Nothing Special   »   [go: up one dir, main page]

WO2020213130A1 - 空気調和装置の制御装置、室外機、中継機、熱源機及び空気調和装置 - Google Patents

空気調和装置の制御装置、室外機、中継機、熱源機及び空気調和装置 Download PDF

Info

Publication number
WO2020213130A1
WO2020213130A1 PCT/JP2019/016662 JP2019016662W WO2020213130A1 WO 2020213130 A1 WO2020213130 A1 WO 2020213130A1 JP 2019016662 W JP2019016662 W JP 2019016662W WO 2020213130 A1 WO2020213130 A1 WO 2020213130A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
control device
heat medium
heat exchanger
flow rate
Prior art date
Application number
PCT/JP2019/016662
Other languages
English (en)
French (fr)
Inventor
直毅 加藤
祐治 本村
仁隆 門脇
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201980095347.XA priority Critical patent/CN113661364B/zh
Priority to EP19925041.6A priority patent/EP3957925A4/en
Priority to PCT/JP2019/016662 priority patent/WO2020213130A1/ja
Priority to JP2021514749A priority patent/JP7209816B2/ja
Priority to US17/432,677 priority patent/US11927356B2/en
Publication of WO2020213130A1 publication Critical patent/WO2020213130A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/42Defrosting; Preventing freezing of outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/43Defrosting; Preventing freezing of indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature

Definitions

  • the present invention relates to a control device for an air conditioner, an outdoor unit, a repeater, a heat source unit, and an air conditioner.
  • an indirect air conditioner that generates cold / hot water by a heat source machine such as a heat pump and transports it to an indoor unit by a water pump and piping to cool and heat the room.
  • the water heat exchanger does not absorb heat from water to the refrigerant.
  • the defrosting time is prolonged, and as a result, the heating is interrupted for a long time, which lowers the room temperature, which may result in a decrease in comfort.
  • the present invention has been made to solve the above problems, and in an indirect air conditioner using a heat medium such as water or brine, the heat absorption from the heat medium is ensured while preventing the heat medium from freezing.
  • An object of the present invention is to provide a control device for an air conditioner capable of reducing the time required for defrosting operation.
  • the present disclosure relates to a control device that controls an air conditioner that operates in an operation mode including a heating mode and a defrosting mode.
  • the air conditioner is a compressor that compresses the first heat medium, a first heat exchanger that exchanges heat between the first heat medium and the outdoor air, and heat between the first heat medium and the second heat medium.
  • a plurality of flow control valves to be adjusted and a pump for circulating a second heat medium between the plurality of third heat exchangers and the second heat exchanger are provided.
  • the control device opens the flow control valve corresponding to the heat exchanger in which the air conditioning request is generated among the plurality of third heat exchangers, and the air conditioning request is not generated among the plurality of third heat exchangers.
  • the flow control valve corresponding to the heat exchanger is closed and the temperature of the second heat medium is lower than the first determination temperature in the defrost mode, the heat of some of the heat exchangers for which no air conditioning requirement is generated. Open the flow control valve corresponding to the exchanger. Some of these heat exchangers have a higher set priority than the residual heat exchangers for which no air conditioning requirements have arisen.
  • the defrosting time of the air conditioner is shortened, so that the comfort during air conditioning is improved.
  • FIG. It is a figure which shows the structure of the air conditioner which concerns on Embodiment 1.
  • FIG. It is a figure which shows the flow of the 1st heat medium and the 2nd heat medium during a heating operation. It is a figure which shows the flow of the 1st heat medium and the 2nd heat medium in a heating defrost operation (state A). It is a figure which shows the flow of the 1st heat medium and the 2nd heat medium in a heating defrost operation (state B). It is a waveform diagram for demonstrating an example of control of a heating defrost operation of Embodiment 1.
  • FIG. It is a figure which shows the structure of the control device which controls an air conditioner, and the remote control which controls a control device remotely.
  • FIG. It is a flowchart for demonstrating the control executed by the control apparatus in Embodiment 1.
  • FIG. It is a figure which shows the structure of the air conditioner of Embodiment 2. It is a flowchart for demonstrating the control executed by the control apparatus in Embodiment 2. It is a flowchart for demonstrating the control executed by the control apparatus in Embodiment 3. It is a flowchart for demonstrating the control executed by the control apparatus in Embodiment 4. It is a figure for demonstrating the determination of priority based on the frequency of use. It is a figure which shows the structure of the air conditioner of Embodiment 5. It is a flowchart for demonstrating the control executed by the control apparatus in Embodiment 5.
  • Embodiment 6 It is a flowchart for demonstrating the process executed in the priority setting mode in Embodiment 6. It is a flowchart for demonstrating the control executed by the control apparatus in Embodiment 6. It is a figure which shows the structure of the air conditioner 1F of Embodiment 7. It is a flowchart for demonstrating the control executed at the time of defrosting operation in Embodiment 7. It is a waveform diagram for demonstrating an example of the control of the heating defrosting operation executed in Embodiment 7.
  • FIG. 1 is a diagram showing a configuration of an air conditioner according to the first embodiment.
  • the air conditioner 1 includes a heat source device 2, an indoor air conditioner 3, and a control device 100.
  • the heat source unit 2 includes an outdoor unit 10 and a repeater 20.
  • a refrigerant can be exemplified as the first heat medium
  • water or brine can be exemplified as the second heat medium.
  • the outdoor unit 10 includes a part of a refrigeration cycle that operates as a heat source or a cold heat source for the first heat medium.
  • the outdoor unit 10 includes a compressor 11, a four-way valve 12, and a first heat exchanger 13.
  • FIG. 1 shows a case where the four-way valve 12 performs cooling or defrosting, and the heat source machine 2 acts as a cold heat source. If the four-way valve 12 is switched to reverse the circulation direction of the refrigerant, heating is performed, and the heat source machine 2 acts as a heat source.
  • the repeater 20 includes a second heat exchanger 22, a pump 23 that circulates the second heat medium between the indoor air conditioner 3, an expansion valve 24, and a pressure sensor that detects the differential pressure ⁇ P before and after the pump 23. 25 and a temperature sensor 26 for measuring the temperature of the second heat medium that has passed through the second heat exchanger 22.
  • the second heat exchanger 22 exchanges heat between the first heat medium and the second heat medium.
  • a plate heat exchanger can be used as the second heat exchanger 22.
  • the outdoor unit 10 and the repeater 20 are connected by pipes 4 and 5 for circulating the first heat medium.
  • the compressor 11, the four-way valve 12, the first heat exchanger 13, the expansion valve 24, and the second heat exchanger 22 form a first heat medium circuit, which is a refrigeration cycle using the first heat medium.
  • the outdoor unit 10 and the repeater 20 may be integrated.
  • the pipes 4 and 5 are housed inside the housing.
  • the indoor air conditioner 3 and the repeater 20 are connected by pipes 6 and 7 for circulating the second heat medium.
  • the indoor air conditioner 3 includes an indoor unit 30, an indoor unit 40, and an indoor unit 50.
  • the indoor units 30, 40, and 50 are connected to each other in parallel between the pipe 6 and the pipe 7.
  • the indoor unit 30 includes a heat exchanger 31, a fan 32 for sending indoor air to the heat exchanger 31, and a flow rate adjusting valve 33 for adjusting the flow rate of the second heat medium.
  • the heat exchanger 31 exchanges heat between the second heat medium and the indoor air.
  • the indoor unit 40 includes a heat exchanger 41, a fan 42 for sending indoor air to the heat exchanger 41, and a flow rate adjusting valve 43 for adjusting the flow rate of the second heat medium.
  • the heat exchanger 41 exchanges heat between the second heat medium and the indoor air.
  • the indoor unit 50 includes a heat exchanger 51, a fan 52 for sending indoor air to the heat exchanger 51, and a flow rate adjusting valve 53 for adjusting the flow rate of the second heat medium.
  • the heat exchanger 51 exchanges heat between the second heat medium and the indoor air.
  • a second heat medium circuit using the second heat medium is formed by the pump 23, the second heat exchanger 22, the heat exchanger 31, the heat exchanger 41, and the heat exchanger 51 connected in parallel. ing. Further, in the present embodiment, an air conditioner having three indoor units is given as an example, but the number of indoor units may be any number.
  • the control units 15, 27, and 36 distributed in the outdoor unit 10, the repeater 20, and the indoor air conditioner 3 operate in cooperation with each other as the control device 100.
  • the control device 100 controls the compressor 11, the expansion valve 24, the pump 23, the flow rate adjusting valves 33, 43, 53, and the fans 32, 42, 52 according to the outputs of the pressure sensor 25 and the temperature sensor 26.
  • One of the control units 15, 27, and 36 serves as a control device, and the compressor 11, the expansion valve 24, the pump 23, and the flow rate adjusting valves 33, 43 are based on the data detected by the other control units 15, 27, 36. , 53 and fans 32, 42, 52 may be controlled. In the case of the heat source machine 2 in which the outdoor unit 10 and the repeater 20 are integrated, the control units 15 and 27 may cooperate with each other to operate as a control device based on the data detected by the control unit 36.
  • the air conditioner 1 determines whether or not the second heat medium may freeze by the temperature sensor 26. If there is a risk that the second heat medium will freeze during defrosting, the flow control valve of the indoor unit will be opened and the fan will be rotated to introduce heat from the indoor air into the second heat medium to prevent freezing. This anti-freezing operation will be described step by step below.
  • FIG. 2 is a diagram showing the flow of the first heat medium and the second heat medium during the heating operation.
  • the indoor unit 30 is in the air conditioning ON state and the indoor units 40 and 50 are in the air conditioning OFF state.
  • the air-conditioning ON state indicates a state in which an air-conditioning request is made to the indoor unit
  • the air-conditioning OFF state indicates a state in which an air-conditioning request is not made to the indoor unit.
  • the air-conditioning OFF state is when the indoor unit is turned off by a remote controller or the like, or when the room temperature reaches the set temperature and the air-conditioning is temporarily stopped as a result of the air-conditioning being performed by the indoor unit in the air-conditioning ON state. including.
  • the first heat medium (refrigerant) is discharged from the compressor 11 and returns to the compressor 11 through the second heat exchanger 22, the expansion valve 24, and the first heat exchanger 13 in this order. 12 is set.
  • the high-temperature and high-pressure first heat medium discharged from the compressor 11 is condensed by exchanging heat with the second heat medium in the second heat exchanger 22.
  • the condensed first heat medium is depressurized by the expansion valve 24, evaporates in the first heat exchanger 13, becomes a low-temperature gas state, and returns to the compressor 11.
  • the temperature of the second heat medium (water or brine) delivered from the pump 23 rises by exchanging heat with the first heat medium in the second heat exchanger 22.
  • the second heat medium whose temperature has risen is supplied to the indoor unit 30 in the air-conditioned state, and exchanges heat with the indoor air.
  • the indoor unit 30 in the air-conditioned state supplies warm air into the room.
  • the flow rate adjusting valve 33 corresponding to the indoor unit 30 in the air conditioning ON state is controlled to the open state, and the flow rate adjusting valves 43 and 53 corresponding to the indoor units 40 and 50 in the air conditioning OFF state are controlled to the closed state. Therefore, the second heat medium flows through the heat exchanger 31, but the second heat medium does not flow through the heat exchangers 41 and 51.
  • FIG. 3 is a diagram showing the flow of the first heat medium and the second heat medium in the heating defrosting operation (state A).
  • the heating defrosting operation (state A) is a standard state of the heating defrosting operation.
  • the first heat medium (refrigerant) is discharged from the compressor 11 and returns to the compressor 11 through the first heat exchanger 13, the expansion valve 24, and the second heat exchanger 22 in this order.
  • Four-way valve 12 is set. That is, the four-way valve 12 is controlled to the same state as the cooling operation.
  • the high-temperature and high-pressure first heat medium discharged from the compressor 11 is condensed by exchanging heat with the outside air in the first heat exchanger 13.
  • the condensed first heat medium is depressurized by the expansion valve 24, exchanges heat with the second heat medium in the second heat exchanger 22, becomes a low-temperature gas state, and returns to the compressor 11.
  • the temperature of the second heat medium (water or brine) delivered from the pump 23 is lowered by exchanging heat with the first heat medium in the second heat exchanger 22.
  • the second heat medium whose temperature has dropped is supplied to the indoor unit 30 in the air-conditioned state, but the fan 32 is stopped and cold air does not blow into the room.
  • the flow rate adjusting valve 33 corresponding to the indoor unit 30 in the air conditioning ON state is controlled to the open state, and the flow rate adjusting valves 43 and 53 corresponding to the indoor units 40 and 50 in the air conditioning OFF state are controlled to the closed state. Therefore, the second heat medium flows through the heat exchanger 31, but the second heat medium does not flow through the heat exchangers 41 and 51.
  • the second heat medium is cooled by exchanging heat with the low temperature first heat medium.
  • the second heat medium may freeze inside the second heat exchanger 22.
  • FIG. 4 is a diagram showing the flow of the first heat medium and the second heat medium in the heating defrosting operation (state B).
  • the heating defrosting operation (state B) is a state in which the temperature of the second heat medium is lowered during the defrosting operation.
  • the second heat medium is also circulated to the heat exchanger in the air conditioning OFF state, and heat is removed from the air in the room where the indoor unit in the air conditioning OFF state is installed. The point of absorption is different. Since the circulation path of the first heat medium is the same as that of FIG. 3, the second heat medium circuit of FIG. 4 will be described.
  • the temperature of the second heat medium (water or brine) delivered from the pump 23 is increased by exchanging heat with the first heat medium in the second heat exchanger 22. Decreases.
  • the second heat medium whose temperature has dropped is supplied to the indoor unit 30 in the air-conditioned state, but the fan 32 is stopped and cold air does not blow into the room.
  • the temperature of the second heat medium is monitored by the temperature sensor 26, and when the temperature of the second heat medium reaches the first determination temperature X ° C., which is close to the freezing temperature, the indoor unit 40 in the air conditioning OFF state
  • the settings of the flow control valves 43 and 53 corresponding to, 50 are changed from the closed state to the open state.
  • the fans 42 and 52 are also driven, and heat exchange between the indoor air and the second heat medium is actively performed in the heat exchangers 41 and 51.
  • the temperature of the second heat medium rises, so that the second heat medium is prevented from freezing. Therefore, freezing in the second heat exchanger 22 is prevented, and the defrosting operation does not have to be interrupted, so that the defrosting time is also shortened.
  • the second determination temperature Y ° C. may be any temperature equal to or higher than the first determination temperature X ° C.
  • the second determination temperature Y ° C. may be the same as the first determination temperature X ° C., but it is preferable to set Y> X in order to avoid frequent switching of the flow path.
  • FIG. 5 is a waveform diagram for explaining an example of control of the heating / defrosting operation of the first embodiment. At times t0 to t1 in FIG. 5, the heating operation is executed, and the first heat medium and the second heat medium are flowing as shown in FIG.
  • the state of the four-way valve is set from the heating state to the cooling state according to the establishment of the heating defrost start condition. From time t1 to t2, the first heat medium and the second heat medium are flowing as shown in the state A of FIG. By transferring the heat of the second heat medium to the first heat medium in the second heat exchanger 22, the temperature of the second heat medium gradually decreases, and at time t2, it becomes lower than the first determination temperature X ° C.
  • the flow of the second heat medium is changed so as to be distributed to the air conditioning OFF indoor unit as shown in the state B of FIG. Therefore, the amount of heat exchange between the room air and the second heat medium increases, and the temperature of the second heat medium gradually rises.
  • FIG. 6 is a diagram showing a configuration of a control device that controls an air conditioner and a remote controller that remotely controls the control device.
  • the remote controller 200 includes an input device 201, a processor 202, and a transmitter 203.
  • the input device 201 includes a push button for the user to switch ON / OFF of the indoor unit, a button for inputting a set temperature, and the like.
  • the transmission device 203 is for communicating with the control device 100.
  • the processor 202 controls the transmission device 203 according to the input signal given by the input device 201.
  • the control device 100 includes a receiving device 101, a processor 102, and a memory 103.
  • the memory 103 includes, for example, a ROM (Read Only Memory), a RAM (Random Access Memory), and a flash memory.
  • the flash memory stores the operating system, application programs, and various types of data.
  • the processor 102 controls the overall operation of the air conditioner 1.
  • the control device 100 shown in FIG. 1 is realized by the processor 102 executing the operating system and the application program stored in the memory 103. When executing the application program, various data stored in the memory 103 are referred to.
  • the receiving device 101 is for communicating with the remote controller 200. When there are a plurality of indoor units, the receiving device 101 is provided in each of the plurality of indoor units.
  • each of the plurality of control units includes a processor.
  • a plurality of processors cooperate to perform overall control of the air conditioner 1.
  • Such a control device 100 may be included in any of the outdoor unit 10, the indoor air conditioner 3, the repeater 20, the heat source unit 2, and the air conditioner 1.
  • FIG. 7 is a flowchart for explaining the control executed by the control device in the first embodiment.
  • the defrosting operation is started when the predetermined defrosting start condition is satisfied.
  • the defrosting start condition is satisfied, for example, at regular intervals during the heating operation or when frost formation in the heat exchanger of the outdoor unit is detected.
  • step S1 the control device 100 switches the four-way valve 12 from the heating operation state to the cooling operation state. Subsequently, in step S2, the control device 100 controls the indoor unit in the air conditioning ON state so as to turn off the fan and open the flow rate adjusting valve. Then, for example, as shown in the state A of FIG. 3, the second heat medium flows.
  • step S3 the control device 100 determines whether or not the temperature T1 of the second heat medium detected by the temperature sensor 26 is lower than the first determination temperature X ° C.
  • the temperature T1 is equal to or higher than the first determination temperature X ° C. (NO in S3), the defrosting operation state A shown in FIG. 3 is maintained.
  • the process proceeds to step S4.
  • step S4 the control device 100 controls the indoor unit in the air conditioning OFF state so as to open the flow rate adjusting valve and turn on the fan. Then, for example, as shown in the state B of FIG. 4, the second heat medium flows.
  • step S4 the flow rate adjusting valves corresponding to all the indoor units in the air-conditioning OFF state may be opened, but the priority is set in advance and among the indoor units in the air-conditioning OFF state. It is preferable to open the flow rate control valve corresponding to some indoor units having a high priority. As a result, among the indoor units in the air-conditioning OFF state, the indoor units affected by defrosting can be limited to a part, which is advantageous for the operation when the state is changed from the air-conditioning OFF state to the air-conditioning ON state. ..
  • step S5 the control device 100 determines whether or not the temperature T1 of the second heat medium detected by the temperature sensor 26 is equal to or higher than the second determination temperature Y ° C.
  • the temperature T1 is lower than the second determination temperature Y ° C. (NO in S5), the defrosting operation state B shown in FIG. 4 is maintained.
  • the process proceeds to step S6.
  • step S6 the control device 100 controls the indoor unit in the air conditioning OFF state so as to close the flow rate adjusting valve and turn off the fan. Then, the flow of the second heat medium returns to the original state A as shown in FIG.
  • the control device 100 determines whether or not the defrosting end condition is satisfied.
  • the defrosting end condition is satisfied, for example, when a certain time has passed from the start of defrosting or when the defrosting of the outdoor unit is completed. If the defrosting end condition is not satisfied in step S7, the processes after step S3 are repeated again. On the other hand, if the defrosting end condition is satisfied in step S7, the defrosting operation is ended in step S8, and the heating operation is performed again.
  • the control device 100 is a control device that controls an air conditioner 1 that operates in an operation mode including a heating mode and a defrosting mode.
  • the air conditioner 1 includes a compressor 11 that compresses the first heat medium, a first heat exchanger 13 that exchanges heat between the first heat medium and the outdoor air, and a first heat medium and a second heat medium.
  • a second heat exchanger 22 that exchanges heat between the two, a plurality of third heat exchangers 31, 41, 51 that exchange heat between the second heat medium and the room air, and a plurality of third heat exchangers.
  • a pump 23 that circulates with and from the heat exchanger 22 is provided.
  • the control device 100 opens a flow control valve corresponding to the heat exchanger in which the air conditioning request is generated among the plurality of third heat exchangers 31, 41, 51, and the plurality of third heat exchangers. Close the flow control valve corresponding to the heat exchanger of 31, 41, 51 for which no air conditioning requirement is generated.
