Nothing Special   »   [go: up one dir, main page]

WO2021039519A1 - 医療デバイスの製造方法 - Google Patents

医療デバイスの製造方法 Download PDF

Info

Publication number
WO2021039519A1
WO2021039519A1 PCT/JP2020/031219 JP2020031219W WO2021039519A1 WO 2021039519 A1 WO2021039519 A1 WO 2021039519A1 JP 2020031219 W JP2020031219 W JP 2020031219W WO 2021039519 A1 WO2021039519 A1 WO 2021039519A1
Authority
WO
WIPO (PCT)
Prior art keywords
medical device
mass
hydrophilic polymer
base material
manufacturing
Prior art date
Application number
PCT/JP2020/031219
Other languages
English (en)
French (fr)
Inventor
北川瑠美子
中村正孝
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2020547438A priority Critical patent/JP7509036B2/ja
Priority to EP20858049.8A priority patent/EP4023261A4/en
Priority to CN202080054869.8A priority patent/CN114158254B/zh
Priority to KR1020227004678A priority patent/KR20220051170A/ko
Priority to US17/620,197 priority patent/US20220249731A1/en
Publication of WO2021039519A1 publication Critical patent/WO2021039519A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/24Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/44Medicaments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/025Other specific inorganic materials not covered by A61L27/04 - A61L27/12
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/16Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/34Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/08Materials for coatings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/12Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/14Materials characterised by their function or physical properties, e.g. lubricating compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/10Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/12Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/16Biologically active materials, e.g. therapeutic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00865Applying coatings; tinting; colouring
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/16Materials or treatment for tissue regeneration for reconstruction of eye parts, e.g. intraocular lens, cornea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00038Production of contact lenses

