Nothing Special   »   [go: up one dir, main page]

WO2019212171A1 - 폴리카보네이트 수지 조성물 및 이로부터 형성된 성형품 - Google Patents

폴리카보네이트 수지 조성물 및 이로부터 형성된 성형품 Download PDF

Info

Publication number
WO2019212171A1
WO2019212171A1 PCT/KR2019/004612 KR2019004612W WO2019212171A1 WO 2019212171 A1 WO2019212171 A1 WO 2019212171A1 KR 2019004612 W KR2019004612 W KR 2019004612W WO 2019212171 A1 WO2019212171 A1 WO 2019212171A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycarbonate resin
resin composition
weight
polycarbonate
group
Prior art date
Application number
PCT/KR2019/004612
Other languages
English (en)
French (fr)
Inventor
정혁진
구자관
이우진
강태곤
Original Assignee
롯데첨단소재(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데첨단소재(주) filed Critical 롯데첨단소재(주)
Priority to EP19796703.7A priority Critical patent/EP3778774B1/en
Priority to CN201980029077.2A priority patent/CN112041394B/zh
Priority to US17/046,869 priority patent/US20210047513A1/en
Publication of WO2019212171A1 publication Critical patent/WO2019212171A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/16Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/28Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen sulfur-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0066Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/10Block- or graft-copolymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/445Block-or graft-polymers containing polysiloxane sequences containing polyester sequences
    • C08G77/448Block-or graft-polymers containing polysiloxane sequences containing polyester sequences containing polycarbonate sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3009Sulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/387Borates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/30Applications used for thermoforming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • the present invention relates to a polycarbonate resin composition and a molded article formed therefrom. More specifically, the present invention relates to a polycarbonate resin composition having excellent flame retardancy, low heat generation property, flame propagation property, low flame retardancy, and the like, and no smoke toxicity, and a molded article formed therefrom.
  • Polycarbonate resins are widely used in automobiles and electronic products for their excellent mechanical properties such as moldability, impact resistance, tensile strength, and excellent electrical properties and transparency.
  • polycarbonate resin compositions in which ABS (Acrylonitrile-Butadiene-Styrene) resins are blended with polycarbonate resins and phosphorus-based flame retardants are added are used.
  • the polycarbonate resin composition has an advantage of excellent moldability, heat resistance, moisture resistance, impact resistance, and flame resistance, but it is not suitable as a material for transportation equipment because excessive smoke occurs during combustion.
  • resins such as polyimide resins and polyamide resins have been mainly used in the transportation field.
  • the polyimide resins and polyamide resins are disadvantageous in that they are not only expensive but also inferior in formability and inferior in mechanical properties compared to polycarbonate resins.
  • An object of the present invention is to provide a polycarbonate resin composition which is excellent in flame retardancy, low heat generation property, flame propagation property, low flammability, and the like, and has no smoke toxicity.
  • Another object of the present invention is to provide a molded article formed from the polycarbonate resin composition.
  • the polycarbonate resin composition is a polycarbonate resin; Polysiloxane-polycarbonate copolymer resins; Silicone gum; Metal inorganic compounds; Phosphorus flame retardants; And an inorganic filler.
  • the polycarbonate resin composition is about 100 parts by weight of the base resin comprising about 70 to about 90% by weight of the polycarbonate resin and about 10 to about 30% by weight of the polysiloxane-polycarbonate copolymer resin ; About 1 to about 30 parts by weight of the silicone gum; About 1 to about 20 parts by weight of the metal inorganic compound; About 5 to about 30 parts by weight of the phosphorus flame retardant; And about 10 to about 60 parts by weight of the inorganic filler.
  • the weight ratio (silicon gum: metal inorganic compound) of the silicon gum and the metal inorganic compound may be about 0.5: 1 to about 1.5: 1.
  • the polysiloxane-polycarbonate copolymer resin may be prepared by reacting a siloxane compound, an aromatic dihydroxy compound and a carbonate precursor represented by the following formula (1):
  • R 1 and R 2 are each independently a C1-C10 alkyl group, a C6-C18 aryl group, or a C1-C10 alkyl group or a C6-C18 aryl group having a halogen atom or an alkoxy group
  • A is Each independently a substituted or unsubstituted C2-C20 hydrocarbon group, or a substituted or unsubstituted C2-C20 hydrocarbon group having -O- or -S-, each independently represents a hydrogen atom, a halogen atom, C1 A halogenated alkyl group, cyano group (-CN), or an ester group of -C18, m being from about 2 to about 1,000.
  • the silicon gum is a polysiloxane resin represented by the following formula (2), the weight average molecular weight is about 400,000 to about 1,000,000 g / mol, at 25 °C, the viscosity measured by a Brookfield viscometer is about 10,000 to about 60,000 mm 2 / s:
  • R 3 is a methyl group, a vinyl group or a hydroxyl group
  • R 4 is a methyl group or a vinyl group
  • a and b are molar ratios, respectively, 1 to 99 and 1 to 99.
  • the metal inorganic compound is zinc borate, zinc borate hydrate, aluminum hydroxide, magnesium hydroxide, calcium hydroxide, zinc sulfide, zinc oxide, titanium oxide, magnesium calcium carbonate, magnesium carbonate, calcium carbonate and sulfuric acid It may include one or more of magnesium hydrate.
  • the phosphorus flame retardant may comprise about 50 to about 70% by weight of bisphenol-A bis (diphenylphosphate) and about 30 to about 50% by weight of biphenol bis (diphenylphosphate) have.
  • the inorganic filler may comprise a plate-shaped inorganic filler.
  • the polycarbonate resin composition may have a flame retardancy of 0.75 mm thick specimen measured by the UL-94 vertical test method of V-0 or more.
  • the polycarbonate resin composition according to the ISO 5660-1 standard the maximum average heat generation of 100 mm ⁇ 100 mm ⁇ 2 to 4 mm specimens measured under the condition of calories 50 kW / m 2
  • the rate MARHE may be about 50 to about 90 kW / m 2 .
  • the polycarbonate resin composition according to the ISO 5658-2 standard the critical burn calories CFE of 800 mm ⁇ 150 mm ⁇ 2 to 4 mm specimens measured at 50 kW / m 2 calories May be from about 18 to about 30 kW / m 2 .
  • the polycarbonate resin composition according to the ISO 5659-2 standard, 4 minutes non-optical of 75 mm ⁇ 75 mm ⁇ 2 to 4 mm specimens measured at 25 kW / m 2 calories Density Ds (4) may be from about 90 to about 300.
  • the polycarbonate resin composition according to the ISO 5659-2 standard accumulated for 4 minutes of 75 mm ⁇ 75 mm ⁇ 2 to 4 mm specimens measured at 25 kW / m 2 calories
  • Smoke amount VOF 4 may be from about 110 to about 600 minutes.
  • the polycarbonate resin composition has a smoke toxicity CIT of 75 mm ⁇ 75 mm ⁇ 2 to 4 mm specimens measured at 25 kW / m 2 calories according to the ISO 5659-2 standard About 0.005 to about 0.9.
  • Another aspect of the present invention relates to a molded article formed from the polycarbonate resin composition according to any one of 1 to 14.
  • the present invention has the effect of providing a polycarbonate resin composition excellent in flame retardancy, low heat generation characteristics, flame propagation characteristics, low flame retardancy, and the like, and smoke-free, and a molded article formed therefrom.
  • Polycarbonate resin composition according to the invention (A) polycarbonate resin; (B) polysiloxane-polycarbonate copolymer resin; (C) silicon gum; (D) metal inorganic compounds; (E) phosphorus-based flame retardants; And (F) an inorganic filler.
  • a polycarbonate resin used in a conventional thermoplastic resin composition may be used.
  • an aromatic polycarbonate resin produced by reacting diphenols (aromatic diol compounds) with carbonate precursors such as phosgene, halogen formate, and carbonic acid diester can be used.
  • the diphenols include 4,4'-biphenol, 2,2-bis (4-hydroxyphenyl) propane, 2,4-bis (4-hydroxyphenyl) -2-methylbutane, 1 , 1-bis (4-hydroxyphenyl) cyclohexane, 2,2-bis (3-chloro-4-hydroxyphenyl) propane, 2,2-bis (3,5-dichloro-4-hydroxyphenyl) Propane, 2,2-bis (3-methyl-4-hydroxyphenyl) propane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane, and the like, but are not limited thereto. .
  • 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (3,5-dichloro-4-hydroxyphenyl) propane, 2,2-bis (3-methyl-4- Hydroxyphenyl) propane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane or 1,1-bis (4-hydroxyphenyl) cyclohexane can be used, specifically, bisphenol- 2, 2-bis (4-hydroxyphenyl) propane called A can be used.
  • the carbonate precursor is dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dicyclohexyl carbonate, diphenyl carbonate, ditoryl carbonate, bis (chlorophenyl) carbonate, m-cresyl carbonate, dinaphthyl carbonate , Carbonyl chloride (phosgene), diphosgene, triphosgene, carbonyl bromide, bishaloformate, and the like. These can be used individually or in mixture of 2 or more types.
  • the polycarbonate resin may be branched chain, for example, from about 0.05 to about 2 mole% of a trivalent or more polyfunctional compound, specifically trivalent or based on the total diphenols used for polymerization. It can also manufacture by adding the compound which has more phenol groups.
  • the polycarbonate resin may be used in the form of homo polycarbonate resin, copolycarbonate resin or blends thereof.
  • the polycarbonate resin may be partially or entirely replaced by an aromatic polyester-carbonate resin obtained by polymerizing in the presence of an ester precursor, for example, a bifunctional carboxylic acid.
  • the polycarbonate resin may have a weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of about 10,000 to about 200,000 g / mol, for example, about 15,000 to about 40,000 g / mol.
  • Mw weight average molecular weight measured by gel permeation chromatography
  • the thermoplastic resin composition may be excellent in impact resistance, rigidity, heat resistance, and the like.
  • the polycarbonate resin is from about 70 to about 90 weight percent of 100 weight percent of the base resin (A + B) comprising (A) polycarbonate resin and (B) polysiloxane-polycarbonate copolymer resin For example, about 75 to about 85 weight percent.
  • the polycarbonate resin composition may be excellent in impact resistance, heat resistance, moldability (flowability) and the like.
  • Polysiloxane-polycarbonate copolymer resin according to an embodiment of the present invention is to improve the impact resistance, flame retardancy, weather resistance and the like of the polycarbonate resin composition, it includes a polycarbonate block and a polysiloxane block.
  • it may be a triblock copolymer of a polycarbonate block / polysiloxane block / polycarbonate block, and the like, but is not limited thereto.
  • a polysiloxane-polycarbonate copolymer resin prepared by reacting a siloxane compound, an aromatic dihydroxy compound, and a carbonate precursor represented by the following Formula 1 may be used.
  • R 1 and R 2 are each independently a C1-C10 alkyl group, a C6-C18 aryl group, or a C1-C10 alkyl group or a C6-C18 aryl group having a halogen atom or an alkoxy group
  • A is Each independently a substituted or unsubstituted C2-C20 hydrocarbon group, or a substituted or unsubstituted C2-C20 hydrocarbon group having -O- or -S-, each independently represents a hydrogen atom, a halogen atom, C1 -C18 halogenated alkyl group, cyano group (-CN), or ester group
  • m may be about 2 to about 1,000, for example about 4 to about 120, specifically about 10 to about 100.
  • the aromatic dihydroxy compounds may be used an aromatic dihydroxy compound used in the production of conventional polycarbonate resin, for example, 4,4'-biphenol, 2,2- Bis (4-hydroxyphenyl) propane, 2,4-bis (4-hydroxyphenyl) -2-methylbutane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 2,2-bis (3 -Chloro-4-hydroxyphenyl) propane, 2,2-bis (3,5-dichloro-4-hydroxyphenyl) propane and the like can be used, but is not limited thereto.
  • 2,2-bis (4-hydroxyphenyl) propane 2,2-bis (3,5-dichloro-4-hydroxyphenyl) propane, 1,1-bis (4-hydroxyphenyl) cyclo Hexane etc.
  • 2, 2-bis (4-hydroxyphenyl) propane also called bisphenol A can be used.
  • the carbonate precursor may be phosgene, triphosgene, diaryl carbonate, a mixture thereof, and the like.
  • the diaryl carbonate is diphenyl carbonate, ditoryl carbonate, bis (chlorophenyl) carbonate, m-cresyl carbonate, dinaphthyl carbonate, bis (diphenyl) carbonate, diethyl carbonate, dimethyl carbonate, dibutyl Carbonate, dicyclohexyl carbonate, etc. can be illustrated, but is not limited thereto. These may be used alone or in combination of two or more, for example diphenyl carbonate may be used.
  • the polycarbonate-polysiloxane copolymer is from about 10 to about 99 weight percent of polycarbonate blocks derived from the aromatic dihydroxy compound, such as from about 50 to about 95 weight percent, and from the siloxane compound About 1 to about 90 weight percent polysiloxane blocks, for example about 5 to about 50 weight percent.
  • the thermoplastic resin composition may have excellent impact resistance, flame retardancy, weather resistance, and the like.
  • the polycarbonate-polysiloxane copolymer may have a weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of about 10,000 to about 50,000 g / mol, for example, about 15,000 to about 30,000 g / mol. have.
  • Mw weight average molecular weight measured by gel permeation chromatography
  • the polycarbonate-polysiloxane copolymer has a melt-flow index (MI) of about 5 to about 40 g / 10 minutes, measured at 300 ° C. and 1.2 kg load conditions according to ISO 1133. About 10 to about 30 g / 10 minutes. In the above range, a thermoplastic resin composition having excellent mechanical properties, injection fluidity, and balance of physical properties thereof can be obtained.
  • the polycarbonate-polysiloxane copolymer can be prepared by conventional methods.
