Nothing Special   »   [go: up one dir, main page]

WO2024043096A1 - 被覆医療デバイスおよびその製造方法 - Google Patents

被覆医療デバイスおよびその製造方法 Download PDF

Info

Publication number
WO2024043096A1
WO2024043096A1 PCT/JP2023/029077 JP2023029077W WO2024043096A1 WO 2024043096 A1 WO2024043096 A1 WO 2024043096A1 JP 2023029077 W JP2023029077 W JP 2023029077W WO 2024043096 A1 WO2024043096 A1 WO 2024043096A1
Authority
WO
WIPO (PCT)
Prior art keywords
medical device
group
hydrophilic polymer
coated medical
compound
Prior art date
Application number
PCT/JP2023/029077
Other languages
English (en)
French (fr)
Inventor
瑠美子 北川
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Publication of WO2024043096A1 publication Critical patent/WO2024043096A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/34Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/08Materials for coatings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/10Macromolecular materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes

Definitions

  • the present invention relates to a coated medical device and a method for manufacturing the same.
  • a medical device When a medical device is inserted into a living body or attached to the surface of a living body, it is important to modify the surface of the medical device to improve its biocompatibility.
  • surface modification in addition to improving biocompatibility, imparting properties such as hydrophilicity, slipperiness, and lipid adhesion inhibition to medical devices can improve the user's usability, reduce discomfort, and improve symptoms. etc. can be expected.
  • medical devices are placed at room temperature in a solution with a pH of 6 to 9 containing one or more types of polymers consisting of compounds having amide groups such as N,N-dimethylacrylamide and vinylpyrrolidone.
  • a pH of 6 to 9 containing one or more types of polymers consisting of compounds having amide groups such as N,N-dimethylacrylamide and vinylpyrrolidone.
  • Patent Documents 1 to 3 There are known methods of modifying the surface of a medical device by dipping it in water or heating it after dipping.
  • Patent Documents 1 to 3 can impart sufficient hydrophilicity, slipperiness, etc. to the surface of a medical device, and furthermore, it is not possible to impart lipid adhesion inhibiting properties to the medical device. It wasn't the method.
  • an object of the present invention is to provide a coated medical device that has sufficient hydrophilicity and slipperiness as well as lipid adhesion inhibiting properties, and a simple manufacturing method thereof.
  • the present invention provides a coated medical device comprising a medical device and a hydrophilic polymer layer coating the surface of the medical device, the hydrophilic polymer layer comprising a hydrophilic polymer
  • the hydrophilic polymer A contains a compound a1 represented by the following general formula (I) or the following general formula (II) and a compound a2 having an amide group as monomer units, and the hydrophilic polymer A contains the above compound a1 and a compound a2 having an amide group.
  • the coated medical device has a copolymerization ratio with the compound a2 of 1/99 to 90/10 by mass.
  • R 1 represents a hydrogen atom or a methyl group
  • X represents an oxygen atom or NR 2
  • R 2 represents a hydrogen atom or an alkyl group
  • m represents an integer of 1 to 30.
  • R 1 represents a hydrogen atom or a methyl group
  • X represents an oxygen atom or NR 2
  • R 2 represents a hydrogen atom or an alkyl group
  • n represents 2 or 4
  • k represents 3 or 4
  • a represents an integer of 0 to 30
  • b represents an integer of 1 to 30
  • Y represents a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, or a butyl group.
  • the present invention also provides a contacting step of (A) storing a medical device in a container and bringing the medical device into contact with a solution a containing hydrophilic polymer A; and (C) heating the container.
  • the hydrophilic polymer A includes a compound a1 represented by the general formula (I) or the general formula (II) and a compound a2 having an amide group as monomer units, The copolymerization ratio of a1 and the above compound a2 is 1/99 to 90/10 in mass ratio,
  • R 1 represents a hydrogen atom or a methyl group
  • X represents an oxygen atom or NR 2
  • R 2 represents a hydrogen atom or an alkyl group
  • m represents an integer from 1 to 30;
  • R 1 represents a hydrogen atom or a methyl group
  • X represents an oxygen atom or NR 2
  • R 2 represents a hydrogen atom or an alkyl group
  • n represents 2 or 4
  • k represents 3 or 4
  • the present invention it is possible to provide a coated medical device that has sufficient hydrophilicity and slipperiness required for medical devices, as well as lipid adhesion inhibiting properties. Moreover, according to the manufacturing method of the present invention, the coated medical device can be obtained through a simple process.
  • the coated medical device of the present invention includes a medical device and a hydrophilic polymer layer covering the surface of the medical device.
  • Examples of medical devices included in the coated medical device of the present invention include ophthalmic lenses, skin dressings, wound dressings, skin protection materials, skin drug carriers, infusion tubes, gas transport tubes, and drainage tubes.
  • Examples include tubes, blood circuits, covering tubes, catheters, stents, sheaths, biosensor chips, and covering materials for heart-lung machines or endoscopes.
  • Examples of the ophthalmic lens include a contact lens, an intraocular lens, an artificial cornea, a corneal inlay, a corneal onlay, or a spectacle lens.
  • the material constituting the medical device may be either a hydrous material or a low hydrous material.
  • Water-containing materials include, for example, hydrogels or silicone hydrogels. If the medical device is a contact lens, it should have high lipid adhesion inhibiting properties, exhibit excellent hydrophilicity and slipperiness, form a durable surface layer, and maintain its effectiveness even when worn for long periods of time. Hydrogels are preferred.
  • the low water content material include a low water content soft material and a low water content hard material. Note that the low water content material refers to a material with a water content of 10% by mass or less.
  • United States Adapted Names may be used to represent the name of a hydrogel or silicone hydrogel.
  • a symbol such as A, B, or C may be added to the end to indicate a material variant, but in this specification, if the symbol at the end is not added, all variants are indicated. .
  • ocufilcon when simply written as "ocufilcon”, “ocufilcon A”, “ocufilcon B”, “ocufilcon C", “ocufilcon D” )", "ocufilcon E” or "ocufilcon F".
  • Hydrogels include, for example, tefilcon, tetrafilcon, hefilcon, mafilcon, polymacon, hioxifilcon, alfafilcon, omfilcon, afilcon ), hixoifilcon, nelfilcon, nesofilcon, hilafilcon, acofilcon, deltafilcon, etafilcon, focophil Con (focofilcon), Mention may be made of ocufilcon, phemfilcon, methafilcon or vilfilcon.
  • the medical device When the medical device is a contact lens made of hydrogel, it belongs to the contact lens classification Groups 1 to 4 defined by the U.S. Food and Drug Administration (FDA), and Group 2 or Group 4, which exhibits good hydrophilicity, is preferable; is more preferable.
  • FDA U.S. Food and Drug Administration
  • nonionic hydrogels with a water content of less than 50% by mass belonging to Group 1 include tefilcon, tetrafilcon, hefilcon, mafilcon, polymacon, and hyoxyfilcon. (hioxifilcon).
  • nonionic hydrogels with a water content of 50% by mass or more belonging to Group 2 include alfafilcon, omafilcon, hixoifilcon, nelfilcon, and nesofilcon. , hilafilcon or acofilcon, but omafilcon, hixoifilcon, nelfilcon or nesofilcon, which exhibit good hydrophilicity, are preferred; Omafilcon or hixoxifilcon is more preferred, and omafilcon is even more preferred.
  • Examples of ionic hydrogels with a water content of less than 50% by mass belonging to Group 3 include deltafilcon.
  • Examples of ionic hydrogels with a water content of 50% by mass or more belonging to Group 4 include etafilcon, focofilcon, ocufilcon, phemfilcon, methafilcon, or vilfilcon is mentioned, but etafilcon, focophilcon, ocufilcon or phemfilcon, which exhibit good hydrophilicity, are preferred; Ocufilcon is more preferred, and etafilcon is even more preferred.
  • the medical device When the medical device is a contact lens made of silicone hydrogel, it preferably belongs to contact lens classification Group 5 defined by the US Food and Drug Administration (FDA).
  • FDA US Food and Drug Administration
  • a polymer having silicon atoms in the main chain and/or side chain and having hydrophilic properties is preferable, such as a copolymer of a monomer containing a siloxane bond and a hydrophilic monomer.
  • Such copolymers include, for example, lotrafilcon, galyfilcon, narafilcon, senofilcon, comfilcon, enfilcon, balafilcon, Efrofilcon, fanfilcon, somofilcon, samfilcon, olifilcon, asmofilcon, formofilcon, stenfi lcon), avafilcon (abafilcon), mangophilcon, riofilcon, sifilcon, larafilcon, or delefilcon.
  • Lotrafilcon, galyfilcon, narafilcon, senofilcon, comfilcon, enfilcon, stenfilcon, somophilcon ( somofilcon) , delefilcon, balafilcon or samfilcon are preferred, lotrafilcon, narafilcon, senofilcon, comfilcon or enfilcon (e nfilcon) More preferred are narafilcon, senofilcon or comfilcon.
  • the low water content soft material or the low water content hard material is preferably a material containing silicon atoms that exhibits high oxygen permeability that allows sufficient oxygen supply to the cornea.
  • the low water content hard material a low water content hard material that belongs to the contact lens classification defined by the US Food and Drug Administration (FDA) is preferable.
  • FDA US Food and Drug Administration
  • a polymer having a silicon atom such as a siloxane bond in the main chain and/or side chain is preferable, and a polymer having high oxygen permeability, tris(trimethylsiloxy)silylpropyl methacrylate, More preferred are homopolymers using bonded polydimethylsiloxane, silicone-containing acrylates or silicone-containing methacrylates, or copolymers of these and other monomers.
  • the low water content hard material includes neofocon, pasifocon, telefocon, silafocon, paflufocon, petrafocon, and fluorofocon.
  • n Preferably selected from the group.
  • neofocon, pacifocon, telefocon, or silafocon are more preferable because they exhibit good lipid adhesion inhibiting properties and antifouling properties;
  • telefocon is more preferable, and neofocon is particularly preferable.
  • the low water content hard material is preferably polyethylene, polypropylene, polysulfone, polyetherimide, polystyrene, polymethyl methacrylate, polyamide, polyester, epoxy resin, polyurethane, or polyvinyl chloride.
  • polysulfone, polystyrene, polymethyl methacrylate, polyurethane or polyamide are more preferred, and polymethyl methacrylate is even more preferred, since they exhibit good lipid adhesion inhibiting properties and antifouling properties.
  • low water content soft materials include materials with a water content of 10% by mass or less, an elastic modulus of 100 to 2,000 kPa, and a tensile elongation of 50 to 3,000%, disclosed in International Publication No. 2013/024799. and elastofilcon.
  • the water content of the medical device is preferably 0.0001% by mass or more, more preferably 0.001% by mass or more. Moreover, the water content of the medical device is preferably 80% by mass or less, more preferably 70% by mass or less, and even more preferably 60% by mass or less.
  • the water content of the medical device is preferably 15% by mass or more, more preferably 20% by mass or more, since the movement of the lens in the eye is easily ensured.
  • hydrophilic polymer A has hydrophilicity.
  • “having hydrophilicity” means that 0.0001 parts by mass or more of the polymer is added to 100 parts by mass of water or a mixed solution of 100 parts by mass of water and 100 parts by mass of tert-butanol at room temperature (20 to 23°C). It means that it is soluble. It is preferable that 0.01 part by mass or more is soluble, more preferably 0.1 part by mass or more is soluble, even more preferably 1 part by mass or more is soluble.
  • the hydrophilic polymer layer included in the coated medical device of the present invention includes a hydrophilic polymer A, and the hydrophilic polymer A includes a compound a1 represented by the following general formula (I) or the following general formula (II), and an amide.
  • the copolymerization ratio of the compound a1 and the compound a2 is 1/99 to 90/10 in terms of mass ratio.
  • compound a1 and compound a2 a single monomer or a plurality of monomers having different structures may be used.
  • R 1 represents a hydrogen atom or a methyl group
  • X represents an oxygen atom or NR 2
  • R 2 represents a hydrogen atom or an alkyl group
  • m represents an integer of 1 to 30.
  • R 2 is an alkyl group, it may be linear or branched, but it is preferably an alkyl group having 1 to 10 carbon atoms.
  • R 2 include methyl group, ethyl group, propyl group, 2-propyl group, butyl group, 2-butyl group, tert-butyl group, pentyl group, 2-pentyl group, 3-pentyl group, hexyl group, Examples include heptyl and octyl groups.
  • m is preferably 2 to 30.
  • the lower limit of m is more preferably 3, even more preferably 4, and particularly preferably 5.
  • the upper limit of m is more preferably 25, even more preferably 20, and particularly preferably 10.
  • R 1 represents a hydrogen atom or a methyl group
  • X represents an oxygen atom or NR 2
  • R 2 represents a hydrogen atom or an alkyl group
  • n represents 2 or 4
  • k represents 3 or 4
  • a represents an integer of 0 to 30
  • b represents an integer of 1 to 30
  • Y represents a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, or a butyl group.
  • R 2 is an alkyl group, it may be linear or branched, but it is preferably an alkyl group having 1 to 10 carbon atoms.
  • R 2 include methyl group, ethyl group, propyl group, 2-propyl group, butyl group, 2-butyl group, tert-butyl group, pentyl group, 2-pentyl group, 3-pentyl group, hexyl group, Examples include heptyl and octyl groups.
  • a is preferably 0 to 25.
  • the lower limit of a is more preferably 0, even more preferably 2, and particularly preferably 3.
  • the upper limit of a is more preferably 20, even more preferably 15, and particularly preferably 10.
  • b is preferably 1 to 25 from the viewpoint of appropriate hydrophilicity and ease of polymerization.
  • the lower limit of b is more preferably 1, further preferably 2, and particularly preferably 3.
  • the upper limit of b is more preferably 20, even more preferably 15, and particularly preferably 10.
  • Y is more preferably hydrogen, methyl group, ethyl group, propyl group, or isopropyl group, and most preferably hydrogen or methyl group.
  • a compound represented by the general formula (I) is more preferable in terms of ease of polymerization, solubility in a water-soluble solvent, and ease of imparting hydrophilicity.
  • the compound a2 having an amide group from the viewpoint of ease of polymerization, a compound having an acrylamide group or a methacrylamide group, or an N-vinylcarboxylic acid amide (including a cyclic one) is preferable.
  • N-vinylpyrrolidone, N-isopropylacrylamide or N,N-dimethylacrylamide is preferred, N-isopropylacrylamide or N,N-dimethylacrylamide is more preferred, and N,N-dimethylacrylamide is preferred. More preferred.
  • Hydrophilic polymer A is a monomer unit copolymerized with one or more compounds other than the compound a1 represented by the above general formula (I) or general formula (II) and the compound a2 having an amide group. It may be included in the form.
  • Such other compounds include, for example, glycerol acrylate, glycerol methacrylate, N-(4-hydroxyphenyl)maleimide, hydroxystyrene, vinyl alcohol (carboxylic acid vinyl ester as precursor), hydroxyethyl (meth)acrylate, hydroxy Propyl (meth)acrylate or hydroxybutyl (meth)acrylate may be mentioned.
  • glycerol acrylate, glycerol methacrylate, or vinyl alcohol is preferred, and glycerol acrylate or glycerol methacrylate is more preferred.
  • compounds exhibiting functions such as hydrophilicity, antibacterial properties, antifouling properties, and medicinal properties.
  • hydrophilic polymer A contains compound a1 having the above-mentioned specific structure as a monomer unit, hydrophilic polymer A is easily dissolved in water, exhibits a hydrophilic function, and has not only hydrophilic properties but also lipid adhesion inhibiting properties. Can form a surface.
  • hydrophilic polymer A contains compound a2 having an amide group as a monomer unit, when hydrophilic polymer A is dissolved in water, appropriate viscosity is developed, forming a surface that is not only hydrophilic but also slippery. can.
  • the copolymerization ratio of the compound a1 and the compound a2 is in the range of 1/99 to 90/10 in terms of mass ratio in order to facilitate the expression of functions such as lipid adhesion suppressing properties and durable hydrophilicity.
  • the proportion occupied by compound a1 should be 1% by mass or more, and preferably 10% by mass or more, assuming the total of compound a1 and compound a2 to be 100% by mass. , more preferably 30% by mass or more.
  • the proportion occupied by compound a1 needs to be 99% by mass or less from the viewpoint of ease of polymerization, preferably 90% by mass or less, more preferably 85% by mass or less, and even more preferably 80% by mass or less. Furthermore, when the entire hydrophilic polymer A is 100% by mass, the proportion occupied by compound a2 must be 10% by mass or more, preferably 12% by mass or more, more preferably 15% by mass or more, and furthermore 20% by mass or more. preferable. Further, the proportion occupied by compound a2 needs to be 90% by mass or less, preferably 90% by mass or less, more preferably 80% by mass or less, and even more preferably 70% by mass or less.
  • the copolymerization ratio of the third monomer component is more preferably 2% by mass or more, and further preferably 5% by mass or more. Preferably, 10% by mass or more is particularly preferable. Further, the copolymerization ratio of the third monomer component is more preferably 90% by mass or less, further preferably 80% by mass or less, and particularly preferably 70% by mass or less.
  • the copolymerization ratio of the compound a1 represented by the above general formula (I), the compound a2 having an amide group, and the third monomer component is within the above range, functions such as slipperiness and stain resistance against body fluids can be achieved. It becomes easier to express.
  • the weight average molecular weight of hydrophilic polymer A is 2,000 to 1,500,000. It is preferable that there be.
  • the weight average molecular weight is more preferably 5,000 or more, even more preferably 10,000 or more, and particularly preferably 100,000 or more.
