WO2020085082A1 - Al-Mg-Si系アルミニウム合金押出材およびその製造方法 - Google Patents
Al-Mg-Si系アルミニウム合金押出材およびその製造方法 Download PDFInfo
- Publication number
- WO2020085082A1 WO2020085082A1 PCT/JP2019/039625 JP2019039625W WO2020085082A1 WO 2020085082 A1 WO2020085082 A1 WO 2020085082A1 JP 2019039625 W JP2019039625 W JP 2019039625W WO 2020085082 A1 WO2020085082 A1 WO 2020085082A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- extruded material
- less
- aluminum alloy
- content
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C23/00—Extruding metal; Impact extrusion
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/06—Alloys based on aluminium with magnesium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/05—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
Definitions
- the present invention relates to an Al-Mg-Si based aluminum alloy extruded material having high strength and excellent corrosion resistance, and a method for producing the same.
- the Al-Mg-Si based aluminum alloy is a practical alloy in that it has strength and is excellent in corrosion resistance and recyclability, so that it can be used in vehicles, ships, automobiles, motorcycles, etc., that require high strength and corrosion resistance. It is used as a structural material for transport aircraft.
- Al-Mg-Si based aluminum alloys 6061 is particularly often used, but further weight reduction is required in order to improve transportation efficiency by reducing the weight of the vehicle body structure. Strengthening is required. In order to achieve such high strength, improvement by changing the additive metal species of the aluminum alloy and the content thereof is being studied.
- corrosion resistance means that the amount of corrosion is small in a corrosive environment. For example, if the weight loss due to corrosion is large, there may be a problem in durability as a structural material. Therefore, in order to improve the corrosion resistance, it is important to suppress the stress corrosion cracking and how to reduce or suppress the corrosion weight loss.
- a molten alloy of a specific composition is cast, the obtained cast product is subjected to homogenization treatment and plastic working, and the obtained plastic worked product is subjected to solution treatment and water quenching.
- Treatment and artificial aging hardening treatment, and the aging treatment time after the peak aging time in the artificial aging hardening treatment is such that the conductivity of the plastically worked product is greater than 0 with respect to the conductivity at the peak aging time of 1 IACS%.
- a manufacturing method is known in which overaging treatment is performed with the time having the following increments (Patent Document 1).
- Patent Document 2 An aluminum alloy extruded material having a recrystallized structure with a thickness of 500 ⁇ m or less on one side has been proposed (Patent Document 2).
- An aluminum alloy extruded material in which the area ratio of the texture is 95% or more has been proposed (Patent Document 3).
- Patent Document 2 there is no disclosure regarding corrosion weight loss as an evaluation of corrosion resistance, and therefore, knowledge of what configuration should be used to reduce or suppress corrosion weight loss cannot be obtained from Patent Document 2.
- Patent Document 3 does not disclose the corrosion weight loss as an evaluation of corrosion resistance, and therefore, knowledge of what configuration should be adopted to reduce or suppress the corrosion weight loss cannot be obtained from Patent Document 3.
- the preferred embodiments of the present invention have been made in view of the above and / or other problems in the related art.
- the preferred embodiments of the present invention can significantly improve existing methods and / or devices.
- the present invention has been made in view of the above technical background, and is an Al-Mg-Si-based aluminum alloy extruded material that has high strength and can suppress corrosion weight loss to a small extent even when used in a corrosive environment and the like, and It is an object to provide a manufacturing method thereof.
- the present invention provides the following means.
- Si 0.95 mass% to 1.25 mass%, Mg: 0.80 mass% to 1.05 mass%, Cu: 0.30 mass% to 0.50 mass%, Mn: 0.40 Mass% to 0.60 mass%, Fe: 0.15 mass% to 0.30 mass%, Cr: 0.09 mass% to 0.21 mass%, B: 0.0001 mass% to 0.03 mass% Zn content is 0.25 mass% or less, Zr content is 0.05 mass% or less, Ti content is 0.10 mass% or less, and the balance is Al and inevitable impurities.
- the metal structure In the cross section parallel to the extrusion direction of the aluminum alloy extruded material, the metal structure has a fibrous structure in the cross section passing through the center of gravity of the extruded material, and the ratio of the area of the fibrous structure to the entire area of the cross section. Of 90% or more, a recrystallized layer is present on the outer surface of the extruded material, and the thickness of the recrystallized layer is 100 ⁇ m or less. .
- Si 0.95% by mass to 1.25% by mass
- Mg 0.80% by mass to 1.05% by mass
- Cu 0.30% by mass to 0.50% by mass
- Mn 0.40 Mass% to 0.60 mass%
- Fe 0.15 mass% to 0.30 mass%
- Cr 0.09 mass% to 0.21 mass%
- B 0.0001 mass% to 0.03 mass%
- Zn content is 0.25 mass% or less
- Zr content is 0.05 mass% or less
- Ti content is 0.10 mass% or less
- the balance is Al and inevitable impurities.
- a molten metal forming step of obtaining a molten aluminum alloy A casting step of obtaining a billet by casting the obtained molten metal; A homogenizing heat treatment step of performing a homogenizing heat treatment on the billet, An extrusion step of obtaining an extruded material by performing hot extrusion processing on the billet after the homogenization heat treatment, A quenching step of quenching the extruded material within 0.01 to 60 seconds after the hot extrusion processing, An aging treatment step of heating the extruded material that has gone through the quenching step to perform an aging treatment,
- the extruded material obtained through the aging treatment step is a cross section parallel to the extrusion direction, and the metal structure has a fibrous structure in the cross section passing through the center of gravity of the extruded material, and occupies the entire area of the cross section.
- the area ratio of the fibrous structure is 90% or more, a recrystallized layer exists on the outer surface of the extruded material, and the thickness of the recrystallized layer is 100 ⁇ m or less.
- -Method for producing a Si-based aluminum alloy extruded material is
- Si 0.95% by mass to 1.25% by mass
- Mg 0.80% by mass to 1.05% by mass
- Cu 0.30% by mass to 0.50% by mass
- Mn 0.40 Mass% to 0.60 mass%
- Fe 0.15 mass% to 0.30 mass%
- Cr 0.09 mass% to 0.21 mass%
- B 0.0001 mass% to 0.03 mass%
- Zn content is 0.25 mass% or less
- Zr content is 0.05 mass% or less
- Ti content is 0.10 mass% or less
- the balance is Al and inevitable impurities.
- a molten metal forming step of obtaining a molten aluminum alloy A casting step of obtaining a billet by casting the obtained molten metal; A homogenizing heat treatment step in which the billet is kept at a temperature of 480 ° C to 530 ° C for 2 hours to 15 hours; A cooling step of cooling the billet after the homogenizing heat treatment to 200 ° C. or less at an average cooling rate of 150 ° C./hour or more; An extrusion step of obtaining an extruded material by performing hot extrusion processing at an extrusion speed of 3 m / min to 30 m / min in a state where the billet that has undergone the cooling step is at 500 ° C.
- the extruded material obtained through the aging treatment step is a cross section parallel to the extrusion direction, and the metal structure has a fibrous structure in the cross section passing through the center of gravity of the extruded material, and occupies the entire area of the cross section.
- the area ratio of the fibrous structure is 90% or more, a recrystallized layer exists on the outer surface of the extruded material, and the thickness of the recrystallized layer is 100 ⁇ m or less.
- -Method for producing a Si-based aluminum alloy extruded material is
- the invention of [1] can provide an Al-Mg-Si-based aluminum alloy extruded material that has high strength and can suppress corrosion weight loss even when used in a corrosive environment.
- FIG. 1 is a perspective view showing an example of an Al-Mg-Si based aluminum alloy extruded material according to the present invention.
- 3 is a photograph of a metal structure of a vertical section of the Al-Mg-Si-based aluminum alloy extruded material of Example 4 (a cross section parallel to the extrusion direction and passing through the center of gravity of the extruded material).
- the aluminum alloy extruded material according to the present invention has Si: 0.95 mass% to 1.25 mass%, Mg: 0.80 mass% to 1.05 mass%, Cu: 0.30 mass% to 0.50 mass%. %, Mn: 0.40 mass% to 0.60 mass%, Fe: 0.15 mass% to 0.30 mass%, Cr: 0.09 mass% to 0.21 mass%, B: 0.0001 mass% % To 0.03 mass%, Zn content is 0.25 mass% or less, Zr content is 0.05 mass% or less, Ti content is 0.10 mass% or less, and the balance Is an aluminum alloy extruded material composed of Al and unavoidable impurities, and the metal structure has a fibrous structure in a cross section parallel to the extrusion direction of the aluminum alloy extruded material and passing through the center of gravity of the extruded material, and The ratio of the area of the fibrous tissue to the entire area of the cross section is 9 Not less than%, the and recrystallized layer is present on the outer surface of the extruded
- the aluminum alloy extruded material (hollow material or solid material) having the above structure has high strength and can suppress the corrosion weight loss to be small even when used in a corrosive environment. Therefore, for example, a vehicle body of a vehicle such as an automobile or a railway. It is suitable as a structural material (frame, etc.).
- FIG. 1 An embodiment of the aluminum alloy extruded material 1 according to the present invention is shown in FIG.
- the aluminum alloy extruded material 1 shown in FIG. 1 is a solid material, but is not particularly limited to such a shape.
- the cross-sectional shape of the extruded material 1 is not particularly limited, but it is preferable to adopt a cross-sectional shape that can realize weight reduction of the vehicle structural member and can secure sufficient rigidity and strength as the structural material. preferable.
- composition of the above aluminum alloy (the significance of limiting the content range of each component, etc.) will be collectively described in detail in the paragraph after the description of the manufacturing method of the present invention.
- Si 0.95% by mass to 1.25% by mass
- Mg 0.80% by mass to 1.05% by mass
- Cu 0.30% by mass to 0.50% by mass
- Mn 0. 40 mass% to 0.60 mass%
- Fe 0.15 mass% to 0.30 mass%
- Cr 0.09 mass% to 0.21 mass%
- B 0.0001 mass% to 0.03
- the content of Zn is 0.25 mass% or less
- the content of Zr is 0.05 mass% or less
- the content of Ti is 0.10 mass% or less
- the balance is Al and unavoidable impurities.
- a casting step for obtaining a billet by casting the obtained molten metal a casting step for obtaining a billet by casting the obtained molten metal.
- molten metal forming process Si: 0.95 mass% to 1.25 mass%, Mg: 0.80 mass% to 1.05 mass%, Cu: 0.30 mass% to 0.50 mass%, Mn: 0.40 mass% to 0.60 mass%, Fe: 0.15 mass% to 0.30 mass%, Cr: 0.09 mass% to 0.21 mass%, B: 0.0001 mass% to 0.
- the content of Zn is 0.25 mass% or less, the content of Zr is 0.05 mass% or less, the content of Ti is 0.10 mass% or less, and the balance is Al and unavoidable.
- An aluminum alloy melt prepared by melting so as to have a composition of impurities is obtained.
- a casting material is obtained by casting the obtained molten metal (casting step).
- the casting method is not particularly limited, and a conventionally known method may be used, and examples thereof include a continuous casting and rolling method, a hot top casting method, a float casting method, and a semi-continuous casting method (DC casting method).
- DC casting method a semi-continuous casting method
- the obtained billet is subjected to homogenizing heat treatment. That is, a homogenizing heat treatment is carried out by holding the billet at a temperature of 480 ° C to 530 ° C for 2 hours to 15 hours. If the temperature is lower than 480 ° C, the ingot billet is not sufficiently softened, the pressure during the hot extrusion process is significantly increased, the appearance quality is deteriorated, and the productivity is reduced. On the other hand, when the temperature exceeds 530 ° C., the effect of suppressing recrystallization is reduced due to coarsening of Mn and Cr precipitates, and the occurrence of recrystallization reduces the toughness of the extruded material and also provides high strength. hard. Above all, the homogenizing heat treatment temperature is preferably set to 485 ° C. to 525 ° C.
