laminate according to any one of [1] to [13], wherein the cationic resin has a surface charge of 0.1 to 10 meq / g. [15] The gas barrier laminate according to any one of [1] to [14], further having a sealant layer on at least one outermost layer. [16] The gas barrier laminate according to [15], wherein the sealant layer contains a biodegradable resin. [17] The gas barrier laminate according to any one of [1] to [16], which is a packaging material.
  • FIG. 1 is a cross-sectional view illustrating the configuration of the gas barrier laminated body of the present embodiment.
  • the gas barrier laminate of the present embodiment has a water vapor barrier layer and a gas barrier layer in this order on at least one surface of the paper support, and the water vapor barrier layer contains a layered inorganic compound, a cationic resin, and an anionic binder. , The gas barrier layer contains a water-suspendable polymer.
  • the gas barrier laminate of the present embodiment can exhibit sufficient gas barrier even in a high humidity environment.
  • the present embodiment will be described in detail. The description of the constituent elements described below may be based on typical embodiments or specific examples, but the present invention is not limited to such embodiments.
  • the numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
  • the present embodiment relates to a gas barrier laminate having a water vapor barrier layer and a gas barrier layer on at least one surface of the paper support in this order.
  • the water vapor barrier layer contains a layered inorganic compound, a cationic resin and an anionic binder
  • the gas barrier layer contains a water-suspendable polymer.
  • FIG. 1 is a cross-sectional view illustrating the configuration of the gas barrier laminate of the present embodiment.
  • the gas barrier laminate 100 of the present embodiment has a water vapor barrier layer 20 and a gas barrier layer 30 in this order on the paper support 10.
  • Other layers may be included between the layers, but they are preferably laminated so as to be in direct contact with each other. That is, it is preferable that the water vapor barrier layer 20 is provided so as to be in direct contact with the paper support 10, and the gas barrier layer 30 is further provided so as to be in direct contact with the water vapor barrier layer 20.
  • the water vapor barrier layer contains a layered inorganic compound, a cationic resin and an anionic binder, and the gas barrier layer contains a water-suspendable polymer. Therefore, the gas barrier laminate of the present embodiment can exhibit excellent gas barrier properties. In particular, the gas barrier laminate of the present embodiment can exhibit excellent gas barrier properties under high humidity conditions.
  • the gas barrier property of the gas barrier laminate can be evaluated by measuring the oxygen permeability of the gas barrier laminate.
  • the oxygen permeability of the gas barrier laminate is measured using an oxygen permeability measuring device.
  • the oxygen permeability measuring device for example, OX-TRAN2 / 20 manufactured by MOCON can be used.
  • the oxygen permeability under normal conditions is the oxygen permeability measured under the conditions of 23 ° C. and 50% relative humidity
  • the oxygen permeability under high humidity conditions is 23 ° C. and 85% relative humidity. It is the oxygen permeability measured in.
  • the oxygen permeability of the gas barrier laminate of the present embodiment measured under the conditions of 23 ° C. and 85% relative humidity is preferably 300 cc / m 2 ⁇ day ⁇ atm or less, preferably 250 cc / m 2 ⁇ day ⁇ atm or less. It is more preferably 200 cc / m 2 ⁇ day ⁇ atm or less, and particularly preferably 150 cc / m 2 ⁇ day ⁇ atm or less.
  • the oxygen permeability measured under the conditions of 23 ° C. and 85% relative humidity of the gas barrier laminate can be set to 100 cc / m 2 ⁇ day ⁇ atm or less. Yes, the oxygen permeability of the gas barrier laminate measured at 23 ° C. and 85% relative humidity may be 0 cc / m 2 ⁇ day ⁇ atm.
  • the oxygen permeability of the gas barrier laminate of the present embodiment measured under the conditions of 23 ° C. and 50% relative humidity is preferably 50 cc / m 2 ⁇ day ⁇ atm or less, preferably 45 cc / m 2 ⁇ day ⁇ atm or less. It is more preferably 40 cc / m 2 ⁇ day ⁇ atm or less, and particularly preferably 35 cc / m 2 ⁇ day ⁇ atm or less.
  • the oxygen permeability measured under the conditions of 23 ° C. and 50% relative humidity of the gas barrier laminate can be set to 20 cc / m 2 ⁇ day ⁇ atm or less.
  • the oxygen permeability of the gas barrier laminate measured at 23 ° C. and 50% relative humidity may be 0 cc / m 2 ⁇ day ⁇ atm.
  • the gas barrier laminate of the present embodiment exhibits excellent gas barrier properties even under normal humidity conditions.
  • the rate of increase in oxygen permeability can be suppressed to a low level even when the gas barrier laminate is placed under high humidity conditions.
  • the oxygen permeability ratio calculated by the following formula is preferably 300 or less, more preferably 200 or less, and 100 or less. More preferably, it is more preferably 75 or less, further preferably 50 or less, even more preferably 30 or less, particularly preferably 20 or less, and most preferably 15 or less. preferable.
  • Oxygen permeability ratio 23 ° C, oxygen permeability at relative humidity 85% (cc / m 2 ⁇ day ⁇ atm) / 23 ° C, oxygen permeability at relative humidity 50% (cc / m 2 ⁇ day ⁇ atm)
  • the oxygen permeability ratio calculated by the above formula is within the above range, it can be determined that the rate of increase in oxygen permeability when the gas barrier laminate is placed under high humidity conditions is low. Further, if the oxygen permeability ratio is within the above range, it can be evaluated that the humidity dependence of the oxygen permeability in the gas barrier laminate is small.
  • the water vapor transmission rate of the gas barrier laminate of the present embodiment is preferably 50 g / m 2 ⁇ day or less, more preferably 40 g / m 2 ⁇ day or less, and 30 g / m 2 ⁇ day or less. It is more preferable, and it is particularly preferable that it is 25 g / m 2 ⁇ day or less. If the water vapor transmission rate of the gas barrier laminate is within the above range, it can be said that the water vapor permeability of the gas barrier laminate is sufficiently suppressed.
  • the water vapor transmission rate of the gas barrier laminate is a value measured in accordance with JIS Z 0208: 1976 (cup method) B method (40 ° C ⁇ 0.5 ° C, relative humidity 90% ⁇ 2%). be. When measuring, the gas barrier layer is on the inside.
  • the contact angle of the surface of the gas barrier layer of the gas barrier laminate of the present embodiment is preferably 10 ° or more, more preferably 20 ° or more, and further preferably 30 ° or more.
  • the upper limit of the contact angle on the surface of the gas barrier layer of the gas barrier laminate is not particularly limited, but is preferably 60 ° or less.
  • the contact angle of the surface of the gas barrier layer of the gas barrier laminate is 10 ° or more, the gas barrier laminate can also exhibit excellent water repellency.
  • the contact angle of the surface of the gas barrier layer of the gas barrier laminate in the present specification is a value measured 60 seconds after dropping 4 ⁇ l of water on the surface of the gas barrier layer of the gas barrier laminate.
  • a dynamic contact angle measuring device DAT1100 manufactured by Matsubo Co., Ltd. can be used as the contact angle measuring device.
  • the gas barrier laminate of the present embodiment is also excellent in water resistance. Specifically, stickiness and dissolution of the gas barrier layer are suppressed even after water is dropped onto the gas barrier layer of the gas barrier laminate.
  • the gas barrier laminate of the present specification is not only excellent in gas barrier property but also excellent in water repellency and water resistance. Therefore, for example, it is preferable under high humidity conditions and in a water use environment. Can be used.
  • the thickness of the gas barrier laminate is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, and further preferably 30 ⁇ m or more.
  • the thickness of the gas barrier laminate is preferably 500 ⁇ m or less, more preferably 400 ⁇ m or less, and further preferably 300 ⁇ m or less.
  • the paper support used in the present embodiment is not particularly limited as long as it is a paper generally used with plant-derived pulp as a main component.
  • Examples of the paper include bleached or unbleached kraft paper, high-quality paper, paperboard, liner paper, coated paper, single-gloss paper, glassin paper, and graphan paper.
  • the paper support is preferably made of paper containing pulp as a main component, which is easily dispersed in water by a mechanical dissociation action.
  • the dissociation freeness (water drainage degree) measured according to JIS P 8121: 2012 of the paper support is preferably 800 ml or less, and more preferably 500 ml or less, from the viewpoint of improving the gas barrier property.
  • the dissociation freeness is the Canadian standard freeness of pulp obtained by dissociating the paper after papermaking in accordance with JIS P 820-1: 2012 and measuring it in accordance with JIS P 8121: 2012. That is.
  • Examples of the method for adjusting the dissociation freeness include a method of beating pulp. As a method for beating pulp, a known method can be adopted.
  • the basis weight of the paper support is not particularly limited, but is preferably 20 ⁇ 400g / m 2, more preferably 30 ⁇ 320g / m 2.
  • the thickness of the paper support is not particularly limited, but is preferably 10 to 200 ⁇ m, and more preferably 20 to 100 ⁇ m.
  • the density of the paper support is not particularly limited, but is preferably 0.3 to 1.5 g / cm 3 , and more preferably 0.5 to 1.0 g / cm 3 .
  • the Oken-type smoothness of the surface of the paper support on the side where the water vapor barrier layer is provided is preferably 5 seconds or longer, more preferably 10 seconds or longer, and even more preferably 15 seconds or longer.
  • the upper limit of the Oken-type smoothness of the surface of the paper support on which the water vapor barrier layer is provided is not particularly limited, but is preferably 1000 seconds or less.
  • a value measured in accordance with JIS P 8155: 2010 shall be adopted.
  • the size of the paper support is not particularly limited, but from the viewpoint of improving the barrier property, it is preferable that the size of the paper support is 1 second or more according to JIS P 8122: 2004.
  • the size of the paper support is determined by the type and content of internal sizing agents such as rosin, alkyl ketene dimer, alkenyl succinic anhydride, styrene-acrylic, higher fatty acid, and petroleum resin, and the type of pulp. It can be controlled by smoothing or the like.
  • the content of the internal sizing agent is not particularly limited, but is preferably 0 to 3 parts by mass with respect to 100 parts by mass of the pulp in the paper support.
  • a known internal chemical can be appropriately added to the paper support.
  • internal chemicals include fillers such as titanium dioxide, kaolin, talc, and calcium carbonate, paper strength enhancers, yield improvers, pH adjusters, drainage improvers, water resistance agents, fabric softeners, and antistatic agents. Examples thereof include defoaming agents, slime control agents, dyes and pigments.
  • the water vapor barrier layer is a layer having a function of blocking the permeation of water vapor, and contains a layered inorganic compound, a cationic resin, and an anionic binder.
  • ⁇ Layered inorganic compound> The form of the layered inorganic compound is flat. Then, in the water vapor barrier layer, the flat layered inorganic compounds are arranged in a state of being laminated substantially parallel to the plane (surface) of the paper support. In this state, the area where the layered inorganic compound does not exist becomes smaller in the plane direction, so that the permeation of water vapor is suppressed. In addition, since the flat layered inorganic compounds exist in parallel to the plane of the paper support in the thickness direction, the water vapor that has entered the layer permeates while bypassing the layered inorganic compound, and the water vapor Permeation is suppressed. As a result, the water vapor barrier layer can exhibit excellent water vapor barrier properties.
  • the average length of the layered inorganic compound is preferably 1 to 100 ⁇ m, more preferably 2 to 50 ⁇ m, and even more preferably 3 to 20 ⁇ m.
  • the average length of the layered inorganic compound is the average length of the long axis in the plane direction of the layered inorganic compound.
  • the average length is 1 ⁇ m or more, the layered inorganic compounds in the water vapor barrier layer are likely to be arranged parallel to the paper support. Further, when the average length is 100 ⁇ m or less, there is less concern that a part of the layered inorganic compound protrudes from the water vapor barrier layer.
  • the aspect ratio of the layered inorganic compound is preferably 20 or more, more preferably 50 or more, and even more preferably 80 or more. Further, from the viewpoint of reducing the coating amount of the water vapor barrier layer and enhancing the recyclability and lightness of the gas barrier laminate, the aspect ratio of the layered inorganic compound is preferably 100 or more, preferably 200 or more. More preferably, it is more preferably 300 or more, and particularly preferably 500 or more.
  • the upper limit of the aspect ratio of the layered inorganic compound is not particularly limited, but is preferably 10,000 or less.
  • the aspect ratio is a value calculated from a microscopic magnified photograph of a cross section of the water vapor barrier layer, and is an average value of values obtained by dividing the length of the layered inorganic compound by its thickness.
  • the thickness of the layered inorganic compound is preferably 200 nm or less, more preferably 100 nm or less, and further preferably 50 nm or less.
  • the lower limit of the thickness of the layered inorganic compound is not particularly limited, but is preferably 2 nm or more.
  • the thickness of the layered inorganic compound is the average thickness of the layered inorganic compound measured from a microscopic magnified photograph of a cross section of the water vapor barrier layer.
  • the water vapor barrier layer forms a dense film without voids. This is a phenomenon that can be observed from a microscopic magnified photograph of the cross section of the water vapor barrier layer.
  • Such a dense film structure of the water vapor barrier layer without voids can form a tough film and effectively suppress cracking. Further, since it is possible to suppress the penetration of the coating liquid of the gas barrier layer laminated on the water vapor barrier layer, it also contributes to the formation of a uniform gas barrier layer.
  • the aspect ratio of the layered inorganic compound contained in the water vapor barrier layer is 20 or more (preferably 50 or more, more preferably 80 or more), and the thickness is 200 nm or less.
  • layered inorganic compounds include mica such as mica and brittle mica, bentonite, kaolinite (kaolin mineral, hereinafter also referred to as "kaolin"), pyrophyllite, talc, smectite, vermiculite, chlorite, and septe green mud.
  • examples include stones, serpentine stones, stirp nomelene, and montmorillonite.
  • the layered inorganic compound is preferably at least one selected from the group consisting of mica, bentonite and kaolin, and at least one selected from mica and kaolin. It is preferable to be there.
  • mica synthetic mica, white mica (mascobite), sericite (serisite), gold mica (frocopite), black mica (biotight), fluorine gold mica (artificial mica), red mica, soda mica, vanazin mica, Elite, chimmica, paragonite, brittle mica, etc.
  • swelling mica is preferable as mica because it has a high aspect ratio.
  • the kaolin may be a natural product or a synthetic product (engineered kaolin). Among them, engineered kaolin is preferable because it has a high aspect ratio.
  • a bentonite montmorillonite can be mentioned.
  • the content of the layered inorganic compound is preferably 90% by mass or less, more preferably 80% by mass or less, and 75% by mass or less, based on the total solid content mass contained in the water vapor barrier layer. More preferably, it is more preferably 70% by mass or less.
  • the content of the layered inorganic compound is preferably 1% by mass or more, more preferably 2% by mass or more, and 5% by mass or more, based on the total solid content mass contained in the water vapor barrier layer. Is more preferable, and 10% by mass or more is particularly preferable.
  • the content of the layered inorganic compound may be reduced by increasing the aspect ratio and decreasing the thickness of the layered inorganic compound. Further, by increasing the strength of the water vapor barrier layer, it is possible to prevent the layered inorganic compound from falling off from the water vapor barrier layer.
  • the content of the layered inorganic compound is preferably 0.1 to 800 parts by mass, more preferably 1 to 500 parts by mass, and 2 to 400 parts by mass with respect to 100 parts by mass of the anionic binder in the water vapor barrier layer. It is more preferably parts by mass, more preferably 5 to 300 parts by mass, and particularly preferably 10 to 250 parts by mass.
  • the content of the layered inorganic compound is at least the above lower limit value, the water vapor barrier property is likely to be exhibited.
  • the content of the layered inorganic compound is at least the above lower limit value, it is possible to suppress that a part of the layered inorganic compound is exposed from the surface of the water vapor barrier layer to increase the water vapor transmission rate. Further, by setting the content of the layered inorganic compound to the above upper limit value or less, the coatability of the gas barrier layer laminated on the water vapor barrier layer can be improved.
  • the water vapor barrier layer contains a cationic resin.
  • a cationic resin in addition to the layered inorganic compound to the water vapor barrier layer, the water vapor barrier property can be greatly improved.
  • the reasons for improving the water vapor barrier property by adding the cationic resin include, for example, the following reasons. It is known that the layered inorganic compound has a so-called card house structure in which the flat portion of the flat plate-like form is easily charged anionic and the edge portion is cationically charged, so that the layered inorganic compounds are three-dimensionally aggregated with each other. ing. Due to such a card house structure, the viscosity of the aqueous dispersion of the layered inorganic compound tends to be high. On the other hand, since the card house structure is easily broken when a force is applied by stirring or the like, the aqueous dispersion of the layered inorganic compound exhibits high thixotropy.