  • the aromatic dihydroxy compound, the carbonate precursor, and the siloxane compound can be copolymerized using an interfacial polycondensation, an emulsion polymerization method or the like.
  • the polycarbonate-polysiloxane copolymer may use a commercially available product.
  • the polysiloxane-polycarbonate copolymer resin is from about 10 to about 30 in 100% by weight of the base resin (A + B) comprising (A) polycarbonate resin and (B) polysiloxane-polycarbonate copolymer resin Weight percent, such as about 15 to about 25 weight percent.
  • the impact resistance, flame retardancy, weather resistance and the like of the polycarbonate resin composition may be excellent.
  • Silicone gum (gum) according to an embodiment of the present invention is to improve the flame retardancy, low heat generation properties, low flammability, flame propagation properties of the polycarbonate resin composition with a metal inorganic compound, represented by the following formula (2) Polysiloxane resins can be used.
  • R 3 is a methyl group, a vinyl group or a hydroxyl group
  • R 4 is a methyl group or a vinyl group
  • a and b are molar ratios, respectively, 1 to 99 and 1 to 99, for example, 10 to 90 and 10 to 10 90 may be.
  • the silicon gum may have a weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of about 400,000 to about 1,000,000 g / mol, for example, about 450,000 to about 900,000 g / mol.
  • Mw weight average molecular weight measured by gel permeation chromatography
  • the polycarbonate resin composition may be excellent in flame retardancy, low heat generation properties, low flammability, flame propagation properties and the like.
  • the silicone gum may have a viscosity measured at a Brookfield viscometer at 25 ° C. of about 10,000 to about 60,000 mm 2 / s (centistoke), for example, about 30,000 to about 50,000 mm 2 / s have.
  • the polycarbonate resin composition may be excellent in flame retardancy, low heat generation properties, low flammability, flame propagation properties and the like.
  • the silicone gum may be included in an amount of about 1 to about 30 parts by weight, for example about 5 to about 20 parts by weight, based on about 100 parts by weight of the polycarbonate resin.
  • the polycarbonate resin composition may be excellent in flame retardancy, low heat generation properties, low flammability, flame propagation properties and the like.
  • Metal inorganic compound according to an embodiment of the present invention is to improve the flame retardancy, low heat generation characteristics, flame propagation characteristics, low flame retardancy, etc. of the polycarbonate resin composition with a silicone gum, zinc borate, zinc borate hydrate, aluminum hydroxide , Magnesium hydroxide, calcium hydroxide, zinc sulfide, zinc oxide, titanium oxide, magnesium calcium carbonate, magnesium carbonate, calcium carbonate and magnesium sulfate hydrate, combinations thereof, and the like.
  • zinc borate, zinc borate hydrate, a combination thereof, or the like can be used.
  • the metal inorganic compound may have various shapes and sizes.
  • the metal inorganic compound may be in the form of particles having an average particle size (D50) of about 1 to about 150 ⁇ m, for example, about 3 to about 15 ⁇ m, measured by laser diffraction particle size measurement.
  • D50 average particle size
  • the metal inorganic compound may be included in an amount of about 1 to about 20 parts by weight, for example about 5 to about 15 parts by weight, based on about 100 parts by weight of the polycarbonate resin.
  • the polycarbonate resin composition may be excellent in flame retardancy, low heat generation properties, low flammability, flame propagation properties and the like.
  • the weight ratio (C: D) of the (C) silicon gum and (D) metal inorganic compound may be about 0.5: 1 to about 1.5: 1.
  • the polycarbonate resin composition may be more excellent in flame retardancy, low heat generation properties, low flammability, flame propagation properties and the like.
  • a conventional phosphorus flame retardant used in a flame retardant thermoplastic resin composition may be used.
  • phosphorous such as red, phosphate compounds, phosphonate compounds, phosphinate compounds, phosphine oxide compounds, phosphazene compounds, and metal salts thereof Flame retardants may be used.
  • the phosphorus flame retardant may be used alone or in combination of two or more thereof.
  • the aromatic phosphate ester compound represented by the following formula (3) can be used.
  • R 1, R 2, R 4 and R 5 are each independently a hydrogen atom, C6-C20 aryl group, or a C1-C10 with C6-C20 alkyl group is substituted on the (C 6 -C 20) aryl
  • R 3 is a C 6 -C 20 arylene group substituted with a C 6 -C 20 arylene group or a C 1 -C 10 alkyl group, for example, dialcohol such as resorcinol, hydroquinone, bisphenol-A, bisphenol-S, etc. Derived from n is an integer from 0 to 4.
  • the aromatic phosphate ester compound when n is 0, diaryl phosphate, such as diphenyl phosphate, triphenyl phosphate, tricresyl phosphate, trigylenyl phosphate, tri (2,6-dimethylphenyl ) Phosphate, tri (2,4,6-trimethylphenyl) phosphate, tri (2,4-dibutylbutylphenyl) phosphate, tri (2,6-dimethylphenyl) phosphate, etc., and n is 1 Bisphenol-A bis (diphenylphosphate), biphenol bis (diphenylphosphate), resorcinol bis (diphenylphosphate), resorcinol bis [bis (2,6-dimethylphenyl) phosphate], resorcy Nol bis [bis (2,4-dibutylbutylphenyl) phosphate], hydroquinone bis [bis (2,6-dimethylphenyl
  • the phosphorus flame retardant is about 50 to about 70 weight percent of bisphenol-A bis (diphenylphosphate), such as about 55 to about 65 weight percent and about 30 to about 50 weight of biphenol bis (diphenylphosphate) %, For example from about 35 to about 45 weight percent.
  • bisphenol-A bis (diphenylphosphate) such as about 55 to about 65 weight percent and about 30 to about 50 weight of biphenol bis (diphenylphosphate) %, For example from about 35 to about 45 weight percent.
  • the flame retardancy and the like can be improved without deteriorating other physical properties of the polycarbonate resin composition.
  • the phosphorous flame retardant may be included in about 5 to about 30 parts by weight, for example about 10 to about 25 parts by weight based on about 100 parts by weight of the polycarbonate resin. It may be excellent in flame retardancy, low heat generation characteristics of the polycarbonate resin composition in the above range.
  • Inorganic fillers according to an embodiment of the present invention prevents the release of flammable resin decomposition products on the surface of the resin during combustion of the polycarbonate resin composition, thereby improving flame retardancy, low heat generation and low smoke characteristics, and the rigidity of the polycarbonate resin composition As it can improve, it can contain a conventional plate-shaped inorganic filler.
  • talc, mica, or the like may be used as the plate-shaped inorganic filler.
  • conventional plate-shaped talc can be used.
  • the average particle size of the plate-shaped inorganic filler may be about 2 to about 10 ⁇ m, for example about 3 to about 7 ⁇ m.
  • the polycarbonate resin composition may be excellent in flame retardancy, rigidity, fluidity, appearance characteristics, and the like.
  • the inorganic filler may further include conventional acicular inorganic fillers such as wollastonite, whiskers, glass fibers, basalt fibers, and combinations thereof in addition to the plate-shaped inorganic fillers.
  • conventional acicular inorganic fillers such as wollastonite, whiskers, glass fibers, basalt fibers, and combinations thereof in addition to the plate-shaped inorganic fillers.
  • wollastonite or the like can be used.
  • the content when the needle-shaped inorganic filler is used, the content may be about 10 to about 50 parts by weight, for example about 20 to about 40 parts by weight, based on about 100 parts by weight of the plate-shaped inorganic filler.
  • the dimensional stability of the polycarbonate resin composition may be excellent in the above range.
  • the inorganic filler may be included in an amount of about 10 to about 60 parts by weight, for example about 15 to about 55 parts by weight, based on about 100 parts by weight of the polycarbonate resin.
  • the polycarbonate resin composition may be excellent in flame retardancy, rigidity, dimensional stability and the like.
  • the polycarbonate resin composition according to one embodiment of the present invention may further include conventional additives as necessary.
  • the additives include antidripping agents, antioxidants, mold release agents, lubricants, nucleating agents, antistatic agents, stabilizers, pigments, dyes, mixtures thereof, and the like.
  • the content may be about 0.001 to about 10 parts by weight based on about 100 parts by weight of the base resin.
  • Polycarbonate resin composition according to an embodiment of the present invention can be prepared by a known polycarbonate resin composition production method. For example, after mixing the constituents and other additives as necessary, using a conventional twin screw extruder, melt extrusion at about 200 to about 300 °C, for example about 250 to about 280 °C to pellet form It can be prepared as.
  • the polycarbonate resin composition may have a flame retardancy of 0.75 mm thick specimen measured by the UL-94 vertical test method of V-0 or more.
  • the polycarbonate resin composition has a maximum average heat generation rate of 100 mm ⁇ 100 mm ⁇ 2 to 4 mm specimens measured at 50 kW / m 2 calories according to the ISO 5660-1 standard. of heat emission) may be about 50 to about 90 kW / m 2 , for example about 55 to about 85 kW / m 2 .
  • the polycarbonate resin composition according to the ISO 5658-2 standard, heat 50 kW / m 2 measured on a 800 mm ⁇ 150 mm ⁇ 2 condition to 4 mm specimen threshold combustion heat of CFE (critical heat flux at extinguishment ) May be about 18 to about 30 kW / m 2 , for example about 20 to about 25 kW / m 2 .
  • the polycarbonate resin composition heat 25 kW / a 75 mm ⁇ 75 mm ⁇ 2 mm to about 4 minutes of the 4 specimens non-optical density Ds measured in m 2 Condition 4 according to the ISO 5659-2 standard ( The specific optical density at 4 min) may be about 90 to about 300 (au (arbitrary)), for example about 95 to about 250.
  • the polycarbonate resin composition the amount of the accumulated four minutes delay of heat 25 kW / a 75 mm ⁇ 75 mm ⁇ 2 to 4 mm specimen measured in m 2 Condition VOF (4) according to the ISO 5659-2 standard
  • the cumulative value of specific optical densities in the fires 4 min of the test may be about 110 to about 600 minutes, for example about 120 to about 400 minutes.
  • the polycarbonate resin composition has a smoke index of CIT (conventional index of toxicity) of 75 mm ⁇ 75 mm ⁇ 2 to 4 mm specimens measured at 25 kW / m 2 calories according to ISO 5659-2 standard. About 0.005 to about 0.9 (au (arbitrary)), for example about 0.01 to about 0.2.
  • the polycarbonate resin composition has a notched Izod impact strength of 3.2 mm thick specimens measured in accordance with ASTM D256 of about 2 to about 15 kgf ⁇ cm / cm, for example about 4 to about 8 kgf ⁇ cm /. may be cm.
  • the molded article according to the present invention is formed from the polycarbonate resin composition.
  • the polycarbonate resin composition can be produced into various molded articles (products) through various molding methods such as injection molding, extrusion molding, vacuum molding, casting molding.
  • molding methods are well known by those skilled in the art.
  • the molded article has excellent flame retardancy, low heat generation characteristics, low flammability, no smoke toxicity, and satisfies the fire safety standard EN45545-2 R1HL2 for European railway vehicles, and includes interior or exterior materials for transportation equipment such as automobile parts or railway vehicle parts. It is particularly useful as a material.
  • Bisphenol-A type polycarbonate resin (weight average molecular weight (Mw): 28,000 g / mol) was used.
  • PDMS polydimethylsiloxane
  • PDMS Polydimethylsiloxane
  • a silicone core-shell impact modifier (manufacturer: MRC, product name: SX-005) was used.
  • biphenol bis (diphenylphosphate) (manufacturer: ADEKA Corporation, product name: FP-900) was used.
  • tetrabromo bisphenol-A carbonate oligomer manufactured by Great Lakes, product name: BC-58 was used.
  • Example 1 to 4 and Comparative example 1 to 3 Preparation and Evaluation of Polycarbonate Resin Compositions
  • Each of the constituents is added in an amount as shown in Table 1 below, and as other additives, 1 part by weight of an antidripping agent (PTFE, GCC Korea, AD-541) and an antioxidant (Songwon) based on 100 parts by weight of the constituent.
  • PTFE antidripping agent
  • a release agent Hengel, LOXIOL EP-861
  • CFE (unit: kW / m 2 ): 800 mm ⁇ 150 mm ⁇ 2, 3, and 4 mm specimens under calories of 50 kW / m 2 in accordance with ISO 5658-2 standard (Side Flame Propagation Method). Critical combustion calorie CFE was measured.
  • V volume of test chamber
  • A exposed area of test specimen
  • L length of light beam
  • T relative transmission of light in 4 minutes
  • VOF (4) in minutes 4 minutes of 75 mm ⁇ 75 mm ⁇ 2, 3 and 4 mm specimens in a smoke density chamber with 25 kW / m 2 of heat in the smoke density chamber. The accumulated smoke amount VOF (4) of was measured.
  • VOF (4) [(Ds (1) + Ds (2) + Ds (3) + Ds (4)) / 2] ⁇ 1 minute
  • CIT (Unit: None): Smoke toxicity CIT of 75 mm ⁇ 75 mm ⁇ 2, 3 and 4 mm specimens measured at 25 kW / m 2 calories in a smoke density chamber in accordance with ISO 5659-2 standard. It was.
  • Notched Izod impact strength (unit: kgf ⁇ cm / cm): Notched Izod impact strength of 3.2 mm thick specimens was measured according to the evaluation method specified in ASTM D256.
  • MI Flow Flow Index
  • VST Vicat softening temperature (VST, unit: ° C): Based on ISO 306 / B50, Vicat softening temperature (VST) was measured under a load of 50 N and a heating rate of 120 ° C / hr.
  • the polycarbonate resin composition according to the present invention is flame retardant (flame retardant), flame propagation characteristics (CFE), low heat generation characteristics (MARHE), low flammability (DS (4), VOF (4)), smoke non-toxic ( CIT) and the like are all excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명의 폴리카보네이트 수지 조성물은 폴리카보네이트 수지; 폴리실록산-폴리카보네이트 공중합체 수지; 실리콘 검(gum); 금속 무기화합물; 인계 난연제; 및 무기 충진제;를 포함하는 것을 특징으로 한다. 상기 폴리카보네이트 수지 조성물은 난연성, 저발열 특성, 화염전파 특성, 저연성 등이 우수하고, 연기 독성이 없다.

