WO2016052821A1 - 난연성 열가소성 수지 조성물 및 이를 포함하는 성형품 - Google Patents
난연성 열가소성 수지 조성물 및 이를 포함하는 성형품 Download PDFInfo
- Publication number
- WO2016052821A1 WO2016052821A1 PCT/KR2015/001582 KR2015001582W WO2016052821A1 WO 2016052821 A1 WO2016052821 A1 WO 2016052821A1 KR 2015001582 W KR2015001582 W KR 2015001582W WO 2016052821 A1 WO2016052821 A1 WO 2016052821A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aromatic vinyl
- resin composition
- thermoplastic resin
- weight
- group
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L69/00—Compositions of polycarbonates; Compositions of derivatives of polycarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/32—Phosphorus-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/49—Phosphorus-containing compounds
- C08K5/51—Phosphorus bound to oxygen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/49—Phosphorus-containing compounds
- C08K5/5399—Phosphorus bound to nitrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L51/00—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
- C08L51/04—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C2/00—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
- E04C2/02—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
- E04C2/10—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products
- E04C2/20—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products of plastics
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2300/00—Characterised by the use of unspecified polymers
- C08J2300/22—Thermoplastic resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/004—Additives being defined by their length
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/02—Flame or fire retardant/resistant
Definitions
- the present invention relates to a flame retardant thermoplastic resin composition and a molded article comprising the same. More specifically, the present invention relates to a flame retardant thermoplastic resin composition having a flame retardancy of UL94 flame retardancy of 5 VB grade and excellent in heat resistance, impact resistance, fluidity, balance of physical properties, and the like, and a molded article including the same.
- Polycarbonate resin is an engineering plastic excellent in mechanical strength, heat resistance, transparency, and the like.
- the polycarbonate resin is used in various fields such as office automation devices, electrical / electronic parts, building materials, and the like.
- a rubber-modified aromatic vinyl copolymer resin such as acrylonitrile-butadiene-styrene (ABS) is mixed with the polycarbonate resin, processability, chemical resistance, etc., without deterioration of impact resistance, heat resistance, etc. of the polycarbonate resin Can be improved.
- ABS acrylonitrile-butadiene-styrene
- the blend of the polycarbonate resin and the rubber-modified aromatic vinyl copolymer resin as the thermoplastic resin can obtain excellent physical properties compared to the rubber-modified aromatic vinyl copolymer resin, and has a cost down compared to the polycarbonate resin. As it is possible, it is utilized for various purposes.
- PC / ABS alloy As the resin composition (blend) comprising such a polycarbonate resin and a rubber-modified aromatic vinyl copolymer resin, PC / ABS alloy is typical (US Patent No. 3,130, 177, etc.).
- the PC / ABS alloy is a blend of polycarbonate resin and ABS resin, and is used for interior / exterior materials such as electrical / electronic products requiring high gloss, high flow, and high impact.
- a reinforcing material thermoplastic resin composition in which the PC / ABS is reinforced with an inorganic filler, a flame retardant, or the like has been developed.
- thermoplastic resin improves mechanical properties such as tensile strength, flexural strength, flexural modulus, etc. of the resin due to the inherent properties of the inorganic filler, and exhibits excellent heat resistance to continuously load. Suitable for parts that must withstand or endure heat.
- a flame retardant it is widely used for interior and exterior materials of automotive, electrical, electronic products that require flame retardancy, impact resistance, mechanical properties and the like.
- the inorganic filler is generally incompatible with the thermoplastic resin and adhesiveness, when added to the resin composition, there is a fear that the impact resistance, moldability and the like greatly reduced.
- thermoplastic resin composition including the polycarbonate resin and the rubber-modified aromatic vinyl copolymer resin, high impact, high flow rate, thin film flame retardant properties, etc. This is a required situation.
- thermoplastic resin composition having UL94 flame retardancy (test thickness: about 1.5 to about 3.0 mm) of 5 VB and having excellent heat resistance, impact resistance, flowability, balance of physical properties, and the like.
- An object of the present invention is to provide a flame retardant thermoplastic resin composition having a flame retardancy of UL94 flame retardancy of 5VB grade, excellent in heat resistance, impact resistance, flowability, balance of physical properties, and the like and a molded article comprising the same.
- Another object of the present invention is to provide an environment-friendly flame retardant thermoplastic resin composition and a molded article including the same without using a halogen-based flame retardant.
- thermoplastic resin composition may include a base resin including a polycarbonate resin and a rubber-modified aromatic vinyl copolymer resin; Phosphorus flame retardants including phosphoric acid compounds and phosphazene compounds; And wollastonite, wherein the content of the phosphate compound is about 1 to about 20 parts by weight based on about 100 parts by weight of the base resin, and the weight ratio of the phosphate compound and the phosphazene compound is about 5: about 1 to about 20: about 1, wherein the weight ratio of the phosphate compound and the wollastonite is about 4: about 1 to about 20: about 1.
- the rubber-modified aromatic vinyl copolymer resin is about 10 to about 100% by weight of the graft copolymer resin graft copolymerized with an aromatic vinyl monomer and a monomer copolymerizable with the aromatic vinyl monomer in a rubbery polymer; And about 0 to about 90 wt% of an aromatic vinyl copolymer resin in which an aromatic vinyl monomer and a monomer copolymerizable with the aromatic vinyl monomer are copolymerized.
- the phosphate compound may be represented by the following Formula 1:
- R 1 and R 4 are each independently a hydrogen atom, an aryl group of C6-C20, or a C6-C20 aryl group substituted with an alkyl group of C1-C10
- R 2 and R 5 are each independently A hydrogen atom, a hydroxy group, a C6-C20 aryl group or an aryloxy group, or a C1-C10 alkyl group substituted with a C6-C20 aryl group or an aryloxy group
- R 3 is a C6-C20 arylene group
- the average value of m Is from about 0 to about 4.
- the phosphazene compound may be represented by the following Formula 2:
- R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 and R 15 are each independently an alkyl group of C1-C6, an aryl group of C6-C20 , C6-C20 aryl group substituted with C1-C6 alkyl group, C6-C20 aralkyl group, C1-C6 alkoxy group, C6-C20 aryloxy group, amino group or hydroxy group, R 16 is C6-C30 An arylene group or a C6-C30 arylene group substituted with an alkyl group of C1-C6, a and b are integers from 0 to 10, and the average value of n is from about 0.3 to about 3.
- the wollastonite may have an average longitudinal length (diameter) of about 5 to about 1,000 ⁇ m, and an aspect ratio (length: width) of about 1: about 3 to about 1: about 15.
- the content of the polycarbonate resin may be about 50 to about 99% by weight of the total base resin
- the content of the rubber-modified aromatic vinyl copolymer resin may be about 1 to about 50% by weight of the total base resin.
- the thermoplastic resin composition may have a flame retardancy of 5 VB, measured according to UL94 standards, for a specimen of about 1.5 to about 3.0 mm thick.
- the thermoplastic resin composition has an Izod impact strength of about 1/8 "thick specimen measured according to ASTM D256 of about 10 to about 70 kgfcm / cm, and a heat deflection temperature measured according to ASTM D648. (HDT) is from about 70 to about 120 ° C and the melt index (MI) measured at about 220 ° C and about 10 kgf conditions in accordance with ASTM D1238 may be about 5 to about 60 g / 10 minutes.
- Another aspect of the present invention relates to a molded article formed from the thermoplastic resin composition.
- the molded article may be a thin film sheath having a thickness of about 1.0 to about 3.0 mm.