  • cationic resin examples include polyalkylene polyamines, polyamide compounds, polyamideamine-epihalohydrin or polyamideamine-epihalohydrin formaldehyde condensation reaction products, polyamine-epihalohydrin or polyamine-epihalohydrin formaldehyde condensation reaction products, and polyamide polyurea-.
  • Formaldehyde condensation reaction product of epihalohydrin or polyamide polyurea-epihalohydrin formaldehyde condensation reaction product of polyamine polyurea-epihalohydrin or polyamine polyurea-epihalohydrin, polyamideamine polyurea-epihalohydrin or polyamideamine polyurea-epihalohydrin
  • examples thereof include products, polyamide polyurea compounds, polyamine polyurea compounds, polyamideamine polyurea compounds and polyamideamine compounds, polyethyleneimines, polyvinylpyridines, amino-modified acrylamide compounds, polyvinylamines, polydialyldimethylammonium chlorides and the like.
  • the cationic resin is preferably a polyamide compound.
  • the surface charge of the cationic resin is preferably 0.1 to 10 meq / g, more preferably 0.1 to 5.0 meq / g, and preferably 0.1 to 2.0 meq / g. It is more preferably 0.2 to 1.0 meq / g, and particularly preferably 0.2 to 1.0 meq / g.
  • the surface charge of the cationic resin is measured by the method described below. First, the polymer as a sample is dissolved in water to obtain a solution having a polymer concentration of 1 ppm. 0.001N sodium polyethylene sulfonate is added dropwise to the solution using a charge analyzer Mutek PCD-04 (manufactured by BTG), and the amount of charge is measured.
  • the content of the cationic resin may be appropriately selected according to the type of the layered inorganic compound used for the water vapor barrier layer and the anionic binder, but from the viewpoint of improving the water vapor barrier property, the content of the layered inorganic compound is 100 parts by mass. On the other hand, it is preferably 0.01 to 300 parts by mass, more preferably 0.1 to 250 parts by mass, further preferably 0.5 to 150 parts by mass, and 1 to 100 parts by mass. It is even more preferably 1 to 20 parts by mass, and particularly preferably 1 to 5 parts by mass.
  • the content of the cationic resin is preferably 0.1 to 100 parts by mass, more preferably 0.5 to 30 parts by mass with respect to 100 parts by mass of the anionic binder in the water vapor barrier layer. 1 to 20 parts by mass is more preferable, and 2 to 15 parts by mass is particularly preferable.
  • the water vapor barrier layer further contains an anionic binder.
  • the water vapor barrier layer contains an anionic binder, the water vapor barrier property of the water vapor barrier layer can be enhanced more effectively. This is because, as described above, the flat portion of the layered inorganic compound is anionic, but when the cationic resin is adsorbed, the surface becomes cationic, and as a result, the affinity with the anionic binder is enhanced. It is thought that this is due to.
  • the anionic binder examples include a binder containing a monomer unit containing an anionic group. Among them, the anionic binder is preferably a binder containing a monomer unit containing a carboxy group.
  • the anionic binder examples include styrene / butadiene copolymers, styrene / acrylic copolymers, methacrylate / butadiene copolymers, acrylic nitrile / butadiene copolymers, olefin / unsaturated carboxylic acid copolymers, and the like. Acrylic ester-based polymers and the like can be mentioned.
  • the anionic binders are styrene-butadiene copolymers, styrene-acrylic copolymers and olefins because they have good water resistance, good elongation, and are less likely to crack the coating layer due to cracking.
  • -It is preferable that it is at least one selected from the group consisting of unsaturated carboxylic acid-based copolymers, and more preferably it is an olefin / unsaturated carboxylic acid-based copolymer.
  • Styrene-butadiene copolymers include styrene compounds such as styrene, ⁇ -methylstyrene, vinyltoluene, pt-butylstyrene, and chlorostyrene, and 1,3-butadiene and isoprene (2-methyl-1,3).
  • styrene compounds such as styrene, ⁇ -methylstyrene, vinyltoluene, pt-butylstyrene, and chlorostyrene
  • 1,3-butadiene and isoprene (2-methyl-1,3) -butadiene
  • 2,3 dimethyl-1,3-butadiene, 1,3-pentadiene and other conjugated diene compounds and copolymers obtained by copolymerizing a monomer composed of other compounds copolymerizable with these compounds. It is a copolymer.
  • Styrene is preferable as the sty
  • Styrene-acrylic copolymers include styrene-based compounds such as styrene, ⁇ -methylstyrene, vinyltoluene, pt-butylstyrene, and chlorostyrene, and acrylic acid, methacrylic acid, (meth) acrylic acid ester, and (meth) acrylic acid ester. ) Emulsion polymerization of a monomer composed of acrylic compounds such as acrylamide propane sulfonic acid and sulfoalkyl sodium salt (meth) acrylate (alkyl group having 2 or more and 3 or less carbon atoms) and other compounds copolymerizable with these compounds. It is a copolymer obtained by the above.
  • styrene-based compound styrene is preferable, and as the acrylic-based compound, acrylic acid, methacrylic acid, acrylic acid ester, and methacrylic acid ester are preferable, and acrylic acid and acrylic acid ester are more preferable.
  • the (meth) acrylic acid ester is preferably an acrylic acid alkyl ester, and in this case, the alkyl group preferably has 1 to 6 carbon atoms.
  • Olefin / unsaturated carboxylic acid-based copolymers include olefins, especially ⁇ -olefins such as ethylene and propylene, acrylic acid, methacrylic acid, crotonic acid, silicic acid, itaconic acid, fumaric acid, maleic acid, and butentricarboxylic acid.
  • Unsaturated polycarboxylic acid alkyl esters with at least one carboxyl group such as unsaturated carboxylic acids such as itaconic acid monoethyl ester, fumaric acid monobutyl ester and maleic acid monobutyl ester, acrylamide propanesulfonic acid, acrylic acid.
  • an unsaturated sulfonic acid monomer such as a sulfoethyl sodium salt or a sulfopropyl sodium methacrylate salt or a salt thereof
  • olefin ⁇ -olefin, especially ethylene and the like are preferable
  • unsaturated carboxylic acid monomer unsaturated sulfonic acid monomer or a salt thereof, acrylic acid, methacrylic acid, itaconic acid, fumaric acid and the like are used. Is preferable.
  • olefin / unsaturated carboxylic acid-based copolymer examples include, for example, an aqueous dispersion of an ammonium salt of an ethylene / acrylic acid copolymer, Zyxene® AC or the like (copolymerization ratio of acrylic acid 21.1 mass). %, Made by Sumitomo Seika Co., Ltd.).
  • the above-mentioned anionic binder may be further copolymerized with other copolymerizable compounds.
  • other copolymerizable compounds include cyano group-containing ethylenically unsaturated compounds, ethylenically unsaturated acid glycidyl ethers, unsaturated alcohol glycidyl ethers, and (meth) acrylamide compounds.
  • the method for producing the anionic binder is not particularly limited.
  • it can be obtained by copolymerizing a monomer containing a carboxy group (for example, an unsaturated carboxylic acid) and a monomer copolymerizable therewith.
  • a monomer containing a carboxy group for example, an unsaturated carboxylic acid
  • a monomer copolymerizable therewith for example, it can be obtained by introducing a monomer containing a carboxy group into a polymer and modifying it.
  • the copolymerization ratio of the monomer containing a carboxy group is preferably 1 to 50 mol%.
  • the weight average molecular weight of the anionic binder is preferably 10,000 to 10 million, more preferably 100,000 to 5 million.
  • the viscosity of the coating liquid for forming the water vapor barrier layer can be set within an appropriate range.
  • a polystyrene-equivalent value measured by gel permeation chromatography shall be adopted.
  • the content of the anionic binder is not particularly limited, but is preferably 10% by mass or more, more preferably 15% by mass or more, and 20% by mass with respect to the total solid content mass contained in the water vapor barrier layer. % Or more is more preferable, 25% by mass or more is particularly preferable, and 30% by mass or more is most preferable.
  • the content of the anionic binder is preferably 95% by mass or less, more preferably 90% by mass or less, and 85% by mass or less, based on the total solid content mass contained in the water vapor barrier layer. Is more preferable, and 80% by mass or less is particularly preferable.
  • the cationic resin and the anionic binder in addition to the layered inorganic compound, a dispersant, a surfactant, a defoaming agent, a wetting agent, a dye, a color adjusting agent, a thickener and the like are appropriately added as needed. It can be added.
  • the thickness of the water vapor barrier layer is preferably 1 to 30 ⁇ m, more preferably 3 to 20 ⁇ m.
  • the coating amount of the water vapor barrier layer is preferably 1 to 30 g / m 2 and more preferably 3 to 20 g / m 2 as the solid content.
  • the gas barrier layer is a layer having a function of mainly blocking the permeation of oxygen gas, and contains a water-suspendable polymer.
  • the water-suspendable polymer used in the present embodiment is a polymer having a solubility in water at 25 ° C. of 10 g / L or less.
  • the water-suspendable polymer is preferably derived from the polymer (particles) dispersed in the emulsion.
  • the water-suspendable polymer examples include urethane-based resin, vinylidene chloride-based resin, olefin resin, polyester resin, nylon resin, epoxy resin, melamine resin, polyvinyl alcohol-based resin, acrylonitrile-based resin, and polycarboxylic acid-based resin. Examples thereof include silicone resin.
  • the water-suspendable polymer may be used alone or in combination of two or more. Above all, from the viewpoint of further enhancing the gas barrier property in a high humidity environment, the water-suspendable polymer is preferably at least one selected from urethane-based resin and vinylidene chloride-based resin. By using a urethane resin or a vinylidene chloride resin as the water-suspendable polymer, the gas barrier property of the gas barrier laminate can be enhanced under high humidity conditions.
  • Urethane-based resin can be manufactured by a known manufacturing method.
  • a urethane resin can be obtained by reacting a polyisocyanate compound (for example, a diisocyanate compound) with a polyhydroxy acid (for example, dihydroxyic acid).
  • a polyisocyanate compound for example, a diisocyanate compound
  • a polyhydroxy acid for example, dihydroxyic acid
  • it can also be obtained by reaction with a polyol compound (for example, polyester polyol, polyether polyol) and / or a chain extender.
  • the urethane-based resin preferably contains at least one selected from the group consisting of a structural unit derived from metaxylylene diisocyanate and a structural unit derived from hydrogenated metaxylylene diisocyanate. Since such a urethane-based resin exhibits a high cohesive force due to a hydrogen bond and a stacking effect between xylylene groups, the gas barrier layer tends to exhibit excellent gas barrier properties.
  • the total number of constituent units derived from metaxylylene diisocyanate and the number of constituent units derived from hydrogenated metaxylylene diisocyanate is preferably 50% or more with respect to the total number of constituent units derived from polyisocyanate in the urethane resin.
  • the number of each structural unit can be identified using a known analytical method such as 1 1 H-NMR.
  • the urethane resin may have a hydroxy group, and its hydroxyl value is preferably 50 mgKOH / g or more, more preferably 100 mgKOH / g or more, and further preferably 150 mgKOH / g or more.
  • the upper limit of the hydroxyl value is not particularly limited, but is preferably 1000 mgKOH / g or less, more preferably 800 mgKOH / g or less, and further preferably 600 mgKOH / g or less.
  • the gas barrier layer tends to exhibit oxygen barrier properties. Further, by setting the hydroxyl value of the urethane resin within the above range, the heat-sealing property of the gas barrier layer can be enhanced, and as a result, the heat-sealing property of the gas barrier laminated body can be enhanced.
  • the oxygen permeability of the obtained sheet at 23 ° C. and 50% relative humidity is preferably 100 mL / (m 2 ⁇ day ⁇ atm) or less, preferably 50 mL / (m). more preferably 2 ⁇ day ⁇ atm) or less, further preferably 25mL / (m 2 ⁇ day ⁇ atm) or less, and particularly preferably 10mL / (m 2 ⁇ day ⁇ atm) or less.
  • 23 ° C. of the resulting sheet the oxygen permeability at 50% relative humidity may be 0mL / (m 2 ⁇ day ⁇ atm).
  • the oxygen permeability of the sheet made of urethane resin is set to 23 ° C. and 50% relative humidity by using an oxygen permeability measuring device (OX-TRAN2 / 22 manufactured by MOCON). Is measured.
  • the glass transition temperature of the urethane resin is preferably 150 ° C. or lower, more preferably 140 ° C. or lower, and particularly preferably 135 ° C. or lower.
  • the lower limit of the glass transition temperature of the urethane resin is not particularly limited, but is preferably 50 ° C. or higher, more preferably 60 ° C. or higher.
  • the glass transition temperature of the urethane resin is measured in accordance with JIS K 7122: 2012.
  • urethane-based resin a synthetic product may be used, and examples of the synthetic product include the urethane-based resin described in International Publication No. 2015/016069.
  • a commercially available product may be used. For example, “Takelac W-based (trade name)”, “Takelac WPB-based (trade name)”, and “Takelac WS-based” manufactured by Mitsui Chemicals, Inc. ( Product name) ”and the like, and specifically, Takelac WPB-341 is exemplified.
  • Other commercially available products include "HPU W-003" (hydroxyl value 235 mgKOH / g) manufactured by Dainichiseika Kogyo Co., Ltd.
  • the vinylidene chloride resin can be produced by a known production method.
  • the vinylidene chloride-based resin can be obtained from a homopolymer of vinylidene chloride (polyvinylidene chloride, PVDC), a copolymer of vinylidene chloride and a monomer copolymerizable with vinylidene chloride, and the like.
  • the monomer copolymerizable with vinylidene chloride is not particularly limited, but (meth) acrylic acid esters such as vinyl chloride, methyl (meth) acrylate, ethyl (meth) acrylate, and butyl (meth) acrylate. , Acrylonitrile, isobutylene, vinyl acetate and the like.
  • vinylidene chloride-based resin a commercially available product may be used, and examples thereof include “Saran Latex L549B” manufactured by Asahi Kasei Corporation and “Diofan A050, A297, B204” manufactured by SOLVAY.
  • the weight average molecular weight of the water-suspended polymer is preferably 1000 to 2000000000, and more preferably 5000 to 5000000.
  • a polystyrene-equivalent value measured by gel permeation chromatography shall be adopted.
  • the average particle size of the water-suspendable polymer in the emulsion is 0.001 to 100 ⁇ m. It is preferably 0.01 to 10 ⁇ m, and more preferably 0.01 to 10 ⁇ m.
  • the average particle size can be measured by a dynamic light scattering method.
  • the content of the water-suspendable polymer is preferably 10 to 100% by mass, more preferably 20 to 100% by mass, and 30 to 30 to 100% by mass, based on the total solid content contained in the gas barrier layer.
  • the water-suspendable polymer is preferably derived from the polymer (particles) dispersed in the emulsion.
  • the gas barrier layer is preferably a layer formed by applying an emulsion.
  • the gas barrier layer thus formed may be referred to as an emulsion coating layer.
  • the gas barrier layer is a urethane-based resin emulsion (also referred to as "urethane-based emulsion" in the present specification) and a vinylidene chloride-based resin emulsion (in the present specification, ". It is particularly preferable that the coating layer is at least one selected from “vinylidene chloride-based emulsion").
  • the gas barrier layer contains a layered inorganic compound in addition to the above-mentioned water-suspendable polymer.
  • the gas barrier property can be further enhanced (oxygen permeability can be further reduced).
  • the layered inorganic compound include layered inorganic compounds that can be contained in the water vapor barrier layer as described above, and one type may be used alone or two or more types may be used in combination.
  • the preferable ranges of the average length, aspect ratio and thickness of the layered inorganic compound are the same as the ranges described in the above section ⁇ Layered Inorganic Compound>.
  • the aspect ratio of the layered inorganic compound contained in the gas barrier layer is 20 or more (preferably 50 or more, more preferably 80 or more), and the thickness is preferably 200 nm or less.
  • the gas barrier property of the gas barrier property laminate can be more effectively enhanced.
  • specific examples of the layered inorganic compound contained in the gas barrier layer are the same as the specific examples described in the above section ⁇ Layered inorganic compound>. Among them, at least one selected from the group consisting of mica, bentonite and kaolin is preferable, and at least one selected from mica and kaolin is more preferable.
  • the gas barrier layer contains the layered inorganic compound as described above, the gas barrier property of the gas barrier laminated body under high humidity conditions can be more effectively enhanced.
  • the layered inorganic compound contained in the gas barrier layer may be of the same type as the layered inorganic compound contained in the water vapor barrier layer, or may be of a different type.
  • the gas barrier layer preferably contains two or more layered inorganic compounds having different aspect ratios.
  • the gas barrier layer preferably contains a layered inorganic compound having an aspect ratio of less than 500 (layered inorganic compound A) and a layered inorganic compound having an aspect ratio of 500 or more (layered inorganic compound B).
  • the aspect ratio of the layered inorganic compound A is more preferably 20 to 300, and particularly preferably 50 to 200.
  • the aspect ratio of the layered inorganic compound B is more preferably 500 to 5000, still more preferably 750 to 2500.
  • the layered inorganic compound A may be used alone or in combination of two or more.
  • the layered inorganic compound B may be used alone or in combination of two or more.
  • the content of the layered inorganic compound is not particularly limited, but is 0.5 to 500 parts by mass with respect to 100 parts by mass of the water-suspendable polymer in the gas barrier layer. It is preferably 1 to 300 parts by mass, more preferably 2 to 200 parts by mass, and particularly preferably 5 to 150 parts by mass.