Description

폴리카보네이트 수지 조성물 및 이로부터 형성된 성형품
본 발명은 폴리카보네이트 수지 조성물 및 이로부터 형성된 성형품에 관한 것이다. 보다 구체적으로 본 발명은 난연성, 저발열 특성, 화염전파 특성, 저연성 등이 우수하고, 연기 독성이 없는 폴리카보네이트 수지 조성물 및 이로부터 형성된 성형품에 관한 것이다.
종래에는 자동차, 철도 차량과 같은 운송용 장비의 내장재 및 외장재로는 주로 금속(steel) 소재들이 사용되어 왔다. 그러나, 최근 연비 개선 요구가 증대됨에 따라 금속 소재를 경량의 플라스틱 소재로 대체하는 연구가 활발하게 진행되고 있다. 운송용 장비에 적용되는 소재의 경우, 승객의 안정성 등을 확보하기 위해 화재 발생 시 연기의 발생을 방지 또는 저감할 수 있는 저연성과 난연성, 저발열 특성, 연기 무독성 등이 엄격하게 요구된다.
폴리카보네이트 수지는 성형성과 내충격성, 인장 강도 등의 기계적 물성이 우수하고, 전기 특성, 투명성 등이 우수하여 자동차 및 전자 제품 등에 폭넓게 사용되고 있다. 종래에는 폴리카보네이트 수지에 ABS(Acrylonitrile-Butadiene-Styrene) 수지를 블랜딩하고, 인계 난연제를 첨가한 폴리카보네이트 수지 조성물이 많이 사용되었다. 이러한 폴리카보네이트 수지 조성물은 성형성, 내열성, 방습성, 내충격성 및 방염성이 우수하다는 장점이 있으나, 연소 시에 연기가 과량으로 발생하기 때문에 운송용 장비의 소재로는 적합하지 않았다. 이 때문에 종래에는 운송 분야에서 폴리이미드 수지나 폴리아미드 수지와 같은 수지들이 주로 사용되어 왔다. 그러나, 상기 폴리이미드 수지 및 폴리아미드 수지는 가격이 고가일 뿐 아니라, 성형성이 나쁘고, 폴리카보네이트 수지에 비해 기계적 물성이 떨어진다는 단점이 있다.
따라서, 폴리카보네이트 수지 본래의 우수한 내충격성, 내열성, 성형성 등을 유지하면서, 난연성, 저발열 특성, 화염전파 특성, 저연성 등이 우수하고, 연기 독성이 없는 폴리카보네이트 수지 조성물의 개발이 요구되고 있다.
본 발명의 배경기술은 대한민국 공개특허 10-2012-0078559호 등에 개시되어 있다.
본 발명의 목적은 난연성, 저발열 특성, 화염전파 특성, 저연성 등이 우수하고, 연기 독성이 없는 폴리카보네이트 수지 조성물을 제공하기 위한 것이다.
본 발명의 다른 목적은 상기 폴리카보네이트 수지 조성물로부터 형성된 성형품을 제공하기 위한 것이다.
본 발명의 상기 및 기타의 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다.
1. 본 발명의 하나의 관점은 폴리카보네이트 수지 조성물에 관한 것이다. 상기 폴리카보네이트 수지 조성물은 폴리카보네이트 수지; 폴리실록산-폴리카보네이트 공중합체 수지; 실리콘 검(gum); 금속 무기화합물; 인계 난연제; 및 무기 충진제;를 포함하는 것을 특징으로 한다.
2. 상기 1 구체예에서, 상기 폴리카보네이트 수지 조성물은 상기 폴리카보네이트 수지 약 70 내지 약 90 중량% 및 상기 폴리실록산-폴리카보네이트 공중합체 수지 약 10 내지 약 30 중량%를 포함하는 기초 수지 약 100 중량부; 상기 실리콘 검 약 1 내지 약 30 중량부; 상기 금속 무기화합물 약 1 내지 약 20 중량부; 상기 인계 난연제 약 5 내지 약 30 중량부; 및 상기 무기 충진제 약 10 내지 약 60 중량부;를 포함할 수 있다.
3. 상기 1 또는 2 구체예에서, 상기 실리콘 검 및 금속 무기화합물의 중량비(실리콘 검:금속 무기화합물)는 약 0.5 : 1 내지 약 1.5 : 1일 수 있다.
4. 상기 1 내지 3 구체예에서, 상기 폴리실록산-폴리카보네이트 공중합체 수지는 하기 화학식 1로 표시되는 실록산 화합물, 방향족 디히드록시 화합물 및 카보네이트 전구체를 반응시켜 제조한 것일 수 있다:
[화학식 1]
Figure PCTKR2019004612-appb-I000001
상기 화학식 1에서, R1 및 R2는 각각 독립적으로 C1-C10의 알킬기, C6-C18의 아릴기, 또는 할로겐 원자 또는 알콕시기를 갖는 C1-C10의 알킬기 또는 C6-C18의 아릴기이고, A는 각각 독립적으로 치환 또는 비치환된 C2-C20의 탄화수소기, 또는 -O- 또는 -S-를 갖는 치환 또는 비치환된 C2-C20의 탄화수소기이고, Y는 각각 독립적으로 수소 원자, 할로겐 원자, C1-C18의 할로겐화 알킬기, 시아노기(-CN), 또는 에스테르기이며, m은 약 2 내지 약 1,000이다.
5. 상기 1 내지 4 구체예에서, 상기 실리콘 검은 하기 화학식 2로 표시되는 폴리실록산 수지이며, 중량평균분자량이 약 400,000 내지 약 1,000,000 g/mol이고, 25℃에서, 브룩필드 점도계로 측정한 점도가 약 10,000 내지 약 60,000 mm2/s일 수 있다:
[화학식 2]
Figure PCTKR2019004612-appb-I000002
상기 화학식 2에서, R3는 메틸기, 비닐기 또는 수산화기이고, R4는 메틸기 또는 비닐기이며, a 및 b는 몰비로서, 각각 1 내지 99 및 1 내지 99이다.
6. 상기 1 내지 5 구체예에서, 상기 금속 무기화합물은 붕산아연, 붕산아연 수화물, 수산화알루미늄, 수산화마그네슘, 수산화칼슘, 황화아연, 산화아연, 산화티탄, 마그네슘칼슘카보네이트, 탄산마그네슘, 탄산칼슘 및 황산마그네슘 수화물 중 1종 이상을 포함할 수 있다.
7. 상기 1 내지 6 구체예에서, 상기 인계 난연제는 비스페놀-A 비스(디페닐포스페이트) 약 50 내지 약 70 중량% 및 비페놀 비스(디페닐포스페이트) 약 30 내지 약 50 중량%를 포함할 수 있다.
8. 상기 1 내지 7 구체예에서, 상기 무기 충진제는 판상 무기 충진제를 포함할 수 있다.
9. 상기 1 내지 8 구체예에서, 상기 폴리카보네이트 수지 조성물은 UL-94 vertical test 방법으로 측정한 0.75 mm 두께 시편의 난연도가 V-0 이상일 수 있다.
10. 상기 1 내지 9 구체예에서, 상기 폴리카보네이트 수지 조성물은 ISO 5660-1 규격에 따라, 열량 50 kW/m2 조건에서 측정한 100 mm × 100 mm × 2 내지 4 mm 시편의 최대 평균열발열률 MARHE가 약 50 내지 약 90 kW/m2일 수 있다.
11. 상기 1 내지 10 구체예에서, 상기 폴리카보네이트 수지 조성물은 ISO 5658-2 규격에 따라, 열량 50 kW/m2 조건에서 측정한 800 mm × 150 mm × 2 내지 4 mm 시편의 임계 연소 열량 CFE가 약 18 내지 약 30 kW/m2일 수 있다.
12. 상기 1 내지 11 구체예에서, 상기 폴리카보네이트 수지 조성물은 ISO 5659-2 규격에 따라, 열량 25 kW/m2 조건에서 측정한 75 mm × 75 mm × 2 내지 4 mm 시편의 4분 비광학 밀도 Ds(4)가 약 90 내지 약 300일 수 있다.
13. 상기 1 내지 12 구체예에서, 상기 폴리카보네이트 수지 조성물은 ISO 5659-2 규격에 따라, 열량 25 kW/m2 조건에서 측정한 75 mm × 75 mm × 2 내지 4 mm 시편의 4분간의 축적 연기량 VOF(4)가 약 110 내지 약 600 분일 수 있다.
14. 상기 1 내지 13 구체예에서, 상기 폴리카보네이트 수지 조성물은 ISO 5659-2 규격에 따라, 열량 25 kW/m2 조건에서 측정한 75 mm × 75 mm × 2 내지 4 mm 시편의 연기 독성 CIT가 약 0.005 내지 약 0.9일 수 있다.
15. 본 발명의 다른 관점은 상기 1 내지 14 중 어느 하나에 따른 폴리카보네이트 수지 조성물로부터 형성된 성형품에 관한 것이다.
본 발명은 난연성, 저발열 특성, 화염전파 특성, 저연성 등이 우수하고, 연기 독성이 없는 폴리카보네이트 수지 조성물 및 이로부터 형성된 성형품을 제공하는 발명의 효과를 가진다.
이하, 본 발명을 상세히 설명하면, 다음과 같다.
본 발명에 따른 폴리카보네이트 수지 조성물은 (A) 폴리카보네이트 수지; (B) 폴리실록산-폴리카보네이트 공중합체 수지; (C) 실리콘 검(gum); (D) 금속 무기화합물; (E) 인계 난연제; 및 (F) 무기 충진제;를 포함하는 것을 특징으로 한다.
본 명세서에서, 수치범위를 나타내는 "a 내지 b"는 "≥a 이고 ≤b"으로 정의한다.
(A) 폴리카보네이트 수지
본 발명에 일 구체예에 따른 폴리카보네이트 수지로는 통상의 열가소성 수지 조성물에 사용되는 폴리카보네이트 수지를 사용할 수 있다. 예를 들면, 디페놀류(방향족 디올 화합물)를 포스겐, 할로겐 포르메이트, 탄산 디에스테르 등의 카보네이트 전구체와 반응시킴으로써 제조되는 방향족 폴리카보네이트 수지를 사용할 수 있다.
구체예에서, 상기 디페놀류로는 4,4'-비페놀, 2,2-비스(4-히드록시페닐)프로판, 2,4-비스(4-히드록시페닐)-2-메틸부탄, 1,1-비스(4-히드록시페닐)시클로헥산, 2,2-비스(3-클로로-4-히드록시페닐)프로판, 2,2-비스(3,5-디클로로-4-히드록시페닐)프로판, 2,2-비스(3-메틸-4-히드록시페닐)프로판, 2,2-비스(3,5-디메틸-4-히드록시페닐)프로판 등을 예시할 수 있으나, 이에 제한되지 않는다. 예를 들면, 2,2-비스(4-히드록시페닐)프로판, 2,2-비스(3,5-디클로로-4-히드록시페닐)프로판, 2,2-비스(3-메틸-4-히드록시페닐)프로판, 2,2-비스(3,5-디메틸-4-히드록시페닐)프로판 또는 1,1-비스(4-히드록시페닐)시클로헥산을 사용할 수 있고, 구체적으로, 비스페놀-A 라고 불리는 2,2-비스(4-히드록시페닐)프로판을 사용할 수 있다.