Definitions

  • the present invention relates to a method for manufacturing a medical device.
  • Devices using soft materials include medical devices that are introduced into the living body or coated on the surface of the living body, biotechnology devices such as cell culture sheets and scaffolding materials for tissue regeneration, facial masks, etc. Beauty devices include.
  • Applications of devices using hard materials include use as diagnostic / analytical tools for personal computers, mobile phones, electrical appliances such as displays, ampoules used for injections, capillaries, biosensing chips, etc.
  • surface modification of the medical device is important. If the surface modification can give the medical device better properties than before the surface modification, such as hydrophilicity, slipperiness, biocompatibility, and medicinal effect, it will give a feeling of use to the user (patient, etc.). It can be expected to improve, reduce discomfort, and improve symptoms.
  • a method of imparting good water wettability to the surface of a base material by heating the base material in a solution having a pH of 2.0 or more and 6.0 or less containing a polymer having a hydroxyl group is disclosed. (See, for example, Patent Documents 1 and 2).
  • the pH of the solution containing the base material after heating is 6.0 or less. Therefore, when used in a medical device such as an ophthalmic lens, it is necessary to additionally perform a step of washing with a neutral solution and a step of sterilization in order to eliminate irritation to the eyes.
  • the pH of the solution to be heated was set to 6.0 or higher in order to omit such an additional step, it was difficult to modify the surface of the base material by the methods described in Patent Documents 1 and 2.
  • the base material is a specific surfactant (polyoxyethylene-polyoxybutylene block copolymer) and a specific wetting agent (N-vinylpyrrolidone and at least one amino-containing vinyl). It was limited to the method of immersing in a solution containing (high molecular weight copolymer with monomer). In addition, since two types of surfactants, a surfactant and a wetting agent, are required for surface modification, there is a risk of increasing the manufacturing cost.
  • the present invention has been made in view of the above-mentioned problems of the prior art. That is, the present invention provides a hydrophilic polymer layer with excellent durability in a pH range wider than the pH conditions of the prior art, which could not be applied by the conventional surface modification method, and by using a smaller number of materials.
  • An object of the present invention is to provide a simple method that can be applied to the surface of a medical device.
  • the present invention is a method for producing a medical device having a base material and a hydrophilic polymer layer.
  • a medical device comprising the step of placing the substrate in a solution containing a hydrophilic polymer and a positive salt in the range of 1.0 to 20% by mass and heating the solution in the range of 50 ° C to 140 ° C. This is a device manufacturing method.
  • the present invention it is possible to easily impart a highly durable hydrophilic polymer layer to a medical device in a pH range wider than the pH condition of the prior art and by using a smaller number of materials than the prior art. it can.
  • the method for manufacturing a medical device of the present invention is a method for manufacturing a medical device having a base material and a hydrophilic polymer layer.
  • examples of the shape of the medical device include a lens shape, a tube shape, a sheet shape, a film shape, a storage container shape, and the like.
  • Examples of medical devices having a lens shape include eye lenses such as contact lenses, intraocular lenses, artificial corneas, corneal inlays, corneal onlays, and eyeglass lenses.
  • eye lenses such as contact lenses, intraocular lenses, artificial corneas, corneal inlays, corneal onlays, and eyeglass lenses.
  • Ocular lenses, especially contact lenses, are one of the most preferred embodiments of the present invention.
  • tubular medical devices include infusion tubes, gas transport tubes, drainage tubes, blood circuits, covering tubes, catheters, stents, sheaths, tube connectors, access ports, and heart-lung machine hollow threads. Can be mentioned.
  • sheet-shaped or film-shaped medical devices include skin dressings, wound dressings, skin protective materials, skin drug carriers, biosensor chips, and endoscopic dressings.
  • Examples of medical devices having a storage container shape include drug carriers, cuffs, drainage bags, and the like.
  • the medical device is an eye lens, a skin dressing, a wound dressing, a skin protective material, a skin drug carrier, an infusion tube, a gas transport tube, a drainage tube, a blood circuit, and a coating. It is preferably a tube, catheter, stent, sheath, biosensor chip, heart-lung machine or endoscopic dressing.
  • the medical device is more preferably an ocular lens.
  • the ophthalmic lens is a contact lens.
  • the contact lens includes contact lenses for both visual acuity correction purposes and cosmetic purposes.
  • both a water-containing base material and a non-water-containing base material can be used.
  • the material of the water-containing base material include hydrogel and silicone hydrogel. Silicone hydrogels are particularly preferred because they have the flexibility to give a good wearing feel and high oxygen permeability.
  • examples of the non-moisture-containing base material include a low-moisture soft material and a low-moisture hard material. That is, in the method for producing a medical device of the present invention, the substrate may contain one or more materials selected from the group consisting of hydrogels, silicone hydrogels, low water content soft materials, and low water content hard materials. preferable.
  • the method of the present invention is applicable to both general hydrogels that do not contain silicone and hydrogels that contain silicone (hereinafter referred to as silicone hydrogels). Since the surface physical characteristics can be greatly improved, it can be particularly preferably used for silicone hydrogels.
  • United States Adopted Names may be used to represent a material.
  • a symbol such as A, B, or C may be added at the end to indicate a variant of the material, but in the present specification, if the symbol at the end is not added, all variants are indicated.
  • ocufilcon when simply described as “ocufilcon”, it means all variants of ocufilcon such as "ocufilcon A”, “ocufilcon B”, “ocufilcon C”, “ocufilcon D”, “ocufilcon E”, and "ocufilcon F”.
  • hydrogels tefilcon, tetrafilcon, helfilcon, mafilcon, polymacon, hioxifilcon, alfafilcon, omafilcon, hioxifilcon, nelfilcon, nesofilcon, hilafilcon, acofilcon, deltafilcon, etafilcon, focofilcon, ocufilcon, phemfilcon, methafilcon , And a hydrogel selected from the group consisting of vilfilcon.
  • contact lenses made of hydrogel are classified into Group 1 to Group 4 of contact lenses defined by the US Food and Drug Administration (FDA).
  • FDA US Food and Drug Administration
  • Group2 and Group4 are more preferable, and Group4 is particularly preferable, because they show good water wettability and antifouling property.
  • Group 1 represents a nonionic hydrogel lens having a water content of less than 50% by mass. Specific examples thereof include tefilcon, terrafilcon, helfilcon, mafilcon, polymacon and hioxifilcon.
  • Group2 represents a nonionic hydrogel lens having a water content of 50% by mass or more. Specific examples thereof include alfabilcon, omafilcon, hioxyfilcon, nelfilcon, nesofilcon, hilafilcon and acofilcon. Omafilcon, hioxyfilcon, nelfylcon, nesofilcon are more preferable, omafilcon and hioxyfilcon are more preferable, and omafilcon is particularly preferable because they show good water wettability and antifouling property.
  • Group3 represents an ionic hydrogel lens with a water content of less than 50% by mass. Specific examples thereof include deltafilcon.
  • Group 4 represents an ionic hydrogel lens having a water content of 50% by mass or more. Specific examples thereof include etafilcon, focofilcon, ocufilcon, phefilcon, methafilcon, and vifilcon. Since it exhibits good water wetting property and antifouling property, etafilcon, focofilcon, ocufilcon, and phefilcon are more preferable, etafilcon and ocufilcon are further preferable, and etafilcon is particularly preferable.
  • silicone hydrogel for example, a silicone hydrogel lens selected from the group belonging to the contact lens classification Group 5 defined by the US Food and Drug Administration (FDA) is preferable.
  • FDA US Food and Drug Administration
  • silicone hydrogel a polymer containing a silicon atom in the main chain and / or the side chain and having hydrophilicity is preferable, and examples thereof include a copolymer of a monomer containing a siloxane bond and a hydrophilic monomer.
  • the silicone hydrogels are preferably a silicone hydrogel selected from the group consisting of delfilcon.
  • a silicon atom is used because it exhibits high oxygen permeability capable of supplying sufficient oxygen to the cornea. It is preferably a material containing.
  • the low water content hard material for example, when the low water content hard material is a contact lens, the low water content hard material selected from the group belonging to the contact lens classification defined by the US Food and Drug Administration (FDA) is preferable.
  • FDA US Food and Drug Administration
  • a polymer containing a silicon atom in the main chain and / or the side chain is preferable.
  • a polymer containing a siloxane bond can be mentioned.
  • these polymers containing silicon atoms those in which silicon atoms are contained in the polymer by siloxane bonds are preferable from the viewpoint of oxygen permeability.
  • Specific examples of such polymers include tris (trimethylsiloxy) silylpropyl methacrylate, polydimethylsiloxane having double bonds at both ends, homopolymers using silicone-containing (meth) acrylate, or other monomers and other homopolymers. Examples include copolymers with monomers.
  • the low water content hard material is a material selected from the group consisting of neofocon, pasifocon, telefocon, silafocon, paflufocon, petrafocon and fluorofocon.
  • neofocon, pasifocon, telefocon, and silafocon are more preferable
  • neofocon, pasifocon, and telefocon are more preferable
  • neofocon is particularly preferable, because they show good water wettability and antifouling property.
  • suitable examples of the low water-containing hard material include polyethylene, polypropylene, polysulfone, polyetherimide, polystyrene, polymethylmethacrylate, polyamide, polyester, epoxy resin, and the like.
  • suitable examples of the low water content hard material include polysulfone, polystyrene, polymethylmethacrylate and polyamide because it exhibits good water wettability and antifouling property, and is polymethylmethacrylate. Is particularly preferred.
  • the low water content soft material include, for example, a water content of 10% by mass or less, an elastic modulus of 100 kPa or more and 2,000 kPa or less, and a tensile elongation of 50% as described in International Publication No. 2013/024799.
  • Examples thereof include low water content soft materials used in medical devices of 3,000% or less. elastofilcon is also suitable.
  • suitable examples of the low water content soft material are silicone elastomer, flexible polyurethane, polyvinyl acetate, ethylene-vinyl acetate copolymer, and the like.
  • the water content of the base material may be any of 0 to 99% by mass. Since the effect of imparting appropriate hydrophilicity to the surface of the medical device is even higher, the water content of the base material is preferably 0.0001% by mass or more, and particularly preferably 0.001% by mass or more.
  • the water content of the base material is preferably 60% by mass or less, more preferably 50% by mass or less, and even more preferably 40% by mass or less.
  • the medical device is a contact lens
  • the movement of the lens in the eye is easily ensured, so that the water content of the base material is preferably 15% by mass or more, and more preferably 20% by mass or more.
  • the base material is placed in a solution containing a hydrophilic polymer and a positive salt in the range of 1.0 to 20% by mass, and the solution is placed at 50 ° C. to 140 ° C. Including the step of heating within the range of.
  • the hydrophilic polymer used in the method for manufacturing a medical device of the present invention is usually a material different from the base material.
  • the same material as the material constituting the base material may be used as long as a predetermined effect can be obtained.
  • the hydrophilic polymer is composed of a hydrophilic material.
  • the hydrophilic material is a material that is soluble in 100 parts by mass or more of water at room temperature (20 to 23 ° C.) or 0.0001 parts by mass or more in a mixed solution of 100 parts by mass of water and 100 parts by mass of tert-butanol. It is more preferably 0.01 part by mass or more soluble, further preferably 0.1 part by mass or more soluble, and particularly preferably 1 part by mass or more soluble material.
  • the hydrophilic polymer used in the present invention preferably has a molecular weight of 2000-1500,000.
  • the molecular weight is more preferably 5000 or more, still more preferably 10000 or more.
  • the molecular weight is more preferably 120,000 or less, and even more preferably 1,000,000 or less.
  • the molecular weight the mass average molecular weight in terms of polyethylene glycol or polyethylene oxide measured by gel permeation chromatography (aqueous solvent) is used.
  • the concentration of the hydrophilic polymer in the solution is preferably in the range of 0.01 to 20% by mass.
  • the concentration of the hydrophilic polymer is more preferably 0.02% by mass or more, still more preferably 0.03% by mass or more.
  • the concentration of the hydrophilic polymer is more preferably 10% by mass or less, further preferably 5% by mass or less, more preferably 1% by mass, and most preferably 0.8% by mass. It is as follows.
  • the hydrophilic polymer preferably contains an amide group.
  • a hydrophilic polymer containing an amide group is preferable because it exhibits an appropriate viscosity when the hydrophilic polymer is dissolved in water and can form a hydrophilic polymer layer having excellent durability.
  • the hydrophilic polymer containing an amide group a homopolymer or a copolymer of a monomer having an amide group can be used.
  • a monomer having an amide group a monomer having a (meth) acrylamide group and a monomer selected from N-vinylcarboxylic acid amide (including cyclic ones) are preferable from the viewpoint of easiness of polymerization.
  • Preferable examples of such monomers include N-vinylpyrrolidone, N-vinylcaprolactam, N-vinylacetamide, N-methyl-N-vinylacetamide, N-vinylformamide, N, N-dimethylacrylamide, N, N-diethyl.
  • N-vinylpyrrolidone, N, N-dimethylacrylamide and N, N-diethylacrylamide are preferable in terms of durability
  • a copolymer containing the above-mentioned monomer having an amide group or a homopolymer can be preferably used.
  • the hydrophilic polymer may contain an acidic group in addition to the amide group.
  • the hydrophilic polymer has an amide group and an acidic group, it is preferable because a hydrophilic polymer layer having excellent antifouling property against body fluids and the like as well as water wettability can be formed.
  • the acidic group referred to here specifically, a group selected from a carboxy group and a sulfonic acid group is preferable, and a carboxy group is particularly preferable.
  • the carboxy group or sulfonic acid group may be a salt.
  • hydrophilic polymers having an amide group and an acidic group examples include polyamides having a carboxy group, copolymers of a monomer having an amide group and a monomer having an acidic group, and the like.
  • polyamides having a carboxy group include polyamino acids such as polyaspartic acid and polyglutamic acid, and polypeptides.
  • the monomer having an acidic group is selected from methacrylic acid, acrylic acid, vinylbenzoic acid, thiophene-3-acetic acid, 4-styrenesulfonic acid, vinylsulfonic acid, 2-acrylamide-2-methylpropanesulfonic acid and salts thereof. Can be preferably used.
  • the above-mentioned monomer can be preferably used.
  • the hydrophilic polymer having an amide group and an acidic group is a copolymer
  • preferred specific examples are (meth) acrylic acid / N-vinylpyrrolidone copolymer, (meth) acrylic acid / N, N-dimethylacrylamide.
  • the copolymers are 2-acrylamide-2-methylpropanesulfonic acid / N-vinylpyrrolidone copolymer, and 2-acrylamide-2-methylpropanesulfonic acid / N, N-dimethylacrylamide copolymer.
  • Particularly preferred is a (meth) acrylic acid / N, N-dimethylacrylamide copolymer.
  • the copolymerization ratio is 1/99 to [mass of the monomer having an acidic group] / [mass of a monomer having an amide group].
  • the one of 99/1 is preferable.
  • the copolymerization ratio of the monomer having an acidic group is more preferably 2% by mass or more, further preferably 5% by mass or more, still more preferably 10% by mass or more.
  • the copolymerization ratio of the monomer having an acidic group is more preferably 90% by mass or less, further preferably 80% by mass or less, still more preferably 70% by mass or less.
  • the copolymerization ratio of the monomer having an amide group is more preferably 10% by mass or more, further preferably 20% by mass or more, still more preferably 30% by mass or more.
  • the copolymerization ratio of the monomer having an amide group is more preferably 98% by mass or less, further preferably 95% by mass or less, and even more preferably 90% by mass or less.
  • copolymer of the above-mentioned monomer having an amide group and the monomer having an acidic group can be copolymerized with a plurality of monomers having different acidic groups or amide groups. It is also possible to copolymerize one or more monomers having no acidic group or amide group.
  • Preferable examples of monomers having no acidic or amide group include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, hydroxyethyl (meth) acrylamide, glycerol (meth) acrylate, Examples thereof include caprolactone-modified 2-hydroxyethyl (meth) acrylate, N- (4-hydroxyphenyl) maleimide, hydroxystyrene, and vinyl alcohol (carboxylic acid vinyl ester as a precursor).
  • a monomer having a (meth) acryloyl group is preferable, and a (meth) acrylic acid ester monomer is more preferable from the viewpoint of easiness of polymerization.
  • hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, and glycerol (meth) acrylate are preferable, and hydroxyethyl (meth) acrylate is particularly preferable.
  • the monomer having antibacterial properties include a monomer having a quaternary ammonium salt and the like.
  • monomers having antibacterial properties such as the imidazolium salt monomer described in JP-A-2010-888858, (3-acrylamidepropyl) trimethylammonium chloride, trimethyl-2-methacryloxyethylammonium chloride, 2-methacryloxyethyl phosphorylcholine and the like. Can be mentioned.
  • a monomer having no acidic group or amide group (hereinafter referred to as a third monomer) is copolymerized with a copolymer of a monomer having an amide group and a monomer having an acidic group, the monomer having an acidic group is used together.
  • the polymerization ratio is more preferably 2% by mass or more, further preferably 5% by mass or more, and even more preferably 10% by mass or more.
  • the copolymerization ratio of the monomer having an acidic group is more preferably 90% by mass or less, further preferably 80% by mass or less, still more preferably 70% by mass or less.
  • the copolymerization ratio of the monomer having an amide group is more preferably 10% by mass or more, further preferably 20% by mass or more, still more preferably 30% by mass or more.
  • the copolymerization ratio of the monomer having an amide group is more preferably 98% by mass or less, further preferably 95% by mass or less, and even more preferably 90% by mass or less.