  • the control device 100 is a part of the heat exchangers in which the air conditioning requirement is not generated. Open the flow control valve corresponding to the heat exchanger.
  • Some of these heat exchangers have a higher set priority than the residual heat exchangers for which no air conditioning requirements have arisen.
  • Some high-priority flow control valves are typically the highest-priority flow control valves, but are prioritized when there are three or four or more heat exchangers that do not require air conditioning. It may be two or three from the top of the ranking.
  • the control device 100 corresponds to a heat exchanger in which no air conditioning requirement is generated when the temperature T1 of the second heat medium is higher than the second determination temperature Y ° C. (YES in S5). Close the flow control valve.
  • the second heat medium flows through the heat exchanger where no air conditioning requirement is generated, so that heat is transferred from the indoor air to the second heat medium. It can be moved and the temperature of the second heat medium can be raised.
  • the air conditioner 1 further includes a plurality of fans 32, 42, 52 provided corresponding to the plurality of third heat exchangers 31, 41, 51, respectively.
  • the control device 100 drives the fan corresponding to the heat exchanger in which the air conditioning request is generated, and stops the fan corresponding to the heat exchanger in which the air conditioning request is not generated.
  • the control device 100 drives a fan corresponding to the heat exchanger in which the air conditioning requirement does not occur when the temperature of the second heat medium is lower than the first determination temperature X ° C.
  • the control device 100 in the defrosting mode, when the temperature of the second heat medium is higher than the second determination temperature Y ° C., the control device 100 is used as a heat exchanger in which no air conditioning requirement is generated. Stop the corresponding fan.
  • the flow rate adjusting valve of the indoor unit in the air conditioning OFF state is opened and the fan is turned. , The temperature of the second heat medium is raised by the heat from the room. As a result, it is possible to secure heat absorption in the second heat exchanger while preventing freezing of the second heat medium circuit and shorten the time required for the defrosting operation.
  • Embodiment 2 In the first embodiment, the indoor units in the air-conditioned state are uniformly handled, or the heat collection sources are set in the order of the highest priority. In the second embodiment, the higher the room temperature, the higher the priority is set so that heat can be collected in a short time in the defrosting operation.
  • FIG. 8 is a diagram showing the configuration of the air conditioner 1A of the second embodiment.
  • a plurality of room temperatures are installed at places where a plurality of third heat exchangers 31, 41, 51 are installed, respectively. It further includes sensors 34, 44, 54.
  • the indoor units 30, 40, and 50 include room temperature sensors 34, 44, and 54, which measure the temperature of the indoor air, respectively.
  • the other configurations of the air conditioner 1A are the same as those of the air conditioner 1 shown in FIG. 1, and the description will not be repeated.
  • the room temperature sensors 34, 44, 54 measure the temperatures T2, T3, and T4 of the room air that the second heat medium exchanges heat with the third heat exchangers 31, 41, 51, respectively, and output them to the control device 100.
  • the control device 100 When there is a risk of freezing of the second heat medium, the control device 100 performs a freeze protection operation in which the flow rate adjusting valve is opened preferentially from the indoor unit in the air conditioning OFF state, and the indoor fan is turned on. carry out.
  • the higher the room temperature the more advantageous as a heat source for heating the second heat medium.
  • the temperature of the second heat medium can be raised in a short time by selecting the indoor unit installed in the room having the highest room temperature. ..
  • FIG. 9 is a flowchart for explaining the control executed by the control device in the second embodiment.
  • the flowchart shown in FIG. 9 is obtained by replacing step S4 of the flowchart showing the control of the first embodiment shown in FIG. 7 with step S4A. Therefore, since steps other than step S4A have been described in the first embodiment, the description will not be repeated here.
  • the control device 100 sets a flow rate adjusting valve for the indoor unit having the highest room temperature among the indoor units in the air conditioning OFF state in step S4A. It opens and controls to turn on the fan. Then, for example, in the state B of FIG. 4, the second heat medium flows through both the indoor units 40 and 50, but the second heat medium flows only through the indoor unit having the higher room temperature.
  • Embodiment 3 In the second embodiment, the priority is determined by the room temperature of the room in which the third heat exchanger is installed, but in the third embodiment, the control device 100 is a plurality of third heat exchangers 31, 41, The larger the capacity (capacity) of 51, the higher the priority of the corresponding flow rate control valve is set.
  • FIG. 10 is a flowchart for explaining the control executed by the control device in the third embodiment.
  • the flowchart shown in FIG. 10 is obtained by replacing step S4 of the flowchart showing the control of the first embodiment shown in FIG. 7 with step S4B. Therefore, since steps other than step S4B have been described in the first embodiment, the description will not be repeated here.
  • the control device 100 sets a flow rate adjusting valve for the indoor unit having the largest capacity among the indoor units in the air conditioning OFF state in step S4B. It opens and controls to turn on the fan. Then, for example, in the state B of FIG. 4, the second heat medium flows through both the indoor units 40 and 50, but the second heat medium flows only in the one having the larger capacity.
  • Embodiment 4 when the indoor heat exchanger as the heat collection source is limited, the flow rate adjusting valve corresponding to the indoor heat exchanger that can reduce the time required for heat collection is preferentially selected.
  • the indoor heat exchanger which is used less frequently, is preferentially used as the heat collection source among the indoor units in the air conditioning OFF state.
  • FIG. 11 is a flowchart for explaining the control executed by the control device in the fourth embodiment.
  • the flowchart shown in FIG. 11 is obtained by replacing step S4 of the flowchart showing the control of the first embodiment shown in FIG. 7 with step S4C. Therefore, since steps other than step S4C have been described in the first embodiment, the description will not be repeated here.
  • the control device 100 When the water temperature T1 drops below X ° C. during the defrosting operation (YES in S3), the control device 100 has the shortest operation operation time per day one week before the indoor unit in the air conditioning OFF state in step S4C.
  • the indoor unit is controlled so that the flow rate adjusting valve is opened and the fan is turned on. Then, for example, in the state B of FIG. 4, the second heat medium flows through both the indoor units 40 and 50, but the second heat medium flows only in the less frequently used one.
  • FIG. 12 is a diagram for explaining determination of priority based on frequency of use.
  • the control device 100 measures the operation operating time (hours / day) per day for each indoor unit, and stores the measurement data for each day of the week.
  • the operating hours on Sunday are stored as 2.3 hours, 1.8 hours, and 3.5 hours for the indoor units 30, 40, and 50, respectively. Therefore, the priority is set higher in ascending order of operating time, and on Sunday, the priority of the indoor unit 40, which has the shortest operating time of 1.8 hours, is the highest.
  • the operating hours on Monday are stored as 1.2 hours, 0.9 hours, and 2.8 hours for the indoor units 30, 40, and 50, respectively. Therefore, the priority is set higher in ascending order of operating time, and on Monday, the priority of the indoor unit 40, which has the shortest operating time of 0.9 hours, is the highest.
  • the operating hours on Tuesday are stored as 0.9 hours, 1.5 hours, and 3.0 hours for the indoor units 30, 40, and 50, respectively. Therefore, the priority is set higher in ascending order of operating time, and on Tuesday, the priority of the indoor unit 30 having the shortest operating time of 0.9 hours is the highest.
  • step S4C of FIG. 11 the operating time of the same day of the week one week before shown in FIG. 12 is referred to, and the flow rate adjustment of the indoor unit having the shortest operating operating time on the corresponding day of the week among the indoor units with air conditioning turned off. Open the valve.
  • the control device 100 corresponds to the shorter the operating time of the plurality of third heat exchangers in a certain period prior to the present time. Set the priority of the flow control valve high.
  • the fixed period before the present time may be the day before, one month before, etc. More specifically, as shown in FIG. 12, the control device 100 sets the priority of the corresponding flow control valve higher as the operating time per day on the same day of the week as the current day of the week is shorter.
  • Embodiment 5 the indoor unit in the air-conditioned state with the air-conditioning turned off is preferentially used as the heat collection source from the indoor unit that has been used less frequently in the past. It may impair user comfort. Therefore, in the fifth embodiment, each indoor unit is provided with a motion sensor for confirming the presence of the user, and the indoor unit to be used as a heat collection source is determined based on the output.
  • FIG. 13 is a diagram showing the configuration of the air conditioner 1D of the fifth embodiment.
  • the air conditioner 1D shown in FIG. 13 in addition to the configuration of the air conditioner 1 shown in FIG. 1, whether or not a user exists at a place where a plurality of third heat exchangers 31, 41, 51 are installed.
  • a plurality of motion sensors 35, 45, 55 for detecting the above are further provided.
  • the motion sensors 35, 45, 55 various motion sensors using infrared rays, ultrasonic waves, visible light, or the like can be used.
  • the indoor units 30, 40, 50 may include motion sensors 35, 45, 55, or the motion sensors may be installed in a place away from the indoor unit as long as they are in the same room.
  • the other configurations of the air conditioner 1D are the same as those of the air conditioner 1 shown in FIG. 1, and the description is not repeated.
  • the motion sensors 35, 45, 55 detect whether or not the user is in the room in which the third heat exchangers 31, 41, 51 are installed, and output to the control device 100, respectively.
  • FIG. 14 is a flowchart for explaining the control executed by the control device in the fifth embodiment.
  • the flowchart shown in FIG. 14 is obtained by replacing step S4 of the flowchart showing the control of the first embodiment shown in FIG. 7 with step S4D. Therefore, since steps other than step S4D have been described in the first embodiment, the description will not be repeated here.
  • the control device 100 adjusts the flow rate of the indoor unit in the room in which no person is present in the air conditioning OFF state in step S4D.
  • the valve is opened and the fan is controlled to be turned on. Then, for example, in the state B of FIG. 4, the second heat medium flows through both the indoor units 40 and 50, but the second heat medium flows only through the indoor unit in the room where no person is present.
  • the indoor unit to be the heat collection source is selected based on any of the priorities described in the second to fourth embodiments. do it.
  • the air conditioner 1D is a plurality of motion sensors 35, 45, 55 installed at a place where a plurality of third heat exchangers 31, 41, 51 are installed. Further prepare.
  • the control device 100 sets the priority of the flow rate adjusting valve corresponding to the motion sensor that does not detect a person among the plurality of motion sensors 35, 45, 55 to correspond to the motion sensor that detects a person. Set higher than the priority of the flow control valve.
  • control device 100 determines the priority order and selects the indoor unit as the heat collection source during the defrosting operation. However, when the priority is automatically determined, the possibility that the priority does not meet the user's intention is not zero. Therefore, in the sixth embodiment, the priority setting mode is provided so that the user can set the priority.
  • FIG. 15 is a flowchart for explaining the process executed in the priority setting mode in the sixth embodiment.
  • the processing of the flowchart of FIG. 15 is executed when the user selects the priority setting mode with the remote controller.
  • the control device 100 receives the priority of the indoor unit input by the user from the remote controller in step S11.
  • the user can freely set the priority order of the indoor units in an order in which cold air is allowed to be generated by heat collection when the air conditioning is turned off during the defrosting operation.
  • step S12 the control device 100 stores the input priority in the memory 103 of FIG. 6 and ends the processing of the priority setting mode.
  • FIG. 16 is a flowchart for explaining the control executed by the control device in the sixth embodiment.
  • the flowchart shown in FIG. 16 is obtained by replacing step S4 of the flowchart showing the control of the first embodiment shown in FIG. 7 with step S4E. Therefore, since steps other than step S4E have been described in the first embodiment, the description will not be repeated here.
  • the control device 100 adjusts the flow rate of the indoor unit having the highest priority among the indoor units in the air conditioning OFF state in step S4E.
  • the valve is opened and the fan is controlled to be turned on. Then, for example, in the state B of FIG. 4, the second heat medium flows through both the indoor units 40 and 50, but the second heat medium flows only through the indoor unit having the higher priority set.
  • the air conditioner 1 further includes an input device 201 in which the user sets a priority.
  • the control device 100 includes a memory 103 that stores a priority set by the user.
  • the process of collecting heat during the defrosting operation based on the priority set by the user described in the sixth embodiment may be combined with the processes of the second to fifth embodiments. In that case, if the process of the sixth embodiment is prioritized and the processes of the second to fifth embodiments are executed when the user has not set the priority, the priority is given when the user's wish is not met. Is preferable because it can be corrected.
  • Embodiment 7 In the third to sixth embodiments described above, heat is collected from the indoor unit installed in the room where there is a high possibility that a person is in the room, depending on the priority of collecting heat at the time of defrosting.
  • the flow rate adjusting valve and the fan are driven differently to avoid the generation of cold air during the defrosting operation as much as possible.
  • FIG. 17 is a diagram showing the configuration of the air conditioner 1F of the seventh embodiment.
  • the air conditioner 1F shown in FIG. 13 includes a control device 100F in place of the control device 100 in the configuration of the air conditioner 1 shown in FIG.
  • the control device 100F includes a control unit 15 that controls the outdoor unit 10, a control unit 27 that controls the repeater 20, and control units 38, 48, 58 that control the indoor units 30, 40, and 50, respectively.
  • the control units 38, 48, and 58 are configured to integrate the defrosting times of the indoor units 30, 40, and 50, respectively.
  • the other configurations of the air conditioner 1F are the same as those of the air conditioner 1 shown in FIG. 1, and the description will not be repeated.
  • FIG. 18 is a flowchart for explaining the control executed during the defrosting operation in the seventh embodiment.
  • the defrosting operation process shown in FIG. 18 is started.
  • the defrosting start condition is satisfied, for example, at regular intervals during the heating operation or when frost formation in the heat exchanger of the outdoor unit is detected.
  • step S21 the control device 100 switches the four-way valve 12 from the heating operation state to the cooling operation state. Subsequently, in step S22, the control device 100 controls the indoor unit in the air conditioning ON state so as to turn off the fan and open the flow rate adjusting valve. Then, for example, the second heat medium flows as shown in FIG.
  • step S23 the control device 100 determines whether or not the temperature T1 of the second heat medium detected by the temperature sensor 26 is lower than the first determination temperature X ° C.
  • the temperature T1 is equal to or higher than the first determination temperature X ° C. (NO in S23)
  • the defrosting operation state shown in FIG. 3 is maintained.
  • the process proceeds to step S24.
  • step S24 the control device 100 controls the indoor unit in the air conditioning OFF state and the fan OFF so as to open the flow rate adjusting valve. However, at this time, the fan remains in the OFF state. At this time, as shown in the first to sixth embodiments, the flow rate adjusting valve of the indoor unit having the air conditioning OFF state and the fan OFF having the higher priority is opened, and the flow adjusting valve is opened to the indoor unit having the lower priority. You may not have it.
  • the control device 100 determines whether or not the temperature T1 of the second heat medium detected by the temperature sensor 26 is equal to or higher than the second determination temperature Y ° C.
  • the second determination temperature Y ° C. may be any temperature equal to or higher than the first determination temperature X ° C.
  • the second determination temperature Y ° C. may be the same as the first determination temperature X ° C., but it is preferable to set Y> X in order to avoid frequent switching of the flow path.
  • step S25 when the temperature T1 is lower than the second determination temperature Y ° C. (NO in S25), in step S26, it is determined whether or not time Z minutes have elapsed since the process of step S24 was executed. The time accumulated by any of the control units 38, 48, and 58 is used for this determination.
  • step S26 if Z minutes have not yet elapsed (NO in S26), the determination process of step S25 is executed again. On the other hand, if Z minutes have elapsed in step S26 (YES in S26), the process proceeds to step S27.
  • step S27 the corresponding fan is turned on for the indoor unit whose flow rate adjusting valve is opened in step S24.
  • heat is actively exchanged between the indoor air and the second heat medium in the heat exchanger, so that cold air is blown into the room, but the amount of heat collected in the indoor unit increases, so that the temperature of the second heat medium is increased. Is easy to rise.
  • step S28 the control device 100 determines whether or not the temperature T1 of the second heat medium detected by the temperature sensor 26 is equal to or higher than the second determination temperature Y ° C.
  • step S28 when the temperature T1 is lower than the second determination temperature Y ° C. (NO in S28), the determination process of step S28 is executed again.
  • step S28 when the temperature T1 becomes equal to or higher than the second determination temperature Y ° C. (YES in S28), the process proceeds to step S29. Further, in step S25, even when the temperature T1 is equal to or higher than the second determination temperature Y ° C. (YES in S25), the process proceeds to step S29.
  • step S29 the control device 100 controls the indoor unit in the air conditioning OFF state so as to close the flow rate adjusting valve and turn off the fan. Then, the flow of the second heat medium returns to the original state as shown in FIG.
  • the control device 100 determines whether or not the defrosting end condition is satisfied.
  • the defrosting end condition is satisfied, for example, when a certain time has passed from the start of defrosting or when the defrosting of the outdoor unit is completed. If the defrosting end condition is not satisfied in step S30, the processes after step S23 are repeated again. On the other hand, if the defrosting end condition is satisfied in step S30, the defrosting operation is ended in step S31, and the heating operation is performed again.
  • FIG. 19 is a waveform diagram for explaining an example of control of the heating / defrosting operation executed in the seventh embodiment. At times t10 to t11 in FIG. 19, the heating operation is executed, and the first heat medium and the second heat medium are flowing as shown in FIG.
  • the state of the four-way valve is set from the heating state to the cooling state according to the establishment of the heating defrost start condition. From time t11 to t12, the first heat medium and the second heat medium are flowing as shown in the state A of FIG. By transferring the heat of the second heat medium to the first heat medium in the second heat exchanger 22, the temperature of the second heat medium gradually decreases, and at time t12, it becomes lower than the first determination temperature X ° C.
  • the control device 100F turns on the fan of the air conditioning OFF indoor unit, which is the heat collection target. This state is the same state B as in the first embodiment. Then, since the amount of heat exchange between the indoor air and the second heat medium increases, the temperature of the second heat medium gradually rises.
  • the control device 100F is a flow rate adjusting valve having a high priority among the flow rate adjusting valves corresponding to the heat exchanger in which the air conditioning requirement does not occur (for example, the priority is the highest). If the temperature of the second heat medium is still lower than the second judgment temperature even after the judgment time has elapsed after opening the high one), rotate the fan of the indoor unit corresponding to the open flow rate control valve. Let me.
  • the flow rate adjusting valve of the indoor unit in the air-conditioned state is opened to collect heat. If is insufficient, the fan is further rotated to raise the temperature of the second heat medium.
  • the amount of heat collected from the indoor unit can be finely controlled, so that only the required amount of heat can be collected, which is advantageous when the indoor unit in the air-conditioned state starts heating.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Thermal Sciences (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