구체예에서, 상기 카보네이트 전구체로는 디메틸카보네이트, 디에틸카보네이트, 디부틸카보네이트, 디시클로헥실카보네이트, 디페닐카보네이트, 디토릴카보네이트, 비스(클로로페닐)카보네이트, m-크레실카보네이트, 디나프틸카보네이트, 카보닐클로라이드(포스겐), 디포스겐, 트리포스겐, 카보닐브로마이드, 비스할로포르메이트 등을 예시할 수 있다. 이들은 단독 또는 2종 이상 혼합하여 사용할 수 있다.
상기 폴리카보네이트 수지는 분지쇄가 있는 것이 사용될 수 있으며, 예를 들면 중합에 사용되는 디페놀류 전체에 대하여, 약 0.05 내지 약 2 몰%의 3가 또는 그 이상의 다관능 화합물, 구체적으로, 3가 또는 그 이상의 페놀기를 가진 화합물을 첨가하여 제조할 수도 있다.
상기 폴리카보네이트 수지는 호모 폴리카보네이트 수지, 코폴리카보네이트 수지 또는 이들의 블렌드 형태로 사용할 수 있다. 또한, 상기 폴리카보네이트 수지는 에스테르 전구체(precursor), 예를 들면, 2관능 카르복실산의 존재 하에서 중합 반응시켜 얻어진 방향족 폴리에스테르-카보네이트 수지로 일부 또는 전량 대체하는 것도 가능하다.
구체예에서, 상기 폴리카보네이트 수지는 GPC(gel permeation chromatography)로 측정한 중량평균분자량(Mw)이 약 10,000 내지 약 200,000 g/mol, 예를 들면 약 15,000 내지 약 40,000 g/mol일 수 있다. 상기 범위에서 열가소성 수지 조성물의 내충격성, 강성, 내열성 등이 우수할 수 있다.
구체예에서, 상기 폴리카보네이트 수지는 (A) 폴리카보네이트 수지 및 (B) 폴리실록산-폴리카보네이트 공중합체 수지를 포함하는 기초 수지(A+B) 100 중량% 중, 약 70 내지 약 90 중량%, 예를 들면 약 75 내지 약 85 중량%로 포함될 수 있다. 상기 범위에서 폴리카보네이트 수지 조성물의 내충격성, 내열성, 성형성(유동성) 등이 우수할 수 있다.
(B) 폴리실록산-폴리카보네이트 공중합체 수지
본 발명의 일 구체예에 따른 폴리실록산-폴리카보네이트 공중합체 수지는 폴리카보네이트 수지 조성물의 내충격성, 난연성, 내후성 등을 향상시킬 수 있는 것으로서, 폴리카보네이트 블록 및 폴리실록산 블록을 포함하는 것이다. 예를 들면, 폴리카보네이트 블록/폴리실록산 블록/폴리카보네이트 블록의 트리블록 공중합체(triblock copolymer) 등일 수 있으나, 이에 제한되지 않는다. 예를 들면, 상기 폴리실록산-폴리카보네이트 공중합체 수지로는 하기 화학식 1로 표시되는 실록산 화합물, 방향족 디히드록시 화합물 및 카보네이트 전구체를 반응시킴으로써 제조되는 폴리실록산-폴리카보네이트 공중합체 수지를 사용할 수 있다.
[화학식 1]
Figure PCTKR2019004612-appb-I000003
상기 화학식 1에서, R1 및 R2는 각각 독립적으로 C1-C10의 알킬기, C6-C18의 아릴기, 또는 할로겐 원자 또는 알콕시기를 갖는 C1-C10의 알킬기 또는 C6-C18의 아릴기이고, A는 각각 독립적으로 치환 또는 비치환된 C2-C20의 탄화수소기, 또는 -O- 또는 -S-를 갖는 치환 또는 비치환된 C2-C20의 탄화수소기이고, Y는 각각 독립적으로 수소 원자, 할로겐 원자, C1-C18의 할로겐화 알킬기, 시아노기(-CN), 또는 에스테르기이며, m은 약 2 내지 약 1,000, 예를 들면 약 4 내지 약 120, 구체적으로 약 10 내지 약 100일 수 있다.
구체예에서, 상기 방향족 디히드록시 화합물(디페놀류)로는 통상적인 폴리카보네이트 수지 제조 시 사용되는 방향족 디히드록시 화합물을 사용할 수 있으며, 예를 들면, 4,4'-비페놀, 2,2-비스(4-히드록시페닐)프로판, 2,4-비스(4-히드록시페닐)-2-메틸부탄, 1,1-비스(4-히드록시페닐)시클로헥산, 2,2-비스(3-클로로-4-히드록시페닐)프로판, 2,2-비스(3,5-디클로로-4-히드록시페닐)프로판 등을 사용할 수 있으나, 이에 제한되지 않는다. 구체적으로, 2,2-비스(4-히드록시페닐)프로판, 2,2-비스(3,5-디클로로-4-히드록시페닐)프로판, 1,1-비스(4-히드록시페닐)시클로헥산 등을 사용할 수 있고, 바람직하게는, 비스페놀 A라고도 불리는 2,2-비스(4-히드록시페닐)프로판을 사용할 수 있다.
구체예에서, 상기 카보네이트 전구체로는 포스겐, 트리포스겐, 디아릴 카보네이트, 이들의 혼합물 등을 예시할 수 있다. 또한, 상기 디아릴 카보네이트로는 디페닐 카보네이트, 디토릴 카보네이트, 비스(클로로페닐) 카보네이트, m-크레실 카보네이트, 디나프틸 카보네이트, 비스(디페닐) 카보네이트, 디에틸 카보네이트, 디메틸 카보네이트, 디부틸 카보네이트, 디시클로헥실 카보네이트 등을 예시할 수 있으나, 이에 제한되는 것은 아니다. 이들은 단독 또는 2종 이상 사용될 수 있으며, 예를 들면 디페닐 카보네이트 등이 사용될 수 있다.
구체예에서, 상기 폴리카보네이트-폴리실록산 공중합체는 상기 방향족 디히드록시 화합물로부터 유도되는 폴리카보네이트 블록 약 10 내지 약 99 중량%, 예를 들면 약 50 내지 약 95 중량%, 및 상기 실록산 화합물로부터 유도되는 폴리실록산 블록 약 1 내지 약 90 중량%, 예를 들면 약 5 내지 약 50 중량%를 포함할 수 있다. 상기 범위에서 열가소성 수지 조성물의 내충격성, 난연성, 내후성 등이 우수할 수 있다.
구체예에서, 상기 폴리카보네이트-폴리실록산 공중합체는 GPC(gel permeation chromatography)로 측정한 중량평균분자량(Mw)이 약 10,000 내지 약 50,000 g/mol, 예를 들면 약 15,000 내지 약 30,000 g/mol일 수 있다. 또한, 상기 폴리카보네이트-폴리실록산 공중합체는 ISO 1133에 의거하여 300℃, 1.2 kg 하중 조건에서 측정한 용융흐름지수(melt-flow index: MI)가 약 5 내지 약 40 g/10분, 예를 들면 약 10 내지 약 30 g/10분일 수 있다. 상기 범위에서 우수한 기계적 물성, 사출 유동성, 이들의 물성 발란스를 갖는 열가소성 수지 조성물을 얻을 수 있다.
구체예에서, 상기 폴리카보네이트-폴리실록산 공중합체는 통상의 방법으로 제조될 수 있다. 예를 들면, 계면 축중합, 유화 중합 방법 등을 사용하여, 상기 방향족 디히드록시 화합물, 카보네이트 전구체 및 실록산 화합물을 공중합할 수 있다. 또한, 상기 폴리카보네이트-폴리실록산 공중합체는 상업적으로 시판되는 제품을 사용할 수도 있다.
구체예에서, 상기 폴리실록산-폴리카보네이트 공중합체 수지는 (A) 폴리카보네이트 수지 및 (B) 폴리실록산-폴리카보네이트 공중합체 수지를 포함하는 기초 수지(A+B) 100 중량% 중, 약 10 내지 약 30 중량%, 예를 들면 약 15 내지 약 25 중량%로 포함될 수 있다. 상기 범위에서 폴리카보네이트 수지 조성물의 내충격성, 난연성, 내후성 등이 우수할 수 있다.
(C) 실리콘 검
본 발명의 일 구체예에 따른 실리콘 검(gum)은 금속 무기화합물과 함께 폴리카보네이트 수지 조성물의 난연성, 저발열 특성, 저연성, 화염전파 특성 등을 향상시킬 수 있는 것으로서, 하기 화학식 2로 표시되는 폴리실록산 수지를 사용할 수 있다.
[화학식 2]
Figure PCTKR2019004612-appb-I000004
상기 화학식 2에서, R3는 메틸기, 비닐기 또는 수산화기이고, R4는 메틸기 또는 비닐기이며, a 및 b는 몰비로서, 각각 1 내지 99 및 1 내지 99, 예를 들면 10 내지 90 및 10 내지 90일 수 있다.
구체예에서, 상기 실리콘 검은 GPC(gel permeation chromatography)로 측정한 중량평균분자량(Mw)이 약 400,000 내지 약 1,000,000 g/mol, 예를 들면 약 450,000 내지 약 900,000 g/mol일 수 있다. 상기 범위에서 폴리카보네이트 수지 조성물의 난연성, 저발열 특성, 저연성, 화염전파 특성 등이 우수할 수 있다.
구체예에서, 상기 실리콘 검은 25℃에서, 브룩필드 점도계(Brookfield viscometer)로 측정한 점도가 약 10,000 내지 약 60,000 mm2/s(centistoke), 예를 들면 약 30,000 내지 약 50,000 mm2/s일 수 있다. 상기 범위에서 폴리카보네이트 수지 조성물의 난연성, 저발열 특성, 저연성, 화염전파 특성 등이 우수할 수 있다.
구체예에서, 상기 실리콘 검은 상기 폴리카보네이트 수지 약 100 중량부에 대하여, 약 1 내지 약 30 중량부, 예를 들면 약 5 내지 약 20 중량부로 포함될 수 있다. 상기 범위에서 폴리카보네이트 수지 조성물의 난연성, 저발열 특성, 저연성, 화염전파 특성 등이 우수할 수 있다.
(D) 금속 무기화합물
본 발명의 일 구체예에 따른 금속 무기화합물은 실리콘 검과 함께 폴리카보네이트 수지 조성물의 난연성, 저발열 특성, 화염전파 특성, 저연성 등을 향상시킬 수 있는 것으로서, 붕산아연, 붕산아연 수화물, 수산화알루미늄, 수산화마그네슘, 수산화칼슘, 황화아연, 산화아연, 산화티탄, 마그네슘칼슘카보네이트, 탄산마그네슘, 탄산칼슘 및 황산마그네슘 수화물, 이들의 조합 등을 포함할 수 있다. 예를 들면, 붕산아연, 붕산아연 수화물, 이들의 조합 등을 사용할 수 있다.