  • the copolymerization ratio of the third monomer is more preferably 2% by mass or more, further preferably 5% by mass or more, and even more preferably 10% by mass or more.
  • the copolymerization ratio of the third monomer is more preferably 90% by mass or less, further preferably 80% by mass or less, and even more preferably 70% by mass or less.
  • the copolymerization ratio of the monomer having an acidic group, the monomer having an amide group, and the third monomer is within the above range, functions such as water wettability and antifouling property against body fluids can be easily exhibited.
  • the hydrophilic polymer layer may contain one or more other hydrophilic polymers in addition to the hydrophilic polymer containing an amide group.
  • the hydrophilic polymer layer is composed of only one kind of hydrophilic polymer containing an amide group.
  • one kind of polymer means a polymer or a group of polymers (isomers, complexes, etc.) produced by one synthetic reaction.
  • a copolymerized polymer using a plurality of monomers even if the monomer species constituting the copolymerized polymer are the same, if another polymer synthesized by changing the monomer compounding ratio is included, only one kind of polymer is used. I do not say that it consists of.
  • the hydrophilic polymer layer when the hydrophilic polymer layer is composed of only one kind of hydrophilic polymer containing an amide group, the hydrophilic polymer layer does not contain any polymer other than the hydrophilic polymer having the amide group, or is tentatively other than that. Even if the above polymer is contained, it means that the content of other polymers is 3 parts by mass or less with respect to 100 parts by mass of the hydrophilic polymer having the amide group.
  • the content of the other polymer is more preferably 0.1 parts by mass or less, and further preferably 0.0001 parts by mass or less.
  • the method for producing a medical device of the present invention includes a step of arranging a base material in a solution containing a hydrophilic polymer and a positive salt in the range of 1.0 to 20% by mass and heating the solution.
  • a positive salt means a salt that does not contain hydrogen ions or hydroxide ions in its chemical structure.
  • CaSO 4 , CaCO 3 , (CH 3 COO) 2 Ca, NaCl, Na 2 CO 3 , Na 2 SO 4 , NaNO 3 , CH 3 COONa, KCL, K 2 SO 4 , K 2 CO 3 , KNO 3 , and CH 3 COOK are more preferred, and NaCL, Na 2 CO 3 , Na 2 SO 4 , Na NO 3 , CH 3 COONa, and KCL are even more preferred, NaCL or KCL. Is the most preferable. Since it is easy to form a hydrophilic polymer layer, it is preferable that the solution at the time of production contains one or more kinds of positive salts selected from the group of these positive salts.
  • the concentration of the positive salt in the solution at the time of production is too high, the specific gravity of the solution becomes high and the buoyancy becomes large, so that the base material is immersed in the solution.
  • the concentration of the positive salt in the solution is preferably 1.0 to 20% by mass because it is difficult to make the salt solution.
  • the concentration of the positive salt is more preferably 2.0% by mass or more, still more preferably 3.0% by mass or more.
  • the concentration of the positive salt is more preferably 15% by mass or less, still more preferably 10% by mass or less.
  • the concentration of positive salt means the mass of positive salt in the whole solution including normal salt.
  • the pH range of the solution is such that the solution does not become turbid and a medical device having good transparency can be obtained. , 2.0 to 7.5 is preferable.
  • the pH is more preferably 2.1 or higher, further preferably 2.2 or higher, even more preferably 2.4 or higher, and particularly preferably 2.5 or higher. Further, the pH is more preferably 7.5 or less, further preferably 7.3 or less, further preferably 7.2 or less, and even more preferably 7.0 or less.
  • the pH of the above solution can be measured using a pH meter (for example, pH meter Eutech pH 2700 (Eutech Instruments)).
  • the pH of the solution containing the hydrophilic polymer is adjusted to 30 minutes at room temperature (23 to 25 ° C.) after adding all the other components such as the hydrophilic polymer, positive salt and, if necessary, an acid to the solution.
  • the second decimal place of the pH value is rounded off.
  • the pH of the solution may change when the heating operation is performed.
  • the pH of the solution after the heating operation is also preferably 2.0 to 7.5.
  • the pH after heating is more preferably 2.1 or higher, more preferably 2.2 or higher, and particularly preferably 2.3 or higher.
  • the pH after heating is more preferably 7.5 or less, more preferably 7.3 or less, further preferably 7.2 or less, and particularly preferably 7.0 or less.
  • the pH of the solution after the heating operation is in the above range, the pH of the solution is maintained at an appropriate condition during the heating step, and the physical characteristics of the obtained medical device become suitable.
  • the pH of the solution can be adjusted by performing a neutralization treatment or adding water, but what is the pH of the solution after performing the heating operation here? , The pH before the pH adjustment process is performed.
  • a water-soluble organic solvent, water, and a mixed solvent thereof are preferable examples.
  • a mixture of water and a water-soluble organic solvent, and water are more preferred, with water being most preferred.
  • various water-soluble alcohols are preferable, alcohols having 6 or less carbon atoms are more preferable, and alcohols having 5 or less carbon atoms are more preferable.
  • the pH of the solution can be adjusted by adding an acid to the solution.
  • an acid a low molecular weight acid having no ring structure is preferable.
  • the small molecule means that the molecular weight is 500 or less, preferably 300 or less, and more preferably 250 or less.
  • Organic acids and inorganic acids can be used as low molecular weight acids having no ring structure.
  • the organic acid include acetic acid, citric acid, formic acid, ascorbic acid, trifluoromethanesulfonic acid, methanesulfonic acid, propionic acid, butyric acid, glycolic acid, lactic acid, malic acid and the like.
  • the inorganic acid include nitric acid, sulfuric acid, phosphoric acid, hydrochloric acid and the like.
  • organic acids are preferable from the viewpoints that a more excellent hydrophilic polymer layer can be easily obtained, safety to a living body is high, and handling is easy, and organic acids having 1 to 20 carbon atoms are preferable. Is more preferable, and an organic acid having 2 to 10 carbon atoms is further preferable.
  • organic acids acids selected from acetic acid, citric acid, formic acid, ascorbic acid, trifluoromethanesulfonic acid, methanesulfonic acid, propionic acid, butyric acid, glycolic acid, lactic acid and malic acid are preferable, and formic acid, malic acid, and citrate
  • An acid selected from the acid and ascorbic acid is more preferred, and citric acid or ascorbic acid is even more preferred.
  • sulfuric acid is preferable from the viewpoint of being non-volatile, odorless and easy to handle.
  • a buffer to the solution because it facilitates fine adjustment of pH and makes it difficult for the base material to become cloudy when the base material is a material containing a hydrophobic component.
  • a known physiologically compatible buffer can be used.
  • An example is as follows. Sulfonic acid, borates (eg sodium borate), sulfonic acid, citrates (eg potassium citrate), bicarbonate (eg sodium bicarbonate), phosphate buffer (eg Na 2 HPO 4) , NaH 2 PO 4 , and KH 2 PO 4 ), TRIS (Tris (hydroxymethyl) aminomethane), 2-bis (2-hydroxyethyl) amino-2- (hydroxymethyl) -1,3-propanediol, bis -Amino polyol, triethanolamine, ACES (N- (2-acetamide) -2-aminoethanesulfonic acid), BES (N, N-bis (2-hydroxyethyl) -2-aminoethanesulfonic acid), HEPES ( 4- (2-Hydroxyethyl) -1-piperazin ethanesulfonic acid), MES (2- (N-morpholino)
  • the amount of the buffer an amount effective for achieving the desired pH is used. Usually, it is preferably present in a solution in an amount of 0.001% by mass to 2% by mass, preferably 0.01% by mass to 1% by mass, and more preferably 0.05% by mass to 0.30% by mass. It may be a range in which either the upper limit or the lower limit is combined.
  • the heating method examples include a heating method (hot air), a high-pressure steam sterilization method, an electromagnetic wave ( ⁇ -ray, microwave, etc.) irradiation, a dry heat method, and a flame method.
  • a heating method hot air
  • a high-pressure steam sterilization method an electromagnetic wave ( ⁇ -ray, microwave, etc.) irradiation
  • a dry heat method a flame method.
  • the heating method hot air
  • the high-pressure steam sterilization method is used when the pH is 6.0 or more.
  • the apparatus it is preferable to use a constant temperature dryer / hot air circulation oven or an autoclave apparatus.
  • the heating temperature is in the range of 50 ° C. to 140 ° C. from the viewpoint that a hydrophilic polymer layer showing good water wettability and slipperiness can be obtained and the strength of the medical device itself is not affected.
  • the heating temperature is more preferably 55 ° C. or higher, further preferably 60 ° C. or higher, further preferably 65 ° C. or higher, and particularly preferably 80 ° C. or higher.
  • the heating temperature is more preferably 135 ° C. or lower, further preferably 130 ° C. or lower, and particularly preferably 121 ° C. or lower.
  • a hydrophilic polymer having a hydroxyl group on the surface of a base material has a pH of 2.0 to 6.0 under conditions requiring pressurization of 100 ° C. or higher, which is a higher temperature. It could be immobilized within a range (see, eg, International Publication No. 2017/146102).
  • a positive salt can be used in a wide range of pH 2.0 to 7.5. It has been found that the hydrophilic polymer layer can be immobilized on the surface of the device by using the hydrophilic polymer in combination.
  • the positive salt promotes the aggregation of the hydrophilic polymer in the solution, thereby improving the intermolecular force such as hydrogen bond between the hydrophilic polymer and the device, and making the device surface hydrophilic. It is estimated that the polymer layer can be immobilized.
  • the heating time is preferably 5 minutes to 600 minutes.
  • the heating time is 5 minutes or more, a hydrophilic polymer layer exhibiting good water wettability and durability can be easily obtained. If the heating time is 600 minutes or less, the strength of the medical device itself is unlikely to be affected.
  • the heating time is more preferably 10 minutes or more, and more preferably 15 minutes or more.
  • the heating time is more preferably 400 minutes or less, and more preferably 300 minutes or less.
  • the obtained medical device may be further subjected to another treatment.
  • Other treatments include a method of performing the same heat treatment again in a solution containing a hydrophilic polymer, a method of replacing the solution with a solution containing no hydrophilic polymer and performing the same heat treatment, and a method of performing irradiation. Examples thereof include a method of performing an LbL treatment (Layer by Layer treatment) in which polymer materials having opposite charges are alternately coated one layer at a time, a method of performing a cross-linking treatment with metal ions, and a method of performing a chemical cross-linking treatment.
  • LbL treatment Layer by Layer treatment
  • the base material may be pretreated before the above heat treatment.
  • the pretreatment include hydrolysis treatment with an acid such as polyacrylic acid and an alkali such as sodium hydroxide.
  • the radiation used for the above-mentioned irradiation is preferably various ion rays, electron beams, positron rays, X-rays, ⁇ -rays, and neutron rays, more preferably electron beams and ⁇ -rays, and most preferably ⁇ -rays.
  • metal ion used for the above-mentioned cross-linking treatment with the metal ion various metal ions can be used, preferably monovalent and divalent metal ions, and most preferably divalent metal ions. Moreover, you may use a chelate complex.
  • Examples of the above chemical cross-linking treatment include a reaction between an epoxy group and a carboxy group as described in JP-A-2014-533381, and an acidic hydrophilic polymer having an epoxy group and a known hydroxyl group. It is preferable to use a cross-linking treatment formed between them.
  • the solution containing no hydrophilic polymer is not particularly limited, but a buffer solution is preferable.
  • the buffering agent the above-mentioned one can be used.
  • the pH of the buffer solution is preferably 6.3 to 7.8, which is a physiologically acceptable range.
  • the pH of the buffer solution is preferably 6.5 or higher, more preferably 6.8 or higher.
  • the pH of the buffer solution is preferably 7.6 or less, more preferably 7.4 or less.
  • the medical device in the present invention has a hydrophilic polymer layer on at least a part of the base material. Having a hydrophilic polymer layer on at least a part of the base material means that the polymer layer is present on the entire surface of one surface of the base material, for example, depending on the use of the medical device.
  • the base material has no thickness or has a two-dimensional shape that can be ignored even if it has a thickness
  • the polymer layer is present on the entire surface of one side of the base material. It is also preferable that the polymer layer is present on the entire surface of the substrate.
  • the hydrophilic polymer layer can be produced by a simple process regardless of the base material, it is preferable that the hydrophilic polymer layer does not have a covalent bond with the base material.
  • the absence of a covalent bond is determined by the absence of a chemically reactive group or a group formed by the reaction thereof.
  • Specific examples of the chemically reactive group include, but are not limited to, an azetidineium group, an epoxy group, an isocyanate group, an aziridine group, an azlactone group and a combination thereof.
  • the thickness of the hydrophilic polymer layer is preferably 1 nm or more and less than 100 nm when the vertical cross section of the dry medical device is observed using a transmission electron microscope. When the thickness is in this range, functions such as water wettability are likely to be exhibited.
  • the thickness is more preferably 5 nm or more, further preferably 10 nm or more.
  • the thickness is more preferably 95 nm or less, further preferably 90 nm or less, further preferably 85 nm or less, further preferably 50 nm or less, further preferably 30 nm or less, further preferably 20 nm or less, further preferably 15 nm or less, and particularly preferably. It is 10 nm or less.
  • the thickness of the hydrophilic polymer layer is less than 100 nm, it is excellent in water wettability and durability. For example, when it is used in a medical device such as an eye lens, the refraction of light for focusing on the retina is not disturbed and visibility is poor. It is less likely to occur.
  • the medical device exists in a state where at least a part of the hydrophilic polymer layer is mixed with the base material.
  • the cross section of the medical device is scanned for elements such as transmission electron microscopy, electron energy loss spectroscopy, energy dispersive X-ray spectroscopy, and time-of-flight secondary ion mass spectrometry. It can be confirmed by detecting the element derived from the base material in the cross-sectional structure of the base material before and after the formation of the hydrophilic polymer layer and at least a part of the hydrophilic polymer layer when observing with an observation means capable of analysis or composition analysis.
  • the hydrophilic polymer layer can be firmly fixed by the base material.
  • a layer in which at least a part of the hydrophilic polymer layer is mixed with the base material (hereinafter referred to as “mixed layer”) and "a layer composed of the hydrophilic polymer” It is preferable to observe a two-layer structure composed of "(hereinafter, a single layer).
  • the thickness of the admixture layer is preferably 3% or more, more preferably 5% or more, still more preferably 10% or more, based on the total thickness of the admixture layer and the single layer.
  • the thickness of the admixture layer is preferably 98% or less, more preferably 95% or less, further preferably 90% or less, and particularly preferably 80% or less, based on the total thickness of the admixture layer and the single layer.
  • the thickness ratio of the admixture layer is 3% or more, the hydrophilic polymer and the base material are sufficiently mixed, and the hydrophilic polymer can be firmly fixed by the base material, which is preferable. Further, when the thickness ratio of the admixture layer is 98% or less, the hydrophilicity of the hydrophilic polymer is easily exhibited, which is preferable.
  • the medical device is an eye device such as a medical device or an eye lens that is used by being attached to the surface of a living body, from the viewpoint of preventing the attachment to the skin of the user and the attachment to the cornea of the wearer. From the viewpoint of prevention, it is preferable that the liquid film retention time on the surface of the medical device is long. In other words, this long liquid film retention time indicates that the hydrophilic durability of the medical device is high.
  • the liquid film retention time of the medical device is preferably 10 seconds or more. 15 seconds or more is more preferable, and 20 seconds or more is further preferable.
  • the upper limit of the liquid film retention time is not particularly limited, but if the liquid film retention time is too long, water evaporation from the surface of the medical device tends to proceed and the effect of the hydrophilic polymer layer is weakened, so that it may be 300 seconds or less. It is preferably 200 seconds or less, and more preferably 200 seconds or less.
  • the liquid film retention time in the present invention means that the liquid film on the surface of the medical device is retained when the medical device is immersed in the phosphate buffer solution, allowed to stand, and then pulled up from the phosphate buffer solution and held in the air.
  • the time to be done Specifically, when a medical device immersed in phosphate buffer and left to stand is pulled out of the solution and held in the air so that the surface is vertical, the medical device is held vertically from the time when the medical device is held vertically. It is the time until the liquid film of the phosphate buffer covering the device surface is cut off.
  • cutting of the liquid film means that the liquid film on the surface of the medical device cannot maintain its shape, a phenomenon occurs in which a part of the surface repels the phosphate buffer solution, and the surface of the medical device is completely covered with the liquid film. It refers to a state in which it is no longer in a state of being damaged.
  • the liquid film retention time on the surface of the medical device after high-pressure steam sterilization is long from the viewpoint of making it difficult to feel dryness and maintaining a good wearing feeling for a long time. Is preferable. Specifically, the liquid film retention time on the surface of the medical device after the medical device is heat-treated in a phosphate buffer solution containing no hydrophilic polymer for 30 minutes at 121 ° C. using an autoclave is evaluated. A liquid film retention time on the surface of a medical device after autoclave sterilization is 10 seconds or longer, which means that the surface of the medical device has sufficient water wettability and durability.
  • the liquid film retention time is preferably 10 seconds or longer, more preferably 15 seconds or longer, and particularly preferably 20 seconds or longer.
  • the liquid film retention time is equivalent to that before high-pressure steam sterilization, it is preferable because it shows better durability. Details of the measurement method will be described later.