空気調和装置(1)は、圧縮機(11)と、第1熱交換器(13)と、第2熱交換器(22)と、複数の第3の熱交換器(31,41,51)と、流量調整弁(33,43,53)と、ポンプ(23)とを備える。制御装置(100)は、暖房モードでは、複数の第3の熱交換器(31,41,51)のうち空調要求が生じている熱交換器に対応する流量調整弁を開き、複数の第3の熱交換器(31,41,51)のうち空調要求が生じていない熱交換器に対応する流量調整弁を閉じる。制御装置(100)は、除霜モードでは、第2熱媒体の温度(T1)が第1判定温度(X℃)よりも低い場合には、空調要求が生じていない熱交換器のうち一部の熱交換器に対応する流量調整弁を開く。この一部の熱交換器は、空調要求が生じていない残余の熱交換器よりも設定された優先順位が高い。

Description

空気調和装置の制御装置、室外機、中継機、熱源機及び空気調和装置
 本発明は、空気調和装置の制御装置、室外機、中継機、熱源機及び空気調和装置に関する。
 従来、ヒートポンプなどの熱源機により冷温水を生成し、送水ポンプ及び配管で室内機へ搬送して室内の冷暖房を行なう間接式の空気調和装置が知られている。
 このような間接式の空気調和装置は、利用側熱媒体として水又はブラインを使用するので、近年、使用冷媒量を削減するために注目されている。
 特開2009-41860号公報に開示された空気調和装置では、冷温水を生成する水熱交換器が凍結するおそれがある場合、バイパス回路を開き、膨張弁を閉とすることで、除霜時の低温の冷媒を水熱交換器に流入させずバイパスさせ、水熱交換器の凍結を防止する。
特開2009-41860号公報
 特開2009-41860号公報のように、バイパス回路によって、除霜時に蒸発器として働く水熱交換器に冷媒を流さない構成では、水熱交換器における水から冷媒への吸熱が行なわれないので除霜時間が長時間化し、その結果暖房が中断する時間が長くなるため室温が低下し、結果として快適性低下につながる可能性がある。
 本発明は、上記課題を解決するためになされたものであって、水又はブライン等の熱媒体を用いる間接式の空気調和装置において、熱媒体の凍結を防止しつつ熱媒体からの吸熱を確保し、除霜運転に要する時間を削減できる空気調和装置の制御装置を提供することを目的とする。
 本開示は、暖房モードと除霜モードとを含む動作モードで動作する空気調和装置を制御する制御装置に関する。空気調和装置は、第1熱媒体を圧縮する圧縮機と、第1熱媒体と室外空気との熱交換を行なう第1熱交換器と、第1熱媒体と第2熱媒体との間で熱交換を行なう第2熱交換器と、第2熱媒体と室内空気との熱交換を行なう複数の第3熱交換器と、複数の第3熱交換器に流通する第2熱媒体の流量をそれぞれ調整する複数の流量調整弁と、第2熱媒体を複数の第3熱交換器と第2熱交換器との間で循環させるポンプとを備える。制御装置は、暖房モードでは、複数の第3熱交換器のうち空調要求が生じている熱交換器に対応する流量調整弁を開き、複数の第3熱交換器のうち空調要求が生じていない熱交換器に対応する流量調整弁を閉じ、除霜モードでは、第2熱媒体の温度が第1判定温度よりも低い場合には、空調要求が生じていない熱交換器のうち一部の熱交換器に対応する流量調整弁を開く。この一部の熱交換器は、空調要求が生じていない残余の熱交換器よりも設定された優先順位が高い。
 本開示の制御装置によれば、空気調和装置の除霜時間が短縮されるので、空調時の快適性が向上する。
実施の形態1に係る空気調和装置の構成を示す図である。 暖房運転中における第1熱媒体、第2熱媒体の流れを示す図である。 暖房除霜運転(状態A)における第1熱媒体、第2熱媒体の流れを示す図である。 暖房除霜運転(状態B)における第1熱媒体、第2熱媒体の流れを示す図である。 実施の形態1の暖房除霜運転の制御の一例を説明するための波形図である。 空気調和装置の制御を行なう制御装置と制御装置を遠隔制御するリモコンの構成を示す図である。 実施の形態1において制御装置が実行する制御を説明するためのフローチャートである。 実施の形態2の空気調和装置の構成を示す図である。 実施の形態2において制御装置が実行する制御を説明するためのフローチャートである。 実施の形態3において制御装置が実行する制御を説明するためのフローチャートである。 実施の形態4において制御装置が実行する制御を説明するためのフローチャートである。 使用頻度に基づく優先順位の決定について説明するための図である。 実施の形態5の空気調和装置の構成を示す図である。 実施の形態5において制御装置が実行する制御を説明するためのフローチャートである。 実施の形態6において優先順位設定モードで実行される処理を説明するためのフローチャートである。 実施の形態6において制御装置が実行する制御を説明するためのフローチャートである。 実施の形態7の空気調和装置1Fの構成を示す図である。 実施の形態7において除霜運転時に実行される制御を説明するためのフローチャートである。 実施の形態7で実行される暖房除霜運転の制御の一例を説明するための波形図である。
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。以下では、複数の実施の形態について説明するが、各実施の形態で説明された構成を適宜組み合わせることは出願当初から予定されている。なお、図中同一又は相当部分には同一符号を付してその説明は繰返さない。
 実施の形態1.
 図1は、実施の形態1に係る空気調和装置の構成を示す図である。図1を参照して、空気調和装置1は、熱源機2と、室内空調装置3と、制御装置100とを備える。熱源機2は、室外機10と、中継機20を含む。以下の説明において、第1熱媒体として冷媒を、第2熱媒体として水又はブラインを例示することができる。
 室外機10は、第1熱媒体に対する熱源又は冷熱源として作動する冷凍サイクルの一部を含む。室外機10は、圧縮機11と、四方弁12と、第1熱交換器13とを含む。図1では、四方弁12は冷房又は除霜を行なう場合を示しており、熱源機2は冷熱源として作用する。四方弁12を切替えて冷媒の循環方向を逆向きにすれば、暖房を行なう場合となり、熱源機2は熱源として作用する。
 中継機20は、第2熱交換器22と、第2熱媒体を室内空調装置3との間で循環させるポンプ23と、膨張弁24と、ポンプ23の前後の差圧ΔPを検出する圧力センサ25と、第2熱交換器22を通過した第2熱媒体の温度を測定する温度センサ26とを含む。第2熱交換器22は、第1熱媒体と第2熱媒体との間で熱交換を行なう。第2熱交換器22として、プレート熱交換器を用いることができる。
 室外機10と中継機20とは、第1熱媒体を流通させる配管4,5によって接続されている。圧縮機11と、四方弁12と、第1熱交換器13と、膨張弁24と、第2熱交換器22とによって第1熱媒体を利用した冷凍サイクルである第1熱媒体回路が形成されている。なお、熱源機2は室外機10と中継機20が一体型とされていても良い。一体型の場合、配管4,5は筐体内部に収容される。
 室内空調装置3と中継機20とは、第2熱媒体を流通させる配管6,7によって接続されている。室内空調装置3は、室内機30と、室内機40と、室内機50とを含む。室内機30,40,50は、互いに並列的に配管6と配管7との間に接続されている。
 室内機30は、熱交換器31と、室内空気を熱交換器31に送るためのファン32と、第2熱媒体の流量を調整する流量調整弁33とを含む。熱交換器31は、第2熱媒体と室内空気との熱交換を行なう。
 室内機40は、熱交換器41と、室内空気を熱交換器41に送るためのファン42と、第2熱媒体の流量を調整する流量調整弁43とを含む。熱交換器41は、第2熱媒体と室内空気との熱交換を行なう。
 室内機50は、熱交換器51と、室内空気を熱交換器51に送るためのファン52と、第2熱媒体の流量を調整する流量調整弁53とを含む。熱交換器51は、第2熱媒体と室内空気との熱交換を行なう。
 なお、ポンプ23と、第2熱交換器22と、並列接続された熱交換器31、熱交換器41、熱交換器51と、によって第2熱媒体を利用した第2熱媒体回路が形成されている。また、本実施の形態においては3台の室内機を有する空気調和装置を例に挙げているが、室内機の台数は何台であってもよい。
 室外機10、中継機20、室内空調装置3に分散配置された制御部15,27,36は、連携して制御装置100として動作する。制御装置100は、圧力センサ25、温度センサ26の出力に応じて圧縮機11、膨張弁24,ポンプ23、流量調整弁33,43,53及びファン32,42,52を制御する。
 なお、制御部15、27、36のいずれかが制御装置となり、他の制御部15、27、36が検出したデータを元に圧縮機11、膨張弁24,ポンプ23、流量調整弁33,43,53及びファン32,42,52を制御しても良い。なお、室外機10と中継機20が一体型とされた熱源機2の場合は、制御部36が検出したデータに基づいて制御部15,27が連携して制御装置として動作しても良い。
 図1の構成において、空気調和装置1は、温度センサ26によって第2熱媒体に凍結のおそれがあるか否かを判断する。除霜時に第2熱媒体に凍結が生じるおそれがある場合には、室内機の流量調整弁を開き、ファンを回転させて第2熱媒体に室内空気からの熱を導入し凍結を防止する。以下にこの凍結防止動作について順を追って説明する。
 説明を簡単にするため、まず、室内機40,50が停止状態で、室内機30のみ暖房運転している場合について説明する。図2は暖房運転中における第1熱媒体、第2熱媒体の流れを示す図である。図2において、室内機30は空調ON状態、室内機40,50は空調OFF状態と記載されている。なお、空調ON状態は、室内機に対する空調の要求が生じている状態を示し、空調OFF状態は、室内機に対する空調の要求が生じていない状態を示す。空調OFF状態は、リモコン等によって室内機がOFFされた場合の他、空調ON状態で室内機によって空調が行なわれた結果、室温が設定温度に到達して空調を一時的に停止している場合を含む。
 暖房運転時には、第1熱媒体(冷媒)が、圧縮機11から吐出され、第2熱交換器22、膨張弁24、第1熱交換器13を順に経て圧縮機11に戻るように、四方弁12が設定される。圧縮機11から吐出された高温高圧の第1熱媒体は、第2熱交換器22において第2熱媒体と熱交換することによって凝縮される。凝縮された第1熱媒体は、膨張弁24によって減圧され、第1熱交換器13において蒸発し低温のガス状態となって圧縮機11に戻る。
 第2熱媒体回路においては、ポンプ23から送出された第2熱媒体(水又はブライン)は、第2熱交換器22において第1熱媒体と熱交換することによって温度が上昇する。温度が上昇した第2熱媒体は、空調ON状態の室内機30に供給され、室内空気と熱交換する。これによって空調ON状態の室内機30は室内に温風を供給する。なお、空調ON状態の室内機30に対応する流量調整弁33は開状態に制御され、空調OFF状態の室内機40,50に対応する流量調整弁43,53は閉状態に制御される。このため、熱交換器31には第2熱媒体が流通するが、熱交換器41,51には第2熱媒体は流通しない。
 図3は、暖房除霜運転(状態A)における第1熱媒体、第2熱媒体の流れを示す図である。暖房除霜運転(状態A)は、暖房除霜運転の標準的な状態である。図3を参照して、第1熱媒体(冷媒)が、圧縮機11から吐出され、第1熱交換器13、膨張弁24、第2熱交換器22を順に経て圧縮機11に戻るように、四方弁12が設定される。すなわち、四方弁12は冷房運転と同じ状態に制御される。このとき、圧縮機11から吐出された高温高圧の第1熱媒体は、第1熱交換器13において外気と熱交換することによって凝縮される。凝縮された第1熱媒体は、膨張弁24によって減圧され、第2熱交換器22において第2熱媒体と熱交換し低温のガス状態となって圧縮機11に戻る。
 第2熱媒体回路においては、ポンプ23から送出された第2熱媒体(水又はブライン)は、第2熱交換器22において第1熱媒体と熱交換することによって温度が低下する。温度が低下した第2熱媒体は、空調ON状態の室内機30に供給されるが、ファン32は停止されており、室内に冷風が吹き出すことはない。なお、空調ON状態の室内機30に対応する流量調整弁33は開状態に制御され、空調OFF状態の室内機40,50に対応する流量調整弁43,53は閉状態に制御される。このため、熱交換器31には第2熱媒体が流通するが、熱交換器41,51には第2熱媒体は流通しない。
 このとき、第2熱交換器22では、第2熱媒体が低温の第1熱媒体と熱交換することによって冷却される。ここで、第2熱交換器22の流入部における第2熱媒体の温度が低いと第2熱交換器22の内部で第2熱媒体が凍結するおそれがある。
 図4は、暖房除霜運転(状態B)における第1熱媒体、第2熱媒体の流れを示す図である。暖房除霜運転(状態B)は、除霜運転中に第2熱媒体の温度が低下した状態である。図4では、図3と比べ、暖房除霜運転中に、空調OFF状態の熱交換器にも第2熱媒体を流通させ、空調OFF状態の室内機が設置されている部屋の空気から熱を吸収させる点が異なる。第1熱媒体の循環経路については図3と同じであるので、図4の第2熱媒体回路について説明する。
 図4を参照して、第2熱媒体回路においては、ポンプ23から送出された第2熱媒体(水又はブライン)は、第2熱交換器22において第1熱媒体と熱交換することによって温度が低下する。温度が低下した第2熱媒体は、空調ON状態の室内機30に供給されるが、ファン32は停止されており、室内に冷風が吹き出すことはない。
 加えて、温度センサ26によって第2熱媒体の温度が監視されており、第2熱媒体の温度が凍結温度に近い第1判定温度X℃となった場合には、空調OFF状態の室内機40,50に対応する流量調整弁43,53は閉状態から開状態に設定が変更される。同時にファン42,52も駆動され、室内空気と第2熱媒体との熱交換が熱交換器41,51において積極的に行なわれる。その結果、第2熱媒体の温度は上昇するので、第2熱媒体の凍結が防止される。したがって、第2熱交換器22における凍結が防止されるとともに、除霜運転を中断しなくても良くなるため、除霜時間も短縮される。
 なお、一旦低下した第2熱媒体の温度が第2判定温度Y℃まで上昇した場合には、再び図3のように第2熱媒体の循環経路が設定され、除霜運転が継続される。ここで、第2判定温度Y℃は第1判定温度X℃以上の温度であれば良い。なお、第2判定温度Y℃は第1判定温度X℃と同じ温度でもよいが、頻繁に流路の切り替えが発生することを避けるために、Y>Xに設定することが好ましい。
 図5は、実施の形態1の暖房除霜運転の制御の一例を説明するための波形図である。図5の時刻t0~t1においては、暖房運転が実行され、第1熱媒体と第2熱媒体が図2に示すように流れている。
