Nothing Special   »   [go: up one dir, main page]

WO2020224371A1 - 一种摄像模组、终端设备、成像方法及成像装置 - Google Patents

一种摄像模组、终端设备、成像方法及成像装置 Download PDF

Info

Publication number
WO2020224371A1
WO2020224371A1 PCT/CN2020/083844 CN2020083844W WO2020224371A1 WO 2020224371 A1 WO2020224371 A1 WO 2020224371A1 CN 2020083844 W CN2020083844 W CN 2020083844W WO 2020224371 A1 WO2020224371 A1 WO 2020224371A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflecting
camera
light
degrees
angle
Prior art date
Application number
PCT/CN2020/083844
Other languages
English (en)
French (fr)
Inventor
王庆平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910367026.2A external-priority patent/CN110913096A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2021565767A priority Critical patent/JP7313478B2/ja
Priority to BR112021022190A priority patent/BR112021022190A2/pt
Priority to KR1020217039586A priority patent/KR102606609B1/ko
Priority to EP20802338.2A priority patent/EP3955562B1/en
Publication of WO2020224371A1 publication Critical patent/WO2020224371A1/zh
Priority to US17/517,208 priority patent/US11796893B2/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/0065Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having a beam-folding prism or mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/02Catoptric systems, e.g. image erecting and reversing system
    • G02B17/023Catoptric systems, e.g. image erecting and reversing system for extending or folding an optical path, e.g. delay lines
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/17Bodies with reflectors arranged in beam forming the photographic image, e.g. for reducing dimensions of camera
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/45Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from two or more image sensors being of different type or operating in different modes, e.g. with a CMOS sensor for moving images in combination with a charge-coupled device [CCD] for still images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/58Means for changing the camera field of view without moving the camera body, e.g. nutating or panning of optics or image sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/69Control of means for changing angle of the field of view, e.g. optical zoom objectives or electronic zooming