  • the tensile elastic modulus of the medical device should be appropriately selected according to the type of the medical device, but in the case of a soft medical device such as an ophthalmic lens, the tensile elastic modulus is preferably 10 MPa or less, preferably 5 MPa or less. It is more preferably 3 MPa or less, further preferably 2 MPa or less, even more preferably 1 MPa or less, and most preferably 0.6 MPa or less.
  • the tensile elastic modulus is preferably 0.01 MPa or more, more preferably 0.1 MPa or more, further preferably 0.2 MPa or more, and most preferably 0.25 MPa or more.
  • the tensile modulus In the case of soft medical devices such as ophthalmic lenses, if the tensile modulus is too small, it tends to be too soft and difficult to handle. If the tensile elastic modulus is too large, it tends to be too hard and the wearing feeling and the wearing feeling tend to be deteriorated.
  • the rate of change in tensile elastic modulus of the base material before and after the heat treatment is preferably 15% or less, more preferably 14% or less, and particularly preferably 13% or less. If the rate of change in tensile elastic modulus is too large, it may cause deformation and poor usability, which is not preferable. Details of the measurement method will be described later.
  • the antifouling property of medical devices can be evaluated by the adhesion of lipids (methyl palmitate). The smaller the amount of adhesion based on these evaluations, the better the usability and the lower the risk of bacterial growth, which is preferable. Details of the measurement method will be described later.
  • the amount of change between the medical device obtained after the completion of heating and the water content of the base material before the heating is preferably 10 percentage points or less.
  • the amount of change in the water content (percentage point) is the difference between the water content (mass%) of the obtained medical device and the water content (mass%) of the base material as a raw material thereof.
  • the amount of change in the water content of the base material before and after heating is 10% from the viewpoint of preventing poor visibility and deformation caused by the distortion of the refractive index due to the improvement in the water content when used for an eye device such as an eye lens. Points or less are preferable, 8 percentage points or less are more preferable, and 6 percentage points or less are particularly preferable. Details of the measurement method will be described later.
  • the size change rate of the base material before and after heating is preferably 5% or less, more preferably 4% or less, from the viewpoint of preventing corneal damage due to deformation when used in an ophthalmic device such as an ophthalmic lens. % Or less is particularly preferable. Details of the measurement method will be described later.
  • the liquid film retention time shown below is an index showing the hydrophilic durability of the medical device.
  • the time for which the liquid film is held is the time from the time when the medical device is started to be held vertically in the air until the liquid film of the phosphate buffer solution covering the surface of the medical device is cut off. That is.
  • ⁇ Moisture content of base material and medical device The substrate was immersed in a phosphate buffer solution and allowed to stand at room temperature for 24 hours or more. The base material was pulled up from the phosphate buffer solution, surface moisture was wiped off with a wiping cloth (Nippon Paper Crecia's "Kimwipe (registered trademark)"), and then the mass (Ww) of the base material was measured. Then, the substrate was dried at 40 ° C. for 2 hours in a vacuum dryer, and then the mass (Wd) was measured. From these masses, the water content of the base material was calculated by the following formula (1). When the obtained value was less than 1%, it was judged that it was below the measurement limit, and it was described as "less than 1%”.
  • the average value of N 3 was taken as the water content.
  • the water content of the heated base material that is, the medical device, was calculated in the same manner after the surface moisture was wiped off with a wiping cloth (“Kimwipe (registered trademark)” manufactured by Nippon Paper Crecia).
  • Moisture content of the base material (%) 100 ⁇ (Ww-Wd) / Ww formula (1).
  • Amount of change in water content (percentage point) of the base material before and after heating water content of the medical device (mass%) -water content of the base material (mass%) Equation (2).
  • ⁇ Amount of lipid attached> In a 20 cc screw tube, 0.03 g of methyl palmitate, 10 g of pure water, and a sample of a contact lens-shaped medical device were placed. The screw tube was shaken for 3 hours under the conditions of 37 ° C. and 165 rpm. After shaking, the sample in the screw tube was scrubbed with tap water at 40 ° C. and household liquid detergent (Lion's "Mama Lemon (registered trademark)"). The washed sample was placed in a screw tube containing a phosphate buffer solution and stored in a refrigerator at 4 ° C. for 1 hour. Then, the sample was visually observed, and if there was a cloudy portion, it was determined that methyl palmitate was attached, and the area of the portion to which methyl palmitate was attached was observed with respect to the entire surface of the sample.
  • Size change rate (%) before and after heat treatment (device size after heat treatment-size of base material before heat treatment) / size of base material before heat treatment ⁇ 100 formula (4).
  • ⁇ pH measurement method> The pH of the solution was measured using a pH meter Eutech pH 2700 (manufactured by Eutech Instruments).
  • the pH of the solution containing the hydrophilic polymer and the positive salt before heat treatment is set at room temperature (20 to 23 ° C.) after adding all the hydrophilic polymer and the positive salt to the solutions described in each Example and Comparative Example.
  • the mixture was stirred with a rotor for 30 minutes to homogenize the solution, and then measured.
  • the "pH after heat treatment” is the pH measured immediately after the solution is cooled to room temperature (20 to 23 ° C.) after the heat treatment is performed once.
  • ⁇ Film thickness of hydrophilic polymer layer The film thickness of the hydrophilic polymer layer was measured by observing the cross section of the dry medical device using a transmission electron microscope. The film thickness was measured at one location for each visual field at three different locations, and the average value of the film thickness at three locations was described.
  • the above monomer mixture is injected into a contact lens mold made of transparent resin (material on the base curve side: polypropylene, material on the front curve side: polypropylene) and irradiated with light (wavelength 405 nm ( ⁇ 5 nm), illuminance: 0 to 0.7 mW. (/ Cm 2 , 30 minutes) was polymerized to obtain a molded product made of a low water content soft material containing a silicon atom.
  • the obtained molded body was immersed in a 100 mass% isopropyl alcohol aqueous solution at 60 ° C. for 1.5 hours together with the mold from which the front curve and the base curve were separated, and a contact lens-shaped molded body was obtained from the mold. It peeled off.
  • the obtained molded product was immersed in a large excess amount of 100 mass% isopropyl alcohol aqueous solution maintained at 60 ° C. for 2 hours to extract impurities such as residual monomers. Then, it was dried at room temperature (23 ° C.) for 12 hours.
  • EDTA2Na represents disodium dihydrogen tetraacetate ethylenediamine.
  • Example 1 As a base material, a commercially available silicone hydrogel lens "MyDay (registered trademark)" (manufactured by Cooper Vision Co., Ltd., stenfilcon A) containing silicone as a main component was used. Acrylic acid / N, N-diethylacrylamide copolymer (molar ratio in copolymerization 1/9, Mw: 800,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) was added as a hydrophilic polymer in a phosphoric acid buffer solution. The base material was immersed in a solution containing 03% by mass and 1.0% by mass of NaCl as a normal salt, and heat-treated in an autoclave at 121 ° C. for 30 minutes. The results of evaluation of the obtained medical device by the above method are shown in Tables 1 to 3.
  • Example 2 As a base material, a commercially available silicone hydrogel lens "MyDay (registered trademark)" (manufactured by Cooper Vision Co., Ltd., stenfilcon A) containing silicone as a main component was used. Acrylic acid / acryloylmorpholin copolymer (1/9 molar ratio in copolymerization, Mw: 320,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) was added as a hydrophilic polymer in a phosphoric acid buffer solution in an amount of 0.05% by mass. The base material was immersed in a solution containing 10% by mass of KCL as a normal salt, and heat-treated in an autoclave at 121 ° C. for 30 minutes. The results of evaluation of the obtained medical device by the above method are shown in Tables 1 to 3.
  • Example 3 As a base material, a commercially available silicone hydrogel lens "MyDay (registered trademark)" (manufactured by Cooper Vision Co., Ltd., stenfilcon A) containing silicone as a main component was used. Acrylic acid / N, N-dimethylacrylamide / N, N-diethylacrylamide copolymer as a hydrophilic polymer in phosphate buffer (molar ratio in copolymerization 1/8/1, Mw: 630,000, Osaka Organic The base material was immersed in a solution prepared by adding 0.04% by mass of (manufactured by Kagaku Kogyo Co., Ltd.) and 5% by mass of NaCl as a normal salt, and further adding quench to adjust the pH to 3.0, and immersing the substrate at 90 ° C. Heat-treated in an autoclave for 1 minute. The results of evaluation of the obtained medical device by the above method are shown in Tables 1 to 3.
  • Example 4 As a base material, a commercially available silicone hydrogel lens "MyDay (registered trademark)" (manufactured by Cooper Vision Co., Ltd., stenfilcon A) containing silicone as a main component was used. Acrylic acid / N-vinylpyrrolidone / N, N-dimethylacrylamide copolymer as a hydrophilic polymer in phosphoric acid buffer (molar ratio in copolymerization 1/1/2, Mw: 330,000, Osaka Organic Chemical Industry) The base material was immersed in a solution containing 0.05% by mass of (manufactured by Co., Ltd.) and 3% by mass of NaCl as a positive salt, and heat-treated in an autoclave at 100 ° C. for 30 minutes. The results of evaluation of the obtained medical device by the above method are shown in Tables 1 to 3.
  • Example 5 As a base material, a commercially available silicone hydrogel lens "Acuvue Oasys (registered trademark)" (manufactured by Johnson & Johnson, senofilcon A) containing silicone as a main component was used. 0.03 mass of acrylic acid / N-vinylpyrrolidone copolymer (molar ratio in copolymerization, Mw: 390,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) as a hydrophilic polymer in phosphoric acid buffer. The substrate was immersed in a solution containing 10% by mass of NaCl as% and positive salt, and heat-treated in an autoclave at 121 ° C. for 30 minutes. The results of evaluation of the obtained medical device by the above method are shown in Tables 1 to 3.
  • Example 6 As a base material, a commercially available silicone hydrogel lens "Acuvue Oasys (registered trademark)" (manufactured by Johnson & Johnson, senofilcon A) containing silicone as a main component was used.
  • Acrylic acid / 2-hydroxyethyl methacrylate / N, N-dimethylacrylamide copolymer as a hydrophilic polymer in phosphate buffer (molar ratio in copolymerization 1/8, Mw: 480,000, Osaka Organic
  • the base material was immersed in a solution prepared by adding 0.03% by mass of (manufactured by Kagaku Kogyo Co., Ltd.) and 10% by mass of KCL as a normal salt, and further adding quench to adjust the pH to 2.5, and immersing the substrate at 90 ° C. Heat-treated in an autoclave for minutes.
  • Tables 1 to 3 The results of evaluation of the obtained medical device by the above method are shown in Tables 1 to 3.
  • Example 7 As a base material, a commercially available silicone hydrogel lens "Acuvue Oasys (registered trademark)" (manufactured by Johnson & Johnson, senofilcon A) containing silicone as a main component was used. The above group is contained in a solution containing 0.03% by mass of polyvinylpyrrolidone (Mw: 200,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) as a hydrophilic polymer and 10% by mass of NaCl as a positive salt in a phosphate buffer solution. The material was immersed and heat-treated in an autoclave at 121 ° C. for 30 minutes.
  • polyvinylpyrrolidone Mw: 200,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.
  • Example 8 As a base material, a commercially available silicone hydrogel lens "Acuvue Oasys (registered trademark)" (manufactured by Johnson & Johnson, senofilcon A) containing silicone as a main component was used. The above-mentioned solution containing 0.03% by mass of polydimethylacrylamide (Mw: 200,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) as a hydrophilic polymer and 10% by mass of NaCl as a positive salt in a phosphate buffer solution. The substrate was immersed and heat-treated in an autoclave at 121 ° C. for 30 minutes. The results of evaluation of the obtained medical device by the above method are shown in Tables 1 to 3.
  • Example 9 As the base material, the molded product obtained in Production Example 1 was used. Acrylic acid / N, N-diethylacrylamide copolymer (molar ratio in copolymerization 1/9, Mw: 280,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) was added as a hydrophilic polymer in a phosphate buffer solution. The base material was immersed in a solution containing 05% by mass and 10% by mass of NaCl as a positive salt, and heat-treated in an autoclave at 121 ° C. for 30 minutes. The results of evaluation of the obtained medical device by the above method are shown in Tables 1 to 3.
  • Example 10 As the base material, the molded product obtained in Production Example 1 was used.
  • the phosphate buffer contains 0.05% by mass of poly N, N-diethylacrylamide (Mw: 290,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) as a hydrophilic polymer and 12% by mass of KCL as a positive salt.
  • the base material was immersed in the solution contained in the solution containing the above-mentioned solution, and heat-treated in an autoclave at 121 ° C. for 30 minutes.
  • Tables 1 to 3 The results of evaluation of the obtained medical device by the above method are shown in Tables 1 to 3.
  • Example 11 As a base material, a commercially available silicone hydrogel lens "MyDay (registered trademark)" (manufactured by Cooper Vision Co., Ltd., stenfilcon A) containing silicone as a main component was used. Acrylic acid / N, N-diethylacrylamide copolymer (molar ratio in copolymerization 1/9, Mw: 800,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) was added as a hydrophilic polymer in a phosphoric acid buffer solution. The base material was immersed in a solution containing 03% by mass and 0.18% by mass of NaCl as a normal salt, and heat-treated in an autoclave at 121 ° C. for 30 minutes. The results of evaluation of the obtained medical device by the above method are shown in Tables 1 to 3.
  • Example 12 As a base material, a commercially available silicone hydrogel lens "Acuvue Oasys (registered trademark)" (manufactured by Johnson & Johnson, senofilcon A) containing silicone as a main component was used. The above-mentioned solution containing 0.03% by mass of polydimethylacrylamide (Mw: 200,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) as a hydrophilic polymer and 5% by mass of NaCl as a positive salt in a phosphate buffer solution. The substrate was immersed and heat-treated in an autoclave at 121 ° C. for 30 minutes. The results of evaluation of the obtained medical device by the above method are shown in Tables 1 to 3.
  • a base material As a base material, a commercially available silicone hydrogel lens "MyDay (registered trademark)" (manufactured by Cooper Vision Co., Ltd., stenfilcon A) containing silicone as a main component was used. The base material was immersed in a solution containing 0.05% by mass of polydimethylacrylamide (Mw: 300,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) as a hydrophilic polymer in a phosphoric acid buffer, and the temperature was 30 ° C. Heat-treated in an autoclave for minutes. Tables 4 to 6 show the results of evaluation of the obtained medical device (no hydrophilic polymer layer was confirmed) by the above method.
  • MyDay registered trademark
  • stenfilcon A silicone hydrophilic polymer
  • a base material As a base material, a commercially available silicone hydrogel lens "MyDay (registered trademark)" (manufactured by Cooper Vision Co., Ltd., stenfilcon A) containing silicone as a main component was used. A solution prepared by containing 0.05% by mass of polyvinylpyrrolidone (Mw: 300,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) as a hydrophilic polymer in a phosphoric acid buffer and adjusting the pH to 3.0 with citric acid. The base material was immersed in the substrate and heat-treated in an autoclave at 121 ° C. for 30 minutes. Tables 4 to 6 show the results of evaluation of the obtained medical device (no hydrophilic polymer layer was confirmed) by the above method.
  • MyDay registered trademark
  • stenfilcon A silicone hydrogel lens
  • a base material As a base material, a commercially available silicone hydrogel lens "MyDay (registered trademark)" (manufactured by Cooper Vision Co., Ltd., stenfilcon A) containing silicone as a main component was used. 0.03 mass of acrylic acid / N-vinylpyrrolidone copolymer (molar ratio in copolymerization, Mw: 320,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) as a hydrophilic polymer in a phosphoric acid buffer solution. The base material was immersed in the solution containing%, and heat-treated in an autoclave at 100 ° C. for 30 minutes. Tables 4 to 6 show the results of evaluation of the obtained medical device (no hydrophilic polymer layer was confirmed) by the above method.
  • a commercially available silicone hydrogel lens "Acuvue Oasys (registered trademark)" containing polyvinylpyrrolidone and silicone as main components (Senofilcon A, manufactured by Johnson & Johnson) was used.
  • Polydimethylacrylamide (Mw: 300,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) was contained in a phosphoric acid buffer solution in an amount of 0.05% by mass as a hydrophilic polymer, and the solution was prepared with citric acid to pH 3.5.
  • the substrate was immersed and heat-treated in an autoclave at 121 ° C. for 30 minutes. Tables 4 to 6 show the results of evaluation of the obtained medical device (no hydrophilic polymer layer was confirmed) by the above method.
  • Acrylic acid / 2-hydroxyethyl methacrylate / N, N-dimethylacrylamide copolymer as a hydrophilic polymer in phosphate buffer (molar ratio in copolymerization 1/8, Mw: 480,000, Osaka Organic
  • the base material was immersed in a solution prepared by adding 0.03% by mass of (manufactured by Kagaku Kogyo Co., Ltd.) and 0.1% by mass of KCL as a normal salt, and further adding quench to adjust the pH to 2.5. Heat-treated at ° C. for 30 minutes in an autoclave. Tables 4 to 6 show the results of evaluation of the obtained medical device (no hydrophilic polymer layer was confirmed) by the above method.
  • a commercially available silicone hydrogel lens "MyDay (registered trademark)" manufactured by Cooper Vision Co., Ltd., stenfilcon A
  • Acrylic acid / acryloylmorpholin copolymer (molar ratio in copolymerization 1/9, Mw: 320,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) was added as a hydrophilic polymer in a phosphoric acid buffer solution in an amount of 0.05% by mass.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Dermatology (AREA)
  • Materials Engineering (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Cardiology (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本発明は、基材と、親水性ポリマー層を有する医療デバイスを製造する方法であって、前記基材を親水性ポリマーと、1.0~20質量%の範囲内の正塩とを含む溶液中に配置して、前記溶液を50℃~140℃の範囲内で加熱する工程を含む医療デバイスの製造方法。本発明は、耐久性に優れた親水性が付与された医療デバイスを簡便に製造する方法を提供する。