- the present invention has a UL94 flame retardancy (test thickness: about 1.5 to about 3.0 mm) of 5 VB flame retardancy, excellent heat resistance, impact resistance, flowability, balance of physical properties, etc., and does not use a halogen flame retardant, eco-friendly flame retardancy Has the effect of the invention to provide a thermoplastic resin composition and a molded article comprising the same.
- 1 is a schematic view for showing the longitudinal (a) and transverse (b) of the wollastonite according to an embodiment of the present invention.
- thermoplastic resin composition according to the present invention comprises (A) a base resin, (B1) a phosphate compound and (B2) a phosphazene compound, including (A1) a polycarbonate resin and (A2) a rubber-modified aromatic vinyl copolymer resin. (B) phosphorus-based flame retardant; And (C) wollastonite.
- a normal thermoplastic polycarbonate resin can be used without limitation.
- aromatic polycarbonate resins prepared by reacting one or more diphenols (aromatic dihydroxy compounds) with carbonate precursors such as phosgene, halogen formate, and carbonic acid diesters can be used.
- the diphenols include 4,4'-biphenol, 2,2-bis (4-hydroxyphenyl) propane, 2,4-bis (4-hydroxyphenyl) -2-methylbutane, 1 , 1-bis (4-hydroxyphenyl) cyclohexane, 2,2-bis (3-chloro-4-hydroxyphenyl) propane, 2,2-bis (3,5-dichloro-4-hydroxyphenyl) Propane, mixtures thereof, and the like can be exemplified, but is not limited thereto.
- 2, 2-bis (4-hydroxyphenyl) propane, 2, 2-bis (3, 5- dichloro-4- hydroxyphenyl) propane, 1, 1-bis (4) -Hydroxyphenyl) cyclohexane and the like, and specifically, 2,2-bis (4-hydroxyphenyl) propane, also called bisphenol-A, can be used.
- the polycarbonate resin may be a branched chain, for example, about 0.05 to about 2 mol% of a trivalent or more polyfunctional compound, for example, 3 based on the total diphenols used for polymerization It may also be prepared by adding a compound having a phenol group or more.
- the polycarbonate resin may be used in the form of a homo polycarbonate resin, copolycarbonate resin or blends thereof.
- the polycarbonate resin may be partially or entirely replaced with an aromatic polyester-carbonate resin obtained by polymerization in the presence of an ester precursor, such as a bifunctional carboxylic acid.
- the weight average molecular weight (Mw) of the polycarbonate resin may be about 10,000 to about 50,000 g / mol, for example, about 15,000 to about 40,000 g / mol, but is not limited thereto.
- the polycarbonate resin may be included in about 50 wt% to about 99 wt%, such as about 60 wt% to about 85 wt%, in about 100 wt% of the total base resin.
- Impact resistance, mechanical properties and the like of the thermoplastic resin composition may be excellent in the above range.
- the rubber-modified aromatic vinyl copolymer resin used in the present invention is about 10 to about 100 weights of graft copolymer resin in which a rubber polymer is grafted with an aromatic vinyl monomer and a monomer copolymerizable with the aromatic vinyl monomer. %; And about 0 wt% to about 90 wt% of the (a2) aromatic vinyl copolymer resin copolymerized with the aromatic vinyl monomer and the monomer copolymerizable with the aromatic vinyl monomer.
- the rubber-modified aromatic vinyl copolymer resin of the present invention may be a graft copolymer resin (a1) alone or a mixture of graft copolymer resin (a1) and aromatic vinyl copolymer resin (a2). Can be.
- the graft copolymer resin (a1) may be polymerized by adding an aromatic vinyl monomer, a monomer copolymerizable with the aromatic vinyl monomer, and the like to a rubbery polymer
- the aromatic vinyl copolymer resin (a2) May be polymerized by adding an aromatic vinyl monomer, a monomer copolymerizable with the aromatic vinyl monomer, and the like.
- the polymerization may be carried out by a known polymerization method such as emulsion polymerization, suspension polymerization, block polymerization.
- the rubber (rubber polymer) content in the final rubber modified aromatic vinyl copolymer resin component is preferably about 5 to about 50% by weight.
- the particle size of the rubber may be about 0.05 to about 6.0 ⁇ m in Z-average. It is excellent in physical properties such as impact resistance in the above range.
- the graft copolymer resin may be obtained by graft copolymerizing an aromatic vinyl monomer and a monomer copolymerizable with the aromatic vinyl monomer to a rubbery polymer, and may further include a monomer that provides workability and heat resistance, if necessary. .
- the rubbery polymer examples include diene rubbers such as polybutadiene, poly (styrene-butadiene), poly (acrylonitrile-butadiene), saturated rubbers hydrogenated to the diene rubber, isoprene rubber, polybutylacrylic acid, and the like.
- Diene rubbers such as polybutadiene, poly (styrene-butadiene), poly (acrylonitrile-butadiene), saturated rubbers hydrogenated to the diene rubber, isoprene rubber, polybutylacrylic acid, and the like.
- Acrylic rubber, ethylene-propylene-diene monomer terpolymer (EPDM), etc. can be illustrated.
- EPDM ethylene-propylene-diene monomer terpolymer
- a diene rubber can be used and specifically, a butadiene rubber can be used.
- the content of the rubbery polymer may be about 5 to about 65% by weight, for example about 10 to about 60% by weight,
- the average particle size (Z-average) of the rubbery polymer (rubber particles) may be about 0.05 to about 6 ⁇ m, for example about 0.15 to about 4 ⁇ m, specifically about 0.25 to about 3.5 ⁇ m. Impact strength and appearance can be excellent in the above range.
- the aromatic vinyl monomer may be graft copolymerized to the rubbery copolymer, for example, styrene, ⁇ -methylstyrene, ⁇ -methylstyrene, p-methylstyrene, pt-butylstyrene, ethyl styrene, vinyl xylene , Monochlorostyrene, dichlorostyrene, dibromostyrene, vinyl naphthalene and the like can be used, but is not limited thereto. Specifically, styrene can be used.
- the content of the aromatic vinyl monomer may be about 15 to about 94% by weight, for example about 20 to about 80% by weight, specifically about 30 to about 60% by weight, based on the total weight of the graft copolymer resin (a1). . It is possible to obtain a good balance of physical properties of the impact strength and mechanical properties in the above range.
- the monomer copolymerizable with the aromatic vinyl monomer for example, vinyl cyanide compounds such as acrylonitrile, unsaturated nitrile compounds such as ethacrylonitrile, methacrylonitrile, and the like can be used. It can mix and use the above.
- the content of the monomer copolymerizable with the aromatic vinyl monomer may be about 1 to about 50% by weight, for example, about 5 to about 45% by weight, specifically about 10 to about 30% by weight, based on the total weight of the graft copolymer resin. have. It is possible to obtain a good balance of physical properties of the impact strength and mechanical properties in the above range.
- Examples of the monomer for imparting processability and heat resistance may include, but are not limited to, acrylic acid, methacrylic acid, maleic anhydride, N-substituted maleimide, and the like.
- the content of the monomer for imparting processability and heat resistance may be about 0 to about 15 wt%, for example, about 0.1 to about 10 wt% of the total weight of the graft copolymer resin. Specifically, it may not be included (0 wt%) or may be 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 wt%. In the above range, workability and heat resistance can be imparted without deterioration of other physical properties.
- the aromatic vinyl copolymer resin used in the present invention may be prepared using a monomer mixture excluding rubber (rubber polymer) among the components of the graft copolymer resin (a1), and the ratio of the monomer may vary depending on compatibility and the like. Can be.