  • the weight average molecular weight is more preferably 1,200,000 or less, further preferably 1,000,000 or less, and particularly preferably 900,000 or less.
  • the weight average molecular weight here is the weight average molecular weight in terms of polyethylene glycol, which is measured by gel permeation chromatography using an aqueous solvent as a developing solvent.
  • the method for manufacturing a coated medical device of the present invention also includes (A) a contact step of storing a medical device in a container and bringing the medical device into contact with a solution a containing hydrophilic polymer A; and (C) a heating step of heating the container, the hydrophilic polymer A comprises a compound a1 represented by the following general formula (I) or the following general formula (II), and a compound a2 having an amide group, Contained as a monomer unit, the copolymerization ratio of the compound a1 and the compound a2 is 1/99 to 90/10 in mass ratio,
  • R 1 represents a hydrogen atom or a methyl group
  • X represents an oxygen atom or NR 2
  • R 2 represents a hydrogen atom or an alkyl group
  • m represents an integer from 1 to 30;
  • R 1 represents a hydrogen atom or a methyl group
  • X represents an oxygen atom or NR 2
  • R 2 represents a hydrogen atom or an alkyl group
  • n represents 2 or 4
  • k represents 3 or 4
  • a represents an integer from 0 to 30
  • b represents an integer from 1 to 30
  • Y represents a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, or a butyl group
  • the pH of solution a after the heating step is 6.1 to 8.0.
  • the concentration of hydrophilic polymer A in solution a containing hydrophilic polymer A is preferably in the range of 0.0001 to 30% by mass in order to keep the viscosity of solution a appropriate.
  • the concentration of hydrophilic polymer A is more preferably 0.001% by mass or more, and even more preferably 0.005% by mass or more. Further, the concentration of hydrophilic polymer A is more preferably 10.0% by mass or less, even more preferably 5.0% by mass or less, even more preferably 1.0% by mass or less, and 0.0% by mass or less. It is particularly preferable that the content is 5% by mass or less.
  • a water-soluble organic solvent, water, or a mixed solvent thereof is preferable, and a mixed solvent of water and a water-soluble organic solvent or water is more preferable.
  • water is more preferred.
  • the water-soluble organic solvent is preferably a water-soluble alcohol, more preferably a water-soluble alcohol having 6 or less carbon atoms, and even more preferably a water-soluble alcohol having 5 or less carbon atoms.
  • Solution a may further contain a buffer and other additives.
  • Buffers contained in solution a include, for example, boric acid, borates (e.g., sodium borate), citric acid, citrates (e.g., potassium citrate), bicarbonates (e.g., sodium bicarbonate), Phosphate buffer (e.g.
  • the proportion of the buffer in solution a may be adjusted as appropriate to achieve the desired pH, but is usually preferably 0.001 to 2.000% by mass.
  • the proportion of the buffering agent is more preferably 0.010% by mass or more, even more preferably 0.050% by mass or more.
  • the proportion of the buffering agent is more preferably 1.000% by mass or less, and even more preferably 0.300% by mass or less.
  • Solution a to be subjected to the contacting step is preferably prepared by dissolving hydrophilic polymer A in a buffer solution containing a solvent and a buffer.
  • the pH of the buffer solution used to prepare solution a is preferably within a physiologically acceptable range of 6.3 to 7.8.
  • the pH of the buffer solution is more preferably 6.5 or higher, and even more preferably 6.8 or higher.
  • the pH of the buffer solution is more preferably 7.6 or less, and even more preferably 7.4 or less.
  • Examples of containers for storing the medical device in the contact step include, when the medical device is an ophthalmic lens, a vial or a blister container used for packaging ophthalmic lenses.
  • Blister containers typically consist of a plastic base surrounded by a raised planar flange around the edge of the cavity, and a flexible cover sheet adhered to the planar flange to seal the cavity.
  • Materials for the plastic base include, for example, fluororesins, polyamides, polyacrylates, polyethylene, nylons, olefin copolymers (e.g. copolymers of polypropylene and polyethylene), polyethylene terephthalate, polyvinyl chloride, amorphous polyolefins, and polycarbohydrates. Mention may be made of esters, polysulfones, polybutylene terephthalate, polypropylene, polymethylpentene, polyesters, rubbers or urethanes.
  • soft cover sheets include laminate materials, such as polypropylene sheets coated with aluminum foil.
  • the method for manufacturing a coated medical device of the present invention includes (C) a heating step of heating the container. (C) In the heating step, the medical device is heated together with the container while in contact with the solution a containing the hydrophilic polymer A.
  • heating method examples include heating method (hot air), high pressure steam sterilization method, dry heat sterilization method, flame sterilization method, boiling sterilization method, circulation steam sterilization method, electromagnetic wave ( ⁇ ray or microwave etc.) irradiation, Examples include ethylene oxide gas sterilization (EOG sterilization) and ultraviolet sterilization.
  • high-pressure steam sterilization is preferred, and autoclave sterilization using an autoclave as the apparatus is more preferred, since it can impart sufficient lipid adhesion inhibiting properties to medical devices and has low manufacturing costs.
  • the heating temperature is preferably 80 to 200°C in order to impart sufficient lipid adhesion inhibiting properties to the medical device while not affecting the strength of the resulting coated medical device itself.
  • the heating temperature is more preferably 90°C or higher, further preferably 105°C or higher, even more preferably 110°C or higher, even more preferably 115°C or higher, and particularly preferably 121°C or higher.
  • the heating temperature is more preferably 180°C or lower, further preferably 170°C or lower, and particularly preferably 150°C or lower.
  • the heating time is preferably 1 to 600 minutes for the same reason as the heating temperature.
  • the heating time is more preferably 2 minutes or more, further preferably 5 minutes or more, and particularly preferably 10 minutes or more.
  • the heating time is more preferably 400 minutes or less, further preferably 300 minutes or less, and particularly preferably 100 minutes or less.
  • the method for manufacturing a coated medical device of the present invention further includes (B) a sealing step of sealing the container containing the medical device after the contacting step and before the heating step.
  • a sealing step of sealing the container containing the medical device after the contacting step and before the heating step.
  • the heating process is performed after sealing the container containing the medical device, it is possible to impart lipid adhesion inhibiting properties to the surface of the medical device, and at the same time sterilize the resulting coated medical device and maintain its sterile state.
  • the method for manufacturing a coated medical device of the present invention preferably includes a sealing step, and the medical device is sterilized by the heating step.
  • the means for sealing the container includes, for example, means for sealing the container by using a capped vial or a blister container as the container for storing the medical device.
  • the medical device is a contact lens
  • an example of the method for storing the medical device is to seal the container by using a general lens case attached to a contact lens care product.
  • the obtained coated medical device may be further subjected to other treatments.
  • Other treatments include, for example, similar heat treatments using buffer solutions that do not contain hydrophilic polymers, irradiation with ion beams, electron beams, positron beams, X-rays, gamma rays or neutron beams, and irradiation with opposite charges.
  • LbL treatment Layer by Layer treatment; for example, the treatment described in International Publication No. 2013/024800 in which a polymer material having Treatments described in Table 2014-533381) can be mentioned.
  • the surface of the medical device may be pretreated before the above contacting step and/or heating step.
  • the pretreatment include hydrolysis treatment using an acid such as polyacrylic acid or an alkali such as sodium hydroxide.
  • the method for manufacturing a coated medical device of the present invention requires that the pH of solution a after the heating step is 6.1 to 8.0. When the pH is in this range, there is no need to wash the coated medical device obtained after the heating step with a neutral solution, which has an industrially important meaning from the viewpoint of reducing the number of manufacturing steps. Note that if cleaning is performed with a neutral solution after the heating step, it may be necessary to sterilize the obtained coated medical device again.
  • the pH of the solution a after the heating step is preferably 6.5 or higher, more preferably 6.6 or higher, even more preferably 6.7 or higher, and particularly preferably 6.8 or higher. Further, the pH is preferably 7.9 or less, more preferably 7.8 or less, and even more preferably 7.6 or less.
  • the pH of solution a before the heating step is also preferably 6.1 to 8.0.
  • the pH of solution a is preferably 6.5 or higher, more preferably 6.6 or higher, even more preferably 6.7 or higher, and particularly preferably 6.8 or higher.
  • the pH is preferably 7.9 or less, more preferably 7.8 or less, and even more preferably 7.6 or less.
  • the pH of solution a before the heating process is the pH value measured after preparing solution a and stirring it with a rotor for 30 minutes at room temperature (20 to 23°C) to make the solution uniform. means.
  • the pH of the solution a can be measured using a pH meter (for example, pH meter Eutech pH2700 (manufactured by Eutech Instruments)). Note that the pH value is rounded off to the second decimal place.
  • a pH meter for example, pH meter Eutech pH2700 (manufactured by Eutech Instruments)
  • no covalent bond exists between the coating layer in the obtained coated medical device, that is, the hydrophilic polymer layer, and the medical device.
  • the absence of covalent bonds makes it possible to manufacture coated medical devices through a simpler process, regardless of whether the medical device is made of a hydrous material or a low hydrous material.
  • the absence of a covalent bond means that there is no chemically reactive group or a group generated by reaction between the hydrophilic polymer layer and the medical device.
  • the absence of chemically reactive groups or groups resulting from their reactions can be determined by elemental analysis such as electron energy loss spectroscopy, energy dispersive X-ray spectroscopy, or time-of-flight secondary ion mass spectrometry, or by chemical composition. This can be confirmed by analytical means.
  • the chemically reactive group include an azetidinium group, an epoxy group, an isocyanate group, an aziridine group, or an azlactone group.
  • the thickness of the hydrophilic polymer layer is preferably 1 to 99 nm when a cross section perpendicular to the longitudinal direction of the coated medical device in a frozen state is observed using a transmission electron microscope. When the thickness of the hydrophilic polymer layer is within this range, functions such as hydrophilicity and slipperiness are more likely to be exhibited.
  • the thickness of the hydrophilic polymer layer is more preferably 5 nm or more, and even more preferably 10 nm or more.
  • the thickness of the hydrophilic polymer layer is more preferably 95 nm or less, even more preferably 90 nm or less, even more preferably 85 nm or less, even more preferably 50 nm or less, even more preferably 40 nm or less, even more preferably 30 nm or less, even more preferably 20 nm or less. , 15 nm or less is particularly preferred. Note that when the coated medical device is an ophthalmic lens, the thickness of the hydrophilic polymer layer is less than 100 nm, so that the refraction of light for focusing on the retina is not disturbed and poor visibility is less likely to occur.
  • the coating layer in the obtained coated medical device may be present only on a part of the surface of the medical device, may be present only on the entire surface of either the front or back, or may be present on the entire surface. I don't mind.
  • the state in which the hydrophilic polymer layer and the medical device are mixed refers to a state in which elements derived from the medical device are detected in the hydrophilic polymer layer.
  • Detection of medical device-derived elements in the hydrophilic polymer layer can be determined by scanning transmission electron microscopy, electron energy loss spectroscopy, energy dispersive X-ray spectroscopy, or time-of-flight secondary This can be confirmed by elemental analysis such as ion mass spectrometry or observation using compositional analysis means.
  • a blended layer in which at least a portion of the hydrophilic polymer layer is blended with the medical device exists on the surface of the medical device in order to firmly adhere the hydrophilic polymer to the surface of the medical device.
  • a mixed layer it is preferable that a two-layer structure of the mixed layer and a single layer consisting only of the hydrophilic polymer is observed in the hydrophilic polymer layer.
  • the thickness of the admixture layer like the thickness of the hydrophilic polymer layer described above, can be measured by observing a cross section perpendicular to the longitudinal direction of the coated medical device in a frozen state using a transmission electron microscope.
  • the thickness of the mixed layer is preferably 3% or more, more preferably 5% or more, and 10% or more of the total thickness of the mixed layer and the single layer in order to firmly adhere the hydrophilic polymer to the surface of the medical device. is even more preferable.
  • the thickness of the mixed layer is preferably 98% or less, more preferably 95% or less, and 90% or less of the total thickness of the mixed layer and the single layer, in order to fully express the hydrophilicity of the hydrophilic polymer. is more preferable, and particularly preferably 80% or less.
  • a miscible portion refers to a portion that does not have a layered structure, where the hydrophilic polymer and the medical device are mixed.
  • a miscible part is observed means that a part having no layer structure is observed on the surface of the medical device other than the miscible layer, and in this part, an element derived from the hydrophilic polymer and an element derived from the medical device are observed. This means that both the element and the element are detected.
  • the thickness of the mixed portion is preferably 3% or more, more preferably 5% or more, and even more preferably 10% or more of the total thickness of the mixed layer and the mixed portion.
  • the thickness of the blending portion is preferably 98% or less, more preferably 95% or less, and 90% or less of the total thickness of the blending layer and the blending portion, in order to fully express the hydrophilicity possessed by the hydrophilic polymer. is more preferable, and particularly preferably 80% or less.
  • the covered medical device is an ophthalmic lens, etc.
  • the liquid film retention time on the surface of a coated medical device is defined as the length of time when the coated medical device is left standing and immersed in a solution at room temperature (20 to 23°C), then pulled out of the solution, and the longitudinal direction of the device is in the direction of gravity. This is the amount of time the liquid film on the surface remains unbroken when held in the air. If the test piece has a spherical crown shape such as a contact lens, it shall be held so that the diameter direction of the circle formed by the edge of the spherical crown is in the direction of gravity.
  • the liquid film is cut refers to a state in which a portion of the solution covering the surface of the coated medical device is repelled, and the surface of the coated medical device is no longer completely covered with the liquid film. Note that if the liquid film retention time is too long, water evaporation from the surface of the coated medical device tends to progress and the hydrophilic effect decreases, so the liquid film retention time is preferably 300 seconds or less, and 200 seconds or less. It is more preferable that
  • the covered medical device is an ophthalmic lens, etc.
  • the surface has a small droplet contact angle. A method for measuring the droplet contact angle will be described later.
  • the droplet contact angle is preferably 80° or less, preferably 70° or less, and more preferably 65° or less.
  • the droplet contact angle is preferably 70° or less, more preferably 60° or less, and even more preferably 55° or less.
  • a system with a small change in droplet contact angle due to scrubbing has a hydrophilic polymer layer with higher adsorption power and superior durability formed on the surface of the medical device.
  • the difference between the droplet contact angle (droplet contact angle Pay attention. The measurement method will be described later.
  • the surface thereof has excellent slipperiness.
  • the coefficient of friction which is an indicator of slipperiness, is preferably 0.300 or less, more preferably 0.200 or less, even more preferably 0.100 or less, and even more preferably 0.080 or less.
  • the coefficient of friction is preferably 0.001 or more, and more preferably 0.002 or more. The method for measuring the friction coefficient will be described later.
  • a system with a small change in friction coefficient due to scrubbing has a hydrophilic polymer layer formed on the surface of the medical device with higher adsorption power and superior durability. That is, attention is paid to the difference between the coefficient of friction after immersion in a fresh phosphate buffer solution for 24 hours (friction coefficient The measurement method will be described later.
  • the tensile modulus is preferably 10.00 MPa or less, more preferably 5.00 MPa or less, and furthermore 3.00 MPa or less in order to improve the wearing comfort. It is preferably 2.00 MPa or less, more preferably 1.00 MPa or less, particularly preferably 0.60 MPa or less.
  • the tensile modulus of the coated medical device is preferably 0.01 MPa or more, more preferably 0.10 MPa or more, even more preferably 0.20 MPa or more, and particularly preferably 0.25 MPa or more.
  • the ratio is preferably ⁇ 15.00% or less, more preferably ⁇ 13.00% or less, and even more preferably ⁇ 10.00% or less. The method for measuring the tensile modulus will be described later.
  • the coated medical device preferably has a small amount of lipid adhesion in order to improve the usability and reduce the risk of bacterial growth.