- the homogenizing heat treatment time is less than 2 hours, the ingot billet will not be sufficiently softened, the pressure during hot extrusion will be significantly high, and the appearance quality will be reduced, and the productivity will also be reduced. Further, if it is less than 2 hours, it becomes insufficient to eliminate the segregation in the crystal grains in the ingot structure and to homogenize it, and the toughness of the extruded material decreases, and it is difficult to obtain high strength. On the other hand, when the homogenizing heat treatment time exceeds 15 hours, no further effect of the homogenizing heat treatment can be obtained, and the productivity is rather reduced.
- the billet after the homogenization heat treatment is cooled to a temperature of 200 ° C. or less at an average cooling rate of 150 ° C./hour or more.
- the cooling method in this cooling step is not particularly limited, but examples thereof include fan cooling and mist cooling.
- the reason for forcibly cooling the billet at an average cooling rate of 150 ° C./hour or more is to suppress coarse growth of solid solution precipitates in the cooling process after the homogenizing heat treatment. By suppressing the coarse growth, the strength can be sufficiently improved by the subsequent aging treatment, and the toughness of the extruded material can be sufficiently ensured.
- extrusion process An extruded material is obtained by performing hot extrusion processing at an extrusion speed of 3 m / min to 30 m / min in a state where the billet that has undergone the cooling step is at 500 ° C. to 560 ° C. If the heating temperature is lower than 500 ° C., the elements added to the ingot remain unmelted in the matrix, and the strength cannot be improved by the aging treatment. On the other hand, when the heating temperature exceeds 560 ° C., the exothermic heat after the extrusion may cause local eutectic melting (burning) in the extruded material. Therefore, the heating temperature during hot extrusion is set to 500 ° C to 560 ° C.
- the heating temperature during hot extrusion is preferably set to 510 ° C to 550 ° C.
- the billet heating time is not particularly limited, but considering that the heating device is installed online in the extrusion process, it is set to a time that can ensure good productivity, It is preferably set within 30 minutes, and particularly preferably set within 15 minutes.
- the extrusion speed during the hot extrusion process is set to 3 m / min to 30 m / min. In consideration of productivity, the higher the extrusion rate, the more preferable, but if the extrusion rate exceeds 30 m / min, peeling or cracking may occur on the surface of the extruded material. On the other hand, if the extrusion speed is less than 3 m / min, the productivity will decrease.
- the extruded material is rapidly cooled within 0.01 to 60 seconds after the hot extrusion processing. At this time, it is preferable that the extruded material is rapidly cooled from 500 ° C. to 570 ° C. to 150 ° C. or less at a cooling rate of 100 ° C./second or more.
- the temperature of the extruded material the temperature of the extruded material immediately after being discharged from the mold is measured with a non-contact thermometer or a contact thermometer. If the measured temperature is less than 500 ° C., the elements added to the ingot remain unmelted in the matrix, and the strength cannot be improved by the aging treatment.
- the temperature of the extruded material after the hot extrusion is 510 ° C. to 560 ° C. Further, it is preferable to quench the extruded material within 0.01 to 30 seconds after the hot extrusion processing, and quench the extruded material within 0.01 seconds to 15 seconds after the hot extrusion processing. Is particularly preferable.
- the extruded material at a temperature of 500 ° C. to 570 ° C. is rapidly cooled to 150 ° C. or less at a cooling rate of 100 ° C./sec or more.
- a rapid cooling is provided, for example, on the extrusion outlet side. It can be carried out using a cooling device.
- the quenching under the above conditions is such that the metal structure of the extruded material has a fibrous structure and the ratio of the area of the fibrous structure to the entire area of the cross section of the extruded material is 90% or more. Is an important step in forming the metallographic structure.
- the cooling rate is less than 100 ° C./sec, quenching during cooling becomes insufficient, the toughness of the extruded material decreases, and it is difficult to obtain high strength.
- the cooling rate is preferably 500 ° C./second or less, and in this case, deformation due to a difference in heat shrinkage between the thick portion and the thin portion is difficult to occur and the dimensional accuracy is good.
- the cooling rate in this quenching step is particularly preferably 200 ° C./sec to 400 ° C./sec.
- the cooling method in the rapid cooling step is not particularly limited, but examples thereof include fan air cooling, mist cooling, shower cooling, liquid nitrogen cooling, and water cooling. Further, rapid cooling may be performed by appropriately combining the cooling methods illustrated above.
- the extruded material that has undergone the quenching step is heated at a temperature of 160 ° C. to 200 ° C. for 1 hour to 12 hours to perform an aging treatment. If the aging temperature is less than 160 ° C., the precipitate becomes too fine and the age hardening is not sufficient, so that a high-strength extruded material cannot be obtained. On the other hand, when the aging treatment temperature exceeds 200 ° C., overaging treatment causes coarsening of precipitates, making it impossible to obtain a high-strength extruded material. Further, if the aging treatment time is less than 1 hour, it becomes a sub-aging treatment and a high strength extruded material cannot be obtained.
- the aging treatment time exceeds 12 hours, the overaging treatment is performed and a high-strength extruded material cannot be obtained. Above all, it is preferable to set the aging treatment temperature to 170 ° C. to 190 ° C.
- the aging treatment time is preferably set to 2 hours to 10 hours.
- the aluminum alloy extruded material obtained through the above-mentioned molten metal forming step, casting step, homogenization heat treatment step, cooling step, extrusion step, quenching step, and aging treatment step has a cross section parallel to the extrusion direction and
- the metal structure has a fibrous structure in a cross section passing through the center of gravity, and the ratio of the area of the fibrous structure to the entire area of the cross section is 90% or more, and a recrystallized layer exists on the outer surface of the extruded material.
- the obtained aluminum alloy extruded material 1 in which the thickness of the recrystallized layer is 100 ⁇ m or less has high strength and can suppress corrosion weight loss to be small even when used in a corrosive environment.
- the formed fibrous structure will be impaired, so such a solution treatment or a quenching treatment is performed. Not desirable to do.
- a drawing process for example, in order to be applied as a vehicle body structural material (frame or the like) of a vehicle such as an automobile or a railroad, if necessary, after the extrusion step, a drawing process, a cutting process, a bending process, or a bending process.
- You may implement 1 type, or 2 or more types of process, a crushing process, a welding process, a machine fastening process, etc.
- the aluminum alloy contains Si: 0.95% by mass to 1.25% by mass, Mg: 0.80% by mass to 1.05% by mass, Cu: 0.30% by mass to 0.50% by mass, Mn: 0.
- the Si coexists with Mg to form a Mg 2 Si-based precipitate, which contributes to improving the strength of the extruded material.
- Si is added to the Mg content in excess of the amount that produces Mg 2 Si, so that the strength can be sufficiently improved by the aging treatment. Therefore, the Si content is 0.95. Set to mass% or more.
- the Si content is set to 0.95% by mass to 1.25% by mass.
- the Si content is preferably set to 1.00% by mass to 1.20% by mass, more preferably 1.05% by mass to 1.15% by mass.
- the Mg coexists with Si to form a Mg 2 Si-based precipitate, which contributes to improving the strength of the extruded material. If the Mg content is less than 0.80% by mass, the effect of precipitation strengthening cannot be sufficiently obtained and high strength cannot be secured. On the other hand, if the Mg content exceeds 1.05 mass%, the toughness of the extruded material will be reduced due to an excessive increase of Mg 2 Si-based precipitates, and the extrusion pressure during hot extrusion will be significantly increased. This deteriorates the appearance quality and lowers the productivity. Therefore, the Mg content is set to 0.80 mass% to 1.05 mass%. Above all, the Mg content is preferably set to 0.85% by mass to 1.05% by mass, and more preferably set to 0.90% by mass to 1.00% by mass.
- the Fe has the effect of preventing the coarsening of crystal grains by crystallizing out as an AlFeSi phase. If the Fe content is less than 0.15 mass%, the effect of preventing coarsening of crystal grains cannot be sufficiently obtained. On the other hand, when the Fe content exceeds 0.30 mass%, a coarse intermetallic compound is generated, the toughness of the extruded material is reduced, and an appearance defect called a pickup may occur during hot extrusion processing. Therefore, the Fe content is set to 0.15% by mass to 0.30% by mass. Among them, the Fe content is preferably set to 0.15% by mass to 0.25% by mass.
- the Mn crystallizes as an AlMnSi phase, and Mn that does not crystallize has the effect of suppressing recrystallization. Due to the effect of suppressing this recrystallization, the structure after hot extrusion can be made into a fibrous structure, so that high strength can be realized.
- the Mn content is less than 0.40% by mass, the above recrystallization suppressing effect cannot be obtained, the recrystallized structure becomes coarse and grows, and the strength decreases (high strength cannot be secured). It becomes difficult to control, and the toughness deteriorates due to the structure state in which the fibrous structure and the recrystallized structure are mixed.
- the Mn content is set to 0.40% by mass to 0.60% by mass.
- the Mn content is preferably set to 0.44% by mass to 0.56% by mass. It should be noted that Mn can synergistically improve the above effects by being added in a complex manner with Cr having the same effect.
- the Cu increases the apparent supersaturation amount of the Mg 2 Si-based precipitate and increases the Mg 2 Si precipitation amount, thereby significantly promoting the age hardening of the extruded material of the final product.
- the Cu content is less than 0.30% by mass, sufficient age hardening cannot be obtained.
- the Cu content exceeds 0.50% by mass, the toughness of the extruded material decreases and the extrudability during hot extrusion processing deteriorates.
- the addition amount is excessively increased, the corrosion resistance may be lowered, the susceptibility to intergranular corrosion may be increased, and stress corrosion cracking may be caused. Therefore, the Cu content is set to 0.30 mass% to 0.50 mass%.
- the Cu content is preferably set to 0.35% by mass to 0.50% by mass, more preferably 0.40% by mass to 0.50% by mass.
- the above-mentioned Cr crystallizes as an AlCrSi phase, and Cr that does not crystallize has the effect of suppressing recrystallization. Due to the effect of suppressing this recrystallization, the structure after hot extrusion can be made into a fibrous structure, so that high strength can be realized.
- the Cr content is less than 0.09% by mass, the above recrystallization suppressing effect cannot be obtained, the recrystallized structure becomes coarse and grows, and the strength decreases (high strength cannot be secured). It becomes difficult to control, and the toughness deteriorates due to the structure state in which the fibrous structure and the recrystallized structure are mixed.
- the Cr content is set to 0.09% by mass to 0.21% by mass.
- the Cr content is preferably set to 0.11% by mass to 0.19% by mass.
- the above-mentioned B (boron) is an element effective in coordinating with Ti to refine the crystal grains. If the B content is less than 0.0001% by mass, the effect of refining the crystal grains may not be sufficiently obtained. On the other hand, when the B content exceeds 0.03% by mass, TiB2 may be excessively produced and the machinability may be deteriorated. Therefore, the B content is set to 0.0001% by mass to 0.03% by mass.
- Ti is an effective element for refining crystal grains, and also contributes to prevent ingot cracking in the casting rod (billet). If the Ti content exceeds 0.10% by mass, coarse Ti compounds crystallize and the toughness of the extruded material is reduced. Therefore, the Ti content is set to 0.10 mass% or less (not containing Ti; that is, including the Ti content of 0 mass%).
- Zr is an element that has the effect of suppressing recrystallization, but the Zr content is set to 0.05 mass% or less.
- the Zr content is set to 0.05% by mass or less. It may be Zr-free (Zr content may be 0% by mass). Above all, the Zr content is preferably set to 0.01% by mass or less (including 0% by mass; that is, including Zr-free).