 時刻t1においては、暖房除霜開始条件が成立したことに応じて、四方弁の状態が暖房状態から冷房状態に設定される。時刻t1~t2の間は、第1熱媒体と第2熱媒体が図3の状態Aに示すように流れている。第2熱交換器22において第2熱媒体の熱が第1熱媒体に送られることによって、第2熱媒体の温度は次第に低下し、時刻t2において第1判定温度X℃よりも低下する。
 これに応じて時刻t2~t3の間では、図4の状態Bに示すように第2熱媒体の流れが空調OFF室内機にも流通するように変更される。このため室内空気と第2熱媒体との熱交換量が増えるため、第2熱媒体の温度は次第に上昇するようになる。
 時刻t3において第2熱媒体の温度が第2判定温度Y℃よりも高くなると、再び図3に示すように流量調整弁の設定が変更される。そして時刻t4において除霜運転停止条件が成立すると再び図2に示すような暖房運転に復帰する。
 図6は、空気調和装置の制御を行なう制御装置と制御装置を遠隔制御するリモコンの構成を示す図である。図6を参照して、リモコン200は、入力装置201と、プロセッサ202と、送信装置203とを含む。入力装置201は、ユーザーが室内機のON/OFFを切り替える押しボタン、設定温度を入力するボタン等を含む。送信装置203は、制御装置100と通信を行なうためのものである。プロセッサ202は、入力装置201から与えられた入力信号に従って、送信装置203を制御する。
 制御装置100は、受信装置101と、プロセッサ102と、メモリ103とを含む。
 メモリ103は、たとえば、ROM(Read Only Memory)と、RAM(Random Access Memory)と、フラッシュメモリとを含んで構成される。なお、フラッシュメモリには、オペレーティングシステム、アプリケーションプログラム、各種のデータが記憶される。
 プロセッサ102は、空気調和装置1の全体の動作を制御する。なお、図1に示した制御装置100は、プロセッサ102がメモリ103に記憶されたオペレーティングシステム及びアプリケーションプログラムを実行することにより実現される。なお、アプリケーションプログラムの実行の際には、メモリ103に記憶されている各種のデータが参照される。受信装置101は、リモコン200との通信を行なうためのものである。複数の室内機がある場合には、受信装置101は複数の室内機の各々に設けられる。
 なお、図1に示すように制御装置が複数の制御部に分割されている場合には、複数の制御部の各々にプロセッサが含まれる。このような場合には、複数のプロセッサが連携して空気調和装置1の全体制御を行なう。このような制御装置100は、室外機10、室内空調装置3、中継機20、熱源機2、空気調和装置1のいずれに含まれていても良い。
 図7は、実施の形態1において制御装置が実行する制御を説明するためのフローチャートである。図7を参照して、予め定められた除霜開始条件が成立すると除霜運転が開始される。除霜開始条件は、たとえば、暖房運転中に、一定時間経過ごと又は室外機の熱交換器の着霜が検出されたとき等に成立する。
 除霜運転がスタートすると、まずステップS1において、制御装置100は、四方弁12を暖房運転状態から冷房運転状態に切り替える。続いて、ステップS2において、制御装置100は、空調ON状態の室内機に対して、ファンをOFFし、流量調整弁を開くように制御を行なう。すると、たとえば図3の状態Aに示すように第2熱媒体が流れる。
 この状態で、ステップS3において、制御装置100は、温度センサ26で検出された第2熱媒体の温度T1が第1判定温度X℃よりも低いか否かを判断する。温度T1が第1判定温度X℃以上である場合(S3でNO)、図3に示した除霜運転の状態Aが維持される。一方温度T1が第1判定温度X℃より低い場合(S3でYES)、ステップS4に処理が進められる。
 ステップS4では、制御装置100は、空調OFF状態の室内機に対して、流量調整弁を開き、ファンをONするように制御を行なう。すると、たとえば図4の状態Bに示すように第2熱媒体が流れる。
 なお、ステップS4では、図4に示したように空調OFF状態の室内機のすべてに対応する流量調整弁を開いても良いが、予め優先順位を定めて置き、空調OFF状態の室内機のうちから優先順位の高い一部の室内機に対応する流量調整弁を開くようにすることが好ましい。これにより、空調OFF状態の室内機のうち除霜の影響を受ける室内機を一部に限定することができ、空調OFF状態から空調ON状態に状態が変更になった場合の動作に有利となる。
 この状態で、ステップS5において、制御装置100は、温度センサ26で検出された第2熱媒体の温度T1が第2判定温度Y℃以上となっているか否かを判断する。温度T1が第2判定温度Y℃より低い場合(S5でNO)、図4に示した除霜運転の状態Bが維持される。一方温度T1が第2判定温度Y℃以上である場合(S5でYES)、ステップS6に処理が進められる。
 ステップS6では、制御装置100は、空調OFF状態の室内機に対して、流量調整弁を閉じ、ファンをOFFするように制御を行なう。すると、第2熱媒体の流れは、図3に示すように元の状態Aに戻る。
 続く、ステップS7においては、制御装置100は、除霜終了条件が成立するか否かを判断する。除霜終了条件は、たとえば、除霜開始から一定時間が経過した場合や室外機の除霜が完了した場合などに成立する。ステップS7において、除霜終了条件が成立していない場合は、再びステップS3以降の処理が繰返される。一方、ステップS7において、除霜終了条件が成立している場合は、ステップS8において除霜運転が終了され、再び暖房運転が行なわれる。
 再び図1を参照して、実施の形態1の空気調和装置及び制御装置について構成と主たる動作とを記載する。制御装置100は、暖房モードと除霜モードとを含む動作モードで動作する空気調和装置1を制御する制御装置である。空気調和装置1は、第1熱媒体を圧縮する圧縮機11と、第1熱媒体と室外空気との熱交換を行なう第1熱交換器13と、第1熱媒体と第2熱媒体との間で熱交換を行なう第2熱交換器22と、第2熱媒体と室内空気との熱交換を行なう複数の第3の熱交換器31,41,51と、複数の第3の熱交換器31,41,51に流通する第2熱媒体の流量をそれぞれ調整する複数の流量調整弁33,43,53と、第2熱媒体を複数の第3の熱交換器31,41,51と第2熱交換器22との間で循環させるポンプ23とを備える。
 制御装置100は、暖房モードでは、複数の第3の熱交換器31,41,51のうち空調要求が生じている熱交換器に対応する流量調整弁を開き、複数の第3の熱交換器31,41,51のうち空調要求が生じていない熱交換器に対応する流量調整弁を閉じる。制御装置100は、除霜モードでは、第2熱媒体の温度T1が第1判定温度X℃よりも低い場合には(S3でYES)、空調要求が生じていない熱交換器のうち一部の熱交換器に対応する流量調整弁を開く。この一部の熱交換器は、空調要求が生じていない残余の熱交換器よりも設定された優先順位が高い。優先順位が高い一部の流量調整弁は、代表的には最も優先順位が高い流量調整弁であるが、空調要求が生じていない熱交換器が3台又は4台以上ある場合には、優先順位の上位から2つ又は3つなどであっても良い。
 好ましくは、制御装置100は、除霜モードでは、第2熱媒体の温度T1が第2判定温度Y℃よりも高い場合には(S5でYES)、空調要求が生じていない熱交換器に対応する流量調整弁を閉じる。
 このようにして、除霜運転中に第2熱媒体の温度が低下した場合に、空調要求が生じていない熱交換器に第2熱媒体を流すので、室内空気から第2熱媒体に熱を移動させることができ、第2熱媒体の温度を上昇させることができる。
 図5に示すように、好ましくは、空気調和装置1は、複数の第3の熱交換器31,41,51にそれぞれ対応して設けられる複数のファン32,42,52をさらに備える。制御装置100は、暖房モードでは、空調要求が生じている熱交換器に対応するファンを駆動させるとともに、空調要求が生じていない熱交換器に対応するファンを停止させる。制御装置100は、除霜モードでは、第2熱媒体の温度が第1判定温度X℃よりも低い場合には、空調要求が生じていない熱交換器に対応するファンを駆動させる。
 図5に示すように、好ましくは、制御装置100は、除霜モードでは、第2熱媒体の温度が第2判定温度Y℃よりも高い場合には、空調要求が生じていない熱交換器に対応するファンを停止させる。
 このようにして、除霜運転中に第2熱媒体の温度が低下した場合に、空調要求が生じていない熱交換器にファンで空気を送るので、室内空気から第2熱媒体への熱移動が一層促進される。
 以上説明したように、実施の形態1の空気調和装置は、暖房除霜時に第2熱媒体が凍結する恐れがある場合、空調OFF状態にある室内機の流量調整弁を開き、ファンを回して、室内からの熱によって第2熱媒体の温度を上昇させる。これによって、第2熱媒体回路の凍結を防止しつつ第2熱交換器における吸熱を確保し除霜運転に要する時間を短縮することができる。
 実施の形態2.
 実施の形態1では、空調OFF状態にある室内機を一律に扱うか、又は予め定めた優先順位が上位の順から採熱源とした。実施の形態2では、除霜運転において、短時間で採熱が可能なように、室温が高いほど優先順位を高く設定する。
 図8は、実施の形態2の空気調和装置1Aの構成を示す図である。図8に示す空気調和装置1Aは、図1に示す空気調和装置1の構成に加えて、複数の第3の熱交換器31,41,51が設置された場所にそれぞれ設置される複数の室温センサ34,44,54をさらに備える。
 室内機30,40,50は、それぞれ室内空気の温度を測定する室温センサ34,44,54を含む。空気調和装置1Aの他の構成については、図1に示す空気調和装置1と同様であり説明は繰返さない。
 室温センサ34,44,54は、第2熱媒体が第3の熱交換器31,41,51において熱交換する室内空気の温度T2,T3,T4をそれぞれ測定し、制御装置100に出力する。
 制御装置100は、複数の室温センサ34,44,54の検出温度が高いほど対応する流量調整弁33,43,53の優先順位を高く設定する。
 制御装置100は、第2熱媒体の凍結の恐れがある場合、空調OFF状態の室内機のうち、室温が高い室内機から優先して流量調整弁を開き、室内ファンをONする凍結保護動作を実施する。室温が高いほど、第2熱媒体を加熱するための熱源として有利である。例えばいずれか1つの室内機を採熱源とする場合には、最も室温が高い部屋に設置された室内機を選択することにより、短時間で第2熱媒体の温度を上昇させることが可能となる。
 図9は、実施の形態2において制御装置が実行する制御を説明するためのフローチャートである。図9に示すフローチャートは、図7に示した実施の形態1の制御を示したフローチャートのステップS4をステップS4Aに置換したものである。したがって、ステップS4A以外については、実施の形態1で説明しているので、ここでは説明は繰返さない。
 除霜運転中に水温T1がX℃より下がると(S3でYES)、制御装置100は、ステップS4Aにおいて、空調OFF状態の室内機のうち最も室温が高い室内機に対して、流量調整弁を開き、ファンをONするように制御を行なう。すると、たとえば図4の状態Bでは、室内機40,50の両方に第2熱媒体が流れたが、室温が高いほうの室内機にのみ第2熱媒体が流れるように変わる。
 これにより、空調OFF状態の室内機のうち除霜の影響を受ける室内機を一部に限定した場合に、単位時間当たりの採熱量が大きい室内空間から優先的に採熱することができ、採熱に要する時間を削減することができる。
 実施の形態3.
 実施の形態2では、第3熱交換器が設置されている室の室温によって優先順位を定めたが、実施の形態3では、制御装置100は、複数の第3の熱交換器31,41,51の容量(能力)が大きいほど対応する流量調整弁の優先順位を高く設定する。
 図10は、実施の形態3において制御装置が実行する制御を説明するためのフローチャートである。図10に示すフローチャートは、図7に示した実施の形態1の制御を示したフローチャートのステップS4をステップS4Bに置換したものである。したがって、ステップS4B以外については、実施の形態1で説明しているので、ここでは説明は繰返さない。
 除霜運転中に水温T1がX℃より下がると(S3でYES)、制御装置100は、ステップS4Bにおいて、空調OFF状態の室内機のうち最も容量が大きい室内機に対して、流量調整弁を開き、ファンをONするように制御を行なう。すると、たとえば図4の状態Bでは、室内機40,50の両方に第2熱媒体が流れたが、容量が大きいほうにのみ第2熱媒体が流れるように変わる。
 これにより、空調OFF状態の室内機のうち除霜の影響を受ける室内機を一部に限定した場合に、単位時間当たりの採熱能力が大きい熱交換器から優先的に採熱することができ、採熱に要する時間を削減することができる。
 実施の形態4.
 実施の形態2及び3では、採熱源としての室内熱交換器を限定する場合において、採熱に要する時間を削減することができる室内熱交換器に対応する流量調整弁を優先的に選択した。これに対して、実施の形態4では、空調OFF状態の室内機のうち使用頻度が低い室内熱交換器から優先して採熱源とする。
 図11は、実施の形態4において制御装置が実行する制御を説明するためのフローチャートである。図11に示すフローチャートは、図7に示した実施の形態1の制御を示したフローチャートのステップS4をステップS4Cに置換したものである。したがって、ステップS4C以外については、実施の形態1で説明しているので、ここでは説明は繰返さない。
 除霜運転中に水温T1がX℃より下がると(S3でYES)、制御装置100は、ステップS4Cにおいて、空調OFF状態の室内機のうち1週間前の1日あたりの運転稼働時間が最も短い室内機に対して、流量調整弁を開き、ファンをONするように制御を行なう。すると、たとえば図4の状態Bでは、室内機40,50の両方に第2熱媒体が流れたが、使用頻度が低いほうにのみ第2熱媒体が流れるように変わる。
 図12は、使用頻度に基づく優先順位の決定について説明するための図である。制御装置100は、1日あたりの運転稼働時間(時間/日)を各室内機ごとに測定し、測定データを曜日ごとに記憶する。
 図12に示すように、日曜日の運転稼働時間は室内機30,40,50に対して、それぞれ2.3時間、1.8時間、3.5時間と記憶されている。したがって、運転稼働時間が短い順に優先順位が高く設定され、日曜日については、稼働時間が最短の1.8時間である室内機40の優先順位が1番となる。
 また、月曜日の運転稼働時間は室内機30,40,50に対して、それぞれ1.2時間、0.9時間、2.8時間と記憶されている。したがって、運転稼働時間が短い順に優先順位が高く設定され、月曜日については、稼働時間が最短の0.9時間である室内機40の優先順位が1番となる。
 また、火曜日の運転稼働時間は室内機30,40,50に対して、それぞれ0.9時間、1.5時間、3.0時間と記憶されている。したがって、運転稼働時間が短い順に優先順位が高く設定され、火曜日については、稼働時間が最短の0.9時間である室内機30の優先順位が1番となる。