Definitions

  • This application relates to the technical field of camera modules, and in particular to a camera module, terminal equipment, imaging method and imaging device.
  • FIG. 1 or FIG. 2 the structure of the camera module set on the electronic device is shown in FIG. 1 or FIG. 2.
  • the vertical structure is adopted, and the entire optical lens assembly is driven by a motor during focusing.
  • the optical path used for imaging is short, which makes the camera module unable to achieve a large optical zoom factor.
  • the imaging lens assembly is also driven by a motor to focus, which requires a long imaging optical path, resulting in a relatively large size of the camera module. Due to the limited space of electronic equipment, large optical zoom cannot be achieved. multiple.
  • the present application provides a camera module, terminal equipment, imaging method, and imaging device, which are used to realize a larger optical zoom factor in a small-sized camera module.
  • the present application provides a camera module.
  • the camera module may include a first driving component, an optical lens component, a light adjusting component, and an image sensor.
  • the light adjusting component and the image sensor are positioned along the main optical axis of the optical lens component. The directions are set in sequence; the optical lens assembly is used to receive light from the object; the light adjustment assembly is used to fold the light path of the light propagated by the optical lens assembly; the first drive assembly is used to drive the light adjustment assembly to move, so that the light path is folded The light is focused to the image sensor; the image sensor is used for imaging based on the focused light.
  • the light path of the light propagated from the optical lens assembly is folded through the light adjusting component, which helps to shorten the imaging light path.
  • the optical path can be folded by the light adjusting assembly, which can realize that the image distance meets the imaging conditions, and the imaging optical path can be reduced, thereby shortening the size of the camera module.
  • the camera module of the present application can use an optical lens assembly with a larger physical focal length, thereby achieving a larger optical zoom multiple.
  • the light adjusting component includes M first reflecting surfaces and M second reflecting surfaces.
  • the M first reflecting surfaces and the M second reflecting surfaces are arranged one by one; the M first reflecting surfaces are connected in sequence, And the angle between any two adjacent first reflecting surfaces is ⁇ 1 , ⁇ 1 is greater than 0 degrees and less than 180 degrees; M second reflecting surfaces are connected in sequence, and any two adjacent second reflecting surfaces
  • the angle between the two is ⁇ 2 , ⁇ 2 is greater than 0 degrees and less than 180 degrees
  • M is an integer greater than or equal to 2; among them, the first reflecting surface closest to the optical lens assembly is used to receive and reflect the optical lens assembly Light; the first reflective surface closest to the image sensor is used to reflect the light after the optical path is folded to the image sensor.
  • the light path of the light propagating through the optical lens assembly in the light adjustment assembly is: the first reflecting surface closest to the optical lens assembly receives the light from the optical lens assembly, and reflects the received light to it (that is, with the optical lens assembly)
  • the first reflective surface closest to the component) is opposite to the second reflective surface;
  • the second reflective surface reflects the received light to the nearest second reflective surface that is sequentially connected to it (ie, the second reflective surface);
  • the adjacent second reflective surface reflects the received light to the first reflective surface disposed opposite to it (the nearest second reflective surface), and then reflects sequentially until the light is reflected to the first reflective surface nearest to the image sensor.
  • the light received by the first reflecting surface closest to the image sensor is the light after the optical path is folded, and the propagation direction of the light after the optical path is folded is along the direction of the main optical axis, and the first reflecting surface closest to the image sensor will receive it The folded light is reflected to the image sensor.
  • the light transmitted from the optical lens assembly can be folded for 2M times.
  • the layered structure formed by the M first reflecting surfaces and the layered structure formed by the M second reflecting surfaces do not overlap each other.
  • M first reflective surfaces are located on the first layer
  • M second reflective surfaces are located on the second layer
  • the first layer and the second layer do not overlap each other.
  • the light transmitted from the optical lens assembly can be folded between the two non-overlapping layers.
  • the i-th first reflecting surface is parallel to the i-th second reflecting surface, wherein the i-th first reflecting surface and the i-th second reflecting surface are disposed oppositely, and the i-th first reflecting surface is M One of the first reflecting surfaces, and the i-th second reflecting surface is one of M second reflecting surfaces.
  • the assembly of the camera module can be facilitated. If the first reflective surface is not parallel to the opposite second reflective surface, when the camera module is placed horizontally to capture an image, the image formed on the image sensor may be inclined to a certain degree.
  • the reflecting surfaces of the prism, t L-shaped mirrors and h mirrors, where 2k+2t+h
  • the two first reflective surfaces are two mutually perpendicular reflective surfaces of an L-shaped mirror
  • the two second reflective surfaces are two mutually perpendicular reflective surfaces of a right-angle prism.
  • the two reflection surfaces of the L-shaped mirror are perpendicular to each other.
  • the projections of the lengths of the two reflecting surfaces of the L-shaped mirror in the direction of the main optical axis are different.
  • one reflecting surface is close to the optical lens assembly and far away from the image sensor; the other surface is far away from the optical lens assembly and close to the image sensor.
  • the length of the side close to the optical lens assembly and away from the image sensor is greater than the length of the side far away from the optical lens assembly and close to the image sensor; or, the length of the side close to the optical lens assembly and away from the image sensor is less than The length of the side far from the optical lens assembly and close to the image sensor; or, the length of the side close to the optical lens assembly and away from the image sensor is equal to the length of the side far away from the optical lens assembly and close to the image sensor.
  • the first driving component is specifically configured to drive the M first reflective surfaces to move in the first direction, and/or drive the M second reflective surfaces to move in the second direction; wherein, the first The direction is opposite to the second direction, and both the first direction and the second direction are directions perpendicular to the main optical axis.
  • the first driving assembly drives the M first reflecting surfaces and/or M second reflecting surfaces of the light adjusting assembly to move to achieve focusing, without moving the optical lens assembly, so the optical lens assembly does not need to be in contact with the first driving assembly. coupling.
  • the first driving component is specifically configured to drive the M first reflective surfaces to move in a direction perpendicular to the main optical axis.
  • the M first reflecting surfaces are driven to move along the direction perpendicular to the main optical axis by the first driving component, so that light focusing at different object distances can be achieved, thereby ensuring that a clear image is formed on the image sensor. Moreover, only driving the M first reflective surfaces to move helps reduce the power consumption of the first driving component. In particular, when the M first reflecting surfaces are the two reflecting surfaces of the M/2 successively connected L-shaped mirrors, the M second reflecting surfaces are the reflecting surfaces of the M/2 successively connected right-angle prisms. At this time, the power consumption of the first driving component is reduced significantly.
  • the first driving component is also used to drive the M first reflecting surfaces and/or the M second reflecting surfaces to move in the third direction, so as to compensate the light from the optical lens assembly; wherein, the first The three directions are directions parallel to the main optical axis.
  • the M first reflecting surfaces and/or M second reflecting surfaces are driven to move in the third direction by the first driving component, and the light adjusting component can realize the optical path folding of the light propagated from the optical lens assembly. It can realize optical shake compensation for light in a specific direction (that is, the third direction), and can expand the anti-shake angle.
  • the first driving component drives the M first reflective surfaces and/or the M second reflective surfaces to move along the third direction by a distance smaller than a preset distance.
  • the preset distance is the minimum value of the first projection distance set and the second projection distance set
  • the first projection distance set includes the length of each first reflection surface of the M first reflection surfaces.
  • the second projection distance set includes the projection distance of the length of each second reflective surface in the direction of the main optical axis in the M second reflective surfaces.
  • the range of the preset distance is (0, 2.5 mm).
  • the camera module further includes a shake compensation component
  • the optical lens component is located between the shake compensation component and the light adjustment component
  • the shake compensation component includes a second driving component and a third reflective surface
  • the third reflective surface is used to receive The light of the photographed object
  • the second driving assembly is used to drive the rotation of the third reflecting surface to compensate the light from the photographed object, and shoot the light after the shake compensation into the optical lens assembly.
  • the included angle between the third reflecting surface and the main optical axis is ⁇ 3 , and ⁇ 3 is greater than 0 degrees and less than 90 degrees. Further, optionally, ⁇ 3 is greater than or equal to 30 degrees and less than or equal to 60 degrees. Exemplarily, ⁇ 3 may be 30 degrees, 45 degrees, or 60 degrees.
  • the third reflective surface may be a reflective surface of a right-angle prism (such as an inclined surface of an isosceles right-angle prism) or a reflective surface of a mirror.
  • the light adjustment component includes an L-shaped mirror and a right-angle prism; the L-shaped mirror includes an eleventh reflecting surface and a twelfth reflecting surface that are perpendicular to each other; and the right-angle prism includes a second perpendicular to each other.
  • the thirteenth reflecting surface and the fourteenth reflecting surface; the eleventh reflecting surface and the thirteenth reflecting surface are arranged oppositely and parallel to each other, and the twelfth reflecting surface and the fourteenth reflecting surface are arranged oppositely and parallel to each other; wherein, from the optical lens The light of the component is reflected to the image sensor through the eleventh reflective surface, the thirteenth reflective surface, the fourteenth reflective surface and the twelfth reflective surface in sequence.
  • the eleventh reflecting surface and the twelfth reflecting surface can be understood as the two aforementioned first reflecting surfaces, and the thirteenth reflecting surface and the fourteenth reflecting surface can be understood as the two aforementioned second reflecting surfaces. . That is, the eleventh reflective surface or the twelfth reflective surface is a first reflective surface; the thirteenth reflective surface or the fourteenth reflective surface is a second reflective surface.
  • the angle between the eleventh reflecting surface of the L-shaped mirror and the main optical axis is 45 degrees; the angle between the twelfth reflecting surface of the L-shaped mirror and the main optical axis is 45 degrees. degree.
  • the included angle between the thirteenth reflecting surface of the right-angle prism and the main optical axis is 45 degrees, and the included angle between the fourteenth reflecting surface of the right-angle prism and the main optical axis is 45 degrees.
  • the light from the optical lens assembly enters the eleventh reflecting surface of the L-shaped reflector at an incident angle of 45 degrees, the light reflected by the twelfth reflecting surface of the L-shaped reflector to the image sensor is parallel In the direction of the main optical axis.
  • the opening direction of the L-shaped mirror is the same as the opening direction of the right angle of the right-angle prism.
  • the first driving component is specifically used to drive the L-shaped mirror to move in a first direction, and/or to drive the right-angle prism to move in a second direction; wherein the first direction is opposite to the second direction , And the first direction and the second direction are both directions perpendicular to the main optical axis.
  • the first driving component is specifically configured to drive the L-shaped mirror to move in a direction perpendicular to the main optical axis.
  • the first driving component is also used to drive the L-shaped mirror and/or the right-angle prism to move in a third direction to compensate the light from the optical lens assembly; where the third direction is The direction parallel to the main optical axis.
  • the first driving component is specifically configured to drive the L-shaped mirror and/or the right-angle prism to move in the third direction for a distance less than a preset distance.
  • the present application provides a camera module.
  • the camera module may include a first driving component, an optical lens component, a light adjusting component, and an image sensor.
  • the light adjusting component and the image sensor are located along the main optical axis of the optical lens component. The directions are set in sequence; the optical lens assembly is used to receive light from the subject; the light adjustment assembly is used to fold the light path of the light propagated by the optical lens assembly; the first drive assembly is used to drive the light adjustment assembly to move or the optical lens assembly to move , So that the folded light of the optical path is focused to the image sensor; the image sensor is used for imaging according to the focused light.
  • the light path of the light propagated from the optical lens assembly is folded through the light adjusting component, which helps to shorten the imaging light path.
  • the optical path can be folded by the light adjusting assembly, which can realize that the image distance meets the imaging conditions, and the imaging optical path can be reduced, thereby shortening the size of the camera module.
  • the camera module of the present application can use an optical lens assembly with a larger physical focal length, so that a larger optical zoom factor can be achieved.
  • the first driving assembly may be used to drive the optical lens assembly to move in a direction parallel to the main optical axis.
  • the optical lens assembly is driven to move along the direction parallel to the main optical axis through the first driving assembly, which can realize focusing of light at different object distances, thereby ensuring that a clear image is formed on the image sensor.
  • the first driving component can drive the optical lens component to move so that the light after the optical path is folded to focus on the image sensor; or it can also drive the light adjustment component to move so that the light after the optical path is folded to focus on the image sensor, specifically
  • the optical lens assembly the light adjusting assembly and the image sensor
  • this application provides a terminal device, which may include a first camera, a memory, and a processor; wherein the first camera includes the camera module of the first aspect or any one of the first aspects; the memory; Used to store programs or instructions; the processor is used to call programs or instructions to control the first camera to obtain the first image.
  • the terminal device further includes a wide-angle camera.
  • the first camera is a fixed-focus camera, and the magnification of the first camera is A1; wherein, the value range of A1 is [8, 12]. In this way, the terminal device can achieve a larger optical zoom factor.
  • the terminal device further includes a second camera, the second camera is a fixed focus camera, and the magnification of the second camera is A2, where A2 is greater than 1 and less than A1.
  • the present application provides an imaging method, which can be applied to a terminal device.
  • the terminal device includes a first camera, and the first camera includes a light adjustment component; wherein, the light adjustment component is used for performing light adjustment on the light obtained by the first camera.
  • Optical path folding; the method includes obtaining the shooting magnification; when the shooting magnification is greater than the magnification threshold, obtaining a preview image through the first camera; determining the target focus position of the first camera according to the preview image; driving the light adjustment component to move to focus according to the target focus position .
  • the light path of the light propagated by the optical lens assembly is folded through the light adjustment component, which can shorten the imaging light path, thereby reducing the size of the camera module.
  • the camera module When the camera module is integrated in terminal equipment with limited space, it can be used
  • An optical lens assembly with a larger physical focal length can realize a larger optical zoom multiple; further, according to the shooting magnification, the light adjusting assembly is driven to move for focusing, thereby forming a clear first image.
  • the value range of the magnification threshold is [5, 10).
  • the target focus position can be determined according to the center area of the preview image; or, the user's focus operation on the preview image is received, and the focus position in response to the focus operation is determined as the target focus position.
  • the target position of the light adjustment component may be determined according to the target focus position, and the light adjustment component may be driven according to the target position.
  • Implementation mode 1 M first reflecting surfaces can be driven to move in a first direction, and/or M second reflecting surfaces can be driven to move in a second direction and move to a target focus position; wherein, the first direction and the second The directions are opposite, and the first direction and the second direction are both directions perpendicular to the main optical axis.
  • Implementation mode 2 can drive the M first reflecting surfaces to move in a direction perpendicular to the main optical axis and move to the target focus position.
  • the first camera is a fixed-focus camera, and the magnification of the first camera is A1; wherein, the value range of A1 is [8, 12].
  • the terminal device further includes a second camera, the second camera is a fixed-focus camera; when the shooting magnification is greater than 1 and less than or equal to the magnification threshold, the second image can be acquired through the second camera,
  • the magnification of the second camera is A2; wherein, A2 is greater than 1 and less than A1.
  • the terminal device further includes a wide-angle camera; when the shooting magnification is greater than 0 and less than 1, the third image is acquired through the wide-angle camera.
  • the terminal device further includes an optical lens assembly and an image sensor, and the light adjustment assembly and the image sensor are sequentially arranged along the direction of the main optical axis of the optical lens assembly.
  • the light adjusting component includes M first reflecting surfaces and M second reflecting surfaces; the M first reflecting surfaces are connected in sequence, and the distance between any two adjacent first reflecting surfaces The included angle is ⁇ 1 , ⁇ 1 is greater than 0 degrees and less than 180 degrees; the M second reflective surfaces are connected in sequence, and the included angle between any two adjacent second reflective surfaces is ⁇ 2 , ⁇ 2 is greater than 0 degrees And less than 180 degrees; M first reflecting surfaces and M second reflecting surfaces are arranged one by one, and M is an integer greater than or equal to 2; wherein, the first reflecting surface closest to the optical lens assembly is used for receiving and reflecting The light from the optical lens assembly; the first reflecting surface closest to the image sensor is used to reflect the light after the optical path is folded to the image sensor.
  • the first layered structure formed by the M first reflecting surfaces and the second layered structure formed by the M second reflecting surfaces do not overlap each other.
  • the i-th first reflecting surface is parallel to the i-th second reflecting surface; the i-th first reflecting surface and the i-th second reflecting surface are arranged opposite to each other; the i-th first reflecting surface is M One of the first reflecting surfaces; the i-th second reflecting surface is one of the M second reflecting surfaces.
  • the light adjusting component is specifically used to perform 2M optical path folding on the light propagated from the optical lens component.
  • the two first reflecting surfaces are two mutually perpendicular reflecting surfaces of an L-shaped mirror
  • the two second reflecting surfaces are two mutually perpendicular reflecting surfaces of a right-angle prism. Reflective surface.
  • M first reflective surfaces and/or M second reflective surfaces can be driven to move in the third direction, so as to prevent The light undergoes jitter compensation; where the third direction is parallel to the direction of the main optical axis.
  • the light adjustment component includes an L-shaped mirror and a right-angle prism; the L-shaped mirror includes an eleventh reflecting surface and a twelfth reflecting surface that are perpendicular to each other; and the right-angle prism includes a second perpendicular to each other.
  • the thirteenth reflecting surface and the fourteenth reflecting surface; the eleventh reflecting surface and the thirteenth reflecting surface are arranged oppositely and parallel to each other, and the twelfth reflecting surface and the fourteenth reflecting surface are arranged oppositely and parallel to each other; wherein, from the optical lens The light of the component is reflected to the image sensor through the eleventh reflective surface, the thirteenth reflective surface, the fourteenth reflective surface and the twelfth reflective surface in sequence.
  • the angle between the eleventh reflecting surface of the L-shaped mirror and the main optical axis is 45 degrees; the angle between the twelfth reflecting surface of the L-shaped mirror and the main optical axis is 45 degrees.
  • the angle is 45 degrees.
  • the angle between the thirteenth reflecting surface of the right-angle prism and the main optical axis is 45 degrees
  • the angle between the fourteenth reflecting surface of the right-angle prism and the main optical axis is 45 degrees
  • the light from the optical lens assembly enters the eleventh reflecting surface of the L-shaped mirror at an incident angle of 45 degrees, it is reflected to the image sensor by the twelfth reflecting surface of the L-shaped mirror The light is parallel to the direction of the main optical axis.
  • the opening direction of the L-shaped mirror is the same as the opening direction of the right angle of the right-angle prism.
  • the L-shaped mirror can be driven to move in a first direction, and/or the right-angle prism can be driven to move in a second direction; wherein the first direction is opposite to the second direction, and the first direction and The second directions are all directions perpendicular to the main optical axis.
  • the L-shaped mirror can be driven to move in a direction perpendicular to the main optical axis.
  • the L-shaped mirror and/or the right-angle prism can also be driven to move along the third direction to compensate for the light from the optical lens assembly; where the third direction is parallel to the main optical axis Direction.
  • the distance of driving the L-shaped mirror and/or the right-angle prism to move in the third direction is less than the preset distance.
  • the preset distance please refer to the introduction of the preset distance in the first aspect above, which will not be repeated here.
  • the present application provides an imaging device that can be applied to terminal equipment.
  • the terminal equipment includes a first camera.
  • the first camera includes an optical lens assembly, a light adjustment assembly, and an image sensor; wherein the optical lens assembly is used to receive The light of the photographed object; the light adjustment component is used to fold the light path of the light transmitted from the optical lens component.
  • the imaging device is used to implement any one of the foregoing fourth aspect or the fourth aspect.
  • the imaging device includes corresponding functional modules, which are respectively used to implement the steps in the above method. For details, refer to the detailed description in the method example, which is not repeated here.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the present application provides a terminal device, which may include a memory, a processor, and a first camera; the first camera includes an optical lens assembly, a light adjustment assembly, and an image sensor; wherein the optical lens assembly is used to receive The light of the subject; the light adjustment component is used to fold the light path of the light propagated by the optical lens assembly; the memory can be coupled with the processor to store programs or instructions; the processor is used to call the programs or instructions to make the terminal device execute Any one of the above-mentioned fourth aspect or the fourth aspect.
  • this application provides a terminal device, which may include a first camera, a second camera, and a third camera; the first camera and the second camera are both fixed-focus cameras, and the third camera is a wide-angle camera; The magnification of one camera is A1, the magnification of the second camera is A2, and the magnification of the third camera is A3; where A2 is greater than 1 and less than A1, and A3 is less than 1.
  • the first camera may include the camera module of the first aspect or any one of the first aspects.
  • the value range of A1 is [8, 12].
  • the terminal device further includes a depth camera.
  • the present application provides a computer-readable storage medium with a computer program or instruction stored in the computer-readable storage medium.
  • the terminal device executes the fourth aspect or Any of the four possible implementation methods.
  • this application provides a computer program product that includes a computer program or instruction, and when the computer program or instruction is executed by a terminal device, it implements the fourth aspect or any possible implementation manner of the fourth aspect.
  • Fig. 1 is a schematic diagram of a camera structure in the prior art
  • Figure 2 is a schematic diagram of a camera structure in the prior art
  • FIG. 3 is a schematic structural diagram of a camera module provided by this application.
  • FIG. 4a is a schematic structural diagram of an optical lens assembly provided by this application.
  • FIG. 4b is a schematic structural diagram of another optical lens assembly provided by this application.
  • Fig. 5a is a schematic structural diagram of a light adjusting component provided by this application.
  • Figure 5b is a front view of a light adjusting component provided by this application.
  • FIG. 5c is a schematic structural diagram of another light adjusting component provided by this application.
  • Figure 6a is a front view of an L-shaped reflector provided by this application.
  • FIG. 6b is a schematic diagram of the three-dimensional structure of an L-shaped reflector provided by this application.
  • FIG. 6c is a schematic diagram of the structure of the two first reflecting surfaces provided by this application as the reflecting surfaces of two successively connected reflecting mirrors;
  • Fig. 6d is a schematic structural diagram of a right-angle prism provided by this application.
  • 6e is a schematic structural diagram of a reflective surface provided by this application in which the four first reflective surfaces are two reflective mirrors and a right-angle prism that are connected in sequence;
  • FIG. 7a is a schematic structural diagram of another light adjusting component provided by this application.
  • FIG. 7b is a schematic structural diagram of another light adjusting component provided by this application.
  • FIG. 7c is a schematic structural diagram of another light adjusting component provided by this application.
  • FIG. 7d is a schematic structural diagram of another light adjusting component provided by this application.
  • Fig. 7e is a schematic structural diagram of another light adjusting component provided by this application.
  • FIG. 7f is a schematic structural diagram of another light adjusting component provided by this application.
  • FIG. 7g is a schematic structural diagram of another light adjusting component provided by this application.
  • FIG. 7h is a schematic structural diagram of another light adjusting component provided by this application.
  • FIG. 7i is a schematic structural diagram of another light adjusting component provided by this application.
  • FIG. 7j is a schematic structural diagram of another light adjusting component provided by this application.
  • FIG. 7k is a schematic structural diagram of another light adjusting component provided by this application.
  • FIG. 8 is a schematic diagram of the optical path before and after the movement of the L-shaped mirror driven by a driving assembly provided by this application;
  • FIG. 9 is a schematic structural diagram of another camera module provided by this application.
  • FIG. 10 is a schematic structural diagram of a terminal device provided by this application.
  • FIG. 11 is a schematic diagram of a method flow of an imaging method provided by this application.
  • FIG. 12 is a schematic structural diagram of an imaging device provided by this application.
  • FIG. 13 is a schematic structural diagram of an imaging device provided by this application.
  • the focal length indicates the refractive power. The shorter the focal length, the greater the refractive power.
  • the focal length of the optical lens assembly determines the size of the image generated on the imaging plane of the object photographed by the optical lens assembly. Assuming that the same subject is photographed at the same distance, the longer the focal length of the optical lens assembly, the greater the magnification of the image generated by the subject on the charge-coupled device (CCD).
  • Equivalent focal length Convert the imaging angle of view on different size photosensitive elements into the focal length of the optical lens assembly corresponding to the same imaging angle of view on the 135 camera module.
  • the converted focal length is the 135 equivalent focal length, which is equivalent focal length.
  • the 135 camera module converts the focal length of the non-135 camera module into the focal length of the 135 camera module.
  • the equivalent focal length physical focal length of the optical lens assembly*focal length factor (or focal length multiple), where the focal length factor is the diagonal length of the sensing element of the camera module of non-135 specifications and the photosensitive of the camera module of 135 specifications The ratio of the focal length of the component.
  • the physical focal length of the optical lens assembly 31mm
  • the diagonal length of the sensing element of the non-135 format camera module is 4.8mm
  • the diagonal length of the photosensitive element of the 135 format camera module is 43.27mm
  • the equivalent focal length 31*43.27/4.8 ⁇ 280mm.
  • Optical zoom mainly the contrast ratio and switching of different focal lengths in the camera module.
  • the available optical zoom factor indicates the ability of optical zoom. The greater the optical zoom factor, the farther the scene can be photographed.
  • the size of the optical zoom factor is related to the physical focal length of the optical lens assembly. Usually, the equivalent focal length of the camera module is 28mm corresponding to 1X (that is, 1x) optical zoom.
  • the diagonal length of the photosensitive element of the 135-size camera module is 43.27mm
  • the diagonal length of the sensor element of the non-135-size camera module is 4.8mm
  • the physical focal length of the optical lens assembly 31mm
  • the equivalent focal length 31*43.27/4.8 ⁇ 280mm
  • the diagonal length of the sensing element of the non-135 camera module is 4.8mm
  • the optics of the camera module Zoom factor 180/28 ⁇ 6.4X.
  • focus is also called focusing or focusing.
  • Focusing includes automatic focusing and manual focusing.
  • automatic focusing is a method in which the reflected light is received by the photosensitive element on the camera module by using the principle of object light reflection, and processed by the computer to drive the driving component to focus.
  • the camera module emits an infrared (or other rays), determines the distance of the object according to the reflection of the object, and then adjusts the image distance according to the measured result to realize automatic focusing.
  • Optical image stabilization also known as light jitter compensation, which means that in the camera module, through the movement of the optical lens assembly or the movement of other components, the offset of the imaging light caused by the jitter is offset, so that the optical path remains stable. Effectively overcome the image blur caused by the jitter of the camera module.
  • the structure of the current camera module is shown in Figure 1 or Figure 2.
  • the camera module achieves focusing by driving the movement of the imaging lens, which requires a long imaging light path, resulting in a relatively large size of the camera module .
  • this application proposes a camera module that can fold the light path of the light propagated by the optical lens assembly through the light adjustment component, which helps to reduce the length of the space occupied by the imaging light path, thereby helping Reduce the size of the camera module.
  • the camera module proposed in this application will be described in detail below with reference to FIG. 3 to FIG. 9.
  • the camera module may include an optical lens assembly 101, a first driving assembly 102, a light adjustment assembly 103 and an image sensor 104, wherein the light adjustment assembly 103 and the image sensor 104 are arranged in sequence along the direction of the main optical axis of the optical lens assembly.
  • the optical lens assembly is used to receive light from the subject; the light adjustment assembly is used to fold the light path of the light propagated by the optical lens assembly; the first drive assembly is used to drive the light adjustment assembly to move, so that the light after the optical path is folded
  • Image sensor The image sensor is used for imaging based on the focused light.
  • the optical path of the light propagated by the optical lens assembly is folded through the light adjusting component, which helps to shorten the imaging optical path.
  • the optical path can be folded by the light adjusting assembly, which can realize that the image distance meets the imaging conditions, and the imaging optical path can be reduced, thereby shortening the size of the camera module.
  • the camera module of the present application can use an optical lens assembly with a larger physical focal length, so that a larger optical zoom factor can be achieved.
  • the light adjusting component is driven to move by the first driving component, so as to focus on the folded light without moving the optical lens component. That is, the optical lens assembly does not need to be coupled with the first driving assembly.
  • the subject includes but is not limited to a single subject.
  • the subject when shooting a person, the subject includes the person and the scenery around the person, that is, the scenery around the person is also a part of the subject. It can also be understood that all objects within the field of view of the optical lens assembly can be referred to as objects.
  • the main optical axis may pass through the middle area of the light adjusting component, or the main optical axis may pass through the upper area of the light adjusting element, or the main optical axis may pass through the lower area of the light adjusting element.
  • the main optical axis may pass through the middle area of the image sensor, or the main optical axis may pass through the upper area of the image sensor, or the main optical axis may pass through the lower area of the image sensor.
  • the direction of the main optical axis can be bidirectional or unidirectional (see Figure 3 above).
  • each functional component shown in FIG. 3 is introduced and explained separately to give an exemplary specific implementation scheme.
  • the following optical lens assembly, the first driving assembly, the light adjusting assembly and the image sensor are not marked.
  • Fig. 4a shows a schematic structural diagram of an optical lens assembly.
  • the optical lens assembly includes a first lens 401 and a second lens 402.
  • the first lens 401 is a plano-convex lens
  • the second lens 402 is a convex-concave lens.
  • the convex-concave lens refers to a lens whose center part is thinner than the edge part.
  • the first lens 401 is closer to the subject and far away from the image sensor.
  • the second lens 402 is closer to the image sensor and farther away from the subject.
  • FIG. 4b shows a schematic structural diagram of another optical lens assembly.
  • the optical lens assembly includes a first lens 401, a second lens 402, and a third lens 402.
  • the third lens 403 is located between the first lens 401 and the second lens 402.
  • the first lens 401 is a plano-convex lens
  • the second lens 402 is a convex-concave lens
  • the third lens 403 is a double-convex lens.
  • the first lens 401 is closer to the subject and farther from the image sensor.
  • the second lens 402 is closer to the image sensor and farther from the subject.
  • the structure of the optical lens assembly shown in FIG. 4a or FIG. 4b is only an example, and the optical lens assembly in this application may have more lenses than FIG. 4b, for example, may include more than three lenses.
  • the lens may be any of a biconvex lens, a plano-convex lens or a convex-concave lens, which is not limited in this application.
  • the main optical axis can also be called the main axis, which refers to the line passing through the two spherical centers of the lens, as shown in FIG. 4a, the line passing through the spherical centers of the first lens 401 and the second lens 402 is called the main optical axis . As shown in FIG. 4b, the straight line passing through the spherical centers of the first lens 401, the second lens 402, and the third lens 403 is called the main optical axis.
  • the material of at least one lens in the optical lens assembly is glass. It can also be understood that the lenses in the optical lens assembly cannot all be plastic lenses.
  • the lens (or called lens) in the optical lens assembly is in the height direction of the camera module (see Figure 4a or Figure 4b) can be cut, such as I-cut.
  • the light adjusting component may include M first reflecting surfaces and M second reflecting surfaces, and M first reflecting surfaces and M second reflecting surfaces are arranged opposite to each other, that is, one first reflecting surface corresponds to one Opposite to the second reflecting surface, M first reflecting surfaces are connected in sequence, and the angle between any two adjacent first reflecting surfaces is ⁇ 1 , ⁇ 1 is greater than 0 degrees and less than 180 degrees; The two reflecting surfaces are connected in sequence, and the included angle between any two adjacent second reflecting surfaces is ⁇ 2 , ⁇ 2 is greater than 0 degrees and less than 180 degrees, and M is an integer greater than or equal to 2.
  • the first reflecting surface closest to the optical lens assembly among the M first reflecting surfaces is used to receive and reflect light from the optical lens assembly
  • the first reflecting surface closest to the image sensor among the M first reflecting surfaces A reflective surface is used to reflect the folded light of the optical path to the image sensor. It should be understood that the angle ⁇ 1 between two adjacent first reflecting surfaces refers to the smallest angle formed by the intersection of two adjacent first reflecting surfaces, and the angle ⁇ 2 between two adjacent second reflecting surfaces is Refers to the smallest angle formed by the intersection of two adjacent second reflective surfaces.
  • FIG. 5a is a schematic structural diagram of a light adjusting component provided in this application.
  • the light adjusting component includes two first reflective surfaces (ie, a first reflective surface a and a first reflective surface b) and two second reflective surfaces (ie, a second reflective surface A and a second reflective surface B).
  • the first reflective surface a and the first reflective surface b are sequentially connected, and the angle between the first reflective surface a and the first reflective surface b is ⁇ 1 which is greater than 0 degree and less than 180 degrees.
  • the second reflective surface A and the second reflective surface B are sequentially connected, and the angle between the second reflective surface A and the second reflective surface B is ⁇ 2 which is greater than 0 degrees and less than 180 degrees.
  • the first reflective surface a and the second reflective surface A are arranged oppositely, and the first reflective surface b and the second reflective surface B are arranged oppositely.
  • the first reflecting surface a is the first reflecting surface closest to the optical lens assembly, and the first reflecting surface a is used to receive light from the optical lens assembly and reflect the transmitted light from the optical lens assembly to the second reflecting surface A ;
  • the first reflective surface b is the first reflective surface closest to the image sensor, and the first reflective surface b is used to reflect the light after the optical path is folded to the image sensor.
  • an optical lens component with a physical focal length of not less than 20mm can be used, the corresponding equivalent focal length is not less than 180mm, and the optical zoom multiple of the camera module is not Less than 6 times. It can be seen that by folding the light path of the light propagated by the optical lens assembly, the camera module can achieve a larger optical zoom factor, for example, 6 times, 8 times, or 10 times. Furthermore, it can be realized that the height of the camera module is not more than 9mm and the length is not more than 40mm, so as to be easily integrated into the terminal equipment.
  • the projections of the lengths of the M first reflecting surfaces in the direction parallel to the main optical axis may be equal or unequal.
  • the direction parallel to the main optical axis may be the same as the direction of the main optical axis.
  • FIG. 5b it is a front view of a light adjusting component provided in this application.
  • two first reflecting surfaces are taken as an example, which are the first reflecting surface a and the first reflecting surface b, respectively.
  • a first reflective surface L a length, the length b of the first reflection surface is L b, L a length of the first reflecting surface A is projected in a direction parallel to the main optical axis is L aa, a first reflecting surface
  • the projection of the length L b of b in the direction parallel to the main optical axis is L bb , and L aa and L bb may be equal or not equal. That is, Laa is greater than L bb ; or Laa is less than L bb ; or Laa is equal to L bb .
  • the length of the second reflecting surface A is L A
  • L B is the second reflective surface L B
  • L A L A second reflection surface of the projection in a direction parallel to the main optical axis is L AA
  • section The projection of the length L B of the two reflecting surfaces B in the direction parallel to the main optical axis is L BB
  • L AA and L BB may be equal or not equal. That is, L AA is greater than L BB ; or L AA is less than L BB ; or L AA is equal to L BB .
  • the layered structure formed by the M first reflecting surfaces and the layered structure formed by the M second reflecting surfaces do not overlap each other.
  • M first reflective surfaces are located on the first layer
  • M second reflective surfaces are located on the second layer, wherein the first layer and the second layer do not overlap each other.
  • the first layer is located above the second layer.
  • the first reflective surface a and the first reflective surface b form the first layer
  • the second reflective surface A and the second reflective surface B form the second layer.
  • the first reflective surface a is used to receive light propagated from the optical lens assembly and reflect the received light to the second reflective surface A
  • the second reflective surface A is used to reflect the received light to the second reflective surface B
  • the second reflective surface B is used to reflect the received light to the first reflective surface b
  • the first reflective surface b is used to reflect the light after the optical path is folded to the image sensor.
  • the light path of the light propagating through the optical lens assembly in the light adjusting assembly is: reflected by the first reflecting surface a to the second reflecting surface A, and then reflected by the second reflecting surface A to the second reflecting surface B, Then it is reflected by the second reflecting surface B to the first reflecting surface b, and reflected by the first reflecting surface b to the image sensor. That is, the light transmitted from the optical lens assembly undergoes four bends in the light adjustment assembly. In this way, the optical path folding of the light propagating from the optical lens assembly is realized, thereby helping to shorten the length of the camera module, wherein the length direction of the camera module is perpendicular to the height direction of the camera module (see Figure 4a or Figure 4b) ).
  • the i-th first reflecting surface may be parallel to the i-th second reflecting surface, the i-th first reflecting surface and the i-th second reflecting surface are disposed oppositely, and the i-th first reflecting surface is one of the M first reflecting surfaces
  • the i-th second reflecting surface is one of the M second reflecting surfaces.
  • the i-th first reflecting surface may be the first reflecting surface a or the first reflecting surface b, and the i-th second reflecting surface is the second reflecting surface A or the second reflecting surface B. If the i-th first reflecting surface is the first reflecting surface a, the i-th second reflecting surface is the second reflecting surface A, the first reflecting surface a is parallel to the second reflecting surface A, and the first reflecting surface a is parallel to the second reflecting surface A.
  • the reflecting surface A is arranged oppositely; if the i-th first reflecting surface is the first reflecting surface b, the i-th second reflecting surface is the second reflecting surface B, the first reflecting surface b is parallel to the second reflecting surface B, and the first reflecting surface
  • the reflection surface b is opposite to the second reflection surface B.
  • the i-th first reflecting surface and the i-th second reflecting surface being parallel include: the first reflecting surface a is parallel to the second reflecting surface A, and the first reflecting surface b is parallel to the second reflecting surface B; or, The first reflection surface a and the second reflection surface A are parallel, and the first reflection surface b and the second reflection surface B are not parallel; or, the first reflection surface a and the second reflection surface A are not parallel, and the first reflection surface b Parallel to the second reflecting surface B. It should be understood, when the first reflection surface and a second reflecting surface and the first reflection surface parallel to the A b B and the second reflection surface parallel to the ⁇ 1 and ⁇ 2 are equal.
  • FIG. 5c it is a schematic structural diagram of another light adjusting component provided by this application.
  • the light adjusting component includes a first reflecting surface and a second reflecting surface.
  • the first reflecting surface and the second reflecting surface are arranged opposite to each other.
  • the angle between the first reflecting surface and the direction parallel to the main optical axis is ⁇ 4 , ⁇ 4 is greater than 0 degrees and less than 90 degrees;
  • the angle between the second reflecting surface and the direction parallel to the main optical axis is ⁇ 5 , ⁇ 5 is greater than 0 degrees and less than 90 degrees; among them, the first reflecting surface is used for receiving And reflect the light from the optical lens assembly to the second reflective surface, and the second reflective surface is used to reflect the light after the optical path is folded to the image sensor.
  • the light path of the light propagating through the optical lens assembly in the light adjusting assembly is: reflected by the first reflecting surface c to the second reflecting surface C, and then reflected by the second reflecting surface C to the image sensor, that is, from the optical
  • the light propagated by the lens assembly is bent twice in the light adjustment assembly, thereby realizing the optical path folding of the light propagated by the optical lens assembly.
  • ⁇ 4 is greater than or equal to 30 degrees and less than or equal to 60 degrees, that is, 30° ⁇ 4 ⁇ 60°
  • ⁇ 5 is greater than or equal to 30 degrees and less than or equal to 60 degrees, that is, 30° ⁇ 5 ⁇ 60°.
  • ⁇ 4 may be 30 degrees, 45 degrees, or 60 degrees
  • ⁇ 5 may be 30 degrees, 45 degrees, or 60 degrees.
  • first reflective surface c shown in FIG. 5c can refer to the introduction of the first reflective surface a or the first reflective surface b
  • second reflective surface C can refer to the second reflective surface A or the second reflective surface.
  • the positional relationship between the first reflecting surface c and the second reflecting surface C can be referred to the positional relationship between the first reflecting surface a and the second reflecting surface A, or can also be referred to the first reflecting surface b.
  • the introduction to the second reflecting surface B will not be repeated here.
  • the first reflective surface c and the second reflective surface C can be understood as the first reflective surface a and the second reflective surface A in FIG. 5a, or can be understood as the first reflective surface b and the second reflective surface in FIG. 5a. Reflective surface B.
  • the M first reflective surfaces may be two reflective surfaces of M/2 L-shaped mirrors that are connected in sequence.
  • the reflective surface of the L-shaped mirror can be understood as two mutually perpendicular surfaces of the L-shaped device coated with a reflective film to form two reflective surfaces of the L-shaped mirror. It should be noted that the L-shaped reflector is an integrated structure.
  • Fig. 6a it is a front view of an L-shaped reflector provided in this application.
  • the two reflecting surfaces of the L-shaped reflecting mirror are reflecting surface a and reflecting surface b respectively, and reflecting surface a and reflecting surface b are both the first reflecting surface.
  • the reflective surface a and the reflective surface b may be two outer surfaces on one side of the L-shaped mirror.
  • the lengths of the two reflection surfaces of the L-shaped mirror may be equal or unequal. That is to say, may be equal to H a H b; may be greater than or H a H b; may be less than or H a H b, Figure 6a is only an example H a H b is larger than the.
  • the value range of the length of the longer reflecting surface may be [7mm, 12mm]
  • the value range of the length of the shorter reflecting surface may be [4mm, 8mm].
  • H b may be in the range of [4mm, 8mm].
  • the widths of the two reflection surfaces of the L-shaped mirror may be equal or unequal; in conjunction with the foregoing Figures 6a and 6b, the width of the reflection surface a may be equal to the width of the reflection surface b, or not equal. I.e., K a may be equal to K b; K a may be greater than or K b; or K a may be less than K b.
  • the value range of the width of the two reflection surfaces of the L-shaped mirror may be [3mm, 10mm].
  • the thickness of the two reflection surfaces of the L-shaped mirror may be equal or unequal; in conjunction with the above figures 6a and 6b, the thickness of the reflection surface a may be equal to the thickness of the reflection surface b, or not equal. I.e., it may be equal to L a L b; L a may be greater than or L b; L a, or may be less than L b.
  • the value range of the thickness of the two reflecting surfaces of the L-shaped mirror may be [0.8 mm, 4 mm].
  • the reflective surface a in FIG. 6a is closer to the optical lens assembly and far away from the image sensor than the reflective surface b; the reflective surface b is closer to the image sensor and far away from the optical lens assembly than the reflective surface a.
  • Fig. 6b may be a three-dimensional view of the L-shaped mirror shown in Fig. 6a. It should be noted that the projection of the reflective surface a near the optical lens assembly in the direction perpendicular to the main optical axis is greater than or equal to the height of the optical lens assembly in the direction perpendicular to the main optical axis. In this way, the light from the optical lens assembly can be transmitted to the reflective surface a close to the optical lens assembly, thereby improving the utilization of light.
  • the M first reflective surfaces may be reflective surfaces of M mirrors that are connected in sequence.
  • a schematic structural diagram of the two first reflecting surfaces is the reflecting surfaces of two successively connected reflecting mirrors.
  • the two reflecting mirrors are a reflecting mirror a1 and a reflecting mirror a2 respectively.
  • the reflecting mirror a1 and the reflecting mirror a2 are connected in sequence, and the angle between the reflecting mirror a1 and the reflecting mirror a2 is ⁇ 1 .
  • the reflecting mirror a1 corresponds to the reflecting surface a1
  • the reflecting mirror a2 corresponds to the reflecting surface a2.
  • the M first reflecting surfaces may be the reflecting surfaces of M/2 successive right-angle prisms.
  • the reflective surface of the right-angle prism may be two right-angle surfaces of the right-angle prism. That is, the two first reflection surfaces are two mutually perpendicular reflection surfaces of a right-angle prism (see FIG. 6d), and the two first reflection surfaces are the reflection surface a and the reflection surface b, respectively.
  • the value range of the right-angle side of the right-angle prism may be [5mm, 20mm], and the wide value range may be [3mm, 10mm]. It should be understood that in the right-angled corners, the two first reflection surfaces (that is, the reflection surface a and the reflection surface b) are the inner surfaces of the two right-angle surfaces of the right-angle prism.
  • the reflective surface of the right-angle prism may be two right-angle surfaces of the right-angle prism.
  • FIG. 6e a schematic diagram of a structure in which the four first reflecting surfaces are two reflecting mirrors and a right-angle prism connected in sequence.
  • the two reflectors are reflector a1 and reflector a2.
  • the reflector a1, reflector a2, and the right-angle prism a1 are connected in sequence.
  • the angle between the reflector a1 and the reflector a2 is ⁇ 1
  • the two right-angle prism a1 The angle between the two right-angled surfaces is ⁇ 1
  • the angle between the mirror a2 and one of the right-angled surfaces of the right-angle prism a1 is ⁇ 1 .
  • M is an integer greater than or equal to 3.
  • the number of reflecting mirrors may be greater than the number of right-angle prisms, or the number of reflecting mirrors may also be less than that of right-angle prisms. The number, or the number of mirrors can also be equal to the number of right-angle prisms, which is not limited in this application.
  • M is an integer greater than or equal to 3.
  • M is an integer greater than or equal to 4.
  • M is an integer greater than or equal to 5.
  • the M second reflecting surfaces may be two reflecting surfaces of M/2 L-shaped reflecting mirrors that are connected in sequence.
  • the L-shaped reflecting mirrors please refer to the above-mentioned FIG. 6a.
  • the M second reflective surfaces may be the reflective surfaces of M mirrors that are connected in sequence, and the M mirrors that are connected in sequence can refer to the above-mentioned FIG. 6c.
  • the M second reflecting surfaces may be the reflecting surfaces of M/2 successive right-angle prisms.
  • the reflecting surfaces of the right-angle prism can be two right-angle surfaces of the right-angle prism.
  • M is also an integer greater than or equal to 3.
  • the number of reflecting mirrors can be greater than the number of right-angle prisms, or the number of reflecting mirrors can also be less than that of right-angle prisms. The number or the number of mirrors can also be equal to the number of right-angle prisms, which is not limited in this application.
  • M is an integer greater than or equal to 3.
  • M is an integer greater than or equal to 4.
  • M is an integer greater than or equal to 5.
  • the following exemplarily shows 10 possible situations of the light adjusting component.
  • the M first reflecting surfaces are the reflecting surfaces of M reflecting mirrors that are in sequence
  • the M second reflecting surfaces are the reflecting surfaces of M reflecting mirrors that are in sequence.
  • FIG. 7a it is a schematic structural diagram of another light adjusting component provided in this application.
  • the light adjusting component includes 4 reflecting mirrors, namely: reflecting mirror a1, reflecting mirror a2, reflecting mirror A1 and reflecting mirror A2.
  • the reflecting surface of the reflecting mirror a1 and the reflecting surface of the reflecting mirror a2 are both called the first reflecting surface, and the reflecting mirror a1 and the reflecting mirror a2 are sequentially connected; the reflecting surface of the reflecting mirror A1 and the reflecting surface of the reflecting mirror A2 are both called The second reflecting surface, the reflecting mirror A1 and the reflecting mirror A2 are sequentially connected; the reflecting surface of the reflecting mirror a1 is arranged opposite to the reflecting surface of the reflecting mirror A1, and the reflecting surface of the reflecting mirror a2 is arranged opposite to the reflecting surface of the reflecting mirror A2.
  • the angle between the mirror a1 and the mirror a2 is ⁇ 1
  • the angle between the mirror A1 and the mirror A2 is ⁇ 2 .
  • the M first reflecting surfaces are the reflecting surfaces of M/2 successive right-angle prisms
  • the M second reflecting surfaces are the reflecting surfaces of M/2 successively connecting right-angle prisms.