- the aromatic vinyl copolymer resin may be obtained by copolymerizing a monomer copolymerizable with the aromatic vinyl monomer and the aromatic vinyl monomer.
- aromatic vinyl monomers examples include styrene, ⁇ -methylstyrene, ⁇ -methylstyrene, p-methylstyrene, pt-butylstyrene, ethyl styrene, vinyl xylene, monochlorostyrene, dichlorostyrene and dibromo.
- Styrene, vinyl naphthalene, etc. may be used, but is not limited thereto. Specifically, styrene can be used.
- vinyl cyanide compounds such as acrylonitrile, unsaturated nitrile compounds such as ethacrylonitrile and methacrylonitrile, and the like can be used. It can mix and use 2 or more types.
- the aromatic vinyl copolymer resin may further include a monomer to impart the processability and heat resistance, if necessary.
- a monomer to impart the processability and heat resistance may include, but are not limited to, acrylic acid, methacrylic acid, maleic anhydride, N-substituted maleimide, and the like.
- the content of the aromatic vinyl monomer is about 50 to about 95% by weight of the total weight of the aromatic vinyl copolymer resin, for example, about 60 to about 90% by weight, specifically about 70 To about 80 weight percent. It is possible to obtain a good balance of physical properties of the impact strength and mechanical properties in the above range.
- the content of the monomer copolymerizable with the aromatic vinyl monomer may be about 5 to about 50% by weight, for example, about 10 to about 40% by weight, specifically about 20 to about 30% by weight, based on the total weight of the aromatic vinyl copolymer resin. Can be. It is possible to obtain a good balance of physical properties of the impact strength and mechanical properties in the above range.
- the content of the monomer for imparting processability and heat resistance may be about 0 to about 30% by weight, for example, about 0.1 to about 20% by weight of the total weight of the aromatic vinyl copolymer resin. Specifically, not included (0% by weight), 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 weight percent. In the above range, workability and heat resistance can be imparted without deterioration of other physical properties.
- the weight average molecular weight of the aromatic vinyl copolymer resin may be about 50,000 to about 500,000 g / mol, but is not limited thereto.
- Non-limiting examples of the rubber-modified aromatic vinyl copolymer resin (A2) of the present invention is a grafted air in which a styrene monomer, an aromatic vinyl compound, and an acrylonitrile monomer, an unsaturated nitrile compound, are grafted onto a central butadiene rubber polymer.
- Graft copolymer resin (a1) single use form such as copolymer (g-ABS), acrylonitrile-butadiene-styrene copolymer resin (ABS resin), acrylonitrile- ethylene propylene rubber-styrene copolymer resin (AES resin) ), And a mixture form of graft copolymer resin (a1) such as acrylonitrile-acryl rubber-styrene copolymer resin (AAS resin) and aromatic vinyl copolymer resin (a2).
- the ABS resin may be a graft copolymer resin (a1), g-ABS as the aromatic vinyl copolymer resin (a2), dispersed in a styrene-acrylonitrile copolymer resin (SAN resin).
- SAN resin styrene-acrylonitrile copolymer resin
- the rubber-modified aromatic vinyl copolymer resin may be included in about 1 to about 50% by weight, for example about 15 to about 40% by weight of about 100% by weight of the total base resin.
- Impact resistance, mechanical properties and the like of the thermoplastic resin composition may be excellent in the above range.
- the phosphorus flame retardant used in the present invention includes a (B1) phosphoric acid compound and (B2) phosphazene-based compound.
- the phosphate compound of the present invention may be used alone or by mixing two or more kinds of phosphate compounds, phosphonate compounds, and the like.
- the phosphate compound may be represented by the following Formula 1.
- R 1 and R 4 are each independently a hydrogen atom, an aryl group having 6 to 20 carbon atoms, or a C 6 -C 20 aryl group substituted with an alkyl group having 6 to 20 carbon atoms
- R 2 and Each R 5 is independently a hydrogen atom, a hydroxy group, an aryl group or an aryloxy group of C 6 -C 20, or a C 6 -C 20 aryl or aryloxy group substituted with an alkyl group of C 1 -C 10
- R 3 is an aryl of C 6 -C 20 Len groups such as those derived from aromatic dialcohols such as resorcinol, hydroquinone, bisphenol-A and bisphenol-S (parts other than alcohol)
- m is a number average polymerization degree, and the average value of m is from about 0 to About 4.
- non-limiting examples of the phosphate compound include diaryl phosphates such as diphenyl phosphate, diphenyl phenyl phosphonate, triphenyl phosphate, tricresyl phosphate, trigylenyl phosphate, tri (2,6- Dimethylphenyl) phosphate, tri (2,4,6-trimethylphenyl) phosphate, tri (2,4-dibutylbutylphenyl) phosphate, tri (2,6-dimethylphenyl) phosphate, bisphenol-A bis (diphenylphosphate ), Resorcinol bis (diphenylphosphate), resorcinol bis [bis (2,6-dimethylphenyl) phosphate], resorcinol bis [bis (2,4-dibutylbutylphenyl) phosphate], hydroquinone Bis [bis (2,6-dimethylphenyl) phosphate], hydroquinone bis [bis (2,4-dimethyl
- the phosphoric acid compound may be included in an amount of about 1 to about 20 parts by weight, for example about 5 to about 15 parts by weight, based on about 100 parts by weight of the base resin. In the above range, flame retardancy can be improved without deteriorating other physical properties of the thermoplastic resin composition.
- phosphazene compound used in the present invention a phosphazene compound used in a conventional flame retardant thermoplastic resin composition can be used without limitation.
- the phosphazene compound may be represented by the following Formula 2.
- R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 and R 15 are each independently an alkyl group of C1-C6, an aryl group of C6-C20 , C6-C20 aryl group substituted with C1-C6 alkyl group, C6-C20 aralkyl group, C1-C6 alkoxy group, C6-C20 aryloxy group, amino group or hydroxy group, R 16 is C6-C30 C6-C30 allylene groups in which arylene groups or C1-C6 alkyl groups are substituted, for example derived from aromatic dialcohols such as resorcinol, hydroquinone, bisphenol-A, bisphenol-S (except alcohol) A and b are integers from 0 to 10, n is the number average degree of polymerization, and the average value of n is from about 0.3 to about 3.
- the weight ratio (B1: B2) of the phosphate compound (B1) and the phosphazene compound (B2) is about 5: about 1 to about 20: about 1, for example about 8: about 1 to about 15 : May be about 1.
- the wollastonite used in the present invention can further improve the UL94 5VB flame retardancy of the thermoplastic resin composition.
- the wollastonite is a calcium-based mineral, a white acicular mineral, and at least part of the surface may be hydrophobic coated.
- the wollastonite used in the present invention has an average longitudinal (a) length (diameter) of about 5 to about 1,000 ⁇ m, for example about 30 to about 100 ⁇ m, and an aspect ratio (vertical (a): horizontal (b)) of about 1 : About 3 to about 1: about 15, for example about 1: about 3 to about 1: about 13 (see FIG. 1). In the above range, the flame retardancy of the thermoplastic resin composition can be further improved, and the impact resistance can be excellent.
- the weight ratio of the phosphate compound (B1) and the wollastonite (C) may be about 4: about 1 to about 20: about 1, for example, about 8: about 1 to about 15: about 1.
- flame retardancy can be improved without deteriorating other physical properties of the thermoplastic resin composition, and impact resistance, mechanical properties, balance of physical properties thereof and the like can be excellent.