  • the method for measuring the amount of lipid adhesion will be described later.
  • the change in water content of the medical device before and after coating must be 10 percentage points or less to prevent poor visibility and deformation caused by distortion of the refractive index due to increased water content. It is preferably 8 percentage points or less, more preferably 6 percentage points or less, and even more preferably 6 percentage points or less. The method for measuring the moisture content will be described later.
  • the rate of change in size of the medical device before and after coating is preferably ⁇ 5.00% or less, and ⁇ 4.00%. It is more preferably less than or equal to ⁇ 3.00%, even more preferably less than ⁇ 3.00%.
  • Example S ⁇ Hydrophilicity after immersion in fresh phosphate buffer for 24 hours (liquid film retention time after 24 hours)>
  • ⁇ Droplet contact angle after immersion in fresh phosphate buffer for 24 hours (droplet contact angle X)>
  • the medical device before being subjected to the manufacturing method of the present invention was immersed in a phosphate buffer solution and allowed to stand at room temperature (20 to 23°C) for 24 hours or more. Thereafter, the medical device was lifted from the phosphate buffer solution, surface moisture was wiped off with a wiping cloth "Kimwipe" (registered trademark) (manufactured by Nippon Paper Crecia Co., Ltd.), and the mass (Ww) of the medical device was measured. Thereafter, the medical device was dried at 40° C. for 2 hours in a vacuum dryer, and then the mass (Wd) of the medical device was measured. From these masses, the water content of the medical device was calculated using the following formula (1).
  • ⁇ Lipid adhesion amount> A 20 cc screw tube was charged with 0.03 g of methyl palmitate, 10 g of pure water, and a coated medical device (or medical device). The screw tube was shaken at 37° C. and 165 rpm for 3 hours. After shaking, the coated medical device (or medical device) inside the screw tube was scrubbed using tap water at 40°C and household liquid detergent "Mama Lemon" (registered trademark) (manufactured by Lion Corporation). The washed sample was placed in a screw tube containing phosphate buffer and stored in a refrigerator at 4°C for 24 hours.
  • Rate of change in tensile elastic modulus of medical device before and after coating (Tensile elastic modulus of coated medical device after coating - tensile elastic modulus of medical device before coating) / Tensile elastic modulus of medical device before coating x 100 ... Formula (3).
  • Rate of size change (%) before and after coating (Size of covered medical device after coating - Size of medical device before coating)/Size of medical device before coating x 100... Formula (4).
  • Mw weight average molecular weight
  • Equipment Prominence GPC system (manufactured by Shimadzu Corporation)
  • Pump LC-20AD
  • Auto sampler SIL-20AHT
  • Column oven CTO-20A Detector: RID-10A
  • Column GMPWXL (manufactured by Tosoh Corporation; inner diameter 7.8 mm x 30 cm, particle size 13 ⁇ m)
  • Flow rate 0.5 mL/min Measurement time: 30 minutes
  • Sample concentration 0.1-0.3% by mass
  • Sample injection volume 100 ⁇ L
  • Standard sample Polyethylene oxide standard sample (manufactured by Agilent; 0.1 kD to 1258 kD).
  • ⁇ pH> The pH of the solution was measured using Eutech pH2700 (manufactured by Eutech Instruments) as a pH meter.
  • the "post-heating step pH" of solution a was measured immediately after cooling solution a to room temperature (20 to 23° C.) after the heating step.
  • hydrophilic polymer layer of a coated medical device it can be determined whether the hydrophilic polymer layer and the medical device are in a mixed state by immersing it in a phosphate buffer solution and leaving it at room temperature (20 to 23°C) for at least 24 hours.
  • the surface of the coated medical device (or medical device) in a dry state after being left and washed was analyzed using time-of-flight secondary ion mass spectrometry.
  • Equipment TOF.
  • SIMS5 manufactured by ION-TOF
  • ⁇ Phosphate buffer> The composition of the phosphate buffer used in Examples and Comparative Examples is as follows. KCl 0.2g/L KH2PO4 0.2g /L NaCl 8.0g/L Na2HPO4 1.19g /L EDTA 2 Na (ethylenediaminetetraacetic acid dihydrogen disodium) 0.5 g/L.
  • the lower part of the flask was immersed in the bath.From the point when the internal temperature of the flask exceeded 70°C, 27.1 mg of polymerization initiator V-50 (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., .0999 mmol) was added in 6 portions at 5 minute intervals.After adding the entire amount of polymerization initiator, the flask was kept at an internal temperature of 70 to 75°C for 4 hours, and the side chain terminal hydrogen polyethylene glycol monoacrylate and the number of polyethylene glycol chains were added. A 4.5/N,N-dimethylacrylamide copolymer aqueous solution (molar ratio in copolymerization: 4/6, Mw: 250,000) was obtained.
  • Teflon registered trademark
  • t-amyl alcohol 10.0 parts by mass was prepared based on 100.0 parts by mass, and all of these were mixed and stirred.
  • the stirred mixture was filtered through a membrane filter (pore size: 0.45 ⁇ m) to remove insoluble components to obtain a monomer mixture.
  • the above monomer mixture was injected into a contact lens mold made of transparent resin (base curve side material: polypropylene, front curve side material: polypropylene) and irradiated with light (wavelength 405 nm ( ⁇ 5 nm), illuminance: 0 to 0.7 mW). /cm 2 for 30 minutes) for polymerization.
  • the obtained molded body was immersed in a 100 mass % isopropanol aqueous solution at 60°C for 1.5 hours, including the mold with the front curve and base curve released, to peel the contact lens-shaped molded body from the mold. did.
  • the molded body thus obtained was immersed for 2 hours in a large excess of 100% by mass isopropanol aqueous solution kept at 60°C to extract impurities such as residual monomers. Thereafter, it was dried at room temperature (23° C.) for 12 hours.
  • Example 1 As a “medical device”, a commercially available silicone hydrogel lens "Acuvue Oasys” (registered trademark) (manufactured by Johnson & Johnson, senofilcon A) containing polyvinylpyrrolidone and silicone as the main components, a glass vial as a “container”, and a “solution a”.
  • the side chain terminal hydrogen polyethylene glycol monoacrylate (“Blenmar” (registered trademark) AE-200)/N,N-dimethylacrylamide copolymer in the copolymerization 3 mL of a solution containing 0.10% by mass of phosphate buffer (mole ratio 4/6, Mw: 250,000) was used in each case.
  • the medical device was immersed in the solution a ((A) contact step), the glass vial was sealed with a cap ((B) sealing step), and then heated at 121° C. for 30 minutes using an autoclave ((C) heating process).
  • Tables 1 to 3 The results of evaluating the obtained coated medical device using the above method are shown in Tables 1 to 3.
  • Example 2 As solution a, side chain terminal hydrogen polyethylene glycol monoacrylate ("Blemmer” (registered trademark) AE-200)/N,N-dimethylacrylamide copolymer obtained in Synthesis Example 2 (molar ratio in copolymerization 1/ The same operation as in Example 1 was performed except that 3 mL of a solution containing 0.30% by mass of 9, Mw: 150,000) in a phosphate buffer was used. The results of evaluating the obtained coated medical device using the above method are shown in Tables 1 to 3.
  • Example 4 The same operation as in Example 1 was performed, except that a commercially available hydrogel lens "Medalist 1 Day Plus” (registered trademark) (manufactured by Bausch & Lomb, hilafilcon B) containing 2-hydroxyethyl methacrylate as the main component was used as the medical device. .
  • the results of evaluating the obtained coated medical device using the above method are shown in Tables 1 to 3.
  • Example 5 The same operation as in Example 2 was performed except that a commercially available hydrogel lens "Medalist 1-day Plus" (registered trademark) was used as the medical device. The results of evaluating the obtained coated medical device using the above method are shown in Tables 1 to 3.
  • Example 7 The same operation as in Example 3 was performed except that a commercially available hydrogel lens "Medalist 1-day Plus" (registered trademark) was used as the medical device. The results of evaluating the obtained coated medical device using the above method are shown in Tables 1 to 3.
  • Example 8 The same operation as in Example 6 was performed, except that a commercially available hydrogel lens "Medalist 1 Day Plus” (registered trademark) was used as the medical device. The results of evaluating the obtained coated medical device using the above method are shown in Tables 1 to 3.
  • Example 10 The same operation as in Example 9 was performed, except that a commercially available hydrogel lens "Medalist 1 Day Plus” (registered trademark) was used as the medical device. The results of evaluating the obtained coated medical device using the above method are shown in Tables 1 to 3.
  • Example 11 The same operation as in Example 1 was performed except that a commercially available hydrogel lens "1day Acuvue" (registered trademark) (manufactured by Johnson & Johnson, etafilcon A) containing 2-hydroxyethyl methacrylate as the main component was used as the medical device.
  • the results of evaluating the obtained coated medical device using the above method are shown in Tables 1 to 3.
  • Example 12 The same operation as in Example 9 was carried out, except that a commercially available hydrogel lens "1day Acuvue" (registered trademark) was used as the medical device, and a solution containing 0.60% by mass of hydrophilic polymer A in phosphate buffer was used as solution A. I did it. The results of evaluating the obtained coated medical device using the above method are shown in Tables 1 to 3.
  • Example 13 As a medical device, a commercially available hydrogel lens "Proclear One Day” (registered trademark) (manufactured by Cooper Vision, omafilcon A) whose main component is 2-hydroxyethyl methacrylate copolymerized with MPC monomer (2-methacryloyloxyethylphosphorylcholine) is available. ) was used, but the same operation as in Example 1 was performed. The results of evaluating the obtained coated medical device using the above method are shown in Tables 1 to 3.
  • Example 14 As a medical device, a commercially available hydrogel lens "Proclear One Day” (registered trademark) was used, and as solution A, a solution containing 0.60% by mass of hydrophilic polymer A in a phosphate buffer solution was used. A similar operation was performed. The results of evaluating the obtained coated medical device using the above method are shown in Tables 1 to 3.
  • Example 15 The same operations as in Example 1 were carried out, except that a commercially available hydrogel color lens "1day Acuvue Define Moist” (registered trademark) (manufactured by Johnson & Johnson, etafilcon A) containing 2-hydroxyethyl methacrylate as the main component was used as a medical device. went. The results of evaluating the obtained coated medical device using the above method are shown in Tables 1 to 3.
  • Example 16 Examples except that a commercially available hydrogel color lens "1day Acuvue Define Moist" (registered trademark) was used as the medical device, and a solution containing 0.70% by mass of hydrophilic polymer A in phosphate buffer was used as solution A. The same operation as in 9 was performed. The results of evaluating the obtained coated medical device using the above method are shown in Tables 1 to 3.
  • Example 17 The same operation as in Example 1 was performed except that a commercially available silicone hydrogel lens "1day Acuvue Trueye” (registered trademark)" (manufactured by Johnson & Johnson, narafilcon A) containing polyvinylpyrrolidone and silicone as the main components was used as a medical device. Tables 1 to 3 show the results of evaluating the obtained coated medical device using the above method.
  • Example 18 Example 9 except that a commercially available silicone hydrogel lens "1day Acuvue Trueye" (registered trademark) was used as the medical device, and a solution containing 0.80% by mass of hydrophilic polymer A in phosphate buffer was used as solution A. The same operation was performed. The results of evaluating the obtained coated medical device using the above method are shown in Tables 1 to 3.
  • Example 19 Same as Example 1 except that a commercially available silicone hydrogel lens "Air Optics Aqua” (registered trademark) (manufactured by Nippon Alcon Co., Ltd., lotrafilcon A) whose lens surface was plasma-treated and whose main component was silicone was used as the medical device. The operation was performed. The results of evaluating the obtained coated medical device using the above method are shown in Tables 1 to 3.
  • Example 20 Example 9 except that a commercially available silicone hydrogel lens "Air Optics Aqua" (registered trademark) was used as the medical device, and a solution containing 0.90% by mass of hydrophilic polymer A in phosphate buffer was used as solution A. The same operation was performed. The results of evaluating the obtained coated medical device using the above method are shown in Tables 1 to 3.
  • Example 21 As a medical device, the same operation as in Example 1 was performed, except that the molded body obtained in Reference Example 1 and a solution containing 0.60% by mass of hydrophilic polymer A in a phosphate buffer solution were used as solution A. went. The results of evaluating the obtained coated medical device using the above method are shown in Tables 1 to 3.
  • Example 22 As a medical device, the same operation as in Example 9 was performed, except that the molded body obtained in Reference Example 1 and a solution containing 5.00% by mass of hydrophilic polymer A in a phosphate buffer solution were used as solution A. went. The results of evaluating the obtained coated medical device using the above method are shown in Tables 1 to 3.
  • Example 9 Same as Example 1 except that instead of solution a, a solution containing 0.30% by mass of polyvinylpyrrolidone (manufactured by Osaka Organic Chemical Industry Co., Ltd., Mw: 500,000) in a phosphate buffer solution was used. The operation was performed. Tables 4 to 6 show the results of evaluation of the obtained coated medical device (no hydrophilic polymer layer was observed) using the above method.
  • solution a a solution containing 0.30% by mass of polyvinylpyrrolidone (manufactured by Osaka Organic Chemical Industry Co., Ltd., Mw: 500,000) in a phosphate buffer solution was used. The operation was performed. Tables 4 to 6 show the results of evaluation of the obtained coated medical device (no hydrophilic polymer layer was observed) using the above method.
  • Example 11 The same operation as in Example 1 was performed except that phosphate buffer was used instead of solution a.
  • the results of evaluation of the obtained medical device (no polymer layer was observed) using the above method are shown in Tables 4 to 6.
  • Comparative example 12 The same operation as in Comparative Example 11 was performed except that a commercially available hydrogel lens "Medalist 1 Day Plus" (registered trademark) was used as the medical device. The results of evaluation of the obtained medical device (no polymer layer was observed) using the above method are shown in Tables 4 to 6.
  • Comparative Example 13 The same operation as in Comparative Example 10 was performed, except that a commercially available hydrogel lens "Medalist 1 Day Plus" (registered trademark) was used as the medical device. The results of evaluation of the obtained medical device (no polymer layer was observed) using the above method are shown in Tables 4 to 6.
  • Comparative Example 15 The same operation as in Comparative Example 13, except that instead of solution a, a solution containing 0.20% by mass of the methoxypolyethylene glycol methacrylate homopolymer obtained in Synthesis Example 3 above in a phosphate buffer solution was used. I did it. Tables 4 to 6 show the results of evaluation of the obtained coated medical device (no hydrophilic polymer layer was observed) using the above method.
  • Example 16 The same procedure as in Example 1 was used, except that instead of solution a, a solution containing 0.20% by mass of the methoxypolyethylene glycol methacrylate homopolymer obtained in Synthesis Example 3 above in a phosphate buffer solution was used. I did it. Tables 4 to 6 show the results of evaluation of the obtained coated medical device (no hydrophilic polymer layer was observed) using the above method.
  • Comparative Example 17 The same operation as in Comparative Example 11 was performed except that a commercially available hydrogel lens "1day Acuvue" (registered trademark) was used as the medical device. The results of evaluation of the obtained medical device (no polymer layer was observed) using the above method are shown in Tables 4 to 6.
  • Comparative example 18 The same operation as in Comparative Example 11 was performed except that a commercially available hydrogel lens "Proclear 1 Day” (registered trademark) was used as the medical device. The results of evaluation of the obtained medical device (no polymer layer was observed) using the above method are shown in Tables 4 to 6.
  • Comparative Example 19 The same operation as in Comparative Example 11 was performed except that a commercially available hydrogel color lens "1day Acuvue Define Moist" (registered trademark) was used as the medical device. The results of evaluation of the obtained medical device (no polymer layer was observed) using the above method are shown in Tables 4 to 6.
  • Comparative Example 20 The same operation as in Comparative Example 11 was performed except that a commercially available silicone hydrogel lens "1-day Acuvue Trueye" (registered trademark) was used as the medical device. The results of evaluation of the obtained medical device (no polymer layer was observed) using the above method are shown in Tables 4 to 6.
  • Comparative example 21 The same operation as in Comparative Example 11 was performed except that a commercially available silicone hydrogel lens "Air Optics Aqua" (registered trademark) was used as the medical device. The results of evaluation of the obtained medical device (no polymer layer was observed) using the above method are shown in Tables 4 to 6.
  • Comparative example 22 The same operation as in Comparative Example 11 was performed except that the molded body obtained in Reference Example 1 was used as a medical device. The results of evaluation of the obtained medical device (no polymer layer was observed) using the above method are shown in Tables 4 to 6.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Vascular Medicine (AREA)
  • Dermatology (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本発明は、十分な親水性および易滑性に加えて、脂質付着抑制性が付与された被覆医療デバイス、および、その簡便な製造方法を提供することを目的とする。本発明は、医療デバイスと、該医療デバイスの表面を被覆する親水性ポリマー層と、を備え、該親水性ポリマー層は、親水性ポリマーAを含み、該親水性ポリマーAは、特定構造を有する化合物a1と、アミド基を有する化合物a2とを、モノマー単位として含み、上記化合物a1と上記化合物a2との共重合比率が、質量比で1/ 99~90/10である、被覆医療デバイス、および、その製造方法を提供する。