- the Zn is an element effective in improving the castability, but if the Zn content exceeds 0.25 mass%, the corrosion resistance and toughness may be reduced. Therefore, the Zn content is set to 0.25% by mass or less (Zn is not contained; that is, the Zn content is 0% by mass is included).
- the ingot billet was subjected to homogenizing heat treatment at 500 ° C. for 8 hours (homogenizing heat treatment step).
- the ingot ingot after the homogenization heat treatment step was forcibly cooled at a ingot cooling rate of 220 ° C./hour until the ingot reached a temperature of 150 ° C. or less (cooling step).
- the ingot billet that has undergone the cooling step is subjected to hot extrusion processing under the conditions of an ingot heating temperature of 535 ° C. and an extrusion speed of 12 m / min, to obtain a plate-shaped plate having a width of 80 mm and a thickness of 6.0 mm.
- An extruded material (see FIG. 1) was obtained (extrusion step).
- the extruded material at 540 ° C. immediately after the hot extrusion processing (within 2 seconds after the hot extrusion processing) (the temperature of the extruded material at the exit of the extrusion die was measured by a contact thermometer) was 400 ° C./second. It was rapidly cooled to a temperature of 100 ° C. or less at a cooling rate (quenching step). The extruded material that had been subjected to the quenching step was cut into a length of 300 mm, and then heated at 170 ° C. for 8 hours for aging treatment (aging treatment step). Thus, the Al—Mg—Si based aluminum alloy extruded material 1 shown in FIG. 1 was obtained.
- Example 2 As the molten aluminum alloy, aluminum alloy No. 1 shown in Table 1 was used. A homogenizing heat treatment was performed under the condition of 480 ° C. ⁇ 8 hours using an aluminum alloy melt made of A2 (the aluminum alloy containing the elements shown in Table 1 in the content rates shown in the table, the balance being Al and unavoidable impurities). Except for the above, in the same manner as in Example 1, an Al-Mg-Si based aluminum alloy extruded material 1 shown in FIG. 1 was obtained.
- Example 4 As the molten aluminum alloy, aluminum alloy No. 1 shown in Table 1 was used. A homogenizing heat treatment is performed under the condition of 525 ° C. ⁇ 8 hours using an aluminum alloy melt made of A2 (the aluminum alloy containing the elements shown in Table 1 at the content rates shown in the table and the balance being Al and unavoidable impurities). Except for the above, in the same manner as in Example 1, an Al-Mg-Si based aluminum alloy extruded material 1 shown in FIG. 1 was obtained.
- Examples 3, 5 to 17> As the above-mentioned aluminum alloy molten metal, except that an aluminum alloy molten metal having an aluminum alloy composition shown in Table 1 (an aluminum alloy containing the elements shown in Table 1 in the content ratios shown in the table and the balance being Al and inevitable impurities) is used In the same manner as in Example 1, the Al—Mg—Si based aluminum alloy extruded material 1 shown in FIG. 1 was obtained.
- Table 1 an aluminum alloy containing the elements shown in Table 1 in the content ratios shown in the table and the balance being Al and inevitable impurities
- Aluminum alloy molten metal an aluminum alloy molten metal composed of aluminum alloy plasticity shown in Table 2 (aluminum alloy containing the elements shown in Table 2 in the content ratios shown in the table, and the balance being Al and inevitable impurities) is used, and homogeneous An Al-Mg-Si based aluminum alloy extruded material was obtained in the same manner as in Example 1 except that the chemical heat treatment was performed at 565 ° C for 8 hours.
- the ingot billet was subjected to homogenizing heat treatment at 500 ° C for 7 hours (homogenizing heat treatment step).
- the ingot billet after the homogenization heat treatment step was forcibly cooled at a ingot cooling rate of 150 ° C./hour until the ingot reached a temperature of 150 ° C. or less (cooling step).
- the ingot billet that has undergone the cooling step is heated to an ingot heating temperature of 530 ° C., and hot forged, thereby forging a cylindrical body having a diameter of 80 mm and a height of 80 mm to a height of 16 mm. It processed and obtained the forged material.
- the forged material was subjected to a solution heat treatment at a temperature of 530 ° C. for 4 hours, water-quenched, and then heated at 170 ° C. for 8 hours to perform an aging treatment.
- an Al-Mg-Si based aluminum alloy forged material was obtained.
- the above is judged as “fibrous structure” (see Tables 3 and 4), and the above ratio is 20% or more and less than 90% (the structure other than the fibrous structure is a recrystallized structure). It was judged as “mixed structure”, and those in which the ratio was less than 20% (structures other than fibrous structure were recrystallized structures) were judged as “recrystallized structures” (see Tables 3 and 4).
- the thickness of the recrystallized layer from the outermost surface was obtained in the metallographic photograph using the optical microscope for the one having the form of a fibrous structure (see FIG. 2).
- the cross section (cut surface) of the forged material was mirror-polished and then electrolytically etched, and then the cross section (cut surface) was observed with an optical microscope.
- the judgment was made by obtaining the morphology and proportion of the metal structure (see Table 4).
- ⁇ Tensile property evaluation method (tensile strength and 0.2% proof stress measurement method)> A 0.2% proof stress (MPa) of the extruded material (or forged material) was measured by performing a tensile test at room temperature (25 ° C.) according to JIS Z2241-2011. That is, a JIS No. 5 test piece was sampled from the extruded material (or forged material) by the method described in JIS Z2201-1998. The size of the JIS No. 5 test piece was 25 mm in width of the parallel portion ⁇ 60 mm in length of the parallel portion ⁇ 2.5 mm in thickness. In addition, the distance between the gauge points in the test piece was set to 50 mm.