- the thermoplastic resin composition according to the present invention may further include conventional additives as necessary.
- the additives include, but are not limited to, antioxidants, antidrip agents, lubricants, mold release agents, nucleating agents, antistatic agents, stabilizers, pigments, dyes, mixtures thereof, and the like.
- the content thereof may be about 0.01 to about 10 parts by weight based on about 100 parts by weight of the thermoplastic resin, but is not limited thereto.
- thermoplastic resin composition of the present invention has a flame retardancy of UL94 flame retardancy (test thickness: about 1.5 to about 3.0 mm) of 5 VB grade, and is excellent in heat resistance, impact resistance, flowability, balance of physical properties, and the like.
- thermoplastic resin composition may have a flame retardancy of 5 VB, measured according to UL94 standards, for a specimen of about 1.5 to about 3.0 mm thick.
- the thermoplastic resin composition may have an Izod impact strength of about 1/8 "thick specimen of about 10 to about 70 kgfcm / cm, for example about 20 to about 60 kgfcm / cm, measured according to ASTM D256. have.
- the thermoplastic resin composition may have a heat deflection temperature (HDT) of about 70 to about 120 ° C., for example, about 75 to about 100 ° C. measured according to ASTM D648.
- HDT heat deflection temperature
- thermoplastic resin composition may have a melt index (MI) of about 5 to about 60 g / 10 minutes, for example about 10 to about 50 g / 10 minutes, measured at 220 ° C. and 10 kgf conditions in accordance with ASTM D1238. have.
- MI melt index
- the molded article according to the present invention is formed from the thermoplastic resin composition.
- the thermoplastic resin composition of the present invention can be produced by a known thermoplastic resin composition production method.
- the components may be mixed with other additives as necessary and then melt-extruded in an extruder to produce pellets.
- the prepared pellets may be manufactured into various molded articles (products) through various molding methods such as injection molding, extrusion molding, vacuum molding, and casting molding. Such molding methods are well known by those skilled in the art.
- the molded article has a UL94 flame retardancy (test thickness: about 1.5 to about 3.0 mm) of 5 VB flame retardancy, and excellent heat resistance, impact resistance, flowability, balance of physical properties, etc. It is useful as such. Specifically, it may be used for thin film exterior materials having a thickness of about 1.0 to about 3.0 mm.
- ABS resin an acrylonitrile-butadiene-styrene copolymer (ABS) resin (manufacturer: LG Chemical, product name: MA201) was used.
- phosphoric acid compound (B1) an aromatic polyphosphate (manufacturer: DAIHACHI, product name: CR-741) was used.
- Pellets were prepared by melting and extruding at 250 rpm.
- the prepared pellets were dried at 80 ° C. for at least 5 hours, and then injected into a 250 ° C. injection machine (manufacturer: LG Cable, product name: LGH-140N) to prepare a specimen.
- the physical properties of the prepared specimens were evaluated by the following method, and the results are shown in Table 1 below.
- MI Melt index
- IZOD impact strength (unit: kgfcm / cm): Notch was evaluated by making a notch in 1/8 "thick Izod specimens according to the evaluation method specified in ASTM D256.
- the flame retardant thermoplastic resin composition according to the present invention has a flame retardancy of UL94 flame retardancy (test thickness: 1.5 to 3.0 mm) of 5 VB grade, and is excellent in heat resistance, impact resistance, fluidity, balance of physical properties, and the like. .
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
Abstract
본 발명의 열가소성 수지 조성물은 폴리카보네이트 수지 및 고무변성 방향족 비닐계 공중합체 수지를 포함하는 기초 수지; 인산 화합물 및 포스파젠계 화합물을 포함하는 인계 난연제; 및 규회석을 포함하며, 상기 인산 화합물의 함량은 상기 기초 수지 약 100 중량부에 대하여, 약 1 내지 약 20 중량부이고, 상기 인산 화합물 및 상기 포스파젠계 화합물의 중량비는 약 5 : 약 1 내지 약 20 : 약 1이며, 상기 인산 화합물 및 상기 규회석의 중량비는 약 4 : 약 1 내지 약 20 : 약 1인 것을 특징으로 한다. 상기 열가소성 수지 조성물은 UL94 난연도 5VB 등급의 난연성을 가지며, 내열성, 내충격성, 유동성, 이들의 물성 발란스 등이 우수하다.
Description
본 발명은 난연성 열가소성 수지 조성물 및 이를 포함하는 성형품에 관한 것이다. 보다 구체적으로 본 발명은 UL94 난연도 5VB 등급의 난연성을 가지며, 내열성, 내충격성, 유동성, 이들의 물성 발란스 등이 우수한 난연성 열가소성 수지 조성물 및 이를 포함하는 성형품에 관한 것이다.
폴리카보네이트 수지는 기계적 강도, 내열성, 투명성 등이 우수한 엔지니어링 플라스틱이다. 상기 폴리카보네이트 수지는 사무 자동화(Office Automation) 기기, 전기/전자 부품, 건축자재 등의 다양한 분야에 사용된다. 특히, 상기 폴리카보네이트 수지에 아크릴로니트릴-부타디엔-스티렌(ABS) 등의 고무변성 방향족 비닐계 공중합체 수지를 혼합할 경우, 폴리카보네이트 수지의 내충격성, 내열성 등의 저하 없이, 가공성, 내화학성 등을 개선할 수 있다. 이처럼, 열가소성 수지로서, 폴리카보네이트 수지 및 고무변성 방향족 비닐계 공중합체 수지의 블렌드는 고무변성 방향족 비닐계 공중합체 수지에 비해 우수한 물성을 얻을 수 있고, 폴리카보네이트 수지에 비해 원가 절감(cost down)이 가능하므로, 다양한 용도로 활용되고 있다.
이러한, 폴리카보네이트 수지 및 고무변성 방향족 비닐계 공중합체 수지를 포함하는 수지 조성물(블렌드)로는 PC/ABS alloy가 대표적이다(미국 특허 제3,130,177호 등). 상기 PC/ABS alloy는 폴리카보네이트 수지와 ABS 수지의 블렌드로서, 고광택, 고유동, 고충격 등이 요구되는 전기/전자제품 등의 내/외장재 용도로 사용되고 있다. 그러나, 상기 PC/ABS만으로는 강성(modulus), 난연성 등이 떨어지므로, PC/ABS를 무기 충진제, 난연제 등으로 보강한 보강재료(열가소성 수지 조성물)가 개발되고 있다.
통상적으로, 열가소성 수지에 유리 섬유 등의 무기 충진제를 블렌딩하면 무기 충진제의 고유 특성으로 인해 수지의 인장강도, 굴곡강도, 굴곡탄성율 등의 기계적 물성을 향상시킬 수 있고, 우수한 내열성을 나타내어 지속적으로 하중을 받거나 지속적인 열을 견뎌야 하는 부품에 적합하다. 특히, 난연제 등을 추가하여, 난연성, 내충격성, 기계적 물성 등이 요구되는 자동차, 전기, 전자 제품의 내/외장재 용도로 많이 사용되고 있다.
그러나, ABS 등을 사용하는 난연성 열가소성 수지 조성물의 경우, 고무 함량이 증가할수록 유동성, 난연성 등이 저하되기 때문에 이를 극복하기 위해 지나치게 많은 양의 난연제가 필요하게 되며, 난연제가 증가에 따른 내열성 저하가 발생할 우려가 있다.