Description

医療デバイスの製造方法
 本発明は、医療デバイスの製造方法に関する。
 従来、種々の分野においてシリコーンゴム、ヒドロゲル(ハイドロゲル)等の樹脂製軟質材料を用いたデバイス、および、金属、ガラス等の硬質材料を用いたデバイスが多様な用途に用いられている。
 軟質材料を用いたデバイスの用途としては、生体内に導入したり、生体表面を被覆したりする医療デバイスや、細胞培養シート、組織再生用足場材料等のバイオテクノロジー用デバイスや、顔用パック等の美容デバイスが挙げられる。
 硬質材料を用いたデバイスの用途としては、パソコン、携帯電話、ディスプレイ等の電化製品、注射薬に使用されるアンプル、毛細管、バイオセンシングチップなどの診断・分析ツールとしての使用が挙げられる。
 種々のデバイスを、例えば医療デバイスとして生体内に導入したり、生体表面に貼付したりして用いる場合、医療デバイスの表面改質が重要となる。表面改質によって、医療デバイスに表面改質前よりも良好な特性、例えば親水性、易滑性、生体適合性、薬効といった特性を与えることができれば、使用者(患者等)に対する、使用感の向上、不快感の低減、症状の改善などを期待することができる。
 医療デバイスに用いられる基材の表面を改質させる方法に関しては、種々の方法が知られている。
 例えば、基材を、水酸基を有するポリマーが含まれる2.0以上6.0以下のpHの溶液中で加熱することによって、基材表面に良好な水濡れ性を付与する方法が開示されている(例えば、特許文献1および2を参照)。
 また、1種類以上のポリマー材料を含むpH6~8の範囲の溶液中で基材をオートクレーブ滅菌することによって、基材の装着性を向上させる方法が知られている(例えば、特許文献3を参照)。
国際公開第2017/146102号 国際公開第2019/031477号 特表2019-507908号公報
 しかしながら、特許文献1および2に記載されているような基材の表面改質法においては、加熱を行った後の基材を含んだ溶液のpHが6.0以下である。そのため、例えば眼用レンズのような医療デバイスに用いる場合、眼に対する刺激をなくすため中性の溶液で洗浄する工程と滅菌工程を追加で行う必要があった。このような追加の工程を省くために、加熱を行う溶液のpHを6.0以上にした場合、特許文献1および2に記載の方法では基材の表面改質が困難であった。
 特許文献3に記載されている方法においては、基材を、特定の界面活性剤(ポリオキシエチレン-ポリオキシブチレンブロックコポリマー)および特定の湿潤剤(N-ビニルピロリドンと少なくとも1種のアミノ含有ビニルモノマーとの高分子量コポリマー)を含む溶液の中に浸漬する方法に限定されていた。また、界面活性剤と湿潤剤の2種類が表面改質に必要なため、製造コストの増大を招くおそれがあった。
 本発明は、上記の従来技術が有する課題に鑑みてなされたものである。すなわち、本発明は、従来の表面改質法では適用できなかった従来技術のpH条件よりも広いpH範囲において、また、より少ない種類の材料を用いて、耐久性に優れた親水性ポリマー層を医療デバイス表面に付与できる簡便な方法を提供することを目的とする。
 上記の目的を達成するために、本発明は基材と、親水性ポリマー層を有する医療デバイスを製造する方法であって、
 前記基材を親水性ポリマーと、1.0~20質量%の範囲内の正塩とを含む溶液中に配置して、前記溶液を50℃~140℃の範囲内で加熱する工程を含む医療デバイスの製造方法である。
 本発明によれば、従来技術のpH条件よりも広いpH範囲において、また、従来技術より少ない種類の材料を用いて、医療デバイスに耐久性に優れた親水性ポリマー層を簡便に付与することができる。
 本発明の医療デバイスの製造方法は、基材と、親水性ポリマー層を有する医療デバイスを製造する方法である。
 本発明において、医療デバイスの形状としては、レンズ形状、チューブ状、シート状、フィルム状、収納容器形状などが挙げられる。
 レンズ形状を有する医療デバイスの例として、コンタクトレンズ、眼内レンズ、人工角膜、角膜インレイ、角膜オンレイ、メガネレンズなどの眼用レンズが挙げられる。眼用レンズ、中でもコンタクトレンズは本発明の最も好ましい態様の一つである。
 チューブ状をなす医療デバイスの例として、輸液用チューブ、気体輸送用チューブ、排液用チューブ、血液回路、被覆用チューブ、カテーテル、ステント、シース、チューブコネクター、アクセスポート、人工心肺用中空糸などが挙げられる。
 シート状またはフィルム状をなす医療デバイスの例として、皮膚用被覆材、創傷被覆材、皮膚用保護材、皮膚用薬剤担体、バイオセンサーチップ、内視鏡用被覆材などが挙げられる。
 収納容器形状を有する医療デバイスの例として、薬剤担体、カフ、排液バッグなどが挙げられる。
 本発明において、医療デバイスが、眼用レンズ、皮膚用被覆材、創傷被覆材、皮膚用保護材、皮膚用薬剤担体、輸液用チューブ、気体輸送用チューブ、排液用チューブ、血液回路、被覆用チューブ、カテーテル、ステント、シース、バイオセンサーチップ、人工心肺または内視鏡用被覆材であることが好ましい。医療デバイスは、眼用レンズであることがより好ましい。
 中でも、眼用レンズがコンタクトレンズであることは本発明の最も好ましい態様の一つである。なお、本発明において、コンタクトレンズには、視力矯正目的、美容目的のいずれのコンタクトレンズも含まれる。
 医療デバイスの基材としては、含水性の基材および非含水性の基材のいずれも使用することができる。含水性の基材の材料としては、ヒドロゲルおよびシリコーンヒドロゲル等を挙げることができる。シリコーンヒドロゲルは、優れた装用感を与える柔軟性と高い酸素透過性を有するために特に好ましい。一方、非含水性の基材の材料としては、低含水性軟質材料および低含水性硬質材料等を挙げることができる。すなわち、本発明の医療デバイスの製造方法において、前記基材が、ヒドロゲル、シリコーンヒドロゲル、低含水性軟質材料、および低含水性硬質材料からなる群から選択される1種類以上の材料を含むことが好ましい。
 本発明の方法は、含水性の基材の場合、シリコーンを含まない一般のヒドロゲルにも、シリコーンを含むヒドロゲル(以下、シリコーンヒドロゲルと呼ぶ)にも適用可能である。表面物性を大きく向上させることができることからシリコーンヒドロゲルに特に好適に用いることができる。
 以下、材料を表すのにUnited States Adopted Names(USAN)を用いる場合がある。USANにおいては末尾にA、B、C等の記号を添えて材料の変種を表す場合があるが、本明細書では末尾の記号を付与しない場合にはすべての変種を表すものとする。例えば単に「ocufilcon」と表記した場合は、「ocufilconA」、「ocufilconB」、「ocufilconC」、「ocufilconD」、「ocufilconE」、「ocufilconF」等のocufilconのすべての変種を表す。
 本発明の医療デバイスの製造方法において、ヒドロゲルが、tefilcon、tetrafilcon、helfilcon、mafilcon、polymacon、hioxifilcon、alfafilcon、omafilcon、hioxifilcon、nelfilcon、nesofilcon、hilafilcon、acofilcon、deltafilcon、etafilcon、focofilcon、ocufilcon、phemfilcon、methafilcon、およびvilfilconからなる群から選ばれるヒドロゲルであることが好ましい。
 例えば、ヒドロゲルからなるコンタクトレンズは、米国食品医薬品局(FDA)が定めるコンタクトレンズの分類Group1~Group4に分類される。中でも、良好な水濡れ性および防汚性を示すことから、Group2およびGroup4がより好ましく、Group4が特に好ましい。
 Group1は、含水率50質量%未満かつ非イオン性のヒドロゲルレンズを示す。具体的には、tefilcon、tetrafilcon、helfilcon、mafilcon、polymaconおよびhioxifilconなどが挙げられる。
 Group2は、含水率が50質量%以上かつ非イオン性のヒドロゲルレンズを示す。具体的には、alfafilcon、omafilcon、hioxifilcon、nelfilcon、nesofilcon、hilafilconおよびacofilconなどが挙げられる。良好な水濡れ性および防汚性を示すことから、omafilcon、hioxifilcon、nelfilcon、nesofilconがより好ましく、omafilcon、hioxifilconがさらに好ましく、omafilconが特に好ましい。
 Group3は、含水率50質量%未満かつイオン性のヒドロゲルレンズを示す。具体的には、deltafilconなどが挙げられる。
 Group4は、含水率が50質量%以上かつイオン性のヒドロゲルレンズを示す。具体的には、etafilcon、focofilcon、ocufilcon、phemfilcon、methafilcon、およびvilfilconなどが挙げられる。良好な水濡れ性および防汚性を示すことから、etafilcon、focofilcon、ocufilcon、phemfilconがより好ましく、etafilcon、ocufilconがさらに好ましく、etafilconが特に好ましい。
 また、シリコーンヒドロゲルの具体例として、例えば、米国食品医薬品局(FDA)が定めるコンタクトレンズの分類Group5に属する群から選ばれるシリコーンヒドロゲルレンズが好ましい。
 シリコーンヒドロゲルとしては、主鎖および/または側鎖にケイ素原子を含有し、かつ、親水性を有するポリマーが好ましく、例えばシロキサン結合を含有するモノマーと親水性モノマーとのコポリマーなどが挙げられる。
 具体的には、前記シリコーンヒドロゲルが、lotrafilcon、galyfilcon、narafilcon、senofilcon、comfilcon、enfilcon、balafilcon、efrofilcon、fanfilcon、somofilcon、samfilcon、olifilcon、asmofilcon、formofilcon、stenfilcon、abafilcon、mangofilcon、riofilcon、sifilcon、larafilconおよびdelefilconからなる群から選ばれるシリコーンヒドロゲルであることが好ましい。中でも、良好な水濡れ性および易滑性を示すことから、lotrafilcon、galyfilcon、narafilcon、senofilcon、comfilcon、enfilcon、stenfilcon、somofilcon、delefilcon、balafilcon、samfilconがより好ましく、lotrafilcon、narafilcon、senofilcon、comfilcon、enfilconがさらに好ましく、narafilcon、senofilcon、comfilconが特に好ましい。
 低含水性軟質材料および低含水性硬質材料としては、例えば、眼用レンズ等の医療デバイスに用いた場合、角膜への十分な酸素供給が可能な高い酸素透過性を示すことから、ケイ素原子を含む材料であることが好ましい。
 低含水性硬質材料の具体例としては、例えば低含水性硬質材料がコンタクトレンズの場合、米国食品医薬品局(FDA)が定めるコンタクトレンズの分類に属する群から選ばれる低含水性硬質材料が好ましい。
 かかる低含水性硬質材料としては、主鎖および/または側鎖にケイ素原子を含有するポリマーが好ましい。例えばシロキサン結合を含有するポリマーが挙げられる。これら、ケイ素原子を含有するポリマーにおいて、酸素透過性の点からケイ素原子がシロキサン結合によりポリマー中に含有されるものが好ましい。かかるポリマーの具体例としては、トリス(トリメチルシロキシ)シリルプロピルメタクリレート、両末端に二重結合を持ったポリジメチルシロキサン、シリコーン含有(メタ)アクリレートなどを用いたホモポリマー、あるいはこれらのモノマーと他のモノマーとのコポリマーなどが挙げられる。
 具体的には、前記低含水性硬質材料が、neofocon、pasifocon、telefocon、silafocon、paflufocon、petrafoconおよびfluorofoconからなる群から選ばれる材料であることが好ましい。中でも、良好な水濡れ性と防汚性を示すことから、neofocon、pasifocon、telefocon、silafoconがより好ましく、neofocon、pasifocon、telefoconがさらに好ましく、neofoconが特に好ましい。
 本発明において、医療デバイスがコンタクトレンズ以外の態様である場合、低含水性硬質材料の好適な例として、ポリエチレン、ポリプロピレン、ポリスルホン、ポリエーテルイミド、ポリスチレン、ポリメチルメタクリレート、ポリアミド、ポリエステル、エポキシ樹脂、ポリウレタン、ポリ塩化ビニル等などが挙げられる。中でも、良好な水濡れ性と防汚性を示すことから、前記低含水性硬質材料が、ポリスルホン、ポリスチレン、ポリメチルメタクリレートおよびポリアミドから選ばれたものであることがさらに好ましく、ポリメチルメタクリレートであることが特に好ましい。
 低含水性軟質材料の具体例としては、例えば国際公開第2013/024799号に記載されているような含水率が10質量%以下、弾性率が100kPa以上2,000kPa以下、引張伸度が50%以上3,000%以下の医療デバイスに使用される低含水性軟質材料が挙げられる。elastofilconもまた好適である。
 本発明において、医療デバイスがコンタクトレンズを含む眼用レンズ以外の態様である場合、低含水性軟質材料の好適な例は、シリコーンエラストマー、軟質ポリウレタン、ポリ酢酸ビニル、エチレン-酢酸ビニル共重合体、軟質ポリエステル樹脂、軟質アクリル樹脂、軟質ポリ塩化ビニル、天然ゴム、各種合成ゴム等である。
 本発明によれば、基材が含水性であっても、低含水性であっても、医療デバイスの表面に適度な親水性(水濡れ性)を付与することができる。したがって、基材の含水率としては0~99質量%のいずれでもよい。医療デバイス表面に適度な親水性を付与する効果が一段と高いことから、基材の含水率としては0.0001質量%以上が好ましく、特に好ましくは0.001質量%以上である。また、基材の含水率は、60質量%以下が好ましく、50質量%以下がより好ましく、40質量%以下がさらに好ましい。
 医療デバイスがコンタクトレンズである場合、眼の中でのレンズの動きが確保されやすいことから、基材の含水率としては15質量%以上が好ましく、さらに好ましくは20質量%以上である。
 本発明の医療デバイスの製造方法は、前記基材を親水性ポリマーと、1.0~20質量%の範囲内の正塩とを含む溶液中に配置して、前記溶液を50℃~140℃の範囲内で加熱する工程を含む。
 本発明の医療デバイスの製造方法に用いられる親水性ポリマーは、通常は基材とは異なる材料である。ただし、所定の効果が得られるのであれば、基材を構成する材料と同一の材料であってもよい。
 上記親水性ポリマーは、親水性を有する材料から構成される。ただし、親水性の発現を損ねない限りは、それ以外の添加剤等が含まれていてもよい。ここで、親水性を有する材料とは、室温(20~23℃)の水100質量部もしくは水100質量部とtert-ブタノール100質量部の混合液に0.0001質量部以上可溶な材料であり、0.01質量部以上可溶であるとより好ましく、0.1質量部以上可溶であればさらに好ましく、1質量部以上可溶な材料が特に好ましい。
 本発明で使用される親水性ポリマーは、2000~1500000の分子量を有することが好ましい。分子量は、より好ましくは、5000以上であり、さらに好ましくは、10000以上である。また、分子量は、1200000以下がより好ましく、1000000以下がさらに好ましい。ここで、上記分子量としては、ゲル浸透クロマトグラフィー法(水系溶媒)で測定されるポリエチレングリコール換算またはポリエチレンオキシド換算の質量平均分子量を用いる。
 また、製造時の親水性ポリマーの溶液中の濃度については、濃度が高すぎる場合、粘度増大により製造時の取り扱い難さが増す可能性がある。そのため、本発明の医療デバイスの製造方法において、親水性ポリマーの溶液中の濃度は0.01~20質量%の範囲であることが好ましい。親水性ポリマーの濃度は、より好ましくは、0.02質量%以上であり、さらに好ましくは、0.03質量%以上である。また、親水性ポリマーの濃度は、より好ましくは、10質量%以下であり、さらに好ましくは、5質量%以下であり、より好ましくは、1質量%であり、最も好ましくは、0.8質量%以下である。
 上記親水性ポリマーはアミド基を含むことが好ましい。アミド基を含む親水性ポリマーは、親水性ポリマーが水に溶解した際に適度な粘性を発現するため、耐久性に優れた親水性ポリマー層を形成できるため好ましい。アミド基を含む親水性ポリマーとしては、アミド基を有するモノマーの単独重合体または共重合体を用いることができる。なお、本発明においてアミド基とはN-C=Oで表される構造を含む基である。
 アミド基を有するモノマーとしては、重合の容易さの点で(メタ)アクリルアミド基を有するモノマーおよびN-ビニルカルボン酸アミド(環状のものを含む)から選ばれたモノマーが好ましい。かかるモノマーの好適な例としては、N-ビニルピロリドン、N-ビニルカプロラクタム、N-ビニルアセトアミド、N-メチル-N-ビニルアセトアミド、N-ビニルホルムアミド、N,N-ジメチルアクリルアミド、N,N-ジエチルアクリルアミド、N-イソプロピルアクリルアミド、N-メチルアクリルアミド、N-エチルアクリルアミド、N-ブチルアクリルアミド、N-tert-ブチルアクリルアミド、N-ヒドロキシメチルアクリルアミド、N-メトキシメチルアクリルアミド、N-エトキシメチルアクリルアミド、N-プロポキシメチルアクリルアミド、N-イソプロポキシメチルアクリルアミド、N-(2-ヒドロキシエチル)アクリルアミド、N-ブトキシメチルアクリルアミド、N-イソブトキシメチルアクリルアミド、N-ヒドロキシメチルメタクリルアミド、N-メトキシメチルメタクリルアミド、N-エトキシメチルメタクリルアミド、N-プロポキシメチルメタクリルアミド、N-ブトキシメチルメタクリルアミド、N-イソブトキシメチルメタクリルアミド、アクリロイルモルホリン、およびアクリルアミドを挙げることができる。これら中でも耐久性の点で好ましいのは、N-ビニルピロリドン、N,N-ジメチルアクリルアミドおよびN,N-ジエチルアクリルアミドであり、N,N-ジメチルアクリルアミドが特に好ましい。
 上記アミド基を有するモノマーを含む共重合体、あるいは単独重合体を好適に用いることができる。
 上記親水性ポリマーはアミド基に加えて酸性基を含んでいても良い。親水性ポリマーがアミド基および酸性基を有する場合、水濡れ性のみならず体液等に対する防汚性に優れた親水性ポリマー層を形成できるために好ましい。ここでいう酸性基としては、具体的には、カルボキシ基およびスルホン酸基から選ばれた基が好ましく、カルボキシ基が特に好ましい。カルボキシ基またはスルホン酸基は、塩になっていてもかまわない。
 アミド基および酸性基を有する親水性ポリマーの例としては、カルボキシ基を有するポリアミド類、アミド基を有するモノマーと酸性基を有するモノマーとの共重合体などを挙げることができる。
 カルボキシ基を有するポリアミド類の好適な例としては、ポリアスパラギン酸、ポリグルタミン酸などのポリアミノ酸やポリペプチド類などを挙げることができる。
 酸性基を有するモノマーとしては、メタクリル酸、アクリル酸、ビニル安息香酸、チオフェン-3-酢酸、4-スチレンスルホン酸、ビニルスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸およびこれらの塩から選ばれたモノマーを好適に使用することができる。
 アミド基を有するモノマーとしては、上記したモノマーを好適に使用することができる。
 アミド基および酸性基を有する親水性ポリマーが共重合体である場合に、好ましい具体例は、(メタ)アクリル酸/N-ビニルピロリドン共重合体、(メタ)アクリル酸/N,N-ジメチルアクリルアミド共重合体、2-アクリルアミド-2-メチルプロパンスルホン酸/N-ビニルピロリドン共重合体、および2-アクリルアミド-2-メチルプロパンスルホン酸/N,N-ジメチルアクリルアミド共重合体である。特に好ましくは(メタ)アクリル酸/N,N-ジメチルアクリルアミド共重合体である。
 アミド基を有するモノマーと酸性基を有するモノマーとの共重合体を用いる場合、その共重合比率は、[酸性基を有するモノマーの質量]/[アミド基を有するモノマーの質量]が1/99~99/1のものが好ましい。酸性基を有するモノマーの共重合比率は、2質量%以上がより好ましく、5質量%以上がさらに好ましく、10質量%以上がさらにより好ましい。また、酸性基を有するモノマーの共重合比率は、90質量%以下がより好ましく、80質量%以下がさらに好ましく、70質量%以下がさらにより好ましい。アミド基を有するモノマーの共重合比率は、10質量%以上がより好ましく、20質量%以上がさらに好ましく、30質量%以上がさらにより好ましい。また、アミド基を有するモノマーの共重合比率は、98質量%以下がより好ましく、95質量%以下がさらに好ましく、90質量%以下がさらにより好ましい。酸性基を有するモノマーとアミド基を有するモノマーの共重合比率が上記の範囲であれば、水濡れ性や体液に対する防汚性などの機能を発現しやすくなる。
 また、上記アミド基を有するモノマーおよび酸性基を有するモノマーとの共重合体は、異なる酸性基やアミド基を有する複数のモノマーを共重合させることも可能である。また、酸性基やアミド基を有しないモノマーを1種類もしくは複数共重合させることも可能である。
 酸性基やアミド基を有しないモノマーの好適な例としては、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリルアミド、グリセロール(メタ)アクリレート、カプロラクトン変性2-ヒドロキシエチル(メタ)アクリレート、N-(4-ヒドロキシフェニル)マレイミド、ヒドロキシスチレン、ビニルアルコール(前駆体としてカルボン酸ビニルエステル)を挙げることができる。この内、重合の容易さの点で(メタ)アクリロイル基を有するモノマーが好ましく、(メタ)アクリル酸エステルモノマーがより好ましい。体液に対する防汚性を向上させる観点から、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、およびグリセロール(メタ)アクリレートが好ましく、ヒドロキシエチル(メタ)アクリレートが特に好ましい。また、親水性、抗菌性、防汚性、薬効性等といった機能を示すモノマーを使用することも可能である。
 抗菌性を有するモノマーの具体例としては、4級アンモニウム塩を有するモノマーなどを挙げることができる。例えば、特表2010-88858号公報記載のイミダゾリウム塩モノマーや(3-アクリルアミドプロピル)トリメチルアンモニウムクロリド、トリメチル-2-メタクロリルオキシエチルアンモニウムクロリド、2-メタクリロイルオキシエチルホスホリルコリンなどといった抗菌性を有するモノマーが挙げられる。