- a tensile test was performed on the test piece using an Instron type tensile tester.
- the tensile test speed was set to 2 mm / min, and after the proof stress measurement was set to 10 mm / min.
- the number of n of JIS No. 5 test piece was three, and the average value of the three test pieces was “0.2% proof stress” (see Tables 3 and 4).
- those having a 0.2% proof stress of 370 MPa or more are indicated by “ ⁇ ”
- those having a 0.2% proof stress of 350 MPa or more and less than 370 MPa are indicated by “ ⁇ ”
- Those having a 2% proof stress of less than 350 MPa were expressed as “x”.
- ⁇ Evaluation method of corrosion weight loss in corrosive environment (corrosion resistance evaluation method)>
- a plate-shaped extruded material having a width of 80 mm and a thickness of 6.0 mm was cut into a length of 120 mm to obtain a test piece for evaluation.
- the forged material was cut from the forged material of Comparative Example 8 into a size of 80 mm in width, 6.0 mm in thickness and 120 mm in length to prepare a test piece for evaluation.
- the corrosion weight loss was evaluated by the CCT test described in the automobile part external appearance corrosion test method (JASO M610-92). In this CCT test, salt spray (5% NaCl aqueous solution, 35 ° C.) ⁇ 2 hours, drying at 60 ° C.
- the CCT test is generally carried out for 120 cycles or less, but as can be seen from the results of Tables 3 and 4, there is no significant difference in the value of the corrosion weight loss in the 120 cycles. On the other hand, when evaluated for a long period of 360 cycles, a significant difference was observed in the value of corrosion weight loss. After the 360-cycle CCT test, the corrosion weight loss was 0.80 mg / cm 2 or less was expressed as “ ⁇ ”, and the corrosion weight loss exceeding 0.80 mg / cm 2 was expressed as “x”.
- the Al-Mg-Si based aluminum alloy extruded materials of Examples 1 to 17 according to the present invention have a 0.2% proof stress of 350 MPa or more and high strength, and a CCT test of 360 cycles. The subsequent corrosion weight loss was sufficiently suppressed.
- the Al-Mg-Si-based aluminum alloy extruded material according to the present invention and the Al-Mg-Si-based aluminum alloy extruded material obtained by the production method of the present invention have high strength and can be used even in a corrosive environment. Since the corrosion weight loss can be suppressed to a small level, it can be suitably used as a substitute for conventional iron-based materials. For example, it can contribute to weight reduction of a vehicle body by using it as a structural material (frame or the like) of a vehicle body of a transportation machine such as a vehicle, a ship, an automobile or a motorcycle.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Extrusion Of Metal (AREA)
Abstract
腐食環境でも腐食減量を抑制できるAl-Mg-Si系アルミニウム合金押出材を提供する。 Si:0.95質量%~1.25質量%、Mg:0.80質量%~1.05質量%、Cu:0.30質量%~0.50質量%、Mn:0.40質量%~0.60質量%、Fe:0.15質量%~0.30質量%、Cr:0.09質量%~0.21質量%、B:0.0001質量%~0.03質量%を含有し、Znの含有率が0.25質量%以下、Zrの含有率が0.05質量%以下、Tiの含有率が0.10質量%以下であり、残部がAl及び不可避不純物からなるアルミニウム合金押出材であって、前記アルミニウム合金押出材の押出方向に平行な断面であって該押出材の重心を通る断面において金属組織は繊維状組織を有し、かつ前記断面の全体面積に占める前記繊維状組織の面積の割合が90%以上であり、前記押出材の外側表面に再結晶層が存在しており、該再結晶層の厚さが100μm以下である構成とする。
Description
本発明は、高強度で耐食性に優れたAl-Mg-Si系アルミニウム合金押出材およびその製造方法に関する。
Al-Mg-Si系アルミニウム合金は、強度を有しながら耐食性やリサイクル性に優れる点で実用的な合金であることから、高強度と耐食性が要求される車両、船舶、自動車、自動二輪車等の輸送機の構造材として用いられている。
Al-Mg-Si系アルミニウム合金の中では、特に6061が多用されているが、車体構造の軽量化による輸送効率向上のために、更なる軽量化が求められており、そのために材料としての高強度化を図ることが要求されている。このような高強度化を図るべくアルミニウム合金の添加金属種及びその含有率の変更等による改良が検討されている。
その一方で、アルミニウム合金を高強度化すると、耐食性が低下しやすいという問題があった。例えば7000系アルミニウム合金では、高強度化により応力腐食割れが発生する恐れが高くなるため、適切な表面処理を施さなければ、腐食環境下での使用は困難である。また、6000系アルミニウム合金では、7000系と比較すると応力腐食割れは生じ難いと言えるが、しかし高強度化の実現のために添加元素量を多くすると耐食性が低下することが知られている。ここで、耐食性とは、腐食環境下での腐食量の少なさを意味するものである。例えば腐食による減量が大きいと構造材としての耐久性に問題を生じ得る。従って、耐食性の向上に関しては、応力腐食割れの抑制と共に、腐食減量をいかに低減または抑制するかが重要となってくる。
耐食性の向上を図る従来技術としては、特定組成のアルミ合金の溶湯を鋳造し、得られた鋳造品に均質化処理および塑性加工を施し、得られた塑性加工品に、溶体化処理、水焼入れ処理および人工時効硬化処理を施し、前記人工時効硬化処理におけるピーク時効時点以降の時効処理時間を、当該塑性加工品の導電率が、ピーク時効時点での導電率に対して0より大で1IACS%以下の増分を有する時間とした過時効処理を用いる製造方法が知られている(特許文献1)。
また、耐食性の向上を図るものとして、特定組成のアルミ合金からなり、0.2%耐力が270~330MPaであり、この押出材の厚み方向断面における組織が主として繊維状組織であり、表層部の再結晶組織の厚さが片側500μm以下であるアルミニウム合金押出材が提案されている(特許文献2)。
また、耐食性を向上し得るものとして、特定組成のアルミ合金からなり、耐力が350MPa以上であり、晶出物の粒径が5μm以下に規制されており、熱間押出方向と平行な断面における繊維状組織の面積比率が95%以上であるアルミニウム合金押出材が提案されている(特許文献3)。
特許文献1に記載の製法では、塑性加工後の後工程で溶体化処理を行うので、加工歪みが駆動力となって再結晶を引き起こしやすい傾向がある。再結晶、特に粗大再結晶は、強度の低下、強度のばらつき、耐食性の低下を引き起こす可能性がある。また、塑性加工後の後工程で溶体化処理を行うことでコストの増大も招く。また、特許文献1に記載の耐食性向上(腐食減量の抑制)のための過時効処理についても強度の低下とコスト増大を招く懸念があった。
また、特許文献2には、耐食性の評価として腐食減量に関して開示がなく、従って腐食減量を低減または抑制するにはいかなる構成にすればよいかについての知見は、特許文献2からは得られない。また、特許文献3には、耐食性の評価として腐食減量に関して開示がなく、従って腐食減量を低減または抑制するにはいかなる構成にすればよいかについての知見は、特許文献3からは得られない。
本発明の好ましい実施形態は、関連技術における上述した及び/又は他の問題点に鑑みてなされたものである。本発明の好ましい実施形態は、既存の方法及び/又は装置を著しく向上させることができるものである。
本発明は、かかる技術的背景に鑑みてなされたものであって、高強度であると共に、腐食環境下等で使用されても腐食減量を小さく抑制できるAl-Mg-Si系アルミニウム合金押出材及びその製造方法を提供することを目的とする。
本発明のその他の目的及び利点は、以下の好ましい実施形態から明らかであろう。
前記目的を達成するために、本発明は以下の手段を提供する。
[1]Si:0.95質量%~1.25質量%、Mg:0.80質量%~1.05質量%、Cu:0.30質量%~0.50質量%、Mn:0.40質量%~0.60質量%、Fe:0.15質量%~0.30質量%、Cr:0.09質量%~0.21質量%、B:0.0001質量%~0.03質量%を含有し、Znの含有率が0.25質量%以下、Zrの含有率が0.05質量%以下、Tiの含有率が0.10質量%以下であり、残部がAl及び不可避不純物からなるアルミニウム合金押出材であって、
前記アルミニウム合金押出材の押出方向に平行な断面であって該押出材の重心を通る断面において金属組織は繊維状組織を有し、かつ前記断面の全体面積に占める前記繊維状組織の面積の割合が90%以上であり、前記押出材の外側表面に再結晶層が存在しており、該再結晶層の厚さが100μm以下であることを特徴とするAl-Mg-Si系アルミニウム合金押出材。
前記アルミニウム合金押出材の押出方向に平行な断面であって該押出材の重心を通る断面において金属組織は繊維状組織を有し、かつ前記断面の全体面積に占める前記繊維状組織の面積の割合が90%以上であり、前記押出材の外側表面に再結晶層が存在しており、該再結晶層の厚さが100μm以下であることを特徴とするAl-Mg-Si系アルミニウム合金押出材。
[2]Si:0.95質量%~1.25質量%、Mg:0.80質量%~1.05質量%、Cu:0.30質量%~0.50質量%、Mn:0.40質量%~0.60質量%、Fe:0.15質量%~0.30質量%、Cr:0.09質量%~0.21質量%、B:0.0001質量%~0.03質量%を含有し、Znの含有率が0.25質量%以下、Zrの含有率が0.05質量%以下、Tiの含有率が0.10質量%以下であり、残部がAl及び不可避不純物からなるアルミニウム合金の溶湯を得る溶湯形成工程と、
前記得られた溶湯を鋳造加工することによってビレットを得る鋳造工程と、
前記ビレットに均質化熱処理を行う均質化熱処理工程と、
前記均質化熱処理後のビレットに熱間押出加工を行って押出材を得る押出工程と、
上記熱間押出加工後から0.01秒~60秒以内に前記押出材を急冷する急冷行程と、
前記急冷行程を経た押出材を加熱して時効処理を行う時効処理工程と、を含み、
前記時効処理工程を経て得られた押出材は、押出方向に平行な断面であって該押出材の重心を通る断面において金属組織は繊維状組織を有し、かつ前記断面の全体面積に占める前記繊維状組織の面積の割合が90%以上であり、前記押出材の外側表面に再結晶層が存在しており、該再結晶層の厚さが100μm以下であることを特徴とするAl-Mg-Si系アルミニウム合金押出材の製造方法。