Description

被覆医療デバイスおよびその製造方法
 本発明は、被覆医療デバイスおよびその製造方法に関する。
 従来、シリコーンゴムやヒドロゲル(ハイドロゲル)等の軟質材料を用いた医療デバイス、または、金属やガラス等の硬質材料を用いた医療デバイスが、種々の分野において多様な用途に用いられている。
 医療デバイスを生体内に挿入したり、生体表面に貼付したりする場合、その生体適合性を向上させることを目的とした、医療デバイスの表面改質が重要となる。表面改質によって、生体適合性の向上に加えて医療デバイスに親水性、易滑性、脂質付着抑制性といった特性を付与すれば、使用者の使用感の向上、不快感の低減、症状の改善等を期待することができる。
 医療デバイスの表面改質の方法としては、例えば、N,N-ジメチルアクリルアミドやビニルピロリドン等のアミド基を有する化合物からなる、1種類以上のポリマーを含むpH6~9の溶液中に医療デバイスを室温で浸漬するか、または浸漬後加熱することによって医療デバイスの表面を改質させる方法が知られている(特許文献1~3)。
国際公開第2017/018425号 国際公開第2015/119256号 特許第5154231号
 しかしながら、特許文献1~3に開示された発明は、いずれも医療デバイスの表面に十分な親水性、易滑性等を付与できるものではなく、さらには、医療デバイスに脂質付着抑制性を付与できる方法ではなかった。
 そこで本発明は、十分な親水性および易滑性に加えて、脂質付着抑制性が付与された被覆医療デバイス、および、その簡便な製造方法を提供することを目的とする。
 上記の目的を達成するために、本発明は、医療デバイスと、該医療デバイスの表面を被覆する親水性ポリマー層と、を備える被覆医療デバイスであって、該親水性ポリマー層は、親水性ポリマーAを含み、該親水性ポリマーAは、下記一般式(I)または下記一般式(II)で表される化合物a1と、アミド基を有する化合物a2とを、モノマー単位として含み、上記化合物a1と上記化合物a2との共重合比率が、質量比で1/99~90/10である、被覆医療デバイスである。
Figure JPOXMLDOC01-appb-C000005
一般式(I)中、Rは水素原子またはメチル基を表し、Xは酸素原子またはNRを表し、Rは水素原子またはアルキル基を表し、mは1~30の整数を表す。
Figure JPOXMLDOC01-appb-C000006
一般式(II)中、Rは水素原子またはメチル基を表し、Xは酸素原子またはNRを表し、Rは水素原子またはアルキル基を表し、nは2または4を表し、kは3または4を表し、aは0~30の整数を表し、bは1~30の整数を表し、Yは水素原子、メチル基、エチル基、プロピル基、イソプロピル基またはブチル基を表す。
 また、本発明は、(A)容器内に医療デバイスを格納し、該医療デバイスと、親水性ポリマーAを含む溶液aとを接触させる、接触工程と、(C)上記容器を加熱する、加熱工程と、を備え、上記親水性ポリマーAは、上記一般式(I)または上記一般式(II)で表される化合物a1と、アミド基を有する化合物a2とを、モノマー単位として含み、上記化合物a1と上記化合物a2との共重合比率が、質量比で1/99~90/10であり、
一般式(I)中、Rは水素原子またはメチル基を表し、Xは酸素原子またはNRを表し、Rは水素原子またはアルキル基を表し、mは1~30の整数を表す;
一般式(II)中、Rは水素原子またはメチル基を表し、Xは酸素原子またはNRを表し、Rは水素原子またはアルキル基を表し、nは2または4を表し、kは3または4を表し、aは0~30の整数を表し、bは1~30の整数を表し、Yは水素原子、メチル基、エチル基、プロピル基、イソプロピル基またはブチル基を表す;
 上記加熱工程後の溶液aのpHが、6.1~8.0である、被覆医療デバイスの製造方法である。
 本発明によれば、医療デバイスに要求される十分な親水性および易滑性に加えて、脂質付着抑制性が付与された被覆医療デバイスを提供することができる。また、本発明の製造方法によれば、その被覆医療デバイスを簡便なプロセスで得ることができる。
 本発明の被覆医療デバイスは、医療デバイスと、該医療デバイスの表面を被覆する親水性ポリマー層と、を備える。
 本発明の被覆医療デバイスが備える医療デバイスとしては、例えば、眼用レンズ、皮膚用被覆材、創傷被覆材、皮膚用保護材、皮膚用薬剤担体、輸液用チューブ、気体輸送用チューブ、排液用チューブ、血液回路、被覆用チューブ、カテーテル、ステント、シース、バイオセンサーチップ、人工心肺または内視鏡用被覆材が挙げられる。ここで眼用レンズとしては、例えば、コンタクトレンズ、眼内レンズ、人工角膜、角膜インレイ、角膜オンレイまたはメガネレンズが挙げられる。
 医療デバイスを構成する材料としては、含水性材料および低含水性材料のいずれであっても構わない。含水性材料としては、例えば、ヒドロゲルまたはシリコーンヒドロゲルが挙げられる。医療デバイスがコンタクトレンズである場合には、脂質付着抑制性が高く、優れた親水性と易滑性とを示し、耐久性ある表面層が形成でき、長時間の装用において効果が持続しやすいことから、ヒドロゲルが好ましい。低含水性材料としては、例えば、低含水性軟質材料または低含水性硬質材料が挙げられる。なお、低含水性材料とは、含水率が10質量%以下の材料をいう。
 以下、ヒドロゲルまたはシリコーンヒドロゲルの名称を表すのにUnited States Adopted Names(USAN)を用いる場合がある。USANにおいては末尾にA、B、C等の記号を付記して材料の変種を表す場合があるが、本明細書では、末尾の記号を付記与しない場合には全ての変種を表すものとする。例えば、単に「オクフィルコン(ocufilcon)」と表記した場合には、「オクフィルコンA(ocufilconA)」、「オクフィルコンB(ocufilconB)」、「オクフィルコンC(ocufilconC)」、「オクフィルコンD(ocufilconD)」、「オクフィルコンE(ocufilconE)」または「オクフィルコンF(ocufilconF)」等の、オクフィルコン(ocufilcon)の全ての変種を表すものとする。
 ヒドロゲルとしては、例えば、テフィルコン(tefilcon)、テトラフィルコン(tetrafilcon)、へフィルコン(hefilcon)、マフィルコン(mafilcon)、ポリマコン(polymacon)、ヒオキシフィルコン(hioxifilcon)、アルファフィルコン(alfafilcon)、オマフィルコン(omafilcon)、ヒキソイフィルコン(hixoifilcon)、ネルフィルコン(nelfilcon)、ネソフィルコン(nesofilcon)、ヒラフィルコン(hilafilcon)、アコフィルコン(acofilcon)、デルタフィルコン(deltafilcon)、エタフィルコン(etafilcon)、フォコフィルコン(focofilcon)、オクフィルコン(ocufilcon)、フェムフィルコン(phemfilcon)、メサフィルコン(methafilcon)またはビルフィルコン(vilfilcon)が挙げられる。
 医療デバイスがヒドロゲルからなるコンタクトレンズである場合には、米国食品医薬品局(FDA)が定めるコンタクトレンズの分類Group1~Group4に属することとなるが、良好な親水性を示すGroup2またはGroup4が好ましく、Group4がより好ましい。
 Group1に属する含水率50質量%未満かつ非イオン性のヒドロゲルとしては、例えば、テフィルコン(tefilcon)、テトラフィルコン(tetrafilcon)、ヘリフィルコン(helfilcon)、マフィルコン(mafilcon)、ポリマコン(polymacon)またはヒオキシフィルコン(hioxifilcon)が挙げられる。
 Group2に属する含水率が50質量%以上かつ非イオン性のヒドロゲルとしては、例えば、アルファフィルコン(alfafilcon)、オマフィルコン(omafilcon)、ヒキソイフィルコン(hixoifilcon)、ネルフィルコン(nelfilcon)、ネソフィルコン(nesofilcon)、ヒラフィルコン(hilafilcon)またはアコフィルコン(acofilcon)が挙げられるが、良好な親水性を示す、オマフィルコン(omafilcon)、ヒキソイフィルコン(hixoifilcon)、ネルフィルコン(nelfilcon)またはネソフィルコン(nesofilcon)が好ましく、オマフィルコン(omafilcon)またはヒキソイフィルコン(hixoxifilcon)がより好ましく、オマフィルコン(omafilcon)がさらに好ましい。
 Group3に属する含水率50質量%未満かつイオン性のヒドロゲルとしては、例えば、デルタフィルコン(deltafilcon)が挙げられる。
 Group4に属する含水率が50質量%以上かつイオン性のヒドロゲルとしては、例えば、エタフィルコン(etafilcon)、フォコフィルコン(focofilcon)、オクフィルコン(ocufilcon)、フェムフィルコン(phemfilcon)、メサフィルコン(methafilcon)またはビルフィルコン(vilfilcon)が挙げられるが、良好な親水性を示す、エタフィルコン(etafilcon)、フォコフィルコン(focofilcon)、オクフィルコン(ocufilcon)またはフェムフィルコン(phemfilcon)が好ましく、エタフィルコン(etafilcon)またはオクフィルコン(ocufilcon)がより好ましく、エタフィルコン(etafilcon)がさらに好ましい。
 医療デバイスがシリコーンヒドロゲルからなるコンタクトレンズである場合には、米国食品医薬品局(FDA)が定めるコンタクトレンズの分類Group5に属することが好ましい。
 Group5に属するシリコーンヒドロゲルとしては、主鎖および/または側鎖にケイ素原子を有し、かつ、親水性を有するポリマーが好ましく、例えば、シロキサン結合を含有するモノマーと親水性モノマーとのコポリマーが挙げられる。そのようなコポリマーとしては、例えば、ロトラフィルコン(lotrafilcon)、ガリフィルコン(galyfilcon)、ナラフィルコン(narafilcon)、セノフィルコン(senofilcon)、コムフィルコン(comfilcon)、エンフィルコン(enfilcon)、バラフィルコン(balafilcon)、エフロフィルコン(efrofilcon)、ファンフィルコン(fanfilcon)、ソモフィルコン(somofilcon)、サムフィルコン(samfilcon)、オリフィルコン(olifilcon)、アスモフィルコン(asmofilcon)、フォーモフィルコン(formofilcon)、ステンフィルコン(stenfilcon)、アバフィルコン(abafilcon)、マンゴフィルコン(mangofilcon)、リオフィルコン(riofilcon)、シフィルコン(sifilcon)、ララフィルコン(larafilcon)またはデレフィルコン(delefilcon)が挙げられるが、脂質付着抑制性に加えて良好な親水性や防汚性を示す、ロトラフィルコン(lotrafilcon)、ガリフィルコン(galyfilcon)、ナラフィルコン(narafilcon)、セノフィルコン(senofilcon)、コムフィルコン(comfilcon)、エンフィルコン(enfilcon)、ステンフィルコン(stenfilcon)、ソモフィルコン(somofilcon)、デレフィルコン(delefilcon)、バラフィルコン(balafilcon)またはサムフィルコン(samfilcon)が好ましく、ロトラフィルコン(lotrafilcon)、ナラフィルコン(narafilcon)、セノフィルコン(senofilcon)、コムフィルコン(comfilcon)またはエンフィルコン(enfilcon)がより好ましく、ナラフィルコン(narafilcon)、セノフィルコン(senofilcon)またはコムフィルコン(comfilcon)がさらに好ましい。
 低含水性軟質材料または低含水性硬質材料としては、医療デバイスがコンタクトレンズである場合には、角膜への十分な酸素供給が可能な高い酸素透過性を示す、ケイ素原子を含む材料が好ましい。
 低含水性硬質材料としては、米国食品医薬品局(FDA)が定めるコンタクトレンズの分類に属する低含水性硬質材料が好ましい。
 かかる低含水性硬質材料としては、主鎖および/または側鎖にシロキサン結合のようなケイ素原子を有するポリマーが好ましく、酸素透過性の高い、トリス(トリメチルシロキシ)シリルプロピルメタクリレート、両末端に二重結合を持ったポリジメチルシロキサンまたはシリコーン含有アクリレートもしくはシリコーン含有メタクリレート等を用いたホモポリマー、あるいは、これらと他のモノマーとのコポリマー等がより好ましい。
 具体的には、上記低含水性硬質材料が、ネオフォコン(neofocon)、パシフォコン(pasifocon)、テレフォコン(telefocon)、シラフォコン(silafocon)、パフルフォコン(paflufocon)、ペトラフォコン(petrafocon)およびフルオロフォコン(fluorofocon)からなる群から選ばれることが好ましい。中でも、良好な脂質付着抑制性と防汚性とを示すことから、ネオフォコン(neofocon)、パシフォコン(pasifocon)、テレフォコン(telefocon)またはシラフォコン(silafocon)がより好ましく、ネオフォコン(neofocon)、パシフォコン(pasifocon)またはテレフォコン(telefocon)がさらに好ましく、ネオフォコン(neofocon)が特に好ましい。
 医療デバイスがコンタクトレンズ以外である場合には、低含水性硬質材料として、ポリエチレン、ポリプロピレン、ポリスルホン、ポリエーテルイミド、ポリスチレン、ポリメチルメタクリレート、ポリアミド、ポリエステル、エポキシ樹脂、ポリウレタンまたはポリ塩化ビニルが好ましい。中でも、良好な脂質付着抑制性と防汚性とを示すことから、ポリスルホン、ポリスチレン、ポリメチルメタクリレート、ポリウレタンまたはポリアミドがより好ましく、ポリメチルメタクリレートがさらに好ましい。
 低含水性軟質材料としては、例えば、国際公開第2013/024799号に開示された含水率が10質量%以下、弾性率が100~2,000kPa、引張伸度が50~3,000%の材料や、エラストフィルコン(elastofilcon)が挙げられる。
 本発明においては、医療デバイスが含水性であっても、低含水性であっても、医療デバイスの表面に適度な脂質付着抑制性を付与することができるが、適度な脂質付着抑制性を付与するため、医療デバイスの含水率は0.0001質量%以上が好ましく、0.001質量%以上がより好ましい。また医療デバイスの含水率は、80質量%以下が好ましく、70質量%以下がより好ましく、60質量%以下がさらに好ましい。
 医療デバイスがコンタクトレンズである場合には、眼の中でのレンズの動きが確保されやすいことから、医療デバイスの含水率は15質量%以上が好ましく、20質量%以上がより好ましい。
 上記親水性ポリマーAは、親水性を有する。ここで「親水性を有する」とは、室温(20~23℃)の水100質量部または水100質量部とtert-ブタノール100質量部との混合液に、そのポリマーが0.0001質量部以上可溶であることをいう。0.01質量部以上可溶であることが好ましく、0.1質量部以上可溶であることがより好ましく、1質量部以上可溶であることがさらに好ましい。
 本発明の被覆医療デバイスが備える親水性ポリマー層は、親水性ポリマーAを含み、該親水性ポリマーAは、下記一般式(I)または下記一般式(II)で表される化合物a1と、アミド基を有する化合物a2とを、モノマー単位として含み、上記化合物a1と上記化合物a2との共重合比率が、質量比で1/99~90/10であることを特徴とする。
 化合物a1および化合物a2としてはそれぞれ、単一のモノマーを用いても、構造の異なる複数のモノマーを用いてもよい。
Figure JPOXMLDOC01-appb-C000007
一般式(I)中、Rは水素原子またはメチル基を表し、Xは酸素原子またはNRを表し、Rは水素原子またはアルキル基を表し、mは1~30の整数を表す。
 Rがアルキル基の場合、直鎖状でも分岐状でも構わないが、炭素数1~10のアルキル基であることが好ましい。Rとしては、例えば、メチル基、エチル基、プロピル基、2-プロピル基、ブチル基、2-ブチル基、tert-ブチル基、ペンチル基、2-ペンチル基、3-ペンチル基、ヘキシル基、ヘプチル基またはオクチル基が挙げられる。
 mは、適度な親水性と重合の容易さとの観点から、2~30が好ましい。mの下限としては、3がより好ましく、4がさらに好ましく、5が特に好ましい。mの上限としては、25がより好ましく、20がさらに好ましく、10が特に好ましい。
Figure JPOXMLDOC01-appb-C000008
一般式(II)中、Rは水素原子またはメチル基を表し、Xは酸素原子またはNRを表し、Rは水素原子またはアルキル基を表し、nは2または4を表し、kは3または4を表し、aは0~30の整数を表し、bは1~30の整数を表し、Yは水素原子、メチル基、エチル基、プロピル基、イソプロピル基またはブチル基を表す。
 Rがアルキル基の場合、直鎖状でも分岐状でも構わないが、炭素数1~10のアルキル基であることが好ましい。Rとしては、例えば、メチル基、エチル基、プロピル基、2-プロピル基、ブチル基、2-ブチル基、tert-ブチル基、ペンチル基、2-ペンチル基、3-ペンチル基、ヘキシル基、ヘプチル基またはオクチル基が挙げられる。
 aは、適度な親水性と重合の容易さとの観点から、0~25が好ましい。aの下限としては、0がより好ましく、2がさらに好ましく、3が特に好ましい。aの上限としては、20がより好ましく、15がさらに好ましく、10が特に好ましい。
 bは、適度な親水性と重合の容易さとの観点から、1~25が好ましい。bの下限としては、1がより好ましく、2がさらに好ましく、3が特に好ましい。bの上限としては、20がより好ましく、15がさらに好ましく、10が特に好ましい。
 Yは、被覆層の形成しやすさの観点から、水素、メチル基、エチル基、プロピル基またはイソプロピル基がより好ましく、水素またはメチル基が最も好ましい。
 化合物a1としては、重合の容易さと水溶性溶媒への溶解性および親水性の付与のしやすさとの点で、一般式(I)で表される化合物がより好ましい。
 アミド基を有する化合物a2としては、重合の容易さの点で、アクリルアミド基もしくはメタクリルアミド基を有する化合物、または、N-ビニルカルボン酸アミド(環状のものを含む)が好ましい。