 以降の水曜日~土曜日についても、同様に運転稼働時間が記録されており、室内機に対する優先順位が定められている。
 したがって、図11のステップS4Cでは、図12に示した一週間前の同じ曜日の稼働時間が参照され、空調OFFの室内機のうちから対応する曜日の運転稼働時間が最も短い室内機の流量調整弁を開く。
 以上説明したように、実施の形態4では、図11、図12に示すように、制御装置100は、現時点よりも前の一定期間における複数の第3熱交換器の稼働時間が短いほど対応する流量調整弁の優先順位を高く設定する。
 現時点よりも前の一定期間は、前日、1ヶ月前などでも良い。より特定的には、図12に示すように、制御装置100は、現時点の曜日と同じ曜日の一日あたりの稼働時間が短いほど対応する流量調整弁の優先順位を高く設定する。
 これにより、空調OFF状態の室内機のうち除霜の影響を受ける室内機を一部に限定した場合に、採熱動作がユーザーに与える影響を最小限に抑えることができる。
 実施の形態5.
 実施の形態4では、空調OFF状態の室内機のうち過去において使用頻度が低い室内機から優先して採熱源としたが、使用頻度が低くてもユーザーがその時使用していれば採熱動作がユーザーの快適性を損なう可能性がある。したがって、実施の形態5では、各室内機にユーザーの在室を確認するための人感センサを設け、その出力に基づいて採熱源とする室内機を決定する。
 図13は、実施の形態5の空気調和装置1Dの構成を示す図である。図13に示す空気調和装置1Dは、図1に示す空気調和装置1の構成に加えて、複数の第3の熱交換器31,41,51が設置された場所にユーザーが存在するか否かを検知する複数の人感センサ35,45,55をさらに備える。人感センサ35,45,55としては、赤外線、超音波、可視光などを用いる各種の人感センサを用いることができる。
 室内機30,40,50は、人感センサ35,45,55を含んでいても良いし、同じ室内であれば室内機と離れた場所に人感センサが設置されても良い。空気調和装置1Dの他の構成については、図1に示す空気調和装置1と同様であり説明は繰返さない。
 人感センサ35,45,55は、第3の熱交換器31,41,51が設置されている室内にユーザーが在室中か否かをそれぞれ検出し、制御装置100に出力する。
 図14は、実施の形態5において制御装置が実行する制御を説明するためのフローチャートである。図14に示すフローチャートは、図7に示した実施の形態1の制御を示したフローチャートのステップS4をステップS4Dに置換したものである。したがって、ステップS4D以外については、実施の形態1で説明しているので、ここでは説明は繰返さない。
 除霜運転中に水温T1がX℃より下がると(S3でYES)、制御装置100は、ステップS4Dにおいて、空調OFF状態の室内機のうち人が不在の室の室内機に対して、流量調整弁を開き、ファンをONするように制御を行なう。すると、たとえば図4の状態Bでは、室内機40,50の両方に第2熱媒体が流れたが、人が不在の室の室内機にのみ第2熱媒体が流れるように変わる。
 なお、いずれの室内機の設置されている室にも人が在室している場合には、実施の形態2~4で説明したいずれかの優先順位に基づいて採熱源とする室内機を選択すればよい。
 以上説明したように、実施の形態5では、空気調和装置1Dは、複数の第3の熱交換器31,41,51が設置された場所に設置される複数の人感センサ35,45,55をさらに備える。制御装置100は、複数の人感センサ35,45,55のうち、人を検出していない人感センサに対応する流量調整弁の優先順位を、人を検出している人感センサに対応する流量調整弁の優先順位よりも高く設定する。
 これにより、ユーザーに与える影響を最小限に抑えつつ除霜時間を短くすることができる。
 実施の形態6.
 以上の実施の形態では、制御装置100が優先順位を決定して除霜運転時に採熱源とする室内機を選択した。しかし、自動的に優先順位が決定される場合には、ユーザーの意に沿わない優先順位となる可能性がゼロではない。したがって、実施の形態6では、ユーザーが優先順位を設定できるように優先順位設定モードを設けた。
 図15は、実施の形態6において優先順位設定モードで実行される処理を説明するためのフローチャートである。図15のフローチャートの処理は、ユーザーがリモコンで優先順位設定モードを選択した場合に実行される。優先順位設定モードでは、制御装置100は、ステップS11においてユーザーがリモコンから入力した室内機の優先順位を受け付ける。ユーザーは、除霜運転時において空調OFF時に採熱によって冷風が生じるなどを許容して良い順番に、室内機の優先順位を自由に設定することができる。
 そして、ステップS12において、制御装置100は、図6のメモリ103に、入力された優先順位を記憶し、優先順位設定モードの処理を終了する。
 図16は、実施の形態6において制御装置が実行する制御を説明するためのフローチャートである。図16に示すフローチャートは、図7に示した実施の形態1の制御を示したフローチャートのステップS4をステップS4Eに置換したものである。したがって、ステップS4E以外については、実施の形態1で説明しているので、ここでは説明は繰返さない。
 除霜運転中に水温T1がX℃より下がると(S3でYES)、制御装置100は、ステップS4Eにおいて、空調OFF状態の室内機のうち優先順位が最上位の室内機に対して、流量調整弁を開き、ファンをONするように制御を行なう。すると、たとえば図4の状態Bでは、室内機40,50の両方に第2熱媒体が流れたが、設定された優先順位が高い方の室内機にのみ第2熱媒体が流れるように変わる。
 以上説明したように、実施の形態6においては、空気調和装置1は、ユーザーが優先順位を設定する入力装置201をさらに備える。制御装置100は、ユーザーが設定した優先順位を記憶するメモリ103を含む。
 なお、実施の形態6で説明した、ユーザーが設定した優先順位に基づいて除霜運転時の採熱を行なう処理は、実施の形態2~5の処理と組み合わせても良い。その場合、実施の形態6の処理を優先させ、ユーザーが優先順位を設定していないときに実施の形態2~5の処理を実行するようにすれば、ユーザーの希望に沿わない場合に優先順位を修正できるので好ましい。
 実施の形態7.
 以上説明した実施の形態3~6では、除霜時に採熱する優先順位によって、人が在室中の可能性の高い室に設置された室内機から採熱することを避けるようにした。実施の形態7では、流量調整弁とファンの駆動に差をつけることによって、除霜運転時の冷風の発生をなるべく避けるようにする。
 図17は、実施の形態7の空気調和装置1Fの構成を示す図である。図13に示す空気調和装置1Fは、図1に示す空気調和装置1の構成おいて、制御装置100に代えて制御装置100Fを備える。
 制御装置100Fは、室外機10を制御する制御部15と、中継機20を制御する制御部27と、室内機30,40,50をそれぞれ制御する制御部38,48,58とを含む。
 制御部38,48,58は、それぞれ室内機30,40,50の除霜時間を積算するように構成される。空気調和装置1Fの他の構成については、図1に示す空気調和装置1と同様であり説明は繰返さない。
 図18は、実施の形態7において除霜運転時に実行される制御を説明するためのフローチャートである。予め定められた除霜開始条件が成立すると図18に示す除霜運転の処理が開始される。除霜開始条件は、たとえば、暖房運転中に、一定時間経過ごと又は室外機の熱交換器の着霜が検出されたとき等に成立する。
 除霜運転がスタートすると、まずステップS21において、制御装置100は、四方弁12を暖房運転状態から冷房運転状態に切り替える。続いて、ステップS22において、制御装置100は、空調ON状態の室内機に対して、ファンをOFFし、流量調整弁を開くように制御を行なう。すると、たとえば第2熱媒体が図3に示すように流れる。
 この状態で、ステップS23において、制御装置100は、温度センサ26で検出された第2熱媒体の温度T1が第1判定温度X℃よりも低いか否かを判断する。温度T1が第1判定温度X℃以上である場合(S23でNO)、図3に示した除霜運転の状態が維持される。一方温度T1が第1判定温度X℃より低い場合(S23でYES)、ステップS24に処理が進められる。
 ステップS24では、制御装置100は、空調OFF状態かつファンOFFの室内機に対して、流量調整弁を開くように制御を行なう。ただし、このときにはファンはOFF状態のままとする。なお、このときに実施の形態1~6に示したように空調OFF状態かつファンOFFの室内機のうち優先順位が高いものの流量調整弁を開き、優先順位が低いものについては流量調整弁を開かないようにしても良い。
 さらに、ステップS25において、制御装置100は、温度センサ26で検出された第2熱媒体の温度T1が第2判定温度Y℃以上となっているか否かを判断する。ここで、第2判定温度Y℃は第1判定温度X℃以上の温度であれば良い。なお、第2判定温度Y℃は第1判定温度X℃と同じ温度でもよいが、頻繁に流路の切り替えが発生することを避けるために、Y>Xに設定することが好ましい。
 ステップS25において、温度T1が第2判定温度Y℃より低い場合(S25でNO)、ステップS26において、ステップS24の処理を実行してから時間Z分が経過したか否かが判断される。制御部38,48,58のいずれかで積算されている時間がこの判断に使用される。ステップS26において、まだZ分が経過していない場合(S26でNO)、再びステップS25の判定処理が実行される。一方、ステップS26において、Z分経過していた場合(S26でYES)、ステップS27に処理が進められる。
 ステップS27では、ステップS24で流量調整弁を開いた室内機に対して、さらに対応するファンをON状態とする。これによって、熱交換器において室内の空気と第2熱媒体との間で積極的に熱交換が行なわれるため、室内に冷風が吹き出すが室内機における採熱量は増加するので第2熱媒体の温度は上昇しやすくなる。続いて、ステップS28において制御装置100は、温度センサ26で検出された第2熱媒体の温度T1が第2判定温度Y℃以上となっているか否かを判断する。
 ステップS28において、温度T1が第2判定温度Y℃より低い場合(S28でNO)、再びステップS28の判定処理が実行される。
 一方、ステップS28において、温度T1が第2判定温度Y℃以上となった場合(S28でYES)、ステップS29に処理が進められる。また、ステップS25において、温度T1が第2判定温度Y℃以上である場合(S25でYES)も、ステップS29に処理が進められる。
 ステップS29では、制御装置100は、空調OFF状態の室内機に対して、流量調整弁を閉じ、ファンをOFFするように制御を行なう。すると、第2熱媒体の流れは、図3に示すように元に戻る。
 続く、ステップS30においては、制御装置100は、除霜終了条件が成立するか否かを判断する。除霜終了条件は、たとえば、除霜開始から一定時間が経過した場合や室外機の除霜が完了した場合などに成立する。ステップS30において、除霜終了条件が成立していない場合は、再びステップS23以降の処理が繰返される。一方、ステップS30において、除霜終了条件が成立している場合は、ステップS31において除霜運転が終了され、再び暖房運転が行なわれる。
 図19は、実施の形態7で実行される暖房除霜運転の制御の一例を説明するための波形図である。図19の時刻t10~t11においては、暖房運転が実行され、第1熱媒体と第2熱媒体が図2に示すように流れている。
 時刻t11においては、暖房除霜開始条件が成立したことに応じて、四方弁の状態が暖房状態から冷房状態に設定される。時刻t11~t12の間は、第1熱媒体と第2熱媒体が図3の状態Aに示すように流れている。第2熱交換器22において第2熱媒体の熱が第1熱媒体に送られることによって、第2熱媒体の温度は次第に低下し、時刻t12において第1判定温度X℃よりも低下する。
 これに応じて時刻t12~t13の間では、図4に示すように第2熱媒体の流れが採熱対象である空調OFF室内機にも流通するように変更される。ただし、このときはファンはOFFのままとされる。この状態を状態Cとする。
 時刻t12からZ分が経過した時刻t13において水温T1がまだY℃よりも低いので、制御装置100Fは、採熱対象である空調OFF室内機のファンをON状態とする。この状態は、実施の形態1と同様の状態Bである。すると、室内空気と第2熱媒体との熱交換量が増えるため、第2熱媒体の温度は次第に上昇するようになる。
 時刻t14において第2熱媒体の温度が第2判定温度Y℃よりも高くなると、再び図3に示すように流量調整弁の設定が変更されるとともに、採熱対象であった室内機のファンもOFF状態に戻される。そして時刻t15において除霜運転停止条件が成立すると再び図2に示すような暖房運転に復帰する。
 以上、図17~図19に示すように、制御装置100Fは、空調要求が生じていない熱交換器に対応する流量調整弁のうち優先順位の高い一部の流量調整弁(たとえば優先順位が最も高い1つ)を開いてから、判定時間が経過してもまだ第2熱媒体の温度が第2判定温度よりも低い場合には、開いている流量調整弁に対応する室内機のファンを回転させる。
 このように採熱対象とする室内機の流量調整弁とファンを制御することによって、Z分以内に第2熱媒体の温度T1が第2判定温度Y℃よりも高くなれば、ファンを回転させることなく除霜運転を完了させることができる。したがって、空調OFFの室内機において冷風が吹き出す等の状況を減らすことができる。
 このような制御が行なわれるので、実施の形態7の空気調和装置では、除霜運転時に第2熱媒体の温度が低下した場合に、空調OFF状態の室内機の流量調整弁を開き、採熱量が不足であればさらにファンを回転させ第2熱媒体の温度を上昇させる。これにより、室内機からの採熱量を細かく制御できるので、必要量の採熱が行なわれるだけですむため、空調OFF状態の室内機が暖房を開始する場合にも有利である。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
 1,1A,1D,1F 空気調和装置、2 熱源機、3 室内空調装置、4,5,6,7 配管、10 室外機、11 圧縮機、12 四方弁、13 第1熱交換器、15,27,36,38,48,58 制御部、20 中継機、22 第2熱交換器、23 ポンプ、24 膨張弁、25 圧力センサ、26 温度センサ、30,40,50 室内機、31,41,51 熱交換器、32,42,52 ファン、33,43,53 流量調整弁、34,44,54 室温センサ、35,45,55 人感センサ、100,100F 制御装置、101 受信装置、102,202 プロセッサ、103 メモリ、200 リモコン、201 入力装置、203 送信装置。