  • FIG. 7b is a schematic structural diagram of another light adjusting component provided in this application.
  • the light adjusting component includes two right-angle prisms, namely: a right-angle prism a and a right-angle prism A.
  • the two right-angled surfaces of the right-angle prism a can both be called the first reflective surface; the two right-angled surfaces of the right-angle prism A can both be called the second reflective surface.
  • the two right-angle surfaces of the right-angle prism a are arranged opposite to the two right-angle surfaces of the right-angle prism A, respectively.
  • the M first reflecting surfaces are the reflecting surfaces of M reflecting mirrors that are connected in sequence
  • the M second reflecting surfaces are the reflecting surfaces of M/2 successive right-angle prisms.
  • FIG. 7c is a schematic structural diagram of another light adjusting component provided in this application.
  • the light adjusting component includes two reflecting mirrors and a right-angle prism, which are: reflecting mirror a1 and reflecting mirror a2, and right-angle prism A1.
  • the reflecting surface of the reflecting mirror a1 and the reflecting surface of the reflecting mirror a2 are both called the first reflecting surface, and the reflecting mirror a1 and the reflecting mirror a2 are sequentially connected; the two right-angled surfaces of the right-angle prism A1 are both called the second reflecting surface.
  • the reflecting surface of the reflecting mirror a1 and the reflecting surface of the reflecting mirror a2 are respectively arranged opposite to the two right-angle surfaces of the right-angle prism A1.
  • the angle between the mirror a1 and the mirror a2 is ⁇ 1
  • the angle between the two right-angled surfaces of the right-angle prism A is ⁇ 2
  • ⁇ 2 90°.
  • the M first reflecting surfaces are the reflecting surfaces of M/2 successive right-angle prisms
  • the M second reflecting surfaces are the reflecting surfaces of M reflecting mirrors successively connecting.
  • FIG. 7d is a schematic structural diagram of another light adjusting component provided in this application.
  • the light adjusting component includes a right-angle prism and two reflecting mirrors, namely: a right-angle prism a1, a reflecting mirror A1 and a reflecting mirror A2.
  • the two right-angled surfaces of the right-angle prism a1 are both called the first reflecting surface; the reflecting surface of the reflecting mirror A1 and the reflecting surface of the reflecting mirror A2 are both called the second reflecting surface, and the reflecting mirror A1 and the reflecting mirror A2 are connected in sequence.
  • the two right-angle surfaces of the right-angle prism a1 are respectively arranged opposite to the reflection surface of the reflection mirror a1 and the reflection surface of the reflection mirror a2.
  • the M first reflecting surfaces may be the reflecting surfaces of M/2 successively connected L-shaped mirrors
  • the M second reflecting surfaces may be the reflecting surfaces of M/2 successively connecting right-angle prisms.
  • the light adjusting component includes an L-shaped reflector and a right-angle prism.
  • the two reflection surfaces of the L-shaped mirror are two first reflection surfaces
  • the two right-angle surfaces of the right-angle prism are two second reflection surfaces. That is to say, the two first reflecting surfaces are two mutually perpendicular reflecting surfaces of an L-shaped mirror, and the two second reflecting surfaces are two mutually perpendicular reflecting surfaces of a right-angle prism.
  • the two reflection surfaces of the L-shaped mirror are respectively parallel to and opposite to the two right-angle surfaces of the right-angle prism.
  • M first reflecting surfaces are the reflecting surfaces of P reflecting mirrors and Q right-angle prisms that are in sequence
  • M second reflecting surfaces are reflecting surfaces of M reflecting mirrors that are in sequence
  • P+2Q M
  • P and Q are all positive integers.
  • FIG. 7f is a schematic structural diagram of another light adjusting component provided in this application.
  • the light adjusting component includes 6 reflecting mirrors and a right-angle prism, which are: reflecting mirror a1, reflecting mirror a2, right-angle prism a1, reflecting mirror A1, reflecting mirror A2, reflecting mirror A3 and reflecting mirror A4.
  • the reflecting surface of the reflecting mirror a1, the reflecting surface of the reflecting mirror a2 and the two right-angled surfaces of the right-angle prism a1 are all called the first reflecting surface, and the reflecting mirror a1, the reflecting mirror a2 and the right-angle prism a1 are connected in sequence; the reflecting mirror A1
  • the reflecting surface of the reflecting surface, the reflecting surface of the reflecting mirror A2, the reflecting surface of the reflecting mirror A3 and the reflecting surface of the reflecting mirror A4 are all called the second reflecting surface.
  • the reflecting mirror A1, the reflecting mirror A2, the reflecting mirror A3 and the reflecting mirror A4 are connected in turn .
  • the reflecting surface of the reflecting mirror a1 is opposite to the reflecting surface of the reflecting mirror A1, the reflecting surface of the reflecting mirror a2 is opposite to the reflecting surface of the reflecting mirror A2, and the two right-angle surfaces of the right-angle prism a1 are opposite to the reflecting mirror A3 and the reflecting mirror A4.
  • the reflecting mirror a1 and the reflecting mirror a2 can also be arranged after the right-angle prism a1; or the reflecting mirror a1 is arranged before the right-angle prism a1, and the reflecting mirror a2 is arranged after the right-angle prism a1.
  • M first reflecting surfaces are the right-angled surfaces of P mirrors and Q right-angle prisms that are in sequence
  • M second reflecting surfaces are the reflecting surfaces of M/2 consecutively-connected right-angle prisms
  • P+ 2Q M
  • P and Q are both positive integers.
  • FIG. 7g is a schematic structural diagram of another light adjusting component provided in this application.
  • the light adjusting component includes two reflectors and three right-angle prisms, which are: reflector a1, reflector a2, right-angle prism a1, right-angle prism A1, and right-angle prism A2.
  • the reflecting surface of the reflecting mirror a1, the reflecting surface of the reflecting mirror a2 and the two right-angled surfaces of the right-angle prism a1 are all called the first reflecting surface, and the reflecting mirror a1, the reflecting mirror a2 and the right-angle prism a1 are connected in sequence; the right-angle prism A1
  • the two right-angled surfaces of A1 and the two right-angled surfaces of the right-angle prism A2 are both called second reflecting surfaces, and the right-angle prism A1 and the right-angle prism A2 are connected in sequence.
  • the reflecting surface of the reflecting mirror a1 and the reflecting surface of the reflecting mirror a2 are respectively arranged opposite to the two right-angle surfaces of the right-angle prism A1, and the two right-angle surfaces of the right-angle prism a1 are respectively arranged opposite to the two right-angle surfaces of the right-angle prism A2.
  • the reflecting mirror a1 and the reflecting mirror a2 can also be arranged after the right-angle prism a1; or the reflecting mirror a1 is arranged before the right-angle prism a1, and the reflecting mirror a2 is arranged after the right-angle prism a1.
  • M first reflecting surfaces are the reflecting surfaces of M reflecting mirrors that are in sequence
  • FIG. 7h is a schematic structural diagram of another light adjusting component provided in this application.
  • the light adjusting component includes 6 reflectors and a right-angle prism, which are: reflector a1, reflector a2, reflector a3, reflector a4, reflector A1, reflector A2, and right-angle prism A1.
  • the reflecting surface of the reflecting mirror a1, the reflecting surface of the reflecting mirror a2, the reflecting surface of the reflecting mirror a3 and the reflecting surface of the reflecting mirror a4 are all called the first reflecting surface, the reflecting mirror a1, the reflecting mirror a2, the reflecting mirror a3 and the reflecting surface.
  • the mirror a4 is connected in sequence; the reflective surface of the mirror A1, the reflective surface of the mirror A2 and the two right-angled surfaces of the right-angle prism A1 are all called the second reflective surface, and the mirror A1, the mirror A2 and the right-angle prism A1 are connected in turn .
  • the reflecting surface of the mirror a1 and the reflecting surface of the reflecting mirror A1 are arranged opposite, the reflecting surface of the reflecting mirror a2 and the reflecting surface of the reflecting mirror A2 are arranged opposite, the reflecting surface of the reflecting mirror a3 and the reflecting surface of the reflecting mirror a4 are respectively arranged with the right angle prism A1
  • the reflecting mirror A1 and the reflecting mirror A2 can also be arranged behind the right-angle prism A1; or the reflecting mirror A1 is arranged before the right-angle prism A1, and the reflecting mirror A2 is arranged behind the right-angle prism A1.
  • M first reflecting surfaces are the right-angled surfaces of M/2 successive right-angle prisms
  • M second reflecting surfaces are the reflecting surfaces of K reflecting mirrors and L right-angle prisms that are successively connected
  • K+ 2L M
  • both K and L are integers greater than 0 and less than M.
  • FIG. 7i is a schematic structural diagram of another light adjusting component provided in this application.
  • the light adjusting component includes three right-angle prisms and two reflecting mirrors, namely: a right-angle prism a1, a right-angle prism a2, a right-angle prism A1, a reflection mirror A1, and a reflection mirror A2.
  • the two right-angle surfaces of the right-angle prism a1 and the two right-angle surfaces of the right-angle prism a2 are both called the first reflecting surface.
  • the right-angle prism a1 and the right-angle prism a2 are connected in turn; the two right-angle surfaces of the right-angle prism A1 and the reflection of the mirror A1 Both the surface and the reflecting surface of the reflecting mirror A2 are called the second reflecting surface, and the right-angle prism A1, the reflecting mirror A1 and the reflecting mirror A2 are connected in sequence.
  • the reflecting mirror A1 and the reflecting mirror A2 can also be arranged after the right-angle prism A1; or the reflecting mirror A1 is arranged before the right-angle prism A1, and the reflecting mirror A2 is arranged after the right-angle prism A1.
  • M first reflecting surfaces are the reflecting surfaces of P reflecting mirrors and Q right-angle prisms that are connected in sequence
  • M second reflecting surfaces are the reflecting surfaces of K reflecting mirrors and L right-angle prisms that are connected in sequence
  • FIG. 7j is a schematic structural diagram of another light adjusting component provided in this application.
  • the light adjusting component includes two right-angle prisms and four reflecting mirrors, namely: right-angle prism a1, reflecting mirror a1, reflecting mirror a2, right-angle prism A1, reflecting mirror A1 and reflecting mirror A2.
  • the two right-angle surfaces of the right-angle prism a1, the reflective surface of the mirror a1, and the reflective surface of the mirror a2 are all called the first reflection surface.
  • the right-angle prism a1, the mirror a1, and the mirror a2 are connected in turn;
  • the two right-angled surfaces, the reflective surface of the reflective mirror A1 and the reflective surface of the reflective mirror A2 are all called the second reflective surface, and the right-angle prism A1, the reflective mirror A1, and the reflective mirror A2 are connected in sequence.
  • the two right-angle surfaces of the right-angle prism a1 are respectively arranged opposite to the two right-angle surfaces of the right-angle prism A1, the reflecting surface of the mirror a1 is arranged opposite to the reflecting surface of the reflecting mirror A1, and the reflecting surface of the reflecting mirror a2 is opposite to the reflecting surface of the reflecting mirror A2. Relative settings.
  • the reflecting mirror A1 and the reflecting mirror A2 can also be arranged before the right-angle prism A1; or the reflecting mirror A1 is arranged before the right-angle prism A1, and the reflecting mirror A2 is arranged after the right-angle prism A1; the reflecting mirror a1 and the reflecting mirror a2 can also be arranged before the right-angle prism a1; or the reflecting mirror a1 is arranged before the right-angle prism a1, and the reflecting mirror a2 is arranged after the right-angle prism a1.
  • any L-shaped mirror includes two reflective surfaces
  • any right-angle prism includes two reflective surfaces.
  • the M first reflecting surfaces may be the reflecting surfaces of M/2 successively connected L-shaped reflecting mirrors.
  • the second reflective surfaces may be the reflective surfaces of M/2 L-shaped mirrors that are connected in sequence; for example, the M second reflective surfaces may be the reflective surfaces of M/2 L-shaped mirrors that are connected in sequence.
  • the M first reflecting surfaces may be the reflecting surfaces of M/2 successive right-angle prisms, etc., which will not be listed here.
  • the right-angle prism when the right-angle surface of the right-angle prism is used as the first reflection surface, the right-angle prism may be a non-isosceles right-angle prism, and when the right-angle prism is used as the second reflection surface, the right-angle prism may be an isosceles right-angle prism.
  • two adjacent mirrors can be glued and fixed together, or they can be separated.
  • Two adjacent right-angle prisms can be glued and fixed together, or they can be separated.
  • the light adjustment component includes an L-shaped reflector and a right-angle prism, wherein the L-shaped reflector includes an eleventh reflecting surface and a twelfth reflecting surface that are perpendicular to each other; the right-angle prism includes a thirteenth reflecting surface and a second perpendicular to each other.
  • the eleventh reflecting surface and the thirteenth reflecting surface are arranged oppositely and parallel to each other, the twelfth reflecting surface and the fourteenth reflecting surface are arranged oppositely and parallel to each other; so that the light from the optical lens assembly passes through the tenth
  • a reflective surface reflects the thirteenth reflective surface, the fourteenth reflective surface and the twelfth reflective surface to the image sensor.
  • FIG. 7k takes the example of the light from the optical lens assembly entering the eleventh reflecting surface of the L-shaped mirror at an incident angle of 45 degrees, and the light from the optical lens assembly entering L at an incident angle of 45 degrees.
  • the reflection angle of the light reflected from the eleventh reflecting surface is also 45 degrees, and the light reflected from the eleventh reflecting surface hits the right-angle prism at an incident angle of 45 degrees.
  • the thirteenth reflecting surface, the reflection angle of the light reflected from the thirteenth reflecting surface of the right-angle prism is also 45 degrees, and the light reflected from the thirteenth reflecting surface of the right-angle prism is directed toward the right angle at an incident angle of 45 degrees
  • the fourteenth reflecting surface of the prism, the reflection angle of the light reflected from the fourteenth reflecting surface of the right-angle prism is also 45 degrees, and the light reflected from the fourteenth reflecting surface of the right-angle prism is emitted at an incident angle of 45 degrees.
  • the reflection angle of the light reflected from the twelfth reflecting surface of the L-shaped reflecting mirror is 45 degrees.
  • the light from the optical lens assembly enters the eleventh reflecting surface of the L-shaped mirror at an incident angle of 45 degrees, and the light reflected to the image sensor by the twelfth reflecting surface of the L-shaped mirror is parallel to the main light The direction of the axis.
  • the angle between the eleventh reflecting surface of the L-shaped mirror and the main optical axis is 45 degrees
  • the angle between the twelfth reflecting surface of the L-shaped mirror and the main optical axis is 45 degrees.
  • the angle is 45 degrees. Since the included angle between the eleventh reflecting surface and the main optical axis is equal to the included angle between the eleventh reflecting surface and the line parallel to the main optical axis, Figure 7k uses the eleventh reflecting surface parallel to the main optical axis to facilitate drawing.
  • the angle between the lines on the main optical axis represents the angle between the eleventh reflecting surface and the main optical axis.
  • the angle between the twelfth reflecting surface and the line parallel to the main optical axis is used to represent the angle between the twelfth reflecting surface and the main optical axis.
  • the angle between the thirteenth reflecting surface of the right-angle prism and the main optical axis is 45 degrees
  • the angle between the fourteenth reflecting surface of the right-angle prism and the main optical axis is 45 degrees
  • Figure 7k uses the thirteenth reflecting surface parallel to the main optical axis to facilitate drawing.
  • the angle between the lines on the main optical axis represents the angle between the thirteenth reflecting surface and the main optical axis.
  • the angle between the fourteenth reflecting surface and the line parallel to the main optical axis is used to represent the angle between the fourteenth reflecting surface and the main optical axis.
  • the opening direction of the L-shaped mirror is the same as the opening direction of the right angle of the right-angle prism.
  • FIG. 7k is only a schematic diagram, and the light from the optical lens assembly includes, but is not limited to, incident on the eleventh reflecting surface at an incident angle of 45 degrees.
  • the angles between the eleventh, twelfth, thirteenth, and fourteenth reflective surfaces respectively and the main optical axis include but are not limited to 45 degrees. That is to say, this application does not limit the placement position of the L-shaped mirror and the right-angle prism.
  • the eleventh reflecting surface and the twelfth reflecting surface of the L-shaped mirror in FIG. 7k may be the two first reflecting surfaces of the L-shaped mirror shown in FIG. 7e;
  • the thirteenth reflecting surface and the fourteenth reflecting surface of the right-angle prism may be the two second reflecting surfaces of the right-angle prism shown in FIG. 7e. Therefore, the movement of the first driving component to drive the light adjusting component of FIG. 7e can be referred to the description of the first driving component to drive the first reflective surface and the second reflective surface, and the details will not be repeated here.
  • the first driving component is specifically used to drive the M first reflective surfaces to move in a first direction, and/or to drive the M second reflective surfaces to move in a second direction; wherein the first direction and the second direction
  • the first direction and the second direction are both directions perpendicular to the main optical axis.
  • the first driving component is specifically configured to drive the entire M first reflective surfaces to move in the first direction; or drive the entire M second reflective surfaces to move in the second direction; or drive the M first reflective surfaces The whole moves in the first direction, and drives the M second reflective surfaces to move in the second direction.
  • the first driving assembly drives the M first reflecting surfaces and/or M second reflecting surfaces of the light adjusting assembly to move to achieve focusing without moving the optical lens assembly, so the optical lens assembly does not need to be coupled with the driving assembly.
  • the M first reflecting surfaces move in the first direction as a whole, so the size of ⁇ 1 will not change; similarly, the M second reflecting surfaces also move in the second direction as a whole, so ⁇ The size of 2 will not change.
  • the second direction is downward; if the first direction is downward, the second direction is upward.
  • the distance between the two first reflecting surfaces and the two second reflecting surfaces can be increased in the following three ways.
  • Manner 1 The two second reflecting surfaces are not moved, and the first driving assembly is specifically used to drive the two first reflecting surfaces to move upward as a whole.
  • Manner 2 The two first reflecting surfaces do not move, and the first driving assembly is used to drive the two second reflecting surfaces to move downward as a whole.
  • Manner 3 The first driving component is used to drive the two first reflective surfaces to move upward as a whole, and to drive the two second reflective surfaces to move downward as a whole.
  • the distance between the two first reflecting surfaces and the two second reflecting surfaces can be shortened in the following three ways.
  • Manner a the two second reflecting surfaces do not move, and the first driving assembly is specifically used to drive the two first reflecting surfaces to move downward as a whole.
  • Manner b the two first reflecting surfaces do not move, and the first driving assembly is used to drive the two second reflecting surfaces to move upward as a whole.
  • the first driving component is used to drive the two first reflective surfaces to move downward as a whole, and to drive the two second reflective surfaces to move upward as a whole.
  • the first driving assembly may be used to drive the M first reflective surfaces to move in a direction perpendicular to the main optical axis.
  • the M second reflecting surfaces do not move and the first driving component drives the M first reflecting surfaces to move.
  • FIG. 8 it is a schematic diagram of the optical path before and after the movement of the L-shaped mirror driven by the driving assembly provided in this application.
  • the L-shaped reflector and the right-angle prism can bend the light propagated by the optical lens assembly four times to achieve the optical path folding of the light.
  • the solid line may indicate the folded optical path of the light when the first driving component does not drive the L-shaped mirror to move
  • the dashed line may indicate the folded optical path of the light after the first driving component drives the L-shaped mirror to move upward.
  • the movement of the L-shaped mirror is driven by the first driving component to realize the focusing of light.
  • the volume of the L-shaped mirror is smaller than that of the right-angle prism, focusing is achieved by driving the L-shaped mirror to move, which helps to reduce the power consumption of the first driving component.
  • the first driving component may be specifically used to drive the L-shaped mirror to move in a first direction, and/or to drive the right-angle prism to move along the first direction. Movement in two directions; wherein the first direction is opposite to the second direction, and the first direction and the second direction are both directions perpendicular to the main optical axis. It should be noted that the first driving component can be used to drive the L-shaped mirror to move in the first direction and/or to drive the right-angle prism to move in the second direction. The introduction of driving the M first reflecting surfaces to move in the first direction and/or driving the M second reflecting surfaces to move in the second direction will not be repeated here.
  • the first driving component is specifically configured to drive the L-shaped mirror to move in a direction perpendicular to the main optical axis
  • possible implementation manners may be Refer to the description that the above-mentioned first driving assembly can be used to drive the M first reflecting surfaces to move in a direction perpendicular to the main optical axis, which will not be repeated here.
  • the first driving component can also be used to drive the M first reflective surfaces and/or the M second reflective surfaces to move in a third direction, so as to compensate the light from the optical lens assembly.
  • the third direction It is the direction parallel to the main optical axis. It should be understood that the third direction can be left or right (see the direction shown in FIG. 5a). In this way, the light adjusting component can not only fold the light path of the light propagated from the optical lens component, but also realize the optical jitter compensation for the light in a specific direction (that is, the third direction).
  • the method of performing jitter compensation on the light from the optical lens assembly may include any one of the following: the two second reflecting surfaces do not move, and the first driving assembly can also be used to drive the two first reflecting surfaces Move to the left as a whole; or, if the two first reflecting surfaces do not move, the first driving assembly can also be used to drive the two second reflecting surfaces to move to the left as a whole; or, the first driving assembly can also be used to drive two first reflecting surfaces.
  • the entire surface moves to the left and drives the two second reflective surfaces to move to the entire left; or, if the two second reflective surfaces do not move, the first drive assembly can also be used to drive the two first reflective surfaces to move to the right as a whole; or , The two first reflective surfaces do not move, the first drive assembly can also be used to drive the two second reflective surfaces to move to the right; or, the first drive assembly can also be used to drive the two first reflective surfaces to move to the right, And the two second reflecting surfaces are driven to move to the right as a whole.
  • the first driving component is specifically configured to drive the M first reflecting surfaces and/or the M second reflecting surfaces to move in the third direction for a distance smaller than a preset distance.
  • the preset distance is the minimum value of the first projection distance set and the second projection distance set
  • the first projection distance set includes the length of each of the M first reflective surfaces in the direction of the main optical axis
  • the second projection distance set includes the projection distance of the length of each second reflection surface in the direction of the main optical axis in the M second reflection surfaces.
  • the first projection distance set ⁇ L aa , L bb ⁇
  • the second projection distance set ⁇ L AA , L BB ⁇
  • the preset distance is ⁇ L aa , L bb , L AA , L BB ⁇ Is the minimum value.
  • the first driving component may be a focus motor (or referred to as a focus motor), or a servo motor.
  • the first driving component is also used to drive the L-shaped mirror and/or the right-angle prism to move in the third direction to The light of the optical lens assembly performs shake compensation; wherein the third direction is a direction parallel to the main optical axis. It should be noted that the first driving component is also used to drive the L-shaped mirror and/or the right-angle prism to move in the third direction.
  • the first driving component is also used to drive the L-shaped mirror and/or the right-angle prism to move in the third direction.
  • the possible implementation of the movement of the second reflecting surface along the third direction will not be repeated here.
  • the first driving component is specifically configured to drive the L-shaped mirror and/or the right-angle prism to move along the third direction by a distance smaller than a preset distance.
  • the preset distance can be referred to the above related introduction, which will not be repeated here.
  • the first driving component may be fixed together with M first reflective surfaces and/or M second reflective surfaces. If the M first reflecting surfaces are the reflecting surfaces of M/2 successively connected L-shaped reflecting mirrors, the first driving component can be fixed together with the L-shaped reflecting mirror; if the M first reflecting surfaces are successively connected For the reflecting surfaces of M reflecting mirrors, the first driving component can be fixed to the M reflecting mirrors; if the M first reflecting surfaces are the reflecting surfaces of M/2 successive right-angle prisms, the first driving component can be It is fixed together with M/2 right-angle prisms; if the M first reflecting surfaces are the reflecting surfaces of P reflecting mirrors and Q right-angle prisms that are connected in sequence, the first driving component can be connected to P reflecting mirrors and Q right angles. The prisms are all fixed together.
  • the fixing method of the second driving component and the second reflecting surface please refer to the fixing method of the first driving component and the first reflecting surface, which will not be repeated here.
  • the first driving assembly may be fixed with M first mirrors and/or M second mirrors.
  • the first driving component may be fixed together with the L-shaped mirror and/or the right-angle prism.
  • the first driving component can also be used to drive the optical lens component to move, so that the light beams after the optical path are folded are focused on the image sensor. That is to say, when focusing the light after the optical path is folded, the first driving component may drive the optical lens component to move, or the first driving component may drive the light adjusting component to move.
  • the first driving component is specifically configured to drive the optical lens component to move in a direction parallel to the main optical axis.
  • the first drive assembly can be used to drive the first lens and the second lens in the optical lens assembly to move in a direction parallel to the main optical axis; alternatively, the first lens does not move, and the second lens moves parallel to the main optical axis.
  • the direction of the optical axis moves; or, the second lens does not move, and the first lens moves in a direction parallel to the main optical axis.
  • the eleventh reflecting surface and the twelfth reflecting surface can be understood as the two aforementioned first reflecting surfaces
  • the thirteenth reflecting surface and the fourteenth reflecting surface can be understood as the two aforementioned second reflecting surfaces.
  • the first driving component drives the eleventh reflective surface and/or the twelfth reflective surface
  • the first driving component drives the thirteenth reflective surface.
  • the formula of the fourteenth reflecting surface and/or the fourteenth reflecting surface please refer to the manner in which the first driving component drives the second reflecting surface, which will not be repeated here.
  • the image sensor may include a photosensitive element and related circuits, such as a photosensitive chip.
  • the photosensitive element may be a photodetector (PD), or a high-speed photodiode, or a charge coupled device (CCD) or a complementary metal-oxide semiconductor (complementary metal-oxide). -semiconductor, CMOS) phototransistor.
  • PD photodetector
  • CCD charge coupled device
  • CMOS complementary metal-oxide semiconductor
  • the image sensor receives the folded and focused light from the light path of the light adjusting component, converts the received light into an electrical signal, and forms an image.
  • the information carried by the focused light after the optical path is folded is the same as the information carried by the light from the subject.
  • the light focused on the image sensor is all the light propagated from the optical lens assembly, and the light spot in the non-focusing area may be relatively large on the image sensor.
  • the image sensor may perform processing such as denoising, enhancement, and segmentation blurring on the obtained image to enrich the user experience.
  • the resolution range of the image sensor may be [8 million pixels, 48 million pixels].
  • the resolution of the image sensor may be 8 million pixels, 12 million pixels, 20 million pixels, or 48 million pixels.
  • the resolution of the image sensor can also be greater than 48 million pixels, for example, it can also be 52 million pixels, 60 million pixels, 72 million pixels, and so on.
  • the camera module may also include a shake compensation component.
  • a shake compensation component By combining the jitter compensation component and the first driving component to drive the M first reflecting surfaces and/or the M second reflecting surfaces to move in the third direction, the anti-shake angle can be expanded.
  • the jitter compensation component can achieve 0.1 degree jitter compensation
  • the first driving component drives M first reflective surfaces and/or M second reflective surfaces to move in the third direction to achieve 0.1 degree compensation.
  • the combination of the two is It can achieve 0.2 degree compensation.
  • FIG. 9 it is a schematic structural diagram of another camera module provided by this application.
  • the camera module includes: an optical lens assembly 101, a first driving group 102, a light adjustment assembly 103, an image sensor 104, and a shake compensation assembly 105.
  • the optical lens assembly 103 is located between the shake compensation assembly 105 and the light adjustment assembly 103.
  • the jitter compensation component 105 includes a second driving component and a third reflecting surface; the third reflecting surface is used to receive light from the object; the second driving component is used to drive the third reflecting surface to rotate, so as to Compensate for the shake of the light, and shoot the compensated light into the optical lens assembly.
  • the introduction of the optical lens assembly 101, the first driving assembly 102, the light adjusting assembly 103, and the image sensor 104 can be referred to the foregoing content, which will not be repeated here.
  • the light adjusting component in this example is the light adjusting component shown in case 5 above, the first driving component and the L-shaped mirror are moved and fixed together, and the optical lens component is taken as an example of the optical lens component shown in FIG. 4a. Example.
  • the light from the subject after being shake-compensated by the shake compensation component may also be referred to as the light from the subject.
  • the information carried by the light propagating through the optical lens assembly is the same as the information carried by the light entering the optical lens assembly.
  • the second driving component may be specifically used to drive the third reflective surface to rotate in at least one of three mutually perpendicular directions (such as XYZ).
  • the second drive assembly along a main optical axis direction may be used to drive the third reflecting surface is inclined to make a small angle, i.e., change the size of ⁇ 3, ⁇ 3 is the angle change is smaller than a threshold angle (e.g. 0.1 °), thus, may be of Shake compensation is performed in the direction of the main optical axis.
  • the included angle between the third reflecting surface and the main optical axis is ⁇ 3 , and ⁇ 3 is greater than 0 degrees and less than 90 degrees. Further, optionally, ⁇ 3 is greater than or equal to 30 degrees and less than or equal to 60 degrees. Exemplarily, ⁇ 3 may be 30 degrees, 45 degrees, or 60 degrees.
  • the third reflection surface may be a reflection surface of a right-angle prism (for example, an inclined surface of an isosceles right-angle prism) or a reflection surface of a mirror.
  • the second driving component may also be an optical image stabilization motor, a servo motor, or the like. It should be noted that the first driving component and the second driving component may be integrated, or may be two independent driving components, which is not limited in this application.
  • the camera module may also include other components, such as a jitter detector and a processor, where the jitter detector may be a gyroscope.
  • the jitter detector can be used to detect small movements and transmit the signals of the detected small movements to the processor.
  • the processor calculates the required compensation based on the small movements, and then controls the second according to the calculated compensation.
  • the driving component drives the third reflecting surface to adjust the position and angle.
  • the camera module may further include an infrared radiation (IR) filter 106 (see FIG. 9 above).
  • IR infrared radiation
  • the IR filter may be used to block or absorb light of a specific wavelength, for example, to block The effect of infrared radiation that damages or adversely affects the image sensor, and can be configured to have no effect on the focal length of the optical lens assembly.
  • the material of the IR filter may be glass or glass-like resin, such as blue glass.
  • the IR filter may be located between the image sensor and the light adjustment component (see FIG. 8).
  • the present application may also provide a terminal device.
  • the terminal device may include a first camera, a memory, and a processor.
  • the first camera includes the camera module described above, and the memory is used for storage.
  • Program or instruction; the processor is used to call the program or instruction to control the first camera to obtain the first image.
  • the first camera may be a fixed-focus camera, and the magnification of the first camera is A1, where the value range of A1 is (5, 12). Further, optionally, the value of A1 The range is [8,12]. For example, A1 can be 5, 8, or 10.
  • the terminal device may further include a second camera, which is also a fixed focus camera, and the magnification of the second camera is A2, where A2 is greater than 1 and less than A1.
  • A2 is greater than 1 and less than A1.
  • the value range of A2 is (1, 3).
  • A2 can be 2 or 3.
  • the terminal device may also include a wide-angle camera, which is also a fixed-focus camera.
  • the magnification of the wide-angle camera is A3, and A3 is usually less than 1, that is, the value range of A3 can be (0, 1).
  • the value range of A3 may be [0.6, 0.9], for example, A3 may be 0.3, 0.6, 0.8, or 0.9.
  • the terminal device may also include a main camera (or called a main camera lens or a main camera), and the magnification of the main camera is 1.
  • a main camera or called a main camera lens or a main camera
  • the terminal equipment may also include other devices, such as wireless communication devices, sensors and touch screens, display screens, and so on.
  • the terminal device can be a personal computer, a server computer, a handheld or laptop device, a mobile device (such as a mobile phone, a mobile phone, a tablet computer, a wearable device (such as a smart watch), a personal digital Assistants, media players, etc.), consumer electronic equipment, small computers, mainframe computers, film cameras, digital cameras, video cameras, surveillance equipment, telescopes or periscopes, etc.
  • a mobile device such as a mobile phone, a mobile phone, a tablet computer, a wearable device (such as a smart watch), a personal digital Assistants, media players, etc.
  • consumer electronic equipment small computers, mainframe computers, film cameras, digital cameras, video cameras, surveillance equipment, telescopes or periscopes, etc.
  • FIG. 10 it is a schematic structural diagram of a terminal device provided by this application.
  • the terminal device may include a processor 1001, a memory 1002, a camera 1003, a display screen 1004, and the like.
  • the terminal device applicable to this application may have more or fewer components than the terminal device shown in FIG. 10, may combine two or more components, or may have different component configurations.
  • the various components shown in FIG. 10 may be implemented in hardware, software, or a combination of hardware and software including one or more signal processing and/or application specific integrated circuits.
  • the processor 1001 may include one or more processing units.
  • the processor 1001 may include an application processor 1001 (application processor, AP), a graphics processor 1001 (graphics processing unit, GPU), an image signal processor 1001 (image signal processor, ISP), a controller, and a digital signal processor 1001 (digital signal processor, DSP), etc.
  • application processor application processor
  • GPU graphics processing unit
  • image signal processor image signal processor
  • controller controller
  • DSP digital signal processor
  • the camera 1003 can be used to capture moving and static images.
  • the terminal device may include one or N cameras 1003, where N is an integer greater than one.
  • the terminal device may include a front camera and a rear camera.
  • the terminal device may include two rear cameras, such as a main camera and a first camera; or, the terminal device may include three rear cameras, such as a main camera, a wide-angle camera, and a first camera.
  • the terminal device may include 4 rear cameras, such as a main camera, a wide-angle camera, a first camera, and a second camera; or, the terminal device may include 5 rear cameras, such as a main camera, a wide-angle camera, The first camera, the second camera, and the depth camera (for example, including a time of flight (TOF) camera module), etc.
  • the first camera may be called a high-power telephoto lens
  • the second camera may be called a low-power telephoto lens.
  • the magnification of the main camera is 1, and the magnifications of the first camera, the second camera, and the wide-angle camera can be referred to the foregoing descriptions respectively, which will not be repeated here.
  • the number of rear cameras may also be greater than 5, which is not limited in this application.
  • the number and types of front cameras are not limited in this application.
  • the display screen 1004 can be used to display images, videos, and the like.
  • the display screen 1004 may include a display panel.
  • the display panel can use liquid crystal display 1004 (liquid crystal display, LCD), organic light-emitting diode (organic light-emitting diode, OLED), active matrix organic light-emitting diode or active-matrix organic light-emitting diode (active-matrix organic light-emitting diode).
  • AMOLED light emitting diode
  • flexible light-emitting diode FLED
  • Miniled MicroLed, Micro-oLed, quantum dot light emitting diode (QLED), etc.
  • the terminal device may include 1 or H display screens 1004, and H is a positive integer greater than 1.
  • the terminal device may implement a display function through a GPU, a display screen 1004, and an application processor 1001.
  • the terminal device may include a first camera, and the first camera may include the camera module in any of the above-mentioned embodiments of FIGS. 3-9, and the camera module may include a light adjusting component; wherein the light adjusting component is used for optical path of light fold.
  • the imaging method includes the following steps:
  • Step 1101 Acquire the shooting magnification.
  • the shooting magnification may be the default shooting magnification of the terminal device in some shooting modes (such as portrait mode or telephoto mode, etc.), or may be the shooting magnification selected by the user on the terminal device.
  • Step 1102 When the shooting magnification is greater than the magnification threshold, obtain a preview image through the first camera.
  • the value range of the magnification threshold may be [5, 11).
  • the magnification threshold may be 5, 6, or 8, etc.
  • the preview image can be obtained through the first camera.
  • Step 1103 Determine the target focus position of the first camera according to the preview image.
  • the following exemplarily shows two implementation manners for determining the target focus position of the first camera, where the target focus position refers to the position when a clear first image can be generated.
  • Implementation mode one is to determine the target focus position according to the central area of the preview image.
  • the second implementation manner is to receive the user's focusing operation on the preview image, and determine the focusing position in response to the focusing operation as the target focusing position.
  • Step 1104 according to the target focus position, drive the light adjusting component to move to focus.
  • the target position of the light adjustment component may be determined according to the target focus position first, and then the light adjustment component is driven according to the target position. It should be noted that the light can be focused by driving the light adjusting component to move and focus.
  • the target focus position may be determined first according to the preview image, the target position of the light adjustment component is calculated according to the target focus position, and the light adjustment component is driven to move to the target position.
  • the preview image move the light adjustment component to obtain a multi-frame image, and determine the position of the light adjustment component corresponding to the clearest frame of the multi-frame image as the position of the light adjustment component The target position, and then drive the light adjusting component to move to the target position.
  • the light adjusting component may include M first reflective surfaces and M second reflective surfaces.
  • the M first reflecting surfaces can be driven to move in the first direction
  • the M second reflecting surfaces can be driven to move in the second direction and move to the target focusing position, so as to realize the light after the optical path is folded Focus; wherein the first direction is opposite to the second direction, and the first direction and the second direction are both directions perpendicular to the main optical axis.
  • the light adjusting component may include M first reflecting surfaces and M second reflecting surfaces, and the M first reflecting surfaces can be driven along the vertical direction to the main surface according to the target focus position.
  • the direction of the optical axis moves and moves to the target focus position, so as to realize the light focusing after the optical path is folded.
  • the optical path folding of the light propagated by the optical lens assembly through the light adjustment component can shorten the imaging light path, thereby reducing the size of the camera module.
  • the optical lens assembly with a larger physical focal length can be used to achieve a larger optical zoom factor; further, according to the shooting magnification, the light adjustment assembly is driven to move, so that the light after the optical path is folded is focused, thereby forming Clear image.
  • the final image obtained by the first camera may be referred to as the first image.
  • the M first reflective surfaces and/or the M second reflective surfaces can be driven to move in a third direction according to the detected jitter information, To perform shake compensation on the light from the optical lens assembly; wherein the third direction is parallel to the direction of the main optical axis.
  • the terminal device may further include a second camera, the second camera is a fixed-focus camera, and when the shooting magnification is greater than 1 and less than or equal to the magnification threshold, the second image can be acquired through the second camera,
  • the magnification of the second camera is A2; wherein, A2 is greater than 1 and less than A1.
  • the terminal device further includes a wide-angle camera, and when the shooting magnification is greater than 0 and less than 1, the third image can be acquired through the wide-angle camera.
  • the terminal device includes a first camera, a second camera, a third camera, and a main camera.
  • the third camera is a wide-angle camera as an example.
  • One possible shooting method is shown. Among them, for the introduction of possible implementations of the first camera, the second camera, the third camera, and the main camera, please refer to the aforementioned related descriptions respectively, and details are not repeated here.
  • the terminal device can select a wide-angle camera (that is, a third camera) for shooting. That is, when the shooting magnification is [0.6, 0.9], the terminal device can select a wide-angle camera (that is, a third camera) to obtain the third image. Further, optionally, when the terminal device selects a wide-angle camera (that is, a third camera) for shooting, it can be processed by an image signal processor (ISP) and a wide-angle data zoom (digital zoom, DZ) algorithm. Obtain the third image, where the ISP processing may include but is not limited to multi-frame fusion; the DZ algorithm may include, but is not limited to, common interpolation algorithms and single-frame super-division algorithms.
  • ISP image signal processor
  • DZ wide-angle data zoom
  • the terminal device can select the main camera for shooting. That is, when the shooting magnification is [1.0, 2.9], the terminal device can select the main camera to acquire the fourth image. Further, optionally, when the terminal device selects the main camera for shooting, the fourth image can be obtained through ISP processing and wide-angle DZ algorithms.
  • ISP processing and wide-angle DZ algorithm processing please refer to the relevant description above. I won't repeat it here.
  • the terminal device can choose a camera with a magnification of 3 for shooting, that is, the terminal device can choose a second camera for shooting.
  • the terminal device can obtain the second image through the second camera with a magnification of 3.
  • the terminal device selects the second camera for shooting the second image can be obtained through ISP processing and wide-angle DZ algorithm processing.
  • ISP processing and DZ algorithm processing please refer to the above related description. I won't repeat them here.
  • the terminal device can select a camera with a magnification of 10 and a camera with a magnification of 3 for shooting. That is, when the shooting magnification is [7.0, 9.9], the terminal device can acquire the fifth image through the first camera with the shooting magnification of 10 and the second camera with the shooting magnification of 3. Further, optionally, when the terminal device selects the second camera and the fifth camera for shooting, the fifth camera can be obtained through ISP processing, wide-angle DZ algorithm processing, and field of view (FoV) integration processing. For the image, the processing of the ISP and the processing of the DZ algorithm can be referred to the above-mentioned related description, which will not be repeated here.
  • the terminal device can select a camera with a magnification of 10 for shooting. That is, when the shooting magnification is greater than or equal to 10.0, the terminal device can obtain the first image through the first camera with a magnification of 10. Further, optionally, when the terminal device selects the first camera for shooting, the first image can be obtained through ISP processing, DZ algorithm processing, and de-image rotation algorithm processing, where the de-image rotation algorithm may include but is not limited to In deblurring, it should be understood that image rotation (also called phase rotation) is a special kind of blur.
  • the imaging device includes hardware structures and/or software modules corresponding to each function.
  • the imaging device includes hardware structures and/or software modules corresponding to each function.
  • Those skilled in the art should easily realize that, in combination with the modules and method steps of the examples described in the embodiments disclosed in this application, this application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application scenarios and design constraints of the technical solution.
  • FIG. 12 is a schematic structural diagram of a possible imaging device provided by this application. These imaging devices can be used to implement the functions of the foregoing method embodiments, and thus can achieve the beneficial effects of the foregoing method embodiments.
  • the imaging device can be applied to the terminal device as shown in FIG. 10, the terminal device includes a first camera, the first camera includes a light adjustment component, and the light adjustment component is used to obtain information from the first camera. The light rays are folded in the light path.
  • the imaging device 1200 includes an acquisition module 1201, a determination module 1202, and a driving module 1203.
  • the imaging device 1200 is used to implement the functions in the method embodiment shown in FIG. 11 described above.
  • the acquisition module 1201 is used to acquire the shooting magnification, and when the shooting magnification is greater than the magnification threshold, the preview image is acquired through the first camera;
  • the determining module 1202 is configured to determine the target focus position of the first camera according to the preview image;
  • the driving module 1203 is configured to drive the light adjustment component to move and focus according to the target focus position.
  • obtaining module 1201 For a more detailed description of the above-mentioned obtaining module 1201, refer to the further related descriptions in step 1101 and step 1102 shown in FIG. 11, and for a more detailed description of the determining module 1202, refer to the further step 1103 shown in FIG. 11 Related descriptions are obtained, and a more detailed description of the driving module 1203 can be obtained with reference to the further related description in step 1104 shown in FIG. 11.
  • first camera refer to the related description of the first camera shown in FIG. 10
  • camera module refer to the description of the camera module shown in FIGS. 3 to 9 above. Relevant descriptions will not be repeated here.
  • the imaging device 1300 may include a processor 1301, a first camera 1302, and a memory 1303.
  • the memory 1303 is configured to store instructions or programs executed by the processor 1301, or store input data required by the processor 1301 to run the instructions or programs, or store data generated after the processor 1301 runs the instructions or programs.
  • the first camera 1302 includes an optical lens assembly, a light adjustment assembly, and an image sensor; wherein the optical lens assembly is used to receive light from the object; the light adjustment assembly is used to transmit light from the optical lens assembly Perform light path folding.
  • the first camera please refer to the related description of the first camera shown in FIG. 10, and for a more detailed description of the camera module, please refer to the related description of the camera module shown in FIGS. 3 to 9 above. , I will not repeat them here.
  • the processor 1301 is used to execute the functions of the acquisition module 1201, the determination module 1202, and the driving module 1203 described above.
  • the acquisition module 1201 may call the program or instruction stored in the memory 1303 by the processor 1301 to acquire the shooting magnification, and when the shooting magnification is greater than the magnification threshold, control the first camera 1302 to obtain the preview image.
  • the determining module 1202 may call the program or instruction stored in the memory 1303 by the processor 1301, and determine the target focus position of the first camera 1302 according to the preview image.
  • the driving module 1203 may call the program or instruction stored in the memory 1303 by the processor 1301 to control the first driving component to drive the light adjusting component to move and focus.
  • the terminal device may include a first camera, a second camera, and a third camera.
  • the first camera and the second camera are both fixed-focus cameras
  • the third camera is a wide-angle camera
  • the magnification of the first camera is A1
  • the magnification of the second camera is A2.
  • the magnification of the third camera is A3; wherein, A2 is greater than 1 and less than A1, and A3 is less than 1.
  • the terminal device further includes a depth camera.
  • the value range of A1 is [8, 12].
  • the first camera includes a camera module
  • the camera module may include a first driving component, an optical lens component, a light adjustment component, and an image sensor.
  • the light adjustment component and the image sensor The directions of the main optical axis of the optical lens assembly are arranged in sequence; the optical lens assembly is used to receive light from the subject; the light adjustment assembly is used to fold the light path of the light propagated by the optical lens assembly;
  • the first driving component is used for driving the light adjusting component to move, so that the light after the optical path is folded is focused on the image sensor; the image sensor is used for imaging according to the focused light.
  • the shooting magnification of the user during the photographing process and the magnification of the camera itself can also be expressed in the form of "number + x"
  • the shooting magnification 0.8 can also be expressed as 0.8x; for another example, the value range of A1 is [8, 12], which can also be expressed as [8x, 12x].
  • the processor in the embodiment of the present application may be a central processing unit (central processing unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processors, DSP), and application specific integrated circuits. (application specific integrated circuit, ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof.
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application can be implemented by hardware, or can be implemented by a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, which can be stored in random access memory (RAM), flash memory, read-only memory (ROM), and programmable read-only memory (programmable ROM).
  • PROM erasable programmable read-only memory
  • EPROM erasable PROM
  • ePROM electrically erasable programmable read-only memory
  • register hard disk, mobile hard disk, CD-ROM or any known in the art
  • An exemplary storage medium is coupled to the processor, so that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the ASIC may be located in the terminal device.
  • the processor and the storage medium may also exist as discrete components in the terminal device.
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, user equipment, or other programmable devices.
  • the computer program or instruction may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer program or instruction may be transmitted from a website, computer, The server or data center transmits to another website site, computer, server or data center through wired or wireless means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center that integrates one or more available media.
  • the usable medium may be a magnetic medium, such as a floppy disk, a hard disk, or a magnetic tape; it may also be an optical medium, such as a digital video disc (digital video disc, DVD); it may also be a semiconductor medium, such as a solid state drive (solid state drive). , SSD).
  • the symbol "(a, b)" represents an open interval, and the range is greater than a and less than b; "[a, b]” represents a closed interval, and the range is greater than or equal to a and less than or equal to b; "(a , B]” represents a half-open and half-closed interval, and the range is greater than a and less than or equal to b; "(a, b]” represents a half-open and half-closed interval, and the range is greater than a and less than or equal to b.
  • reflection Surface refers to the surface that can reflect incident light
  • the length of the reflective surface refers to the length of the reflective surface
  • the width of the reflective surface refers to the width of the reflective surface.
  • the length La of the first reflective surface a refers to the length of the reflective surface a.
  • length L a the width of a first reflecting surface is a reflecting surface means K a width of K a.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Human Computer Interaction (AREA)
  • Studio Devices (AREA)
  • Lenses (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Automatic Focus Adjustment (AREA)
  • Lens Barrels (AREA)
  • Cameras In General (AREA)
  • Structure And Mechanism Of Cameras (AREA)