 具体的には、例えば、N-ビニルピロリドン、N-ビニルカプロラクタム、N-ビニルアセトアミド、N-メチル-N-ビニルアセトアミド、N-ビニルホルムアミド、N,N-ジメチルアクリルアミド、N-イソプロピルアクリルアミド、N-メチルアクリルアミド、N-エチルアクリルアミド、N-ブチルアクリルアミド、N-tert-ブチルアクリルアミド、N-ヒドロキシメチルアクリルアミド、N-メトキシメチルアクリルアミド、N-エトキシメチルアクリルアミド、N-プロポキシメチルアクリルアミド、N-イソプロポキシメチルアクリルアミド、N-(2-ヒドロキシエチル)アクリルアミド、N-ブトキシメチルアクリルアミド、N-イソブトキシメチルアクリルアミド、N-ヒドロキシメチルメタクリルアミド、N-メトキシメチルメタクリルアミド、N-エトキシメチルメタクリルアミド、N-プロポキシメチルメタクリルアミド、N-ブトキシメチルメタクリルアミド、N-イソブトキシメチルメタクリルアミド、アクリロイルモルホリンまたはアクリルアミドが挙げられる。易滑性を高めるため、N-ビニルピロリドン、N-イソプロピルアクリアミドまたはN,N-ジメチルアクリルアミドが好ましく、N-イソプロピルアクリアミドまたはN,N-ジメチルアクリルアミドがより好ましく、N,N-ジメチルアクリルアミドがさらに好ましい。
 親水性ポリマーAは、モノマー単位として、上記一般式(I)または一般式(II)で表される化合物a1やアミド基を有する化合物a2以外の、その他の化合物を1種類もしくは複数種類共重合させる形で含んでも構わない。そのようなその他の化合物としては、例えば、グリセロールアクリレート、グリセロールメタクリレート、N-(4-ヒドロキシフェニル)マレイミド、ヒドロキシスチレン、ビニルアルコール(前駆体としてカルボン酸ビニルエステル)、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレートまたはヒドロキシブチル(メタ)アクリレートが挙げられる。体液に対する防汚性を向上させるためには、グリセロールアクリレート、グリセロールメタクリレートまたはビニルアルコールが好ましく、グリセロールアクリレートまたはグリセロールメタクリレートがより好ましい。また、その他の化合物として、親水性、抗菌性、防汚性、薬効性等といった機能を示す化合物を使用することも可能である。
 親水性ポリマーAが前記特定構造を有する化合物a1をモノマー単位として含むことで、親水性ポリマーAが水に溶解しやすく、親水性の機能が発現し、親水性のみならず脂質付着抑制性のある表面を形成できる。
 親水性ポリマーAがアミド基を有する化合物a2をモノマー単位として含むことで、親水性ポリマーAを水に溶解した場合に適度な粘性が発現し、親水性のみならず易滑性のある表面を形成できる。
 上記化合物a1と上記化合物a2との共重合比率は、脂質付着抑制性や耐久性を有する親水性等の機能を発現しやすくするため、質量比で1/99~90/10の範囲にある。つまり、親水性ポリマーAに含まれるモノマー単位全体のうち、化合物a1と化合物a2の合計を100質量%として、化合物a1が占める割合は1質量%以上である必要があり、10質量%以上が好ましく、30質量%以上がより好ましい。また化合物a1が占める割合は重合の容易さの観点から99質量%以下である必要があり、90質量%以下が好ましく、85質量%以下がより好ましく、80質量%以下がさらに好ましい。また親水性ポリマーA全体を100質量%として、化合物a2が占める割合は、10質量%以上である必要があり、12質量%以上が好ましく、15質量%以上がより好ましく、20質量%以上がさらに好ましい。また化合物a2が占める割合は、90質量%以下である必要があり、90質量%以下が好ましく、80質量%以下がより好ましく、70質量%以下がさらに好ましい。
 上記化合物a1や上記化合物a2以外の、その他の化合物を第3のモノマー成分として共重合させる場合、第3のモノマー成分の共重合比率は、2質量%以上がより好ましく、5質量%以上がさらに好ましく、10質量%以上が特に好ましい。また、第3のモノマー成分の共重合比率は、90質量%以下がより好ましく、80質量%以下がさらに好ましく、70質量%以下が特に好ましい。
 上記一般式(I)で表される化合物a1やアミド基を有する化合物a2および第3のモノマー成分の共重合比率が上記の範囲であれば、易滑性や体液に対する防汚性などの機能を発現しやすくなる。
 医療デバイスの表面への親水性ポリマーAの吸着力を高め、医療デバイスに十分な脂質付着抑制性を付与するため、親水性ポリマーAの重量平均分子量は、2,000~1,500,000であることが好ましい。重量平均分子量は、5,000以上であることがより好ましく、10,000以上であることがさらに好ましく、100,000以上であることが特に好ましい。また重量平均分子量は、1,200,000以下がより好ましく、1,000,000以下がさらに好ましく、900,000以下が特に好ましい。ここでいう重量平均分子量は、水系溶媒を展開溶媒として用いたゲル浸透クロマトグラフィー法で測定される、ポリエチレングリコール換算の重量平均分子量である。
 また、本発明の被覆医療デバイスの製造方法は、(A)容器内に医療デバイスを格納し、該医療デバイスと、親水性ポリマーAを含む溶液aとを接触させる、接触工程と、(C)上記容器を加熱する、加熱工程と、を備え、上記親水性ポリマーAは、下記一般式(I)または下記一般式(II)で表される化合物a1と、アミド基を有する化合物a2とを、モノマー単位として含み、上記化合物a1と上記化合物a2との共重合比率が、質量比で1/99~90/10であり、
Figure JPOXMLDOC01-appb-C000009
一般式(I)中、Rは水素原子またはメチル基を表し、Xは酸素原子またはNRを表し、Rは水素原子またはアルキル基を表し、mは1~30の整数を表す;
Figure JPOXMLDOC01-appb-C000010
一般式(II)中、Rは水素原子またはメチル基を表し、Xは酸素原子またはNRを表し、Rは水素原子またはアルキル基を表し、nは2または4を表し、kは3または4を表し、aは0~30の整数を表し、bは1~30の整数を表し、Yは水素原子、メチル基、エチル基、プロピル基、イソプロピル基またはブチル基を表す;
上記加熱工程後の溶液aのpHが、6.1~8.0であることを特徴とする。
 親水性ポリマーAを含む溶液a中の親水性ポリマーAの濃度は、溶液aの粘度を適度なものとするため、0.0001~30質量%の範囲であることが好ましい。親水性ポリマーAの濃度は、0.001質量%以上がより好ましく、0.005質量%以上がさらに好ましい。また親水性ポリマーAの濃度は、10.0質量%以下であることがより好ましく、5.0質量%以下であることがさらに好ましく、1.0質量%以下であることがさらに好ましく、0.5質量%以下であることが特に好ましい。
 親水性ポリマーAを含む前記溶液aの溶媒としては、取り扱いの容易さから、水溶性有機溶媒もしくは水、またはこれらの混合溶媒が好ましく、水と水溶性有機溶媒との混合溶媒または水がより好ましく、水がさらに好ましい。水溶性有機溶媒としては、水溶性アルコール類が好ましく、炭素数6以下の水溶性アルコールがより好ましく、炭素数5以下の水溶性アルコールがさらに好ましい。溶液aは、さらに緩衝剤や他の添加物を含んでいても構わない。
 溶液aが含む緩衝剤としては、例えば、ホウ酸、ホウ酸塩類(例:ホウ酸ナトリウム)、クエン酸、クエン酸塩類(例:クエン酸カリウム)、重炭酸塩(例:重炭酸ナトリウム)、リン酸緩衝液(例:NaHPO、NaHPOまたはKHPO)、TRIS(トリス(ヒドロキシメチル)アミノメタン)、2-ビス(2-ヒドロキシエチル)アミノ-2-(ヒドロキシメチル)-1,3-プロパンジオール、ビス-アミノポリオール、トリエタノールアミン、ACES(N-(2-アセトアミド)-2-アミノエタンスルホン酸)、BES(N,N-ビス(2-ヒドロキシエチル)-2-アミノエタンスルホン酸)、HEPES(4-(2-ヒドロキシエチル)-1-ピペラジンエタンスルホン酸)、MES(2-(N-モルホリノ)エタンスルホン酸)、MOPS(3-[N-モルホリノ]-プロパンスルホン酸)、PIPES(ピペラジン-N,N’-ビス(2-エタンスルホン酸)もしくはTES(N-[トリス(ヒドロキシメチル)メチル]-2-アミノエタンスルホン酸)またはそれらの塩が挙げられる。溶液aに占める緩衝剤の割合は、所望のpHを達成するために適宜調整すればよいが、通常は、0.001~2.000質量%が好ましい。緩衝剤の割合は、0.010質量%以上がより好ましく、0.050質量%以上がさらに好ましい。また緩衝剤の割合は、1.000質量%以下がより好ましく、0.300質量%以下がさらに好ましい。
 接触工程に供する溶液aは、溶媒および緩衝剤を含む緩衝剤溶液に親水性ポリマーAを溶解させることにより調製することが好ましい。溶液aの調製に用いる緩衝剤溶液のpHは、生理学的に許容できる範囲である6.3~7.8が好ましい。緩衝剤溶液のpHは、6.5以上がより好ましく、6.8以上がさらに好ましい。また緩衝剤溶液のpHは、7.6以下がより好ましく、7.4以下がさらに好ましい。
 接触工程において医療デバイスを格納する容器としては、例えば、医療デバイスが眼用レンズである場合には、眼用レンズの包装に使用されるバイアルまたはブリスター容器が挙げられる。ブリスター容器は、通常、そのキャビティの縁の周囲にそり立つ平面フランジで囲まれた、プラスチックベース部と、平面フランジに接着されキャビティを密閉する、軟質のカバーシートとからなる。
 プラスチックベース部の材料としては、例えば、フッ素樹脂、ポリアミド、ポリアクリレート、ポリエチレン、ナイロン類、オレフィンコポリマー類(例:ポリプロピレンとポリエチレンのコポリマー)、ポリエチレンテレフタレート、ポリ塩化ビニル、非結晶質ポリオレフィン、ポリカルボナート、ポリスルホン、ポリブチレンテレフタレート、ポリプロピレン、ポリメチルペンテン、ポリエステル類、ゴム類またはウレタンが挙げられる。
 軟質のカバーシートとしては、例えば、アルミニウム箔がコーティングされたポリプロピレンシートのような、ラミネート材が挙げられる。
 本発明の被覆医療デバイスの製造方法は、(C)上記容器を加熱する、加熱工程を備える。(C)加熱工程においては、前記医療デバイスが親水性ポリマーAを含む溶液aと接触した状態で、容器ごと加熱される。
 上記加熱の方法としては、例えば、加温法(熱風)、高圧蒸気滅菌法、乾熱滅菌法、火炎滅菌法、煮沸消毒法、流通蒸気消毒法、電磁波(γ線またはマイクロ波等)照射、酸化エチレンガス滅菌法(EOG滅菌法)または紫外線滅菌法が挙げられる。医療デバイスに十分な脂質付着抑制性を付与することができ、かつ製造コストも低いことから、高圧蒸気滅菌法が好ましく、装置としてオートクレーブを用いたオートクレーブ滅菌がより好ましい。
 加熱温度は、医療デバイスに十分な脂質付着抑制性を付与しつつ、得られる被覆医療デバイス自体の強度に影響が及ばないようにするため、80~200℃が好ましい。加熱温度は、90℃以上がより好ましく、105℃以上がさらに好ましく、110℃以上がさらに好ましく、115℃以上がさらに好ましく、121℃以上が特に好ましい。また加熱温度は、180℃以下がより好ましく、170℃以下がさらに好ましく、150℃以下が特に好ましい。
 また加熱時間は、加熱温度と同様の理由から、1~600分が好ましい。加熱時間は、2分以上がより好ましく、5分以上がさらに好ましく、10分以上が特に好ましい。また加熱時間は、400分以下がより好ましく、300分以下がさらに好ましく、100分以下が特に好ましい。
 本発明の被覆医療デバイスの製造方法は、上記接触工程後、上記加熱工程前に、さらに(B)上記医療デバイスを格納した上記容器を密閉する、密閉工程を備えることが好ましい。医療デバイスを格納した容器を密閉してから加熱工程を実施した場合、医療デバイスの表面に脂質付着抑制性を付与すると同時に、得られる被覆医療デバイスの滅菌を行い、その滅菌状態を維持することが可能となり、製造工程の削減という観点から工業的に有利である。すなわち、本発明の被覆医療デバイスの製造方法では、製造プロセスの簡略化のため、密閉工程を備え、上記加熱工程により医療デバイスを滅菌することが好ましい。ここで容器を密閉する手段としては、例えば、医療デバイスを格納する容器としてキャップ付きのバイアルまたはブリスター容器を使用することにより容器を密閉する手段が挙げられる。また医療デバイスがコンタクトレンズである場合には、医療デバイスを格納する容器として、コンタクトレンズのケア用品付属の一般的なレンズケースを使用することにより容器を密閉する手段も一例として挙げられる。
 上記の加熱工程後に、得られた被覆医療デバイスに、さらに他の処理を行っても構わない。他の処理としては、例えば、親水性ポリマーを含まない緩衝剤溶液等を用いた同様の加熱処理、イオン線、電子線、陽電子線、エックス線、γ線もしくは中性子線等の放射線照射、反対の荷電を有するポリマー材料を1層ずつ交互にコーティングするLbL処理(Layer by Layer処理;例えば、国際公開第2013/024800号公報記載の処理)、または、金属イオンによる架橋処理もしくは化学架橋処理(例えば、特表2014-533381号公報記載の処理)が挙げられる。
 また上記の接触工程および/または加熱工程前に、医療デバイスの表面を前処理しても構わない。前処理としては、例えば、ポリアクリル酸等の酸や、水酸化ナトリウム等のアルカリを用いた加水分解処理が挙げられる。
 本発明の被覆医療デバイスの製造方法は、上記加熱工程後の溶液aのpHが、6.1~8.0であることを必要とする。pHがこの範囲にあることで、加熱工程後に得られた被覆医療デバイスを中性溶液で洗浄する必要が無くなり、製造工程の削減という観点から工業的に重要な意味を持つ。なお加熱工程後に中性溶液で洗浄を行った場合には、得られた被覆医療デバイスを再び滅菌する必要が生じる場合がある。加熱工程後の溶液aのpHは、6.5以上が好ましく、6.6以上がより好ましく、6.7以上がさらに好ましく、6.8以上が特に好ましい。またpHは、7.9以下が好ましく、7.8以下がより好ましく、7.6以下がさらに好ましい。
 なお加熱工程前の溶液aのpHも、6.1~8.0であることが好ましい。溶液aのpHは、6.5以上が好ましく、6.6以上がより好ましく、6.7以上がさらに好ましく、6.8以上が特に好ましい。またpHは、7.9以下が好ましく、7.8以下がより好ましく、7.6以下がさらに好ましい。ここで、加熱工程前の溶液aのpHとは、溶液aを調製した後、室温(20~23℃)にて30分間回転子を用い撹拌し、溶液を均一とした後に測定したpHの値をいう。
 上記溶液aのpHは、pHメーター(例えば、pHメーター Eutech pH2700(Eutech Instruments社製))を用いて測定することができる。なおpHの値の小数点以下第2位は、四捨五入する。
 得られた被覆医療デバイスにおける被覆層、すなわち親水性ポリマー層と、医療デバイスとの間には、共有結合が存在しないことが好ましい。共有結合が存在しないことで、医療デバイスが含水性材料であるか、低含水性材料であるかを問わずに、より簡便な工程で被覆医療デバイスを製造することが可能となる。ここで共有結合が存在しないとは、親水性ポリマー層と、医療デバイスとの間に化学反応性基またはそれが反応して生じた基が存在しないことをいう。化学反応性基またはそれが反応して生じた基が存在しないことは、電子エネルギー損失分光法、エネルギー分散型X線分光法もしくは飛行時間型2次イオン質量分析法等の元素分析、または、組成分析手段によって確認することができる。化学反応性基としては、例えば、アゼチジニウム基、エポキシ基、イソシアネート基、アジリジン基またはアズラクトン基が挙げられる。
 親水性ポリマー層の厚みは、凍結状態の被覆医療デバイスの長手方向に垂直な断面を、透過型電子顕微鏡を用いて観察したときに、1~99nmであることが好ましい。親水性ポリマー層の厚みがこの範囲にあることで、親水性や易滑性等の機能が発現しやすくなる。親水性ポリマー層の厚みは、5nm以上がより好ましく、10nm以上がさらに好ましい。また親水性ポリマー層の厚みは、95nm以下がより好ましく、90nm以下がさらに好ましく、85nm以下がさらに好ましく、50nm以下がさらに好ましく、40nm以下がさらに好ましく、30nm以下がさらに好ましく、20nm以下がさらに好ましく、15nm以下が特に好ましい。なお被覆医療デバイスが眼用レンズである場合、親水性ポリマー層の厚みが100nm未満であることで、網膜に焦点を合わせるための光の屈折が乱れず、視界不良が起こりにくくなる。
 なお得られた被覆医療デバイスにおける被覆層は、医療デバイスの表面の一部にのみ存在しても構わないし、表裏のいずれか片側の面全体にのみ存在しても構わないし、全表面に存在しても構わない。
 本発明の被覆医療デバイスにおいては、より強固な被覆を実現するため、親水性ポリマー層の少なくとも一部と、医療デバイスとが混和した状態で存在することが好ましい。ここで親水性ポリマー層と医療デバイスとが混和した状態とは、親水性ポリマー層中に医療デバイス由来の元素が検出される状態をいう。親水性ポリマー層中に医療デバイス由来の元素が検出されるかどうかは、被覆医療デバイスの断面を走査透過電子顕微鏡法、電子エネルギー損失分光法、エネルギー分散型X線分光法もしくは飛行時間型2次イオン質量分析法等の元素分析、または、組成分析手段で観察することで確認することができる。
 医療デバイスの表面に、親水性ポリマー層の少なくとも一部が医療デバイスと混和した層である混和層が存在すると、親水性ポリマーを医療デバイスの表面に強固に固着させるため好ましい。混和層が存在する場合、親水性ポリマー層において、混和層と、親水性ポリマーのみからなる単独層との二層構造が観察されることが好ましい。混和層の厚みは、上記親水性ポリマー層の厚みと同様に、凍結状態の被覆医療デバイスの長手方向に垂直な断面を、透過型電子顕微鏡を用いて観察して測定することができる。混和層の厚みは、親水性ポリマーを医療デバイスの表面に強固に固着させるため、混和層と単独層との合計厚みに対して、3%以上が好ましく、5%以上がより好ましく、10%以上がさらに好ましい。また混和層の厚みは、親水性ポリマーが有する親水性を十分に発現させるため、混和層と単独層との合計厚みに対して、98%以下が好ましく、95%以下がより好ましく、90%以下がさらに好ましく、80%以下が特に好ましい。
 医療デバイスの表面の混和層に加えて、混和部分が観察されることも好ましい。ここで「混和部分」とは、親水性ポリマーと医療デバイスとが混和した、層構造を有しない部位をいう。すなわち、「混和部分が観察される」とは、医療デバイス表面の混和層以外の部分に、層構造を有しない部位が観察され、かつ、該部位に親水性ポリマー由来の元素と医療デバイス由来の元素との双方が検出されることをいう。混和部分の厚みは、混和層と混和部分との合計厚みに対して、3%以上が好ましく、5%以上がより好ましく、10%以上がさらに好ましい。また混和部分の厚みは、親水性ポリマーが有する親水性を十分に発現させるため、混和層と混和部分との合計厚みに対して、98%以下が好ましく、95%以下がより好ましく、90%以下がさらに好ましく、80%以下が特に好ましい。