  • ⁇ Arbitrary ingredient> In the gas barrier layer, in addition to the water-suspendable polymer and the layered inorganic compound, pigments, dispersants, surfactants, defoamers, wetting agents, dyes, color adjusters, thickeners, etc. are appropriately added as needed. It may be contained.
  • the thickness of the gas barrier layer is preferably 0.1 to 10 ⁇ m, more preferably 0.5 to 5 ⁇ m. Further, the coating amount of the gas barrier layer, as a solid content, preferably from 0.1 ⁇ 10g / m 2, more preferably 0.5 ⁇ 5g / m 2.
  • the gas barrier laminate has a water vapor barrier layer and a gas barrier layer in this order on at least one surface of the paper support, and further has a sealant layer on at least one outermost layer of the gas barrier laminate.
  • the sealant layer may be formed on the gas barrier layer on the side where the water vapor barrier layer and the gas barrier layer are formed, or the paper support on the side where the water vapor barrier layer and the gas barrier layer are not formed. It may be formed on top. Further, the sealant layer may be formed on the outermost layers on both sides of the gas barrier laminate.
  • the sealant layer is preferably a layer that is melted by heating or ultrasonic waves to exhibit adhesiveness.
  • the gas barrier laminates can be bonded to each other by heat sealing or the like.
  • the sealant layer can be formed by laminating synthetic resins such as polyethylene, polypropylene, ethylene-vinyl acetate polymer, and polyvinyl acetate polymer by melt extrusion laminating method or dry laminating method.
  • the sealant layer can also be formed by applying an emulsified dispersion of a synthetic resin such as polyethylene, polypropylene, an ethylene-vinyl acetate polymer, or a polyvinyl acetate polymer.
  • the sealant layer preferably contains a biodegradable resin.
  • the biodegradable resin are not particularly limited, and for example, polylactic acid (PLA), polybutylene succinate (PBS), polybutylene succinate adipate (PBSA), 3-hydroxybutanoic acid / 3-hydroxyhexanoic acid. Copolymers (PHBH) and the like can be mentioned.
  • the thickness of the sealant layer is preferably 1 to 50 ⁇ m, more preferably 3 to 30 ⁇ m.
  • the amount of the sealant layer formed is preferably 1 to 50 g / m 2 and more preferably 3 to 30 g / m 2 as the solid content.
  • the gas barrier laminate of the present embodiment can be suitably used as a packaging material for foods, medical products, electronic parts, etc. by taking advantage of the above-mentioned excellent water vapor barrier properties and gas barrier properties.
  • the gas barrier laminate of the present embodiment has excellent gas barrier properties under high humidity conditions, it is suitably used as a packaging material for foods, medical products, electronic parts, etc. exposed to high humidity conditions. Can be done.
  • the humidity dependence of oxygen permeability is suppressed to be small, so that even if the temperature or humidity changes during transportation or storage, for example, the gas barrier It is possible to retain the gas barrier property of the laminated body without changing it.
  • the water vapor barrier layer forming coating liquid is first applied on the paper support to form the water vapor barrier layer, and then the gas barrier layer forming coating liquid is applied to form the gas barrier layer.
  • the method for producing the gas barrier laminate is a step of applying a coating liquid for forming a water vapor barrier layer on a paper support to form a water vapor barrier layer, and a coating for forming a gas barrier layer on the water vapor barrier layer. It includes a step of applying a working liquid to form a gas barrier layer.
  • each layer may be formed by sequentially coating and drying a coating liquid, or may be dried after simultaneous multi-layer coating.
  • a coating liquid for forming the water vapor barrier layer is applied on the paper support.
  • the coating liquid for forming a water vapor barrier layer contains a layered inorganic compound, a cationic resin and an anionic binder.
  • the coating liquid for forming the water vapor barrier layer also contains a solvent, and as the solvent, water or an organic solvent such as ethanol, isopropyl alcohol, methyl ethyl ketone or toluene can be used.
  • the coating equipment for applying the coating liquid for forming the water vapor barrier layer to the paper support known equipment can be used.
  • the coating equipment include a blade coater, a bar coater, an air knife coater, a slit die coater, a gravure coater, a micro gravure coater, and a gate roll coater.
  • a coater that scrapes the coated surface such as a blade coater, a bar coater, an air knife coater, and a slit die coater, is preferable in that it promotes the orientation of the layered inorganic compound.
  • the step of forming the gas barrier layer it is preferable to apply an emulsion containing a water-suspendable polymer onto the water vapor barrier layer.
  • the step of forming the gas barrier layer is preferably a step of coating at least one selected from a urethane-based emulsion and a vinylidene chloride-based emulsion.
  • the gas barrier layer contains a layered inorganic compound or the like in addition to the water-suspendable polymer, it is preferable to apply a coating liquid in which the layered inorganic compound or the like is dispersed in the emulsion.
  • Examples of the coating equipment for coating the gas barrier layer coating liquid on the water vapor barrier layer include the same equipment as the above-mentioned equipment.
  • the drying equipment for drying each coating layer is not particularly limited, and known equipment can be used. Examples of the drying equipment include a hot air dryer, an infrared dryer, a gas burner, and a hot plate.
  • the coating liquid for forming the water vapor barrier layer contains the layered inorganic compound, the cationic resin and the anionic binder, the layered inorganic compound in the water vapor barrier layer Does not form a card house structure and is laminated in a uniformly dispersed state. Therefore, the formed water vapor barrier layer is excellent in water vapor barrier property. Further, in the step of forming the water vapor barrier layer, the surface of the water vapor barrier layer is formed smoothly, so that the gas barrier layer on the surface can also be formed uniformly. As a result, a gas barrier laminate having excellent gas barrier properties is formed.
  • Example 1 A layered inorganic compound (engineered kaolin, average length 10 ⁇ m, aspect ratio about 100, thickness about 100 nm, product name: Varisurf HX, manufactured by Imeris) is dispersed in water, and the content of the layered inorganic compound is 55% by mass. A dispersion was obtained (aqueous dispersion A). Self-emulsifying emulsion of ethylene / acrylic acid copolymer (solid content concentration 29.2% by mass, product name: Zyxen AC, manufactured by Sumitomo Seika) 55% by mass of aqueous dispersion A36 with respect to 34.2 parts by mass .4 parts by mass was added with stirring (dispersion liquid B).
  • aqueous dispersion A Self-emulsifying emulsion of ethylene / acrylic acid copolymer (solid content concentration 29.2% by mass, product name: Zyxen AC, manufactured by Sumitomo Seika) 55% by mass of aqueous dispersion A36 with respect
  • Urethane emulsion A solid concentration 30 wt%, the glass transition temperature of 130 ° C., 25 [mu] m thick sheet formed when oxygen permeability 2.0mL / (m 2 ⁇ day ⁇ atm), product name: Takelac WPB-341, Mitsui Chemicals (Manufactured) was added with diluted water so that the solid content concentration was 20% by mass to prepare a paint for the gas barrier layer.
  • the urethane resin of the urethane emulsion A had a solubility in water at 25 ° C. of 10 g / L or less.
  • the resulting water vapor barrier layer coating as the coating amount of the water vapor barrier layer is 12.0 g / m 2, bleached kraft paper (Oji Materia Corp., basis weight 50 g / m 2, a thickness of 66 .mu.m, the density 0.76 g / m 3 , Oji-type smoothness of one side 63 seconds, Wang-ken type smoothness of the other side 45 seconds, kraft size degree 15 seconds) Wang-ken type smoothness 63 seconds on the surface Was painted using a Mayer bar.
  • bleached kraft paper Oji Materia Corp., basis weight 50 g / m 2, a thickness of 66 .mu.m, the density 0.76 g / m 3 , Oji-type smoothness of one side 63 seconds, Wang-ken type smoothness of the other side 45 seconds, kraft size degree 15 seconds
  • the bleached kraft paper coated with the water vapor barrier layer paint was dried at 120 ° C. for 1 minute in a hot air dryer. Further, the gas barrier layer paint is applied onto the water vapor barrier layer with a Mayer bar so that the coating amount of the gas barrier layer is 3.0 g / m 2, and then dried in a hot air dryer at 120 ° C. for 1 minute. , A gas barrier laminate was obtained.
  • Example 2 Urethane emulsion A (solid) in a layered inorganic compound (engineered kaolin, average length 10 ⁇ m, aspect ratio about 100, thickness about 100 nm, product name: Varisurf HX, manufactured by Imeris) in an aqueous dispersion with a solid content concentration of 50% by mass. min concentration 30 mass%, the glass transition temperature of 130 ° C., / 25 [mu] m thick sheet formed when oxygen permeability 2.0mL (m 2 ⁇ day ⁇ atm ), product name: Takelac WPB-341, manufactured by Mitsui Chemicals) a solids
  • the mixture was added so that the mass ratio (layered inorganic compound: urethane resin) was 1: 1 and stirred. Further, diluted water was added so that the solid content concentration became 20% by mass to prepare a coating material for the gas barrier layer.
  • a gas barrier laminate was obtained in the same manner as in Example 1 except that the paint for the gas barrier layer was used.
  • Example 3 Diluted water was added to a vinylidene chloride emulsion (vinylidene chloride copolymer latex, solid content concentration 48.0% by mass, product name: Saran Latex L549B, manufactured by Asahi Kasei) so that the solid content concentration was 10% by mass, and a gas barrier was added. It was used as a layer of paint. A gas barrier laminate was obtained in the same manner as in Example 1 except that the paint for the gas barrier layer was used.
  • the vinylidene chloride-based resin of the above-mentioned vinylidene chloride-based emulsion had a solubility of 10 g / L or less in water at 25 ° C.
  • ⁇ Comparative example 1> Prepare a solution of ethylene-modified polyvinyl alcohol (PVA) (completely saponified type, product name: Excelval AQ-410, solid content concentration 15% by mass, manufactured by Kuraray) with a solid content concentration of 15% by mass, add diluted water, and solidify. The concentration was 10% by mass, and the paint was used as a gas barrier layer paint. A gas barrier laminate was obtained in the same manner as in Example 1 except that the paint for the gas barrier layer was used.
  • PVA polyvinyl alcohol
  • Example 4 Aqueous dispersion of layered inorganic compound (swellable mica, average length 6.3 ⁇ m, aspect ratio about 1000, thickness about 5 nm, solid content concentration 6% by mass, product name: NTO-05, manufactured by Topy Industries) 30.0 A self-emulsifying emulsion of an ethylene / acrylic acid copolymer (solid content concentration: 29.2% by mass, product name: Zyxen AC, manufactured by Sumitomo Seika) was added to the parts by mass with stirring, and the mixture was stirred. ..
  • Urethane emulsion A solid concentration 30 wt%, the glass transition temperature of 130 ° C., 25 [mu] m thick sheet formed when oxygen permeability 2.0mL / (m 2 ⁇ day ⁇ atm), product name: Takelac WPB-341, Mitsui Chemicals (Manufactured) was added with diluted water so that the solid content concentration was 20% by mass to prepare a paint for the gas barrier layer.
  • the resulting water vapor barrier layer coating as the coating amount of the water vapor barrier layer is 6.0 g / m 2, bleached kraft paper (Oji Materia Corp., basis weight 50 g / m 2, a thickness of 66 .mu.m, the density 0.76 g / m 3 , Oji-type smoothness of one side 63 seconds, Wang-ken type smoothness of the other side 45 seconds, kraft size degree 15 seconds) Wang-ken type smoothness 63 seconds on the surface Was painted using a Mayer bar. Then, the bleached kraft paper coated with the water vapor barrier layer paint was dried at 120 ° C. for 1 minute in a hot air dryer.
  • bleached kraft paper Oji Materia Corp., basis weight 50 g / m 2, a thickness of 66 .mu.m, the density 0.76 g / m 3 , Oji-type smoothness of one side 63 seconds, Wang-ken type smoothness of the other side 45 seconds, kraft
  • gas barrier layer paint is applied to the upper layer of the water vapor barrier layer with a Mayer bar so that the coating amount of the gas barrier layer is 3.0 g / m 2, and then dried in a hot air dryer at 120 ° C. for 1 minute. , A gas barrier laminate was obtained.
  • Example 5> A layered inorganic compound aqueous dispersion (swelling mica, average length 6.3 ⁇ m, aspect ratio about 1000, thickness about 5 nm, solid content concentration 6% by mass, product name: NTO-05, manufactured by Topy Industries), urethane system emulsion A (solid concentration 30 wt%, the glass transition temperature of 130 ° C., 25 [mu] m thick sheet formed when oxygen permeability 2.0mL / (m 2 ⁇ day ⁇ atm), product name: Takelac WPB-341, manufactured by Mitsui Chemicals ) was added so that the mass ratio of the solid content (layered inorganic compound: urethane resin) was 1:10, and the mixture was stirred. Further, diluted water was added so that the solid content concentration became 20% by mass to prepare a coating material for the gas barrier layer. A gas barrier laminate was obtained in the same manner as in Example 4 except that the paint for the gas barrier layer was used.
  • an aqueous dispersion of a second layered inorganic compound (engineered kaolin, average length 0.89 ⁇ m, aspect ratio about 33, thickness about 30 nm, solid content concentration 50% by mass, product name: Konzer Extreme, Imeris Manufactured) was added in an amount of 6 parts by mass, and the mixture was stirred. Further, diluted water was added to adjust the solid content concentration to 10% by mass to prepare a coating material for the gas barrier layer.
  • a gas barrier laminate was obtained in the same manner as in Example 4 except that the paint for the gas barrier layer was used.
  • Example 7 Instead of bleached kraft paper, single glossy paper (manufactured by Oji Materia Co., Ltd., basis weight 50 g / m 2 , thickness 62 ⁇ m, density 0.81 g / m 3 , Oji Materia smoothness 427 seconds on one side, other side A gas barrier laminate was obtained in the same manner as in Example 6 except that the Oken-type smoothness of 17 seconds) was used. The water vapor barrier layer paint was applied on a single-gloss paper with a smoothness of 17 seconds.
  • Example 8 Diluted water was added to a vinylidene chloride emulsion (vinylidene chloride copolymer latex, solid content concentration 48.0% by mass, product name: Saran Latex L549B, manufactured by Asahi Kasei) so that the solid content concentration was 10% by mass, and a gas barrier was added. It was used as a layer of paint. A gas barrier laminate was obtained in the same manner as in Example 4 except that the paint for the gas barrier layer was used.
  • Example 9 Urethane emulsion B having a hydroxy group (manufactured by Dainichi Seika Co., Ltd., HPU W-003, hydroxyl value 235 mgKOH / g, solid content concentration 30%, glass transition temperature 70 ° C., oxygen permeability at the time of forming a 25 ⁇ m thick sheet 1.6 mL / (m 2 ⁇ day ⁇ atm )) in the dilution water to a solid concentration of 10 wt% was added to obtain a coating of the gas barrier layer.
  • a gas barrier laminate was obtained in the same manner as in Example 4 except that the paint for the gas barrier layer was used.
  • Example 10 Instead of bleached kraft paper, single-gloss paper (manufactured by Oji F-Tex Co., Ltd., basis weight 50 g / m 2 , thickness 63 ⁇ m, density 0.80 g / m 3 , Oken-style smoothness on one side 416 seconds, the other A gas barrier laminate was obtained in the same manner as in Example 9 except that the surface had a smoothness of 16 seconds). The water vapor barrier layer paint was applied on a single-gloss paper with a smoothness of 17 seconds.
  • aqueous dispersion of a second layered inorganic compound (engineered kaolin, average length 0.89 ⁇ m, aspect ratio about 33, thickness about 30 nm, solid content concentration 50% by mass, product name: Konzer Extreme, Imeris Manufactured) was added in an amount of 6 parts by mass, and the mixture was stirred. Further, diluted water was added to adjust the solid content concentration to 10% by mass to prepare a coating material for the gas barrier layer.
  • a gas barrier laminate was obtained in the same manner as in Example 10 except that the paint for the gas barrier layer was used.
  • Heat-sealing property A set of gas-barrier laminated bodies are laminated so that the gas barrier layers face each other, and heat-sealed and laminated under the conditions of 160 ° C., 2.0 kgf / cm 2, 1 second using a heat press tester. The body was made. This laminate was cut to prepare a rectangular measurement sample having a width of 15 mm and a length of 100 mm. When preparing the measurement sample, a non-heat-sealed portion was formed at the end portion in order to grasp the measurement sample by hand and peel the measurement sample. Then, the peeling state when the end portion that was not heat-sealed was held by hand and pulled was evaluated according to the following criteria.
  • Urethane A Urethane resin containing a structural unit derived from metaxylylene diisocyanate (Takelac WPB-341)
  • Urethane B Hydroxy group-containing urethane resin (HPU W-003)
  • the oxygen permeability under high humidity conditions was suppressed. Further, in the examples, a gas barrier laminate having a large water contact angle was obtained, and the water repellency was excellent. Further, in the examples, a gas barrier laminate having excellent water resistance was obtained. Furthermore, by incorporating the layered inorganic compound in the gas barrier layer, 50% RH oxygen permeability was further suppressed. In addition, by incorporating two types of layered inorganic compounds having different aspect ratios in the gas barrier layer, the oxygen permeability ratio became smaller (the humidity dependence of oxygen permeability was suppressed to be smaller).
  • the gas barrier laminates obtained in Examples 3 and 8 to 11 in which a hydroxy group-containing urethane resin or a vinylidene chloride resin was used for the gas barrier layer were also excellent in heat sealability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明は、高湿度環境下においても十分なガスバリア性を発揮し得るガスバリア性積層体を提供することを課題とする。本発明は、紙支持体の少なくとも一方の面上に水蒸気バリア層及びガスバリア層をこの順に有するガスバリア性積層体であって、水蒸気バリア層が層状無機化合物、カチオン性樹脂及びアニオン性バインダーを含有し、ガスバリア層が水懸濁性高分子を含有する、ガスバリア性積層体に関する。