Abstract

本申请提供一种摄像模组、终端设备、成像方法及成像装置。该摄像模组可以应用于摄像头,或者手机、平板电脑或摄像机等终端设备。该摄像模组包括第一驱动组件、光学镜头组件、光线调整组件和图像传感器,光线调整组件和图像传感器沿光学镜头组件的主光轴的方向依次设置;光学镜头组件用于接收来自被摄物体的光线;光线调整组件用于对光学镜头组件传播过来的光线进行光路折叠;第一驱动组件用于驱动光线调整组件移动,使得光路折叠后的光线聚焦至图像传感器。通过对光线的光路进行折叠,可缩短成像光路,从而可减小摄像模组的尺寸;或者,在摄像模组尺寸一定时,可实现更大的光学变焦倍数。

Description

一种摄像模组、终端设备、成像方法及成像装置
相关申请的交叉引用
本申请要求在2019年05月05日提交中国专利局、申请号为201910367026.2、发明名称为“一种摄像模组及电子设备”的中国专利申请的优先权,以及要求在2020年03月24日提交中国专利局、申请号为202010214891.6、申请名称为“一种摄像模组、终端设备、成像方法及成像装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及摄像模组技术领域,尤其涉及一种摄像模组、终端设备、成像方法及成像装置。
背景技术
随着科技的发展,电子设备上集成了越来越多的功能,如拍照功能。而且随着电子设备的广泛使用,用户对拍照功能的要求越来越高,比如,用户需要更高质量的图像,更高的光学变焦倍数等。目前,为了实现更高的光学变焦倍数,设置在电子设备上的摄像模组的结构如图1或图2所示。对于图1所示的结构,采用直立式架构,在聚焦时是通过马达驱动整个光学镜头组件来实现的,用于成像的光路较短,造成摄像模组无法实现较大的光学变焦倍数。对于图2所示的结构,也是通过马达驱动成像镜头组件来进行聚焦,需要较长的成像光路,造成摄像模组的尺寸也比较大,由于电子设备空间有限,也无法实现较大的光学变焦倍数。
发明内容
本申请提供一种摄像模组、终端设备、成像方法及成像装置,用于在小尺寸的摄像模组中,实现较大的光学变焦倍数。
第一方面,本申请提供一种摄像模组,该摄像模组可包括第一驱动组件、光学镜头组件、光线调整组件和图像传感器,光线调整组件和图像传感器沿光学镜头组件的主光轴的方向依次设置;光学镜头组件用于接收来自被摄物体的光线;光线调整组件用于对光学镜头组件传播过来的光线进行光路折叠;第一驱动组件用于驱动光线调整组件移动,使得光路折叠后的光线聚焦至图像传感器;图像传感器用于根据聚焦后的光线成像。
基于该方案,通过光线调整组件对光学镜头组件传播过来的光线进行光路折叠,有助于缩短成像光路。在光学镜头组件的物理焦距一定的情况下,通过光线调整组件对光路折叠,既可以实现像距满足成像条件,又可以减小成像光路,从而可缩短摄像模组的尺寸。也可以理解为,当摄像模组处于有限的空间(或者摄像模组的尺寸有限)时,采用本申请的摄像模组可采用较大物理焦距的光学镜头组件,从而可实现较大的光学变焦倍数。
本申请中,光线调整组件包括M个第一反射面和M个第二反射面,M个第一反射面与M个第二反射面一一相对设置;M个第一反射面依次相接、且任意相邻两个第一反射 面之间的夹角为θ 1,θ 1大于0度且小于180度;M个第二反射面依次相接、且任意相邻两个第二反射面之间的夹角为θ 2,θ 2大于0度且小于180度,M为大于或等于2的整数;其中,与光学镜头组件最邻近的第一反射面用于接收和反射来自光学镜头组件的光线;与图像传感器最邻近的第一反射面用于将光路折叠后的光线反射至图像传感器。
经光学镜头组件传播过来的光线在光线调整组件中的光路为:与光学镜头组件最邻近的第一反射面接收来自光学镜头组件的光线,并将接收到的光线反射至与其(即与光学镜头组件最邻近的第一反射面)相对设置的第二反射面;第二反射面将接收到的光线反射至与其(即第二反射面)依次相接的最近邻的第二反射面;该最近邻的第二反射面将接收到的光线反射至与其(最近邻的第二反射面)相对设置的第一反射面,依次反射,直至将光线反射至与图像传感器最近邻的第一反射面,与图像传感器最邻近的第一反射面接收到的光线为光路折叠后的光线,且光路折叠后的光线的传播方向沿主光轴的方向,与图像传感器最邻近的第一反射面将接收到的光路折叠后的光线反射至图像传感器。
基于上述光线调整组件,可对光学镜头组件传播过来的光线进行2M次光路折叠。
在一种可能的实现方式中,上述θ 1大于或等于60度且小于或等于120度,即60°≤θ 1≤120°;θ 2大于或等于60度且小于或等于120度,即60°≤θ 2≤120°。示例性地,θ 1可以为30度、45度、60度、90度、120度、135度、或150度;θ 2可以为30度、45度、60度、90度、120度、135度、或150度。
在一种可能的实现方式中,M个第一反射面形成的层状结构与M个第二反射面形成的层状结构互不重叠。示例性地,M个第一反射面位于第一层,M个第二反射面位于第二层,第一层与第二层互不重叠。
通过将M个第一反射面和M个第二反射面设置在互不重叠的两层,可以对光学镜头组件传播过来的光线在互不重叠两层之间进行光路折叠。
在一种可能的实现方式中,第i第一反射面与第i第二反射面平行,其中,第i第一反射面与第i第二反射面相对设置,第i第一反射面为M个第一反射面中的一个,第i第二反射面为M个第二反射面中的一个。
通过将第i第一反射面与第i第二反射面平行设置,可方便摄像模组的组装。若第一反射面与相对设置的第二反射面不平行,在摄像模组水平放置拍摄图像时,图像传感器上形成的图像可能会出现一定的倾斜。
在一种可能的实现方式中,M个第一反射面可包括:M/2个依次相接的L型反射镜的反射面,其中,任意一个L型反射镜包括两个反射面;或M个依次相接的反射镜的反射面;或M/2个依次相接的直角棱镜的反射面;或依次相接的P个反射镜和Q个直角棱镜的反射面,其中,任意一个直角棱镜包括两个反射面,P+2Q=M,P和Q均为正整数;或依次相接的m个反射镜和n个L型反射镜的反射面,其中,m+2n=M,m和n均为正整数;或依次相接的p个直角棱镜和q个L型反射镜的反射面,其中,2p+2q=M,p和q均为正整数;或依次相接的k个直角棱镜、t个L型反射镜和h个反射镜的反射面,其中,2k+2t+h=M,k、t和h均为正整数。
在一种可能的实现方式中,M个第二反射面包括:M/2个依次相接的L型反射镜的反射面,其中,任意一个L型反射镜包括两个反射面;或M个依次相接的反射镜的反射面;或M/2个依次相接的直角棱镜的反射面;或依次相接的K个反射镜和L个直角棱镜的反射面,其中,任意一个直角棱镜包括两个反射面,K+2L=M,K和L均为正整数;或依次 相接的u个反射镜和v个L型反射镜的反射面,其中,u+2v=M,u和v均为正整数;或依次相接的l个直角棱镜和s个L型反射镜的反射面,其中,2l+2s=M,l和s均为正整数;或依次相接的j个直角棱镜、w个L型反射镜和z个反射镜的反射面,其中,2j+2w+z=M,j、w和z均为正整数。
当M=2时,两个第一反射面为一个L型反射镜的两个互相垂直的反射面,两个第二反射面为一个直角棱镜的两个互相垂直的反射面。
进一步,可选地,L型反射镜的两个反射面相互垂直。
在一种可能的实现方式中,L型反射镜的两个反射面的长度在主光轴的方向的投影不相同。其中,L型反射镜的两个反射面中,一个反射面靠近光学镜头组件且远离图像传感器;另一个面远离光学镜头组件且靠近图像传感器。
在一种可能的实现方式中,靠近光学镜头组件且远离图像传感器的一面的长度大于远离光学镜头组件且靠近图像传感器的一面的长度;或者,靠近光学镜头组件且远离图像传感器的一面的长度小于远离光学镜头组件且靠近图像传感器的一面的长度;或者,靠近光学镜头组件且远离图像传感器的一面的长度等于远离光学镜头组件且靠近图像传感器的一面的长度。
在一种可能的实现方式中,第一驱动组件具体用于驱动M个第一反射面沿第一方向移动,和/或,驱动M个第二反射面沿第二方向移动;其中,第一方向与第二方向相反,且第一方向和第二方向均为垂直于主光轴的方向。
通过第一驱动组件驱动M个第一反射面沿第一方向移动,和/或,驱动M个第二反射面沿第二方向移动,可以实现对不同物距下的光线聚焦,从而可保证图像传感器上形成清晰的图像。而且,第一驱动组件通过驱动光线调整组件的M个第一反射面和/或M个第二反射面移动实现聚焦,不需要移动光学镜头组件,从而光学镜头组件也不需要与第一驱动组件耦合。
在一种可能的实现方式中,第一驱动组件具体用于驱动M个第一反射面沿垂直于主光轴的方向移动。
通过第一驱动组件驱动M个第一反射面沿垂直于主光轴的方向移动,可以实现对不同物距下的光线聚焦,从而可保证图像传感器上形成清晰的图像。而且,仅驱动M个第一反射面移动,有助于减小第一驱动组件的功耗。特别是,当M个第一反射面为M/2个依次相接的L型反射镜的两个反射面,M个第二反射面为M/2个依次相接的直角棱镜的反射面的时,第一驱动组件的功耗减小较显著。
进一步,可选地,第一驱动组件还用于驱动M个第一反射面和/或M个第二反射面沿第三方向移动,以对来自光学镜头组件的光线进行抖动补偿;其中,第三方向为平行于主光轴的方向。
通过第一驱动组件驱动M个第一反射面和/或M个第二反射面沿第三方向移动,可在光线调整组件实现对来自光学镜头组件传播过来的光线进行光路折叠的情况下,又可实现对特定方向(即第三方向)的光线进行光学抖动补偿,而且可以扩大防抖角度。
其中,第一驱动组件驱动M个第一反射面和/或M个第二反射面沿第三方向移动的距离小于预设距离。
进一步,可选地,预设距离为第一投影距离集合和第二投影距离集合中的最小值,第一投影距离集合中包括M个第一反射面中每个第一反射面的长度在主光轴的方向的投影 距离,第二投影距离集合中包括M个第二反射面中每个第二反射面的长度在主光轴的方向的投影距离。
在一种可能的实现方式中,预设距离的范围为(0,2.5mm]。
本申请中,摄像模组还包括抖动补偿组件,光学镜头组件位于抖动补偿组件和光线调整组件之间,抖动补偿组件包括第二驱动组件和第三反射面;第三反射面用于接收来自被摄物体的光线;第二驱动组件用于驱动第三反射面转动,以对来自被摄物体的光线进行抖动补偿,并将抖动补偿后的光线射入光学镜头组件。
基于上述抖动补偿组件,可实现对摄像模组进一步的光学抖动补偿,从而可使得摄像模组输出稳定的图像。
在一种可能的实现方式中,第三反射面与主光轴之间的夹角为θ 3,θ 3大于0度且小于90度。进一步,可选地,θ 3大于或等于30度且小于或等于60度。示例性地,θ 3可为30度、45度、或60度。
在一种可能的实现方式中,第三反射面可为直角棱镜的反射面(如等腰直角棱镜的斜面)或反射镜的反射面。
在一种可能的实现方式中,光线调整组件包括一个L型反射镜和一个直角棱镜;L型反射镜包括互相垂直的第十一反射面和第十二反射面;直角棱镜包括互相垂直的第十三反射面和第十四反射面;第十一反射面与第十三反射面相对设置且相互平行,第十二反射面与第十四反射面相对设置且相互平行;其中,来自光学镜头组件的光线依次经过第十一反射面、第十三反射面、第十四反射面和第十二反射面反射至图像传感器。
需要说明的是,第十一反射面和第十二反射面可以理解为两个上述的第一反射面,第十三反射面和第十四反射面可以理解为两个上述的第二反射面。即第十一反射面或第十二反射面都是一个第一反射面;第十三反射面或第十四反射面都是一个第二反射面。
进一步,可选地,L型反射镜的第十一反射面与主光轴之间的夹角呈45度;L型反射镜的第十二反射面与主光轴之间的夹角呈45度。
进一步,可选地,直角棱镜的第十三反射面与主光轴之间的夹角呈45度,直角棱镜的第十四反射面与主光轴之间的夹角呈45度。
进一步,可选地,来自光学镜头组件的光线以45度的入射角射入L型反射镜的第十一反射面时,经L型反射镜的第十二反射面反射至图像传感器的光线平行于主光轴的方向。
进一步,可选地,L型反射镜的开口方向与直角棱镜的直角的开口方向相同。
在一种可能的实现方式中,第一驱动组件具体用于驱动L型反射镜沿第一方向移动,和/或,驱动直角棱镜沿第二方向移动;其中,第一方向与第二方向相反,且第一方向和第二方向均为垂直于主光轴的方向。
在一种可能的实现方式中,第一驱动组件具体用于驱动L型反射镜沿垂直于主光轴的方向移动。
在一种可能的实现方式中,第一驱动组件还用于驱动L型反射镜和/或直角棱镜沿第三方向移动,以对来自光学镜头组件的光线进行抖动补偿;其中,第三方向为平行于主光轴的方向。
在一种可能的实现方式中,第一驱动组件具体用于驱动L型反射镜和/或直角棱镜沿第三方向移动的距离小于预设距离。
第二方面,本申请提供一种摄像模组,该摄像模组可包括第一驱动组件、光学镜头组 件、光线调整组件和图像传感器,光线调整组件和图像传感器沿光学镜头组件的主光轴的方向依次设置;光学镜头组件用于接收来自被摄物体的光线;光线调整组件用于对光学镜头组件传播过来的光线进行光路折叠;第一驱动组件用于驱动光线调整组件移动或光学镜头组件移动,使得光路折叠后的光线聚焦至图像传感器;图像传感器用于根据聚焦后的光线成像。
基于该方案,通过光线调整组件对光学镜头组件传播过来的光线进行光路折叠,有助于缩短成像光路。在光学镜头组件的物理焦距一定的情况下,通过光线调整组件对光路折叠,既可以实现像距满足成像条件,又可以减小成像光路,从而可缩短摄像模组的尺寸。也可以理解为,当摄像模组处于有限的空间时,采用本申请的摄像模组可采用较大物理焦距的光学镜头组件,从而可实现较大的光学变焦倍数。
在一种可能的实现方式中,第一驱动组件可用于驱动光学镜头组件沿平行于主光轴的方向移动。
通过第一驱动组件驱动光学镜头组件沿平行于主光轴的方向移动,可实现对不同物距下的光线聚焦,从而可保证图像传感器上形成清晰的图像。
应理解,第二方面中,第一驱动组件可以驱动光学镜头组件移动使得光路折叠后的光线聚焦至图像传感器;或者也可以驱动光线调整组件移动使得光路折叠后的光线聚焦至图像传感器,具体的实现方式可参见上述第一方面中任意可能实现方式的相关描述,此处不再重复赘述。关于光学镜头组件、光线调整组件和图像传感器的具体实现方式,可参见上述第一方面中任意可能实现方式的描述,此处不再重复赘述。
第三方面,本申请提供一种终端设备,该终端设备可包括第一摄像头、存储器和处理器;其中,第一摄像头包括上述第一方面或第一方面的任一项的摄像模组;存储器用于存储程序或指令;处理器用于调用程序或指令,控制第一摄像头获取第一图像。
在一种可能的实现方式中,终端设备还包括广角摄像头。
在一种可能的实现方式中,第一摄像头为定焦摄像头,第一摄像头的倍率为A1;其中,A1的取值范围为[8,12]。如此,该终端设备可实现较大的光学变焦倍数。
在一种可能的实现方式中,终端设备还包括第二摄像头,第二摄像头为定焦摄像头,第二摄像头的倍率为A2,其中,A2大于1且小于A1。
第四方面,本申请提供一种成像方法,该方法可应用于终端设备,终端设备包括第一摄像头,第一摄像头包括光线调整组件;其中,光线调整组件用于对第一摄像头获得的光线进行光路折叠;该方法包括获取拍摄倍率;当拍摄倍率大于倍率阈值时,通过第一摄像头获取预览图像;根据预览图像确定第一摄像头的目标对焦位置;根据目标对焦位置,驱动光线调整组件移动进行对焦。
基于该方案,通过光线调整组件对光学镜头组件传播过来的光线进行光路折叠,可缩短成像光路,从而可减小摄像模组的尺寸,当摄像模组集成在空间有限的终端设备时,可采用较大物理焦距的光学镜头组件,从而可实现较大的光学变焦倍数;进一步,再根据拍摄倍率,驱动光线调整组件移动进行对焦,从而可形成清晰的第一图像。
在一种可能的实现方式中,倍率阈值的取值范围为[5,10)。
在一种可能的实现方式中,可根据预览图像的中心区域,确定出目标对焦位置;或者,接收用户对预览图像的对焦操作,将响应于对焦操作的对焦位置确定为目标对焦位置。
在一种可能的实现方式中,可根据所述目标对焦位置,确定所述光线调整组件的目标 位置,根据所述目标位置驱动所述光线调整组件。
如下,示例性给出两种驱动光线调整组件移动进行对焦的实现方式。实现方式1,可驱动M个第一反射面沿第一方向移动,和/或,驱动M个第二反射面沿第二方向移动,并移动至目标对焦位置;其中,第一方向与第二方向相反,且第一方向和第二方向均为垂直于主光轴的方向。实现方式2,可驱动M个第一反射面沿垂直于主光轴的方向移动,并移动至目标对焦位置。
在一种可能的实现方式中,第一摄像头为定焦摄像头,第一摄像头的倍率为A1;其中,A1的取值范围为[8,12]。
在一种可能的实现方式中,终端设备还包括第二摄像头,第二摄像头为定焦摄像头;当拍摄倍率大于1且小于或等于倍率阈值时,可通过所述第二摄像头获取第二图像,所述第二摄像头的倍率为A2;其中,所述A2大于1且小于A1。
在一种可能的实现方式中,终端设备还包括广角摄像头;当拍摄倍率大于0且小于1时,通过广角摄像头获取第三图像。
在一种可能的实现方式中,终端设备还包括光学镜头组件和图像传感器,光线调整组件和图像传感器沿光学镜头组件的主光轴的方向依次设置。
在一种可能的实现方式中,光线调整组件包括M个第一反射面和M个第二反射面;M个第一反射面依次相接、且任意相邻两个第一反射面之间的夹角为θ 1,θ 1大于0度且小于180度;M个第二反射面依次相接、且任意相邻两个第二反射面之间的夹角为θ 2,θ 2大于0度且小于180度;M个第一反射面与M个第二反射面一一相对设置,M为大于或等于2的整数;其中,与光学镜头组件最邻近的第一反射面用于接收和反射来自光学镜头组件的光线;与图像传感器最邻近的第一反射面用于将光路折叠后的光线反射至图像传感器。
在一种可能的实现方式中,M个第一反射面形成的第一层状结构与M个第二反射面形成的第二层状结构互不重叠。
在一种可能的实现方式中,第i个第一反射面与第i第二反射面平行;第i第一反射面与第i第二反射面相对设置;第i第一反射面为M个第一反射面中的一个;第i第二反射面为M个第二反射面中的一个。
在一种可能的实现方式中,光线调整组件具体用于对光学镜头组件传播过来的光线进行2M次光路折叠。
在一种可能的实现方式中,M个第一反射面可包括:M/2个依次相接的L型反射镜的反射面,其中,任意一个L型反射镜包括两个反射面;或M个依次相接的反射镜的反射面;或M/2个依次相接的直角棱镜的反射面;或依次相接的P个反射镜和Q个直角棱镜的反射面,其中,任意一个直角棱镜包括两个反射面,P+2Q=M,P和Q均为正整数。
在一种可能的实现方式中,M个第二反射面包括:M/2个依次相接的L型反射镜的反射面,其中,任意一个L型反射镜包括两个反射面;或M个依次相接的反射镜的反射面;或M/2个依次相接的直角棱镜的反射面;或依次相接的K个反射镜和L个直角棱镜的反射面,其中,任意一个直角棱镜包括两个反射面,K+2L=M,K和L均为正整数。
在一种可能的实现方式中,M=2时,两个第一反射面为一个L型反射镜的两个互相垂直的反射面,两个第二反射面为一个直角棱镜的两个互相垂直的反射面。
为进一步对摄像模组进行光学防抖,在一种可能的实现方式中,可驱动M个第一反射面和/或M个第二反射面沿第三方向移动,以对来自光学镜头组件的光线进行抖动补偿; 其中,第三方向平行于主光轴的方向。
在一种可能的实现方式中,光线调整组件包括一个L型反射镜和一个直角棱镜;L型反射镜包括互相垂直的第十一反射面和第十二反射面;直角棱镜包括互相垂直的第十三反射面和第十四反射面;第十一反射面与第十三反射面相对设置且相互平行,第十二反射面与第十四反射面相对设置且相互平行;其中,来自光学镜头组件的光线依次经过第十一反射面、第十三反射面、第十四反射面和第十二反射面反射至图像传感器。
在一种可能的实现方式中,L型反射镜的第十一反射面与主光轴之间的夹角呈45度;L型反射镜的第十二反射面与主光轴之间的夹角呈45度。
在一种可能的实现方式中,直角棱镜的第十三反射面与主光轴之间的夹角呈45度,直角棱镜的第十四反射面与主光轴之间的夹角呈45度。
在一种可能的实现方式中,来自光学镜头组件的光线以45度的入射角射入L型反射镜的第十一反射面时,经L型反射镜的第十二反射面反射至图像传感器的光线平行于主光轴的方向。
在一种可能的实现方式中,L型反射镜的开口方向与直角棱镜的直角的开口方向相同。
在一种可能的实现方式中,可驱动L型反射镜沿第一方向移动,和/或,驱动直角棱镜沿第二方向移动;其中,第一方向与第二方向相反,且第一方向和第二方向均为垂直于主光轴的方向。
在一种可能的实现方式中,可驱动L型反射镜沿垂直于主光轴的方向移动。
在一种可能的实现方式中,还可驱动L型反射镜和/或直角棱镜沿第三方向移动,以对来自光学镜头组件的光线进行抖动补偿;其中,第三方向为平行于主光轴的方向。
在一种可能的实现方式中,驱动L型反射镜和/或直角棱镜沿第三方向移动的距离小于预设距离。其中,预设距离可参见上述第一方面中预设距离的介绍,此处不再赘述。
第五方面,本申请提供一种成像装置,可应用于终端设备,终端设备包括第一摄像头,第一摄像头包括光学镜头组件、光线调整组件和图像传感器;其中,光学镜头组件用于接收来自被摄物体的光线;光线调整组件用于对光学镜头组件传播过来的光线进行光路折叠。该成像装置用于实现上述第四方面或第四方面中的任意一种方法。成像装置包括相应的功能模块,分别用于实现以上方法中的步骤,具体参见方法示例中的详细描述,此处不做赘述。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。
第六方面,本申请提供一种终端设备,该终端设备可包括存储器、处理器和第一摄像头;第一摄像头包括光学镜头组件、光线调整组件和图像传感器;其中,光学镜头组件用于接收来自被摄物体的光线;光线调整组件用于对光学镜头组件传播过来的光线进行光路折叠;存储器可以与处理器耦合,用于存储程序或指令;处理器用于调用程序或指令,以使得终端设备执行上述第四方面或第四方面中的任意一种方法。
第七方面,本申请提供一种终端设备,该终端设备可包括第一摄像头、第二摄像头和第三摄像头;第一摄像头和第二摄像头均为定焦摄像头,第三摄像头为广角摄像头;第一摄像头的倍率为A1,第二摄像头的倍率为A2,第三摄像头的倍率为A3;其中,A2大于1且小于A1,A3小于1。
在一种可能的实现方式中,第一摄像头可包括上述第一方面或第一方面的任一项的摄像模组。
在一种可能的实现方式中,A1的取值范围为[8,12]。
在一种可能的实现方式中,终端设备还包括深度摄像头。
第八方面,本申请提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序或指令,当计算机程序或指令被终端设备执行时,使得该终端设备执行上述第四方面或第四方面的任意可能的实现方式中的方法。
第九方面,本申请提供一种计算机程序产品,该计算机程序产品包括计算机程序或指令,当该计算机程序或指令被终端设备执行时,实现上述第四方面或第四方面的任意可能的实现方式中的方法。
上述第二方面至第七方面中任一方面可以达到的技术效果可以参照上述第一方面中有益效果的描述,此处不再重复赘述。
附图说明
图1为现有技术中的一种相机结构示意图;
图2为现有技术中的一种相机结构示意图;
图3为本申请提供的一种摄像模组的结构示意图;
图4a为本申请提供的一种光学镜头组件的结构示意图;
图4b为本申请提供的另一种光学镜头组件的结构示意图;
图5a为本申请提供的一种光线调整组件的结构示意图;
图5b为本申请提供的一种光线调整组件的正视图;
图5c为本申请提供的另一种光线调整组件的结构示意图;
图6a为本申请提供的一种L型反射镜的正视图;
图6b为本申请提供的一种L型反射镜的三维结构示意图;
图6c为本申请提供的一种两个第一反射面为两个依次相接的反射镜的反射面的结构示意图;
图6d为本申请提供的一种直角棱镜的结构示意图;
图6e为本申请提供的一种四个第一反射面为依次相接的两个反射镜和一个直角棱镜的反射面的结构示意图;
图7a为本申请提供的又一种光线调整组件的结构示意图;
图7b为本申请提供的又一种光线调整组件的结构示意图;
图7c为本申请提供的又一种光线调整组件的结构示意图;
图7d为本申请提供的又一种光线调整组件的结构示意图;
图7e为本申请提供的又一种光线调整组件的结构示意图;
图7f为本申请提供的又一种光线调整组件的结构示意图;
图7g为本申请提供的又一种光线调整组件的结构示意图;
图7h为本申请提供的又一种光线调整组件的结构示意图;
图7i为本申请提供的又一种光线调整组件的结构示意图;
图7j为本申请提供的又一种光线调整组件的结构示意图;
图7k为本申请提供的又一种光线调整组件的结构示意图;
图8为本申请提供的一种驱动组件驱动L型反射镜移动前后的光路示意图;
图9为本申请提供的另一种摄像模组的结构示意图;
图10为本申请提供的一种终端设备的结构示意图;
图11为本申请提供的一种成像方法的方法流程示意图;
图12为本申请提供的一种成像装置的结构示意图;
图13为本申请提供的一种成像装置的结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
下面,对本申请中的部分用语进行通用解释说明,以便于本领域技术人员理解,并不对本申请中的用语进行限定。
一、焦距:焦距的大小标志着折光能力的大小,焦距越短,其折光能力就越大。光学镜头组件的焦距决定了该光学镜头组件拍摄的被摄物体在成像平面上所生成图像的大小。假设以相同的距离面对同一被摄物体进行拍摄,那么光学镜头组件的焦距越长,则被摄体在感光元件(charge-coupled device,CCD)上所生成的图像的放大倍率就越大。
二、等效焦距:将不同尺寸感光元件上成像的视角,转化为135摄像模组上同样成像视角所对应的光学镜头组件焦距,这个转化后的焦距即是135等效焦距,也就是等效焦距。也可以理解为,135摄像模组作为一种标准,把非135规格摄像模组的焦距折算成135摄像模组的焦距。可选地,等效焦距=光学镜头组件的物理焦距*焦距系数(或焦距倍数),其中,焦距系数为非135规格的摄像模组的感应元件对角线长度与135规格摄像模组的感光元件的聚焦线长度的比值。例如,光学镜头组件的物理焦距=31mm,非135规格的摄像模组的感应元件对角线长度为4.8mm,135规格摄像模组的感光元件的对角线长度为43.27mm,则等效焦距=31*43.27/4.8≈280mm。
三、光学变焦:主要是摄像模组内不同焦距的对比比例和切换。可用光学变焦倍数表示光学变焦的能力,光学变焦倍数越大,能拍摄的景物就越远。光学变焦倍数的大小与光学镜头组件的物理焦距相关。常以摄像模组的等效焦距为28mm对应1X(即1倍)光学变焦倍数。比如,135规格摄像模组的感光元件的对角线长度为43.27mm,若非135规格的摄像模组的感应元件对角线长度为4.8mm,光学镜头组件的物理焦距=31mm,则等效焦距=31*43.27/4.8≈280mm;则该摄像模组的光学变焦倍数=280/28=10X。再比如,若非135规格的摄像模组的感应元件对角线长度为4.8mm,光学镜头组件的物理焦距=20mm,则等效焦距=20*43.27/4.8≈180mm,则该摄像模组的光学变焦倍数=180/28≈6.4X。
四、聚焦:聚焦也称为对光或对焦。通过摄像模组中的具有改变焦距的组件以变动像距,使被摄物体成像清晰的过程。聚焦包括自动聚焦和手动聚焦,其中,自动聚焦(auto focus)是利用物体光反射的原理,将反射的光被摄像模组上的感光元件接受,通过计算机处理,驱动驱动组件进行聚焦的方式。例如,摄像模组发射一种红外线(或其它射线),根据被摄体的反射确定被摄体的距离,然后根据测得的结果调整像距,实现自动聚焦。
五、光学防抖:也称为光线抖动补偿,是指在摄像模组中,通过对光学镜头组件的移动或其它组件的移动,抵消由于抖动引起的成像光线偏移,使光路保持稳定,从而有效的克服因摄像模组的抖动产生的图像模糊。
如背景技术所描述的,目前摄像模组的结构如图1或图2,摄像模组是通过驱动成像 镜头的移动来实现对焦,需要较长的成像光路,从而造成摄像模组的尺寸比较大。
鉴于上述问题,本申请提出一种摄像模组,该摄像模组可通过光线调整组件对光学镜头组件传播过来的光线进行光路折叠,有助于减小成像光路占用的空间长度,从而有助于减小摄像模组的尺寸。
下面结合附图3至附图9,对本申请提出的摄像模组进行具体阐述。
如图3所示,为本申请提供的一种摄像模组的结构示意图。该摄像模组可包括光学镜头组件101、第一驱动组件102、光线调整组件103和图像传感器104,其中,光线调整组件103和图像传感器104沿光学镜头组件的主光轴的方向依次设置。光学镜头组件用于接收来自被摄物体的光线;光线调整组件用于对光学镜头组件传播过来的光线进行光路折叠;第一驱动组件用于驱动光线调整组件移动,使得光路折叠后的光线聚焦至图像传感器;图像传感器用于根据聚焦后的光线成像。
基于上述摄像模组,通过光线调整组件对光学镜头组件传播过来的光线进行光路折叠,有助于缩短成像光路。在光学镜头组件的物理焦距一定的情况下,通过光线调整组件对光路折叠,既可以实现像距满足成像条件,又可以减小成像光路,从而可缩短摄像模组的尺寸。也可以理解为,当摄像模组处于有限的空间时,采用本申请的摄像模组可采用较大物理焦距的光学镜头组件,从而可实现较大的光学变焦倍数。进一步,本申请是通过第一驱动组件驱动光线调整组件移动,以实现对折叠后的光线聚焦,不需要移动光学镜头组件。也就是说,光学镜头组件不需要与第一驱动组件耦合。
需要说明的是,被摄物体包括但不限于单一的物体,例如,拍摄人时,被摄物体包括人及人周围的景物,即人周围的景物也为被摄物体的一部分。也可以理解为,光学镜头组件的视场角范围内的物体均可称为被摄物体。
在一种可能的实现方式中,光线调整组件和图像传感器沿主光轴的方向依次设置是指:光线调整组件和图像传感器均过主光轴。例如,主光轴可以经过光线调整组件的中间区域,或者主光轴经过光线调整组件偏上的区域,或者主光轴经过光线调整组件偏下的区域。主光轴可以经过图像传感器的中间区域,或者主光轴经过图像传感器偏上的区域,或者主光轴经过图像传感器偏下的区域。
在一种可能的实现方式中,主光轴的方向可以是双向的,也可以是单向的(可参见上述图3)。