 アミド基を有するモノマーと酸性基を有するモノマーとの共重合体に、酸性基やアミド基を有しないモノマー(以下、第3のモノマーと呼ぶ)を共重合させる場合、酸性基を有するモノマーの共重合比率は、2質量%以上がより好ましく、5質量%以上がさらに好ましく、10質量%以上がさらにより好ましい。また、酸性基を有するモノマーの共重合比率は、90質量%以下がより好ましく、80質量%以下がさらに好ましく、70質量%以下がさらにより好ましい。アミド基を有するモノマーの共重合比率は、10質量%以上がより好ましく、20質量%以上がさらに好ましく、30質量%以上がさらにより好ましい。また、アミド基を有するモノマーの共重合比率は、98質量%以下がより好ましく、95質量%以下がさらに好ましく、90質量%以下がさらにより好ましい。第3のモノマーの共重合比率は、2質量%以上がより好ましく、5質量%以上がさらに好ましく、10質量%以上がさらにより好ましい。また、第3のモノマーの共重合比率は、90質量%以下がより好ましく、80質量%以下がさらに好ましく、70質量%以下がさらにより好ましい。
 酸性基を有するモノマーとアミド基を有するモノマーおよび第3のモノマーの共重合比率が上記の範囲であれば、水濡れ性や体液に対する防汚性などの機能を発現しやすくなる。
 また、医療デバイスに求められる特性を損ねない限りは、上記材料以外の添加剤等が親水性ポリマー層に含まれていてもよい。さらに、親水性ポリマー層には、アミド基を含む親水性ポリマーに加え、他の親水性ポリマーが1種類もしくは複数含まれていてもよい。ただし、製造方法が複雑になる傾向があることから、親水性ポリマー層は、アミド基を含む1種類の親水性ポリマーのみからなることが好ましい。
 ここで、1種類のポリマーとは、1の合成反応により製造されたポリマーもしくはポリマー群(異性体、錯体等)を意味する。複数のモノマーを用いた共重合ポリマーの場合は、該共重合ポリマーを構成するモノマー種が同一であっても、モノマー配合比を変えて合成された別のポリマーを含む場合、1種類のポリマーのみからなるとは言わない。
 また、親水性ポリマー層がアミド基を含む1種類の親水性ポリマーのみからなるとは、親水性ポリマー層が、該アミド基を有する親水性ポリマー以外のポリマーを全く含まないか、もしくは、仮にそれ以外のポリマーを含んだとしても、該アミド基を有する親水性ポリマー100質量部に対し、それ以外のポリマーの含有量が3質量部以下であることを意味する。それ以外のポリマーの含有量は、0.1質量部以下がより好ましく、0.0001質量部以下がさらに好ましい。
 本発明の医療デバイスの製造方法は、基材を親水性ポリマーと、1.0~20質量%の範囲内の正塩とを含む溶液中に配置して、前記溶液を加熱する工程を含む。
 正塩とは化学構造の中に水素イオンや水酸化物イオンを含まない塩を意味する。具体的には、BaSO、BaCO、CaSO、CaCO、(CHCOO)Ca、NaCL、NaCO、NaSO、NaNO、CHCOONa、KCL、KSO、KCO、KNO、CHCOOK、LiCL、LiSO、LiCO、LiNO、CHCOOLiが挙げられる。溶解性の観点から、CaSO、CaCO、(CHCOO)Ca、NaCL、NaCO、NaSO、NaNO、CHCOONa、KCL、KSO、KCO、KNO、およびCHCOOKから選ばれる正塩がより好ましく、NaCL、NaCO、NaSO、NaNO、CHCOONa、およびKCLから選ばれる正塩がさらに好ましく、NaCLまたはKCLが最も好ましい。親水性ポリマー層を形成しやすいことから、製造時の溶液中にこれらの正塩の群から選択される1種類以上の正塩を含むことが好ましい。
 また、本発明の医療デバイスの製造方法においては、製造時の正塩の溶液中の濃度について、濃度が高すぎる場合、溶液の比重が高くなり、浮力が大きくなるため基材を溶液中に浸漬させることが難しいことから正塩の溶液中の濃度は1.0~20質量%が好ましい。正塩の濃度は、より好ましくは2.0質量%以上であり、さらに好ましくは、3.0質量%以上である。また、正塩の濃度は、より好ましくは、15質量%以下であり、さらに好ましくは、10質量%以下である。
 正塩の濃度は、正塩を含めた溶液の全体に占める正塩の質量を意味する。
 また、基材を親水性ポリマーと、正塩とを含む溶液中で加熱する工程において、溶液のpHの範囲としては、溶液に濁りが生じず、透明性が良好な医療デバイスが得られることから、2.0~7.5の範囲内であることが好ましい。
 pHは、2.1以上がより好ましく、2.2以上がさらに好ましく、2.4以上がさらにより好ましく、2.5以上が特に好ましい。また、pHは、7.5以下がより好ましく、7.3以下がさらに好ましく、7.2以下がさらに好ましく、7.0以下がさらにより好ましい。
 上記溶液のpHは、pHメーター(例えばpHメーター Eutech pH2700(Eutech Instruments))を用いて測定することができる。ここで、親水性ポリマーを含有する溶液のpHは、溶液に親水性ポリマー、正塩および必要であれば酸等の他の成分を全て添加した後、室温(23~25℃)にて30分間回転子を用い撹拌し、溶液を均一とした後であって、かつ、基材を溶液中に配置して加熱する前に測定したpHの値を指す。なお、本発明において、pHの値の小数点以下第2位は四捨五入する。
 なお、溶液のpHは、加熱操作を行った際に変化し得る。加熱操作を行った後の溶液のpHも、2.0~7.5であることが好ましい。加熱後のpHは、2.1以上がより好ましく、2.2以上がより好ましく、2.3以上が特に好ましい。また加熱後のpHは、7.5以下がより好ましく、7.3以下がより好ましく、7.2以下がさらに好ましく、7.0以下が特に好ましい。加熱操作を行った後の溶液のpHが、上記範囲である場合、加熱工程の間、溶液のpHが適切な条件に保たれ、得られる医療デバイスの物性が好適なものとなる。なお、上記加熱操作を行った後で、中和処理を行ったり、水を加えたりして溶液のpHを調整することもできるが、ここでいう加熱操作を行った後の溶液のpHとは、かかるpH調整処理を行う前のpHである。
 上記親水性ポリマーと正塩とを含む溶液の溶媒としては、水溶性有機溶媒、水、およびこれらの混合溶媒が好ましい例として挙げられる。水と水溶性有機溶媒の混合物、および水がより好ましく、水が最も好ましい。水溶性有機溶媒としては、各種水溶性アルコール類が好適であり、炭素数6以下のアルコールがより好適であり、炭素数5以下のアルコールがさらに好適である。
 溶液のpHは、溶液に酸を添加することによって調整することができる。このような酸としては、環構造を有さない低分子の酸が好ましい。ここで低分子とは、分子量が500以下、好ましくは300以下、さらに好ましくは250以下であることを意味する。環構造を有さない低分子の酸としては、有機酸および無機酸が使用できる。有機酸の好適な具体例としては、酢酸、クエン酸、ギ酸、アスコルビン酸、トリフルオロメタンスルホン酸、メタンスルホン酸、プロピオン酸、酪酸、グリコール酸、乳酸、リンゴ酸などを挙げることができる。無機酸の好適な具体例としては、硝酸、硫酸、リン酸、塩酸などを挙げることができる。これらの中で、より優れた親水性ポリマー層が得られやすいこと、生体に対する安全性が高いこと、取り扱いが容易であること、などの観点では有機酸が好ましく、炭素数1~20の有機酸がより好ましく、炭素数2~10の有機酸がさらに好ましい。有機酸の中では酢酸、クエン酸、ギ酸、アスコルビン酸、トリフルオロメタンスルホン酸、メタンスルホン酸、プロピオン酸、酪酸、グリコール酸、乳酸およびリンゴ酸から選ばれた酸が好ましく、ギ酸、リンゴ酸、クエン酸およびアスコルビン酸から選ばれた酸がより好ましく、クエン酸またはアスコルビン酸がさらに好ましい。無機酸の中では、揮発性がなく無臭で取り扱いが容易であることなどの観点では、硫酸が好ましい。
 また、pHの微調整を容易にすることや基材が疎水性成分を含む材料である場合に基材が白濁化しにくくなることから、溶液に緩衝剤を添加することも好ましい。
 緩衝剤としては、生理学的に適合性のある公知の緩衝剤を使用することができる。例としては以下のとおりである。ホウ酸、ホウ酸塩類(例:ホウ酸ナトリウム)、クエン酸、クエン酸塩類(例:クエン酸カリウム)、重炭酸塩(例:重炭酸ナトリウム)、リン酸緩衝液(例:NaHPO、NaHPO、およびKHPO)、TRIS(トリス(ヒドロキシメチル)アミノメタン)、2-ビス(2-ヒドロキシエチル)アミノ-2-(ヒドロキシメチル)-1,3-プロパンジオール、ビス-アミノポリオール、トリエタノールアミン、ACES(N-(2-アセトアミド)-2-アミノエタンスルホン酸)、BES(N,N-ビス(2-ヒドロキシエチル)-2-アミノエタンスルホン酸)、HEPES(4-(2-ヒドロキシエチル)-1-ピペラジンエタンスルホン酸)、MES(2-(N-モルホリノ)エタンスルホン酸)、MOPS(3-[N-モルホリノ]-プロパンスルホン酸)、PIPES(ピペラジン-N,N’-ビス(2-エタンスルホン酸)、TES(N-[トリス(ヒドロキシメチル)メチル]-2-アミノエタンスルホン酸)、およびそれらの塩。
 緩衝剤の量としては、所望のpHを達成する上で有効な量が用いられる。通常は、溶液中において0.001質量%~2質量%、好ましくは、0.01質量%~1質量%、より好ましくは、0.05質量%~0.30質量%存在することが好ましい。上記上限および下限のいずれを組み合わせた範囲であってもよい。
 上記加熱の方法としては、加温法(熱風)、高圧蒸気滅菌法、電磁波(γ線、マイクロ波など)照射、乾熱法、火炎法などが挙げられる。水濡れ性、易滑性、および製造工程短縮の観点から、加熱する溶液のpHが6.0未満の場合は加温法(熱風)、pHが6.0以上の場合は高圧蒸気滅菌法が最も好ましい。装置としては、定温乾燥器・熱風循環式オーブンやオートクレーブ装置を用いることが好ましい。
 加熱温度は、良好な水濡れ性および易滑性を示す親水性ポリマー層が得られ、かつ、医療デバイス自体の強度に影響が少ない観点から、50℃~140℃の範囲内である。加熱温度は、55℃以上がより好ましく、60℃以上がさらに好ましく、65℃以上がさらに好ましく、80℃以上が特に好ましい。また加熱温度は、135℃以下がより好ましく、130℃以下がさらに好ましく、121℃以下が特に好ましい。
 本発明者らが検討していた従来技術においては、より高温である100℃以上の加圧を必要とする条件において、基材表面に水酸基を有する親水性ポリマーをpH2.0~6.0の範囲で固定化可能であった(例えば国際公開第2017/146102号参照)。
 しかし、本発明者らは検討の結果、本発明の方法によれば、親水性ポリマーに水酸基が含まれるか否かに関わらず、pH2.0~7.5の幅広い範囲において、正塩と、親水性ポリマーを併用することによって、親水性ポリマー層をデバイス表面に固定化できることを見出した。
 この理由は定かではないが、正塩が、溶液中で親水性ポリマーの凝集を促進することにより、親水性ポリマーとデバイス間の水素結合などの分子間力が向上して、デバイス表面に親水性ポリマー層を固定化できると推定している。
 本発明の製造方法において、加熱時間は、5分~600分が好ましい。加熱時間が5分以上であると、良好な水濡れ性および耐久性を示す親水性ポリマー層が得られやすい。加熱時間が600分以下であると、医療デバイス自体の強度に影響を及ぼしにくい。加熱時間は、10分以上がより好ましく、15分以上がより好ましい。また、加熱時間は、400分以下がより好ましく、300分以下がより好ましい。
 上記の加熱処理後、得られた医療デバイスにさらに他の処理を行ってもよい。他の処理としては、親水性ポリマーを含んだ溶液中において再び同様の加熱処理を行う方法、溶液を、親水性ポリマーを含まない溶液に入れ替えて同様の加熱処理を行う方法、放射線照射を行う方法、反対の荷電を有するポリマー材料を1層ずつ交互にコーティングするLbL処理(Layer by Layer処理)を行う方法、金属イオンによる架橋処理を行う方法、化学架橋処理を行う方法などの処理が挙げられる。
 また、上記の加熱処理前に、基材に前処理を行ってもよい。前処理としては、例えばポリアクリル酸などの酸や水酸化ナトリウムなどのアルカリによる加水分解処理などが挙げられる。
 ただし、簡便な方法により基材表面の親水化を可能とする本発明の思想に照らし、製造工程が複雑になり過ぎることのない範囲での処理の実施が好ましい。
 上記の放射線照射に用いる放射線としては、各種のイオン線、電子線、陽電子線、エックス線、γ線、中性子線が好ましく、より好ましくは電子線およびγ線であり、最も好ましくはγ線である。
 上記のLbL処理としては、例えば国際公開第2013/024800号公報に記載されているような、酸性ポリマーと塩基性ポリマーを使用した処理を用いると良い。
 上記の金属イオンによる架橋処理に用いる金属イオンとしては、各種の金属イオンを用いることができ、好ましくは1価および2価の金属イオンであり、最も好ましくは2価の金属イオンである。また、キレート錯体を用いても良い。
 上記の化学架橋処理としては、例えば特表2014-533381号公報に記載されているようなエポキシ基とカルボキシ基との間の反応や、エポキシ基と公知の水酸基を有する酸性の親水性ポリマーとの間で形成される架橋処理を用いると良い。
 溶液を、親水性ポリマーを含まない溶液に入れ替えて、同様の加熱処理を行う上記の方法において、親水性ポリマーを含まない溶液としては、特に限定されないが、緩衝剤溶液が好ましい。緩衝剤としては、前記のものを用いることができる。
 緩衝剤溶液のpHは、生理学的に許容できる範囲である6.3~7.8が好ましい。緩衝剤溶液のpHは、好ましくは6.5以上、さらに好ましくは6.8以上である。また、緩衝剤溶液のpHは、7.6以下が好ましく、さらに好ましくは7.4以下である。
 本発明における医療デバイスは、基材の少なくとも一部に親水性ポリマー層を有する。基材の少なくとも一部に親水性ポリマー層を有するとは、例えば、医療デバイスの用途にもよるが、基材表面における一つの面の全面にポリマー層が存在することが挙げられる。基材が厚みを有しない、または、厚みがあっても無視できる程度の2次元形状の場合は、基材表面の片面全面の上にポリマー層が存在することも好ましい。また、基材の全表面の上にポリマー層が存在することも好ましい。
 また、親水性ポリマー層は、基材を問わずに、簡便な工程での製造が可能となることから、基材との間に共有結合を有していないことが好ましい。共有結合を有していないことは、化学反応性基、あるいはそれが反応して生じた基を含まないことで判定する。化学反応性基の具体例としては、アゼチジニウム基、エポキシ基、イソシアネート基、アジリジン基、アズラクトン基およびそれらの組合せなどが挙げられるが、これらに限定されない。
 親水性ポリマー層の厚みは、乾燥状態の医療デバイスの垂直断面を、透過型電子顕微鏡を用いて観察したときに、1nm以上100nm未満であることが好ましい。厚みがこの範囲にある場合に、水濡れ性などの機能を発現しやすくなる。厚みは、5nm以上がより好ましく、10nm以上がさらに好ましい。また、厚みは、95nm以下がより好ましく、90nm以下がさらに好ましく、85nm以下がさらに好ましく、50nm以下がさらに好ましく、30nm以下がさらに好ましく、20nm以下がさらに好ましく、15nm以下がさらに好ましく、特に好ましくは、10nm以下である。親水性ポリマー層の厚みが100nm未満であれば、水濡れ性や耐久性に優れ、例えば、眼用レンズといった医療デバイスに用いる場合、網膜に焦点をあわせるための光の屈折が乱れず視界不良が起こりにくくなる。
 また、医療デバイスは、前記親水性ポリマー層の少なくとも一部が基材と混和した状態で存在することが好ましい。親水性ポリマー層が基材と混和した状態は、医療デバイスの断面を走査透過電子顕微鏡法、電子エネルギー損失分光法、エネルギー分散型X線分光法、飛行時間型2次イオン質量分析法等の元素分析または組成分析を行える観察手段で観察したときに、親水性ポリマー層形成前後における基材の断面構造および親水性ポリマー層の少なくとも一部に基材由来の元素が検出されることで確認できる。親水性ポリマー層が基材と混和することにより、親水性ポリマー層が基材により強固に固定されうる。
 親水性ポリマー層の少なくとも一部が基材と混和した状態で存在する場合、「親水性ポリマー層の少なくとも一部が基材と混和した層」(以下混和層)と「親水性ポリマーからなる層」(以下単独層)からなる二層構造が観察されることが好ましい。混和層の厚みは、混和層と単独層の合計厚みに対して、3%以上が好ましく、5%以上がより好ましく、10%以上がさらに好ましい。混和層の厚みは、混和層と単独層の合計厚みに対して、98%以下が好ましく、95%以下がより好ましく、90%以下がさらに好ましく、80%以下が特に好ましい。混和層の厚み割合が上記3%以上であると、親水性ポリマーと基材の混和が十分となり、親水性ポリマーが基材により強固に固定されうるため好ましい。また、混和層の厚み割合が98%以下であると、親水性ポリマーのもつ親水性が十分に発現しやすくなるため好ましい。
 医療デバイスが、例えば生体表面に貼付して用いられる医療デバイスや眼用レンズといった眼用デバイスである場合、使用者の皮膚等への貼り付きを防止する観点および装用者の角膜への貼り付きを防止する観点から、医療デバイスの表面の液膜保持時間が長いことが好ましい。換言すれば、この液膜保持時間が長いことは、医療デバイスのもつ親水性の耐久性が高いことを表す。
 具体的には、医療デバイスの液膜保持時間は10秒以上であることが好ましい。15秒以上がより好ましく、20秒以上がさらに好ましい。液膜保持時間の上限範囲は特に限定されないが、液膜保持時間が長過ぎると医療デバイス表面からの水分蒸発が進行しやすく親水性ポリマー層の効果が薄くなることから300秒以下であることが好ましく、200秒以下であることがより好ましい。
 ここで、本発明における液膜保持時間とは、医療デバイスをリン酸緩衝液に浸漬し静置した後に、リン酸緩衝液から引き上げて空中において保持した際の、医療デバイス表面の液膜が保持される時間をいう。詳しくは、リン酸緩衝液に浸漬し静置した医療デバイスを液から引き上げ、空中に表面が垂直になるように保持した際に、医療デバイスを垂直になるように保持し始めた時点から、医療デバイス表面を覆っているリン酸緩衝液の液膜が切れるまでの時間である。なお「液膜が切れる」とは医療デバイスの表面の液膜が形状を保つことができなくなり、表面の一部でリン酸緩衝液をはじく現象が起き、医療デバイス表面が完全に液膜に覆われている状態ではなくなる状態を指す。
 従来技術においては、水濡れ性のよい医療デバイスであっても、親水性ポリマーを含んでいないリン酸緩衝液中で高圧蒸気滅菌を行った後に水濡れ性が極端に低下する傾向があった。つまり、高圧蒸気滅菌により基材表面の親水性ポリマーがはがれ落ちるか、もしくは溶出することが原因として考えられる水濡れ性の低下がみられた。高圧蒸気滅菌後に水濡れ性が低下する医療デバイスは、外部刺激によって表面状態が変化して水濡れ性が低下するリスクがあるために好ましくない。逆に高圧蒸気滅菌後においても表面の水濡れ性が低下しないものは、外部刺激によって表面状態が変化しにくい優れた医療デバイスと言える。
 医療デバイスが、例えば眼用レンズといった眼用デバイスである場合、乾燥感を感じにくく良好な装用感を長時間維持できる観点から、高圧蒸気滅菌後の医療デバイスの表面の液膜保持時間が長いことが好ましい。具体的には、医療デバイスを親水性ポリマーを含まないリン酸緩衝液中で121℃30分間オートクレーブを用いて熱処理した後の医療デバイスの表面の液膜保持時間を評価する。高圧蒸気滅菌後の医療デバイスの表面の液膜保持時間が10秒以上の場合、医療デバイスの表面は十分な水濡れ性と耐久性を有することを意味する。液膜保持時間は10秒以上が好ましく、15秒以上がより好ましく、20秒以上が特に好ましい。特に、高圧蒸気滅菌前と同等の液膜保持時間を示す場合、より優れた耐久性を示すため好ましい。測定方法の詳細は後述する。
 医療デバイスの引張弾性率は、医療デバイスの種類に応じて適宜選択されるべきものであるが、眼用レンズなどの軟質医療デバイスの場合は、引張弾性率は10MPa以下が好ましく、5MPa以下が好ましく、3MPa以下がより好ましく、2MPa以下がさらに好ましく、1MPa以下がよりいっそう好ましく、0.6MPa以下が最も好ましい。また、引張弾性率は、0.01MPa以上が好ましく、0.1MPa以上がより好ましく、0.2MPa以上がさらに好ましく、0.25MPa以上が最も好ましい。眼用レンズなどの軟質医療デバイスの場合は、引張弾性率が小さすぎると、軟らかすぎてハンドリングが難しくなる傾向がある。引張弾性率が大きすぎると、硬すぎて装用感および装着感が悪くなる傾向がある。
 熱処理前後の基材の引張弾性率変化率は、15%以下が好ましく、14%以下がより好ましく、13%以下が特に好ましい。引張弾性率変化率が大きすぎると、変形や使用感不良を引き起こす恐れがあり好ましくない。測定方法の詳細は後述する。
 医療デバイスの防汚性は、脂質(パルミチン酸メチル)付着により、評価することができる。これらの評価による付着量が少ないものほど、使用感に優れるとともに、細菌繁殖リスクが低減されるために好ましい。測定方法の詳細は後述する。
 本発明の医療デバイスの製造方法においては、前記加熱終了後に得られる医療デバイスと、前記加熱前における基材の含水率との変化量が、10パーセンテージポイント以下であることが好ましい。ここで、含水率の変化量(パーセンテージポイント)とは、得られた医療デバイスの含水率(質量%)と、その原料となる基材の含水率(質量%)との差のことである。
 加熱前後の基材の含水率変化量は、例えば眼用レンズといった眼用デバイスに用いる場合、含水率が向上したことによる屈折率の歪みから引き起こされる視界不良や変形を防止する観点から、10パーセンテージポイント以下が好ましく、8パーセンテージポイント以下がより好ましく、6パーセンテージポイント以下が特に好ましい。測定方法の詳細は後述する。
 また、加熱前後の基材のサイズ変化率は、例えば眼用レンズといった眼用デバイスに用いる場合、変形に伴う角膜損傷を防止する観点から、5%以下が好ましく、4%以下がより好ましく、3%以下が特に好ましい。測定方法の詳細は後述する。
 以下、実施例により本発明を具体的に説明するが、本発明はこれによって限定されるものではない。まず、分析方法および評価方法を示す。以下に示す液膜保持時間が、医療デバイスのもつ親水性の耐久性を表す指標である。
 <水濡れ性(液膜保持時間)>
 実施例により得られた医療デバイスを熱処理後の溶液から引き上げ、空中に表面が垂直になるように保持した際の表面の液膜が保持される時間を目視観察し、N=3の平均値を下記基準で判定した。ここで、液膜が保持される時間とは、空中に医療デバイスを垂直になるように保持し始めた時点から、医療デバイス表面を覆っているリン酸緩衝液の液膜が切れるまでの時間のことである。
A:表面の液膜が20秒以上保持される。
B:表面の液膜が15秒以上20秒未満で切れる。