구체예에서, 상기 금속 무기화합물은 다양한 형태 및 크기를 가질 수 있다. 예를 들면, 상기 금속 무기화합물은 레이저 회절 입도 측정법으로 측정한 평균 입자 크기(D50)가 약 1 내지 약 150 ㎛, 예를 들면, 약 3 내지 약 15 ㎛인 입자 형태일 수 있다.
구체예에서, 상기 금속 무기화합물은 상기 폴리카보네이트 수지 약 100 중량부에 대하여, 약 1 내지 약 20 중량부, 예를 들면 약 5 내지 약 15 중량부로 포함될 수 있다. 상기 범위에서 폴리카보네이트 수지 조성물의 난연성, 저발열 특성, 저연성, 화염전파 특성 등이 우수할 수 있다.
구체예에서, 상기 (C) 실리콘 검 및 (D) 금속 무기화합물의 중량비(C:D)는 약 0.5 : 1 내지 약 1.5 : 1일 수 있다. 상기 범위에서 폴리카보네이트 수지 조성물의 난연성, 저발열 특성, 저연성, 화염전파 특성 등이 더 우수할 수 있다.
(E) 인계 난연제
본 발명의 일 구체예에 따른 인계 난연제로는 난연성 열가소성 수지 조성물에 사용되는 통상의 인계 난연제가 사용될 수 있다. 예를 들면, 적인, 포스페이트(phosphate) 화합물, 포스포네이트(phosphonate) 화합물, 포스피네이트(phosphinate) 화합물, 포스핀옥사이드(phosphine oxide) 화합물, 포스파젠(phosphazene) 화합물, 이들의 금속염 등의 인계 난연제가 사용될 수 있다. 상기 인계 난연제는 단독으로 사용하거나 2종 이상 혼합하여 사용할 수 있다. 구체적으로, 하기 화학식 3으로 표시되는 방향족 인산에스테르계 화합물을 사용할 수 있다.
[화학식 3]
Figure PCTKR2019004612-appb-I000005
상기 화학식 3에서, R1, R2, R4 및 R5는 각각 독립적으로 수소 원자, C6-C20(탄소수 6 내지 20)의 아릴기, 또는 C1-C10의 알킬기가 치환된 C6-C20의 아릴기이고, R3는 C6-C20의 아릴렌기 또는 C1-C10의 알킬기가 치환된 C6-C20의 아릴렌기, 예를 들면, 레조시놀, 하이드로퀴논, 비스페놀-A, 비스페놀-S 등의 디알콜로부터 유도된 것이며, n은 0 내지 4의 정수이다.
구체예에서, 상기 방향족 인산에스테르계 화합물로는, n이 0인 경우, 디페닐포스페이트 등의 디아릴포스페이트, 트리페닐포스페이트, 트리크레실포스페이트, 트리자이레닐포스페이트, 트리(2,6-디메틸페닐)포스페이트, 트리(2,4,6-트리메틸페닐)포스페이트, 트리(2,4-디터셔리부틸페닐)포스페이트, 트리(2,6-디메틸페닐)포스페이트 등을 예시할 수 있고, n이 1인 경우, 비스페놀-A 비스(디페닐포스페이트), 비페놀 비스(디페닐포스페이트), 레조시놀 비스(디페닐포스페이트), 레조시놀 비스[비스(2,6-디메틸페닐)포스페이트], 레조시놀 비스[비스(2,4-디터셔리부틸페닐)포스페이트], 하이드로퀴논 비스[비스(2,6-디메틸페닐)포스페이트], 하이드로퀴논 비스[비스(2,4-디터셔리부틸페닐)포스페이트] 등을 예시할 수 있다. 상기 방향족 인산에스테르계 화합물은 단독 또는 2종 이상의 혼합물의 형태로 적용될 수 있다.
구체예에서, 상기 인계 난연제는 비스페놀-A 비스(디페닐포스페이트) 약 50 내지 약 70 중량%, 예를 들면 약 55 내지 약 65 중량% 및 비페놀 비스(디페닐포스페이트) 약 30 내지 약 50 중량%, 예를 들면 약 35 내지 약 45 중량%를 포함할 수 있다. 상기 범위에서 폴리카보네이트 수지 조성물의 다른 물성의 저하 없이, 난연성 등을 향상시킬 수 있다.
구체예에서, 상기 인계 난연제는 상기 폴리카보네이트 수지 약 100 중량부에 대하여, 약 5 내지 약 30 중량부, 예를 들면 약 10 내지 약 25 중량부로 포함될 수 있다. 상기 범위에서 폴리카보네이트 수지 조성물의 난연성, 저발열 특성 등이 우수할 수 있다.
(F) 무기 충진제
본 발명의 일 구체예에 따른 무기 충진제는 폴리카보네이트 수지 조성물의 연소 시, 가연성의 수지 분해물이 수지 표면으로 방출되는 것을 방지하여 난연성, 저발열 및 저연 특성 등을 향상시키고, 폴리카보네이트 수지 조성물의 강성을 향상시킬 수 있는 것으로서, 통상의 판상 무기 충진제를 포함할 수 있다.
구체예에서, 상기 판상 무기 충진제로는 탈크, 마이카 이들의 조합 등을 사용할 수 있다. 예를 들면, 통상적인 판상형의 탈크를 사용할 수 있다. 상기 판상 무기 충진제의 평균 입자 크기는 약 2 내지 약 10 ㎛, 예를 들면 약 3 내지 약 7 ㎛일 수 있다. 상기 범위에서 폴리카보네이트 수지 조성물의 난연성, 강성, 유동성, 외관 특성 등이 우수할 수 있다.
구체예에서, 상기 무기 충진제는 판상 무기 충진제 외에 규회석, 휘스커, 유리 섬유, 현무암 섬유, 이들의 조합 등의 통상의 침상 무기 충진제를 더 포함할 수 있다. 예를 들면, 규회석 등을 사용할 수 있다.
구체예에서, 상기 침상 무기 충진제 사용 시, 그 함량은 상기 판상 무기 충진제 약 100 중량부에 대하여, 약 10 내지 약 50 중량부, 예를 들면 약 20 내지 약 40 중량부일 수 있다. 상기 범위에서 폴리카보네이트 수지 조성물의 치수 안정성 등이 우수할 수 있다.
구체예에서, 상기 무기 충진제는 상기 폴리카보네이트 수지 약 100 중량부에 대하여, 약 10 내지 약 60 중량부, 예를 들면 약 15 내지 약 55 중량부로 포함될 수 있다. 상기 범위에서 폴리카보네이트 수지 조성물의 난연성, 강성, 치수 안정성 등이 우수할 수 있다.
본 발명의 일 구체예에 따른 폴리카보네이트 수지 조성물은 필요에 따라, 통상적인 첨가제를 더욱 포함할 수 있다. 상기 첨가제로는 적하 방지제, 산화 방지제, 이형제, 활제, 핵제, 대전방지제, 안정제, 안료, 염료, 이들의 혼합물 등을 예시할 수 있다. 상기 첨가제 사용 시, 그 함량은 기초 수지 약 100 중량부에 대하여, 약 0.001 내지 약 10 중량부일 수 있다.
본 발명의 일 구체예에 따른 폴리카보네이트 수지 조성물은 공지의 폴리카보네이트 수지 조성물 제조방법으로 제조할 수 있다. 예를 들면, 상기 구성 성분, 및 필요에 따라, 기타 첨가제를 혼합한 후에, 통상의 이축 압출기를 사용하여, 약 200 내지 약 300℃, 예를 들면 약 250 내지 약 280℃에서 용융 압출하여 펠렛 형태로 제조할 수 있다.
구체예에서, 상기 폴리카보네이트 수지 조성물은 UL-94 vertical test 방법으로 측정한 0.75 mm 두께 시편의 난연도가 V-0 이상일 수 있다.
구체예에서, 상기 폴리카보네이트 수지 조성물은 ISO 5660-1 규격에 따라, 열량 50 kW/m2 조건에서 측정한 100 mm × 100 mm × 2 내지 4 mm 시편의 최대 평균열발열률 MARHE(maximum average rate of heat emission)가 약 50 내지 약 90 kW/m2, 예를 들면 약 55 내지 약 85 kW/m2일 수 있다.
구체예에서, 상기 폴리카보네이트 수지 조성물은 ISO 5658-2 규격에 따라, 열량 50 kW/m2 조건에서 측정한 800 mm × 150 mm × 2 내지 4 mm 시편의 임계 연소 열량 CFE(critical heat flux at extinguishment)가 약 18 내지 약 30 kW/m2, 예를 들면 약 20 내지 약 25 kW/m2일 수 있다.
구체예에서, 상기 폴리카보네이트 수지 조성물은 ISO 5659-2 규격에 따라, 열량 25 kW/m2 조건에서 측정한 75 mm × 75 mm × 2 내지 4 mm 시편의 4분 비광학 밀도 Ds(4)(specific optical density at 4 min)가 약 90 내지 약 300 (a.u.(임의단위)), 예를 들면 약 95 내지 약 250일 수 있다.
구체예에서, 상기 폴리카보네이트 수지 조성물은 ISO 5659-2 규격에 따라, 열량 25 kW/m2 조건에서 측정한 75 mm × 75 mm × 2 내지 4 mm 시편의 4분간의 축적 연기량 VOF(4)(cumulative value of specific optical densities in the fires 4 min of the test)가 약 110 내지 약 600 분, 예를 들면 약 120 내지 약 400 분일 수 있다.
구체예에서, 상기 폴리카보네이트 수지 조성물은 ISO 5659-2 규격에 따라, 열량 25 kW/m2 조건에서 측정한 75 mm × 75 mm × 2 내지 4 mm 시편의 연기 독성 CIT(conventional index of toxicity)가 약 0.005 내지 약 0.9 (a.u.(임의단위)), 예를 들면 약 0.01 내지 약 0.2일 수 있다.
구체예에서, 상기 폴리카보네이트 수지 조성물은 ASTM D256에 의거하여 측정한 3.2 mm 두께 시편의 노치 아이조드 충격강도가 약 2 내지 약 15 kgf·cm/cm, 예를 들면 약 4 내지 약 8 kgf·cm/cm일 수 있다.