또한, 무기 충진제는 통상적으로 열가소성 수지와 상용성 및 접착성이 떨어지므로, 수지 조성물에 첨가 시, 내충격성, 성형성 등을 크게 저하시킬 우려가 있다.
더욱이, 제품의 경량화 및 박막화 추세에 따라, 폴리카보네이트 수지 및 고무변성 방향족 비닐계 공중합체 수지를 포함하는 열가소성 수지 조성물을 박막 성형하기 위해서는 기존 제품에 비해, 고충격, 고유동, 박막난연 물성 등이 요구되는 상황이다.
따라서, UL94 난연도(시편 두께: 약 1.5 내지 약 3.0 mm) 5VB 등급의 난연성을 가지면서도, 내열성, 내충격성, 유동성, 이들의 물성 발란스 등이 우수한 난연성 열가소성 수지 조성물의 개발이 요구되고 있다.
본 발명의 배경기술은 대한민국 공개특허 제10-2008-0063229호 등에 개시되어 있다.
본 발명의 목적은 UL94 난연도 5VB 등급의 난연성을 가지며, 내열성, 내충격성, 유동성, 이들의 물성 발란스 등이 우수한 난연성 열가소성 수지 조성물 및 이를 포함하는 성형품을 제공하기 위한 것이다.
본 발명의 다른 목적은 할로겐계 난연제를 사용하지 않아 친환경적인 난연성 열가소성 수지 조성물 및 이를 포함하는 성형품을 제공하기 위한 것이다.
본 발명의 상기 및 기타의 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다.
본 발명의 한 관점은 열가소성 수지 조성물에 관한 것이다. 상기 열가소성 수지 조성물은 폴리카보네이트 수지 및 고무변성 방향족 비닐계 공중합체 수지를 포함하는 기초 수지; 인산 화합물 및 포스파젠계 화합물을 포함하는 인계 난연제; 및 규회석을 포함하며, 상기 인산 화합물의 함량은 상기 기초 수지 약 100 중량부에 대하여, 약 1 내지 약 20 중량부이고, 상기 인산 화합물 및 상기 포스파젠계 화합물의 중량비는 약 5 : 약 1 내지 약 20 : 약 1이며, 상기 인산 화합물 및 상기 규회석의 중량비는 약 4 : 약 1 내지 약 20 : 약 1인 것을 특징으로 한다.
구체예에서, 상기 고무변성 방향족 비닐계 공중합체 수지는 고무질 중합체에 방향족 비닐계 단량체 및 상기 방향족 비닐계 단량체와 공중합 가능한 단량체가 그라프트 공중합된 그라프트 공중합체 수지 약 10 내지 약 100 중량%; 및 방향족 비닐계 단량체 및 상기 방향족 비닐계 단량체와 공중합 가능한 단량체가 공중합된 방향족 비닐계 공중합체 수지 약 0 내지 약 90 중량%를 포함할 수 있다.
구체예에서, 상기 인산 화합물은 하기 화학식 1로 표시될 수 있다:
[화학식 1]
상기 화학식 1에서, R1 및 R4는 각각 독립적으로 수소 원자, C6-C20의 아릴기, 또는 C1-C10의 알킬기가 치환된 C6-C20의 아릴기이고, R2 및 R5는 각각 독립적으로 수소 원자, 히드록시기, C6-C20의 아릴기 또는 아릴옥시기, 또는 C1-C10의 알킬기가 치환된 C6-C20의 아릴기 또는 아릴옥시기이고 R3는 C6-C20의 아릴렌기이며, m의 평균값은 약 0 내지 약 4이다.
구체예에서, 상기 포스파젠계 화합물은 하기 화학식 2로 표시될 수 있다:
[화학식 2]
상기 화학식 2에서, R6, R7, R8, R9, R10, R11, R12, R13, R14 및 R15은 각각 독립적으로 C1-C6의 알킬기, C6-C20의 아릴기, C1-C6의 알킬기가 치환된 C6-C20의 아릴기, C6-C20의 아르알킬기, C1-C6의 알콕시기, C6-C20의 아릴옥시기, 아미노기 또는 히드록시기이고, R16은 C6-C30의 아릴렌기 또는 C1-C6의 알킬기가 치환된 C6-C30의 아릴렌기이며, a 및 b는 0 내지 10의 정수이고, n의 평균값은 약 0.3 내지 약 3이다.
구체예에서, 상기 규회석은 평균 세로 길이(직경)가 약 5 내지 약 1,000 ㎛이고, 종횡비(세로:가로)가 약 1 : 약 3 내지 약 1 : 약 15일 수 있다.
구체예에서, 상기 폴리카보네이트 수지의 함량은 전체 기초 수지 중 약 50 내지 약 99 중량%이고, 상기 고무변성 방향족 비닐계 공중합체 수지의 함량은 전체 기초 수지 중 약 1 내지 약 50 중량%일 수 있다.
구체예에서 상기 열가소성 수지 조성물은 약 1.5 내지 약 3.0 mm 두께 시편에 대하여, UL94 기준에 따라 측정한 난연도가 5VB일 수 있다.
구체예에서, 상기 열가소성 수지 조성물은 ASTM D256에 의거하여 측정한 약 1/8" 두께 시편의 아이조드 충격강도가 약 10 내지 약 70 kgf·cm/cm이고, ASTM D648에 의거하여 측정한 열변형온도(HDT)가 약 70 내지 약 120℃이며, ASTM D1238에 의거하여 약 220℃ 및 약 10 kgf 조건에서 측정한 용융지수(MI)가 약 5 내지 약 60 g/10분일 수 있다.
본 발명의 다른 관점은 상기 열가소성 수지 조성물로부터 형성된 성형품에 관한 것이다.
구체예에서, 상기 성형품은 두께 약 1.0 내지 약 3.0 mm의 박막형 외장재일 수 있다.
본 발명은 UL94 난연도(시편 두께: 약 1.5 내지 약 3.0 mm) 5VB 등급의 난연성을 가지며, 내열성, 내충격성, 유동성, 이들의 물성 발란스 등이 우수하고, 할로겐계 난연제를 사용하지 않아 친환경적인 난연성 열가소성 수지 조성물 및 이를 포함하는 성형품을 제공하는 발명의 효과를 가진다.
도 1은 본 발명의 일 실시예에 따른 규회석의 세로(a) 및 가로(b)를 나타내기 위한 개략도이다.
이하, 본 발명을 상세히 설명하면, 다음과 같다.
본 발명에 따른 열가소성 수지 조성물은 (A1) 폴리카보네이트 수지 및 (A2) 고무변성 방향족 비닐계 공중합체 수지를 포함하는 (A) 기초 수지, (B1) 인산 화합물 및 (B2) 포스파젠계 화합물을 포함하는 (B) 인계 난연제; 및 (C) 규회석을 포함한다.
(A) 기초 수지
(A1) 폴리카보네이트 수지
본 발명에 사용되는 폴리카보네이트 수지로는 통상의 열가소성 폴리카보네이트 수지를 제한 없이 사용할 수 있다. 예를 들면, 하나 이상의 디페놀류(방향족 디히드록시 화합물)를 포스겐, 할로겐 포르메이트, 탄산 디에스테르 등의 카보네이트 전구체와 반응시킴으로써 제조되는 방향족 폴리카보네이트 수지를 사용할 수 있다.