 被覆医療デバイスが眼用レンズ等である場合には、装用者の角膜への貼り付きを防止するだけではなく、乾燥感を感じにくく良好な装用感を長時間維持できる観点から、被覆医療デバイスの表面の液膜保持時間が長いことが好ましい。
 ここで被覆医療デバイスの表面の液膜保持時間とは、被覆医療デバイスを室温(20~23℃)の溶液中に静置して浸漬した後に、溶液から引き上げ、そのデバイスの長手方向が重力方向になるようにして空中にて保持した際の、表面の液膜が切れずに保持される時間をいう。試験片がコンタクトレンズのような球冠形状の場合は、球冠の縁部が形成する円の直径方向が重力方向になるように保持するものとする。なお「液膜が切れる」とは、被覆医療デバイスの表面を覆っている溶液の一部がはじかれ、被覆医療デバイスの表面が完全に液膜に覆われている状態ではなくなった状態をいう。なお液膜保持時間が長過ぎると、被覆医療デバイスの表面からの水分蒸発が進行しやすく親水性の効果が低くなることから、液膜保持時間は300秒以下であることが好ましく、200秒以下であることがより好ましい。
 被覆医療デバイスが眼用レンズ等である場合には、装用者の角膜への貼り付きを防止するだけではなく、乾燥感を感じにくく良好な装用感を長時間維持できる観点から、被覆医療デバイスの表面の液滴接触角が小さいことが好ましい。液滴接触角の測定方法については後述する。液滴接触角は、医療デバイスがケイ素原子を含む材料である場合には、80°以下が好ましく、70°以下が好ましく、65°以下がさらに好ましい。
 また液滴接触角は、医療デバイスがケイ素原子を含まない材料である場合には、70°以下が好ましく、60°以下がより好ましく、55°以下がさらに好ましい。
 また、擦り洗いによる液滴接触角の変化量が小さい系は、医療デバイスの表面に、吸着力がより高く耐久性により優れた親水性ポリマー層が形成されているといえる。すなわち、新しいリン酸緩衝液に24時間浸漬後の液滴接触角(液滴接触角X)と、それをさらに1分間擦り洗いした後の液滴接触角(液滴接触角Y)の差に着目する。測定方法については後述する。
 被覆医療デバイスが、例えば生体内に挿入して用いられる被覆医療デバイスである場合には、その表面が優れた易滑性を有することが好ましい。易滑性を表す指標である摩擦係数は、0.300以下が好ましく、0.200以下がより好ましく、0.100以下がさらに好ましく、0.080以下がさらに好ましい。一方で、易滑性が極端に高いと被覆医療デバイスの取扱が難しくなる場合があるので、摩擦係数は0.001以上が好ましく、0.002以上がより好ましい。摩擦係数の測定方法については後述する。
 また、擦り洗いによる摩擦係数の変化量が小さい系は、医療デバイスの表面に、吸着力がより高く耐久性により優れた親水性ポリマー層が形成されているといえる。すなわち、新しいリン酸緩衝液に24時間浸漬後の摩擦係数(摩擦係数X)と、それをさらに1分間擦り洗いした後の摩擦係数(摩擦係数Y)の差に着目する。測定方法については後述する。
 被覆医療デバイスが眼用レンズ等の軟質医療デバイスである場合には、装用感を向上させるため、引張弾性率は10.00MPa以下が好ましく、5.00MPa以下がより好ましく、3.00MPa以下がさらに好ましく、2.00MPa以下がさらに好ましく、1.00MPa以下がさらに好ましく、0.60MPa以下が特に好ましい。一方で、取り扱いを容易にするため、被覆医療デバイスの引張弾性率は0.01MPa以上が好ましく、0.10MPa以上がより好ましく、0.20MPa以上がさらに好ましく、0.25MPa以上が特に好ましい。また接触工程および加熱工程前の医療デバイス、ならびに、接触工程および加熱工程後の被覆医療デバイスの引張弾性率を測定した場合、接触工程および加熱工程前後、すなわち被覆前後の医療デバイスの引張弾性率変化率は、変形や使用感不良のリスクを抑制するため、±15.00%以下が好ましく、±13.00%以下がより好ましく、±10.00%以下がさらに好ましい。引張弾性率の測定方法については後述する。
 被覆医療デバイスは、使用感を向上させ、かつ細菌繁殖リスクを低減するため、脂質の付着量が少ないことが好ましい。脂質の付着量の測定方法については後述する。
 被覆医療デバイスが眼用レンズである場合には、含水率の増加による屈折率の歪みから引き起こされる視界不良や変形を防止するため、被覆前後の医療デバイスの含水率の変化量が10パーセンテージポイント以下であることが好ましく、8パーセンテージポイント以下がより好ましく、6パーセンテージポイント以下がさらに好ましい。含水率の測定方法については後述する。
 被覆医療デバイスが眼用レンズである場合には、変形に伴う角膜損傷を防止するため、被覆前後の医療デバイスのサイズ変化率が±5.00%以下であることが好ましく、±4.00%以下であることがより好ましく、±3.00%以下であることがさらに好ましい。
 以下、実施例等により本発明を具体的に説明するが、本発明はこれらによって限定されるものではない。まず、実施例等における分析方法および評価方法を示す。
 <親水性(液膜保持時間)>
 加熱工程後、室温(20~23℃)になるまで静置した被覆医療デバイス(または医療デバイス)を容器内の溶液から引き上げ、その長手方向が重力方向になるようにして空中にて保持する。デバイスを空中にて保持し始めた時点から、デバイス表面を覆っている液膜の一部が切れるまでの時間を目視観察して、N=3の値の平均値を下記基準で判定した。測定の最大値は120秒とした。
A:表面の液膜が20秒以上保持される。
B:表面の液膜が15秒以上20秒未満で切れる。
C:表面の液膜が10秒以上15秒未満で切れる。
D:表面の液膜が1秒以上10秒未満で切れる。
E:表面の液膜が1秒未満で切れる。
 <新しいリン酸緩衝液に24時間浸漬後の親水性(24時間後液膜保持時間)>
 医療デバイス表面の、十分に吸着していない親水性ポリマーの影響を除くため、加熱工程後の被覆医療デバイスまたは医療デバイスを室温(20~23℃)でガラスバイアル中の新しいリン酸緩衝液4mL中に24時間静置した。その後、ガラスバイアル内のリン酸緩衝液から引き上げた被覆医療デバイスまたは医療デバイスをサンプル(以下、「サンプルS」という)として、上記「親水性」と同様の評価を行った。
 <新しいリン酸緩衝液に24時間浸漬後の液滴接触角(液滴接触角X)>
 上記サンプルSを別途用意し、接触角測定装置(液滴法)Drop master DM500(協和界面科学株式会社製)を用いて液滴接触角を測定した。具体的には、被覆医療デバイス(または医療デバイス)の表面の水分を拭き取った後、直径14mmの半球状のポリプロピレンに乗せたものをサンプルとした。サンプルを接触角測定装置にセットし、サンプルにリン酸緩衝液を滴下して液滴接触角を測定した。滴下するリン酸緩衝液の液滴量は20μLとした。N=3の値の平均値を液滴接触角とした。
 <新しいリン酸緩衝液に24時間浸漬し、さらに1分間擦り洗いした後の液滴接触角(液滴接触角Y)>
 上記サンプルSを別途用意し、該サンプルSに対して、さらに手指(親指と人差し指)の間に挟んで1分間擦り洗いを行った後、上記「液滴接触角X」と同様の評価を行った。
 <医療デバイスおよび被覆医療デバイスの含水率>
 本発明の製造方法に供する前の医療デバイスを、リン酸緩衝液に浸漬して室温(20~23℃)で24時間以上静置した。その後医療デバイスをリン酸緩衝液から引き上げ、表面水分をワイピングクロス“キムワイプ”(登録商標)(日本製紙クレシア株式会社製)で拭き取った後、医療デバイスの質量(Ww)を測定した。その後、真空乾燥器にて医療デバイスを40℃で2時間乾燥した後、医療デバイスの質量(Wd)を測定した。これらの質量から、下式(1)により、医療デバイスの含水率を算出した。得られた値が1%未満の場合は測定限界以下と判断し、「1%未満」と表記した。N=3の値の平均値を含水率とした。加熱工程後に得られた被覆医療デバイスについても、同様に含水率を算出した。
医療デバイスの含水率(質量%)=100×(Ww-Wd)/Ww ・・・ 式(1)。
 <被覆前後の医療デバイスの含水率変化量>
 上記医療デバイスおよび被覆医療デバイスの含水率の測定結果から、下式(2)により、含水率変化量を算出した。
被覆前後の医療デバイスの含水率変化量(パーセンテージポイント)=被覆医療デバイスの含水率(質量%)-医療デバイスの含水率(質量%) ・・・ 式(2)。
 <摩擦係数>
 以下の条件で、リン酸緩衝液で濡れた状態の被覆医療デバイス(または医療デバイス)表面の摩擦係数をN=5で測定し、N=5の値の平均値を摩擦係数とした。
装置:摩擦感テスターKES-SE(カトーテック株式会社製)
摩擦SENS:H
測定SPEED:2×1mm/秒
摩擦荷重:44g。
 <新しいリン酸緩衝液に24時間浸漬後の摩擦係数(摩擦係数X)>
 上記サンプルSを別途用意し、上記「摩擦係数」と同様の評価を行った。
 <新しいリン酸緩衝液に24時間浸漬し、さらに1分間擦り洗いした後の摩擦係数(摩擦係数Y)>
 上記サンプルSを別途用意し、手指(親指と人差し指)の間に挟んで1分間擦り洗いを行った後、上記「摩擦係数」と同様の評価を行った。
 <脂質付着量>
 20ccのスクリュー管に、パルミチン酸メチル0.03g、純水10gおよび被覆医療デバイス(または医療デバイス)を入れた。37℃、165rpmの条件下3時間スクリュー管を振とうさせた。振とう後、スクリュー管内の被覆医療デバイス(または医療デバイス)を40℃の水道水と家庭用液体洗剤“ママレモン”(登録商標)(ライオン株式会社製)を用いて擦り洗いした。洗浄後のサンプルをリン酸緩衝液の入ったスクリュー管内に入れ、4℃の冷蔵庫内で24時間保管した。その後、被覆医療デバイス(または医療デバイス)を目視観察し、白濁した部分があればパルミチン酸メチルが付着していると判定して、サンプルの表面全体に対するパルミチン酸メチルが付着した部分の面積を観察した。
 <引張弾性率>
 被覆医療デバイス(または医療デバイス)から、規定の打抜型を用いて幅(最小部分)5mm、長さ14mmの試験片を切り出した。該試験片を用い、テンシロンRTG-1210型(株式会社エー・アンド・デイ社製)を用いて引張試験を実施した。引張速度は100mm/分で、グリップ間の距離(初期)は5mmであった。接触工程および加熱工程前の医療デバイスと、接触工程および加熱工程後の被覆医療デバイスと、の両方について測定を行った。N=8で測定を行い、最大値と最小値とを除いたN=6の値の平均値を、引張弾性率とした。
 <被覆前後の医療デバイスの引張弾性率変化率>
 上記の引張弾性率の測定結果から、下式(3)により、被覆前後の医療デバイスの引張弾性率変化率を算出した。
被覆前後の医療デバイスの引張弾性率変化率(%)=(被覆後の被覆医療デバイスの引張弾性率-被覆前の医療デバイスの引張弾性率)/被覆前の医療デバイスの引張弾性率×100 ・・・ 式(3)。
 <サイズ>
 被覆医療デバイス(または医療デバイス)について、その長手方向の長さ(円形のコンタクトレンズ等であれば、直径)をN=3で測定し、N=3の値の平均値をサイズとした。
 <被覆前後の医療デバイスのサイズ変化率>
 上記のサイズの測定結果から、下式(4)により、被覆前後のサイズ変化率を算出した。
 被覆前後のサイズ変化率(%)=(被覆後の被覆医療デバイスのサイズ-被覆前の医療デバイスのサイズ)/被覆前の医療デバイスのサイズ×100 ・・・ 式(4)。
 <重量平均分子量測定>
 ポリマーの重量平均分子量(以下、「Mw」という)は、以下に示す条件で測定した。
装置:Prominence GPCシステム(株式会社島津製作所製)
ポンプ:LC-20AD
オートサンプラ:SIL-20AHT
カラムオーブン:CTO-20A
検出器:RID-10A
カラム:GMPWXL(東ソー株式会社製;内径7.8mm×30cm、粒子径13μm)
溶媒:水/メタノール=1/1(0.1N硝酸リチウム添加)
流速:0.5mL/分
測定時間:30分
サンプル濃度:0.1~0.3質量%
サンプル注入量:100μL
標準サンプル:ポリエチレンオキシド標準サンプル(Agilent社製;0.1kD~1258kD)。
 <pH>
 pHメーターとしてEutech pH2700(Eutech Instruments社製)を用いて溶液のpHを測定した。溶液aの「加熱工程後pH」は、加熱工程を行った後、溶液aを室温(20~23℃)まで冷却した直後に測定した。
 <親水性ポリマー層の厚み>
 被覆医療デバイス(または医療デバイス)をリン酸緩衝液に浸漬して室温(20~23℃)で24時間以上静置洗浄した。その後、凍結させた被覆医療デバイス(または医療デバイス)の長手方向に垂直な断面を、原子分解能分析電子顕微鏡JEM-ARM200F(JEOL製)を用いて観察し、加速電圧200kVで場所を変えながらN=3で測定し、N=3の値の平均値を親水性ポリマー層の厚みとした。なお測定試料は、RuO染色凍結超薄切片法により作製した。
 <親水性ポリマーの組成元素分析>
 被覆医療デバイスにおける親水性ポリマー層において、親水性ポリマー層と医療デバイスとが混和した状態であるかどうかの判定は、リン酸緩衝液に浸漬して室温(20~23℃)で24時間以上静置洗浄した後の乾燥状態の被覆医療デバイス(または医療デバイス)の表面を、飛行時間型2次イオン質量分析(Time-of-Flight Secondary Ion Mass Spectrometry)を用いて、解析することによって行った。
装置: TOF.SIMS5(ION-TOF社製)
観察条件: 
1次イオン:Bi3++
2次イオン極性:正
エッチングイオン:Ar-GCIB(ガスクラスターイオンビーム)。
 <リン酸緩衝液>
 実施例および比較例で使用したリン酸緩衝液の組成は、以下のとおりである。
KCl 0.2g/L
KHPO 0.2g/L
NaCl 8.0g/L
NaHPO 1.19g/L
EDTANa(エチレンジアミン四酢酸二水素二ナトリウム) 0.5g/L。
 [合成例1]
 撹拌機、温度計、冷却管および三方コックを備えた300mL四つ口フラスコに、蒸留水114.08g、側鎖末端水素ポリエチレングリコールモノアクリレート21.62g(日油株式会社製、“ブレンマー”(登録商標)AE-200、ポリエチレングリコール鎖数4.5(式(I)におけるm=4.5(メーカー開示の平均値)、R=水素、X=酸素:0.080mol)、N,N-ジメチルアクリルアミド11.90g(KJケミカルズ株式会社製、0.120mol)を入れ、超音波脱気および窒素置換を5回行った。系内の窒素置換完了後、撹拌しながら、90℃に設定したオイルバスへフラスコ下部を浸した。フラスコ内温が70℃を超えた時点から、蒸留水20.00gに溶解させた27.1mgの重合開始剤V-50(富士フィルム和光純薬株式会社製、0.0999mmol)を5分間隔で6回に分割して添加した。重合開始剤の全量添加後にフラスコ内温70~75℃で4時間保温し、側鎖末端水素ポリエチレングリコールモノアクリレート、ポリエチレングリコール鎖数4.5/N,N-ジメチルアクリルアミド共重合体水溶液(共重合におけるモル比4/6、Mw:250,000)を得た。
 [合成例2]
 原料の仕込み量を、蒸留水73.00g、側鎖末端水素ポリエチレングリコールモノアクリレート5.41g(“ブレンマー”(登録商標)AE-200、0.020mol)、N,N-ジメチルアクリルアミド17.84g(0.180mol)とした以外は合成例1と同様の方法でポリマーを作製し、側鎖末端水素ポリエチレングリコールモノアクリレート、ポリエチレングリコール鎖数4.5/N,N-ジメチルアクリルアミド共重合体水溶液(共重合におけるモル比1/9、Mw:250,000)を得た。
 [合成例3]
 100mL三口フラスコにメトキシテトラエチレングリコールメタクリレート3.20g(日油株式会社製、“ブレンマー”(登録商標)PME-200、式(II)におけるa=0、k=2、b=4、R=メチル基、X=酸素、Y=メチル基:11.6mmol)、重合開始剤として2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]50.1mg(富士フィルム和光純薬株式会社製、VA-061、0.200mmol)、蒸留水28.23g(富士フィルム和光純薬株式会社製)を加え、デジタル温度計、三方コックを取り付けたジムロート冷却管、および撹拌羽付きシーラーを装着した。超音波照射下、10mmHgまで吸引した後、窒素フラッシュするというサイクルを5回繰り返して、混合溶液内の溶存酸素を除去した。続いてオイルバスへフラスコ下部を浸し、60℃で撹拌しながら7時間反応させた後、反応容器をオイルバスから引き上げて空冷した。重合反応溶液にメタノール50mLを加えて撹拌し、粘度を下げてから1L“テフロン”(登録商標)ビーカーに移し、真空乾燥機中で40℃終夜加熱乾燥させた。乾燥後、得られた粘調固体にイソプロパノール(IPA)を5mL加えて溶解させ、冷蔵庫で一晩静置した。冷却後、上澄み液をデカンテーションにより除き、真空乾燥機中で30℃2時間乾燥させることで、白色粉末のポリマーを得た。得られたメトキシポリエチレングリコールメタクリレート単独重合体(エチレンオキシド繰り返し単位数4)のMwは250,000であった。
 [参考例1]
 式(M1)で表される両末端にメタクリロイル基を有するポリジメチルシロキサン(JNC株式会社製、FM7726、Mw:30,000)28.0質量部、式(M2)で表されるシリコーンモノマー(JNC株式会社製、FM0721、Mn:5,000)7.0質量部、トリフルオロエチルアクリレート(大阪有機化学工業株式会社製、“ビスコート”(登録商標)3F)57.9質量部、2-エチルへキシルアクリレート(東京化成工業株式会社製)7.0質量部およびジメチルアミノエチルアクリレート(株式会社興人製)0.1質量部と、これらのモノマーの総質量に対し、光開始剤“イルガキュア”(登録商標)819(長瀬産業株式会社製)5000ppm、紫外線吸収剤(大塚化学株式会社製、RUVA-93)5000ppm、着色剤(Arran chemical社製、RB246)100ppmを準備し、さらに上記モノマーの総質量100.0質量部に対して10.0質量部のt-アミルアルコールを準備して、これら全てを混合し、撹拌した。撹拌された混合物をメンブレンフィルター(孔径:0.45μm)でろ過して不溶分を除いてモノマー混合物を得た。
 透明樹脂(ベースカーブ側の材質:ポリプロピレン、フロントカーブ側の材質:ポリプロピレン)製のコンタクトレンズ用モールドに上記モノマー混合物を注入し、光照射(波長405nm(±5nm)、照度:0~0.7mW/cm、30分間)して重合した。