Description

ガスバリア性積層体
 本発明は、紙を支持体とするガスバリア性積層体に関する。
 従来、紙を基材とし、水蒸気バリア性やガスバリア性(特に、酸素バリア性)を付与した包装用材料が知られている。このような包装用材料は、食品、医療品、電子部品等の包装において、内容物の品質低下を防止するために用いられている。
 紙基材に水蒸気バリア性やガスバリア性を付与する方法としては、紙を支持体としてガスバリア性に優れた合成樹脂フィルムや金属箔を積層する方法が一般的である。しかし、紙基材に合成樹脂フィルムや金属箔を積層した材料は、使用後に紙や合成樹脂等をリサイクルすることが困難であり、環境面において課題を有するものであった。
 そこで、合成樹脂フィルム等を使用せずに、紙を基材としたガスバリア性材料の開発が進められてきている。例えば、特許文献1及び2には、紙基材上に、水蒸気バリア層、ガスバリア層がこの順で設けられた紙製バリア材料が開示されている。特許文献1では、水蒸気バリア層は、水蒸気バリア性樹脂及び撥水剤を含有し、ガスバリア層は、水溶性高分子及び界面活性剤を含有する。また、特許文献2には、水蒸気バリア層及びガスバリア層が水溶性高分子あるいは水懸濁性高分子を有することが開示されている。なお、特許文献2におけるガスバリア層のバインダー樹脂は、ポリビニルアルコール樹脂である。
 さらに、特許文献3には、坪量が25g/m以上400g/m以下の紙基材上に、水蒸気バリア層、水溶性高分子を含有するガスバリア層を有する紙製バリア原紙の少なくとも一方の面上に、さらに保護層を有する紙製バリア材料が開示されている。
国際公開第2017/170462号 国際公開第2013/069788号 特開2018-058360号公報
 上述したように、紙基材上に、水蒸気バリア層、ガスバリア層がこの順で設けられたガスバリア性積層体が知られており、ガスバリア層には水溶性高分子として、ポリビニルアルコールが含有されている。しかしながら、本発明者らの検討により、ポリビニルアルコールを含むガスバリア層を紙基材上に積層した場合、高湿度環境下において十分なガスバリア性が発揮されない場合があることがわかった。
 そこで本発明者らは、このような従来技術の課題を解決するために、高湿度環境下においても十分なガスバリア性を発揮し得るガスバリア性積層体を提供することを目的として検討を進めた。
 具体的に、本発明は、以下の構成を有する。
[1] 紙支持体の少なくとも一方の面上に水蒸気バリア層及びガスバリア層をこの順に有するガスバリア性積層体であって、
 水蒸気バリア層が層状無機化合物、カチオン性樹脂及びアニオン性バインダーを含有し、
 ガスバリア層が水懸濁性高分子を含有する、ガスバリア性積層体。
[2] 水懸濁性高分子がウレタン系樹脂及び塩化ビニリデン系樹脂から選択される少なくとも1種である、[1]に記載のガスバリア性積層体。
[3] 水懸濁性高分子は、エマルション中に分散している高分子に由来するものであり、ガスバリア層は、エマルションの塗工層である、[2]に記載のガスバリア性積層体。
[4] 水懸濁性高分子はウレタン系樹脂であり、
 ウレタン系樹脂から厚み25μmのシートを形成した場合、シートの23℃、相対湿度50%における酸素透過度が100mL/(m・day・atm)以下となる、[1]~[3]のいずれかに記載のガスバリア性積層体。
[5] 水懸濁性高分子はウレタン系樹脂であり、
 ウレタン系樹脂は、メタキシリレンジイソシアネート由来の構成単位及び水添メタキシリレンジイソシアネート由来の構成単位からなる群より選択される少なくとも1種を含有する、[1]~[4]のいずれかに記載のガスバリア性積層体。
[6] メタキシリレンジイソシアネート由来の構成単位数及び水添メタキシリレンジイソシアネート由来の構成単位数の合計は、ウレタン系樹脂中のポリイソシアネート由来の構成単位数に対して50%以上である、[5]に記載のガスバリア性積層体。
[7] 水懸濁性高分子はウレタン系樹脂であり、
 ウレタン系樹脂は、ヒドロキシ基を有し、かつ水酸基価が50mgKOH/g以上である、[1]~[6]のいずれかに記載のガスバリア性積層体。
[8] ガスバリア層は、さらに層状無機化合物を含む、[1]~[7]のいずれかに記載のガスバリア性積層体。
[9] ガスバリア層に含まれる層状無機化合物のアスペクト比は20以上であり、厚さが200nm以下である、[8]に記載のガスバリア性積層体。
[10] ガスバリア層に含まれる層状無機化合物がマイカ、ベントナイト及びカオリンからなる群より選択される少なくとも1種である[8]又は[9]に記載のガスバリア性積層体。
[11] 水蒸気バリア層に含まれる層状無機化合物のアスペクト比は20以上であり、厚さが200nm以下である、[1]~[10]のいずれかに記載のガスバリア性積層体。
[12] 水蒸気バリア層に含まれる層状無機化合物がマイカ、ベントナイト及びカオリンからなる群より選択される少なくとも1種である[1]~[11]のいずれかに記載のガスバリア性積層体。
[13] アニオン性バインダーがスチレン・ブタジエン系共重合体、スチレン・アクリル系共重合体及びオレフィン・不飽和カルボン酸系共重合体からなる群より選択される少なくとも1種である、[1]~[12]のいずれかに記載のガスバリア性積層体。
[14] カチオン性樹脂は表面電荷が0.1~10meq/gである、[1]~[13]のいずれかに記載のガスバリア性積層体。
[15] さらに、少なくとも一方の最外層にシーラント層を有する、[1]~[14]のいずれかに記載のガスバリア性積層体。
[16] シーラント層が生分解性樹脂を含有する[15]に記載のガスバリア性積層体。
[17] 包装用材料である[1]~[16]のいずれかに記載のガスバリア性積層体。
図1は、本実施形態のガスバリア性積層体の構成を説明する断面図である。
 本実施形態のガスバリア性積層体は、紙支持体の少なくとも一方の面上に水蒸気バリア層及びガスバリア層をこの順に有し、水蒸気バリア層が層状無機化合物、カチオン性樹脂及びアニオン性バインダーを含有し、ガスバリア層が水懸濁性高分子を含有する。本実施形態のガスバリア性積層体は、高湿度環境下においても十分なガスバリア性を発揮し得る。
 以下において、本実施形態について詳細に説明する。以下に記載する構成要件の説明は、代表的な実施形態や具体例に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は「~」前後に記載される数値を下限値及び上限値として含む範囲を意味する。
(ガスバリア性積層体)
 本実施形態は、紙支持体の少なくとも一方の面上に水蒸気バリア層及びガスバリア層をこの順に有するガスバリア性積層体に関する。ここで、水蒸気バリア層は、層状無機化合物、カチオン性樹脂及びアニオン性バインダーを含有し、ガスバリア層は水懸濁性高分子を含有する。
 図1は、本実施形態のガスバリア性積層体の構成を説明する断面図である。図1に示されるように、本実施形態のガスバリア性積層体100は、紙支持体10上に水蒸気バリア層20とガスバリア層30を順に有する。各層の間には、他の層が含まれていてもよいが、互いに直接接するように積層されていることが好ましい。すなわち、紙支持体10上に直接接するように水蒸気バリア層20が設けられ、さらに、水蒸気バリア層20上に直接接するようにガスバリア層30が設けられることが好ましい。
 本実施形態のガスバリア性積層体において、水蒸気バリア層は、層状無機化合物、カチオン性樹脂及びアニオン性バインダーを含有し、ガスバリア層は水懸濁性高分子を含有する。このため、本実施形態のガスバリア性積層体は、優れたガスバリア性を発揮することができる。特に、本実施形態のガスバリア性積層体は、高湿度条件下において、優れたガスバリア性を発揮することができる。
 ガスバリア性積層体におけるガスバリア性は、ガスバリア性積層体の酸素透過度を測定することで評価できる。ガスバリア性積層体の酸素透過度は、酸素透過率測定装置を用いて測定される。なお、酸素透過率測定装置としては、例えば、MOCON社製、OX-TRAN2/20を用いることができる。本明細書において、通常条件下における酸素透過度は23℃、相対湿度50%の条件において測定した酸素透過度であり、高湿度条件下における酸素透過度は、23℃、相対湿度85%の条件において測定した酸素透過度である。
 本実施形態のガスバリア性積層体の23℃、相対湿度85%の条件において測定した酸素透過度は、300cc/m・day・atm以下であることが好ましく、250cc/m・day・atm以下であることがより好ましく、200cc/m・day・atm以下であることがさらに好ましく、150cc/m・day・atm以下であることが特に好ましい。なお、水蒸気バリア層の組成等を変更することにより、ガスバリア性積層体の23℃、相対湿度85%の条件において測定した酸素透過度を100cc/m・day・atm以下とすることも可能であり、ガスバリア性積層体の23℃、相対湿度85%の条件において測定した酸素透過度は0cc/m・day・atmであってもよい。
 本実施形態のガスバリア性積層体の23℃、相対湿度50%の条件において測定した酸素透過度は、50cc/m・day・atm以下であることが好ましく、45cc/m・day・atm以下であることがより好ましく、40cc/m・day・atm以下であることがさらに好ましく、35cc/m・day・atm以下であることが特に好ましい。なお、水蒸気バリア層の組成等を変更することにより、ガスバリア性積層体の23℃、相対湿度50%の条件において測定した酸素透過度を20cc/m・day・atm以下とすることも可能であり、ガスバリア性積層体の23℃、相対湿度50%の条件において測定した酸素透過度は0cc/m・day・atmであってもよい。このように、本実施形態のガスバリア性積層体は通常湿度条件下においても優れたガスバリア性を発揮する。
 また、本実施形態のガスバリア性積層体においては、ガスバリア性積層体を高湿度条件下に置いた場合であってもその酸素透過度の上昇率を低く抑えることができる。より具体的には、本実施形態のガスバリア性積層体においては、以下の式で算出される酸素透過度比が300以下であることが好ましく、200以下であることがより好ましく、100以下であることがさらに好ましく、75以下であることが一層好ましく、50以下であることがより一層好ましく、30以下であることがさらに一層好ましく、20以下であることが特に好ましく、15以下であることが最も好ましい。
 酸素透過度比=23℃、相対湿度85%における酸素透過度(cc/m・day・atm)/23℃、相対湿度50%における酸素透過度(cc/m・day・atm)
 上記の式で算出される酸素透過度比が、上記範囲内であれば、ガスバリア性積層体を高湿度条件下に置いた場合の酸素透過度の上昇率が低いと判定できる。また、酸素透過度比が、上記範囲内であれば、ガスバリア性積層体における酸素透過度の湿度依存性が小さいと評価することもできる。
 本実施形態のガスバリア性積層体の水蒸気透過度は、50g/m・day以下であることが好ましく、40g/m・day以下であることがより好ましく、30g/m・day以下であることがさらに好ましく、25g/m・day以下であることが特に好ましい。ガスバリア性積層体の水蒸気透過度が上記範囲内であれば、ガスバリア性積層体の水蒸気透過性も十分に抑制されていると言える。ここで、ガスバリア性積層体の水蒸気透過度は、JIS Z 0208:1976(カップ法)B法(40℃±0.5℃、相対湿度90%±2%)に準拠して測定される値である。測定の際には、ガスバリア層を内側にして測定を行う。
 本実施形態のガスバリア性積層体のガスバリア層表面の接触角は、10°以上であることが好ましく、20°以上であることがより好ましく、30°以上であることがさらに好ましい。なお、ガスバリア性積層体のガスバリア層表面の接触角の上限値は特に限定されるものではないが、60°以下であることが好ましい。ガスバリア性積層体の
ガスバリア層表面の接触角が10°以上であれば、ガスバリア性積層体は優れた撥水性を発揮することもできる。なお、本明細書におけるガスバリア性積層体のガスバリア層表面の接触角は、ガスバリア性積層体のガスバリア層表面に4μlの水を滴下し、滴下60秒後に測定した値である。接触角の測定装置としては、例えば、株式会社マツボー製の動的接触角測定装置DAT1100を用いることができる。
 さらに、本実施形態のガスバリア性積層体は耐水性にも優れている。具体的には、ガスバリア性積層体のガスバリア層上に水を滴下した後であっても、ガスバリア層のべたつきや溶解が抑制されている。このように、本明細書のガスバリア性積層体は、ガスバリア性に優れるのみならず、撥水性や耐水性にも優れているため、例えば高湿度条件下であって、水使用環境下においても好ましく用いることができる。
 ガスバリア性積層体の厚みは、10μm以上であることが好ましく、20μm以上であることがより好ましく、30μm以上であることがさらに好ましい。また、ガスバリア性積層体の厚みは、500μm以下であることが好ましく、400μm以下であることがより好ましく、300μm以下であることがさらに好ましい。
(紙支持体)
 本実施形態に用いられる紙支持体は、植物由来のパルプを主成分として一般的に用いられている紙であれば特に制限はない。紙としては、例えば、晒または未晒クラフト紙、上質紙、板紙、ライナー紙、塗工紙、片艶紙、グラシン紙、グラファン紙等を挙げることができる。紙支持体は、機械的離解作用により水中で分散しやすいパルプを主成分とする紙からなるものであることが好ましい。
 紙支持体のJIS P 8121:2012に準じて測定される離解フリーネス(濾水度)は、ガスバリア性を向上させる観点から、800ml以下であることが好ましく、500ml以下であることがより好ましい。ここで、離解フリーネスとは、抄紙後の紙をJIS P 8220-1:2012に準拠して離解したパルプを、JIS P 8121:2012に準拠して測定したカナダ標準ろ水度(Canadian standard freeness)のことである。離解フリーネスを調整する方法としては、パルプを叩解する方法などが挙げられる。パルプを叩解する方法については、公知の方法を採用することができる。
 紙支持体の坪量は、特に限定されないが、20~400g/mであることが好ましく、30~320g/mがより好ましい。
 紙支持体の厚みは、特に限定されないが、10~200μmであることが好ましく、20~100μmであることがより好ましい。
 紙支持体の密度は、特に限定されないが、0.3~1.5g/cmであることが好ましく、0.5~1.0g/cmであることがより好ましい。
 紙支持体の水蒸気バリア層を設ける側の面の王研式平滑度は、5秒以上であることが好ましく、10秒以上であることがより好ましく、15秒以上であることがさらに好ましい。紙支持体の水蒸気バリア層を設ける側の面の王研式平滑度を5秒以上とすることで、より平滑な水蒸気バリア層が形成されるため、ガスバリア性積層体の水蒸気バリア性がより向上する。紙支持体の水蒸気バリア層を設ける側の面の王研式平滑度の上限値は、特に限定されないが、1000秒以下であることが好ましい。ここで、紙支持体表面の王研式平滑度は、JIS P 8155:2010に準拠して測定される値を採用するものとする。
 紙支持体のサイズ度は、特に限定されないが、バリア性を向上させる観点から、JIS P 8122:2004に準ずるステキヒトサイズ度は1秒以上であることが好ましい。紙支持体のサイズ度は、ロジン系、アルキルケテンダイマー系、アルケニル無水コハク酸系、スチレン-アクリル系、高級脂肪酸系、石油樹脂系等の内添サイズ剤の種類や含有量、パルプの種類、平滑化処理等によって制御することができる。内添サイズ剤の含有量は、特に限定されないが、紙支持体中のパルプ100質量部に対して0~3質量部であることが好ましい。