下面对图3所示的各个功能组件分别进行介绍说明,以给出示例性的具体实现方案。为方便说明,下文中的光学镜头组件,第一驱动组件、光线调整组件和图像传感器均未加标识。
一、光学镜头组件
作为示例,图4a给出了一种光学镜头组件的结构示意图。该光学镜头组件包括第一透镜401和第二透镜402。其中,第一透镜401为平凸透镜、第二透镜402为凸凹透镜,凸凹透镜是指中央部分比边缘部分薄的透镜。第一透镜401相较于第二透镜402靠近被摄物体,远离图像传感器。第二透镜402相较于第一透镜401靠近图像传感器,远离被摄物体。
作为又一个示例,图4b给出了另一种光学镜头组件的结构示意图。该光学镜头组件包括第一透镜401、第二透镜402和第三透镜402,第三透镜403位于第一透镜401和第 二透镜402之间。其中,第一透镜401为平凸透镜、第二透镜402为凸凹透镜、第三透镜403为双凸透镜。第一透镜401相较于第二透镜402和第三透镜403靠近被摄物体,远离图像传感器。第二透镜402相较于第一透镜401和第三透镜403靠近图像传感器,远离被摄物体。应理解,图4a或图4b所示的光学镜头组件的结构仅是一个示例,本申请中的光学镜头组件可以具有比图4b更多的透镜,例如可以包括3个以上的透镜。其中,透镜可以是双凸透镜,平凸透镜或者凸凹透镜中的任一种,本申请对此不做限定。
主光轴也可称为主轴,是指通过透镜的两个球面球心的直线,如图4a所示,通过第一透镜401和第二透镜402的球面球心的直线,称为主光轴。如图4b所示,通过第一透镜401、第二透镜402和第三透镜403的球面球心的直线,称为主光轴。
在一种可能的实现方式中,为了抑制温漂,光学镜头组件中至少有一个透镜的材料是玻璃。也可以理解为,光学镜头组件中的透镜不能全是塑胶镜片。
进一步,可选地,为了尽量减小摄像模组的高度(与终端设备厚度方向一致),光学镜头组件中的透镜(或称为镜片)在摄像模组的高度方向(可参见上述图4a或图4b)上可做切割,如I-cut方式。
二、光线调整组件
本申请中,光线调整组件可包括M个第一反射面和M个第二反射面,M个第一反射面与M个第二反射面一一相对设置,即一个第一反射面对应一个相对设置的第二反射面,M个第一反射面依次相接、且任意相邻两个第一反射面之间的夹角为θ 1,θ 1大于0度且小于180度;M个第二反射面依次相接、且任意相邻两个第二反射面之间的夹角为θ 2,θ 2大于0度且小于180度,M为大于或等于2的整数。进一步,可选地,M个第一反射面中与光学镜头组件最邻近的第一反射面用于接收和反射来自光学镜头组件的光线,M个第一反射面中与图像传感器最邻近的第一反射面用于将光路折叠后的光线反射至图像传感器。应理解,相邻两个第一反射面之间的夹角θ 1是指相邻两个第一反射面相交形成的最小角度,相邻两个第二反射面之间的夹角θ 2是指相邻两个第二反射面相交形成的最小角度。
在一种可能的实现方式中,上述θ 1大于或等于60度且小于或等于120度,即60°≤θ 1≤120°;θ 2大于或等于60度且小于或等于120度,即60°≤θ 2≤120°。示例性地,θ 1可以为30度、45度、60度、90度、120度、135度、或150度;θ 2可以为30度、45度、60度、90度、120度、135度、或150度。
参阅图5a,为本申请提供的一种光线调整组件的结构示意图。该光线调整组件以M=2为例说明。该光线调整组件包括两个第一反射面(即第一反射面a和第一反射面b)和两个第二反射面(即第二反射面A和第二反射面B)。其中,第一反射面a和第一反射面b依次相接,且第一反射面a和第一反射面b之间的夹角为大于0度且小于180度的θ 1。第二反射面A和第二反射面B依次相接,且第二反射面A和第二反射面B之间的夹角为大于0度且小于180度的θ 2。第一反射面a与第二反射面A相对设置,第一反射面b与第二反射面B相对设置。第一反射面a为与光学镜头组件最邻近的第一反射面,第一反射面a用于接收来自光学镜头组件的光线,并将光学镜头组件的传播过来的光线反射至第二反射面A;第一反射面b为与图像传感器最邻近的第一反射面,第一反射面b用于将光路折叠后的光线反射至图像传感器。
本申请中,摄像模组采用上述图5a所示的光线调整组件的结构时,可以采用物理焦距 不小于20mm的光学镜头组件,对应的等效焦距不小于180mm,摄像模组的光学变焦倍数不小于6倍。由此可见,通过对光学镜头组件传播过来的光线进行光路折叠,可以使得摄像模组实现较大的光学变焦倍数,例如,6倍、8倍或10倍等。进一步,可以实现摄像模组的高度不大于9mm,长度不大于40mm,以方便的集成到终端设备中。
需要说明的是,M个第一反射面的长度在平行于主光轴的方向上的投影可以相等,也可以不相等。在一种可能的实现方式中,平行于主光轴的方向与主光轴的方向可以是相同的。如图5b所示,为本申请提供的一种光线调整组件的正视图。该图5b中以两个第一反射面为例,分别为第一反射面a和第一反射面b。第一反射面a的长度为L a,第一反射面b的长度为L b,第一反射面A的长度L a在平行于主光轴的方向上的投影为L aa,第一反射面b的长度L b在平行于主光轴的方向上的投影为L bb,L aa与L bb可以相等,也可以不相等。即,L aa大于L bb;或者L aa小于L bb;或者L aa等于L bb。应理解,第二反射面A的长度为L A,第二反射面B的长度为L B,第二反射面A的长度L A在平行于主光轴的方向上的投影为L AA,第二反射面B的长度L B在平行于主光轴的方向上的投影为L BB,L AA与L BB可以相等,也可以不相等。即,L AA大于L BB;或者L AA小于L BB;或者L AA等于L BB
在一种可能的实现方式中,M个第一反射面形成的层状结构与M个第二反射面形成的层状结构互不重叠。示例性地,M个第一反射面位于第一层,M个第二反射面位于第二层,其中,第一层和第二层互不重叠。进一步,可选地,第一层位于第二层的上层。
结合上述图5a,第一反射面a和第一反射面b形成第一层,第二反射面A和第二反射面B形成第二层。第一反射面a用于接收来自光学镜头组件传播过来的光线,并将接收到的光线反射至第二反射面A,第二反射面A用于将接收到的光线反射至第二反射面B,第二反射面B用于将接收到的光线反射至第一反射面b,第一反射面b用于将光路折叠后的光线反射至图像传感器。也就是说,经光学镜头组件传播过来的光线在光线调整组件中的光路为:经第一反射面a反射至第二反射面A,再经第二反射面A反射至第二反射面B,再经第二反射面B反射至第一反射面b,经第一反射面b反射至图像传感器。即来自光学镜头组件传播过来的光线在光线调整组件中经过四次弯折。如此,实现了对光学镜头组件传播过来的光线进行光路折叠,从而有助于缩短摄像模组的长度,其中,摄像模组的长度方向垂直于摄像模组的高度方向(参见图4a或图4b)。
本申请中,第i第一反射面可与第i第二反射面平行,第i第一反射面与第i第二反射面相对设置,第i第一反射面为M个第一反射面中的一个,第i第二反射面为M个第二反射面中的一个。通过将第i第一反射面与第i第二反射面平行设置,可方便摄像模组的组装。可以理解的是,若第一反射面与相对设置的第二反射面不平行,在摄像模组水平放置拍摄图像时,图像传感器上形成的图像可能会出现一定的倾斜。
结合上述图5a,第i第一反射面可以为第一反射面a或第一反射面b,第i第二反射面为第二反射面A或第二反射面B。若第i第一反射面为第一反射面a,则第i第二反射面为第二反射面A,第一反射面a与第二反射面A平行,且第一反射面a与第二反射面A相对设置;若第i第一反射面为第一反射面b,则第i第二反射面为第二反射面B,第一反射面b与第二反射面B平行,且第一反射面b与第二反射面B相对设置。
结合上述图5a,第i第一反射面与第i第二反射面平行包括:第一反射面a与第二反射面A平行,且第一反射面b与第二反射面B平行;或者,第一反射面a与第二反射面A 平行,且第一反射面b与第二反射面B不平行;或者,第一反射面a与第二反射面A不平行,且第一反射面b与第二反射面B平行。应理解,若第一反射面a与第二反射面A平行且第一反射面b与第二反射面B平行,则θ 1与θ 2相等。
如图5c所示,为本申请提供的另一种光线调整组件的结构示意图。该光线调整组件包括一个第一反射面和一个第二反射面,第一反射面与第二反射面相对设置,第一反射面与平行于主光轴的方向之间的夹角为θ 4,θ 4大于0度且小于90度;第二反射面与平行于主光轴的方向之间的夹角为θ 5,θ 5大于0度且小于90度;其中,第一反射面用于接收并向第二反射面反射来自光学镜头组件的光线,第二反射面用于将光路折叠后的光线反射至图像传感器。也就是说,经光学镜头组件传播过来的光线在光线调整组件中的光路为:经第一反射面c反射至第二反射面C,再经第二反射面C反射至图像传感器,即来自光学镜头组件传播过来的光线在光线调整组件中经过两次弯折,从而实现对光学镜头组件传播过来的光线进行光路折叠。
在一种可能的实现方式中,θ 4大于或等于30度且小于或等于60度,即30°≤θ 4≤60°,θ 5大于或等于30度且小于或等于60度,即30°≤θ 5≤60°。示例性地,θ 4可为30度、45度、或60度;θ 5可为30度、45度、或60度。
需要说明的是,图5c所示的第一反射面c可参见上述第一反射面a或第一反射面b的介绍,第二反射面C可参见上述第二反射面A或第二反射面B的介绍,第一反射面c和第二反射面C之间的位置关系可参见上述第一反射面a和第二反射面A之间的位置关系,或者也可参见上述第一反射面b和第二反射面B的介绍,此处不再一一赘述。也就是说,第一反射面c和第二反射面C可理解为图5a中的第一反射面a和第二反射面A,或者可理解为图5a中的第一反射面b和第二反射面B。
本申请中,M个第一反射面可以为M/2个依次相接的L型反射镜的两个反射面。L型反射镜的反射面可以理解为在L型器件的两个相互垂直的面上涂覆有反射膜,形成L型反射镜的两个反射面。需要说明的是,L型反射镜为一体式结构。
如图6a所示,为本申请提供的一种L型反射镜的正视图。该L型反射镜的两个反射面互相垂直,即θ 1=90°。其中,L型反射镜的两个反射面分别为反射面a和反射面b,反射面a和反射面b均为第一反射面。应理解,反射面a和反射面b可为L型反射镜的一侧的两个外表面。结合图6b,反射面a的长度为H a,宽度为K a,厚度为L a;反射面b的长度为H b,宽度为K b,厚度为L b。进一步,可选地,L型反射镜的两个反射面的长度可以相等,也可以不相等。也就是说,H a可以等于H b;或者H a可以大于H b;或者H a可以小于H b,图6a仅是以H a大于H b示例的。在一种可能的实现方式中,较长的反射面的长度的取值范围可以为[7mm,12mm],较短的反射面的长度取值范围可为[4mm,8mm]。结合上述图6a,即H a的取值范围可为[7mm,12mm],H b的取值范围可为[4mm,8mm]。
进一步,可选地,L型反射镜的两个反射面的宽度可以相等,也可以不相等;结合上述图6a和图6b,反射面a的宽度可以与反射面b的宽度相等,也可以不相等。即,K a可以等于K b;或者K a可以大于K b;或者K a可以小于K b。在一种可能的实现方式中,L型反射镜的两个反射面的宽度的取值范围可为[3mm,10mm]。
进一步,可选地,L型反射镜的两个反射面的厚度可以相等,也可以不相等;结合上述图6a和图6b,反射面a的厚度可以与反射面b的厚度相等,也可以不相等。即,L a可 以等于L b;或者L a可以大于L b;或者L a可以小于L b。在一种可能的实现方式中,L型反射镜的两个反射面的厚度的取值范围可为[0.8mm,4mm]。
应理解,上述图6a中的反射面a相较于反射面b更靠近光学镜头组件,远离图像传感器;反射面b相较于反射面a更靠近图像传感器,远离光学镜头组件。图6b可以是图6a所示的L型反射镜的三维图。需要说明的是,靠近光学镜头组件的反射面a在垂直于主光轴的方向上的投影大于或等于光学镜头组件在垂直于主光轴的方向的高度。如此,可使得来自光学镜头组件的光线均能传播到靠近光学镜头组件的反射面a,从而可提高光线的利用率。
或者,M个第一反射面可以为M个依次相接的反射镜(mirror)的反射面。
如图6c所示,为本申请提供的一种两个第一反射面为两个依次相接的反射镜的反射面的结构示意图。两个反射镜分别为反射镜a1和反射镜a2,反射镜a1和反射镜a2依次相接,反射镜a1和反射镜a2之间的夹角为θ 1。反射镜a1对应反射面a1,反射镜a2对应反射面a2。
或者,M个第一反射面可以为M/2个依次相接的直角棱镜的反射面。在一种可能的实现方式中,直角棱镜的反射面可以是直角棱镜的两个直角面。即两个第一反射面为一个直角棱镜的两个相互垂直的反射面(参见图6d),两个第一反射面分别为反射面a和反射面b。在一种可能的实现方式中,直角棱镜的直角边的取值范围可为[5mm,20mm],宽的取值范围可为[3mm,10mm]。应理解,在直角棱角中,两个第一反射面(即反射面a和反射面b)为直角棱镜的两个直角面的内表面。
或者,M个第一反射面可以为依次相接的P个反射镜和Q个直角棱镜的直角面,其中,P+2Q=M,P和Q均为正整数。其中,直角棱镜的反射面可以是直角棱镜的两个直角面。
如图6e所示,为本申请提供的一种四个第一反射面为依次相接的两个反射镜和一个直角棱镜的反射面的结构示意图。两个反射镜分别为反射镜a1和反射镜a2,反射镜a1、反射镜a2和直角棱镜a1依次相接,反射镜a1和反射镜a2之间的夹角为θ 1,直角棱镜a1的两个直角面之间的夹角为θ 1,反射镜a2与直角棱镜a1的一个直角面之间的夹角为θ 1。应理解,当M个第一反射面为依次相接的P个反射镜Q个直角棱镜的反射面时,M为大于或等于3的整数。另外,当M个第一反射面为依次相接的P个反射镜和Q个直角棱镜的反射面时,反射镜的数量可以大于直角棱镜的数量,或者反射镜的数量也可以小于直角棱镜的数量,或者反射镜的数量也可以等于直角棱镜的数量,本申请对此不做限定。
或者,M个第一反射面包括依次相接的m个反射镜和n个L型反射镜的反射面,其中,m+2n=M,m和n均为正整数。此处,M为大于或等于3的整数。
或者,M个第一反射面包括依次相接的p个直角棱镜和q个L型反射镜的反射面,其中,2p+2q=M,p和q均为正整数。此处,M为大于或等于4的整数。
或者,M个第一反射面包括依次相接的k个直角棱镜、t个L型反射镜和h个反射镜的反射面,其中,2k+2t+h=M,k、t和h均为正整数。此处,M为大于或等于5的整数。
本申请中,所述M个第二反射面可以为M/2个依次相接的L型反射镜的两个反射面,L型反射镜的介绍可参见上述图6a。
或者,M个第二反射面可以为M个依次相接的反射镜的反射面,M个依次相接的反射镜可参见上述图6c。
或者,M个第二反射面可以为M/2个依次相接的直角棱镜的反射面。在一种可能的实 现方式中,直角棱镜的反射面可以是直角棱镜的两个直角面。
或者,M个第二反射面可以为依次相接的K个反射镜和L个直角棱镜的反射面,其中,K+2L=M,所述K和所述L均为正整数,具体可参见上述图6e的介绍。应理解,当M个第二反射面为依次相接的K个反射镜和L个直角棱镜的反射面时,M也为大于或等于3的整数。另外,当M个第二反射面为依次相接的K个反射镜和L个直角棱镜的反射面时,反射镜的数量可以大于直角棱镜的数量,或者反射镜的数量也可以小于直角棱镜的数量,或者反射镜的数量也可以等于直角棱镜的数量,本申请对此不做限定。
或者,M个第二反射面包括依次相接的u个反射镜和v个L型反射镜的反射面,其中,u+2v=M,u和v均为正整数。此处,M为大于或等于3的整数。
或者,M个第二反射面包括依次相接的l个直角棱镜和s个L型反射镜的反射面,其中,2l+2s=M,l和s均为正整数。此处,M为大于或等于4的整数。
或者,M个第二反射面包括依次相接的j个直角棱镜、w个L型反射镜和z个反射镜的反射面,其中,2j+2w+z=M,j、w和z均为正整数。此处,M为大于或等于5的整数。
基于上述第一反射面与第二反射面的可能结构,如下示例性示出了光线调整组件的10种可能的情形。
情形1,M个第一反射面为M个依次相接的反射镜的反射面,M个第二反射面为M个依次相接的反射镜的反射面。
以M=2为例,如图7a所示,为本申请提供的又一种光线调整组件的结构示意图。该光线调整组件包括4个反射镜,分别为:反射镜a1、反射镜a2、反射镜A1和反射镜A2。其中,反射镜a1的反射面和反射镜a2的反射面均称为第一反射面,反射镜a1和反射镜a2依次相接;反射镜A1的反射面和反射镜A2的反射面均称为第二反射面,反射镜A1和反射镜A2依次相接;反射镜a1的反射面与反射镜A1的反射面相对设置,反射镜a2的反射面与反射镜A2的反射面相对设置。
基于该图7a,反射镜a1和反射镜a2之间的夹角为θ 1,反射镜A1和反射镜A2之间的夹角为θ 2
情形2,M个第一反射面为M/2个依次相接的直角棱镜的反射面,M个第二反射面为M/2个依次相接的直角棱镜的反射面。
以M=2为例,请参阅图7b,为本申请提供的又一种光线调整组件的结构示意图。该光线调整组件包括2个直角棱镜,分别为:直角棱镜a和直角棱镜A。其中,直角棱镜a的两个直角面可均称为第一反射面;直角棱镜A的两个直角面可均称为第二反射面。直角棱镜a的两个直角面分别与直角棱镜A的两个直角面相对设置。
基于该图7b,直角棱镜a的两个直角面之间的夹角为θ 1,θ 1=90°;直角棱镜A的两个直角面之间的夹角为θ 2,θ 2=90°。
情形3,M个第一反射面为M个依次相接的反射镜的反射面,M个第二反射面为M/2个依次相接的直角棱镜的反射面。
以M=2为例,请参阅图7c,为本申请提供的又一种光线调整组件的结构示意图。该光线调整组件包括2个反射镜和1个直角棱镜,分别为:反射镜a1和反射镜a2、直角棱 镜A1。其中,反射镜a1的反射面和反射镜a2的反射面均称为第一反射面,反射镜a1和反射镜a2依次相接;直角棱镜A1的两个直角面均称为第二反射面。反射镜a1的反射面和反射镜a2的反射面分别与直角棱镜A1的两个直角面相对设置。
基于该图7c,反射镜a1和反射镜a2之间的夹角为θ 1,直角棱镜A的两个直角面之间的夹角为θ 2,θ 2=90°。
情形4,M个第一反射面为M/2个依次相接的直角棱镜的反射面,M个第二反射面为M个依次相接的反射镜的反射面。
以M=2为例,请参阅图7d,为本申请提供的又一种光线调整组件的结构示意图。该光线调整组件包括1个直角棱镜和2个反射镜,分别为:直角棱镜a1、反射镜A1和反射镜A2。其中,直角棱镜a1的两个直角面均称为第一反射面;反射镜A1的反射面和反射镜A2的反射面均称为第二反射面,反射镜A1和反射镜A2依次相接。直角棱镜a1的两个直角面分别与反射镜a1的反射面和反射镜a2的反射面相对设置。
基于该图7d,直角棱镜a的两个直角面之间的夹角为θ 1,θ 1=90°,反射镜A1和反射镜A2之间的夹角为θ 2
情形5,M个第一反射面可以为M/2个依次相接的L型反射镜的反射面,M个第二反射面可以为M/2个依次相接的直角棱镜的反射面。
以M=2为例,如图7e所示,为本申请提供的又一种光线调整组件的结构示意图。该光线调整组件包括一个L型反射镜和一个直角棱镜。L型反射镜的两个反射面为两个第一反射面,直角棱镜的两个直角面为两个第二反射面。也就是说,两个第一反射面为一个L型反射镜的两个互相垂直的反射面,两个第二反射面为一个直角棱镜的两个互相垂直的反射面。L型反射镜的两个反射面分别与直角棱镜的两个直角面平行且相对设置。
基于图7e,L型反射镜的两个反射面之间的夹角为θ 1=90°,直角棱镜的两个直角面之间的夹角为θ 2=90°。
情形6,M个第一反射面为依次相接的P个反射镜和Q个直角棱镜的反射面,M个第二反射面为M个依次相接的反射镜的反射面,P+2Q=M,P和Q均为正整数。
以M=4为例,请参阅图7f,为本申请提供的又一种光线调整组件的结构示意图。该光线调整组件包括6个反射镜和1个直角棱镜,分别为:反射镜a1、反射镜a2、直角棱镜a1、反射镜A1、反射镜A2、反射镜A3和反射镜A4。其中,反射镜a1的反射面、反射镜a2的反射面和直角棱镜a1的两个直角面均称为第一反射面,反射镜a1、反射镜a2和直角棱镜a1依次相接;反射镜A1的反射面、反射镜A2的反射面、反射镜A3的反射面和反射镜A4的反射面均称为第二反射面,反射镜A1、反射镜A2、反射镜A3和反射镜A4依次相接。反射镜a1的反射面与反射镜A1的反射面相对设置,反射镜a2的反射面与反射镜A2的反射面相对设置,直角棱镜a1的两个直角面分别与反射镜A3和反射镜A4相对设置。需要说明的是,在该示例中P=2,Q=1。另外,该情形6中反射镜a1和反射镜a2也可以设置在直角棱镜a1之后;或者反射镜a1设置在直角棱镜a1之前,且反射镜a2设置在直角棱镜a1之后。
情形7,M个第一反射面为依次相接的P个反射镜和Q个直角棱镜的直角面,M个第二反射面为M/2个依次相接的直角棱镜的反射面,P+2Q=M,P和Q均为正整数。
以M=4为例,请参阅图7g,为本申请提供的又一种光线调整组件的结构示意图。该光线调整组件包括2个反射镜和3个直角棱镜,分别为:反射镜a1、反射镜a2、直角棱镜a1、直角棱镜A1和直角棱镜A2。其中,反射镜a1的反射面、反射镜a2的反射面和直角棱镜a1的两个直角面均称为第一反射面,反射镜a1、反射镜a2和直角棱镜a1依次相接;直角棱镜A1的两个直角面和直角棱镜A2的两个直角面均称为第二反射面,直角棱镜A1和直角棱镜A2依次相接。反射镜a1的反射面和反射镜a2的反射面分别与直角棱镜A1的两个直角面相对设置,直角棱镜a1的两个直角面分别与直角棱镜A2的两个直角面相对设置。需要说明的是,在该示例中P=2,Q=1。另外,该情形7中反射镜a1、反射镜a2也可以设置在直角棱镜a1之后;或者反射镜a1设置在直角棱镜a1之前,且反射镜a2设置在直角棱镜a1之后。
情形8,M个第一反射面为M个依次相接的反射镜的反射面,M个第二反射面为K个依次相接的反射镜和L个直角棱镜的反射面,其中,K+2L=M,K和L均为大于0且小于M的整数。
以M=4为例,请参阅图7h,为本申请提供的又一种光线调整组件的结构示意图。该光线调整组件包括6个反射镜和1个直角棱镜,分别为:反射镜a1、反射镜a2、反射镜a3、反射镜a4、反射镜A1、反射镜A2和直角棱镜A1。其中,反射镜a1的反射面、反射镜a2的反射面、反射镜a3的反射面和反射镜a4的反射面均称为第一反射面,反射镜a1、反射镜a2、反射镜a3和反射镜a4依次相接;反射镜A1的反射面、反射镜A2的反射面和直角棱镜A1的两个直角面均称为第二反射面,反射镜A1、反射镜A2和直角棱镜A1依次相接。反射镜a1的反射面与反射镜A1的反射面相对设置,反射镜a2的反射面与反射镜A2的反射面相对设置,反射镜a3的反射面和反射镜a4的反射面分别与直角棱镜A1的两个直角面相对设置。应理解,在该示例中K=2,L=1。另外,该情形8中反射镜A1、反射镜A2也可以设置在直角棱镜A1之后;或者反射镜A1设置在直角棱镜A1之前,且反射镜A2设置在直角棱镜A1之后。
情形9,M个第一反射面为M/2个依次相接的直角棱镜的直角面,M个第二反射面为依次相接的K个反射镜和L个直角棱镜的反射面,K+2L=M,K和L均为大于0且小于M的整数。
以M=4为例,请参阅图7i,为本申请提供的又一种光线调整组件的结构示意图。该光线调整组件包括3个直角棱镜和2个反射镜,分别为:直角棱镜a1、直角棱镜a2、直角棱镜A1、反射镜A1和反射镜A2。直角棱镜a1的两个直角面和直角棱镜a2的两个直角面均称为第一反射面,直角棱镜a1、直角棱镜a2依次相接;直角棱镜A1的两个直角面、反射镜A1的反射面和反射镜A2的反射面均称为第二反射面,直角棱镜A1、反射镜A1和反射镜A2依次相接。直角棱镜a1的两个直角面分别与反射镜A1的反射面和反射镜A2的反射面相对设置,直角棱镜a2的两个直角面分别与直角棱镜A2的两个直角面相对设置。应理解,在该示例中K=2,L=1。另外,该情形9中反射镜A1、反射镜A2也可以设置在直角棱镜A1之后;或者反射镜A1设置在直角棱镜A1之前,且反射镜A2设置在直角棱 镜A1之后。
情形10,M个第一反射面为依次相接的P个反射镜和Q个直角棱镜的反射面,M个第二反射面为依次相接的K个反射镜和L个直角棱镜的反射面,其中,P+2Q=M,P和Q均为正整数,K+2L=M,K和L均为正整数。
以M=4为例,请参阅图7j,为本申请提供的又一种光线调整组件的结构示意图。该光线调整组件包括2个直角棱镜和4个反射镜,分别为:直角棱镜a1、反射镜a1、反射镜a2、直角棱镜A1、反射镜A1和反射镜A2。直角棱镜a1的两个直角面、反射镜a1的反射面和反射镜a2的反射面均称为第一反射面,直角棱镜a1、反射镜a1和反射镜a2依次相接;直角棱镜A1的两个直角面、反射镜A1的反射面和反射镜A2的反射面均称为第二反射面,直角棱镜A1、反射镜A1和反射镜A2依次相接。直角棱镜a1的两个直角面分别与直角棱镜A1的两个直角面相对设置,反射镜a1的反射面与反射镜A1的反射面相对设置,反射镜a2的反射面与反射镜A2的反射面相对设置。应理解,在该示例中P=2,Q=1,K=2,L=1。另外,该情形10中反射镜A1、反射镜A2也可以设置在直角棱镜A1之前;或者反射镜A1设置在直角棱镜A1之前,且反射镜A2设置在直角棱镜A1之后;反射镜a1和反射镜a2也可以设置在直角棱镜a1之前;或者反射镜a1设置在直角棱镜a1之前,且反射镜a2设置在直角棱镜a1之后。
需要说明的是,上述情形中,任意一个L型反射镜包括两个反射面,任意一个直角棱镜包括两个反射面。另外,基于上述第一反射面与第二反射面的可能结构,还可以有其他情形,例如,M个第一反射面可以为M/2个依次相接的L型反射镜的反射面,M个第二反射面可以为M/2个依次相接的L型反射镜的反射面;再比如,M个第二反射面可以为M/2个依次相接的L型反射镜的反射面,M个第一反射面可以为M/2个依次相接的直角棱镜的反射面,等等,此处不再一一列举。另外,当直角棱镜的直角面作为第一反射面时,直角棱镜可为非等腰直角棱镜,当直角棱镜的直角面作为第二反射面时,直角棱镜可为等腰直角棱镜。
还需要说明的是,上述情形1至情形10中,相邻两个反射镜可粘接固定在一起,也可以是分离的。相邻两个直角棱镜可以粘接固定在一起,也可以是分离的。另外,上述M=2或者M=4仅是示例性地,M也可以等于3,或者M也可以大于4。
如图7k所示,为本申请提供的又一种光线调整组件的结构示意图。该光线调整组件包括一个L型反射镜和一个直角棱镜,其中,L型反射镜包括互相垂直的第十一反射面和第十二反射面;直角棱镜包括互相垂直的第十三反射面和第十四反射面;第十一反射面与第十三反射面相对设置且互相平行,第十二反射面与第十四反射面相对设置且相互平行;使得来自光学镜头组件的光线依次经过第十一反射面第十三反射面、第十四反射面和第十二反射面的反射至图像传感器。
进一步,可选地,图7k以来自光学镜头组件的光线以45度的入射角射入L型反射镜的第十一反射面示例,来自光学镜头组件的光线以45度的入射角射入L型反射镜的第十一反射面,从第十一反射面反射出的光线的反射角也为45度,该从第十一反射面反射出的光线以45度的入射角射向直角棱镜的第十三反射面,从直角棱镜的第十三反射面反射 出的光线的反射角也为45度,该从直角棱镜的第十三反射面反射出的光线以45度的入射角射向直角棱镜的第十四反射面,从直角棱镜的第十四反射面反射出的光线的反射角也为45度,该从直角棱镜的第十四反射面反射出的光线以45度的入射角射向L型反射镜的第十二反射面,从L型反射镜的第十二反射面反射出的光线的反射角为45度。也就是说,来自光学镜头组件的光线以45度的入射角射入L型反射镜的第十一反射面,经L型反射镜的第十二反射面反射至图像传感器的光线平行于主光轴的方向。
在一种可能的实现方式中,L型反射镜的第十一反射面与主光轴之间的夹角呈45度,L型反射镜的第十二反射面与主光轴之间的夹角呈45度。由于第十一反射面与主光轴的之间的夹角等于第十一反射面与平行于主光轴的线之间的夹角,图7k为了便于画图,用第十一反射面与平行于主光轴的线之间的夹角表示第十一反射面与主光轴之间的夹角。同理,用第十二反射面与平行于主光轴的线之间的夹角表示第十二反射面与主光轴之间的夹角。
在一种可能的实现方式中,直角棱镜的第十三反射面与主光轴之间的夹角呈45度,直角棱镜的第十四反射面与主光轴之间的夹角呈45度。由于第十三反射面与主光轴的之间的夹角等于第十三反射面与平行于主光轴的线之间的夹角,图7k为了便于画图,用第十三反射面与平行于主光轴的线之间的夹角表示第十三反射面与主光轴之间的夹角。同理,用第十四反射面与平行于主光轴的线之间的夹角表示第十四反射面与主光轴之间的夹角。
在一种可能的实现方式中,L型反射镜的开口方向与直角棱镜的直角的开口方向相同。
需要说明的是,上述图7k仅是示意图,来自光学镜头组件的光线包括但不限于以45度的入射角射入第十一反射面。另外,第十一反射面、第十二反射面、第十三反射面和第十四反射面分别与主光轴之间的夹角包括但不限于45度。也就是说,本申请对L型反射镜和直角棱镜的放置的位置不做限定。
还需要说明的是,上述图7k中的L型反射镜的第十一反射面和第十二反射面可以为上述图7e所示的L型反射镜的两个第一反射面;图7k中的直角棱镜的第十三反射面和第十四反射面可以为上述图7e所示的直角棱镜的两个第二反射面。因此,第一驱动组件驱动图7e的光线调整组件的移动可参见第一驱动组件驱动第一反射面和第二反射面的描述,此处不再重复赘述。
三、驱动组件
本申请中,第一驱动组件具体用于驱动M个第一反射面沿第一方向移动,和/或,驱动M个第二反射面沿第二方向移动;其中,第一方向与第二方向相反,且第一方向和第二方向均为垂直于主光轴的方向。进一步,可选地,第一驱动组件具体用于驱动M个第一反射面整体沿第一方向移动;或者驱动M个第二反射面整体沿第二方向移动;或者驱动M个第一反射面整体沿第一方向移动,且驱动M个第二反射面沿第二方向移动。如此,可以实现对不同物距下的光线聚焦,从而可保证在图像传感器上形成清晰的图像。而且,第一驱动组件通过驱动光线调整组件的M个第一反射面和/或M个第二反射面移动实现聚焦,不需要移动光学镜头组件,从而光学镜头组件也不需要与驱动组件耦合。