 重合後に、得られた成型体を、フロントカーブとベースカーブを離型したモールドごと、60℃の100質量%イソプロパノール水溶液中に1.5時間浸漬して、モールドからコンタクトレンズ形状の成型体を剥離した。それによって得られた成型体を、60℃に保った大過剰量の100質量%イソプロパノール水溶液に2時間浸漬して残存モノマーなどの不純物を抽出した。その後、室温(23℃)中で12時間乾燥させた。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 [実施例1]
 「医療デバイス」として、ポリビニルピロリドンおよびシリコーンを主成分とする市販シリコーンヒドロゲルレンズ“Acuvue Oasys”(登録商標)(Johnson&Johnson社製、senofilcon A)を、「容器」として、ガラスバイアルを、「溶液a」として、上記合成例1で得られた親水性ポリマーAである側鎖末端水素ポリエチレングリコールモノアクリレート(“ブレンマー”(登録商標)AE-200)/N,N-ジメチルアクリルアミド共重合体(共重合におけるモル比4/6、Mw:250,000)をリン酸緩衝液中に0.10質量%含有させた溶液3mLを、それぞれ使用した。上記溶液aに上記医療デバイスを浸漬し((A)接触工程)、ガラスバイアルをキャップで密閉してから((B)密閉工程)、121℃で30分間オートクレーブを用いて加熱した((C)加熱工程)。得られた被覆医療デバイスについて上記方法にて評価した結果を表1~3に示す。
 [実施例2]
 溶液aとして、上記合成例2で得られた側鎖末端水素ポリエチレングリコールモノアクリレート(“ブレンマー”(登録商標)AE-200)/N,N-ジメチルアクリルアミド共重合体(共重合におけるモル比1/9、Mw:150,000)をリン酸緩衝液中に0.30質量%含有させた溶液3mLを使用した以外は、実施例1と同様の操作を行った。得られた被覆医療デバイスについて上記方法にて評価した結果を表1~3に示す。
 [実施例3]
 溶液aとして、ポリプロピレングリコールモノアクリレート(日油株式会社製、“ブレンマー”(登録商標)AP-400、式(II)におけるa=0、k=3、b=6(メーカー開示の平均値)、R=水素、X=酸素、Y=水素)/N,N-ジメチルアクリルアミド共重合体(共重合におけるモル比4/6、Mw:51,000、大阪有機化学工業株式会社製)をリン酸緩衝液中に0.60質量%含有させた溶液3mLを使用した以外は、実施例1と同様の操作を行った。得られた医療デバイスについて上記方法にて評価した結果を表1~3に示す。
 [実施例4]
 医療デバイスとして、メタクリル酸2-ヒドロキシエチルを主成分とする市販ヒドロゲルレンズ“メダリスト ワンデープラス”(登録商標)(Bausch&Lomb社製、hilafilconB)を使用した以外は、実施例1と同様の操作を行った。得られた被覆医療デバイスについて上記方法にて評価した結果を表1~3に示す。
 [実施例5]
 医療デバイスとして、市販ヒドロゲルレンズ“メダリスト ワンデープラス”(登録商標)を使用した以外は、実施例2と同様の操作を行った。得られた被覆医療デバイスについて上記方法にて評価した結果を表1~3に示す。
 [実施例6]
 溶液aとして、ポリエチレングリコールポリプロピレングリコールモノメタクリレート(日油株式会社製、“ブレンマー”(登録商標)50PEP-300、式(II)におけるn=2、a=3.5、k=3、b=2.5、R=メチル基、X=酸素、Y=水素)/N,N-ジメチルアクリルアミド共重合体(共重合におけるモル比4/6、Mw:117,000、大阪有機化学工業株式会社製)をリン酸緩衝液中に0.60質量%含有させた溶液3mLを使用した以外は、実施例1と同様の操作を行った。得られた被覆医療デバイスについて上記方法にて評価した結果を表1~3に示す。
 [実施例7]
 医療デバイスとして、市販ヒドロゲルレンズ“メダリスト ワンデープラス”(登録商標)を使用した以外は、実施例3と同様の操作を行った。得られた被覆医療デバイスについて上記方法にて評価した結果を表1~3に示す。
 [実施例8]
 医療デバイスとして、市販ヒドロゲルレンズ“メダリスト ワンデープラス”(登録商標)を使用した以外は、実施例6と同様の操作を行った。得られた被覆医療デバイスについて上記方法にて評価した結果を表1~3に示す。
 [実施例9]
 溶液aに代えて、側鎖末端水素ポリエチレングリコールモノアクリレート(日油株式会社製、“ブレンマー”(登録商標)AE-400、式(I)におけるm=10(メーカー開示の平均値)、R=水素、X=酸素)/N,N-ジメチルアクリルアミド共重合体(大阪有機化学工業株式会社製、共重合におけるモル比4/6、Mw:75,000)をリン酸緩衝液中に0.60質量%含有させた溶液を使用した以外は、実施例1と同様の操作を行った。得られた被覆医療デバイスについて上記方法にて評価した結果を表1~3に示す。
 [実施例10]
 医療デバイスとして、市販ヒドロゲルレンズ“メダリスト ワンデープラス”(登録商標)を使用した以外は、実施例9と同様の操作を行った。得られた被覆医療デバイスについて上記方法にて評価した結果を表1~3に示す。
 [実施例11]
 医療デバイスとして、メタクリル酸2-ヒドロキシエチルを主成分とする市販ヒドロゲルレンズ“1dayAcuvue”(登録商標)(Johnson&Johnson社製、etafilconA)を使用した以外は実施例1と同様の操作を行った。得られた被覆医療デバイスについて上記方法にて評価した結果を表1~3に示す。
 [実施例12]
 医療デバイスとして、市販ヒドロゲルレンズ“1dayAcuvue”(登録商標)、溶液Aとして親水性ポリマーAをリン酸緩衝液中に0.60質量%含有させた溶液を使用した以外は実施例9と同様の操作を行った。得られた被覆医療デバイスについて上記方法にて評価した結果を表1~3に示す。
 [実施例13]
 医療デバイスとして、MPCモノマー(2-メタクリロイルオキシエチルホスホリルコリン)が共重合されたメタクリル酸2-ヒドロキシエチルを主成分とする市販ハイドロゲルレンズ“プロクリアワンデー”(登録商標)(Cooper Vision社製、omafilconA)を使用した以外は実施例1と同様の操作を行った。得られた被覆医療デバイスについて上記方法にて評価した結果を表1~3に示す。
 [実施例14]
 医療デバイスとして、市販ハイドロゲルレンズ“プロクリアワンデー”(登録商標)、溶液Aとして親水性ポリマーAをリン酸緩衝液中に0.60質量%含有させた溶液を使用した以外は実施例9と同様の操作を行った。得られた被覆医療デバイスについて上記方法にて評価した結果を表1~3に示す。
 [実施例15]
 医療デバイスとして、メタクリル酸2-ヒドロキシエチルを主成分とする市販ハイドロゲルカラーレンズ“1day Acuvue Define Moist”(登録商標)(Johnson&Johnson社製、etafilconA)を使用した以外は実施例1と同様の操作を行った。得られた被覆医療デバイスについて上記方法にて評価した結果を表1~3に示す。
 [実施例16]
 医療デバイスとして、市販ハイドロゲルカラーレンズ“1day Acuvue Define Moist”(登録商標)、溶液Aとして親水性ポリマーAをリン酸緩衝液中に0.70質量%含有させた溶液を使用した以外は実施例9と同様の操作を行った。得られた被覆医療デバイスについて上記方法にて評価した結果を表1~3に示す。
 [実施例17]
 医療デバイスとして、ポリビニルピロリドンおよびシリコーンを主成分とする市販シリコーンハイドロゲルレンズ“1day Acuvue Trueye”(登録商標)”(Johnson&Johnson社製、narafilconA)を使用した以外は実施例1と同様の操作を行った。得られた被覆医療デバイスについて上記方法にて評価した結果を表1~3に示す。
 [実施例18]
 医療デバイスとして、市販シリコーンハイドロゲルレンズ“1day Acuvue Trueye”(登録商標)、溶液Aとして親水性ポリマーAをリン酸緩衝液中に0.80質量%含有させた溶液を使用した以外は実施例9と同様の操作を行った。得られた被覆医療デバイスについて上記方法にて評価した結果を表1~3に示す。
 [実施例19]
 医療デバイスとして、レンズ表面がプラズマ処理されたシリコーンを主成分とする市販シリコーンハイドロゲルレンズ“エア オプティクス アクア”(登録商標)(日本アルコン株式会社製、lotrafilconA)を使用した以外は実施例1と同様の操作を行った。得られた被覆医療デバイスについて上記方法にて評価した結果を表1~3に示す。
 [実施例20]
 医療デバイスとして、市販シリコーンハイドロゲルレンズ“エア オプティクス アクア”(登録商標)、溶液Aとして親水性ポリマーAをリン酸緩衝液中に0.90質量%含有させた溶液を使用した以外は実施例9と同様の操作を行った。得られた被覆医療デバイスについて上記方法にて評価した結果を表1~3に示す。
 [実施例21]
 医療デバイスとして、参考例1で得られた成型体、溶液Aとして親水性ポリマーAをリン酸緩衝液中に0.60質量%含有させた溶液を使用した以外は実施例1と同様の操作を行った。得られた被覆医療デバイスについて上記方法にて評価した結果を表1~3に示す。
 [実施例22]
 医療デバイスとして、参考例1で得られた成型体、溶液Aとして親水性ポリマーAをリン酸緩衝液中に5.00質量%含有させた溶液を使用した以外は実施例9と同様の操作を行った。得られた被覆医療デバイスについて上記方法にて評価した結果を表1~3に示す。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 [比較例1]
 溶液aに代えて、アクリル酸/ビニルピロリドン/N,N-ジメチルアクリルアミド共重合体(共重合におけるモル比1/1/2、Mw:550,000、大阪有機化学工業株式会社製)をリン酸緩衝液中に0.20質量%含有させた溶液を使用した以外は、実施例1と同様の操作を行った。得られた被覆医療デバイス(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表4~6に示す。
 [比較例2]
 溶液aに代えて、アクリル酸/ビニルピロリドン/N,N-ジメチルアクリルアミド共重合体(共重合におけるモル比1/1/2、Mw:330,000、大阪有機化学工業株式会社製)をリン酸緩衝液中に0.10質量%含有させた溶液を使用した以外は、実施例1と同様の操作を行った。得られた被覆医療デバイス(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表4~6に示す。
 [比較例3]
 溶液aに代えて、アクリル酸/N,N-ジメチルアクリルアミド共重合体(大阪有機化学工業株式会社製、共重合におけるモル比1/9、Mw:300,000)をリン酸緩衝液中に0.10質量%含有させた溶液を使用した以外は、実施例1と同様の操作を行った。得られた被覆医療デバイス(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表4~6に示す。
 [比較例4]
 医療デバイスとして、市販ヒドロゲルレンズ“メダリスト ワンデープラス”(登録商標)(Bausch&Lomb社製、hilafilconB)を用い、かつ、溶液aに代えて、ポリエチレングリコール(和光純薬工業株式会社製、Mw:500,000)をリン酸緩衝液中に0.30質量%含有させた溶液を使用した以外は、実施例1と同様の操作を行った。得られた被覆医療デバイス(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表4~6に示す。
 [比較例5]
 溶液aに代えて、アクリル酸/ビニルピロリドン共重合体(大阪有機化学工業株式会社製、共重合におけるモル比1/4、Mw:590,000)をリン酸緩衝液中に0.10質量%含有させた溶液を使用した以外は、実施例1と同様の操作を行った。得られた被覆医療デバイス(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表4~6に示す。
 [比較例6]
 溶液aに代えて、アクリル酸/ビニルピロリドン共重合体(大阪有機化学工業株式会社製、共重合におけるモル比1/9、Mw:390,000)をリン酸緩衝液中に0.10質量%含有させた溶液を使用した以外は、実施例1と同様の操作を行った。得られた被覆医療デバイス(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表4~6に示す。
 [比較例7]
 溶液aに代えて、アクリル酸/メタクリル酸2-ヒドロキシエチル/N,N-ジメチルアクリルアミド共重合体(大阪有機化学工業株式会社製、共重合におけるモル比1/1/2、Mw:430,000)をリン酸緩衝液中に0.20質量%含有させた溶液を使用した以外は、実施例1と同様の操作を行った。得られた被覆医療デバイス(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表4~6に示す。
 [比較例8]
 溶液aに代えて、アクリル酸/メタクリル酸2-ヒドロキシエチル/N,N-ジメチルアクリルアミド共重合体(大阪有機化学工業株式会社製、共重合におけるモル比1/1/8、Mw:480,000)をリン酸緩衝液中に0.20質量%含有させた溶液を使用した以外は、実施例1と同様の操作を行った。得られた被覆医療デバイス(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表4~6に示す。
 [比較例9]
 溶液aに代えて、ポリビニルピロリドン(大阪有機化学工業株式会社製、Mw:500,000)をリン酸緩衝液中に0.30質量%含有させた溶液を使用した以外は、実施例1と同様の操作を行った。得られた被覆医療デバイス(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表4~6に示す。
 [比較例10]
 溶液aに代えて、ポリN,N-ジメチルアクリルアミド(和光純薬工業株式会社製、Mw:700,000)をリン酸緩衝液中に0.30質量%含有させた溶液を使用した以外は、実施例1と同様の操作を行った。得られた被覆医療デバイス(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表4~6に示す。
 [比較例11]
 溶液aに代えて、リン酸緩衝液を使用した以外は、実施例1と同様の操作を行った。得られた医療デバイス(ポリマー層は確認されず)について上記方法にて評価した結果を表4~6に示す。
 [比較例12]
 医療デバイスとして、市販ヒドロゲルレンズ“メダリスト ワンデープラス”(登録商標)を使用した以外は、比較例11と同様の操作を行った。得られた医療デバイス(ポリマー層は確認されず)について上記方法にて評価した結果を表4~6に示す。
 [比較例13]
 医療デバイスとして、市販ヒドロゲルレンズ“メダリスト ワンデープラス”(登録商標)を使用した以外は、比較例10と同様の操作を行った。得られた医療デバイス(ポリマー層は確認されず)について上記方法にて評価した結果を表4~6に示す。
 [比較例14]
 溶液aに代えて、上記合成例3で得られたメトキシポリエチレングリコールメタクリレート単独重合体(ポリエチレングリコール鎖数4、Mw:250,000)をリン酸緩衝液中に0.20質量%含有させた溶液を使用した以外は、比較例13と同様の操作を行った。得られた被覆医療デバイス(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表4~6に示す。
 [比較例15]
 溶液aに代えて、上記合成例3で得られたメトキシポリエチレングリコールメタクリレート単独重合体をリン酸緩衝液中に0.20質量%含有させた溶液を使用した以外は、比較例13と同様の操作を行った。得られた被覆医療デバイス(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表4~6に示す。
 [比較例16]
 溶液aに代えて、上記合成例3で得られたメトキシポリエチレングリコールメタクリレート単独重合体をリン酸緩衝液中に0.20質量%含有させた溶液を使用した以外は、実施例1と同様の操作を行った。得られた被覆医療デバイス(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表4~6に示す。
 [比較例17]
 医療デバイスとして、市販ヒドロゲルレンズ“1dayAcuvue”(登録商標)を使用した以外は、比較例11と同様の操作を行った。得られた医療デバイス(ポリマー層は確認されず)について上記方法にて評価した結果を表4~6に示す。
 [比較例18]
 医療デバイスとして、市販ハイドロゲルレンズ“プロクリアワンデー”(登録商標)を使用した以外は、比較例11と同様の操作を行った。得られた医療デバイス(ポリマー層は確認されず)について上記方法にて評価した結果を表4~6に示す。
 [比較例19]
 医療デバイスとして、市販ハイドロゲルカラーレンズ“1day Acuvue Define Moist”(登録商標)を使用した以外は、比較例11と同様の操作を行った。得られた医療デバイス(ポリマー層は確認されず)について上記方法にて評価した結果を表4~6に示す。
 [比較例20]
 医療デバイスとして、市販シリコーンハイドロゲルレンズ“1day Acuvue Trueye”(登録商標)を使用した以外は、比較例11と同様の操作を行った。得られた医療デバイス(ポリマー層は確認されず)について上記方法にて評価した結果を表4~6に示す。
 [比較例21]
 医療デバイスとして、市販シリコーンハイドロゲルレンズ“エア オプティクス アクア”(登録商標)を使用した以外は、比較例11と同様の操作を行った。得られた医療デバイス(ポリマー層は確認されず)について上記方法にて評価した結果を表4~6に示す。
 [比較例22]
 医療デバイスとして、参考例1で得られた成型体を使用した以外は、比較例11と同様の操作を行った。得られた医療デバイス(ポリマー層は確認されず)について上記方法にて評価した結果を表4~6に示す。
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
 実施例と比較例との結果の対比から、本発明によって医療デバイスに対し十分な親水性および易滑性に加えて、優れた脂質付着抑制性を付与可能であることは明らかである。
 また、擦り洗いによる液滴接触角および摩擦係数の変化、すなわち、上記液滴接触角Xおよび上記液滴接触角Yの差、ならびに、上記摩擦係数Xおよび上記摩擦係数Yの差に着目した場合、その変化量が小さい系は、医療デバイスの表面に、吸着力がより高く耐久性により優れた親水性ポリマー層が形成されているといえる。実施例4および5、10~16の結果はそれに相当するものである。