 紙支持体にはさらに、公知の内添薬品を適宜添加することができる。内添薬品としては、例えば、二酸化チタン、カオリン、タルク、炭酸カルシウム等の填料、紙力増強剤、歩留り向上剤、pH調整剤、濾水性向上剤、耐水化剤、柔軟剤、帯電防止剤、消泡剤、スライムコントロール剤、染料・顔料等を挙げることができる。
(水蒸気バリア層)
 水蒸気バリア層は、水蒸気の透過を阻止する機能を有する層であり、層状無機化合物、カチオン性樹脂及びアニオン性バインダーを含有している。
<層状無機化合物>
 層状無機化合物の形態は、平板状である。そして、水蒸気バリア層内においては、平板状の層状無機化合物が紙支持体の平面(表面)とほぼ平行に積層した状態に配列する。この状態において、平面方向では層状無機化合物が存在していない面積が小さくなることから、水蒸気の透過が抑制されることになる。また、厚さ方向では平板状の層状無機化合物が紙支持体平面に対して平行に配列して存在するため、層中に侵入した水蒸気は層状無機化合物を迂回しながら透過することとなり、水蒸気の透過が抑制される。その結果、水蒸気バリア層は優れた水蒸気バリア性を発揮することができる。
 層状無機化合物の平均長さは、1~100μmであることが好ましく、2~50μmであることがより好ましく、3~20μmであることがさらに好ましい。ここで、層状無機化合物の平均長さとは、層状無機化合物の平面方向における長軸の平均長さである。平均長さが1μm以上であると、水蒸気バリア層中における層状無機化合物が紙支持体に対して平行に配列し易くなる。また、平均長さが100μm以下であると層状無機化合物の一部が水蒸気バリア層から突出する懸念が少なくなる。
 層状無機化合物のアスペクト比は、20以上であることが好ましく、50以上であることがより好ましく、80以上であることがさらに好ましい。さらに、水蒸気バリア層の塗工量を低減し、ガスバリア性積層体のリサイクル性や軽量性を高める観点から、層状無機化合物のアスペクト比は、100以上であることが好ましく、200以上であることがより好ましく、300以上であることがさらに好ましく、500以上であることが特に好ましい。なお、層状無機化合物のアスペクト比の上限値は特に限定されるものではないが、10000以下であることが好ましい。ここで、アスペクト比とは、水蒸気バリア層の断面の顕微鏡拡大写真から算出される値であって、層状無機化合物の長さをその厚さで除した値の平均値である。層状無機化合物のアスペクト比を上記範囲内とすることにより、水蒸気バリア層はより優れた水蒸気バリア性を発揮することができる。また、層状無機化合物のアスペクト比を上記範囲内とすることにより、水蒸気バリア層における層状無機化合物の添加量を低減させることができる。
 層状無機化合物の厚さは、200nm以下であることが好ましく、100nm以下であることがより好ましく、50nm以下であることがさらに好ましい。なお、層状無機化合物の厚さの下限値は特に限定されるものではないが、2nm以上であることが好ましい。ここで、層状無機化合物の厚さとは、水蒸気バリア層の断面の顕微鏡拡大写真から測定される層状無機化合物の平均厚さである。層状無機化合物の平均厚さを上記範囲内とすることにより、水蒸気バリア層中における層状無機化合物の積層数が大きくなるため、水蒸気バリア層はより高い水蒸気バリア性を発揮することができる。特に、アスペクト比が大きく且つ厚さの小さい層状無機化合物を用いると、水蒸気バリア層は、空隙のない稠密な膜を形成する。これは、水蒸気バリア層の断面の顕微鏡拡大写真からも観察できる現象である。このような水蒸気バリア層の空隙のない稠密な膜構造が、強靭な皮膜を形成して、折割れを効果的に抑えることができる。また、水蒸気バリア層上に積層されるガスバリア層の塗工液の浸透を抑えることもできるため、均一なガスバリア層の形成にも寄与する。
 本実施形態においては、水蒸気バリア層に含まれる層状無機化合物のアスペクト比は20以上(好ましくは50以上、より好ましくは80以上)であり、厚さが200nm以下である。
 層状無機化合物の具体例としては、雲母族、脆雲母族等のマイカ、ベントナイト、カオリナイト(カオリン鉱物、以下「カオリン」とも称する)、パイロフィライト、タルク、スメクタイト、バーミキュライト、緑泥石、セプテ緑泥石、蛇紋石、スチルプノメレーン、モンモリロナイトなどが挙げられる。これらの中でも特に、水蒸気バリア性を向上させる観点から、層状無機化合物は、マイカ、ベントナイト及びカオリンからなる群より選ばれる少なくとも1種であることが好ましく、マイカ及びカオリンから選択される少なくとも1種であることより好ましい。マイカとしては、合成マイカ、白雲母(マスコバイト)、絹雲母(セリサイト)、金雲母(フロコパイト)、黒雲母(バイオタイト)、フッ素金雲母(人造雲母)、紅マイカ、ソーダマイカ、バナジンマイカ、イライト、チンマイカ、パラゴナイト、ブリトル雲母などが挙げられる。中でも、高いアスペクト比を有することから、マイカとしては膨潤性マイカが好ましい。また、カオリンは、天然物であっても合成物(エンジニアードカオリン)であってもよい。中でも、高いアスペクト比を有することから、エンジニアードカオリンが好ましい。また、ベントナイトとしては、モンモリロナイトが挙げられる。
 層状無機化合物の含有量は、水蒸気バリア層中に含まれる全固形分質量に対して、90質量%以下であることが好ましく、80質量%以下であることがより好ましく、75質量%以下であることがさらに好ましく、70質量%以下であることが特により好ましい。一方、層状無機化合物の含有量は、水蒸気バリア層中に含まれる全固形分質量に対して、1質量%以上であることが好ましく、2質量%以上であることがより好ましく、5質量%以上であることがさらに好ましく、10質量%以上であることが特により好ましい。なお、本実施形態では、層状無機化合物のアスペクト比を大きくし、厚さを小さくすることによって、層状無機化合物の含有量を低減してもよい。また、水蒸気バリア層の強度を高めることで、層状無機化合物が水蒸気バリア層から脱落することを抑制することができる。
 層状無機化合物の含有量は、水蒸気バリア層中のアニオン性バインダー100質量部に対して0.1~800質量部であることが好ましく、1~500質量部であることがより好ましく、2~400質量部であることがさらに好ましく、5~300質量部であることが一層好ましく、10~250質量部であることが特に好ましい。層状無機化合物の含有量が、上記下限値以上であると、水蒸気バリア性が発現し易い。また、層状無機化合物の含有量を、上記上限値以下とすることで、層状無機化合物の一部が水蒸気バリア層表面から露出して水蒸気透過度を高めることを抑制することができる。また、層状無機化合物の含有量を、上記上限値以下とすることで、水蒸気バリア層上に積層されるガスバリア層の塗工性を高めることができる。
<カチオン性樹脂>
 水蒸気バリア層は、カチオン性樹脂を含む。水蒸気バリア層に、層状無機化合物に加えてさらにカチオン性樹脂を添加することによって、水蒸気バリア性を大きく向上させることができる。
 カチオン性樹脂を添加することによって、水蒸気バリア性が向上する理由としては、例えば以下の理由が挙げられる。層状無機化合物においては、平板状の形態の平面部分がアニオン性、エッジ部分がカチオン性に帯電し易いため、層状無機化合物が相互に立体的に凝集した、いわゆるカードハウス構造をとることが知られている。このようなカードハウス構造により、層状無機化合物の水分散液の粘度は高くなる傾向がある。一方、カードハウス構造は撹拌などにより力を加えると簡単に壊れるため、層状無機化合物の水分散液は高いチキソトロピー性を示す。ここに、適切なカチオン性樹脂を添加すると、層状無機化合物のアニオン性の平面部分にカチオン性樹脂が吸着することによって、カードハウス構造が破壊される。その結果、層状無機化合物が立体的に凝集することが抑制され、平板状の層状無機化合物が紙支持体平面に対して平行に積層し易くなり、水蒸気バリア性の向上につながるものと推定される。
 カチオン性樹脂の具体例としては、ポリアルキレンポリアミン、ポリアミド化合物、ポリアミドアミン-エピハロヒドリン又はポリアミドアミン-エピハロヒドリンのホルムアルデヒド縮合反応生成物、ポリアミン-エピハロヒドリン又はポリアミン-エピハロヒドリンのホルムアルデヒド縮合反応生成物、ポリアミドポリ尿素-エピハロヒドリン又はポリアミドポリ尿素-エピハロヒドリンのホルムアルデヒド縮合反応生成物、ポリアミンポリ尿素-エピハロヒドリン又はポリアミンポリ尿素-エピハロヒドリンのホルムアルデヒド縮合反応生成物、ポリアミドアミンポリ尿素-エピハロヒドリン又はポリアミドアミンポリ尿素-エピハロヒドリンのホルムアルデヒド縮合反応生成物、ポリアミドポリ尿素化合物、ポリアミンポリ尿素化合物、ポリアミドアミンポリ尿素化合物及びポリアミドアミン化合物、ポリエチレンイミン、ポリビニルピリジン、アミノ変性アクリルアミド系化合物、ポリビニルアミン、ポリジアリルジメチルアンモニウムクロリドなどを挙げることができる。中でも、カチオン性樹脂は、ポリアミド化合物であることが好ましい。
 カチオン性樹脂の表面電荷は、0.1~10meq/gであることが好ましく、0.1~5.0meq/gであることがより好ましく、0.1~2.0meq/gであることがさらに好ましく、0.2~1.0meq/gであることが特に好ましい。カチオン性樹脂の表面電荷が上記数値範囲内であると、カードハウス構造を破壊することが容易となり、後述するアニオン性バインダーとも適度に共存することができる。なお、カチオン性樹脂の表面電荷は、以下に記載する方法で測定する。まず、試料となる重合体を水に溶解して、重合体濃度1ppmの溶液を得る。その溶液に対し、チャージアナライザーMutek PCD-04型(BTG社製)を用いて、0.001Nポリエチレンスルホン酸ナトリウムを滴下して電荷量を測定する。
 カチオン性樹脂の含有量は、水蒸気バリア層に使用される層状無機化合物とアニオン性バインダーの種類に応じて適宜選択すればよいが、水蒸気バリア性を向上させる観点から、層状無機化合物100質量部に対して、0.01~300質量部であることが好ましく、0.1~250質量部であることがより好ましく、0.5~150質量部であることがさらに好ましく、1~100質量部であることがさらにより好ましく、1~20質量部であることが一層好ましく、1~5質量部であることが特に好ましい。また、カチオン性樹脂の含有量は、水蒸気バリア層中のアニオン性バインダー100質量部に対して0.1~100質量部であることが好ましく、0.5~30質量部であることがより好ましく、1~20質量部がさらに好ましく、2~15質量部が特に好ましい。
<アニオン性バインダー>
 水蒸気バリア層は、さらにアニオン性バインダーを含む。水蒸気バリア層がアニオン性のバインダーを含むことで、より効果的に、水蒸気バリア層の水蒸気バリア性を高めることができる。これは、前述したように、層状無機化合物の平面部分はアニオン性であるが、カチオン性樹脂が吸着すると表面がカチオン性になり、その結果、アニオン性であるバインダーとの親和性が高められることによるものと考えられる。
 アニオン性バインダーとしては、アニオン性基を含む単量体単位を含むバインダーが挙げられる。中でも、アニオン性バインダーは、カルボキシ基を含む単量体単位を含むバインダーであることが好ましい。アニオン性バインダーとしては、スチレン・ブタジエン系共重合体、スチレン・アクリル系共重合体、メタクリレート・ブタジエン系共重合体、アクリルニトリル・ブタジエン系共重合体、オレフィン・不飽和カルボン酸系共重合体、アクリルエステル系重合体などが挙げられる。これらの中でも、耐水性が良好で、伸びがよく、折割れによる塗工層の亀裂が生じにくいことから、アニオン性バインダーは、スチレン・ブタジエン系共重合体、スチレン・アクリル系共重合体及びオレフィン・不飽和カルボン酸系共重合体からなる群より選ばれる少なくとも1種であることが好ましく、オレフィン・不飽和カルボン酸系共重合体であることがより好ましい。
 スチレン・ブタジエン系共重合体は、スチレン、α-メチルスチレン、ビニルトルエン、p-t-ブチルスチレン、クロロスチレンなどのスチレン系化合物と、1,3-ブタジエン、イソプレン(2-メチル-1,3-ブタジエン)、2,3ジメチル-1,3-ブタジエン、1,3-ペンタジエンなどの共役ジエン化合物、及びこれらと共重合可能なその他の化合物からなる単量体を乳化重合することによって得られる共重合体である。スチレン系化合物としてはスチレン、また共役ジエン化合物としては1,3-ブタジエンが好適である。
 スチレン・アクリル系共重合体は、スチレン、α-メチルスチレン、ビニルトルエン、p-t-ブチルスチレン、クロロスチレンなどのスチレン系化合物と、アクリル酸、メタクリル酸、(メタ)アクリル酸エステル、(メタ)アクリルアミドプロパンスルホン酸、(メタ)アクリル酸スルホアルキルナトリウム塩(アルキル基の炭素数が2以上3以下)などのアクリル系化合物およびこれらと共重合可能なその他の化合物からなる単量体を乳化重合することによって得られる共重合体である。スチレン系化合物としてはスチレンが好適であり、またアクリル系化合物としてはアクリル酸、メタクリル酸、アクリル酸エステル、メタクリル酸エステルが好適であり、アクリル酸、アクリル酸エステルがより好適である。(メタ)アクリル酸エステルとしてはアクリル酸アルキルエステルが好ましく、この場合、アルキル基の炭素数は好ましくは1~6である。
 オレフィン・不飽和カルボン酸系共重合体は、オレフィン、とりわけ、エチレン、プロピレン等のα-オレフィンとアクリル酸、メタクリル酸、クロトン酸、ケイ皮酸、イタコン酸、フマル酸、マレイン酸、ブテントリカルボン酸などの不飽和カルボン酸、イタコン酸モノエチルエステル、フマル酸モノブチルエステル及びマレイン酸モノブチルエステルなどの、少なくとも1個のカルボキシル基を有する不飽和ポリカルボン酸アルキルエステル、アクリルアミドプロパンスルホン酸、アクリル酸スルホエチルナトリウム塩、メタクリル酸スルホプロピルナトリウム塩などの不飽和スルホン酸単量体又はその塩、及びこれらと共重合可能なその他の化合物からなる単量体を乳化重合することによって得られる共重合体である。オレフィンとしては、α-オレフィン、とりわけエチレンなどが好適であり、また不飽和カルボン酸単量体、不飽和スルホン酸単量体又はその塩としては、アクリル酸、メタクリル酸、イタコン酸、フマル酸などが好適である。オレフィン・不飽和カルボン酸系共重合体の具体例としては、例えばエチレン・アクリル酸共重合体アンモニウム塩の水性分散液が、ザイクセン(登録商標)AC等(アクリル酸の共重合比率21.1質量%、住友精化株式会社製)として市販されている。
 上述したアニオン性バインダーには、共重合可能なその他の化合物がさらに共重合していてもよい。共重合可能なその他の化合物としては、具体的に、シアノ基含有エチレン性不飽和化合物、エチレン性不飽和酸のグリシジルエーテル、不飽和アルコールのグリシジルエーテル、(メタ)アクリルアミド系化合物などが挙げられる。
 アニオン性バインダーの製造方法は、特に限定されない。例えば、カルボキシ基を含む単量体(例えば、不飽和カルボン酸)及びこれと共重合可能な単量体を共重合することにより得ることができる。あるいは、例えば、ポリマーにカルボキシ基を含む単量体を導入して、変性させることにより得ることができる。カルボキシ基を含む単量体の共重合比率は、1~50mol%であることが好ましい。