需要说明的是,M个第一反射面是整体沿第一方向移动,因此,θ 1的大小不会发生变化;同样地,M个第二反射面也是整体沿第二方向移动,因此,θ 2的大小也不会发生变化。另外,若第一方向是向上,则第二方向为向下;若第一方向是向下,则第二方向是向上。
结合上述图5a,可以通过如下三种方式增加两个第一反射面和两个第二反射面之间的 距离。方式1,两个第二反射面不动,第一驱动组件具体用于驱动两个第一反射面整体沿向上移动。方式2,两个第一反射面不动,第一驱动组件用于驱动两个第二反射面整体沿向下移动。方式3,第一驱动组件用于驱动两个第一反射面整体向上移动,且驱动两个第二反射面整体向下移动。
结合上述图5a,可以通过如下三种方式实现缩短两个第一反射面和两个第二反射面之间的距离。方式a,两个第二反射面不动,第一驱动组件具体用于驱动两个第一反射面整体向下移动。方式b,两个第一反射面不动,第一驱动组件用于驱动两个第二反射面整体沿向上移动。方式c,第一驱动组件用于驱动两个第一反射面整体向下移动,且驱动两个第二反射面整体向上移动。
本申请中,第一驱动组件可用于驱动所述M个第一反射面沿垂直于所述主光轴的方向移动。结合上述图7e所示的光线调整组件的结构,以M个第二反射面不动,第一驱动组件驱动M个第一反射面移动为例。如图8所示,为本申请提供的一种驱动组件驱动L型反射镜移动前后的光路示意图。结合上述图7e,L型反射镜和直角棱镜可对光学镜头组件传播过来的光线进行四次弯折,以实现对光线的光路折叠。实线可表示第一驱动组件未驱动L型反射镜移动时的光线的折叠光路,虚线可表示第一驱动组件驱动L型反射镜向上移动后的光线的折叠光路。通过第一驱动组件驱动L型反射镜的移动,可实现对光线的聚焦。而且,由于L型反射镜体积比直角棱镜的体积小,通过驱动L型反射镜移动来实现聚焦,有助于降低第一驱动组件的功耗。
结合上述图7e或图7k,在一种可能的实现方式中,所述第一驱动组件具体可用于驱动所述L型反射镜沿第一方向移动,和/或,驱动所述直角棱镜沿第二方向移动;其中,所述第一方向与所述第二方向相反,且所述第一方向和所述第二方向均为垂直于所述主光轴的方向。需要说明的是,第一驱动组件具体可用于驱动所述L型反射镜沿第一方向移动和/或驱动所述直角棱镜沿第二方向移动的可能实现方式可参见上述第一驱动组件具体用于驱动M个第一反射面沿第一方向移动和/或驱动M个第二反射面沿第二方向移动的介绍,此处不再重复赘述。
结合上述图7e或图7k,在一种可能的实现方式中,所述第一驱动组件具体用于驱动所述L型反射镜沿垂直于所述主光轴的方向移动,可能的实现方式可参见上述第一驱动组件可用于驱动所述M个第一反射面沿垂直于所述主光轴的方向移动的描述,此处不再重复赘述。
本申请中,第一驱动组件还可用于驱动M个第一反射面和/或M个第二反射面沿第三方向移动,以对来自光学镜头组件的光线进行抖动补偿,其中,第三方向为平行于主光轴的方向。应理解,第三方向可以是向左,也可以是向右(可参阅图5a所示的方向)。如此,光线调整组件既可以对来自光学镜头组件传播过来的光线进行光路折叠,又可实现对特定方向(即第三方向)的光线进行光学抖动补偿。
结合上述图5a,对来自光学镜头组件的光线进行抖动补偿的方式可包括以下内容中的任一项:两个第二反射面不动,第一驱动组件还可用于驱动两个第一反射面整体向左移动;或者,两个第一反射面不动,第一驱动组件还可用于驱动两个第二反射面整体向左移动;或者,第一驱动组件还可用于驱动两个第一反射面整体向左移动,且驱动两个第二反射面整体向左移动;或者,两个第二反射面不动,第一驱动组件还可用于驱动两个第一反射面整体向右移动;或者,两个第一反射面不动,第一驱动组件还可用于驱动两个第二反射面 整体向右移动;或者,第一驱动组件还可用于驱动两个第一反射面整体向右移动、且驱动两个第二反射面整体向右移动。
进一步,可选地,第一驱动组件具体用于驱动M个第一反射面和/或M个第二反射面沿第三方向移动的距离小于预设距离。其中,预设距离为第一投影距离集合和第二投影距离集合中的最小值,第一投影距离集合中包括M个第一反射面中每个第一反射面的长度在主光轴的方向的投影距离,第二投影距离集合中包括M个第二反射面中每个第二反射面的长度在主光轴的方向的投影距离。
结合上述图5b,第一投影距离集合={L aa,L bb},第二投影距离集合={L AA,L BB},预设距离即为{L aa,L bb,L AA,L BB}中的最小值。
在一种可能的实现方式中,第一驱动组件可以是聚焦马达(或称为对焦马达),或者是伺服电机等。
结合上述图7e或图7k,在一种可能的实现方式中,所述第一驱动组件还用于驱动所述L型反射镜和/或所述直角棱镜沿第三方向移动,以对来自所述光学镜头组件的光线进行抖动补偿;其中,所述第三方向为平行于所述主光轴的方向。需要说明的是,第一驱动组件还用于驱动所述L型反射镜和/或所述直角棱镜沿第三方向移动可参见上述第一驱动组件驱动M个第一反射面和/或M个第二反射面沿第三方向移动的可能的实现方式,此处不再重复赘述。进一步,可选地,所述第一驱动组件具体用于驱动所述L型反射镜和/或所述直角棱镜沿所述第三方向移动的距离小于预设距离。需要说明的是,预设距离可参见上述相关介绍,此处不再重复赘述。
本申请中,第一驱动组件可以与M个第一反射面和/或M个第二反射面固定在一起。若M个第一反射面为M/2个依次相接的L型反射镜的反射面,第一驱动组件可与L型反射镜固定在一起;若M个第一反射面为依次相接的M个反射镜的反射面,第一驱动组件可与M个反射镜均固定在一起;若M个第一反射面为M/2个依次相接的直角棱镜的反射面,第一驱动组件可与M/2个直角棱镜固定在一起;若M个第一反射面为依次相接的P个反射镜和Q个直角棱镜的反射面,第一驱动组件可与P个反射镜和Q个直角棱镜均固定在一起。第二驱动组件与第二反射面的固定方式可参见第一驱动组件与第一反射面的固定方式,此处不再一一赘述。
结合上述图7a,第一驱动组件可与M个第一反射镜和/或M个第二反射镜固定在一起。结合上述图7e或图7k,第一驱动组件可与L型反射镜和/或直角棱镜固定在一起。
本申请中,第一驱动组件也可用于驱动光学镜头组件移动,使得光路折叠后的光线聚焦至图像传感器。也就是说,对光路折叠后的光线聚焦时,可以是第一驱动组件驱动光学镜头组件移动来实现,或者是第一驱动组件驱动光线调整组件移动来实现。
进一步,可选地,第一驱动组件具体用于驱动光学镜头组件沿平行于主光轴的方向移动。结合上述图4a,第一驱动组件可用于驱动光学镜头组件中的第一透镜和第二透镜整体沿平行于主光轴的方向移;或者,第一透镜不动,第二透镜沿平行于主光轴的方向移动;或者,第二透镜不动,第一透镜沿平行与主光轴的方向移动。
需要说明的是,第十一反射面和第十二反射面可以理解为两个上述的第一反射面,第十三反射面和第十四反射面可以理解为两个上述的第二反射面。在一些实例中,第一驱动 组件驱动第十一反射面和/或第十二反射面的方式,可参见前述第一驱动组件驱动第一反射面的描述,第一驱动组件驱动第十三反射面和/或第十四反射面的式,可参见前述第一驱动组件驱动第二反射面的方式,此处不再重复赘述。
四、图像传感器
在一种可能的实现方式中,图像传感器可包括感光元件及相关电路,例如感光芯片。在一种可能的实现方式中,感光元件可以是光电探测器(photon detector,PD),或高速光电二极管、或电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。
本申请中,图像传感器接收来自光线调整组件的光路折叠后的且聚焦的光线,并将接收到的光线转换为电信号,并成像。需要说明的是,光路折叠后的且聚焦的光线携带的信息与来自被摄物体的光线携带的信息相同。另外,聚焦至图像传感器上的光线是来自光学镜头组件传播过来的全部光线,非对焦区域的光线在图像传感器上形成的光斑可能比较大。
进一步,可选地,图像传感器可对得到的图像进行去噪、增强、分割虚化等处理,以丰富用户体验。
本申请中,图像传感器的分辨率范围可为[800万像素,4800万像素]。示例性地的,图像传感器的分辨率可为800万像素、1200万像素、2000万像素、或4800万像素等。进一步,可选地,图像传感器的分辨率也可以大于4800万像素,例如,还可以是5200万像素、6000万像素、7200万像素等。其中,分辨率可以指摄像模组中的图像传感器上可用于成像的最大像素(即感光单元)的数量。通常以横向像素点的数量和纵向像素点的数量的乘积来衡量,即分辨率=水平像素点数×竖直像素点数。
本申请中,摄像模组还可包括抖动补偿组件。通过抖动补偿组件与上述第一驱动组件驱动M个第一反射面和/或M个第二反射面沿第三方向移动相结合,可扩大防抖角度。例如,抖动补偿组件可以实现0.1度的抖动补偿,第一驱动组件驱动M个第一反射面和/或M个第二反射面沿第三方向移动可以实现0.1度的补偿,两者相结合即可实现0.2度的补偿。
如图9所示,为本申请提供的另一种摄像模组的结构示意图。该摄像模组包括:光学镜头组件101、第一驱动组102、光线调整组件103、图像传感器104和抖动补偿组件105,光学镜头组件103位于抖动补偿组件105和光线调整组件103之间。其中,抖动补偿组件105包括第二驱动组件和第三反射面;第三反射面用于接收来自被摄物体的光线;第二驱动组件用于驱动第三反射面转动,以对来自被摄物体的光线进行抖动补偿,并将抖动补偿后的光线射入光学镜头组件。光学镜头组件101、第一驱动组件102、光线调整组件103和图像传感器104的介绍可参见前述内容,此处不再一一赘述。应理解,该示例中光线调整组件以上述情形5所示的光线调整组件,第一驱动组件与L型反射镜移动固定在一起,光学镜头组件以上述图4a所示的光学镜头组件为例进行示例的。
需要说明的是,来自被摄物体的光线经抖动补偿组件抖动补偿后的光线也可称为来自被摄物体的光线。另外,经光学镜头组件传播过来的光线所携带的信息与射入光学镜头组件的光线所携带的信息相同。
进一步,可选地,第二驱动组件可具体用于驱动第三反射面,沿相互垂直的三个方向(如XYZ)中至少一个方向转动。例如,第二驱动组件可用于驱动第三反射面沿主光轴的 方向做小角度的倾斜,即改变θ 3的大小,θ 3的改变角度小于角度阈值(例如0.1°),如此,可对主光轴的方向进行抖动补偿。
在一种可能的实现方式中,第三反射面与主光轴之间的夹角为θ 3,θ 3大于0度且小于90度。进一步,可选地,θ 3大于或等于30度且小于或等于60度。示例性地,θ 3可为30度、45度、或60度。
在一种可能的实现方式中,第三反射面可为直角棱镜的反射面(例如等腰直角棱镜的斜面)或反射镜的反射面。
本申请中,第二驱动组件也可以是光学防抖马达、或伺服电机等。需要说明的是,第一驱动组件与第二驱动组件可以是集成在一起的,也可以是两独立的驱动组件,本申请对此不做限定。
当然,摄像模组还可以包括其它组件,例如抖动检测器和处理器,其中,抖动检测器可以是陀螺仪。抖动检测器可用于侦测到微小的移动,并且将侦测到的微小移动的信号传输至处理器,处理器基于该微小的移动计算需要的补偿量,然后根据计算得到的补偿量控制第二驱动组件驱动第三反射面调整位置和角度。
进一步,可选地,摄像模组还可以包括红外线(infrared radiation,IR)滤光器106(可参见上述图9),IR滤光器可用于对特定波长的光线进行阻挡通过或者吸收,例如阻挡对图像传感器有损坏或有不利地影响的红外辐射的作用,并且可被配置为对光学镜头组件的焦距没有影响。可选地,IR滤光器的材料可为玻璃或者类玻璃的树脂,如蓝玻璃(blue glass)。在一种可能的实现方式中,IR滤光器可位于图像传感器与光线调整组件之间(可参阅图8)。
基于上述描述的摄像模组的结构和功能原理,本申请还可以提供一种终端设备,该终端设备可以包括第一摄像头、存储器和处理器,第一摄像头包括上述摄像模组,存储器用于存储程序或指令;处理器用于调用程序或指令控制第一摄像头获取第一图像。
在一种可能的实现方式中,第一摄像头可为定焦摄像头,第一摄像头的倍率为A1,其中,A1的取值范围为(5,12]。进一步,可选地,A1的取值范围为[8,12]。例如,A1可为5、8或10。
进一步,可选地,终端设备还可包括第二摄像头,第二摄像头也为定焦摄像头,第二摄像头的倍率为A2,其中,A2大于1且小于A1。示例性地,A2的取值范围为(1,3]。例如,A2可为2或3。
进一步,可选地,终端设备还可包括广角摄像头,广角摄像头也为定焦摄像头。广角摄像头的倍率为A3,A3通常小于1,即A3的取值范围可为(0,1)。进一步,可选地,A3的取值范围可为[0.6,0.9],例如,A3可为0.3、0.6、0.8或0.9。
本申请中,终端设备还可包括主摄像头(或称为主摄镜头或主摄),主摄像头的倍率为1。
可以理解的是,该终端设备还可以包括其他器件,例如无线通信装置、传感器和触摸屏、显示屏等。
在一种可能的实现方式中,终端设备可以是个人计算机、服务器计算机、手持式或膝上型设备、移动设备(比如手机、移动电话、平板电脑、可穿戴设备(如智能手表)、个人数字助理、媒体播放器等等)、消费型电子设备、小型计算机、大型计算机、胶片相机、数码相机、摄像机、监控设备、望远镜或潜望镜等。
如图10所示,为本申请提供的一种终端设备的结构示意图。该终端设备可包括处理器1001、存储器1002、摄像头1003和显示屏1004等。应理解,图10所示的硬件结构仅是一个示例。本申请所适用的终端设备可以具有比图10中所示终端设备更多的或者更少的部件,可以组合两个或更多的部件,或者可以具有不同的部件配置。图10中所示出的各种部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件、或硬件和软件的组合中实现。
其中,处理器1001可以包括一个或多个处理单元。例如:处理器1001可以包括应用处理器1001(application processor,AP)、图形处理器1001(graphics processing unit,GPU)、图像信号处理器1001(image signal processor,ISP)、控制器、数字信号处理器1001(digital signal processor,DSP)、等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器1001中。
摄像头1003可以用于捕获动、静态图像等。在一些实施例中,终端设备可以包括一个或N个摄像头1003,其中,N为大于1的整数。例如,终端设备可包括前置摄像头和后置摄像头。在一种可能的实现方式中,终端设备可包括2个后置摄像头,例如,主摄像头和第一摄像头;或者,终端设备可包括3个后置摄像头,例如,主摄像头、广角摄像头和第一摄像头;或者,终端设备可包括4个后置摄像头,例如,主摄像头、广角摄像头、第一摄像头和第二摄像头;或者,终端设备可包括5个后置摄像头,例如,主摄像头、广角摄像头、第一摄像头、第二摄像头和深度摄像头(如包括飞行时间(time of flight,TOF)摄像模组),等。其中,所述第一摄像头可称为高倍长焦镜头,第二摄像头可称为低倍长焦镜头。主摄像头的倍率为1,关于第一摄像头、第二摄像头和广角摄像头的倍率可分别参见前述描述,此处不再一一赘述。应理解,后置摄像头的数量也可以大于5个,本申请对此不做限定,另外,本申请对前置摄像头的数量和类型不做限定。
显示屏1004可以用于显示图像、视频等。显示屏1004可以包括显示面板。显示面板可以采用液晶显示屏1004(liquid crystal display,LCD)、有机发光二极管(organic light-emitting diode,OLED)、有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode的,AMOLED)、柔性发光二极管(flex light-emitting diode,FLED)、Miniled、MicroLed、Micro-oLed、量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,终端设备可以包括1个或H个显示屏1004,H为大于1的正整数。示例的,终端设备可以通过GPU、显示屏1004、以及应用处理器1001等实现显示功能。
基于上述内容和相同的构思,本申请提供一种成像方法,请参阅图11的介绍。该成像方法可应用于上述图11所示的终端设备。终端设备可包括第一摄像头,第一摄像头可包括上述图3至图9任一实施例中的摄像模组,该摄像模组可包括光线调整组件;其中,光线调整组件用于对光线进行光路折叠。
如图11所示,该成像方法包括以下步骤:
步骤1101,获取拍摄倍率。
此处,拍摄倍率可以是终端设备在某些拍摄模式下(如人像模式或长焦模式等)默认的拍摄倍率,也可以是用户在终端设备上选择的拍摄倍率。
步骤1102,当拍摄倍率大于倍率阈值时,通过第一摄像头获取预览图像。
此处,倍率阈值的取值范围可为[5,11)。例如,倍率阈值可为5、6或8等。
在一种可能的实现方式中,当拍摄倍率大于或等于10.0时,可通过第一摄像头获取预览图像。
步骤1103,根据预览图像确定第一摄像头的目标对焦位置。
如下示例性地的示出了两种确定第一摄像头的目标对焦位置的实现方式,其中,目标对焦位置是指可以生成清晰的第一图像时的位置。
实现方式一,根据预览图像的中心区域,确定出目标对焦位置。
实现方式二,接收用户对预览图像的对焦操作,将响应于对焦操作的对焦位置确定为目标对焦位置。
步骤1104,根据目标对焦位置,驱动光线调整组件移动进行对焦。
此处,可以先根据所述目标对焦位置,确定所述光线调整组件的目标位置,之后再根据所述目标位置驱动所述光线调整组件。需要说明的是,驱动光线调整组件移动进行对焦即可实现对光线的聚焦。
在一种可能的实现方式中,可以先根据预览图像确定出目标对焦位置,根据目标对焦位置计算出光线调整组件的目标位置,驱动光线调整组件移动至目标位置。
在另一种可能的实现方式中,根据预览图像,移动光线调整组件,获得多帧图像,将多帧图像中最清晰的一帧图像所对应的光线调整组件的位置,确定为光线调整组件的目标位置,之后驱动光线调整组件移动至目标位置。
在一种可能的实现方式中,光线调整组件可包括M个第一反射面和M个第二反射面。可根据目标对焦位置,驱动M个第一反射面沿第一方向移动,和/或,驱动M个第二反射面沿第二方向移动,并移动至目标对焦位置,从而实现光路折叠后的光线对焦;其中,第一方向与第二方向相反,且第一方向和第二方向均为垂直于主光轴的方向。
在另一种可能的实现方式中,光线调整组件可包括M个第一反射面和M个第二反射面,可根据目标对焦位置,驱动所述M个第一反射面沿垂直于所述主光轴的方向移动,并移动至目标对焦位置,从而实现光路折叠后的光线对焦。
从上述步骤1101至步骤1104可以看出,通过光线调整组件对光学镜头组件传播过来的光线进行光路折叠,可缩短成像光路,从而可减小摄像模组的尺寸,当摄像模组集成在空间有限的终端设备时,可采用较大物理焦距的光学镜头组件,从而可实现较大的光学变焦倍数;进一步,再根据拍摄倍率,驱动光线调整组件移动,使得光路折叠后的光线聚焦,从而可形成清晰的图像。需要说明的是,通过第一摄像头获得的最终图像可称为第一图像。
为了实现光学防抖,在一种可能的实现方式中,还可根据检测到的抖动信息,驱动所述M个第一反射面和/或所述M个第二反射面沿第三方向移动,以对来自所述光学镜头组件的光线进行抖动补偿;其中,所述第三方向平行于所述主光轴的方向。
本申请中,终端设备还可包括第二摄像头,所述第二摄像头为定焦摄像头,当所述拍摄倍率大于1且小于或等于倍率阈值时,可通过所述第二摄像头获取第二图像,所述第二摄像头的倍率为A2;其中,所述A2大于1且小于A1。
本申请中,所述终端设备还包括广角摄像头,当所述拍摄倍率大于0且小于1时,可通过广角摄像头获取第三图像。
需要说明的是,上述成像方法中涉及的第一摄像头中包括的摄像模组的各功能组件的详细介绍,可参见前述相关内容的介绍,此处不再重复赘述。
如下,以终端设备包括第一摄像头、第二摄像头、第三摄像头和主摄像头,第一摄像头的倍率A1=10,第二摄像头的倍率A2=3,第三摄像头为广角摄像头为例,示例性示出了一种可能的拍摄方法。其中,有关第一摄像头、第二摄像头、第三摄像头和主摄像的可能实现方式的介绍,可分别参见前述相关的描述,此处不再重复赘述。
当拍摄倍率在[0.6,0.9]时,终端设备可选择广角摄像头(即第三摄像头)进行拍摄。也就是说,当拍摄倍率在[0.6,0.9]时,终端设备可选择广角摄像头(即第三摄像头)获取第三图像。进一步,可选地,终端设备选择广角摄像头(即第三摄像头)进行拍摄时,可通过图像信号处理器(image signal processor,ISP)的处理,以及广角数据变焦(digital zoom,DZ)等算法处理获得第三图像,其中,ISP的处理可以包括但不限于多帧融合;DZ算法可以包括但不限于普通的插值算法、单帧超分算法。
当拍摄倍率在[1.0,2.9]时,终端设备可选择主摄像头进行拍摄。也就是说,当拍摄倍率在[1.0,2.9]时,终端设备可选择主摄像头获取第四图像。进一步,可选地,终端设备选择主摄像头进行拍摄时,可通过ISP的处理、以及广角DZ等算法获得第四图像,其中,ISP的处理和广角DZ算法处理的介绍可参见上述相关描述,此处不再赘述。
当拍摄倍率在[3.0,6.9]时,终端设备可选择倍率为3的摄像头进行拍摄,即终端设备可选择第二摄像头进行拍摄。也就是说,当拍摄倍率在[3.0,6.9]时,终端设备可通过倍率为3的第二摄像头获取第二图像。进一步,可选地,终端设备选择第二摄像头进行拍摄时,可通过ISP的处理、以及广角DZ等算法的处理获得第二图像,其中,ISP的处理和DZ算法的处理可参见上述相关描述,此处不再赘述。
当拍摄倍率在[7.0,9.9]时,终端设备可选择倍率为10的摄像头和倍率为3的摄像头进行拍摄。也就是说,当拍摄倍率在[7.0,9.9]时,终端设备可通过拍摄倍率为10的第一摄像头和拍摄倍率为3的第二摄像头获取第五图像。进一步,可选地,终端设备选择第二摄像头和第五摄像头进行拍摄时,可通过ISP的处理、广角DZ算法的处理和大小视场角(field of view,FoV)融合的处理,获得第五图像,其中,ISP的处理和DZ算法的处理可参见上述相关描述,此处不再赘述。
当拍摄倍率大于或等于10.0时,终端设备可选择倍率为10的摄像头进行拍摄。也就是说,当拍摄倍率大于或等于10.0时,终端设备可通过倍率为10的第一摄像头获取第一图像。进一步,可选地,终端设备选择第一摄像头进行拍摄时,可通过ISP的处理、DZ算法的处理和去像旋转算法的处理,获得第一图像,其中,去像旋转算法可包括但不限于去模糊处理,应理解,像旋(也可称为相旋)是一种特殊的模糊。
可以理解的是,为了实现上述方法实施例中功能,成像装置包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的模块及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图12为本申请的提供的可能的成像装置的结构示意图。这些成像装置可以用于实现上述方法实施例的功能,因此可以实现上述方法实施例所具备的有益效果。在本申请中,该成像装置可以应用于如图10所示的终端设备,所述终端设备包括第一摄像头,所述第 一摄像头包括光线调整组件,述光线调整组件用于对第一摄像头获得的光线进行光路折叠。
如图12所示,该成像装置1200包括获取模块1201、确定模块1202和驱动模块1203。成像装置1200用于实现上述图11中所示的方法实施例中的功能。
当成像装置1200用于实现图11所示的方法实施例的功能时:获取模块1201用于获取拍摄倍率,当所述拍摄倍率大于倍率阈值时,通过所述第一摄像头获取预览图像;确定模块1202用于根据所述预览图像确定所述第一摄像头的目标对焦位置;驱动模块1203用于根据所述目标对焦位置,驱动所述光线调整组件移动进行对焦。
有关上述获取模块1201更详细的描述可参考上述图11所示的步骤1101和步骤1102中进一步的相关描述得到,有关确定模块1202更详细的描述可参考上述图11所示的步骤1103中进一步的相关描述得到,有关驱动模块1203更详细的描述可参考上述图11所示的步骤1104中进一步的相关描述得到。另外,有关第一摄像头的更详细的描述可参见上述图10所示的第一摄像头的相关描述,有关摄像模组的更详细的描述可参见上述图3至图9所示的摄像模组的相关描述,此处不再一一赘述。
基于上述内容和相同构思,如图13所示,本申请还提供一种成像装置1300。该成像装置1300可包括处理器1301、第一摄像头1302和存储器1303。
存储器1303用于存储处理器1301执行的指令或程序,或存储处理器1301运行指令或程序所需要的输入数据,或存储处理器1301运行指令或程序后产生的数据。第一摄像头1302包括光学镜头组件、光线调整组件和图像传感器;其中,所述光学镜头组件用于接收来自被摄物体的光线;所述光线调整组件用于对所述光学镜头组件传播过来的光线进行光路折叠。有关第一摄像头的更详细的介绍可参见上述图10所示的第一摄像头的相关描述,有关摄像模组的更详细的描述可参见上述图3至图9所示的摄像模组的相关描述,此处不再一一赘述。
当成像装置1300用于实现图11所示的方法时,处理器1301用于执行上述获取模块1201、确定模块1202和驱动模块1203的功能。示例性地,获取模块1201可由处理器1301调用存储器1303中存储的程序或指令,获取拍摄倍率,当拍摄倍率大于倍率阈值时,控制第一摄像头1302获取预览图像。确定模块1202可由处理器1301调用存储器1303中存储的程序或指令,根据预览图像确定第一摄像头1302的目标对焦位置。驱动模块1203可由处理器1301调用存储器1303中存储的程序或指令,控制第一驱动组件驱动光线调整组件移动进行对焦。
本申请中,终端设备可包括第一摄像头、第二摄像头和第三摄像头。其中,所述第一摄像头和所述第二摄像头均为定焦摄像头,所述第三摄像头为广角摄像头;所述第一摄像头的倍率为A1,所述第二摄像头的倍率为A2,所述第三摄像头的倍率为A3;其中,所述A2大于1且小于所述A1,所述A3小于1。
进一步,可选地,所述终端设备还包括深度摄像头。
在一种可能的实现方式中,所述A1的取值范围为[8,12]。
在一种可能的实现方式中,第一摄像头包括摄像模组,该摄像模组可包括第一驱动组件、光学镜头组件、光线调整组件和图像传感器,所述光线调整组件和所述图像传感器沿所述光学镜头组件的主光轴的方向依次设置;所述光学镜头组件用于接收来自被摄物体的 光线;所述光线调整组件用于对所述光学镜头组件传播过来的光线进行光路折叠;所述第一驱动组件用于驱动所述光线调整组件移动,使得光路折叠后的光线聚焦至所述图像传感器;所述图像传感器用于根据聚焦后的光线成像。关于摄像模组更详细的介绍可参见上述图3至图9所示的摄像模组的相关描述,此处不再一一赘述。
需要说明的是,在上述任一实施例中,用户拍照过程中的拍摄倍率和摄像头(例如第一摄像头、第二摄像头、第三摄像头)本身的倍率也可以用“数字+x”的形式表示,例如,拍摄倍率0.8也可以表示为0.8x;再比如,A1的取值范围为[8,12]也可以表示[8x,12x]。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(central processing unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(random access memory,RAM)、闪存、只读存储器(read-only memory,ROM)、可编程只读存储器(programmableROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically ePROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于终端设备中。当然,处理器和存储介质也可以作为分立组件存在于终端设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘(digital video disc,DVD);还可以是半导体介质,例如,固态硬盘(solid state drive,SSD)。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。本申请中,“垂直”可以不是指绝对的垂直,可以允许有一定工程上的误差。30度、45度、60度、90度、120度、135度、或150度等角度,也可以允许有一定工程上的误差。本申请中,符号“(a,b)”表示开区间,范围为大于a且小于b;“[a,b]”表示闭区间,范围为大于或等于a且小于或等于b;“(a,b]”表示半开半闭区间,范围为大于a且小于或等于b;“(a,b]”表示半开半闭区间,范围为大于a且小于或等于b。本申请中,反射面是指可以对入射光进行反射的面;反射面的长度是指反射面的长,反射面的宽度是指反射面的宽,例如,第一反射面a的长度L a指反射面a的长为L a,第一反射面a的宽度为K a指反射面a的宽为K a
可以理解的是,在本申请中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。术语“第一”、“第二”、“第三”、“第十一”、“第十二”等是用于分区别类似的对象,而不必用于描述特定的顺序或先后次序。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元。方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的方案进行示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (86)