본 발명에 따른 성형품은 상기 폴리카보네이트 수지 조성물로부터 형성된다. 예를 들면, 상기 폴리카보네이트 수지 조성물을 이용하여, 사출 성형, 압출 성형, 진공 성형, 캐스팅 성형 등의 다양한 성형 방법을 통해 다양한 성형품(제품)으로 제조할 수 있다. 이러한 성형방법은 본 발명이 속하는 분야의 통상의 지식을 가진 자에 의해 잘 알려져 있다. 상기 성형품은 난연성, 저발열 특성, 저연성 등이 우수하고, 연기 독성이 없으며, 유럽 철도 차량용 화재 안전규격 EN45545-2 R1HL2를 만족하는 것으로서, 자동차 부품이나 철도 차량 부품과 같은 운송용 장비의 내장재 또는 외장재의 소재로 특히 유용하다.
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.
실시예
하기 실시예 및 비교예에서 사용된 각 성분의 사양은 다음과 같다.
(A) 폴리카보네이트 수지
비스페놀-A계 폴리카보네이트 수지(중량평균분자량(Mw): 28,000 g/mol)를 사용하였다.
(B) 폴리실록산-폴리카보네이트 공중합체 수지
폴리디메틸실록산(PDMS) 함량이 20 중량%이고, 유동흐름지수(MI, 300℃, 1.2 kgf, ISO 1133)가 25 g/10분인 폴리실록산-폴리카보네이트 공중합체 수지를 사용하였다.
(C1) 실리콘 검
브룩필드 점도계(Brookfield viscometer)로 측정한 점도가 10,000 내지 25,000 mm2/s인 폴리디메틸실록산(PDMS) 실리콘 검(제조사: Momentive社, 제품명: SE-72)를 사용하였다.
(C2) 실리콘계 코어-쉘 충격보강제
실리콘계 코어-쉘 충격보강제(제조사: MRC社, 제품명: SX-005)를 사용하였다.
(D) 금속 무기화합물
(D1) 붕산아연(무수물)(제조사: Rio Tinto Minerals社, 제품명: Firebrake 500)을 사용하였다.
(D2) 붕산아연 수화물(제조사: Rio Tinto Minerals社, 제품명: Firebrake 415)를 사용하였다.
(E) 난연제
(E1) 인계 난연제로서, 비스페놀-A 비스(디페닐포스페이트)(제조사: DAIHACHI社, 제품명: CR-741)를 사용하였다.
(E2) 인계 난연제로서, 비페놀 비스(디페닐포스페이트)(제조사: ADEKA社, 제품명: FP-900)를 사용하였다.
(E3) 할로겐계 난연제로서, 테트라브로모 비스페놀-A 카보네이트 올리고머(제조사: Great Lakes社, 제품명: BC-58)를 사용하였다.
(F) 무기 충진제
(F1) 탈크(제조사: Imi-Fabi社, 제품명: HTP05L)를 사용하였다.
(F2) 규회석(제조사: Imerys社, 제품명: NYGLOS 4W)를 사용하였다.
실시예 1 내지 4 및 비교예 1 내지 3: 폴리카보네이트 수지 조성물의 제조 및 평가
상기 각 구성 성분을 하기 표 1에 기재된 바와 같은 함량으로 첨가하고, 기타 첨가제로서, 상기 구성 성분 100 중량부에 대하여, 적하 방지제(PTFE, GCC Korea, AD-541) 1 중량부, 산화 방지제(송원산업, SONGNOX-1076 및 미원상사, ALKANOX 240) 0.2 중량부 및 이형제(헨겔, LOXIOL EP-861) 0.3 중량부를 첨가한 후, 압출 온도 280℃에서 압출하여 펠렛을 제조하였다. 압출은 L/D=36, 직경 45 mm인 이축 압출기를 사용하였으며, 제조된 펠렛은 80℃에서 4시간 이상 건조 후, 120톤 사출기(사출 온도 280℃, 금형 온도: 80℃)에서 사출하여 시편을 제조하였다. 제조된 시편에 대하여 하기의 방법으로 물성을 평가하고, 그 결과를 하기 표 1에 나타내었다.
물성 측정 방법
(1) 난연도: UL-94 vertical test 방법으로 측정한 0.75 mm 두께 시편의 난연도를 측정하였다.
(2) MARHE(단위: kW/m2): ISO 5660-1 규격(콘칼로리미터법)에 의거하여, 열량 50 kW/m2 조건에서, 100 mm × 100 mm × 2, 3 및 4 mm 시편의 최대 평균열발열률 MARHE를 측정하였다.
(3) CFE(단위: kW/m2): ISO 5658-2 규격(측면화염전파법)에 의거하여, 열량 50 kW/m2 조건에서, 800 mm × 150 mm × 2, 3 및 4 mm 시편의 임계 연소 열량 CFE를 측정하였다.
(4) Ds(4)(단위: 없음): ISO 5659-2 규격에 의거하여, 연기 밀도 챔버에서 열량 25 kW/m2 조건으로 75 mm × 75 mm × 2, 3 및 4 mm 시편의 4분 비광학 밀도 Ds(4)를 측정하였다.
Ds(4) = (V/A × L) log(100/T)
(V: 시험 챔버의 부피, A: 시험 표본의 노출 면적, L: 광빔(light beam)의 길이, T: 4분에서의 빛의 상대적 투과도(%))
(5) VOF(4)(단위: 분): ISO 5659-2 규격에 의거하여, 연기 밀도 챔버에서 열량 25 kW/m2 조건으로 75 mm × 75 mm × 2, 3 및 4 mm 시편의 4분간의 축적 연기량 VOF(4)를 측정하였다.
VOF(4) = [(Ds(1) + Ds(2) + Ds(3) + Ds(4))/2] × 1 분
(6) CIT(단위: 없음): ISO 5659-2 규격에 의거하여, 연기 밀도 챔버에서 열량 25 kW/m2 조건으로 75 mm × 75 mm × 2, 3 및 4 mm 시편의 연기 독성 CIT 를 측정하였다.
(7) 노치 아이조드 충격 강도(단위: kgf·cm/cm): ASTM D256에 규정된 평가방법에 의거하여, 3.2 mm 두께 시편의 노치 아이조드 충격 강도를 측정하였다.
(8) 유동흐름지수(MI, 단위: g/10분): ASTM D1238에 의거하여, 300℃, 1.2 kgf 조건에서, 유동흐름지수를 측정하였다.
(9) 비캣연화온도(VST, 단위: ℃): ISO 306/B50에 의거하여, 하중 50 N, 승온 속도 120℃/hr 조건에서, 비캣연화온도(VST)를 측정하였다.
실시예 비교예
1 2 3 4 1 2 3 4
(A) (중량%) 80 78 80 78 100 80 80 80
(B) (중량%) 20 22 20 22 - 20 20 20
(C1) (중량부) 8.5 9.3 8.5 9.3 8.5 - 8.5 8.5
(C2) (중량부) - - - - - 8.5 - -
(D)(중량부) (D1) 8.5 9.3 - - 8.5 8.5 - 8.5
(D2) - - 8.5 9.3 - - - -
(E)(중량부) (E1) 10.2 11.1 10.2 11.1 10.2 10.2 10.2 -
(E2) 5.9 6.5 5.9 6.5 5.9 5.9 5.9 -
(E3) - - - - - - - 16.1
(F)(중량부) (F1) 33.9 46.3 33.9 27.8 33.9 33.9 33.9 33.9
(F2) - - - 18.5 - - - -
난연도 V-0 V-0 V-0 V-0 V-0 V-0 V-0 V-0
MARHE 2 mm 75 70 85 80 95 101 142 91
3 mm 70 67 81 78 102 115 158 104
4 mm 68 55 82 81 111 121 174 113
CFE 2 mm 22 24 21 21 14 15 11 18
3 mm 21 23 20 21 13 14 10 16
4 mm 21 22 20 21 12 11 8 17
Ds(4) 2 mm 200 185 235 220 310 295 450 1,150
3 mm 189 126 220 195 290 273 420 1,420
4 mm 175 95 207 180 210 205 395 1,650
VOF(4) 2 mm 410 378 440 400 480 445 581 1,850
3 mm 198 158 201 189 330 295 450 2,120
4 mm 167 127 178 170 210 201 387 2,250
CIT 2 mm 0.02 0.01 0.03 0.03 0.03 0.05 0.15 3.5
3 mm 0.02 0.01 0.02 0.02 0.02 0.1 0.14 4.1
4 mm 0.02 0.01 0.02 0.02 0.03 0.12 0.18 5.5
노치 아이조드 충격 강도 6 5 5 5 3 5 6 8
MI 35 30 32 35 35 28 41 15
VST 102 98 102 102 103 102 101 125
* 중량부: 기초 수지(A+B) 100 중량부에 대한 중량부
상기 결과로부터, 본 발명에 따른 폴리카보네이트 수지 조성물은 난연성(난연도), 화염전파 특성(CFE), 저발열 특성(MARHE), 저연성(DS(4), VOF(4)), 연기 무독성(CIT) 등이 모두 우수함을 알 수 있다.
반면, 폴리실록산-폴리카보네이트 공중합체 수지(B)를 사용하지 않을 경우(비교예 1), 저발열 특성(MARHE), 화염전파 특성(CFE) 등이 저하됨을 알 수 있고, 본 발명의 실리콘 검(C1) 대신에 실리콘계 코어-쉘 충격보강제(C2)를 사용할 경우(비교예 2), 저발열 특성(MARHE), 화염전파 특성(CFE) 등이 저하됨을 알 수 있고, 금속 무기화합물(D)을 적용하지 않을 경우(비교예 3), 저발열 특성(MARHE), 화염전파 특성(CFE) 등이 저하됨을 알 수 있으며, 인계 난연제(E1, E2) 대신에 할로겐계 난연제(E3)를 사용할 경우(비교예 4), 저발열 특성(MARHE), 화염전파 특성(CFE), 4분 비광학 밀도(Ds(4), 4분간의 연기축적량(VOF(4)) 및 연기 독성(CIT) 등이 저하됨을 알 수 있다.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.