 アニオン性バインダーの重量平均分子量は、1万~1000万が好ましく、10万~500万がより好ましい。アニオン性バインダーの重量平均分子量を上記範囲内とすることにより、水蒸気バリア層形成用の塗工液の粘度を適切な範囲とすることができる。なお、重量平均分子量は、ゲルパーミケイションクロマトグラフィーにより測定されるポリスチレン換算値を採用するものとする。
 アニオン性バインダーの含有量は、特に限定されないが、水蒸気バリア層中に含まれる全固形分質量に対して10質量%以上であることが好ましく、15質量%以上であることがより好ましく、20質量%以上であることがさらに好ましく、25質量%以上であることが特に好ましく、30質量%以上であることが最も好ましい。また、アニオン性バインダーの含有量は、水蒸気バリア層中に含まれる全固形分質量に対して、95質量%以下であることが好ましく、90質量%以下であることがより好ましく、85質量%以下であることがさらに好ましく、80質量%以下であることが特に好ましい。
<任意成分>
 水蒸気バリア層は、層状無機化合物、カチオン性樹脂及びアニオン性バインダー以外に、必要に応じて適宜、分散剤、界面活性剤、消泡剤、濡れ剤、染料、色合い調整剤、増粘剤などを添加することが可能である。
 水蒸気バリア層の厚さは、1~30μmであることが好ましく、3~20μmであることがより好ましい。また、水蒸気バリア層の塗工量は、固形分として、1~30g/mであることが好ましく、3~20g/mであることがより好ましい。
(ガスバリア層)
 ガスバリア層は、主として酸素ガスの透過を阻止する機能を有する層であり、水懸濁性高分子を含有している。
<水懸濁性高分子>
 本実施形態で用いる水懸濁性高分子とは、25℃の水に対する溶解度が10g/L以下である高分子である。本実施形態において、水懸濁性高分子は、エマルション中に分散している高分子(粒子)に由来するものであることが好ましい。
 水懸濁性高分子としては、例えば、ウレタン系樹脂、塩化ビニリデン系樹脂、オレフィン樹脂、ポリエステル樹脂、ナイロン樹脂、エポキシ樹脂、メラミン樹脂、ポリビニルアルコール系樹脂、アクリロニトリル系樹脂、ポリカルボン酸系樹脂、シリコーン樹脂等を挙げることができる。水懸濁性高分子は、1種単独で使用してもよいし、2種以上を併用してもよい。中でも、高湿度環境下でのガスバリア性をさらに高める観点から、水懸濁性高分子はウレタン系樹脂及び塩化ビニリデン系樹脂から選択される少なくとも1種であることが好ましい。水懸濁性高分子としてウレタン系樹脂又は塩化ビニリデン系樹脂を用いることにより、ガスバリア性積層体の高湿度条件下におけるガスバリア性を高めることができる。
 ウレタン系樹脂は、公知の製造方法によって製造することができる。例えば、ウレタン系樹脂は、ポリイソシアネート化合物(例えばジイソシアネート化合物)と、ポリヒドロキシ酸(例えばジヒドロキシ酸)との反応により得ることができる。また、例えば、上記ポリイソシアネート化合物及びポリヒドロキシ酸に加えて、ポリオール化合物(例えば、ポリエステルポリオール、ポリエーテルポリオール)及び/又は鎖伸長剤との反応により得ることもできる。
 ウレタン系樹脂は、メタキシリレンジイソシアネート由来の構成単位及び水添メタキシリレンジイソシアネート由来の構成単位からなる群より選択される少なくとも1種を含有することが好ましい。このようなウレタン系樹脂は、水素結合及びキシリレン基同士のスタッキング効果によって高い凝集力を発現するため、ガスバリア層は優れたガスバリア性を発揮しやすくなる。
 ウレタン系樹脂中のポリイソシアネート由来の全構成単位数に対する、メタキシリレンジイソシアネート由来の構成単位数及び水添メタキシリレンジイソシアネート由来の構成単位数の合計は、50%以上であることが好ましい。各構成単位数はH-NMRなどの公知の分析手法を用いて同定することができる。
 ウレタン系樹脂は、ヒドロキシ基を有していてもよく、その水酸基価は、好ましくは50mgKOH/g以上、より好ましくは100mgKOH/g以上、さらに好ましくは150mgKOH/g以上である。なお、水酸基価の上限は特に限定されないが、好ましくは1000mgKOH/g以下、より好ましくは800mgKOH/g以下、さらに好ましくは600mgKOH/g以下である。ウレタン系樹脂の水酸基価が上記範囲内であると、ガスバリア層は酸素バリア性を発揮しやすくなる。また、ウレタン系樹脂の水酸基価を上記範囲内とすることにより、ガスバリア層の熱融着性を高めることができ、その結果、ガスバリア性積層体のヒートシール性を高めることもできる。
 ウレタン系樹脂から厚み25μmのシートを形成した場合、得られるシートの23℃、相対湿度50%における酸素透過度は100mL/(m・day・atm)以下であることが好ましく、50mL/(m・day・atm)以下であることがより好ましく、25mL/(m・day・atm)以下であることがさらに好ましく、10mL/(m・day・atm)以下であることが特に好ましい。なお、得られるシートの23℃、相対湿度50%における酸素透過度は0mL/(m・day・atm)であってもよい。なお、本明細書において、ウレタン系樹脂からなる上記シートの酸素透過度は、酸素透過率測定装置(MOCON社製、OX-TRAN2/22)を使用し、23℃、相対湿度50%の条件にて測定される。
 ウレタン系樹脂のガラス転移温度は、150℃以下であることが好ましく、140℃以下であることがより好ましく、135℃以下であることが特に好ましい。ウレタン系樹脂のガラス転移温度の下限は、特に限定されないが、好ましくは50℃以上、より好ましくは60℃以上である。なお、ウレタン系樹脂のガラス転移温度は、JIS K 7122:2012に準拠して測定される。
 ウレタン系樹脂としては、合成品を使用してもよく、合成品としては例えば国際公開第2015/016069号に記載のウレタン系樹脂等を挙げることができる。また、ウレタン系樹脂としては、市販品を使用してもよく、たとえば、三井化学株式会社製の「タケラックW系(商品名)」、「タケラックWPB系(商品名)」、「タケラックWS系(商品名)」等が挙げられ、具体的には、タケラックWPB-341が例示される。その他の市販品としては、大日精化工業株式会社の「HPU W-003」(水酸基価235mgKOH/g)等が挙げられる。
 塩化ビニリデン系樹脂は、公知の製造方法によって製造することができる。例えば、塩化ビニリデン系樹脂は、塩化ビニリデンの単独重合体(ポリ塩化ビニリデン、PVDC)や、塩化ビニリデン及び塩化ビニリデンと共重合可能な単量体の共重合体などにより得ることができる。塩化ビニリデンと共重合可能な単量体としては、特に限定されないが、塩化ビニル、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル等の(メタ)アクリル酸エステル類、アクロニトリル、イソブチレン、酢酸ビニルなどが挙げられる。
 塩化ビニリデン系樹脂としては、市販品を使用してもよく、たとえば、旭化成株式会社製の「サランラテックスL549B」、SOLVAY社製の「DiofanA050,A297,B204」等が挙げられる。
 水懸濁性高分子の重量平均分子量は、1000~20000000であることが好ましく、5000~5000000であることがより好ましい。なお、重量平均分子量は、ゲルパーミケイションクロマトグラフィーにより測定されるポリスチレン換算値を採用するものとする。
 水懸濁性高分子が、エマルション中に分散している高分子(粒子)に由来するものである場合、エマルション中の水懸濁性高分子の平均粒子径は、0.001~100μmであることが好ましく、0.01~10μmであることがより好ましい。なお、平均粒子径は、動的光散乱法により測定することができる。
 水懸濁性高分子の含有量は、ガスバリア層中に含まれる全固形分質量に対して、10~100質量%であることが好ましく、20~100質量%であることがより好ましく、30~100質量%であることがさらに好ましく、40~100質量%であることが特に好ましい水懸濁性高分子の含有量を上記範囲内とすることにより、高湿度条件下におけるガスバリア性積層体のガスバリア性をより効果的に高めることができる。
 上述したように、水懸濁性高分子はエマルション中に分散している高分子(粒子)に由来するものであることが好ましい。この場合、ガスバリア層はエマルションを塗工することにより形成される層であることが好ましい。本明細書においては、このように形成されるガスバリア層を、エマルション塗工層と呼ぶこともある。本実施形態においては、ガスバリア性のさらなる向上の観点から、ガスバリア層は、ウレタン系樹脂エマルション(本明細書中、「ウレタン系エマルション」とも称する)及び塩化ビニリデン系樹脂エマルション(本明細書中、「塩化ビニリデン系エマルション」とも称する)から選択される少なくとも1種の塗工層であることが特に好ましい。
 ガスバリア層には、上記の水懸濁性高分子に加えて、層状無機化合物を含有させることが好ましい。ガスバリア層に層状無機化合物を含有させることで、ガスバリア性をさらに高める(酸素透過度をさらに低減する)ことができる。層状無機化合物としては、上述したような水蒸気バリア層が含み得る層状無機化合物を挙げることができ、1種単独で使用してもよいし、2種以上を併用してもよい。層状無機化合物の平均長さ、アスペクト比及び厚さの好ましい範囲は、上記<層状無機化合物>の項に記載の範囲と同様である。中でも、ガスバリア層に含まれる層状無機化合物のアスペクト比は20以上(好ましくは50以上、より好ましくは80以上)であり、厚さが200nm以下であることが好ましい。上記のアスペクト比及び厚さを有する層状無機化合物を含有することで、(特に高湿度条件下における)ガスバリア性積層体のガスバリア性をより効果的に高めることができる。また、ガスバリア層に含まれる層状無機化合物の具体例は、上記<層状無機化合物>の項に記載の具体例と同様である。中でも、マイカ、ベントナイト及びカオリンからなる群より選択される少なくとも1種であることが好ましく、マイカ及びカオリンから選択される少なくとも1種であることがより好ましい。ガスバリア層が上述したような層状無機化合物を含有することで、高湿度条件下におけるガスバリア性積層体のガスバリア性をより効果的に高めることができる。なお、ガスバリア層に含有させる層状無機化合物は、水蒸気バリア層に含有させる層状無機化合物と同一の種類であってもよいし、異なる種類であってもよい。
 ガスバリア性積層体の酸素透過度比(酸素透過度の湿度依存性)をより小さくする観点から、ガスバリア層は、アスペクト比が異なる2種以上の層状無機化合物を含有することが好ましい。具体的には、ガスバリア層は、アスペクト比500未満の層状無機化合物(層状無機化合物A)と、アスペクト比500以上の層状無機化合物(層状無機化合物B)とを含むことが好ましい。層状無機化合物Aのアスペクト比は、より好ましくは20~300であり、特に好ましくは50~200である。層状無機化合物Bのアスペクト比は、より好ましくは500~5000であり、さらに好ましくは750~2500である。層状無機化合物Aは、1種単独で使用してもよいし、2種以上を併用してもよい。層状無機化合物Bは、1種単独で使用してもよいし、2種以上を併用してもよい。
 層状無機化合物をガスバリア層に含有させる場合、層状無機化合物の含有量は、特に限定されないが、ガスバリア層中の水懸濁性高分子100質量部に対して、0.5~500質量部であることが好ましく、1~300質量部であることがより好ましく、2~200質量部であることがさらに好ましく、5~150質量部であることが特に好ましい。層状無機化合物の含有量を上記範囲内とすることにより、高湿度条件下におけるガスバリア性積層体のガスバリア性をより効果的に高めることができる。
<任意成分>
 ガスバリア層は、水懸濁性高分子と層状無機化合物の他に必要に応じて適宜、顔料、分散剤、界面活性剤、消泡剤、濡れ剤、染料、色合い調整剤、増粘剤などを含有してもよい。
 ガスバリア層の厚さは、0.1~10μmであることが好ましく、0.5~5μmであることがより好ましい。また、ガスバリア層の塗工量は、固形分として、0.1~10g/mであることが好ましく、0.5~5g/mであることがより好ましい。
(シーラント層)
 ガスバリア性積層体は、紙支持体の少なくとも一方の面上に水蒸気バリア層及びガスバリア層をこの順に有しているが、さらに、ガスバリア性積層体の少なくとも一方の最外層にシーラント層を有していてもよい。すなわち、シーラント層は、水蒸気バリア層及びガスバリア層を形成した側のガスバリア層の上に形成されるものであってもよいし、水蒸気バリア層及びガスバリア層を形成していない側の紙支持体の上に形成されるものであってもよい。また、シーラント層は、ガスバリア性積層体の両面の最外層に形成されるものであってもよい。
 シーラント層は、加熱や超音波で溶融し接着性を発揮する層であることが好ましい。これにより、例えば、シーラント層は、ガスバリア性積層体同士をヒートシール等により相互に結合させることもできる。
 シーラント層は、ポリエチレン、ポリプロピレン、エチレン・酢酸ビニル系重合体、ポリ酢酸ビニル重合体などの合成樹脂を溶融押出ラミ法やドライラミ法によって積層することによって形成することができる。また、シーラント層は、ポリエチレン、ポリプロピレン、エチレン・酢酸ビニル系重合体、ポリ酢酸ビニル重合体などの合成樹脂の乳化分散液を塗工することによって形成することもできる。
 シーラント層は、生分解性樹脂を含有することが好ましい。生分解性樹脂の具体例としては、特に限定されず、例えばポリ乳酸(PLA)、ポリブチレンサクシネート(PBS)、ポリブチレンサクシネートアジペート(PBSA)、3-ヒドロキシブタン酸・3-ヒドロキシヘキサン酸共重合体(PHBH)等が挙げられる。
 シーラント層の厚さは、1~50μmであることが好ましく、3~30μmであることがより好ましい。また、シーラント層の形成量は、固形分として、1~50g/mであることが好ましく、3~30g/mであることがより好ましい。
(用途)
 本実施形態のガスバリア性積層体は、上記の優れた水蒸気バリア性及びガスバリア性を生かして、食品、医療品、電子部品等の包装用材料として好適に用いることができる。特に、本実施形態のガスバリア性積層体は、高湿度条件下におけるガスバリア性に優れているため、高湿度条件下に曝される食品、医療品、電子部品等の包装用材料として好適に用いることができる。また、本実施形態のガスバリア性積層体においては、酸素透過度の湿度依存性が小さく抑えられているため、例えば、輸送中や保管中に温度や湿度変化が生じた場合であっても、ガスバリア性積層体のガスバリア性を変動させることなく、保持することができる。
(ガスバリア性積層体の製造方法)
 ガスバリア性積層体は、紙支持体上に、まず水蒸気バリア層形成用塗工液を塗工して、水蒸気バリア層を形成した後、ガスバリア層形成用塗工液を塗工して、ガスバリア層を形成することにより、製造することができる。すなわち、ガスバリア性積層体の製造方法は、紙支持体上に、水蒸気バリア層形成用塗工液を塗工して、水蒸気バリア層を形成する工程と、水蒸気バリア層上にガスバリア層形成用塗工液を塗工して、ガスバリア層を形成する工程と、を含む。なお、各層は、塗工液を逐次塗工及び乾燥させて形成してもよく、同時多層塗工した後に乾燥させてもよい。
 水蒸気バリア層を形成する工程では、紙支持体上に、水蒸気バリア層形成用塗工液を塗工する。水蒸気バリア層形成用塗工液には、層状無機化合物、カチオン性樹脂及びアニオン性バインダーが含まれる。また、水蒸気バリア層形成用塗工液には溶媒も含まれ、溶媒としては、水またはエタノール、イソプロピルアルコール、メチルエチルケトンもしくはトルエンなどの有機溶媒を用いることができる。