  1. 一种摄像模组,其特征在于,包括第一驱动组件、光学镜头组件、光线调整组件和图像传感器,所述光线调整组件和所述图像传感器沿所述光学镜头组件的主光轴的方向依次设置;
    所述光学镜头组件,用于接收来自被摄物体的光线;
    所述光线调整组件,用于对所述光学镜头组件传播过来的光线进行光路折叠;
    所述第一驱动组件,用于驱动所述光线调整组件移动,使得光路折叠后的光线聚焦至所述图像传感器;
    所述图像传感器,用于根据聚焦后的光线成像。
  2. 如权利要求1所述的摄像模组,其特征在于,所述光线调整组件包括M个第一反射面和M个第二反射面;所述M个第一反射面依次相接、且任意相邻两个第一反射面之间的夹角为θ 1,所述θ 1大于0度且小于180度;所述M个第二反射面依次相接、且任意相邻两个第二反射面之间的夹角为θ 2,所述θ 2大于0度且小于180度;所述M个第一反射面与所述M个第二反射面一一相对设置,所述M为大于或等于2的整数;
    其中,与所述光学镜头组件最邻近的第一反射面用于接收和反射来自所述光学镜头组件的光线;与所述图像传感器最邻近的第一反射面用于将所述光路折叠后的光线反射至所述图像传感器。
  3. 如权利要求2所述的摄像模组,其特征在于,所述M个第一反射面形成的第一层状结构与所述M个第二反射面形成的第二层状结构互不重叠。
  4. 如权利要求2或3所述的摄像模组,其特征在于,第i第一反射面与第i第二反射面平行;其中,所述第i第一反射面与所述第i第二反射面相对设置;所述第i第一反射面为所述M个第一反射面中的一个,所述第i第二反射面为所述M个第二反射面中的一个。
  5. 如权利要求2至4任一项所述的摄像模组,其特征在于,所述光线调整组件具体用于:
    对所述光学镜头组件传播过来的光线进行2M次光路折叠。
  6. 如权利要求2至5任一项所述的摄像模组,其特征在于,所述θ 1大于或等于60度且小于或等于120度,所述θ 2大于或等于60度且小于或等于120度。
  7. 如权利要求2至5任一项所述的摄像模组,其特征在于,所述θ 1为30度、45度、60度、90度、120度、135度、或150度;
    所述θ 2为30度、45度、60度、90度、120度、135度、或150度。
  8. 如权利要求2至6任一项所述的摄像模组,其特征在于,所述M个第一反射面包括:M/2个依次相接的L型反射镜的反射面,其中,任意一个L型反射镜包括两个反射面;或M个依次相接的反射镜的反射面;或M/2个依次相接的直角棱镜的反射面;或依次相接的P个反射镜和Q个直角棱镜的反射面,其中,任意一个直角棱镜包括两个反射面,P+2Q=M,所述P和所述Q均为正整数。
  9. 如权利要求2至6任一项、或8所述的摄像模组,其特征在于,所述M个第二反射面包括:M/2个依次相接的L型反射镜的反射面,其中,任意一个L型反射镜包括两个反射面;或M个依次相接的反射镜的反射面;或M/2个依次相接的直角棱镜的反射面;或依次相接的K个反射镜和L个直角棱镜的反射面,其中,任意一个直角棱镜包括两个反 射面,K+2L=M,所述K和所述L均为正整数。
  10. 如权利要求2至6任一项所述的摄像模组,其特征在于,所述M=2时,所述两个第一反射面为一个L型反射镜的两个互相垂直的反射面,所述两个第二反射面为一个直角棱镜的两个互相垂直的反射面。
  11. 如权利要求2至10任一项所述的摄像模组,其特征在于,所述第一驱动组件具体用于:
    驱动所述M个第一反射面沿第一方向移动,和/或,驱动所述M个第二反射面沿第二方向移动;
    其中,所述第一方向与所述第二方向相反,且所述第一方向和所述第二方向均为垂直于所述主光轴的方向。
  12. 如权利要求2至10任一项所述的摄像模组,其特征在于,所述第一驱动组件具体用于:
    驱动所述M个第一反射面沿垂直于所述主光轴的方向移动。
  13. 如权利要求2至12任一项所述的摄像模组,其特征在于,所述第一驱动组件,还用于:
    驱动所述M个第一反射面和/或所述M个第二反射面沿第三方向移动,以对来自所述光学镜头组件的光线进行抖动补偿;
    其中,所述第三方向为平行于所述主光轴的方向。
  14. 如权利要求13所述的摄像模组,其特征在于,所述第一驱动组件,具体用于:
    驱动所述M个第一反射面和/或所述M个第二反射面沿所述第三方向移动的距离小于预设距离。
  15. 如权利要求1所述的摄像模组,其特征在于,所述光线调整组件包括一个L型反射镜和一个直角棱镜;
    所述L型反射镜包括互相垂直的第十一反射面和第十二反射面;所述直角棱镜包括互相垂直的第十三反射面和第十四反射面;所述第十一反射面与所述第十三反射面相对设置且相互平行,所述第十二反射面与所述第十四反射面相对设置且相互平行;
    其中,来自所述光学镜头组件的光线依次经过所述第十一反射面、所述第十三反射面、所述第十四反射面和所述第十二反射面反射至所述图像传感器。
  16. 如权利要求15所述的摄像模组,其特征在于,所述L型反射镜的所述第十一反射面与所述主光轴之间的夹角呈45度;所述L型反射镜的所述第十二反射面与所述主光轴之间的夹角呈45度。
  17. 如权利要求15或16所述的摄像模组,其特征在于,所述直角棱镜的所述第十三反射面与所述主光轴之间的夹角呈45度,所述直角棱镜的所述第十四反射面与所述主光轴之间的夹角呈45度。
  18. 如权利要求15至17任一项所述的摄像模组,其特征在于,来自所述光学镜头组件的光线以45度的入射角射入所述L型反射镜的所述第十一反射面时,经所述L型反射镜的所述第十二反射面反射至所述图像传感器的光线平行于所述主光轴的方向。
  19. 如权利要求15至18任一项所述的摄像模组,其特征在于,所述L型反射镜的开口方向与所述直角棱镜的直角的开口方向相同。
  20. 如权利要求15至19任一项所述的摄像模组,其特征在于,所述第一驱动组件具 体用于:
    驱动所述L型反射镜沿第一方向移动,和/或,驱动所述直角棱镜沿第二方向移动;
    其中,所述第一方向与所述第二方向相反,且所述第一方向和所述第二方向均为垂直于所述主光轴的方向。
  21. 如权利要求15至19任一项所述的摄像模组,其特征在于,所述第一驱动组件具体用于:
    驱动所述L型反射镜沿垂直于所述主光轴的方向移动。
  22. 如权利要求15至21任一项所述的摄像模组,其特征在于,所述第一驱动组件,还用于:
    驱动所述L型反射镜和/或所述直角棱镜沿第三方向移动,以对来自所述光学镜头组件的光线进行抖动补偿;
    其中,所述第三方向为平行于所述主光轴的方向。
  23. 如权利要求13所述的摄像模组,其特征在于,所述第一驱动组件,具体用于:
    驱动所述L型反射镜和/或所述直角棱镜沿所述第三方向移动的距离小于预设距离。
  24. 如权利要求1至23任一项所述的摄像模组,其特征在于,所述摄像模组还包括抖动补偿组件,所述光学镜头组件位于所述抖动补偿组件和所述光线调整组件之间,所述抖动补偿组件包括第二驱动组件和第三反射面;
    所述第三反射面,用于接收来自所述被摄物体的光线;
    所述第二驱动组件,用于驱动所述第三反射面转动,以对来自所述被摄物体的所述光线进行抖动补偿,并将抖动补偿后的光线射入所述光学镜头组件。
  25. 如权利要求24所述的摄像模组,其特征在于,所述第三反射面与所述主光轴之间的夹角为θ 3,所述θ 3大于0度且小于90度。
  26. 一种终端设备,其特征在于,包括第一摄像头、存储器和处理器;
    所述第一摄像头包括如权利要求1~25任一项所述的摄像模组;
    所述存储器用于存储程序或指令;
    所述处理器用于调用所述程序或指令控制所述第一摄像头获取第一图像。
  27. 如权利要求26所述的终端设备,其特征在于,所述终端设备还包括广角摄像头。
  28. 如权利要求26或27所述的终端设备,其特征在于,所述第一摄像头为定焦摄像头,所述第一摄像头的倍率为A1;其中,所述A1的取值范围为[8,12]。
  29. 如权利要求26至28任一项所述的终端设备,其特征在于,所述终端设备还包括第二摄像头,所述第二摄像头为定焦摄像头,所述第二摄像头的倍率为A2;其中,所述A2大于1且小于所述A1。
  30. 一种成像方法,其特征在于,应用于终端设备,所述终端设备包括第一摄像头,所述第一摄像头包括光线调整组件,所述光线调整组件用于对所述第一摄像头获得的光线进行光路折叠;
    所述方法包括:
    获取拍摄倍率;
    当所述拍摄倍率大于倍率阈值时,通过所述第一摄像头获取预览图像;
    根据所述预览图像确定所述第一摄像头的目标对焦位置;
    根据所述目标对焦位置,驱动所述光线调整组件移动进行对焦。
  31. 如权利要求30所述的方法,其特征在于,所述倍率阈值的取值范围为[5,10)。
  32. 如权利要求30或31所述的方法,其特征在于,所述根据所述预览图像确定所述第一摄像头的目标对焦位置,包括:
    根据所述预览图像的中心区域,确定出所述目标对焦位置;或者,
    接收用户对所述预览图像的对焦操作,将响应于所述对焦操作的对焦位置确定为所述目标对焦位置。
  33. 如权利要求30至32任一项所述的方法,其特征在于,所述根据所述目标对焦位置,驱动所述光线调整组件移动进行对焦,包括:
    根据所述目标对焦位置,确定所述光线调整组件的目标位置;
    根据所述目标位置,驱动所述光线调整组件移动进行对焦。
  34. 如权利要求30至33任一项所述的方法,其特征在于,所述第一摄像头为定焦摄像头,所述第一摄像头的倍率为A1;其中,所述A1的取值范围为[8,12]。
  35. 如权利要求30至34任一项所述的方法,其特征在于,所述终端设备还包括第二摄像头,所述第二摄像头为定焦摄像头;所述方法还包括:
    当所述拍摄倍率大于1且小于或等于倍率阈值时,通过所述第二摄像头获取第二图像,所述第二摄像头的倍率为A2;其中,所述A2大于1且小于A1。
  36. 如权利要求30至35任一项所述的方法,其特征在于,所述终端设备还包括光学镜头组件和图像传感器,所述光线调整组件和所述图像传感器沿所述光学镜头组件的主光轴的方向依次设置。
  37. 如权利要求36所述的方法,其特征在于,所述光线调整组件包括M个第一反射面和M个第二反射面;所述M个第一反射面依次相接、且任意相邻两个第一反射面之间的夹角为θ 1,所述θ 1大于0度且小于180度;所述M个第二反射面依次相接、且任意相邻两个第二反射面之间的夹角为θ 2,所述θ 2大于0度且小于180度;所述M个第一反射面与所述M个第二反射面一一相对设置,所述M为大于或等于2的整数;
    其中,与所述光学镜头组件最邻近的第一反射面用于接收和反射来自所述光学镜头组件的光线;与所述图像传感器最邻近的第一反射面用于将所述光路折叠后的光线反射至所述图像传感器。
  38. 如权利要求37所述的方法,其特征在于,所述M个第一反射面形成的第一层状结构与所述M个第二反射面形成的第二层状结构互不重叠。
  39. 如权利要求37或38所述的方法,其特征在于,第i个第一反射面与第i第二反射面平行;所述第i第一反射面与所述第i第二反射面相对设置;所述第i第一反射面为所述M个第一反射面中的一个;所述第i第二反射面为所述M个第二反射面中的一个。
  40. 如权利要37至39任一项所述的方法,其特征在于,所述光线调整组件具体用于对所述光学镜头组件传播过来的光线进行2M次光路折叠。
  41. 如权利要求37至40任一项所述的方法,其特征在于,所述M个第一反射面包括:M/2个依次相接的L型反射镜的反射面,其中,任意一个L型反射镜包括两个反射面;或M个依次相接的反射镜的反射面;或M/2个依次相接的直角棱镜的反射面;或依次相接的P个反射镜和Q个直角棱镜的反射面,其中,任意一个直角棱镜包括两个反射面,P+2Q=M,所述P和所述Q均为正整数。
  42. 如权利要求37至41任一项所述的方法,其特征在于,所述M个第二反射面包括: M/2个依次相接的L型反射镜的反射面,其中,任意一个L型反射镜包括两个反射面;或M个依次相接的反射镜的反射面;或M/2个依次相接的直角棱镜的反射面;或依次相接的K个反射镜和L个直角棱镜的反射面,其中,任意一个直角棱镜包括两个反射面,K+2L=M,所述K和所述L均为正整数。
  43. 如权利要求37至40任一项所述的方法,其特征在于,所述M=2时,所述两个第一反射面为一个L型反射镜的两个相互垂直的反射面,所述两个第二反射面为一个直角棱镜的两个互相垂直的反射面。
  44. 如权利要求37至43任一项所述的方法,其特征在于,所述根据所述目标对焦位置,驱动所述光线调整组件移动进行对焦,包括:
    驱动所述M个第一反射面沿第一方向移动,和/或,驱动所述M个第二反射面沿第二方向移动,并移动至所述目标对焦位置;其中,所述第一方向与所述第二方向相反,且所述第一方向和所述第二方向均为垂直于所述主光轴的方向。
  45. 如权利要求37至43任一项所述的方法,其特征在于,所述根据所述目标对焦位置,驱动所述光线调整组件移动进行对焦,包括:
    驱动所述M个第一反射面沿垂直于所述主光轴的方向移动,并移动至所述目标对焦位置。
  46. 如权利要求37至45任一项所述的方法,其特征在于,所述方法还包括:
    驱动所述M个第一反射面和/或所述M个第二反射面沿第三方向移动,以对来自所述光学镜头组件的光线进行抖动补偿;其中,所述第三方向平行于所述主光轴的方向。
  47. 如权利要求30所述的方法,其特征在于,所述光线调整组件包括一个L型反射镜和一个直角棱镜;
    所述L型反射镜包括互相垂直的第十一反射面和第十二反射面;所述直角棱镜包括互相垂直的第十三反射面和第十四反射面;所述第十一反射面与所述第十三反射面相对设置且相互平行,所述第十二反射面与所述第十四反射面相对设置且相互平行;
    其中,来自所述光学镜头组件的光线依次经过所述第十一反射面、所述第十三反射面、所述第十四反射面和所述第十二反射面反射至所述图像传感器。
  48. 如权利要求47所述的方法,其特征在于,所述L型反射镜的所述第十一反射面与所述主光轴之间的夹角呈45度;所述L型反射镜的所述第十二反射面与所述主光轴之间的夹角呈45度。
  49. 如权利要求47或48所述的方法,其特征在于,所述直角棱镜的所述第十三反射面与所述主光轴之间的夹角呈45度,所述直角棱镜的所述第十四反射面与所述主光轴之间的夹角呈45度。
  50. 如权利要求47至49任一项所述的方法,其特征在于,来自所述光学镜头组件的光线以45度的入射角射入所述L型反射镜的所述第十一反射面时,经所述L型反射镜的所述第十二反射面反射至所述图像传感器的光线平行于所述主光轴的方向。
  51. 如权利要求47至50任一项所述的方法,其特征在于,所述L型反射镜的开口方向与所述直角棱镜的直角的开口方向相同。
  52. 如权利要求47至51任一项所述的方法,其特征在于,所述根据所述目标对焦位置,驱动所述光线调整组件移动进行对焦,包括:
    驱动所述L型反射镜沿第一方向移动,和/或,驱动所述直角棱镜沿第二方向移动;
    其中,所述第一方向与所述第二方向相反,且所述第一方向和所述第二方向均为垂直于所述主光轴的方向。
  53. 如权利要求47至51任一项所述的方法,其特征在于,所述根据所述目标对焦位置,驱动所述光线调整组件移动进行对焦,包括:
    驱动所述L型反射镜沿垂直于所述主光轴的方向移动。
  54. 如权利要求47至53任一项所述的方法,其特征在于,所述方法还包括:
    驱动所述L型反射镜和/或所述直角棱镜沿第三方向移动,以对来自所述光学镜头组件的光线进行抖动补偿;
    其中,所述第三方向为平行于所述主光轴的方向。
  55. 如权利要求54所述的方法,其特征在于,所述驱动所述L型反射镜和/或所述直角棱镜沿第三方向移动,包括:
    驱动所述L型反射镜和/或所述直角棱镜沿所述第三方向移动的距离小于预设距离。
  56. 一种成像装置,其特征在于,应用于终端设备,所述终端设备包括第一摄像头,所述第一摄像头包括光线调整组件,所述光线调整组件用于对所述第一摄像头获得的光线进行光路折叠;
    所述成像装置包括:
    获取模块,用于获取拍摄倍率,当所述拍摄倍率大于倍率阈值时,通过所述第一摄像头获取预览图像;
    确定模块,用于根据所述预览图像确定所述第一摄像头的目标对焦位置;
    驱动模块,用于根据所述目标对焦位置,驱动所述光线调整组件移动进行对焦。
  57. 如权利要求56所述的成像装置,其特征在于,所述倍率阈值的取值范围为[5,10)。
  58. 如权利要求56或57所述的成像装置,其特征在于,所述确定模块,具体用于:
    根据所述预览图像的中心区域,确定出所述目标对焦位置;或者,
    接收用户对所述预览图像的对焦操作,将响应于所述对焦操作的对焦位置确定为所述目标对焦区域。
  59. 如权利要求56至58任一项所述的成像装置,其特征在于,所述驱动模块,具体用于:
    根据所述目标对焦位置,确定所述光线调整组件的目标位置;
    根据所述目标位置,驱动所述光线调整组件移动进行对焦。
  60. 如权利要求56至58任一项所述的成像装置,其特征在于,所述第一摄像头为定焦摄像头,所述第一摄像头的倍率为A1;其中,所述A1的取值范围为[8,12]。
  61. 如权利要求56至60任一项所述的成像装置,其特征在于,所述终端设备还包括第二摄像头,所述第二摄像头为定焦摄像头;
    所述获取模块还用于:
    当所述拍摄倍率大于1且小于或等于倍率阈值时,通过所述第二摄像头获取第二图像,所述第二摄像头的倍率为A2;其中,所述A2大于1且小于A1。
  62. 如权利要求56至61任一项所述的成像装置,其特征在于,所述终端设备还包括光学镜头组件和图像传感器,所述光线调整组件和所述图像传感器沿所述光学镜头组件的主光轴的方向依次设置。
  63. 如权利要求62所述的成像装置,其特征在于,所述光线调整组件包括M个第一 反射面和M个第二反射面;所述M个第一反射面依次相接、且任意相邻两个第一反射面之间的夹角为θ 1,所述θ 1大于0度且小于180度;所述M个第二反射面依次相接、且任意相邻两个第二反射面之间的夹角为θ 2,所述θ 2大于0度且小于180度;所述M个第一反射面与所述M个第二反射面一一相对设置,所述M为大于或等于2的整数;
    其中,与所述光学镜头组件最邻近的第一反射面用于接收和反射来自所述光学镜头组件的光线;与所述图像传感器最邻近的第一反射面用于将所述光路折叠后的光线反射至所述图像传感器。
  64. 如权利要求63所述的成像装置,其特征在于,所述M个第一反射面形成的第一层状结构与所述M个第二反射面形成的第二层状结构互不重叠。
  65. 如权利要求63或64所述的成像装置,其特征在于,第i个第一反射面与第i第二反射面平行;所述第i第一反射面与所述第i第二反射面相对设置;所述第i第一反射面为所述M个第一反射面中的一个;所述第i第二反射面为所述M个第二反射面中的一个。
  66. 如权利要求63至65任一项所述的成像装置,其特征在于,所述光线调整组件具体用于对所述光学镜头组件传播过来的光线进行2M次光路折叠。
  67. 如权利要求63至66任一项所述的成像装置,其特征在于,所述M个第一反射面包括:M/2个依次相接的L型反射镜的反射面,其中,任意一个L型反射镜包括两个反射面;或M个依次相接的反射镜的反射面;或M/2个依次相接的直角棱镜的反射面;或依次相接的P个反射镜和Q个直角棱镜的反射面,其中,任意一个直角棱镜包括两个反射面,P+2Q=M,所述P和所述Q均为正整数。
  68. 如权利要求63至67任一项所述的成像装置,其特征在于,所述M个第二反射面包括:M/2个依次相接的L型反射镜的两个反射面,其中,任意一个L型反射镜包括两个反射面;或M个依次相接的反射镜的反射面;或M/2个依次相接的直角棱镜的反射面;或依次相接的K个反射镜和L个直角棱镜的反射面,其中,任意一个直角棱镜包括两个反射面,K+2L=M,所述K和所述L均为正整数。
  69. 如权利要求63至66任一项所述的成像装置,其特征在于,所述M=2时,所述两个第一反射面为一个L型反射镜的两个互相垂直的反射面,所述两个第二反射面为一个直角棱镜的两个互相垂直的反射面。
  70. 如权利要求63至69任一项所述的成像装置,其特征在于,所述驱动模块,具体用于:
    驱动所述M个第一反射面沿第一方向移动,和/或,驱动所述M个第二反射面沿第二方向移动;其中,所述第一方向与所述第二方向相反,且所述第一方向和所述第二方向均为垂直于所述主光轴的方向。
  71. 如权利要求63至69任一项所述的成像装置,其特征在于,所述驱动模块,具体用于:
    驱动所述M个第一反射面沿垂直于所述主光轴的方向移动。
  72. 如权利要求63至71任一项所述的成像装置,其特征在于,所述驱动模块,还用于:
    驱动所述M个第一反射面和/或所述M个第二反射面沿第三方向移动,以对来自所述光学镜头组件的光线进行抖动补偿;其中,所述第三方向平行于所述主光轴的方向。
  73. 如权利要求56所述的成像装置,其特征在于,所述光线调整组件包括一个L型 反射镜和一个直角棱镜;
    所述L型反射镜包括互相垂直的第十一反射面和第十二反射面;所述直角棱镜包括互相垂直的第十三反射面和第十四反射面;所述第十一反射面与所述第十三反射面相对设置且相互平行,所述第十二反射面与所述第十四反射面相对设置且相互平行;
    其中,来自所述光学镜头组件的光线依次经过所述第十一反射面、所述第十三反射面、所述第十四反射面和所述第十二反射面反射至所述图像传感器。
  74. 如权利要求73所述的成像装置,其特征在于,所述L型反射镜的所述第十一反射面与所述主光轴之间的夹角呈45度;所述L型反射镜的所述第十二反射面与所述主光轴之间的夹角呈45度。
  75. 如权利要求73或74所述的成像装置,其特征在于,所述直角棱镜的所述第十三反射面与所述主光轴之间的夹角呈45度,所述直角棱镜的所述第十四反射面与所述主光轴之间的夹角呈45度。
  76. 如权利要求73至75任一项所述的成像装置,其特征在于,来自所述光学镜头组件的光线以45度的入射角射入所述L型反射镜的所述第十一反射面时,经所述L型反射镜的所述第十二反射面反射至所述图像传感器的光线平行于所述主光轴的方向。
  77. 如权利要求73至76任一项所述的成像装置,其特征在于,所述L型反射镜的开口方向与所述直角棱镜的直角的开口方向相同。
  78. 如权利要求73至77任一项所述的成像装置,其特征在于,所述驱动模块,具体用于驱动所述L型反射镜沿第一方向移动,和/或,驱动所述直角棱镜沿第二方向移动;
    其中,所述第一方向与所述第二方向相反,且所述第一方向和所述第二方向均为垂直于所述主光轴的方向。
  79. 如权利要求73至77任一项所述的成像装置,其特征在于,所述驱动模块,具体用于驱动所述L型反射镜沿垂直于所述主光轴的方向移动。
  80. 如权利要求73至79任一项所述的成像装置,其特征在于,所述驱动模块,还用于驱动所述L型反射镜和/或所述直角棱镜沿第三方向移动,以对来自所述光学镜头组件的光线进行抖动补偿;其中,所述第三方向为平行于所述主光轴的方向。
  81. 如权利要求80所述的成像装置,其特征在于,所述驱动模块,具体用于驱动所述L型反射镜和/或所述直角棱镜沿所述第三方向移动的距离小于预设距离。
  82. 一种终端设备,其特征在于,包括存储器、处理器和第一摄像头,所述第一摄像头包括光线调整组件,所述光线调整组件用于对所述第一摄像头获取的光线进行光路折叠;
    所述存储器,用于存储程序或指令;
    所述处理器,用于调用所述程序或指令,以使得所述终端设备执行如权利要求30至55任一项所述的方法。
  83. 一种终端设备,其特征在于,包括第一摄像头、第二摄像头和第三摄像头;
    所述第一摄像头和所述第二摄像头均为定焦摄像头,所述第三摄像头为广角摄像头;所述第一摄像头的倍率为A1,所述第二摄像头的倍率为A2,所述第三摄像头的倍率为A3;其中,所述A2大于1且小于所述A1,所述A3小于1。
  84. 如权利要求83所述的终端设备,其特征在于,所述A1的取值范围为[8,12]。
  85. 如权利要求83或84所述的终端设备,其特征在于,所述终端设备还包括深度摄像头。
  86. 如权利要求83至85任一项所述的终端设备,其特征在于,所述第一摄像头包括摄像模组,所述摄像模组包括第一驱动组件、光学镜头组件、光线调整组件和图像传感器,所述光线调整组件和所述图像传感器沿所述光学镜头组件的主光轴的方向依次设置;
    所述光学镜头组件,用于接收来自被摄物体的光线;所述光线调整组件,用于对所述光学镜头组件传播过来的光线进行光路折叠;所述第一驱动组件,用于驱动所述光线调整组件移动,使得光路折叠后的光线聚焦至所述图像传感器;所述图像传感器,用于根据聚焦后的光线成像。
PCT/CN2020/083844 2019-05-05 2020-04-08 一种摄像模组、终端设备、成像方法及成像装置 WO2020224371A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021565767A JP7313478B2 (ja) 2019-05-05 2020-04-08 コンパクトカメラモジュール、端末デバイス、画像化方法、及び画像化装置
BR112021022190A BR112021022190A2 (pt) 2019-05-05 2020-04-08 Módulo de câmera compacta, dispositivo terminal, método de geração de imagem, e aparelho de geração de imagem
KR1020217039586A KR102606609B1 (ko) 2019-05-05 2020-04-08 카메라 모듈, 단말 디바이스, 촬상 방법 및 촬상 장치
EP20802338.2A EP3955562B1 (en) 2019-05-05 2020-04-08 Camera module, terminal device, imaging method and imaging apparatus
US17/517,208 US11796893B2 (en) 2019-05-05 2021-11-02 Compact camera module and terminal device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910367026.2 2019-05-05
CN201910367026.2A CN110913096A (zh) 2019-05-05 2019-05-05 一种摄像模组及电子设备
CN202010214891.6 2020-03-24
CN202010214891.6A CN111901503B (zh) 2019-05-05 2020-03-24 一种摄像模组、终端设备、成像方法及成像装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/517,208 Continuation US11796893B2 (en) 2019-05-05 2021-11-02 Compact camera module and terminal device