구체예에서, 상기 디페놀류로는 4,4'-비페놀, 2,2-비스(4-히드록시페닐)프로판, 2,4-비스(4-히드록시페닐)-2-메틸부탄, 1,1-비스(4-히드록시페닐)시클로헥산, 2,2-비스(3-클로로-4-히드록시페닐)프로판, 2,2-비스(3,5-디클로로-4-히드록시페닐)프로판, 이들의 혼합물 등을 예시할 수 있으나, 이에 제한되지 않는다. 예를 들면, 상기 디페놀류로서, 2,2-비스(4-히드록시페닐)프로판, 2,2-비스(3,5-디클로로-4-히드록시페닐)프로판, 1,1-비스(4-히드록시페닐)시클로헥산 등을 사용할 수 있고, 구체적으로, 비스페놀-A 라고도 불리는 2,2-비스(4-히드록시페닐)프로판을 사용할 수 있다.
상기 폴리카보네이트 수지는 분지쇄가 있는 것이 사용될 수 있으며, 예를 들면, 중합에 사용되는 디페놀류 전체에 대하여, 약 0.05 내지 약 2 몰%의 3가 또는 그 이상의 다관능 화합물, 예를 들면, 3가 또는 그 이상의 페놀기를 가진 화합물을 첨가하여 제조할 수도 있다. 상기 폴리카보네이트 수지는 호모 폴리카보네이트 수지, 코폴리카보네이트 수지 또는 이들의 블렌드 형태로 사용할 수 있다. 또한, 상기 폴리카보네이트 수지는 에스테르 전구체(precursor), 예컨대 2관능 카르복실산의 존재 하에서 중합 반응시켜 얻어진 방향족 폴리에스테르-카보네이트 수지로 일부 또는 전량 대체하는 것도 가능하다.
구체예에서, 상기 폴리카보네이트 수지의 중량평균분자량(Mw)은 약 10,000 내지 약 50,000 g/mol, 예를 들면, 약 15,000 내지 약 40,000 g/mol일 수 있으나, 이에 한정되는 것은 아니다.
구체예에서, 상기 폴리카보네이트 수지는 전체 기초 수지 약 100 중량% 중, 약 50 내지 약 99 중량%, 예를 들면 약 60 내지 약 85 중량%로 포함될 수 있다. 상기 범위에서 열가소성 수지 조성물의 내충격성, 기계적 물성 등이 우수할 수 있다.
(A2) 고무변성 방향족 비닐계 공중합체 수지
본 발명에 사용되는 고무변성 방향족 비닐계 공중합체 수지는 고무질 중합체에 방향족 비닐계 단량체 및 상기 방향족 비닐계 단량체와 공중합 가능한 단량체가 그라프트 공중합된 (a1) 그라프트 공중합체 수지 약 10 내지 약 100 중량%; 및 방향족 비닐계 단량체 및 상기 방향족 비닐계 단량체와 공중합 가능한 단량체가 공중합된 (a2) 방향족 비닐계 공중합체 수지 약 0 내지 약 90 중량%를 포함할 수 있다. 즉, 본 발명의 고무변성 방향족 비닐계 공중합체 수지는 그라프트 공중합체 수지(a1)가 단독으로 사용되거나, 그라프트 공중합체 수지(a1) 및 방향족 비닐계 공중합체 수지(a2)의 혼합물 형태일 수 있다.
구체예에서, 상기 그라프트 공중합체 수지(a1)는 고무질 중합체에 방향족 비닐계 단량체, 상기 방향족 비닐계 단량체와 공중합 가능한 단량체 등을 첨가하여 중합할 수 있고, 상기 방향족 비닐계 공중합체 수지(a2)는 방향족 비닐계 단량체, 상기 방향족 비닐계 단량체와 공중합 가능한 단량체 등을 첨가하여 중합할 수 있다. 상기 중합은 유화중합, 현탁중합, 괴상중합 등의 공지의 중합방법에 의하여 수행될 수 있다. 상기 괴상중합의 경우, 그라프트 공중합체 수지(a1)와 방향족 비닐계 공중합체 수지(a2)를 별도로 제조하지 않고도, 일 단계 반응 공정만으로 그라프트 공중합체 수지(a1)가 매트릭스인 방향족 비닐계 공중합체 수지(a2)에 분산된 형태의 고무변성 방향족 비닐계 공중합체 수지를 제조할 수 있다.
구체예에서, 최종 고무변성 방향족 비닐계 공중합체 수지 성분 중에서 고무(고무질 중합체) 함량은 약 5 내지 약 50 중량%인 것이 바람직하다. 또한, 상기 고무의 입자 크기는 Z-평균으로 약 0.05 내지 약 6.0 ㎛일 수 있다. 상기 범위에서 내충격성 등의 물성이 우수하다.
이하, 그라프트 공중합체 수지(a1)와 방향족 비닐계 공중합체 수지(a2)를 더욱 상세히 설명하면, 다음과 같다.
(a1) 그라프트 공중합체 수지
상기 그라프트 공중합체 수지는 고무질 중합체에 방향족 비닐계 단량체 및 상기 방향족 비닐계 단량체와 공중합 가능한 단량체를 그라프트 공중합시켜 얻을 수 있으며, 필요에 따라, 가공성 및 내열성을 부여하는 단량체를 더욱 포함시킬 수 있다.
상기 고무질 중합체의 구체적인 예로는 폴리부타디엔, 폴리(스티렌-부타디엔), 폴리(아크릴로니트릴-부타디엔) 등의 디엔계 고무 및 상기 디엔계 고무에 수소 첨가한 포화고무, 이소프렌고무, 폴리부틸아크릴산 등의 아크릴계 고무 및 에틸렌-프로필렌-디엔단량체 삼원공중합체(EPDM) 등을 예시할 수 있다. 예를 들면, 디엔계 고무를 사용할 수 있고, 구체적으로, 부타디엔계 고무를 사용할 수 있다. 상기 고무질 중합체의 함량은 그라프트 공중합체 수지(a1) 전체 중량 중 약 5 내지 약 65 중량%, 예를 들면 약 10 내지 약 60 중량%, 구체적으로 약 20 내지 약 50 중량%일 수 있다. 상기 범위에서 우수한 충격강도와 기계적 물성의 물성 발란스를 얻을 수 있다. 상기 고무질 중합체(고무 입자)의 평균 입자 크기(Z-평균)는 약 0.05 내지 약 6 ㎛, 예를 들면 약 0.15 내지 약 4 ㎛, 구체적으로 약 0.25 내지 약 3.5 ㎛일 수 있다. 상기 범위에서 충격강도 및 외관이 우수할 수 있다.
상기 방향족 비닐계 단량체는 상기 고무질 공중합체에 그라프트 공중합될 수 있는 것으로서, 예를 들면, 스티렌, α-메틸스티렌, β-메틸스티렌, p-메틸스티렌, p-t-부틸스티렌, 에틸스티렌, 비닐크실렌, 모노클로로스티렌, 디클로로스티렌, 디브로모스티렌, 비닐나프탈렌 등을 사용할 수 있으나, 이에 제한되는 것은 아니다. 구체적으로, 스티렌을 사용할 수 있다. 상기 방향족 비닐계 단량체의 함량은 그라프트 공중합체 수지(a1) 전체 중량 중 약 15 내지 약 94 중량%, 예를 들면 약 20 내지 약 80 중량%, 구체적으로 약 30 내지 약 60 중량%일 수 있다. 상기 범위에서 우수한 충격강도와 기계적 물성의 물성 발란스를 얻을 수 있다.