前記得られた溶湯を鋳造加工することによってビレットを得る鋳造工程と、
前記ビレットに均質化熱処理を行う均質化熱処理工程と、
前記均質化熱処理後のビレットに熱間押出加工を行って押出材を得る押出工程と、
上記熱間押出加工後から0.01秒~60秒以内に前記押出材を急冷する急冷行程と、
前記急冷行程を経た押出材を加熱して時効処理を行う時効処理工程と、を含み、
前記時効処理工程を経て得られた押出材は、押出方向に平行な断面であって該押出材の重心を通る断面において金属組織は繊維状組織を有し、かつ前記断面の全体面積に占める前記繊維状組織の面積の割合が90%以上であり、前記押出材の外側表面に再結晶層が存在しており、該再結晶層の厚さが100μm以下であることを特徴とするAl-Mg-Si系アルミニウム合金押出材の製造方法。
[3]Si:0.95質量%~1.25質量%、Mg:0.80質量%~1.05質量%、Cu:0.30質量%~0.50質量%、Mn:0.40質量%~0.60質量%、Fe:0.15質量%~0.30質量%、Cr:0.09質量%~0.21質量%、B:0.0001質量%~0.03質量%を含有し、Znの含有率が0.25質量%以下、Zrの含有率が0.05質量%以下、Tiの含有率が0.10質量%以下であり、残部がAl及び不可避不純物からなるアルミニウム合金の溶湯を得る溶湯形成工程と、
前記得られた溶湯を鋳造加工することによってビレットを得る鋳造工程と、
前記ビレットを480℃~530℃の温度に2時間~15時間保持する均質化熱処理を行う均質化熱処理工程と、
前記均質化熱処理後のビレットを150℃/時間以上の平均冷却速度で200℃以下まで冷却する冷却工程と、
前記冷却工程を経たビレットを500℃~560℃にした状態で3m/分~30m/分の押出速度で熱間押出加工を行って押出材を得る押出工程と、
前記熱間押出加工後から0.01秒~60秒以内に前記押出材を500℃~570℃の状態から100℃/秒以上の冷却速度で150℃以下まで急冷する急冷工程と、
前記急冷工程を経た押出材を160℃~200℃の温度で1時間~12時間加熱して時効処理を行う時効処理工程と、を含み、
前記時効処理工程を経て得られた押出材は、押出方向に平行な断面であって該押出材の重心を通る断面において金属組織は繊維状組織を有し、かつ前記断面の全体面積に占める前記繊維状組織の面積の割合が90%以上であり、前記押出材の外側表面に再結晶層が存在しており、該再結晶層の厚さが100μm以下であることを特徴とするAl-Mg-Si系アルミニウム合金押出材の製造方法。
前記得られた溶湯を鋳造加工することによってビレットを得る鋳造工程と、
前記ビレットを480℃~530℃の温度に2時間~15時間保持する均質化熱処理を行う均質化熱処理工程と、
前記均質化熱処理後のビレットを150℃/時間以上の平均冷却速度で200℃以下まで冷却する冷却工程と、
前記冷却工程を経たビレットを500℃~560℃にした状態で3m/分~30m/分の押出速度で熱間押出加工を行って押出材を得る押出工程と、
前記熱間押出加工後から0.01秒~60秒以内に前記押出材を500℃~570℃の状態から100℃/秒以上の冷却速度で150℃以下まで急冷する急冷工程と、
前記急冷工程を経た押出材を160℃~200℃の温度で1時間~12時間加熱して時効処理を行う時効処理工程と、を含み、
前記時効処理工程を経て得られた押出材は、押出方向に平行な断面であって該押出材の重心を通る断面において金属組織は繊維状組織を有し、かつ前記断面の全体面積に占める前記繊維状組織の面積の割合が90%以上であり、前記押出材の外側表面に再結晶層が存在しており、該再結晶層の厚さが100μm以下であることを特徴とするAl-Mg-Si系アルミニウム合金押出材の製造方法。
本発明の効果は次のとおりである。
[1]の発明では、高強度であると共に、腐食環境下等で使用されても腐食減量を小さく抑制できるAl-Mg-Si系アルミニウム合金押出材を提供できる。
[2]の発明では、高強度であると共に、腐食環境下等で使用されても腐食減量を小さく抑制できるAl-Mg-Si系アルミニウム合金押出材を製造できる。
[3]の発明では、高強度であると共に、腐食環境下等で使用されても腐食減量をより小さく抑制できるAl-Mg-Si系アルミニウム合金押出材を製造できる。
本発明に係るアルミニウム合金押出材は、Si:0.95質量%~1.25質量%、Mg:0.80質量%~1.05質量%、Cu:0.30質量%~0.50質量%、Mn:0.40質量%~0.60質量%、Fe:0.15質量%~0.30質量%、Cr:0.09質量%~0.21質量%、B:0.0001質量%~0.03質量%を含有し、Znの含有率が0.25質量%以下、Zrの含有率が0.05質量%以下、Tiの含有率が0.10質量%以下であり、残部がAl及び不可避不純物からなるアルミニウム合金押出材であって、前記アルミニウム合金押出材の押出方向に平行な断面であって該押出材の重心を通る断面において金属組織は繊維状組織を有し、かつ前記断面の全体面積に占める前記繊維状組織の面積の割合が90%以上であり、前記押出材の外側表面に再結晶層が存在しており、該再結晶層の厚さが100μm以下であることを特徴とする。前記アルミニウム合金押出材としては、アルミニウム合金中空押出材またはアルミニウム合金中実押出材が挙げられる。前記再結晶層の厚さは50μm以下であるのが好ましい。
上記構成のアルミニウム合金押出材(中空材又は中実材)は、高強度であると共に、腐食環境下等で使用されても腐食減量を小さく抑制できるので、例えば、自動車、鉄道等の車両の車体の構造材(フレーム等)として好適である。
本発明に係るアルミニウム合金押出材1の一実施形態を図1に示す。この図1に示すアルミニウム合金押出材1は、中実材であるが、特にこのような形状に限定されるものではない。前記押出材1の断面形状としては、特に限定されるものではないが、車両構造部材の軽量化を実現できて、且つ構造材としての十分な剛性と強度を確保できる断面形状を採用するのが好ましい。
なお、上記アルミニウム合金の組成(各成分の含有率範囲の限定意義等)については、本発明の製造方法を説明した後の段落においてまとめて詳細に説明する。
次に、本発明に係る、アルミニウム合金押出材1の製造方法について説明する。本製造方法は、Si:0.95質量%~1.25質量%、Mg:0.80質量%~1.05質量%、Cu:0.30質量%~0.50質量%、Mn:0.40質量%~0.60質量%、Fe:0.15質量%~0.30質量%、Cr:0.09質量%~0.21質量%、B:0.0001質量%~0.03質量%を含有し、Znの含有率が0.25質量%以下、Zrの含有率が0.05質量%以下、Tiの含有率が0.10質量%以下であり、残部がAl及び不可避不純物からなるアルミニウム合金の溶湯を得る溶湯形成工程と、前記得られた溶湯を鋳造加工することによってビレットを得る鋳造工程と、を含む。
(溶湯形成工程)
前記溶湯形成工程では、Si:0.95質量%~1.25質量%、Mg:0.80質量%~1.05質量%、Cu:0.30質量%~0.50質量%、Mn:0.40質量%~0.60質量%、Fe:0.15質量%~0.30質量%、Cr:0.09質量%~0.21質量%、B:0.0001質量%~0.03質量%を含有し、Znの含有率が0.25質量%以下、Zrの含有率が0.05質量%以下、Tiの含有率が0.10質量%以下であり、残部がAl及び不可避不純物からなる組成となるように溶解調製されたアルミニウム合金溶湯を得る。
前記溶湯形成工程では、Si:0.95質量%~1.25質量%、Mg:0.80質量%~1.05質量%、Cu:0.30質量%~0.50質量%、Mn:0.40質量%~0.60質量%、Fe:0.15質量%~0.30質量%、Cr:0.09質量%~0.21質量%、B:0.0001質量%~0.03質量%を含有し、Znの含有率が0.25質量%以下、Zrの含有率が0.05質量%以下、Tiの含有率が0.10質量%以下であり、残部がAl及び不可避不純物からなる組成となるように溶解調製されたアルミニウム合金溶湯を得る。
(鋳造工程)
次に、前記得られた溶湯を鋳造加工することによって鋳造材を得る(鋳造工程)。鋳造方法としては、特に限定されるものではなく、従来公知の方法を用いればよく、例えば、連続鋳造圧延法、ホットトップ鋳造法、フロート鋳造法、半連続鋳造法(DC鋳造法)等が挙げられる。この鋳造工程において、冷却速度の速い鋳造加工を行うことによって鋳塊(ビレット)中に形成される金属組織や晶出物の結晶粒径を小さくするのが好ましい。
次に、前記得られた溶湯を鋳造加工することによって鋳造材を得る(鋳造工程)。鋳造方法としては、特に限定されるものではなく、従来公知の方法を用いればよく、例えば、連続鋳造圧延法、ホットトップ鋳造法、フロート鋳造法、半連続鋳造法(DC鋳造法)等が挙げられる。この鋳造工程において、冷却速度の速い鋳造加工を行うことによって鋳塊(ビレット)中に形成される金属組織や晶出物の結晶粒径を小さくするのが好ましい。
以下、順に、均質化熱処理工程、冷却工程、押出工程、急冷工程、時効処理工程を実施するのがよい。
(均質化熱処理工程)
得られたビレットに対して均質化熱処理を行う。即ち、ビレットを480℃~530℃の温度で2時間~15時間保持する均質化熱処理を行う。480℃未満では、鋳塊ビレットの軟化が不十分となり、熱間押出加工時の圧力が著しく高くなって、外観品質が悪化するし、生産性も低下する。一方、530℃を超えると、MnとCrの析出物が粗大化することで再結晶を抑制する効果が低下し、再結晶の発生により、押出材の靱性が低下するし、高強度も得られ難い。中でも、均質化熱処理の温度は、485℃~525℃に設定するのが好ましい。
得られたビレットに対して均質化熱処理を行う。即ち、ビレットを480℃~530℃の温度で2時間~15時間保持する均質化熱処理を行う。480℃未満では、鋳塊ビレットの軟化が不十分となり、熱間押出加工時の圧力が著しく高くなって、外観品質が悪化するし、生産性も低下する。一方、530℃を超えると、MnとCrの析出物が粗大化することで再結晶を抑制する効果が低下し、再結晶の発生により、押出材の靱性が低下するし、高強度も得られ難い。中でも、均質化熱処理の温度は、485℃~525℃に設定するのが好ましい。
また、均質化熱処理の時間が2時間未満では、鋳塊ビレットの軟化が不十分となり、熱間押出加工時の圧力が著しく高くなって、外観品質が低下するし、生産性も低下する。また、2時間未満では、鋳塊組織中の結晶粒内の偏析を無くして均質化することが不十分になり、押出材の靱性が低下するし、高強度も得られ難い。一方、均質化熱処理の時間が15時間を超えると、均質化熱処理によるそれ以上の効果は得られず、かえって生産性を低下させるものとなる。
(冷却工程)
次に、前記均質化熱処理後のビレットを150℃/時間以上の平均冷却速度で200℃以下の温度まで冷却する。平均冷却速度は、大きい方がより好ましい。この冷却工程における冷却方法としては、特に限定されるものではないが、例えば、ファン冷却、ミスト冷却などが挙げられる。このようにビレットを150℃/時間以上の平均冷却速度で強制冷却する理由は、均質化熱処理後の冷却過程で固溶元素の析出物が粗大に成長するのを抑制するためである。粗大成長を抑制することで、後の時効処理による強度向上を十分に実現できると共に、押出材の靱性を十分に確保できる。
次に、前記均質化熱処理後のビレットを150℃/時間以上の平均冷却速度で200℃以下の温度まで冷却する。平均冷却速度は、大きい方がより好ましい。この冷却工程における冷却方法としては、特に限定されるものではないが、例えば、ファン冷却、ミスト冷却などが挙げられる。このようにビレットを150℃/時間以上の平均冷却速度で強制冷却する理由は、均質化熱処理後の冷却過程で固溶元素の析出物が粗大に成長するのを抑制するためである。粗大成長を抑制することで、後の時効処理による強度向上を十分に実現できると共に、押出材の靱性を十分に確保できる。
(押出工程)
前記冷却工程を経たビレットを500℃~560℃にした状態で3m/分~30m/分の押出速度で熱間押出加工を行って押出材を得る。加熱温度が500℃未満では、鋳塊に添加されている元素がマトリックス中に溶けずに残留することで時効処理による強度向上を実現できない。一方、加熱温度が560℃を超えると、押出加工後の加工発熱により押出材に局所的に共晶融解(バーニング)が発生する恐れがある。従って、熱間押出加工時の加熱温度は500℃~560℃に設定する。中でも、熱間押出加工時の加熱温度は510℃~550℃に設定するのが好ましい。なお、ビレットの加熱時間は、特に限定されるものではないが、加熱装置が押出工程のオンライン上に設置されていることを考慮して、良好な生産性を確保できる時間に設定されるが、30分以内に設定されるのが好ましく、15分以内に設定されるのが特に好ましい。
前記冷却工程を経たビレットを500℃~560℃にした状態で3m/分~30m/分の押出速度で熱間押出加工を行って押出材を得る。加熱温度が500℃未満では、鋳塊に添加されている元素がマトリックス中に溶けずに残留することで時効処理による強度向上を実現できない。一方、加熱温度が560℃を超えると、押出加工後の加工発熱により押出材に局所的に共晶融解(バーニング)が発生する恐れがある。従って、熱間押出加工時の加熱温度は500℃~560℃に設定する。中でも、熱間押出加工時の加熱温度は510℃~550℃に設定するのが好ましい。なお、ビレットの加熱時間は、特に限定されるものではないが、加熱装置が押出工程のオンライン上に設置されていることを考慮して、良好な生産性を確保できる時間に設定されるが、30分以内に設定されるのが好ましく、15分以内に設定されるのが特に好ましい。
前記熱間押出加工の際の押出速度は、3m/分~30m/分に設定する。押出速度は、生産性を考慮すると、速ければ速いほど好ましいものの、押出速度が30m/分を超えると、押出材の表面に剥離や割れが生じる恐れがある。一方、押出速度が3m/分未満では、生産性が低下する。
(急冷工程)