Claims (15)

  1. 폴리카보네이트 수지;
    폴리실록산-폴리카보네이트 공중합체 수지;
    실리콘 검(gum);
    금속 무기화합물;
    인계 난연제; 및
    무기 충진제;를 포함하는 것을 특징으로 하는 폴리카보네이트 수지 조성물.
  2. 제1항에 있어서, 상기 폴리카보네이트 수지 조성물은 상기 폴리카보네이트 수지 약 70 내지 약 90 중량% 및 상기 폴리실록산-폴리카보네이트 공중합체 수지 약 10 내지 약 30 중량%를 포함하는 기초 수지 약 100 중량부; 상기 실리콘 검 약 1 내지 약 30 중량부; 상기 금속 무기화합물 약 1 내지 약 20 중량부; 상기 인계 난연제 약 5 내지 약 30 중량부; 및 상기 무기 충진제 약 10 내지 약 60 중량부;를 포함하는 것을 특징으로 하는 폴리카보네이트 수지 조성물.
  3. 제1항 또는 제2항에 있어서, 상기 실리콘 검 및 금속 무기화합물의 중량비(실리콘 검:금속 무기화합물)는 약 0.5 : 1 내지 약 1.5 : 1인 것을 특징으로 하는 폴리카보네이트 수지 조성물.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 폴리실록산-폴리카보네이트 공중합체 수지는 하기 화학식 1로 표시되는 실록산 화합물, 방향족 디히드록시 화합물 및 카보네이트 전구체를 반응시켜 제조한 것을 특징으로 하는 폴리카보네이트 수지 조성물:
    [화학식 1]
    Figure PCTKR2019004612-appb-I000006
    상기 화학식 1에서, R1 및 R2는 각각 독립적으로 C1-C10의 알킬기, C6-C18의 아릴기, 또는 할로겐 원자 또는 알콕시기를 갖는 C1-C10의 알킬기 또는 C6-C18의 아릴기이고, A는 각각 독립적으로 치환 또는 비치환된 C2-C20의 탄화수소기, 또는 -O- 또는 -S-를 갖는 치환 또는 비치환된 C2-C20의 탄화수소기이고, Y는 각각 독립적으로 수소 원자, 할로겐 원자, C1-C18의 할로겐화 알킬기, 시아노기(-CN), 또는 에스테르기이며, m은 약 2 내지 약 1,000이다.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서, 상기 실리콘 검은 하기 화학식 2로 표시되는 폴리실록산 수지이며, 중량평균분자량이 약 400,000 내지 약 1,000,000 g/mol이고, 25℃에서, 브룩필드 점도계로 측정한 점도가 10,000 mm2/s 에서 60,000 mm2/s인 것을 특징으로 하는 폴리카보네이트 수지 조성물:
    [화학식 2]
    Figure PCTKR2019004612-appb-I000007
    상기 화학식 2에서, R3는 메틸기, 비닐기 또는 수산화기이고, R4는 메틸기 또는 비닐기이며, a 및 b는 몰비로서, 각각 1 내지 99 및 1 내지 99이다.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서, 상기 금속 무기화합물은 붕산아연, 붕산아연 수화물, 수산화알루미늄, 수산화마그네슘, 수산화칼슘, 황화아연, 산화아연, 산화티탄, 마그네슘칼슘카보네이트, 탄산마그네슘, 탄산칼슘 및 황산마그네슘 수화물 중 1종 이상을 포함하는 것을 특징으로 하는 폴리카보네이트 수지 조성물.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서, 상기 인계 난연제는 비스페놀-A 비스(디페닐포스페이트) 약 50 내지 약 70 중량% 및 비페놀 비스(디페닐포스페이트) 약 30 내지 약 50 중량%를 포함하는 것을 특징으로 하는 폴리카보네이트 수지 조성물.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서, 상기 무기 충진제는 판상 무기 충진제를 포함하는 것을 특징으로 하는 폴리카보네이트 수지 조성물.
  9. 제1항 내지 제8항 중 어느 한 항에 있어서, 상기 폴리카보네이트 수지 조성물은 UL-94 vertical test 방법으로 측정한 0.75 mm 두께 시편의 난연도가 V-0 이상인 것을 특징으로 하는 폴리카보네이트 수지 조성물.
  10. 제1항 내지 제9항 중 어느 한 항에 있어서, 상기 폴리카보네이트 수지 조성물은 ISO 5660-1 규격에 따라, 열량 50 kW/m2 조건에서 측정한 100 mm × 100 mm × 2 내지 4 mm 시편의 최대 평균열발열률 MARHE가 약 50 내지 약 90 kW/m2인 것을 특징으로 하는 폴리카보네이트 수지 조성물.
  11. 제1항 내지 제10항 중 어느 한 항에 있어서, 상기 폴리카보네이트 수지 조성물은 ISO 5658-2 규격에 따라, 열량 50 kW/m2 조건에서 측정한 800 mm × 150 mm × 2 내지 4 mm 시편의 임계 연소 열량 CFE가 약 18 내지 약 30 kW/m2인 것을 특징으로 하는 폴리카보네이트 수지 조성물.
  12. 제1항 내지 제11항 중 어느 한 항에 있어서, 상기 폴리카보네이트 수지 조성물은 ISO 5659-2 규격에 따라, 열량 25 kW/m2 조건에서 측정한 75 mm × 75 mm × 2 내지 4 mm 시편의 4분 비광학 밀도 Ds(4)가 약 90 내지 약 300인 것을 특징으로 하는 폴리카보네이트 수지 조성물.
  13. 제1항 내지 제12항 중 어느 한 항에 있어서, 상기 폴리카보네이트 수지 조성물은 ISO 5659-2 규격에 따라, 열량 25 kW/m2 조건에서 측정한 75 mm × 75 mm × 2 내지 4 mm 시편의 4분간의 축적 연기량 VOF(4)가 약 110 내지 약 600 분인 것을 특징으로 하는 폴리카보네이트 수지 조성물.
  14. 제1항 내지 제13항 중 어느 한 항에 있어서, 상기 폴리카보네이트 수지 조성물은 ISO 5659-2 규격에 따라, 열량 25 kW/m2 조건에서 측정한 75 mm × 75 mm × 2 내지 4 mm 시편의 연기 독성 CIT가 약 0.005 내지 약 0.9인 것을 특징으로 하는 폴리카보네이트 수지 조성물.
  15. 제1항 내지 제14항 중 어느 한 항에 따른 폴리카보네이트 수지 조성물로부터 형성된 성형품.
PCT/KR2019/004612 2018-04-30 2019-04-17 폴리카보네이트 수지 조성물 및 이로부터 형성된 성형품 WO2019212171A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19796703.7A EP3778774B1 (en) 2018-04-30 2019-04-17 Polycarbonate resin composition and molded article formed therefrom
CN201980029077.2A CN112041394B (zh) 2018-04-30 2019-04-17 聚碳酸酯树脂组合物及由其形成的模制品
US17/046,869 US20210047513A1 (en) 2018-04-30 2019-04-17 Polycarbonate Resin Composition and Molded Article Formed Therefrom