Claims (12)

  1.  第1熱媒体を圧縮する圧縮機と、
     前記第1熱媒体と室外空気との熱交換を行なう第1熱交換器と、
     前記第1熱媒体と第2熱媒体との間で熱交換を行なう第2熱交換器と、
     前記第2熱媒体と室内空気との熱交換を行なう複数の第3熱交換器と、
     前記複数の第3熱交換器に流通する前記第2熱媒体の流量をそれぞれ調整する複数の流量調整弁と、
     前記第2熱媒体を前記複数の第3熱交換器と前記第2熱交換器との間で循環させるポンプとを備え、暖房モードと除霜モードとを含む動作モードで動作する空気調和装置を制御する制御装置であって、
     前記暖房モードでは、前記複数の第3熱交換器のうち空調要求が生じている熱交換器に対応する流量調整弁を開き、前記複数の第3熱交換器のうち空調要求が生じていない熱交換器に対応する流量調整弁を閉じ、
     前記除霜モードでは、前記第2熱媒体の温度が第1判定温度よりも低い場合には、前記空調要求が生じていない熱交換器のうち一部の熱交換器に対応する流量調整弁を開き、前記一部の熱交換器は、空調要求が生じていない残余の熱交換器よりも設定された優先順位が高い、制御装置。
  2.  前記空気調和装置は、前記複数の第3熱交換器が設置された場所に設置される複数の室温センサをさらに備え、
     前記制御装置は、前記複数の室温センサの検出温度が高いほど対応する流量調整弁の優先順位を高く設定する、請求項1に記載の制御装置。
  3.  前記制御装置は、前記複数の第3熱交換器の能力が大きいほど対応する流量調整弁の優先順位を高く設定する、請求項1に記載の制御装置。
  4.  前記制御装置は、現時点よりも前の一定期間における前記複数の第3熱交換器の稼働時間が短いほど対応する流量調整弁の優先順位を高く設定する、請求項1に記載の制御装置。
  5.  前記制御装置は、現時点の曜日と同じ曜日の一日あたりの稼働時間が短いほど対応する流量調整弁の優先順位を高く設定する、請求項4に記載の制御装置。
  6.  前記空気調和装置は、前記複数の第3熱交換器が設置された場所に設置される複数の人感センサをさらに備え、
     前記制御装置は、前記複数の人感センサのうち、人を検出していない人感センサに対応する流量調整弁の優先順位を、人を検出している人感センサに対応する流量調整弁の優先順位よりも高く設定する、請求項1に記載の制御装置。
  7.  前記空気調和装置は、ユーザーが優先順位を設定する入力装置をさらに備え、
     前記制御装置は、前記ユーザーが設定した優先順位を記憶する記憶部を含む、請求項1に記載の制御装置。
  8.  前記制御装置は、前記空調要求が生じていない熱交換器に対応する流量調整弁のうち前記一部の熱交換器に対応する流量調整弁を開いてから、判定時間が経過してもまだ前記第2熱媒体の温度が第2判定温度よりも低い場合には、開いている流量調整弁に対応する室内機のファンを回転させる、請求項1に記載の制御装置。
  9.  前記圧縮機と、前記第1熱交換器と、請求項1~8のいずれか1項に記載の制御装置を備えた室外機。
  10.  前記第2熱交換器と、前記ポンプと、請求項1~8のいずれか1項に記載の制御装置と、を備えた中継機。
  11.  前記圧縮機と、前記第1熱交換器と、前記第2熱交換器と、前記ポンプと、請求項1~8のいずれか1項に記載の制御装置を備えた熱源機。
  12.  前記圧縮機と、前記第1熱交換器と、前記第2熱交換器とによって形成された第1熱媒体回路及び、前記ポンプと、前記第2熱交換器と、前記複数の第3熱交換器とによって形成された第2熱媒体回路と、請求項1~8のいずれか1項に記載の制御装置を備えた空気調和装置。
PCT/JP2019/016662 2019-04-18 2019-04-18 空気調和装置の制御装置、室外機、中継機、熱源機及び空気調和装置 WO2020213130A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980095347.XA CN113661364B (zh) 2019-04-18 2019-04-18 空气调节装置的控制装置、室外机、中继机、热源机以及空气调节装置
EP19925041.6A EP3957925A4 (en) 2019-04-18 2019-04-18 AIR CONDITIONER CONTROL DEVICE, OUTDOOR UNIT, RELAY DEVICE, HEAT SOURCE UNIT AND AIR CONDITIONER
PCT/JP2019/016662 WO2020213130A1 (ja) 2019-04-18 2019-04-18 空気調和装置の制御装置、室外機、中継機、熱源機及び空気調和装置
JP2021514749A JP7209816B2 (ja) 2019-04-18 2019-04-18 空気調和装置の制御装置、室外機、中継機、熱源機及び空気調和装置
US17/432,677 US11927356B2 (en) 2019-04-18 2019-04-18 Controller of air conditioning apparatus, outdoor unit, branch unit, heat source unit, and air conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/016662 WO2020213130A1 (ja) 2019-04-18 2019-04-18 空気調和装置の制御装置、室外機、中継機、熱源機及び空気調和装置