前記熱間押出加工後から0.01秒~60秒以内に前記押出材を急冷する。このとき、押出材を500℃~570℃の状態から100℃/秒以上の冷却速度で150℃以下まで急冷するのが好ましい。押出材の温度は、金型から排出された直後の押出材の温度を非接触温度計または接触温度計で計測する。この計測温度が500℃未満では、鋳塊に添加されている元素がマトリックス中に溶けずに残留することで時効処理による強度向上を実現できない。前記計測温度が570℃を超えている場合には、押出材に局所的に共晶融解(バーニング)が発生する恐れがある。中でも、前記熱間押出加工後の押出材の温度が510℃~560℃になっているのが好ましい。また、前記熱間押出加工後から0.01秒~30秒以内に前記押出材を急冷するのが好ましく、前記熱間押出加工後から0.01秒~15秒以内に前記押出材を急冷するのが特に好ましい。
前記熱間押出加工後から0.01秒~60秒以内に前記押出材を急冷する。このとき、押出材を500℃~570℃の状態から100℃/秒以上の冷却速度で150℃以下まで急冷するのが好ましい。押出材の温度は、金型から排出された直後の押出材の温度を非接触温度計または接触温度計で計測する。この計測温度が500℃未満では、鋳塊に添加されている元素がマトリックス中に溶けずに残留することで時効処理による強度向上を実現できない。前記計測温度が570℃を超えている場合には、押出材に局所的に共晶融解(バーニング)が発生する恐れがある。中でも、前記熱間押出加工後の押出材の温度が510℃~560℃になっているのが好ましい。また、前記熱間押出加工後から0.01秒~30秒以内に前記押出材を急冷するのが好ましく、前記熱間押出加工後から0.01秒~15秒以内に前記押出材を急冷するのが特に好ましい。
前記熱間押出加工直後の500℃~570℃の温度の押出材を100℃/秒以上の冷却速度で150℃以下まで急冷するが、このような急冷は、例えば、押出出口側に設置してある冷却装置を用いて実施することができる。上記のような条件での急冷(上記の急冷工程)は、押出材の金属組織が繊維状組織を有し、かつ押出材の断面の全体面積に占める繊維状組織の面積の割合が90%以上である金属組織を形成させる上で重要な工程である。この急冷工程において、冷却速度が100℃/秒未満では、冷却時の焼き入れが不十分となって、押出材の靱性が低下するし、高強度も得られ難い。前記冷却速度は500℃/秒以下であるのが好ましく、この場合には肉厚の厚い部分と薄い部分で熱収縮差による変形が生じ難く寸法精度が良い。この急冷工程での冷却速度は200℃/秒~400℃/秒であるのが特に好ましい。
前記急冷工程における冷却方法としては、特に限定されるものではないが、例えば、ファン空冷、ミスト冷却、シャワー冷却、液体窒素冷却、水冷等の方法が挙げられる。また、前記例示の冷却方法を適宜組み合わせて急冷を実施するようにしてもよい。
(時効処理工程)
次に、前記急冷工程を経た押出材を160℃~200℃の温度で1時間~12時間加熱して時効処理を行う。時効処理温度が160℃未満では、析出物が微細になりすぎて時効硬化が十分になされず、高強度の押出材が得られなくなる。一方、時効処理温度が200℃を超えると、過時効処理となって析出物が粗大化して、高強度の押出材が得られなくなる。また、時効処理時間が1時間未満では、亜時効処理となって高強度の押出材が得られなくなる。時効処理時間が12時間を超えると、過時効処理となって高強度の押出材が得られなくなる。中でも、前記時効処理温度を170℃~190℃に設定するのが好ましい。また、前記時効処理時間は2時間~10時間に設定するのが好ましい。
次に、前記急冷工程を経た押出材を160℃~200℃の温度で1時間~12時間加熱して時効処理を行う。時効処理温度が160℃未満では、析出物が微細になりすぎて時効硬化が十分になされず、高強度の押出材が得られなくなる。一方、時効処理温度が200℃を超えると、過時効処理となって析出物が粗大化して、高強度の押出材が得られなくなる。また、時効処理時間が1時間未満では、亜時効処理となって高強度の押出材が得られなくなる。時効処理時間が12時間を超えると、過時効処理となって高強度の押出材が得られなくなる。中でも、前記時効処理温度を170℃~190℃に設定するのが好ましい。また、前記時効処理時間は2時間~10時間に設定するのが好ましい。
上述した溶湯形成工程、鋳造工程、均質化熱処理工程、冷却工程、押出工程、急冷工程、時効処理工程を経て得られたアルミニウム合金押出材は、押出方向に平行な断面であって該押出材の重心を通る断面において金属組織は繊維状組織を有し、かつ前記断面の全体面積に占める前記繊維状組織の面積の割合が90%以上であり、前記押出材の外側表面に再結晶層が存在しており、該再結晶層の厚さが100μm以下である得られたアルミニウム合金押出材1は、高強度であると共に、腐食環境下等で使用されても腐食減量を小さく抑制できる。
なお、本発明の上記製造方法において、押出工程以降に、溶体化処理や焼き入れ処理を行うと、形成された繊維状組織が損なわれてしまうので、このような溶体化処理や焼き入れ処理を行うのは望ましくない。
また、本発明の上記製造方法において、例えば、自動車、鉄道等の車両の車体構造材(フレーム等)等として適用するために、必要に応じて、押出工程以降に、引抜加工、切削加工、曲げ加工、潰し加工、溶接加工、機械締結加工等のうちの1種又は2種以上の加工を実施してもよい。
次に、上述した本発明に係るアルミニウム合金押出材および本発明に係るアルミニウム合金押出材の製造方法における「アルミニウム合金」の組成について、以下詳述する。前記アルミニウム合金は、Si:0.95質量%~1.25質量%、Mg:0.80質量%~1.05質量%、Cu:0.30質量%~0.50質量%、Mn:0.40質量%~0.60質量%、Fe:0.15質量%~0.30質量%、Cr:0.09質量%~0.21質量%、B:0.0001質量%~0.03質量%を含有し、Znの含有率が0.25質量%以下、Zrの含有率が0.05質量%以下、Tiの含有率が0.10質量%以下であり、残部がAl及び不可避不純物からなるアルミニウム合金である。
前記Siは、Mgと共存してMg2Si系析出物を形成し、押出材の強度向上に寄与する。Siは、上述したとおりMgの含有量に対してMg2Siを生成する量を超えて過剰に添加することにより、時効処理による強度向上を十分に実現できることから、Si含有率は、0.95質量%以上に設定する。一方、Si含有率が1.25質量%を超えると、Siの粒界析出が多くなり、押出材の靱性が低下するし、熱間押出加工時の押出性が悪くなる。従って、Si含有率は、0.95質量%~1.25質量%に設定する。中でも、Si含有率は、1.00質量%~1.20質量%に設定するのが好ましく、1.05質量%~1.15質量%に設定するのがより好ましい。
前記Mgは、Siと共存してMg2Si系析出物を形成し、押出材の強度向上に寄与する。Mg含有率が0.80質量%より小さいと、析出強化の効果が十分に得られず高強度を確保することができない。一方、Mg含有率が1.05質量%を超えると、Mg2Si系析出物が増加し過ぎることによって、押出材の靱性を低下させるし、熱間押出加工時の押出圧力が著しく高くなることにより外観品質が悪化し、生産性を低下させる。従って、Mg含有率は、0.80質量%~1.05質量%に設定する。中でも、Mg含有率は、0.85質量%~1.05質量%に設定するのが好ましく、0.90質量%~1.00質量%に設定するのがより好ましい。
前記Feは、AlFeSi相として晶出することで結晶粒の粗大化を防止する効果がある。Fe含有率が0.15質量%より小さいと、結晶粒の粗大化防止効果が十分に得られない。一方、Fe含有率が0.30質量%を超えると、粗大な金属間化合物を生成し、押出材の靱性を低下させるし、熱間押出加工時にピックアップと呼ばれる外観不良が発生する恐れがある。従って、Fe含有率は、0.15質量%~0.30質量%に設定する。中でも、Fe含有率は、0.15質量%~0.25質量%に設定するのが好ましい。
前記Mnは、AlMnSi相として晶出し、晶出しないMnは析出して再結晶を抑制する効果がある。この再結晶を抑制する作用により、熱間押出加工後の組織を繊維状組織化できることで高強度を実現できる。Mn含有率が0.40質量%より小さいと、上記の再結晶抑制効果が得られなくなり、再結晶組織が粗大化して成長することで強度が低下する(高強度を確保できない)上に、組織制御が困難になり繊維状組織と再結晶組織とが混合した組織状態になって靱性が低下する。一方、Mn含有率が0.60質量%を超えると、粗大な金属間化合物を生成し、押出材の靱性を低下させる。従って、Mn含有率は、0.40質量%~0.60質量%に設定する。中でも、Mn含有率は、0.44質量%~0.56質量%に設定するのが好ましい。なお、Mnは、同様の効果を有するCrと複合的に添加することにより、上記の効果を相乗的に向上させることができる。
前記Cuは、Mg2Si系析出物の見かけの過飽和量を増加させ、Mg2Si析出量を増加させることによって最終製品の押出材の時効硬化を著しく促進させる。Cu含有率が0.30質量%より小さいと、時効硬化が十分に得られない。一方、Cu含有率が0.50質量%を超えると、押出材の靱性が低下するし、熱間押出加工時の押出性が悪くなる。また、過度に添加量を増やし過ぎると、耐食性を低下させ、粒界腐食の感受性を高め、応力腐食割れを引き起こす恐れがある。従って、Cu含有率は、0.30質量%~0.50質量%に設定する。中でも、Cu含有率は、0.35質量%~0.50質量%に設定するのが好ましく、0.40質量%~0.50質量%に設定するのがより好ましい。
前記Crは、AlCrSi相として晶出し、晶出しないCrは析出して再結晶を抑制する効果がある。この再結晶を抑制する作用により、熱間押出加工後の組織を繊維状組織化できることで高強度を実現できる。Cr含有率が0.09質量%より小さいと、上記の再結晶抑制効果が得られなくなり、再結晶組織が粗大化して成長することで強度が低下する(高強度を確保できない)上に、組織制御が困難になり繊維状組織と再結晶組織とが混合した組織状態になって靱性が低下する。一方、Cr含有率が0.21質量%を超えると、粗大な金属間化合物を生成し、押出材の靱性を低下させる。従って、Cr含有率は、0.09質量%~0.21質量%に設定する。中でも、Cr含有率は、0.11質量%~0.19質量%に設定するのが好ましい。なお、Crは、同様の効果を有するMnと複合的に添加することにより、上記の効果を相乗的に向上させることができる。
前記B(硼素)は、Tiとの共存により結晶粒の微細化を図る上で有効な元素である。B含有率が0.0001質量%より小さいと、結晶粒の微細化の効果が十分に得られない恐れがある。一方、B含有率が0.03質量%を超えると、TiB2が過剰に生成されて切削加工性が低下する恐れがある。従って、B含有率は、0.0001質量%~0.03質量%に設定する。
前記Tiは、結晶粒の微細化を図る上で有効な元素であり、また鋳造棒(ビレット)に鋳塊割れが発生することを防止することに寄与する。Ti含有率が0.10質量%を超えると、粗大なTi化合物が晶出し、押出材の靱性を低下させる。従って、Ti含有率は0.10質量%以下(Ti非含有;即ちTi含有率0質量%を含む)に設定する。
前記Zrは、MnやCrと同様に再結晶を抑制する効果を有する元素であるが、このZrの含有率は0.05質量%以下に設定する。Zr含有率が0.05質量%を超えると、上述したTiの結晶粒微細化効果を阻害する上に、押出材の靱性を低下させる。従って、Zr含有率は0.05質量%以下に設定する。Zr非含有であってもよい(Zr含有率は0質量%であってもよい)。中でも、Zr含有率は0.01質量%以下(0質量%を含む;即ちZr非含有を含む)に設定するのが好ましい。
前記Znは、鋳造性の向上を図る上で有効な元素であるが、Zn含有率が0.25質量%を超えると、耐食性や靱性を低下させる恐れがある。従って、Zn含有率は0.25質量%以下(Zn非含有;即ちZn含有率0質量%を含む)に設定する。
次に、本発明の具体的実施例について説明するが、本発明はこれら実施例のものに特に限定されるものではない。
<実施例1>
Si:0.95質量%、Fe:0.20質量%、Cu:0.30質量%、Mn:0.44質量%、Mg:0.80質量%、Cr:0.09質量%、B:0.004質量%、Zn:0.03質量%、Zr:0.01質量%、Ti:0.02質量%を含有し、残部がAl及び不可避不純物からなるアルミニウム合金を加熱してアルミニウム合金溶湯を得た後、該アルミニウム合金溶湯を用いてホットトップ鋳造法により直径156mm、長さ450mmの鋳塊ビレットを作製した。
Si:0.95質量%、Fe:0.20質量%、Cu:0.30質量%、Mn:0.44質量%、Mg:0.80質量%、Cr:0.09質量%、B:0.004質量%、Zn:0.03質量%、Zr:0.01質量%、Ti:0.02質量%を含有し、残部がAl及び不可避不純物からなるアルミニウム合金を加熱してアルミニウム合金溶湯を得た後、該アルミニウム合金溶湯を用いてホットトップ鋳造法により直径156mm、長さ450mmの鋳塊ビレットを作製した。
次に、前記鋳塊ビレットに対して500℃で8時間の均質化熱処理を行った(均質化熱処理工程)。前記均質化熱処理工程を経た後の鋳塊ビレットを220℃/時間の鋳塊冷却速度で鋳塊が150℃以下の温度になるまで強制冷却を行った(冷却工程)。次に、前記冷却工程を経た鋳塊ビレットに、鋳塊加熱温度535℃、押出速度12m/分の条件で熱間押出加工を行うことによって、幅80mmで厚さが6.0mmの板状の押出材(図1参照)を得た(押出工程)。次いで、前記熱間押出加工直後の(熱間押出加工後から2秒以内の)540℃の押出材(押出ダイス出口での押出材の温度を接触温度計で測定した)を400℃/秒の冷却速度で100℃以下の温度になるまで急冷した(急冷工程)。前記急冷工程を経た押出材を300mmの長さに切断した後、170℃で8時間加熱して時効処理を行った(時効処理工程)。こうして図1に示すAl-Mg-Si系アルミニウム合金押出材1を得た。
<実施例2>