상기 방향족 비닐계 단량체와 공중합 가능한 단량체로는 예를 들면, 아크릴로니트릴 등의 시안화 비닐계 화합물, 에타크릴로니트릴, 메타크릴로니트릴 등의 불포화 니트릴계 화합물 등을 사용할 수 있으며, 단독 혹은 2종 이상 혼합하여 사용할 수 있다. 상기 방향족 비닐계 단량체와 공중합 가능한 단량체의 함량은 그라프트 공중합체 수지 전체 중량 중 약 1 내지 약 50 중량%, 예를 들면 약 5 내지 약 45 중량%, 구체적으로 약 10 내지 약 30 중량%일 수 있다. 상기 범위에서 우수한 충격강도와 기계적 물성의 물성 발란스를 얻을 수 있다.
상기 가공성 및 내열성을 부여하기 위한 단량체로는 예를 들면, 아크릴산, 메타크릴산, 무수말레인산, N-치환말레이미드 등을 예시할 수 있으나, 이에 한정되는 것은 아니다. 상기 가공성 및 내열성을 부여하기 위한 단량체의 함량은 그라프트 공중합체 수지 전체 중량 중 약 0 내지 약 15 중량%, 예를 들면 약 0.1 내지 약 10 중량%일 수 있다. 구체적으로, 포함되지 않거나(0 중량%), 1, 2, 3, 4, 5, 6, 7, 8, 9 또는 10 중량%일 수 있다. 상기 범위에서 다른 물성의 저하 없이, 가공성 및 내열성을 부여할 수 있다.
(a2) 방향족 비닐계 공중합체 수지
본 발명에 사용되는 방향족 비닐계 공중합체 수지는 상기 그라프트 공중합체 수지(a1)의 성분 중 고무(고무질 중합체)를 제외한 단량체 혼합물을 사용하여 제조할 수 있으며, 단량체의 비율은 상용성 등에 따라 달라질 수 있다. 예를 들면, 상기 방향족 비닐계 공중합체 수지는 상기 방향족 비닐계 단량체 및 상기 방향족 비닐계 단량체와 공중합 가능한 단량체를 공중합시켜 얻을 수 있다.
상기 방향족 비닐계 단량체로는, 예를 들면, 스티렌, α-메틸스티렌, β-메틸스티렌, p-메틸스티렌, p-t-부틸스티렌, 에틸스티렌, 비닐크실렌, 모노클로로스티렌, 디클로로스티렌, 디브로모스티렌, 비닐나프탈렌 등을 사용할 수 있으나, 이에 제한되는 것은 아니다. 구체적으로, 스티렌을 사용할 수 있다.
또한, 상기 방향족 비닐계 단량체와 공중합 가능한 단량체로는 예를 들면, 아크릴로니트릴 등의 시안화 비닐계 화합물, 에타크릴로니트릴, 메타크릴로니트릴 등의 불포화 니트릴계 화합물 등을 사용할 수 있으며, 단독 혹은 2종 이상 혼합하여 사용할 수 있다.
상기 방향족 비닐계 공중합체 수지는 필요에 따라, 상기 가공성 및 내열성을 부여하는 단량체를 더욱 포함할 수 있다. 상기 가공성 및 내열성을 부여하기 위한 단량체로는 예를 들면, 아크릴산, 메타크릴산, 무수말레인산, N-치환말레이미드 등을 예시할 수 있으나, 이에 한정되는 것은 아니다.
상기 방향족 비닐계 공중합체 수지에 있어서, 상기 방향족 비닐계 단량체의 함량은 방향족 비닐계 공중합체 수지 전체 중량 중 약 50 내지 약 95 중량%, 예를 들면 약 60 내지 약 90 중량%, 구체적으로 약 70 내지 약 80 중량%일 수 있다. 상기 범위에서 우수한 충격강도와 기계적 물성의 물성 발란스를 얻을 수 있다.
상기 방향족 비닐계 단량체와 공중합 가능한 단량체의 함량은 방향족 비닐계 공중합체 수지 전체 중량 중 약 5 내지 약 50 중량%, 예를 들면 약 10 내지 약 40 중량%, 구체적으로 약 20 내지 약 30 중량%일 수 있다. 상기 범위에서 우수한 충격강도와 기계적 물성의 물성 발란스를 얻을 수 있다.
또한, 상기 가공성 및 내열성을 부여하기 위한 단량체의 함량은 방향족 비닐계 공중합체 수지 전체 중량 중 약 0 내지 약 30 중량%, 예를 들면 약 0.1 내지 약 20 중량%일 수 있다. 구체적으로, 포함되지 않거나(0 중량%), 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 또는 30 중량%일 수 있다. 상기 범위에서 다른 물성의 저하 없이, 가공성 및 내열성을 부여할 수 있다.
상기 방향족 비닐계 공중합체 수지의 중량평균분자량은 약 50,000 내지 약 500,000 g/mol일 수 있으나, 이에 제한되지 않는다.
본 발명의 고무변성 방향족 비닐계 공중합체 수지(A2)의 비한정적인 예로는, 중심부 부타디엔계 고무상 중합체에 방향족 비닐계 화합물인 스티렌 단량체와 불포화 니트릴계 화합물인 아크릴로니트릴 단량체가 그라프트된 공중합체(g-ABS) 등의 그라프트 공중합체 수지(a1) 단독 사용 형태와 아크릴로니트릴-부타디엔-스티렌 공중합체 수지(ABS 수지), 아크릴로니트릴-에틸렌프로필렌고무-스티렌 공중합체 수지(AES 수지), 아크릴로니트릴-아크릴고무-스티렌 공중합체 수지(AAS 수지) 등의 그라프트 공중합체 수지(a1) 및 방향족 비닐계 공중합체 수지(a2)의 혼합물 형태를 예시할 수 있다. 여기서, 상기 ABS 수지는 상기 그라프트 공중합체 수지(a1)로서, g-ABS가 상기 방향족 비닐계 공중합체 수지(a2)로서, 스티렌-아크릴로니트릴 공중합체 수지(SAN 수지)에 분산된 것일 수 있다.
구체예에서, 상기 고무변성 방향족 비닐계 공중합체 수지는 전체 기초 수지 약 100 중량% 중, 약 1 내지 약 50 중량%, 예를 들면 약 15 내지 약 40 중량%로 포함될 수 있다. 상기 범위에서 열가소성 수지 조성물의 내충격성, 기계적 물성 등이 우수할 수 있다.
(B) 인계 난연제
본 발명에 사용되는 인계 난연제는 (B1) 인산 화합물 및 (B2) 포스파젠계 화합물을 포함한다.
(B1) 인산 화합물
본 발명의 인산 화합물은 포스페이트(phosphate) 화합물, 포스포네이트(phosphonate) 화합물 등을 단독으로 사용하거나 2종 이상 혼합하여 사용할 수 있다. 예를 들면, 상기 인산 화합물은 하기 화학식 1로 표시될 수 있다.
[화학식 1]
상기 화학식 1에서, R1 및 R4는 각각 독립적으로 수소 원자, C6-C20(탄소수 6 내지 20)의 아릴기, 또는 C1-C10의 알킬기가 치환된 C6-C20의 아릴기이고, R2 및 R5는 각각 독립적으로 수소 원자, 히드록시기, C6-C20의 아릴기 또는 아릴옥시기, 또는 C1-C10의 알킬기가 치환된 C6-C20의 아릴기 또는 아릴옥시기이고 R3는 C6-C20의 아릴렌기, 예를 들면 레조시놀, 하이드로퀴논, 비스페놀-A, 비스페놀-S 등의 방향족 디알코올로부터 유도된 것(알코올을 제외한 부분)이며, m은 수평균중합도로서, m의 평균값은 약 0 내지 약 4이다.