C:表面の液膜が10秒以上15秒未満で切れる。
D:表面の液膜が1秒以上10秒未満で切れる。
E:表面の液膜が瞬時に切れる(1秒未満)。
 <滅菌後の水濡れ性(液膜保持時間)>
 実施例により得られた医療デバイスをリン酸緩衝液5mL中で室温にて洗浄後、新たなリン酸緩衝液3mL中に浸漬し、121℃30分間オートクレーブを用いて熱処理し、滅菌した。その後、医療デバイスをリン酸緩衝液から引き上げ、空中に表面が垂直になるように保持した際の表面の液膜が保持される時間を目視観察し、N=3の平均値を下記基準で判定した。
A:表面の液膜が20秒以上保持される。
B:表面の液膜が15秒以上20秒未満で切れる。
C:表面の液膜が10秒以上15秒未満で切れる。
D:表面の液膜が1秒以上10秒未満で切れる。
E:表面の液膜が瞬時に切れる(1秒未満)。
 <基材および医療デバイスの含水率>
 基材をリン酸緩衝液に浸漬して室温で24時間以上静置した。基材をリン酸緩衝液から引き上げ、表面水分をワイピングクロス(日本製紙クレシア製“キムワイプ(登録商標)”)で拭き取った後、基材の質量(Ww)を測定した。その後、真空乾燥器で基材を40℃、2時間乾燥した後、質量(Wd)を測定した。これらの質量から、下式(1)により基材の含水率を算出した。得られた値が1%未満の場合は測定限界以下と判断し、「1%未満」と表記した。N=3の平均値を含水率とした。加熱後の基材、すなわち医療デバイスについても溶液から引き上げ、表面水分をワイピングクロス(日本製紙クレシア製“キムワイプ(登録商標)”)で拭き取った後以降は同様に含水率を算出した。
基材の含水率(%)=100×(Ww-Wd)/Ww   式(1)。
 <加熱前後の基材の含水率変化量>
 上記基材および医療デバイスの含水率の測定結果から、下式(2)により、含水率の変化量を算出した。加熱前後の基材の含水率変化量(パーセンテージポイント)=医療デバイスの含水率(質量%)-基材の含水率(質量%)   式(2)。
 <脂質付着量>
 20ccのスクリュー管にパルミチン酸メチル0.03g、純水10g、およびコンタクトレンズ形状の医療デバイスのサンプル1枚を入れた。37℃、165rpmの条件下3時間スクリュー管を振とうさせた。振とう後、スクリュー管内のサンプルを40℃の水道水と家庭用液体洗剤(ライオン製“ママレモン(登録商標)”)を用いて擦り洗いした。洗浄後のサンプルをリン酸緩衝液の入ったスクリュー管内に入れ、4℃の冷蔵庫内で1時間保管した。その後、サンプルを目視観察し、白濁した部分があればパルミチン酸メチルが付着していると判定して、サンプルの表面全体に対するパルミチン酸メチルが付着した部分の面積を観察した。
 <引張弾性率>
 コンタクトレンズ形状およびシート形状の基材から、規定の打抜型を用いて幅(最小部分)5mm、長さ14mmの試験片を切り出した。該試験片を用い、株式会社エー・アンド・デイ社製のテンシロンRTG-1210型を用いて引張試験を実施した。引張速度は100mm/分で、グリップ間の距離(初期)は5mmであった。熱処理前の基材と熱処理後の医療デバイスの両方について測定を行った。N=8で測定を行い、最大値と最小値を除いたN=6の値の平均値を引張弾性率とした。
 <熱処理前後の基材の引張弾性率変化率>
 上記基材および医療デバイスの引張弾性率の測定結果から、下式(3)により熱処理前後の引張弾性率変化率を算出した。
熱処理前後の基材の引張弾性率変化率(%)=(熱処理後の医療デバイスの引張弾性率-熱処理前の基材の引張弾性率)/熱処理前の基材の引張弾性率×100   式(3)。
 <サイズ>
 コンタクトレンズ形状およびシート形状の基材について、それぞれN=3で直径を測定し、平均値をサイズとした。熱処理後の基材、すなわち医療デバイスについても同様にサイズを測定した。
 <熱処理前後のサイズ変化率>
 上記基材および医療デバイスのサイズの測定結果から、下式(4)により熱処理前後のサイズ変化率を算出した。
熱処理前後のサイズ変化率(%)=(熱処理後のデバイスのサイズ-熱処理前の基材のサイズ)/熱処理前の基材のサイズ×100   式(4)。
 <分子量測定>
 親水性ポリマーの分子量は以下に示す条件で測定した。
装置:島津製作所製 Prominence GPCシステム
ポンプ:LC-20AD
オートサンプラ:SIL-20AHT
カラムオーブン:CTO-20A
検出器:RID-10A
カラム:東ソー社製GMPWXL(内径7.8mm×30cm、粒子径13μm)
溶媒:水/メタノール=1/1(0.1N硝酸リチウム添加)
流速:0.5mL/分
測定時間:30分
サンプル濃度:0.1~0.3質量%
サンプル注入量:100μL
標準サンプル:Agilent社製ポリエチレンオキシド標準サンプル(0.1kD~1258kD)。
 <pH測定法>
 pHメーターEutech pH2700(Eutech Instruments社製)を用いて溶液のpHを測定した。表において、親水性ポリマーおよび正塩を含有する溶液の熱処理前pHは、各実施例、比較例記載の溶液に親水性ポリマーおよび正塩を全て添加した後、室温(20~23℃)にて30分間回転子を用い撹拌し、溶液を均一とした後に測定した。また、表において、「熱処理後pH」は、熱処理を1回行った後、溶液を室温(20~23℃)まで冷却した直後に測定したpHである。
 <親水性ポリマー層の膜厚>
 乾燥状態の医療デバイスの断面を透過型電子顕微鏡を用いて観察することで親水性ポリマー層の膜厚を測定した。3ヶ所場所を変えて、各視野につき、1ヶ所膜厚を測定し、計3ヶ所の膜厚の平均値を記載した。
装置: 透過型電子顕微鏡条件: 加速電圧 100kV
試料調製: RuO染色を用いた超薄切片法により試料調製を行った。基材と親水性ポリマー層の判別が困難な場合、OsO染色を加えても良い。本実施例では、基材がシリコーンヒドロゲル系またはシリコーン系の場合、RuO染色を行った。超薄切片の作製には、ウルトラミクロトームを用いた。
 [製造例1]
 式(M1)で表される両末端にメタクリロイル基を有するポリジメチルシロキサン(FM7726、JNC株式会社、Mw:30,000)28質量部、式(M2)で表されるシリコーンモノマー(FM0721、JNC株式会社、Mw:5,000)7質量部、トリフルオロエチルアクリレート(“ビスコート(登録商標)”3F、大阪有機化学工業株式会社)57.9質量部、2-エチルへキシルアクリレート(東京化成工業株式会社)7質量部およびジメチルアミノエチルアクリレート(株式会社興人)0.1質量部と、これらのモノマーの総質量に対し、光開始剤“イルガキュア(登録商標)”819(長瀬産業株式会社)5,000ppm、紫外線吸収剤(RUVA-93、大塚化学)5,000ppm、着色剤(RB246、Arran chemical)100ppmを準備し、さらに前記モノマーの総質量100質量部に対して10質量部のt-アミルアルコールを準備して、これら全てを混合し、撹拌した。撹拌された混合物をメンブレンフィルター(孔径:0.45μm)でろ過して不溶分を除いてモノマー混合物を得た。
 透明樹脂(ベースカーブ側の材質:ポリプロピレン、フロントカーブ側の材質:ポリプロピレン)製のコンタクトレンズ用モールドに上記モノマー混合物を注入し、光照射(波長405nm(±5nm)、照度:0~0.7mW/cm、30分間)して重合し、ケイ素原子を含む低含水性軟質材料からなる成型体を得た。
 重合後に、得られた成型体を、フロントカーブとベースカーブを離型したモールドごと、60℃の100質量%イソプロピルアルコール水溶液中に1.5時間浸漬して、モールドからコンタクトレンズ形状の成型体を剥離した。得られた成型体を、60℃に保った大過剰量の100質量%イソプロピルアルコール水溶液に2時間浸漬して残存モノマーなどの不純物を抽出した。その後、室温(23℃)中で12時間乾燥させた。
Figure JPOXMLDOC01-appb-C000001
 <リン酸緩衝液>
 下記実施例、比較例のプロセスおよび上記した測定において使用したリン酸緩衝液の組成は、以下の通りである。なお、下の組成中、EDTA2Naは、エチレンジアミン四酢酸二水素二ナトリウムを表す。
KCl 0.2g/L
KHPO 0.2g/L
NaCl 8.0g/L
NaHPO 1.19g/L
EDTA2Na 0.5g/L。
 [実施例1]
 基材として、シリコーンを主成分とする市販シリコーンヒドロゲルレンズ“MyDay(登録商標)”(クーパービジョン社製、stenfilcon A)を使用した。リン酸緩衝液中に、親水性ポリマーとしてアクリル酸/N,N-ジエチルアクリルアミド共重合体(共重合におけるモル比1/9、Mw:800,000、大阪有機化学工業株式会社製)を0.03質量%、正塩としてNaCLを1.0質量%含有させた溶液に前記基材を浸漬し、121℃30分間オートクレーブにて熱処理した。得られた医療デバイスについて上記方法にて評価した結果を表1~3に示す。
 [実施例2]
 基材として、シリコーンを主成分とする市販シリコーンヒドロゲルレンズ“MyDay(登録商標)”(クーパービジョン社製、stenfilcon A)を使用した。リン酸緩衝液中に、親水性ポリマーとしてアクリル酸/アクリロイルモルホリン共重合体(共重合におけるモル比1/9、Mw:320,000、大阪有機化学工業株式会社製)を0.05質量%、正塩としてKCLを10質量%含有させた溶液に前記基材を浸漬し、121℃30分間オートクレーブにて熱処理した。得られた医療デバイスについて上記方法にて評価した結果を表1~3に示す。
 [実施例3]
 基材として、シリコーンを主成分とする市販シリコーンヒドロゲルレンズ“MyDay(登録商標)”(クーパービジョン社製、stenfilcon A)を使用した。リン酸緩衝液中に、親水性ポリマーとしてアクリル酸/N,N-ジメチルアクリルアミド/N,N-ジエチルアクリルアミド共重合体(共重合におけるモル比1/8/1、Mw:630,000、大阪有機化学工業株式会社製)を0.04質量%、正塩としてNaCLを5質量%含有させて、さらにクエンを加えてpHを3.0に調製した溶液に前記基材を浸漬し、90℃30分間オートクレーブにて熱処理した。得られた医療デバイスについて上記方法にて評価した結果を表1~3に示す。
 [実施例4]
 基材として、シリコーンを主成分とする市販シリコーンヒドロゲルレンズ“MyDay(登録商標)”(クーパービジョン社製、stenfilcon A)を使用した。リン酸緩衝液中に、親水性ポリマーとしてアクリル酸/N-ビニルピロリドン/N,N-ジメチルアクリルアミド共重合体(共重合におけるモル比1/1/2、Mw:330,000、大阪有機化学工業株式会社製)を0.05質量%、正塩としてNaCLを3質量%含有させた溶液に前記基材を浸漬し、100℃30分間オートクレーブにて熱処理した。得られた医療デバイスについて上記方法にて評価した結果を表1~3に示す。
 [実施例5]
 基材として、シリコーンを主成分とする市販シリコーンヒドロゲルレンズ“Acuvue Oasys(登録商標)”(Johnson&Johnson社製、senofilcon A)を使用した。リン酸緩衝液中に、親水性ポリマーとしてアクリル酸/N-ビニルピロリドン共重合体(共重合におけるモル比1/9、Mw:390,000、大阪有機化学工業株式会社製)を0.03質量%、正塩としてNaCLを10質量%含有させた溶液に前記基材を浸漬し、121℃30分間オートクレーブにて熱処理した。得られた医療デバイスについて上記方法にて評価した結果を表1~3に示す。
 [実施例6]
 基材として、シリコーンを主成分とする市販シリコーンヒドロゲルレンズ“Acuvue Oasys(登録商標)”(Johnson&Johnson社製、senofilcon A)を使用した。リン酸緩衝液中に、親水性ポリマーとしてアクリル酸/メタクリル酸2-ヒドロキシエチル/N,N-ジメチルアクリルアミド共重合体(共重合におけるモル比1/1/8、Mw:480,000、大阪有機化学工業株式会社製)を0.03質量%、正塩としてKCLを10質量%含有させて、さらにクエンを加えてpHを2.5に調製した溶液に前記基材を浸漬し、90℃30分間オートクレーブにて熱処理した。得られた医療デバイスについて上記方法にて評価した結果を表1~3に示す。
 [実施例7]
 基材として、シリコーンを主成分とする市販シリコーンヒドロゲルレンズ“Acuvue Oasys(登録商標)”(Johnson&Johnson社製、senofilcon A)を使用した。リン酸緩衝液中に、親水性ポリマーとしてポリビニルピロリドン(Mw:200,000、大阪有機化学工業株式会社製)を0.03質量%、正塩としてNaCLを10質量%含有させた溶液に前記基材を浸漬し、121℃30分間オートクレーブにて熱処理した。得られた医療デバイスについて上記方法にて評価した結果を表1~3に示す。
[実施例8]
 基材として、シリコーンを主成分とする市販シリコーンヒドロゲルレンズ“Acuvue Oasys(登録商標)”(Johnson&Johnson社製、senofilcon A)を使用した。リン酸緩衝液中に、親水性ポリマーとしてポリジメチルアクリルアミド(Mw:200,000、大阪有機化学工業株式会社製)を0.03質量%、正塩としてNaCLを10質量%含有させた溶液に前記基材を浸漬し、121℃30分間オートクレーブにて熱処理した。得られた医療デバイスについて上記方法にて評価した結果を表1~3に示す。
 [実施例9]
 基材として、製造例1で得られた成型体を使用した。リン酸緩衝液中に、親水性ポリマーとしてアクリル酸/N,N-ジエチルアクリルアミド共重合体(共重合におけるモル比1/9、Mw:280,000、大阪有機化学工業株式会社製)を0.05質量%、正塩としてNaCLを10質量%含有させた溶液含有させた溶液に前記基材を浸漬し、121℃30分間オートクレーブにて熱処理した。得られた医療デバイスについて上記方法にて評価した結果を表1~3に示す。
 [実施例10]
 基材として、製造例1で得られた成型体を使用した。リン酸緩衝液中に、親水性ポリマーとしてポリN,N-ジエチルアクリルアミド(Mw:290,000、大阪有機化学工業株式会社製)を0.05質量%、正塩としてKCLを12質量%含有させた溶液含有させた溶液に含有させた溶液に前記基材を浸漬し、121℃30分間オートクレーブにて熱処理した。得られた医療デバイスについて上記方法にて評価した結果を表1~3に示す。
 [実施例11]
 基材として、シリコーンを主成分とする市販シリコーンヒドロゲルレンズ“MyDay(登録商標)”(クーパービジョン社製、stenfilcon A)を使用した。リン酸緩衝液中に、親水性ポリマーとしてアクリル酸/N,N-ジエチルアクリルアミド共重合体(共重合におけるモル比1/9、Mw:800,000、大阪有機化学工業株式会社製)を0.03質量%、正塩としてNaCLを0.18質量%含有させた溶液に前記基材を浸漬し、121℃30分間オートクレーブにて熱処理した。得られた医療デバイスについて上記方法にて評価した結果を表1~3に示す。
 [実施例12]
 基材として、シリコーンを主成分とする市販シリコーンヒドロゲルレンズ“Acuvue Oasys(登録商標)”(Johnson&Johnson社製、senofilcon A)を使用した。リン酸緩衝液中に、親水性ポリマーとしてポリジメチルアクリルアミド(Mw:200,000、大阪有機化学工業株式会社製)を0.03質量%、正塩としてNaCLを5質量%含有させた溶液に前記基材を浸漬し、121℃30分間オートクレーブにて熱処理した。得られた医療デバイスについて上記方法にて評価した結果を表1~3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 [比較例1]
 シリコーンを主成分とする市販シリコーンヒドロゲルレンズ“MyDay(登録商標)”(クーパービジョン社製、stenfilcon A)をリン酸緩衝液中に浸漬し、121℃30分間オートクレーブにて熱処理した。得られた医療デバイス(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表4~6に示す。
 [比較例2]
 基材として、シリコーンを主成分とする市販シリコーンヒドロゲルレンズ“MyDay(登録商標)”(クーパービジョン社製、stenfilcon A)を使用した。リン酸緩衝液中に、親水性ポリマーとしてアクリル酸/N,N-ジメチルアクリルアミド共重合体(共重合におけるモル比1/9、Mw:800,000、大阪有機化学工業株式会社製)を0.03質量%含有させた溶液に前記基材を浸漬し、121℃30分間オートクレーブにて熱処理した。得られた医療デバイス(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表4~6に示す。
 [比較例3]
 基材として、シリコーンを主成分とする市販シリコーンヒドロゲルレンズ“MyDay(登録商標)”(クーパービジョン社製、stenfilcon A)を使用した。リン酸緩衝液中に、親水性ポリマーとしてポリジメチルアクリルアミド(Mw:300,000、大阪有機化学工業株式会社製)を0.05質量%含有させた溶液に前記基材を浸漬し、80℃30分間オートクレーブにて熱処理した。得られた医療デバイス(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表4~6に示す。
 [比較例4]
 基材として、シリコーンを主成分とする市販シリコーンヒドロゲルレンズ“MyDay(登録商標)”(クーパービジョン社製、stenfilcon A)を使用した。リン酸緩衝液中に、親水性ポリマーとしてポリビニルピロリドン(Mw:300,000、大阪有機化学工業株式会社製)を0.05質量%含有させ、クエン酸にてpHを3.0に調製した溶液に前記基材を浸漬し、121℃30分間オートクレーブにて熱処理した。得られた医療デバイス(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表4~6に示す。
 [比較例5]
 基材として、シリコーンを主成分とする市販シリコーンヒドロゲルレンズ“MyDay(登録商標)”(クーパービジョン社製、stenfilcon A)を使用した。リン酸緩衝液中に、親水性ポリマーとしてアクリル酸/N-ビニルピロリドン共重合体(共重合におけるモル比1/9、Mw:500,000、大阪有機化学工業株式会社製)を0.03質量%含有させた溶液に前記基材を浸漬し、121℃30分間オートクレーブにて滅菌した。得られた医療デバイス(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表4~6に示す。
 [比較例6]
 基材として、シリコーンを主成分とする市販シリコーンヒドロゲルレンズ“MyDay(登録商標)”(クーパービジョン社製、stenfilcon A)を使用した。リン酸緩衝液中に、親水性ポリマーとしてアクリル酸/N-ビニルピロリドン共重合体(共重合におけるモル比1/9、Mw:320,000、大阪有機化学工業株式会社製)を0.03質量%含有させた溶液に前記基材を浸漬し、100℃30分間オートクレーブにて熱処理した。得られた医療デバイス(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表4~6に示す。
 [比較例7]
 基材として、ポリビニルピロリドンおよびシリコーンを主成分とする市販シリコーンヒドロゲルレンズ“Acuvue Oasys(登録商標)”(Johnson&Johnson社製、senofilcon A)を使用した。リン酸緩衝液中に、親水性ポリマーとしてアクリル酸/ビニルピロリドン/N,N-ジメチルアクリルアミド共重合体(共重合におけるモル比1/1/2、Mw:550,000、大阪有機化学工業株式会社製)を0.2質量%含有させた溶液に前記基材を浸漬し、121℃30分間オートクレーブにて熱処理した。得られた医療デバイス(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表4~6に示す。
 [比較例8]
 基材として、ポリビニルピロリドンおよびシリコーンを主成分とする市販シリコーンヒドロゲルレンズ“Acuvue Oasys(登録商標)”(Johnson&Johnson社製、senofilcon A)を使用した。リン酸緩衝液中に、親水性ポリマーとしてポリジメチルアクリルアミド(Mw:300,000、大阪有機化学工業株式会社製)を0.05質量%含有させ、クエン酸でpH3.5に調製した溶液に前記基材を浸漬し、121℃30分間オートクレーブにて熱処理した。得られた医療デバイス(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表4~6に示す。
 [比較例9]
 基材として、ポリビニルピロリドンおよびシリコーンを主成分とする市販シリコーンヒドロゲルレンズ“Acuvue Oasys(登録商標)”(Johnson&Johnson社製、senofilcon A)をリン酸緩衝液中に浸漬し、121℃30分間オートクレーブにて熱処理した。得られた医療デバイス(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表4~6に示す。
 [比較例10]
 基材として、製造例1で得られた成型体をリン酸緩衝液中に浸漬し、121℃30分間オートクレーブにて熱処理した。得られた医療デバイス(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表4~6に示す。
 [比較例11]
 基材として、シリコーンを主成分とする市販シリコーンヒドロゲルレンズ“Acuvue Oasys(登録商標)”(Johnson&Johnson社製、senofilcon A)を使用した。リン酸緩衝液中に、親水性ポリマーとしてアクリル酸/メタクリル酸2-ヒドロキシエチル/N,N-ジメチルアクリルアミド共重合体(共重合におけるモル比1/1/8、Mw:480,000、大阪有機化学工業株式会社製)を0.03質量%、正塩としてKCLを0.1質量%含有させて、さらにクエンを加えてpHを2.5に調製した溶液に前記基材を浸漬し、90℃30分間オートクレーブにて熱処理した。得られた医療デバイス(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表4~6に示す。
 [比較例12]
 基材として、シリコーンを主成分とする市販シリコーンヒドロゲルレンズ“MyDay(登録商標)”(クーパービジョン社製、stenfilcon A)を使用した。リン酸緩衝液中に、親水性ポリマーとしてアクリル酸/アクリロイルモルホリン共重合体(共重合におけるモル比1/9、Mw:320,000、大阪有機化学工業株式会社製)を0.05質量%、正塩としてKCLを21質量%含有させた溶液に前記基材を浸漬させようとしたものの溶液の比重が高過ぎて、浮力によって基材が溶液中に浸漬されずに、医療デバイスを作製することができなかった。上記方法にて評価した結果を表4~6に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007