 水蒸気バリア層形成用塗工液を紙支持体に塗工するための塗工設備としては、公知の設備を用いることができる。塗工設備としては、例えば、ブレードコーター、バーコーター、エアナイフコーター、スリットダイコーター、グラビアコーター、マイクログラビアコーター、ゲートロールコーターなどが挙げられる。特に水蒸気バリア層の形成には、ブレードコーター、バーコーター、エアナイフコーター、スリットダイコーターなどの塗工表面をスクレイプするコーターが層状無機化合物の配向を促すという点で好ましい。
 ガスバリア層を形成する工程では、水懸濁性高分子を含むエマルションを水蒸気バリア層上に塗工することが好ましい。特に、ガスバリア層を形成する工程は、ウレタン系エマルション及び塩化ビニリデン系エマルションから選択される少なくとも1種を塗工する工程であることが好ましい。なお、ガスバリア層が水懸濁性高分子の他に層状無機化合物等を含む場合には、エマルションに層状無機化合物等を分散させた塗工液を塗工することが好ましい。
 ガスバリア層塗工液を水蒸気バリア層上に塗工するための塗工設備としては、上述した装置と同様のものを挙げることができる。
 各塗工層を乾燥するための乾燥設備には、特に限定はなく、公知の設備を用いることができる。乾燥設備としては、例えば、熱風乾燥機、赤外線乾燥機、ガスバーナー、熱板などが挙げられる。
 本実施形態のガスバリア性積層体の製造方法においては、水蒸気バリア層形成用塗工液に層状無機化合物、カチオン性樹脂及びアニオン性バインダーが含まれていることから、水蒸気バリア層中の層状無機化合物がカードハウス構造を形成せず、均一に分散された状態で積層される。このため、形成される水蒸気バリア層は、水蒸気バリア性に優れている。さらに、水蒸気バリア層を形成する工程において、水蒸気バリア層の表面が平滑に形成されるため、その上のガスバリア層も均一に形成することが可能となる。これにより、ガスバリア性に優れたガスバリア性積層体が形成される。
 以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
<実施例1>
 層状無機化合物(エンジニアードカオリン、平均長さ10μm、アスペクト比約100、厚さ約100nm、製品名:バリサーフHX、イメリス製)を水に分散し、層状無機化合物の含有量が55質量%の水分散液を得た(水分散液A)。エチレン・アクリル酸共重合体の自己乳化型エマルション(固形分濃度29.2質量%、製品名:ザイクセンAC、住友精化製)34.2質量部に対して、55質量%の水分散液A36.4質量部を撹拌しながら加えた(分散液B)。この分散液Bに、変性ポリアミド系樹脂(固形分濃度53質量%、表面電荷0.35meq/g、製品名:SPI203(50)H、田岡化学工業製)を0.75質量部加え、さらに撹拌した。さらに、分散液Bに25質量%アンモニア水溶液を0.30質量部加え撹拌した。さらに、分散液Bに希釈水を加え、固形分濃度40質量%とし、水蒸気バリア層の塗料とした。
 ウレタン系エマルションA(固形分濃度30質量%、ガラス転移温度130℃、25μm厚シート形成時酸素透過度が2.0mL/(m・day・atm)、製品名:タケラックWPB-341、三井化学製)に固形分濃度が20質量%となるように希釈水を加え、ガスバリア層の塗料とした。なお、上記ウレタン系エマルションAのウレタン系樹脂は、25℃の水に対する溶解度が10g/L以下であった。また、上記ウレタン系エマルションAについて、1H-NMR測定を行ったところ、ポリイソシアネート由来の構成単位に対して、メタキシリレンジイソシアネート由来の構成単位が50モル%以上含まれていた。
 得られた水蒸気バリア層塗料を、水蒸気バリア層の塗工量が12.0g/mとなるように、晒クラフト紙(王子マテリア株式会社製、坪量50g/m、厚さ66μm、密度0.76g/m、一方の面の王研式平滑度63秒、他方の面の王研式平滑度45秒、テキヒトサイズ度15秒)の王研式平滑度63秒である面上にメイヤーバーを用いて塗工した。その後、水蒸気バリア層塗料を塗工した晒クラフト紙を熱風乾燥機内で、120℃で1分間乾燥した。さらに、水蒸気バリア層の上に、ガスバリア層塗料をガスバリア層の塗工量が3.0g/mとなるように、メイヤーバーで塗工した後、熱風乾燥機内で120℃、1分間乾燥し、ガスバリア性積層体を得た。
<実施例2>
 層状無機化合物(エンジニアードカオリン、平均長さ10μm、アスペクト比約100、厚さ約100nm、製品名:バリサーフHX、イメリス製)の固形分濃度50質量%水分散液に、ウレタン系エマルションA(固形分濃度30質量%、ガラス転移温度130℃、25μm厚シート形成時酸素透過度が2.0mL/(m・day・atm)、製品名:タケラックWPB-341、三井化学製)を固形分の質量比(層状無機化合物:ウレタン系樹脂)が1:1となるように加え、撹拌した。さらに固形分濃度が20質量%となるように希釈水を加え、ガスバリア層の塗料とした。このガスバリア層の塗料を用いた以外は、実施例1と同様にしてガスバリア性積層体を得た。
<実施例3>
 塩化ビニリデン系エマルション(塩化ビニリデン系共重合体ラテックス、固形分濃度48.0質量%、製品名:サランラテックスL549B、旭化成製)に固形分濃度が10質量%となるように希釈水を加え、ガスバリア層の塗料とした。このガスバリア層の塗料を用いた以外は、実施例1と同様にしてガスバリア性積層体を得た。なお、上記塩化ビニリデン系エマルションの塩化ビニリデン系樹脂は、25℃の水に対する溶解度が10g/L以下であった。
<比較例1>
 エチレン変性ポリビニルアルコール(PVA)(完全ケン化型、製品名:エクセバールAQ-410、固形分濃度15質量%、クラレ製)の固形分濃度15質量%溶液を調製し、さらに希釈水を加え、固形分濃度10質量%とし、ガスバリア層の塗料とした。このガスバリア層の塗料を用いた以外は、実施例1と同様にしてガスバリア性積層体を得た。
<実施例4>
 層状無機化合物の水分散液(膨潤性マイカ、平均長さ6.3μm、アスペクト比約1000、厚さ約5nm、固形分濃度6質量%、製品名:NTO-05、トピー工業製)30.0質量部に、撹拌しながらエチレン・アクリル酸共重合体の自己乳化型エマルション(固形分濃度29.2質量%、製品名:ザイクセンAC、住友精化製)34.2質量部を加え、撹拌した。これに、変性ポリアミド系樹脂(固形分濃度53質量%、製品名:SPI203(50)H、田岡化学工業製)を2.55質量部加え、撹拌した。さらに、25質量%のアンモニア水溶液を0.30質量部加え撹拌した。さらに、希釈水を加え、固形分濃度19質量%とし、水蒸気バリア層の塗料とした。
 ウレタン系エマルションA(固形分濃度30質量%、ガラス転移温度130℃、25μm厚シート形成時酸素透過度が2.0mL/(m・day・atm)、製品名:タケラックWPB-341、三井化学製)に固形分濃度が20質量%となるように希釈水を加え、ガスバリア層の塗料とした。
 得られた水蒸気バリア層塗料を、水蒸気バリア層の塗工量が6.0g/mとなるように、晒クラフト紙(王子マテリア株式会社製、坪量50g/m、厚さ66μm、密度0.76g/m、一方の面の王研式平滑度63秒、他方の面の王研式平滑度45秒、ステキヒトサイズ度15秒)の王研式平滑度63秒である面上にメイヤーバーを用いて塗工した。その後、水蒸気バリア層塗料を塗工した晒クラフト紙を熱風乾燥機内で、120℃で1分間乾燥した。さらに、水蒸気バリア層の上層に、ガスバリア層塗料をガスバリア層の塗工量が3.0g/mとなるように、メイヤーバーで塗工した後、熱風乾燥機内で120℃、1分間乾燥し、ガスバリア性積層体を得た。
<実施例5>
 層状無機化合物の水分散液(膨潤性マイカ、平均長さ6.3μm、アスペクト比約1000、厚さ約5nm、固形分濃度6質量%、製品名:NTO-05、トピー工業製)に、ウレタン系エマルションA(固形分濃度30質量%、ガラス転移温度130℃、25μm厚シート形成時酸素透過度が2.0mL/(m・day・atm)、製品名:タケラックWPB-341、三井化学製)を固形分の質量比(層状無機化合物:ウレタン系樹脂)が1:10となるように加え、撹拌した。さらに固形分濃度が20質量%となるように希釈水を加え、ガスバリア層の塗料とした。このガスバリア層の塗料を用いた以外は、実施例4と同様にしてガスバリア性積層体を得た。
<実施例6>
 ウレタン系エマルションA(固形分濃度30質量%、ガラス転移温度130℃、25μm厚シート形成時酸素透過度が2.0mL/(m・day・atm)、製品名:タケラックWPB-341、三井化学製)33.3質量部に、第1の層状無機化合物の水分散液(膨潤性マイカ、平均長さ6.3μm、アスペクト比約1000、厚さ約5nm、固形分濃度6質量%、製品名:NTO-05、トピー工業製)を16.7質量部を加えた。これに、第2の層状無機化合物の水分散液(エンジニアードカオリン、平均長さ0.89μm、アスペクト比約33、厚さ約30nm、固形分濃度50質量%、製品名:コンツァーエクストリーム、イメリス製)を6質量部加え、撹拌した。さらに、希釈水を加え、固形分濃度10質量%とし、ガスバリア層の塗料とした。このガスバリア層の塗料を用いた以外は、実施例4と同様にしてガスバリア性積層体を得た。
<実施例7>
 晒クラフト紙に代えて片艶紙(王子マテリア株式会社製、坪量50g/m、厚さ62μm、密度0.81g/m、一方の面の王研式平滑度427秒、他方の面の王研式平滑度17秒)を使用した以外は、実施例6と同様にしてガスバリア性積層体を得た。なお、水蒸気バリア層塗料は、片艶紙の王研式平滑度17秒の面上に塗工した。
<実施例8>
 塩化ビニリデン系エマルション(塩化ビニリデン系共重合体ラテックス、固形分濃度48.0質量%、製品名:サランラテックスL549B、旭化成製)に固形分濃度が10質量%となるように希釈水を加え、ガスバリア層の塗料とした。このガスバリア層の塗料を用いた以外は、実施例4と同様にしてガスバリア性積層体を得た。
<実施例9>
 ヒドロキシ基を有するウレタン系エマルションB(大日精化社製、HPU W-003、水酸基価235mgKOH/g、固形分濃度30%、ガラス転移温度70℃、25μm厚シート形成時酸素透過度が1.6mL/(m・day・atm))に固形分濃度が10質量%となるように希釈水を加え、ガスバリア層の塗料とした。このガスバリア層の塗料を用いた以外は、実施例4と同様にしてガスバリア性積層体を得た。
<実施例10>
 晒クラフト紙に代えて片艶紙(王子エフテックス株式会社製、坪量50g/m、厚さ63μm、密度0.80g/m、一方の面の王研式平滑度416秒、他方の面の王研式平滑度16秒)を使用した以外は、実施例9と同様にしてガスバリア性積層体を得た。なお、水蒸気バリア層塗料は、片艶紙の王研式平滑度17秒の面上に塗工した。
<実施例11>
 ヒドロキシ基を有するウレタン系エマルションB(大日精化社製、HPU W-003、水酸基価235mgKOH/g、固形分濃度30%、ガラス転移温度70℃、25μm厚シート形成時酸素透過度が1.6mL/(m・day・atm))33.3質量部に、第1の層状無機化合物の水分散液(膨潤性マイカ、平均長さ6.3μm、アスペクト比約1000、厚さ約5nm、固形分濃度6質量%、製品名:NTO-05、トピー工業製)を33.3質量部を加えた。これに、第2の層状無機化合物の水分散液(エンジニアードカオリン、平均長さ0.89μm、アスペクト比約33、厚さ約30nm、固形分濃度50質量%、製品名:コンツァーエクストリーム、イメリス製)を6質量部加え、撹拌した。さらに、希釈水を加え、固形分濃度10質量%とし、ガスバリア層の塗料とした。このガスバリア層の塗料を用いた以外は、実施例10と同様にしてガスバリア性積層体を得た
<比較例2>
 エチレン変性ポリビニルアルコール(完全ケン化型、製品名:エクセバールAQ-4104、クラレ製)の固形分濃度15質量%の水溶液を調製し、これに希釈水を加え固形分濃度10質量%とし、ガスバリア層の塗料とした。ガスバリア層を上記のものとしたこと以外、実施例4と同様にしてガスバリア性積層体を得た。
(評価方法)
(1)水蒸気透過度
 実施例及び比較例で得たガスバリア性積層体の水蒸気透過度は、JIS Z 0208:1976(カップ法)B法(40℃±0.5℃、相対湿度90%±2%)に準拠して、ガスバリア層を内側にして測定した。
(2)酸素透過度
 実施例及び比較例で得たガスバリア性積層体の酸素透過度は、酸素透過率測定装置(MOCON社製、OX-TRAN2/20)を使用し、23℃、相対湿度50%の条件にて測定した。
 また、高湿度条件下におけるガスバリア性積層体の酸素透過度は、23℃、相対湿度85%の条件にて同様に測定した。
 なお、以下の式を用いて、酸素透過度比を算出した。
酸素透過度比=23℃、相対湿度85%における酸素透過度(cc/m・day・atm)/23℃、相対湿度50%における酸素透過度(cc/m・day・atm)
(3)接触角
 実施例及び比較例で得たガスバリア性積層体のガスバリア層表面の接触角を測定した。具体的には、ガスバリア性積層体のガスバリア層表面に4μlの水を滴下し、株式会社マツボー製動的接触角測定装置DAT1100を用い、滴下60秒後の接触角を測定した。
(4)耐水性
 実施例及び比較例で得たガスバリア性積層体の耐水性は、ガスバリア性積層体のガスバリア層上に60℃の水1mLを滴下して1分保持した後、水をふき取り、ガスバリア層の塗工表面の状態を目視及び手で触って調べることで評価した。
〇:ガスバリア性積層体のガスバリア層のべたつきや溶解がない
×:ガスバリア性積層体のガスバリア層のべたつきや溶解がある
(5)ヒートシール性
 1組のガスバリア性積層体を、ガスバリア層が向き合うように重ね、熱プレス試験機を用い、160℃、2.0kgf/cm、1秒間の条件でヒートシールして積層体を作製した。この積層体を裁断して幅15mm、長さ100mmの矩形状の測定用サンプルを作製した。なお、測定用サンプルを作製する際は、端部に、手で把持して測定サンプルを剥離するために、ヒートシールされていない部分を形成した。そして、ヒートシールされていない端部を手で持ち、引っ張った際の剥離状況を以下の基準で評価した。
〇:ヒートシールされていない端部を手で持ち、引っ張った際に抵抗があり、1組のガスバリア性積層体が他方のガスバリア性積層体から剥がれない。
×:ヒートシールされていない端部を手で持ち、引っ張った際に抵抗がなく、1組のガスバリア性積層体が他方のガスバリア性積層体から容易に剥がれる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 ウレタンA:メタキシリレンジイソシアネート由来の構成単位を含有するウレタン樹脂(タケラックWPB-341)
 ウレタンB:ヒドロキシ基含有ウレタン樹脂(HPU W-003)
 比較例に比べて実施例では、高湿度条件下における酸素透過度が抑制されていた。また、実施例では、水接触角が大きいガスバリア性積層体が得られており、撥水性に優れていた。さらに、実施例では、耐水性に優れたガスバリア性積層体が得られていた。さらに、ガスバリア層に層状無機化合物を含有させることで、50%RH酸素透過性がより抑制された。加えて、ガスバリア層にアスペクト比が異なる2種の層状無機化合物を含有させることで、酸素透過度比がより小さくなった(酸素透過度の湿度依存性がより小さく抑えられた)。
 なお、ガスバリア層にヒドロキシ基含有ウレタン樹脂や塩化ビニリデン系樹脂を用いた実施例3、8~11で得られたガスバリア性積層体は、ヒートシール性にも優れていた。
10   紙支持体
20   水蒸気バリア層
30   ガスバリア層
100 ガスバリア性積層体