Claims (10)

  1.  医療デバイスと、該医療デバイスの表面を被覆する親水性ポリマー層と、を備える被覆医療デバイスであって、
     該親水性ポリマー層は、親水性ポリマーAを含み、
     該親水性ポリマーAは、下記一般式(I)または下記一般式(II)で表される化合物a1と、アミド基を有する化合物a2とを、モノマー単位として含み、
     前記化合物a1と前記化合物a2との共重合比率が、質量比で1/99~90/10である、被覆医療デバイス:
    Figure JPOXMLDOC01-appb-C000001
    一般式(I)中、Rは水素原子またはメチル基を表し、Xは酸素原子またはNRを表し、Rは水素原子またはアルキル基を表し、mは1~30の整数を表す;
    Figure JPOXMLDOC01-appb-C000002
    一般式(II)中、Rは水素原子またはメチル基を表し、Xは酸素原子またはNRを表し、Rは水素原子またはアルキル基を表し、nは2または4を表し、kは3または4を表し、aは0~30の整数を表し、bは1~30の整数を表し、Yは水素原子、メチル基、エチル基、プロピル基、イソプロピル基またはブチル基を表す。
  2.  前記親水性ポリマー層と、前記医療デバイスとの混和層を有する、請求項1に記載の被覆医療デバイス。
  3.  前記医療デバイスが、ヒドロゲル、シリコーンヒドロゲル、低含水性軟質材料および低含水性硬質材料からなる群から選ばれる材料を含む、請求項1または2記載の被覆医療デバイス。
  4.  前記ヒドロゲルが、tefilcon、tetrafilcon、helfilcon、mafilcon、polymacon、hioxifilcon、alfafilcon、omafilcon、nelfilcon、nesofilcon、hilafilcon、acofilcon、deltafilcon、etafilcon、focofilcon、ocufilcon、phemfilcon、methafilconおよびvilfilconからなる群から選ばれる、請求項3記載の被覆医療デバイス。
  5.  前記シリコーンヒドロゲルが、lotrafilcon、galyfilcon、narafilcon、senofilcon、comfilcon、enfilcon、balafilcon、efrofilcon、fanfilcon、somofilcon、samfilcon、olifilcon、asmofilcon、formofilcon、stenfilcon、abafilcon、mangofilcon、riofilcon、sifilcon、larafilconおよびdelefilconからなる群から選ばれる、請求項3記載の被覆医療デバイス。
  6.  前記低含水性軟質材料または前記低含水性硬質材料が、ポリスルホン、ポリスチレン、ポリメチルメタクリレート、ポリウレタンおよびポリアミドからなる群から選ばれる、請求項3記載の被覆医療デバイス。
  7.  前記医療デバイスが、眼用レンズ、皮膚用被覆材、創傷被覆材、皮膚用保護材、皮膚用薬剤担体、輸液用チューブ、気体輸送用チューブ、排液用チューブ、血液回路、被覆用チューブ、カテーテル、ステント、シース、バイオセンサーチップ、人工心肺および内視鏡用被覆材からなる群から選ばれる、請求項1~6のいずれか一項記載の被覆医療デバイス。
  8.  (A)容器内に医療デバイスを格納し、該医療デバイスと、親水性ポリマーAを含む溶液aとを接触させる、接触工程と、
     (C)前記容器を加熱する、加熱工程と、を備え、
     前記親水性ポリマーAは、下記一般式(I)または下記一般式(II)で表される化合物a1と、アミド基を有する化合物a2とを、モノマー単位として含み、
     前記化合物a1と前記化合物a2との共重合比率が、質量比で1/99~90/10であり、
    Figure JPOXMLDOC01-appb-C000003
    一般式(I)中、Rは水素原子またはメチル基を表し、Xは酸素原子またはNRを表し、Rは水素原子またはアルキル基を表し、mは1~30の整数を表す;
    Figure JPOXMLDOC01-appb-C000004
    一般式(II)中、Rは水素原子またはメチル基を表し、Xは酸素原子またはNRを表し、Rは水素原子またはアルキル基を表し、nは2または4を表し、kは3または4を表し、aは0~30の整数を表し、bは1~30の整数を表し、Yは水素原子、メチル基、エチル基、プロピル基、イソプロピル基またはブチル基を表す;
     前記加熱工程後の溶液aのpHが、6.1~8.0である、請求項1~7のいずれか一項記載の被覆医療デバイスの製造方法。
  9.  さらに(B)前記医療デバイスを格納した前記容器を密閉する、密閉工程を備える、請求項8記載の被覆医療デバイスの製造方法。
  10.  前記加熱工程により、前記医療デバイスを滅菌する、請求項8または9記載の被覆医療デバイスの製造方法。
PCT/JP2023/029077 2022-08-26 2023-08-09 被覆医療デバイスおよびその製造方法 WO2024043096A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022134677 2022-08-26
JP2022-134677 2022-08-26
JP2023-029448 2023-02-28
JP2023029448 2023-02-28

Publications (1)

Publication Number Publication Date
WO2024043096A1 true WO2024043096A1 (ja) 2024-02-29

Family

ID=90013151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/029077 WO2024043096A1 (ja) 2022-08-26 2023-08-09 被覆医療デバイスおよびその製造方法

Country Status (1)

Country Link
WO (1) WO2024043096A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06508645A (ja) * 1991-06-27 1994-09-29 バイオインターラクションズ リミテッド ポリマー被覆物
JP2003510378A (ja) * 1999-09-10 2003-03-18 エスティーエス バイオポリマーズ,インコーポレイティド 基体表面のグラフト重合
JP2013252689A (ja) * 2012-06-08 2013-12-19 Mitsubishi Rayon Co Ltd 積層体
JP2019081878A (ja) * 2017-10-31 2019-05-30 東京応化工業株式会社 表面処理液、及び表面処理方法
WO2020235275A1 (ja) * 2019-05-20 2020-11-26 東レ株式会社 医療デバイスの製造方法
WO2022185837A1 (ja) * 2021-03-02 2022-09-09 東レ株式会社 被覆医療デバイスおよびその製造方法
WO2022185836A1 (ja) * 2021-03-02 2022-09-09 東レ株式会社 被覆医療デバイスおよびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06508645A (ja) * 1991-06-27 1994-09-29 バイオインターラクションズ リミテッド ポリマー被覆物
JP2003510378A (ja) * 1999-09-10 2003-03-18 エスティーエス バイオポリマーズ,インコーポレイティド 基体表面のグラフト重合
JP2013252689A (ja) * 2012-06-08 2013-12-19 Mitsubishi Rayon Co Ltd 積層体
JP2019081878A (ja) * 2017-10-31 2019-05-30 東京応化工業株式会社 表面処理液、及び表面処理方法
WO2020235275A1 (ja) * 2019-05-20 2020-11-26 東レ株式会社 医療デバイスの製造方法
WO2022185837A1 (ja) * 2021-03-02 2022-09-09 東レ株式会社 被覆医療デバイスおよびその製造方法
WO2022185836A1 (ja) * 2021-03-02 2022-09-09 東レ株式会社 被覆医療デバイスおよびその製造方法

Similar Documents

Publication Publication Date Title
JP6927230B2 (ja) 医療デバイスおよびその製造方法
JP6856018B2 (ja) 眼用レンズおよびその製造方法
JP6930534B2 (ja) 医療デバイスの製造方法
TWI833012B (zh) 醫療裝置之製造方法
WO2022185836A1 (ja) 被覆医療デバイスおよびその製造方法
JP6954490B1 (ja) 医療デバイスの製造方法
WO2022185837A1 (ja) 被覆医療デバイスおよびその製造方法
WO2024043096A1 (ja) 被覆医療デバイスおよびその製造方法
JP7585786B2 (ja) 医療デバイスの製造方法
JP7338477B2 (ja) 医療デバイスおよびその製造方法
JP7509036B2 (ja) 医療デバイスの製造方法
WO2022185833A1 (ja) 被覆医療デバイスの製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023555259

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23857209

Country of ref document: EP

Kind code of ref document: A1