Claims (14)

  1.  基材と、親水性ポリマー層を有する医療デバイスを製造する方法であって、
     前記基材を親水性ポリマーと、1.0~20質量%の範囲内の正塩とを含む溶液中に配置して、前記溶液を50℃~140℃の範囲内で加熱する工程を含む医療デバイスの製造方法。
  2.  前記溶液を加熱する工程におけるpHが、pH2.0~7.5の範囲内である、請求項1に記載の医療デバイスの製造方法。
  3.  前記溶液を加熱する工程における加熱温度が、80℃~130℃の範囲内である、請求項1または2に記載の医療デバイスの製造方法。
  4.  前記親水性ポリマーがアミド基を有する、請求項1~3のいずれかに記載の医療デバイスの製造方法。
  5.  前記正塩がBaSO、BaCO、CaSO、CaCO、(CHCOO)Ca、NaCL、NaCO、NaSO、NaNO、CHCOONa、KCL、KSO、K2CO、KNO、CHCOOK、LiCL、LiSO、LiCO、LiNO、CHCOOLiからなる群から選ばれる1種以上を含むものである、請求項1~4のいずれかに記載の医療デバイスの製造方法。
  6.  前記基材が、ヒドロゲル、シリコーンヒドロゲル、低含水性軟質材料、および低含水性硬質材料、からなる群から選ばれる1種類以上を含むものである、請求項1~5のいずれかに記載の医療デバイスの製造方法。
  7.  前記ヒドロゲルが、tefilcon、tetrafilcon、helfilcon、mafilcon、polymacon、hioxifilcon、alfafilcon、omafilcon、hioxifilcon、nelfilcon、nesofilcon、hilafilcon、acofilcon、deltafilcon、etafilcon、focofilcon、ocufilcon、phemfilcon、methafilcon、およびvilfilconからなる群から選ばれる1種類以上を含むものである、請求項6に記載の医療デバイスの製造方法。
  8.  前記シリコーンヒドロゲルが、lotrafilcon、galyfilcon、narafilcon、senofilcon、comfilcon、enfilcon、balafilcon、efrofilcon、fanfilcon、somofilcon、samfilcon、olifilcon、asmofilcon、formofilcon、stenfilcon、abafilcon、mangofilcon、riofilcon、sifilcon、larafilcon、およびdelefilconからなる群から選ばれる1種類以上を含むものである、請求項6に記載の医療デバイスの製造方法。
  9.  前記低含水性軟質材料が、ケイ素原子を含む材料である、請求項6に記載の医療デバイスの製造方法。
  10.  前記低含水性硬質材料が、ケイ素原子を含む材料である、請求項6に記載の医療デバイスの製造方法。
  11.  前記低含水性硬質材料が、ポリメチルメタクリレートである、請求項6に記載の医療デバイスの製造方法。
  12.  前記低含水性硬質材料が、neofocon、pasifocon、telefocon、silafocon、paflufocon、petrafoconおよびfluorofoconからなる群から選ばれる1種類以上を含むものである、請求項6または10に記載の医療デバイスの製造方法。
  13.  眼用レンズ、皮膚用被覆材、創傷被覆材、皮膚用保護材、皮膚用薬剤担体、輸液用チューブ、気体輸送用チューブ、排液用チューブ、血液回路、被覆用チューブ、カテーテル、ステント、シース、バイオセンサーチップ、人工心肺または内視鏡用被覆材である、請求項1~12のいずれかに記載の医療デバイスの製造方法。
  14.  前記眼用レンズがコンタクトレンズである、請求項13に記載の医療デバイスの製造方法。
PCT/JP2020/031219 2019-08-27 2020-08-19 医療デバイスの製造方法 WO2021039519A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020547438A JP7509036B2 (ja) 2019-08-27 2020-08-19 医療デバイスの製造方法
EP20858049.8A EP4023261A4 (en) 2019-08-27 2020-08-19 METHOD FOR PRODUCING A MEDICAL DEVICE
CN202080054869.8A CN114158254B (zh) 2019-08-27 2020-08-19 医疗设备的制造方法
KR1020227004678A KR20220051170A (ko) 2019-08-27 2020-08-19 의료 디바이스의 제조 방법
US17/620,197 US20220249731A1 (en) 2019-08-27 2020-08-19 Method for manufacturing medical device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-154480 2019-08-27
JP2019154480 2019-08-27

Publications (1)

Publication Number Publication Date
WO2021039519A1 true WO2021039519A1 (ja) 2021-03-04

Family

ID=74685454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031219 WO2021039519A1 (ja) 2019-08-27 2020-08-19 医療デバイスの製造方法

Country Status (6)

Country Link
US (1) US20220249731A1 (ja)
EP (1) EP4023261A4 (ja)
JP (1) JP7509036B2 (ja)
KR (1) KR20220051170A (ja)
CN (1) CN114158254B (ja)
WO (1) WO2021039519A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024880A1 (ja) * 2011-08-17 2013-02-21 東レ株式会社 低含水性軟質眼用レンズおよびその製造方法
WO2013024799A1 (ja) 2011-08-17 2013-02-21 東レ株式会社 医療デバイス、コーティング溶液の組合せおよび医療デバイスの製造方法
WO2013024800A1 (ja) 2011-08-17 2013-02-21 東レ株式会社 低含水性軟質デバイスおよびその製造方法
JP2015502438A (ja) * 2011-12-14 2015-01-22 センプラス・バイオサイエンシーズ・コーポレイションSemprus Biosciences Corp. コンタクトレンズ改質のための高イオン強度プロセス
WO2017146102A1 (ja) 2016-02-22 2017-08-31 東レ株式会社 デバイスおよびその製造方法
WO2019031477A1 (ja) 2017-08-09 2019-02-14 東レ株式会社 医療デバイスおよびその製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4787904A (en) * 1984-07-06 1988-11-29 Severin Sanford L Hydrophillic intraocular lens
US5981675A (en) * 1998-12-07 1999-11-09 Bausch & Lomb Incorporated Silicone-containing macromonomers and low water materials
US7560023B2 (en) * 2002-11-25 2009-07-14 Shiseido Company, Ltd. Method of modifying surface of material
CA2667781C (en) * 2006-10-30 2015-12-01 Novartis Ag Method for applying a coating onto a silicone hydrogel lens
KR101413390B1 (ko) * 2010-07-30 2014-06-27 노파르티스 아게 수분이 풍부한 표면을 갖는 실리콘 히드로겔 렌즈
AU2012249615A1 (en) * 2011-04-29 2013-08-29 Kci Licensing, Inc. Aptamer-modified polymeric materials for the binding of therapeutic factors in a wound environment
US9244195B2 (en) * 2011-06-09 2016-01-26 Novartis Ag Silicone hydrogel lenses with nano-textured surfaces
US9271937B2 (en) * 2012-05-31 2016-03-01 Covidien Lp Oxidized cellulose microspheres
US10040871B2 (en) * 2012-06-28 2018-08-07 Covidien Lp Medical devices based on oxidized cellulose
WO2015048035A1 (en) * 2013-09-30 2015-04-02 Novartis Ag Method for making uv-absorbing ophthalmic lenses
US9708087B2 (en) * 2013-12-17 2017-07-18 Novartis Ag Silicone hydrogel lens with a crosslinked hydrophilic coating
EP3186070B1 (en) 2014-08-26 2019-09-25 Novartis AG Method for applying stable coating on silicone hydrogel contact lenses
US9720138B2 (en) * 2014-08-26 2017-08-01 Novartis Ag Poly(oxazoline-co-ethyleneimine)-epichlorohydrin copolymers and uses thereof
JP6540316B2 (ja) * 2015-07-22 2019-07-10 東レ株式会社 医療デバイスおよびその製造方法
PT3383631T (pt) 2015-12-03 2019-10-29 Novartis Ag Soluções de embalamento de lentes de contacto
CN108369291B (zh) * 2015-12-15 2021-07-20 爱尔康公司 用于将稳定的涂层施加在硅酮水凝胶接触镜片上的方法
ES2970616T3 (es) * 2017-05-11 2024-05-29 Toray Industries Método para producir un dispositivo médico

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024880A1 (ja) * 2011-08-17 2013-02-21 東レ株式会社 低含水性軟質眼用レンズおよびその製造方法
WO2013024799A1 (ja) 2011-08-17 2013-02-21 東レ株式会社 医療デバイス、コーティング溶液の組合せおよび医療デバイスの製造方法
WO2013024800A1 (ja) 2011-08-17 2013-02-21 東レ株式会社 低含水性軟質デバイスおよびその製造方法
JP2015502438A (ja) * 2011-12-14 2015-01-22 センプラス・バイオサイエンシーズ・コーポレイションSemprus Biosciences Corp. コンタクトレンズ改質のための高イオン強度プロセス
WO2017146102A1 (ja) 2016-02-22 2017-08-31 東レ株式会社 デバイスおよびその製造方法
WO2019031477A1 (ja) 2017-08-09 2019-02-14 東レ株式会社 医療デバイスおよびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4023261A4

Also Published As

Publication number Publication date
KR20220051170A (ko) 2022-04-26
JPWO2021039519A1 (ja) 2021-03-04
CN114158254A (zh) 2022-03-08
JP7509036B2 (ja) 2024-07-02
EP4023261A4 (en) 2023-09-20
US20220249731A1 (en) 2022-08-11
EP4023261A1 (en) 2022-07-06
CN114158254B (zh) 2022-11-18

Similar Documents

Publication Publication Date Title
JP6927230B2 (ja) 医療デバイスおよびその製造方法
JP6856018B2 (ja) 眼用レンズおよびその製造方法
CN113785236B (zh) 医疗设备的制造方法
JP6954490B1 (ja) 医療デバイスの製造方法
JP7509036B2 (ja) 医療デバイスの製造方法
JP7338477B2 (ja) 医療デバイスおよびその製造方法
JP7585786B2 (ja) 医療デバイスの製造方法
WO2024043096A1 (ja) 被覆医療デバイスおよびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020547438

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20858049

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020858049

Country of ref document: EP

Effective date: 20220328