前記アルミニウム合金溶湯として、表1に示すアルミニウム合金No.A2(表1に示す元素を表に記載の含有率で含有し、残部がAl及び不可避不純物からなるアルミニウム合金)からなるアルミニウム合金溶湯を用い、均質化熱処理を480℃×8時間の条件で行った以外は、実施例1と同様にして、図1に示すAl-Mg-Si系アルミニウム合金押出材1を得た。
前記アルミニウム合金溶湯として、表1に示すアルミニウム合金No.A2(表1に示す元素を表に記載の含有率で含有し、残部がAl及び不可避不純物からなるアルミニウム合金)からなるアルミニウム合金溶湯を用い、均質化熱処理を480℃×8時間の条件で行った以外は、実施例1と同様にして、図1に示すAl-Mg-Si系アルミニウム合金押出材1を得た。
<実施例4>
前記アルミニウム合金溶湯として、表1に示すアルミニウム合金No.A2(表1に示す元素を表に記載の含有率で含有し、残部がAl及び不可避不純物からなるアルミニウム合金)からなるアルミニウム合金溶湯を用い、均質化熱処理を525℃×8時間の条件で行った以外は、実施例1と同様にして、図1に示すAl-Mg-Si系アルミニウム合金押出材1を得た。
前記アルミニウム合金溶湯として、表1に示すアルミニウム合金No.A2(表1に示す元素を表に記載の含有率で含有し、残部がAl及び不可避不純物からなるアルミニウム合金)からなるアルミニウム合金溶湯を用い、均質化熱処理を525℃×8時間の条件で行った以外は、実施例1と同様にして、図1に示すAl-Mg-Si系アルミニウム合金押出材1を得た。
<実施例3、5~17>
前記アルミニウム合金溶湯として、表1に示すアルミニウム合金組成(表1に示す元素を表に記載の含有率で含有し、残部がAl及び不可避不純物からなるアルミニウム合金)からなるアルミニウム合金溶湯を用いた以外は、実施例1と同様にして、図1に示すAl-Mg-Si系アルミニウム合金押出材1を得た。
前記アルミニウム合金溶湯として、表1に示すアルミニウム合金組成(表1に示す元素を表に記載の含有率で含有し、残部がAl及び不可避不純物からなるアルミニウム合金)からなるアルミニウム合金溶湯を用いた以外は、実施例1と同様にして、図1に示すAl-Mg-Si系アルミニウム合金押出材1を得た。
<比較例1、2、4、5>
前記アルミニウム合金溶湯として、表2に示すアルミニウム合金組成(表2に示す元素を表に記載の含有率で含有し、残部がAl及び不可避不純物からなるアルミニウム合金)からなるアルミニウム合金溶湯を用いた以外は、実施例1と同様にして、Al-Mg-Si系アルミニウム合金押出材を得た。
前記アルミニウム合金溶湯として、表2に示すアルミニウム合金組成(表2に示す元素を表に記載の含有率で含有し、残部がAl及び不可避不純物からなるアルミニウム合金)からなるアルミニウム合金溶湯を用いた以外は、実施例1と同様にして、Al-Mg-Si系アルミニウム合金押出材を得た。
<比較例3、6、7>
前記アルミニウム合金溶湯として、表2に示すアルミニウム合金塑性(表2に示す元素を表に記載の含有率で含有し、残部がAl及び不可避不純物からなるアルミニウム合金)からなるアルミニウム合金溶湯を用い、均質化熱処理を565℃×8時間の条件で行った以外は、実施例1と同様にして、Al-Mg-Si系アルミニウム合金押出材を得た。
前記アルミニウム合金溶湯として、表2に示すアルミニウム合金塑性(表2に示す元素を表に記載の含有率で含有し、残部がAl及び不可避不純物からなるアルミニウム合金)からなるアルミニウム合金溶湯を用い、均質化熱処理を565℃×8時間の条件で行った以外は、実施例1と同様にして、Al-Mg-Si系アルミニウム合金押出材を得た。
<比較例9~16>
前記アルミニウム合金溶湯として、表2に示すアルミニウム合金組成(表2に示す元素を表に記載の含有率で含有し、残部がAl及び不可避不純物からなるアルミニウム合金)からなるアルミニウム合金溶湯を用いた以外は、実施例1と同様にして、Al-Mg-Si系アルミニウム合金押出材を得た。
前記アルミニウム合金溶湯として、表2に示すアルミニウム合金組成(表2に示す元素を表に記載の含有率で含有し、残部がAl及び不可避不純物からなるアルミニウム合金)からなるアルミニウム合金溶湯を用いた以外は、実施例1と同様にして、Al-Mg-Si系アルミニウム合金押出材を得た。
<比較例8>
Si:1.10質量%、Fe:0.20質量%、Cu:0.40質量%、Mn:0.50質量%、Mg:0.95質量%、Cr:0.15質量%、B:0.004質量%、Zn:0.03質量%、Zr:0.01質量%、Ti:0.02質量%を含有し、残部がAl及び不可避不純物からなるアルミニウム合金を加熱してアルミニウム合金溶湯を得た後、該アルミニウム合金溶湯を用いてホットトップ鋳造法により直径80mm、長さ80mmの鋳塊ビレットを作製した。
Si:1.10質量%、Fe:0.20質量%、Cu:0.40質量%、Mn:0.50質量%、Mg:0.95質量%、Cr:0.15質量%、B:0.004質量%、Zn:0.03質量%、Zr:0.01質量%、Ti:0.02質量%を含有し、残部がAl及び不可避不純物からなるアルミニウム合金を加熱してアルミニウム合金溶湯を得た後、該アルミニウム合金溶湯を用いてホットトップ鋳造法により直径80mm、長さ80mmの鋳塊ビレットを作製した。
次に、前記鋳塊ビレットに対して500℃で7時間の均質化熱処理を行った(均質化熱処理工程)。前記均質化熱処理工程を経た後の鋳塊ビレットを150℃/時間の鋳塊冷却速度で鋳塊が150℃以下の温度になるまで強制冷却を行った(冷却工程)。次に、前記冷却工程を経た鋳塊ビレットに、鋳塊加熱温度530℃に加熱し、熱間鍛造加工を行うことによって、直径80mm×高さ80mmの円柱体を鍛造により高さ16mmにまで鍛造加工して鍛造材を得た。次いで、前記鍛造材に530℃の温度で4時間の溶体化処理を実施し、水焼き入れ後に、170℃で8時間加熱して時効処理を行った。こうしてAl-Mg-Si系アルミニウム合金鍛造材を得た。
上記のようにして得られた各アルミニウム合金押出材、鍛造材について、下記の方法により金属組織の観察を行うと共に、下記評価法に基づいて各種評価を行った。
<金属組織の観察方法>
押出材について該押出材の押出方向に平行な断面であって該押出材の重心を通る断面を切り出した後、押出材の前記断面(切断面)を鏡面研磨し、次いで電解エッチングを行った後、断面(切断面)を光学顕微鏡で観察した。各押出材の前記断面(切断面)の光学顕微鏡を用いた金属組織写真において、複数視野における画像解析から、前記断面における全体面積に占める繊維状組織の面積の割合を求め、該割合が90%以上であるものを「繊維状組織」と判定し(表3、4参照)、前記割合が20%以上90%未満であるもの(繊維状組織以外の組織が再結晶組織であるもの)を「混合組織」と判定し、前記割合が20%未満であるもの(繊維状組織以外の組織が再結晶組織であるもの)を「再結晶組織」と判定した(表3、4参照)。
押出材について該押出材の押出方向に平行な断面であって該押出材の重心を通る断面を切り出した後、押出材の前記断面(切断面)を鏡面研磨し、次いで電解エッチングを行った後、断面(切断面)を光学顕微鏡で観察した。各押出材の前記断面(切断面)の光学顕微鏡を用いた金属組織写真において、複数視野における画像解析から、前記断面における全体面積に占める繊維状組織の面積の割合を求め、該割合が90%以上であるものを「繊維状組織」と判定し(表3、4参照)、前記割合が20%以上90%未満であるもの(繊維状組織以外の組織が再結晶組織であるもの)を「混合組織」と判定し、前記割合が20%未満であるもの(繊維状組織以外の組織が再結晶組織であるもの)を「再結晶組織」と判定した(表3、4参照)。
「再結晶層の厚さ」については、繊維状組織の形態をとるものについての前記光学顕微鏡を用いた金属組織写真において最表面からの再結晶層厚さを求めた(図2参照)。
比較例8の鍛造材については該鍛造材の加工方向に平行な断面で切り出した後、鍛造材の前記断面(切断面)を鏡面研磨し、次いで電解エッチングを行った後、断面(切断面)を光学顕微鏡で観察した。押出材の場合と同様に金属組織の形態と割合を求めて判定を実施した(表4参照)。
<引張特性評価法(引張強さ及び0.2%耐力の測定法)>
JIS Z2241-2011に準拠して室温(25℃)で引張試験を行うことによって、押出材(又は鍛造材)の0.2%耐力(MPa)を測定した。即ち、押出材(又は鍛造材)からJIS Z2201-1998に記載の方法によりJIS5号試験片を採取した。このJIS5号試験片の大きさは、平行部の幅25mm×平行部の長さ60mm×厚さ2.5mmとした。また、試験片において標点間距離を50mmに設定した。前記試験片についてインストロン型引張試験機を用いて引張試験を行った。引張試験速度は、2mm/分に設定し、耐力測定以降は10mm/分に設定した。JIS5号試験片のn数を3個として、3つの試験片の平均値を「0.2%耐力」とした(表3、4参照)。なお、表3、4において、0.2%耐力が370MPa以上であるものを「◎」と表記し、0.2%耐力が350MPa以上370MPa未満であるものを「○」と表記し、0.2%耐力が350MPa未満であるものを「×」と表記した。
JIS Z2241-2011に準拠して室温(25℃)で引張試験を行うことによって、押出材(又は鍛造材)の0.2%耐力(MPa)を測定した。即ち、押出材(又は鍛造材)からJIS Z2201-1998に記載の方法によりJIS5号試験片を採取した。このJIS5号試験片の大きさは、平行部の幅25mm×平行部の長さ60mm×厚さ2.5mmとした。また、試験片において標点間距離を50mmに設定した。前記試験片についてインストロン型引張試験機を用いて引張試験を行った。引張試験速度は、2mm/分に設定し、耐力測定以降は10mm/分に設定した。JIS5号試験片のn数を3個として、3つの試験片の平均値を「0.2%耐力」とした(表3、4参照)。なお、表3、4において、0.2%耐力が370MPa以上であるものを「◎」と表記し、0.2%耐力が350MPa以上370MPa未満であるものを「○」と表記し、0.2%耐力が350MPa未満であるものを「×」と表記した。
<腐食環境下での腐食減量の評価法(耐食性評価法)>
押出材は、幅80mmで厚さが6.0mmの板状の押出材を長さ120mmに切断して評価用試験片とした。鍛造材は、比較例8の鍛造加工材から幅80mmで厚さが6.0mm、長さ120mmのサイズに切削加工して評価用試験片を作製した。腐食減量の評価は、自動車部品外観腐食試験方法(JASO M610-92)に記載されているCCT試験で実施した。このCCT試験は、塩水噴霧(5%NaCl水溶液、35℃)×2時間、60℃で乾燥×4時間、湿潤(50℃、98%RH)×2時間の合計8時間を1サイクルとして、120サイクル(960時間)及び360サイクル(2880時間)で腐食試験を行った。所定サイクルの腐食試験後に評価用試験片を取り出した後、この評価用試験片に対してリン酸クロム酸液で洗浄を行うことによって腐食生成物を取り除いた後、腐食による質量減少量(腐食試験前の試験片の質量-腐食試験後の試験片の質量)を求めた。評価用試験片のn数を3個として、3つの試験片の平均値を「腐食減量」として表3、4に記載した。
押出材は、幅80mmで厚さが6.0mmの板状の押出材を長さ120mmに切断して評価用試験片とした。鍛造材は、比較例8の鍛造加工材から幅80mmで厚さが6.0mm、長さ120mmのサイズに切削加工して評価用試験片を作製した。腐食減量の評価は、自動車部品外観腐食試験方法(JASO M610-92)に記載されているCCT試験で実施した。このCCT試験は、塩水噴霧(5%NaCl水溶液、35℃)×2時間、60℃で乾燥×4時間、湿潤(50℃、98%RH)×2時間の合計8時間を1サイクルとして、120サイクル(960時間)及び360サイクル(2880時間)で腐食試験を行った。所定サイクルの腐食試験後に評価用試験片を取り出した後、この評価用試験片に対してリン酸クロム酸液で洗浄を行うことによって腐食生成物を取り除いた後、腐食による質量減少量(腐食試験前の試験片の質量-腐食試験後の試験片の質量)を求めた。評価用試験片のn数を3個として、3つの試験片の平均値を「腐食減量」として表3、4に記載した。
CCT試験は、一般的に120サイクル以下で実施されるが、表3、4の結果からわかるように、120サイクルでは腐食減量の値に顕著な差が認められない。一方、360サイクルの長期間の評価になると、腐食減量の値に顕著な差が認められた。360サイクルのCCT試験後で腐食減量が0.80mg/cm2以下であったものを「○」と表記し、0.80mg/cm2を超えたものを「×」と表記した。
<総合評価>
「0.2%耐力」および「腐食減量」の2つの評価項目のうち、1項目以上に「×」の評価結果があったものを「不合格」とし、2つの評価項目全てにおいて「×」の評価結果が無かったものを「合格」とした。
「0.2%耐力」および「腐食減量」の2つの評価項目のうち、1項目以上に「×」の評価結果があったものを「不合格」とし、2つの評価項目全てにおいて「×」の評価結果が無かったものを「合格」とした。
表から明らかなように、本発明に係る実施例1~17のAl-Mg-Si系アルミニウム合金押出材は、0.2%耐力が350MPa以上であって高強度であり、360サイクルのCCT試験後の腐食減量が十分に抑制されていた。
これに対し、本発明の範囲を逸脱する比較例1~16では、総合評価が不合格であった。
本発明に係るAl-Mg-Si系アルミニウム合金押出材および本発明の製造方法で得られるAl-Mg-Si系アルミニウム合金押出材は、高強度であると共に、腐食環境下等で使用されても腐食減量を小さく抑制できるので、従来の鉄系材料の代替材として好適に使用できる。例えば、車両、船舶、自動車、自動二輪車等の輸送機の車体の構造材(フレーム等)として使用することで車体の軽量化に貢献できる。
本願は、2018年10月22日付で出願された日本国特許出願の特願2018-198344号の優先権主張を伴うものであり、その開示内容は、そのまま本願の一部を構成するものである。