Publications (1)

Publication Number Publication Date
WO2020224371A1 true WO2020224371A1 (zh) 2020-11-12

Family

ID=73051425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/083844 WO2020224371A1 (zh) 2019-05-05 2020-04-08 一种摄像模组、终端设备、成像方法及成像装置

Country Status (6)

Country Link
US (1) US11796893B2 (zh)
EP (1) EP3955562B1 (zh)
JP (1) JP7313478B2 (zh)
KR (1) KR102606609B1 (zh)
BR (1) BR112021022190A2 (zh)
WO (1) WO2020224371A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112565568A (zh) * 2020-12-01 2021-03-26 广东省科学院半导体研究所 动态监控摄像装置和动态监控方法
EP4236293A4 (en) * 2020-12-04 2024-04-17 Samsung Electronics Co., Ltd. CAMERA MODULE AND ELECTRONIC DEVICE INCLUDING SAME

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111917946B (zh) * 2019-05-10 2021-11-19 荣耀终端有限公司 摄像模组及电子设备
US11693221B2 (en) * 2019-12-25 2023-07-04 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Camera module, camera assembly, and electronic device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1885081A (zh) * 2005-06-22 2006-12-27 郭鸿宾 利用调整物像距于光学放大系统的光学变倍方法
EP1748310A2 (en) * 2005-07-27 2007-01-31 Sony Corporation Imaging lens device and imaging apparatus
US20100007771A1 (en) * 2008-07-11 2010-01-14 Samsung Digital Imaging Co., Ltd. Digital photographing apparatus, method of controlling the same, and recording medium storing program to execute the method
US20140232846A1 (en) * 2013-02-21 2014-08-21 Canon Kabushiki Kaisha Image acquisition apparatus and image acquisition system
WO2015134173A1 (en) * 2014-03-07 2015-09-11 Apple Inc. Folded telephoto camera lens systems
US20160223885A1 (en) * 2015-02-03 2016-08-04 Samsung Electronics Co., Ltd. Photographing apparatus, method of operating the photographing apparatus, and wireless communication terminal including the photographing apparatus
CN107241549A (zh) * 2017-06-16 2017-10-10 广东欧珀移动通信有限公司 双摄像头的成像方法和成像装置
US20180324349A1 (en) * 2017-01-23 2018-11-08 Gachisoft Inc. Camera adjusting focus using rotating method and object processing apparatus using the same
CN110913096A (zh) * 2019-05-05 2020-03-24 华为技术有限公司 一种摄像模组及电子设备

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1000085A (en) * 1971-12-13 1976-11-23 Richard A. Mecklenborg Focusing roll and displacement prisms
JPS57924B2 (zh) * 1974-05-30 1982-01-08
JPS51152746U (zh) 1975-05-30 1976-12-06
JPH0716840B2 (ja) 1988-08-17 1995-03-01 日立建機株式会社 微動機構
JPH06160545A (ja) * 1992-11-16 1994-06-07 Astecs Kk 広域遮光物検知器
JPH09230254A (ja) * 1995-12-22 1997-09-05 Asahi Optical Co Ltd 防振装置を備えた望遠鏡
JPH10230254A (ja) 1997-02-19 1998-09-02 Ebara Corp 軽量脱リン剤及びそれを用いた有機性汚水のリン除去方法
JPH11320165A (ja) * 1998-05-15 1999-11-24 Ricoh Microelectronics Co Ltd レーザー加工装置
JP4326104B2 (ja) 2000-03-14 2009-09-02 パナソニック株式会社 画像入力装置
JP3861815B2 (ja) * 2003-01-17 2006-12-27 コニカミノルタフォトイメージング株式会社 手振れ補正機能付きカメラ
JP2004013169A (ja) 2003-08-08 2004-01-15 Ricoh Co Ltd ズームレンズにおける変倍群・ズームレンズ・カメラ装置
ATE442332T1 (de) 2004-07-19 2009-09-15 Otis Elevator Co Aufzugskabinenführungsvorrichtung für einen aufzug ohne maschinenraum
TW200641392A (en) 2005-05-23 2006-12-01 hong-bin Guo An optical zoom method by adjusting objective image distance in an optical magnification system
DE102006009452B4 (de) 2005-10-20 2010-07-01 Carl Zeiss Surgical Gmbh Stereomikroskop
JP4788953B2 (ja) * 2005-11-16 2011-10-05 ソニー株式会社 撮像装置及びズームレンズ
JP2009526257A (ja) * 2006-02-06 2009-07-16 ノキア コーポレイション ジンバルプリズムを用いた光学像スタビライザ
US7436587B2 (en) 2006-03-23 2008-10-14 Mitutoyo Corporation Variable focal length constant magnification lens assembly
CN100456075C (zh) 2007-04-24 2009-01-28 浙江大学 多片式全景环视成像透镜
JP5398182B2 (ja) * 2008-07-04 2014-01-29 キヤノン株式会社 撮像装置、自動焦点検出方法及びプログラム
US9182595B2 (en) * 2011-06-02 2015-11-10 Nec Corporation Image display devices
EP2841991B1 (en) 2012-04-05 2020-01-08 Magic Leap, Inc. Wide-field of view (fov) imaging devices with active foveation capability
CN103676405A (zh) * 2013-12-02 2014-03-26 宇龙计算机通信科技(深圳)有限公司 光学成像装置、光学系统和移动终端
KR102143631B1 (ko) * 2013-12-12 2020-08-11 삼성전자주식회사 줌 렌즈 및 이를 포함하는 촬상 장치
US9557627B2 (en) 2014-03-07 2017-01-31 Apple Inc. Folded camera lens systems
US9549107B2 (en) * 2014-06-20 2017-01-17 Qualcomm Incorporated Autofocus for folded optic array cameras
US20160044247A1 (en) * 2014-08-10 2016-02-11 Corephotonics Ltd. Zoom dual-aperture camera with folded lens
CN204119330U (zh) 2014-09-04 2015-01-21 成都凯裕电子电器有限公司 一种安装于移动终端可切换移轴镜头的光学模块
JP6576046B2 (ja) * 2015-02-03 2019-09-18 キヤノン株式会社 複眼撮像装置
EP3306388A1 (en) * 2015-06-01 2018-04-11 Olympus Corporation Imaging unit
CN105959525B (zh) 2016-06-16 2019-01-15 维沃移动通信有限公司 一种拍摄控制方法、摄像头模组及移动终端
KR102426728B1 (ko) * 2017-04-10 2022-07-29 삼성전자주식회사 포커스 제어 방법 및 이를 지원하는 전자 장치
CN107317896B (zh) 2017-06-29 2020-07-07 努比亚技术有限公司 一种双摄像头装置及移动终端
CN107370934A (zh) 2017-09-19 2017-11-21 信利光电股份有限公司 一种多摄像头模组
CN107490845B (zh) 2017-09-30 2019-06-04 信利光电股份有限公司 一种可变焦距摄像模组
CN107896298A (zh) 2017-11-28 2018-04-10 信利光电股份有限公司 一种摄像头装置及电子设备
CN207691912U (zh) 2017-12-28 2018-08-03 深圳奥比中光科技有限公司 小体积的光场成像模组
CN208174825U (zh) 2018-05-09 2018-11-30 深圳阜时科技有限公司 一种镜头模组、图像获取装置、身份识别装置及电子设备
CN110646932B (zh) 2019-09-27 2022-05-17 Oppo广东移动通信有限公司 反射式摄像头和电子装置
CN110515189A (zh) 2019-09-27 2019-11-29 Oppo广东移动通信有限公司 离轴折反式摄像头和电子装置
CN110888216B (zh) 2019-11-04 2021-10-22 荣耀终端有限公司 光学镜头、镜头模组以及终端

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1885081A (zh) * 2005-06-22 2006-12-27 郭鸿宾 利用调整物像距于光学放大系统的光学变倍方法
EP1748310A2 (en) * 2005-07-27 2007-01-31 Sony Corporation Imaging lens device and imaging apparatus
US20100007771A1 (en) * 2008-07-11 2010-01-14 Samsung Digital Imaging Co., Ltd. Digital photographing apparatus, method of controlling the same, and recording medium storing program to execute the method
US20140232846A1 (en) * 2013-02-21 2014-08-21 Canon Kabushiki Kaisha Image acquisition apparatus and image acquisition system
WO2015134173A1 (en) * 2014-03-07 2015-09-11 Apple Inc. Folded telephoto camera lens systems
US20160223885A1 (en) * 2015-02-03 2016-08-04 Samsung Electronics Co., Ltd. Photographing apparatus, method of operating the photographing apparatus, and wireless communication terminal including the photographing apparatus
US20180324349A1 (en) * 2017-01-23 2018-11-08 Gachisoft Inc. Camera adjusting focus using rotating method and object processing apparatus using the same
CN107241549A (zh) * 2017-06-16 2017-10-10 广东欧珀移动通信有限公司 双摄像头的成像方法和成像装置
CN110913096A (zh) * 2019-05-05 2020-03-24 华为技术有限公司 一种摄像模组及电子设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112565568A (zh) * 2020-12-01 2021-03-26 广东省科学院半导体研究所 动态监控摄像装置和动态监控方法
EP4236293A4 (en) * 2020-12-04 2024-04-17 Samsung Electronics Co., Ltd. CAMERA MODULE AND ELECTRONIC DEVICE INCLUDING SAME

Also Published As

Publication number Publication date
KR102606609B1 (ko) 2023-11-29
EP3955562A1 (en) 2022-02-16
US11796893B2 (en) 2023-10-24
KR20220003088A (ko) 2022-01-07
EP3955562B1 (en) 2024-06-12
JP7313478B2 (ja) 2023-07-24
JP2022531015A (ja) 2022-07-05
EP3955562A4 (en) 2022-06-15
BR112021022190A2 (pt) 2022-01-18
US20220057693A1 (en) 2022-02-24

Similar Documents

Publication Publication Date Title
CN111901503B (zh) 一种摄像模组、终端设备、成像方法及成像装置
WO2020224371A1 (zh) 一种摄像模组、终端设备、成像方法及成像装置
JP6700345B2 (ja) フォールデッドオプティクスを用いたマルチカメラシステム
US9854182B2 (en) Folded optic array camera using refractive prisms
WO2020125204A1 (zh) 控制方法、控制装置、电子装置及介质
US20150286033A1 (en) Auto-focus in low-profile folded optics multi-camera system
WO2019129061A1 (zh) 一种镜头模组和镜头模组的控制方法
US20130100332A1 (en) Photographing apparatus and method
US11086099B2 (en) Light-folding camera and mobile device including the same
US9231004B2 (en) Solid-state imaging apparatus and imaging system
WO2021136215A1 (zh) 一种摄像方法、摄像模组和电子设备
KR20220035970A (ko) 광학 이미지 안정화 장치 및 제어 방법
WO2022002162A1 (zh) 一种电子设备和深度图像的拍摄方法
US20150168739A1 (en) Image stabilizer, camera system, and imaging method
WO2022021931A1 (zh) 一种摄像模组及终端设备
JP2007148051A (ja) 撮影レンズユニット
WO2022087786A1 (zh) 潜望式摄像模组及电子设备
KR20220108691A (ko) 렌즈 어셈블리 및 이를 포함하는 전자 장치
TW202409633A (zh) 光路轉折元件、相機模組與電子裝置
JP2012023562A (ja) 位相差検出用情報取得装置、位相差検出装置、撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20802338

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021565767

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021022190

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20217039586

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020802338

Country of ref document: EP

Effective date: 20211110

ENP Entry into the national phase

Ref document number: 112021022190

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20211105