Publications (1)

Publication Number Publication Date
WO2020213130A1 true WO2020213130A1 (ja) 2020-10-22

Family

ID=72837114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016662 WO2020213130A1 (ja) 2019-04-18 2019-04-18 空気調和装置の制御装置、室外機、中継機、熱源機及び空気調和装置

Country Status (5)

Country Link
US (1) US11927356B2 (ja)
EP (1) EP3957925A4 (ja)
JP (1) JP7209816B2 (ja)
CN (1) CN113661364B (ja)
WO (1) WO2020213130A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112902391A (zh) * 2021-03-08 2021-06-04 珠海格力电器股份有限公司 一种多联机空调的控制方法、可读存储介质、多联机空调

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3825629B1 (en) * 2018-07-20 2024-06-12 Mitsubishi Electric Corporation Controller of air conditioning apparatus, outdoor unit, relay unit, heat source unit, and air conditioning apparatus
JP6939841B2 (ja) * 2019-04-22 2021-09-22 ダイキン工業株式会社 空調システム
US11391480B2 (en) * 2019-12-04 2022-07-19 Johnson Controls Tyco IP Holdings LLP Systems and methods for freeze protection of a coil in an HVAC system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58195758A (ja) * 1982-05-10 1983-11-15 株式会社東芝 空気調和機の制御方式
JP2009041860A (ja) 2007-08-09 2009-02-26 Toshiba Carrier Corp ヒートポンプ給湯装置の制御方法
JP2011127775A (ja) * 2009-12-15 2011-06-30 Mitsubishi Electric Corp 空気調和装置
WO2013088484A1 (ja) * 2011-12-16 2013-06-20 三菱電機株式会社 空気調和装置
WO2014128970A1 (ja) * 2013-02-25 2014-08-28 三菱電機株式会社 空気調和装置

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01123965A (ja) * 1987-11-07 1989-05-16 Mitsubishi Electric Corp 空気調和装置
JPH0571833A (ja) * 1991-09-11 1993-03-23 Matsushita Refrig Co Ltd 多室冷暖房装置
JP3414825B2 (ja) * 1994-03-30 2003-06-09 東芝キヤリア株式会社 空気調和装置
JP2842471B2 (ja) 1994-08-03 1999-01-06 松下冷機株式会社 蓄熱式空気調和機
JPH0849936A (ja) 1994-08-03 1996-02-20 Matsushita Refrig Co Ltd 蓄熱式空気調和機
JP3856529B2 (ja) * 1997-06-10 2006-12-13 三菱電機株式会社 空気調和装置
JP3596347B2 (ja) * 1998-04-15 2004-12-02 三菱電機株式会社 冷凍空調装置およびその制御方法
CN1485588B (zh) * 2003-07-29 2010-10-06 孟凡正 双效多工况自除霜式热泵空调及其自动除霜方法
KR101253231B1 (ko) * 2005-10-21 2013-04-16 삼성전자주식회사 멀티형 공기조화기의 제어방법
JP2007205615A (ja) * 2006-01-31 2007-08-16 Mitsubishi Electric Corp 空気調和装置
CN101105320A (zh) * 2006-07-13 2008-01-16 海尔集团公司 一拖多空调控制风机运行的方法
JP4987444B2 (ja) * 2006-11-24 2012-07-25 サンデン株式会社 給湯装置
KR20080110141A (ko) * 2007-06-14 2008-12-18 엘지전자 주식회사 공기조화기
JP4989511B2 (ja) * 2008-02-22 2012-08-01 三菱電機株式会社 空気調和装置
EP2278237B1 (en) * 2008-04-30 2018-04-04 Mitsubishi Electric Corporation Air-conditioning apparatus
CN102105749B (zh) 2008-10-29 2013-06-26 三菱电机株式会社 空调装置
CN101761999B (zh) * 2009-09-11 2012-07-25 沃姆制冷设备(上海)有限公司 户用中央空调节能自动防冻控制方法及用该方法的空调机
JP5492523B2 (ja) * 2009-10-22 2014-05-14 日立アプライアンス株式会社 空気調和機
ES2955660T3 (es) * 2010-02-10 2023-12-05 Mitsubishi Electric Corp Acondicionador de aire
EP2549201B1 (en) * 2010-03-16 2019-12-25 Mitsubishi Electric Corporation Air conditioning device
CN103097832B (zh) * 2010-09-14 2016-04-27 三菱电机株式会社 空气调节装置
WO2012077166A1 (ja) * 2010-12-09 2012-06-14 三菱電機株式会社 空気調和装置
CN102183108A (zh) * 2011-05-06 2011-09-14 广东美的暖通设备有限公司 三管制热回收系统的除霜方法
EP2722617B1 (en) * 2011-06-16 2021-09-15 Mitsubishi Electric Corporation Air conditioner
WO2013008278A1 (ja) 2011-07-14 2013-01-17 三菱電機株式会社 空気調和装置
JP5791717B2 (ja) * 2011-07-14 2015-10-07 三菱電機株式会社 空気調和装置
CN103797317B (zh) * 2011-09-13 2016-08-17 三菱电机株式会社 热泵装置和热泵装置的控制方法
JP2013155964A (ja) * 2012-01-31 2013-08-15 Fujitsu General Ltd 空気調和装置
JP5984914B2 (ja) * 2012-03-27 2016-09-06 三菱電機株式会社 空気調和装置
JP5435069B2 (ja) * 2012-05-01 2014-03-05 ダイキン工業株式会社 空調システム及び除霜運転方法
CN202813656U (zh) * 2012-07-13 2013-03-20 秦皇岛长丰太和新能源有限公司 改良防冻保护的中央空调冷水机
US10393419B2 (en) * 2012-11-21 2019-08-27 Mitsubishi Electric Corporation Air-conditioning apparatus
EP2933582A4 (en) 2012-12-12 2016-10-05 Mitsubishi Electric Corp AIR CONDITIONER DEVICE
WO2014097438A1 (ja) * 2012-12-20 2014-06-26 三菱電機株式会社 空気調和装置
CN103047802A (zh) * 2012-12-26 2013-04-17 苏州设计研究院股份有限公司 空气源热泵冬季除霜系统
JP5988953B2 (ja) * 2013-11-19 2016-09-07 三菱電機株式会社 ヒートポンプ式給湯機
CN104033995B (zh) * 2014-06-24 2017-04-05 广东美的暖通设备有限公司 模式控制方法、模式控制装置和多联式空调器
CN104807141B (zh) * 2015-04-28 2017-10-17 广东美的暖通设备有限公司 一种多联机制空调系统控制方法及其系统
JP6151409B2 (ja) * 2015-10-06 2017-06-21 木村工機株式会社 ヒートポンプ式熱源装置
JP6548742B2 (ja) * 2015-11-20 2019-07-24 三菱電機株式会社 空気調和装置
JP2017142039A (ja) * 2016-02-12 2017-08-17 三菱重工サーマルシステムズ株式会社 空気調和装置
CN106152342B (zh) * 2016-07-04 2020-12-04 珠海格力电器股份有限公司 一种变排量比双级压缩空调系统及其控制方法
CN206145846U (zh) * 2016-09-29 2017-05-03 上海开装建筑科技有限公司 一种分体多联式微型中央空调及其控制系统
CN106739947A (zh) * 2017-02-13 2017-05-31 吉林大学 一种具有多种工作模式的汽车空调
JP6296633B1 (ja) * 2017-04-28 2018-03-20 日立ジョンソンコントロールズ空調株式会社 空気調和機
CN107461877B (zh) * 2017-07-19 2020-12-08 青岛海尔空调电子有限公司 一种多联机系统除霜控制方法
CN107554745A (zh) * 2017-08-31 2018-01-09 泰州市赛博机电设备有限公司 内燃机动能水源热泵船用冷热水机组
JP7026768B2 (ja) * 2018-02-26 2022-02-28 三菱電機株式会社 空気調和システム
CN108800441B (zh) * 2018-06-25 2019-08-27 宁波奥克斯电气股份有限公司 多联机除霜控制方法及空调多联机系统
CN112739965B (zh) * 2018-09-28 2022-06-28 三菱电机株式会社 空调机
CN109458699B (zh) * 2018-11-08 2020-08-11 珠海格力电器股份有限公司 多联机化霜方法、装置、存储介质、计算机设备及空调
CN109506401A (zh) * 2018-11-09 2019-03-22 珠海格力电器股份有限公司 一种多联机热泵的化霜控制方法、系统及存储介质
JP7134265B2 (ja) * 2019-02-05 2022-09-09 三菱電機株式会社 空気調和装置の制御装置、室外機、中継機、熱源機および空気調和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58195758A (ja) * 1982-05-10 1983-11-15 株式会社東芝 空気調和機の制御方式
JP2009041860A (ja) 2007-08-09 2009-02-26 Toshiba Carrier Corp ヒートポンプ給湯装置の制御方法
JP2011127775A (ja) * 2009-12-15 2011-06-30 Mitsubishi Electric Corp 空気調和装置
WO2013088484A1 (ja) * 2011-12-16 2013-06-20 三菱電機株式会社 空気調和装置
WO2014128970A1 (ja) * 2013-02-25 2014-08-28 三菱電機株式会社 空気調和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3957925A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112902391A (zh) * 2021-03-08 2021-06-04 珠海格力电器股份有限公司 一种多联机空调的控制方法、可读存储介质、多联机空调

Also Published As

Publication number Publication date
US11927356B2 (en) 2024-03-12
CN113661364A (zh) 2021-11-16
CN113661364B (zh) 2023-03-10
JP7209816B2 (ja) 2023-01-20
US20220090812A1 (en) 2022-03-24
JPWO2020213130A1 (ja) 2020-10-22
EP3957925A4 (en) 2022-04-06
EP3957925A1 (en) 2022-02-23

Similar Documents

Publication Publication Date Title
WO2020213130A1 (ja) 空気調和装置の制御装置、室外機、中継機、熱源機及び空気調和装置
JP6148001B2 (ja) 空気調和機
JP7134265B2 (ja) 空気調和装置の制御装置、室外機、中継機、熱源機および空気調和装置
KR102085832B1 (ko) 공기조화기 및 공기조화기의 제어방법
WO2019193685A1 (ja) 空気調和システムの制御装置、室外機、中継機、熱源機、および空気調和システム
JP6022291B2 (ja) 空気調和機
JP2020085318A (ja) ヒートポンプ装置
WO2019171463A1 (ja) 空気調和装置
JP6945741B2 (ja) 空気調和装置の制御装置、室外機、中継機、熱源機および空気調和装置
WO2021002087A1 (ja) 空気調和機
KR20100136004A (ko) 동파방지 기능을 구비한 히트펌프 시스템
JP4181362B2 (ja) 空調システムの最適起動制御装置
JP3731095B2 (ja) 冷凍装置の制御装置
WO2020129153A1 (ja) 空気調和装置
US20230145115A1 (en) Heat pump system and controller for controlling operation of the same
US11209182B2 (en) System for air-conditioning and hot-water supply
US12130059B2 (en) Heat pump system and controller for controlling operation of the same
US20210095884A1 (en) Air-conditioning management apparatus and air-conditioning system
JP2021001718A (ja) ヒートポンプ式温水暖房システム
JPH02101337A (ja) 空気調和システム
JP6105271B2 (ja) 空気調和機
JP2019215134A (ja) 複合熱源ヒートポンプ装置
JP2024147923A (ja) 空気調和システム
JP2002061931A (ja) 制御装置、及びこの制御装置を備えた空気調和システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19925041

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021514749

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019925041

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019925041

Country of ref document: EP

Effective date: 20211118