Claims (17)

  1.  紙支持体の少なくとも一方の面上に水蒸気バリア層及びガスバリア層をこの順に有するガスバリア性積層体であって、
     前記水蒸気バリア層が層状無機化合物、カチオン性樹脂及びアニオン性バインダーを含有し、
     前記ガスバリア層が水懸濁性高分子を含有する、ガスバリア性積層体。
  2.  前記水懸濁性高分子がウレタン系樹脂及び塩化ビニリデン系樹脂から選択される少なくとも1種である、請求項1に記載のガスバリア性積層体。
  3.  前記水懸濁性高分子は、エマルション中に分散している高分子に由来するものであり、前記ガスバリア層は、前記エマルションの塗工層である、請求項2に記載のガスバリア性積層体。
  4.  前記水懸濁性高分子はウレタン系樹脂であり、
     前記ウレタン系樹脂から厚み25μmのシートを形成した場合、前記シートの23℃、相対湿度50%における酸素透過度が100mL/(m・day・atm)以下となる、請求項1~3のいずれか1項に記載のガスバリア性積層体。
  5.  前記水懸濁性高分子はウレタン系樹脂であり、
     前記ウレタン系樹脂は、メタキシリレンジイソシアネート由来の構成単位及び水添メタキシリレンジイソシアネート由来の構成単位からなる群より選択される少なくとも1種を含有する、請求項1~4のいずれか1項に記載のガスバリア性積層体。
  6.  前記メタキシリレンジイソシアネート由来の構成単位数及び前記水添メタキシリレンジイソシアネート由来の構成単位数の合計は、前記ウレタン系樹脂中のポリイソシアネート由来の構成単位数に対して50%以上である、請求項5に記載のガスバリア性積層体。
  7.  前記水懸濁性高分子はウレタン系樹脂であり、
     前記ウレタン系樹脂は、ヒドロキシ基を有し、かつ水酸基価が50mgKOH/g以上である、請求項1~6のいずれか1項に記載のガスバリア性積層体。
  8.  前記ガスバリア層は、さらに層状無機化合物を含む、請求項1~7のいずれか1項に記載のガスバリア性積層体。
  9.  前記ガスバリア層に含まれる前記層状無機化合物のアスペクト比は20以上であり、厚さが200nm以下である、請求項8に記載のガスバリア性積層体。
  10.  前記ガスバリア層に含まれる前記層状無機化合物がマイカ、ベントナイト及びカオリンからなる群より選択される少なくとも1種である請求項8又は9に記載のガスバリア性積層体。
  11.  前記水蒸気バリア層に含まれる前記層状無機化合物のアスペクト比は20以上であり、厚さが200nm以下である、請求項1~10のいずれか1項に記載のガスバリア性積層体。
  12.  前記水蒸気バリア層に含まれる前記層状無機化合物がマイカ、ベントナイト及びカオリンからなる群より選択される少なくとも1種である請求項1~11のいずれか1項に記載のガスバリア性積層体。
  13.  前記アニオン性バインダーがスチレン・ブタジエン系共重合体、スチレン・アクリル系共重合体及びオレフィン・不飽和カルボン酸系共重合体からなる群より選択される少なくとも1種である、請求項1~12のいずれか1項に記載のガスバリア性積層体。
  14.  前記カチオン性樹脂は表面電荷が0.1~10meq/gである、請求項1~13のいずれか1項に記載のガスバリア性積層体。
  15.  さらに、少なくとも一方の最外層にシーラント層を有する、請求項1~14のいずれか1項に記載のガスバリア性積層体。
  16.  前記シーラント層が生分解性樹脂を含有する請求項15に記載のガスバリア性積層体。
  17.  包装用材料である請求項1~16のいずれか1項に記載のガスバリア性積層体。
PCT/JP2021/005713 2020-02-18 2021-02-16 ガスバリア性積層体 WO2021166910A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021516712A JPWO2021166910A1 (ja) 2020-02-18 2021-02-16

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-025006 2020-02-18
JP2020025006 2020-02-18

Publications (1)

Publication Number Publication Date
WO2021166910A1 true WO2021166910A1 (ja) 2021-08-26

Family

ID=77392242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005713 WO2021166910A1 (ja) 2020-02-18 2021-02-16 ガスバリア性積層体

Country Status (2)

Country Link
JP (1) JPWO2021166910A1 (ja)
WO (1) WO2021166910A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4180572A1 (en) * 2021-11-15 2023-05-17 Klabin S.A. Barrier-coated cellulose-based substrate
WO2023176794A1 (ja) * 2022-03-16 2023-09-21 王子ホールディングス株式会社 バリア性積層体及び包装袋
EP4215362A4 (en) * 2020-09-18 2024-05-01 Asahi Kasei Kabushiki Kaisha LAMINATED BODY FORMING A BARRIER TO GAS AND WATER VAPOR
JP7559705B2 (ja) 2021-08-17 2024-10-02 王子ホールディングス株式会社 バリア性積層体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069788A1 (ja) * 2011-11-10 2013-05-16 日本製紙株式会社 紙製バリア包装材料
WO2013161480A1 (ja) * 2012-04-27 2013-10-31 三菱瓦斯化学株式会社 エポキシ樹脂硬化剤、エポキシ樹脂組成物、及びガスバリア性接着剤、並びにガスバリア性積層体
JP2014015703A (ja) * 2012-06-11 2014-01-30 Nippon Paper Industries Co Ltd 紙製バリア包装材料
JP2014181409A (ja) * 2013-03-18 2014-09-29 Nippon Paper Industries Co Ltd 紙製バリア包装材料
JP2018001574A (ja) * 2016-06-30 2018-01-11 株式会社クラレ 多層構造体およびその製造方法、それを用いた包装材および製品、ならびに電子デバイスの保護シート
WO2020085110A1 (ja) * 2018-10-26 2020-04-30 王子ホールディングス株式会社 ガスバリア性積層体およびその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189229A1 (ja) * 2018-03-28 2019-10-03 日本製紙株式会社 紙製バリア材料
JP2019183370A (ja) * 2018-03-30 2019-10-24 日本製紙株式会社 紙製バリア材料

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069788A1 (ja) * 2011-11-10 2013-05-16 日本製紙株式会社 紙製バリア包装材料
WO2013161480A1 (ja) * 2012-04-27 2013-10-31 三菱瓦斯化学株式会社 エポキシ樹脂硬化剤、エポキシ樹脂組成物、及びガスバリア性接着剤、並びにガスバリア性積層体
JP2014015703A (ja) * 2012-06-11 2014-01-30 Nippon Paper Industries Co Ltd 紙製バリア包装材料
JP2014181409A (ja) * 2013-03-18 2014-09-29 Nippon Paper Industries Co Ltd 紙製バリア包装材料
JP2018001574A (ja) * 2016-06-30 2018-01-11 株式会社クラレ 多層構造体およびその製造方法、それを用いた包装材および製品、ならびに電子デバイスの保護シート
WO2020085110A1 (ja) * 2018-10-26 2020-04-30 王子ホールディングス株式会社 ガスバリア性積層体およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "KURARAY", KURARAY POVAL, September 2019 (2019-09-01), pages 1 - 24, XP055849812, Retrieved from the Internet <URL:https://www.kuraray-poval.com/fileadmin/technical_information/brochures/poval/japanese/kuraray_poval_catalog.pdf> [retrieved on 20210507] *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4215362A4 (en) * 2020-09-18 2024-05-01 Asahi Kasei Kabushiki Kaisha LAMINATED BODY FORMING A BARRIER TO GAS AND WATER VAPOR
JP7559705B2 (ja) 2021-08-17 2024-10-02 王子ホールディングス株式会社 バリア性積層体
EP4180572A1 (en) * 2021-11-15 2023-05-17 Klabin S.A. Barrier-coated cellulose-based substrate
WO2023081990A1 (en) * 2021-11-15 2023-05-19 Klabin S.A. Barrier-coated cellulose-based substrate
WO2023176794A1 (ja) * 2022-03-16 2023-09-21 王子ホールディングス株式会社 バリア性積層体及び包装袋
JP7468821B2 (ja) 2022-03-16 2024-04-16 王子ホールディングス株式会社 バリア性積層体及び包装袋

Also Published As

Publication number Publication date
JPWO2021166910A1 (ja) 2021-08-26

Similar Documents

Publication Publication Date Title
WO2021166910A1 (ja) ガスバリア性積層体
JP7036104B2 (ja) ガスバリア性積層体
JP7047704B2 (ja) ガスバリア性積層体およびその製造方法
JP6901058B1 (ja) 紙積層体
JP7439641B2 (ja) バリア性積層体およびその製造方法
CN111902513B (zh) 热封涂层
WO2021106891A1 (ja) バリア性積層体
CN112888565B (zh) 阻气性层叠体和其制造方法
JP7559705B2 (ja) バリア性積層体
CN111836868B (zh) 热封涂层
JP2020192737A (ja) 防湿性積層体および紙容器
WO2021182183A1 (ja) 液体紙容器用材料、液体紙容器、無菌充填液体紙容器、再生パルプの製造方法
JP6943351B1 (ja) 紙積層体
JP6870797B1 (ja) バリア性積層体
JP2021020398A (ja) バリア包装材料
JP2022158269A (ja) ガスバリア性積層体及びガスバリア性シール紙
JP7238851B2 (ja) バリア性積層体
JP7298409B2 (ja) バリア性積層体
JP7268614B2 (ja) バリア性積層体
JP7533802B2 (ja) 積層体、及びこれを用いてなる紙加工品
JP2020179637A (ja) バリア性積層体
JP7338574B2 (ja) ガスバリア性積層体
JP2020179638A (ja) バリア性積層体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021516712

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21757344

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21757344

Country of ref document: EP

Kind code of ref document: A1