ここに用いられた用語及び表現は、説明のために用いられたものであって限定的に解釈するために用いられたものではなく、ここに示され且つ述べられた特徴事項の如何なる均等物をも排除するものではなく、この発明のクレームされた範囲内における各種変形をも許容するものであると認識されなければならない。
1 アルミニウム合金押出材
Claims (3)
- Si:0.95質量%~1.25質量%、Mg:0.80質量%~1.05質量%、Cu:0.30質量%~0.50質量%、Mn:0.40質量%~0.60質量%、Fe:0.15質量%~0.30質量%、Cr:0.09質量%~0.21質量%、B:0.0001質量%~0.03質量%を含有し、Znの含有率が0.25質量%以下、Zrの含有率が0.05質量%以下、Tiの含有率が0.10質量%以下であり、残部がAl及び不可避不純物からなるアルミニウム合金押出材であって、
前記アルミニウム合金押出材の押出方向に平行な断面であって該押出材の重心を通る断面において金属組織は繊維状組織を有し、かつ前記断面の全体面積に占める前記繊維状組織の面積の割合が90%以上であり、前記押出材の外側表面に再結晶層が存在しており、該再結晶層の厚さが100μm以下であることを特徴とするAl-Mg-Si系アルミニウム合金押出材。 - Si:0.95質量%~1.25質量%、Mg:0.80質量%~1.05質量%、Cu:0.30質量%~0.50質量%、Mn:0.40質量%~0.60質量%、Fe:0.15質量%~0.30質量%、Cr:0.09質量%~0.21質量%、B:0.0001質量%~0.03質量%を含有し、Znの含有率が0.25質量%以下、Zrの含有率が0.05質量%以下、Tiの含有率が0.10質量%以下であり、残部がAl及び不可避不純物からなるアルミニウム合金の溶湯を得る溶湯形成工程と、
前記得られた溶湯を鋳造加工することによってビレットを得る鋳造工程と、
前記ビレットに均質化熱処理を行う均質化熱処理工程と、
前記均質化熱処理後のビレットに熱間押出加工を行って押出材を得る押出工程と、
上記熱間押出加工後から0.01秒~60秒以内に前記押出材を急冷する急冷行程と、
前記急冷行程を経た押出材を加熱して時効処理を行う時効処理工程と、を含み、
前記時効処理工程を経て得られた押出材は、押出方向に平行な断面であって該押出材の重心を通る断面において金属組織は繊維状組織を有し、かつ前記断面の全体面積に占める前記繊維状組織の面積の割合が90%以上であり、前記押出材の外側表面に再結晶層が存在しており、該再結晶層の厚さが100μm以下であることを特徴とするAl-Mg-Si系アルミニウム合金押出材の製造方法。 - Si:0.95質量%~1.25質量%、Mg:0.80質量%~1.05質量%、Cu:0.30質量%~0.50質量%、Mn:0.40質量%~0.60質量%、Fe:0.15質量%~0.30質量%、Cr:0.09質量%~0.21質量%、B:0.0001質量%~0.03質量%を含有し、Znの含有率が0.25質量%以下、Zrの含有率が0.05質量%以下、Tiの含有率が0.10質量%以下であり、残部がAl及び不可避不純物からなるアルミニウム合金の溶湯を得る溶湯形成工程と、
前記得られた溶湯を鋳造加工することによってビレットを得る鋳造工程と、
前記ビレットを480℃~530℃の温度に2時間~15時間保持する均質化熱処理を行う均質化熱処理工程と、
前記均質化熱処理後のビレットを150℃/時間以上の平均冷却速度で200℃以下まで冷却する冷却工程と、
前記冷却工程を経たビレットを500℃~560℃にした状態で3m/分~30m/分の押出速度で熱間押出加工を行って押出材を得る押出工程と、
前記熱間押出加工後から0.01秒~60秒以内に前記押出材を500℃~570℃の状態から100℃/秒以上の冷却速度で150℃以下まで急冷する急冷工程と、
前記急冷工程を経た押出材を160℃~200℃の温度で1時間~12時間加熱して時効処理を行う時効処理工程と、を含み、
前記時効処理工程を経て得られた押出材は、押出方向に平行な断面であって該押出材の重心を通る断面において金属組織は繊維状組織を有し、かつ前記断面の全体面積に占める前記繊維状組織の面積の割合が90%以上であり、前記押出材の外側表面に再結晶層が存在しており、該再結晶層の厚さが100μm以下であることを特徴とするAl-Mg-Si系アルミニウム合金押出材の製造方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-198344 | 2018-10-22 | ||
JP2018198344A JP7182425B2 (ja) | 2018-10-22 | 2018-10-22 | Al-Mg-Si系アルミニウム合金押出材およびその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020085082A1 true WO2020085082A1 (ja) | 2020-04-30 |
Family
ID=70331171
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/039625 WO2020085082A1 (ja) | 2018-10-22 | 2019-10-08 | Al-Mg-Si系アルミニウム合金押出材およびその製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7182425B2 (ja) |
WO (1) | WO2020085082A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114000005A (zh) * | 2021-11-03 | 2022-02-01 | 大连理工大学 | 一种基于TiB2p/Al复合材料的低弧垂大跨越输电导线及其制备方法 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7215870B2 (ja) * | 2018-10-22 | 2023-01-31 | 昭和電工株式会社 | Al-Mg-Si系アルミニウム合金塑性加工材およびAl-Mg-Si系アルミニウム合金押出材の製造方法 |
EP3891312A4 (en) * | 2018-12-03 | 2022-09-21 | Rio Tinto Alcan International Limited | ALUMINUM EXTRUSION ALLOY |
JP7238680B2 (ja) | 2019-08-08 | 2023-03-14 | 富士通株式会社 | 情報処理装置、及び、情報処理プログラム |
CN112126827B (zh) * | 2020-10-09 | 2022-04-19 | 东莞理工学院 | 一种Al-Si合金及其制备方法和应用 |
CN113088773A (zh) * | 2021-03-05 | 2021-07-09 | 长春市吉通凯撒铝业有限责任公司 | 一种高强度铝合金及其生产工艺和应用 |
CN114592147B (zh) * | 2022-03-10 | 2023-01-31 | 广东凤铝铝业有限公司 | 一种铝合金型材及其制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10317113A (ja) * | 1997-05-14 | 1998-12-02 | Nippon Light Metal Co Ltd | 曲げ加工性に優れたアルミニウム押出し形材の製造方法 |
JP2000054049A (ja) * | 1998-08-07 | 2000-02-22 | Mitsubishi Alum Co Ltd | 圧潰特性に優れるサイドメンバー用Al−Mg−Si系合金押出形材及びその製造方法 |
JP2001003128A (ja) * | 1999-06-18 | 2001-01-09 | Kobe Steel Ltd | 耐圧壊割れ性に優れた衝撃吸収部材 |
JP2003155535A (ja) * | 2001-11-16 | 2003-05-30 | Nippon Light Metal Co Ltd | 自動車ブラケット用アルミニウム合金押出材およびその製造方法 |
WO2016129127A1 (ja) * | 2015-02-10 | 2016-08-18 | 昭和電工株式会社 | アルミニウム合金製塑性加工品、その製造方法及び自動車用部品 |
WO2019171818A1 (ja) * | 2018-03-05 | 2019-09-12 | 昭和電工株式会社 | Al-Mg-Si系アルミニウム合金中空押出材およびその製造方法 |
-
2018
- 2018-10-22 JP JP2018198344A patent/JP7182425B2/ja active Active
-
2019
- 2019-10-08 WO PCT/JP2019/039625 patent/WO2020085082A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10317113A (ja) * | 1997-05-14 | 1998-12-02 | Nippon Light Metal Co Ltd | 曲げ加工性に優れたアルミニウム押出し形材の製造方法 |
JP2000054049A (ja) * | 1998-08-07 | 2000-02-22 | Mitsubishi Alum Co Ltd | 圧潰特性に優れるサイドメンバー用Al−Mg−Si系合金押出形材及びその製造方法 |
JP2001003128A (ja) * | 1999-06-18 | 2001-01-09 | Kobe Steel Ltd | 耐圧壊割れ性に優れた衝撃吸収部材 |
JP2003155535A (ja) * | 2001-11-16 | 2003-05-30 | Nippon Light Metal Co Ltd | 自動車ブラケット用アルミニウム合金押出材およびその製造方法 |
WO2016129127A1 (ja) * | 2015-02-10 | 2016-08-18 | 昭和電工株式会社 | アルミニウム合金製塑性加工品、その製造方法及び自動車用部品 |
WO2019171818A1 (ja) * | 2018-03-05 | 2019-09-12 | 昭和電工株式会社 | Al-Mg-Si系アルミニウム合金中空押出材およびその製造方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114000005A (zh) * | 2021-11-03 | 2022-02-01 | 大连理工大学 | 一种基于TiB2p/Al复合材料的低弧垂大跨越输电导线及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2020066752A (ja) | 2020-04-30 |
JP7182425B2 (ja) | 2022-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020085082A1 (ja) | Al-Mg-Si系アルミニウム合金押出材およびその製造方法 | |
JP5698695B2 (ja) | 自動車用アルミニウム合金鍛造材およびその製造方法 | |
KR101333915B1 (ko) | 알루미늄-아연-마그네슘-스칸듐 합금 및 이의 제조 방법 | |
CA2707311C (en) | Improved aluminum-copper-lithium alloys | |
CA2797446C (en) | Damage tolerant aluminium material having a layered microstructure | |
JP2013525608A5 (ja) | ||
JP6022882B2 (ja) | 高強度アルミニウム合金押出材及びその製造方法 | |
JP7215920B2 (ja) | Al-Mg-Si系アルミニウム合金中空押出材 | |
JP2000144296A (ja) | 高強度高靱性アルミニウム合金鍛造材 | |
JP7182435B2 (ja) | Al-Mg-Si系アルミニウム合金押出引抜材 | |
JP2004084058A (ja) | 輸送機構造材用アルミニウム合金鍛造材の製造方法およびアルミニウム合金鍛造材 | |
US6325869B1 (en) | Aluminum alloy extrusions having a substantially unrecrystallized structure | |
JP7172833B2 (ja) | アルミニウム合金材及びその製造方法 | |
JP7215870B2 (ja) | Al-Mg-Si系アルミニウム合金塑性加工材およびAl-Mg-Si系アルミニウム合金押出材の製造方法 | |
JP6329430B2 (ja) | 曲げ性に優れた高耐力Al−Zn系アルミニウム合金製押出材 | |
JP2001107168A (ja) | 耐食性に優れた高強度高靱性アルミニウム合金鍛造材 | |
WO2017058052A1 (ru) | Высокопрочный сплав на основе алюминия и способ получения изделий из него | |
JPH08232035A (ja) | 曲げ加工性に優れたバンパー用高強度アルミニウム合金材およびその製造方法 | |
JP2022156481A (ja) | アルミニウム合金押出材およびその製造方法 | |
JP4164206B2 (ja) | 高温焼鈍時の再結晶粒微細化に優れた高強度高成形性アルミニウム合金板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19876964 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19876964 Country of ref document: EP Kind code of ref document: A1 |