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180049555A KR102172545B1 (ko) 2018-04-30 2018-04-30 폴리카보네이트 수지 조성물 및 이로부터 형성된 성형품
KR10-2018-0049555 2018-04-30

Publications (1)

Publication Number Publication Date
WO2019212171A1 true WO2019212171A1 (ko) 2019-11-07

Family

ID=68386617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/004612 WO2019212171A1 (ko) 2018-04-30 2019-04-17 폴리카보네이트 수지 조성물 및 이로부터 형성된 성형품

Country Status (5)

Country Link
US (1) US20210047513A1 (ko)
EP (1) EP3778774B1 (ko)
KR (1) KR102172545B1 (ko)
CN (1) CN112041394B (ko)
WO (1) WO2019212171A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210067222A (ko) * 2019-11-29 2021-06-08 롯데케미칼 주식회사 열가소성 수지 조성물 및 이로부터 제조된 성형품
KR102263546B1 (ko) * 2019-12-31 2021-06-11 주식회사 삼양사 내충격성 및 난연성이 우수한 수송수단용 열가소성 수지 조성물 및 이를 포함하는 성형품
KR102482344B1 (ko) 2020-10-15 2023-01-13 주식회사 이케이씨 폴리카보네이트 수지 조성물 및 이로부터 제조되는 성형품
KR20230101487A (ko) * 2021-12-29 2023-07-06 롯데케미칼 주식회사 열가소성 수지 조성물 및 이를 이용한 성형품
CN118510828A (zh) * 2022-01-07 2024-08-16 高新特殊工程塑料全球技术有限公司 聚碳酸酯共聚物组合物
WO2023228123A1 (en) * 2022-05-25 2023-11-30 Shpp Global Technologies B.V. Anti-drip polycarbonate compositions
KR20240079356A (ko) * 2022-11-29 2024-06-05 롯데케미칼 주식회사 재생 열가소성 수지 조성물 및 이로부터 제조된 성형품

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000060307A (ko) * 1999-03-13 2000-10-16 권문구 무독성 열가소성 난연 수지 조성물 및 이것을 이용한 전선
KR20120078559A (ko) 2010-12-30 2012-07-10 제일모직주식회사 폴리카보네이트 수지 조성물 및 이를 포함하는 성형품
KR20140075517A (ko) * 2012-12-11 2014-06-19 제일모직주식회사 내광성 및 난연성이 우수한 폴리카보네이트 수지 조성물
KR20150013758A (ko) * 2012-05-24 2015-02-05 사빅 글로벌 테크놀러지스 비.브이. 난연성 폴리카보네이트 조성물, 이의 제조방법 및 이를 포함하는 물품
KR20160079786A (ko) * 2013-11-01 2016-07-06 사빅 글로벌 테크놀러지스 비.브이. 보강된 난연제 폴리카보네이트 조성물 및 이를 포함하는 성형 물품
US20170037245A1 (en) * 2014-04-30 2017-02-09 Sabic Global Technologies B.V. Polycarbonate composition
WO2017042271A1 (en) * 2015-09-09 2017-03-16 Dow Corning Corporation Flame retardant resin composition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140234629A1 (en) * 2011-11-08 2014-08-21 Sabic Innovative Plastics Ip B.V. High heat polycarbonate and siloxane copolycarbonate blends that provide ductile high heat options for flame retardant applications
EP2881433B1 (en) * 2012-07-30 2018-10-24 Toray Industries, Inc. Flame-retardant thermoplastic polyester resin composition and molded article
JP5951473B2 (ja) * 2012-12-27 2016-07-13 株式会社フジクラ 難燃性樹脂組成物、及び、これを用いたケーブル
TWI515108B (zh) * 2013-02-21 2016-01-01 薩比克全球科技公司 聚合型板、彼之製造和使用方法、及含該聚合型板的物件
US10196517B2 (en) * 2013-05-01 2019-02-05 Sabic Global Technologies B.V. Interior train components having low smoke and low heat release, and methods of their manufacture

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000060307A (ko) * 1999-03-13 2000-10-16 권문구 무독성 열가소성 난연 수지 조성물 및 이것을 이용한 전선
KR20120078559A (ko) 2010-12-30 2012-07-10 제일모직주식회사 폴리카보네이트 수지 조성물 및 이를 포함하는 성형품
KR20150013758A (ko) * 2012-05-24 2015-02-05 사빅 글로벌 테크놀러지스 비.브이. 난연성 폴리카보네이트 조성물, 이의 제조방법 및 이를 포함하는 물품
KR20140075517A (ko) * 2012-12-11 2014-06-19 제일모직주식회사 내광성 및 난연성이 우수한 폴리카보네이트 수지 조성물
KR20160079786A (ko) * 2013-11-01 2016-07-06 사빅 글로벌 테크놀러지스 비.브이. 보강된 난연제 폴리카보네이트 조성물 및 이를 포함하는 성형 물품
US20170037245A1 (en) * 2014-04-30 2017-02-09 Sabic Global Technologies B.V. Polycarbonate composition
WO2017042271A1 (en) * 2015-09-09 2017-03-16 Dow Corning Corporation Flame retardant resin composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3778774A4

Also Published As

Publication number Publication date
KR20190125583A (ko) 2019-11-07
EP3778774B1 (en) 2024-09-04
EP3778774A1 (en) 2021-02-17
KR102172545B1 (ko) 2020-11-02
EP3778774A4 (en) 2021-12-15
US20210047513A1 (en) 2021-02-18
CN112041394A (zh) 2020-12-04
CN112041394B (zh) 2023-02-28

Similar Documents

Publication Publication Date Title
WO2019212171A1 (ko) 폴리카보네이트 수지 조성물 및 이로부터 형성된 성형품
KR100767428B1 (ko) 내스크래치성을 갖는 난연성 열가소성 수지 조성물
KR102018711B1 (ko) 수지 조성물 및 이로부터 제조된 성형품
KR102114537B1 (ko) 난연성 열가소성 수지 조성물 및 이를 포함하는 성형품
WO2014092412A1 (ko) 내광성 및 난연성이 우수한 폴리카보네이트 수지 조성물 및 이를 포함하는 성형품
KR100914666B1 (ko) 난연성 내스크래치 폴리카보네이트 수지 조성물
WO2018070631A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
KR101256262B1 (ko) 난연성 열가소성 수지 조성물 및 이를 이용한 성형품
WO2018124790A2 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
KR101240320B1 (ko) 투명성과 난연성이 우수한 폴리카보네이트 수지 조성물
KR102063375B1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
US20220372280A1 (en) Flame retardant polycarbonate compositions and thin-wall articles made therefrom
WO2016195312A1 (ko) 폴리카보네이트 수지 및 이의 제조방법
WO2021107487A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
KR20030008811A (ko) 난연성 열가소성 수지 조성물
WO2019132591A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2016052821A1 (ko) 난연성 열가소성 수지 조성물 및 이를 포함하는 성형품
WO2013081236A1 (ko) 폴리카보네이트계 수지 조성물
WO2017057905A1 (ko) 폴리카보네이트 수지 조성물 및 이로부터 형성된 성형품
JP2003049060A (ja) 難燃性ポリカーボネート系樹脂組成物
KR100974015B1 (ko) 비할로겐 난연성 폴리카보네이트 수지 조성물 및 플라스틱 성형품
WO2023085680A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2019132586A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2019124787A1 (ko) 폴리카보네이트 공중합체, 이를 포함하는 열가소성 수지 조성물 및 이로부터 제조된 성형품
JP2001354845A (ja) 難燃性ポリカーボネート系樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19796703

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 19796703.7

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019796703

Country of ref document: EP

Effective date: 20201102