구체예에서, 상기 인산 화합물의 비한정적인 예로는, 디페닐포스페이트 등의 디아릴포스페이트, 디페닐페닐포스포네이트, 트리페닐포스페이트, 트리크레실포스페이트, 트리자이레닐포스페이트, 트리(2,6-디메틸페닐)포스페이트, 트리(2,4,6-트리메틸페닐)포스페이트, 트리(2,4-디터셔리부틸페닐)포스페이트, 트리(2,6-디메틸페닐)포스페이트, 비스페놀-A 비스(디페닐포스페이트), 레조시놀 비스(디페닐포스페이트), 레조시놀 비스[비스(2,6-디메틸페닐)포스페이트], 레조시놀 비스[비스(2,4-디터셔리부틸페닐)포스페이트], 하이드로퀴논 비스[비스(2,6-디메틸페닐)포스페이트], 하이드로퀴논 비스[비스(2,4-디터셔리부틸페닐)포스페이트] 등을 예시할 수 있다. 상기 방향족 인산 화합물은 단독 또는 2종 이상의 혼합물의 형태로 적용될 수 있다.
구체예에서, 상기 인산 화합물의 함량은 상기 기초 수지 약 100 중량부에 대하여, 약 1 내지 약 20 중량부, 예를 들면 약 5 내지 약 15 중량부로 포함될 수 있다. 상기 범위에서 열가소성 수지 조성물의 다른 물성의 저하 없이, 난연성을 향상시킬 수 있다.
(B2) 포스파젠계 화합물
본 발명에 사용되는 포스파젠계 화합물로는 통상의 난연성 열가소성 수지 조성물에 사용되는 포스파젠계 화합물을 제한 없이 사용할 수 있다. 예를 들면, 상기 포스파젠계 화합물은 하기 화학식 2로 표시될 수 있다.
[화학식 2]
상기 화학식 3에서, R6, R7, R8, R9, R10, R11, R12, R13, R14 및 R15은 각각 독립적으로 C1-C6의 알킬기, C6-C20의 아릴기, C1-C6의 알킬기가 치환된 C6-C20의 아릴기, C6-C20의 아르알킬기, C1-C6의 알콕시기, C6-C20의 아릴옥시기, 아미노기 또는 히드록시기이고, R16은 C6-C30의 아릴렌기 또는 C1-C6의 알킬기가 치환된 C6-C30의 알릴렌기, 예를 들면 레조시놀, 하이드로퀴논, 비스페놀-A, 비스페놀-S 등의 방향족 디알코올로부터 유도된 것(알코올을 제외한 부분)이며, a 및 b는 0 내지 10의 정수이고, n은 수평균중합도로서, n의 평균값은 약 0.3 내지 약 3이다.
구체예에서, 상기 인산 화합물(B1) 및 상기 포스파젠계 화합물(B2)의 중량비(B1:B2)는 약 5 : 약 1 내지 약 20 : 약 1, 예를 들면 약 8 : 약 1 내지 약 15 : 약 1일 수 있다. 상기 범위에서 UL94 난연도(시편 두께: 약 1.5 내지 약 3.0 mm) 5VB 등급의 난연성을 갖는 열가소성 수지 조성물을 얻을 수 있다.
(C) 규회석
본 발명에 사용되는 규회석은 열가소성 수지 조성물의 UL94 5VB 난연성을 더욱 향상시킬 수 있는 것이다. 상기 규회석은 칼슘(calcium) 계열의 미네랄(mineral)이며, 백색의 침상형 광물로서, 표면의 적어도 일부가 소수성 코팅된 것을 사용할 수도 있다. 본 발명에 사용되는 규회석은 평균 세로(a) 길이(직경)가 약 5 내지 약 1,000 ㎛, 예를 들면 약 30 내지 약 100 ㎛이고, 종횡비(세로(a):가로(b))가 약 1 : 약 3 내지 약 1 : 약 15, 예를 들면 약 1 : 약 3 내지 약 1 : 약 13일 수 있다(도 1 참조). 상기 범위에서, 열가소성 수지 조성물의 난연성을 더욱 향상시킬 수 있고, 내충격성이 우수할 수 있다.
구체예에서, 상기 인산 화합물(B1) 및 상기 규회석(C)의 중량비는 약 4 : 약 1 내지 약 20 : 약 1, 예를 들면, 약 8 : 약 1 내지 약 15 : 약 1일 수 있다. 상기 범위에서 열가소성 수지 조성물의 다른 물성의 저하 없이, 난연성을 향상시킬 수 있고, 내충격성, 기계적 물성, 이들의 물성 발란스 등이 우수할 수 있다.
본 발명에 따른 열가소성 수지 조성물은 필요에 따라, 통상적인 첨가제를 더욱 포함할 수 있다. 상기 첨가제로는 산화 방지제, 적하 방지제, 활제, 이형제, 핵제, 대전방지제, 안정제, 안료, 염료, 이들의 혼합물 등이 있으나, 이에 제한되지 않는다. 상기 첨가제 사용 시, 그 함량은 상기 열가소성 수지 약 100 중량부에 대하여, 약 0.01 내지 약 10 중량부일 수 있으나, 이에 제한되지 않는다.
본 발명의 열가소성 수지 조성물은 UL94 난연도(시편 두께: 약 1.5 내지 약 3.0 mm) 5VB 등급의 난연성을 가지며, 내열성, 내충격성, 유동성, 이들의 물성 발란스 등이 우수한 것이다.
구체예에서, 상기 열가소성 수지 조성물은 약 1.5 내지 약 3.0 mm 두께 시편에 대하여, UL94 기준에 따라 측정한 난연도가 5VB일 수 있다.
상기 열가소성 수지 조성물은 ASTM D256에 의거하여 측정한 약 1/8" 두께 시편의 아이조드 충격강도가 약 10 내지 약 70 kgf·cm/cm, 예를 들면 약 20 내지 약 60 kgf·cm/cm일 수 있다.
상기 열가소성 수지 조성물은 ASTM D648에 의거하여 측정한 열변형온도(HDT)가 약 70 내지 약 120℃, 예를 들면 약 75 내지 약 100℃일 수 있다.
또한, 상기 열가소성 수지 조성물은 ASTM D1238에 의거하여 220℃ 및 10 kgf 조건에서 측정한 용융지수(MI)가 약 5 내지 약 60 g/10분, 예를 들면 약 10 내지 약 50 g/10분일 수 있다.
본 발명에 따른 성형품은 상기 열가소성 수지 조성물로부터 형성된다. 본 발명의 열가소성 수지 조성물은 공지의 열가소성 수지 조성물 제조방법으로 제조할 수 있다. 예를 들면, 상기 구성 성분과 필요에 따라 기타 첨가제들을 혼합한 후에, 압출기 내에서 용융 압출하여 펠렛 형태로 제조할 수 있다. 제조된 펠렛은 사출성형, 압출성형, 진공성형, 캐스팅성형 등의 다양한 성형방법을 통해 다양한 성형품(제품)으로 제조될 수 있다. 이러한 성형방법은 본 발명이 속하는 분야의 통상의 지식을 가진 자에 의해 잘 알려져 있다. 상기 성형품은 UL94 난연도(시편 두께: 약 1.5 내지 약 3.0 mm) 5VB 등급의 난연성을 가지며, 내열성, 내충격성, 유동성, 이들의 물성 발란스 등이 우수하므로, 자동차 부품 또는 전기 전자 제품의 부품, 외장재 등으로 유용하다. 구체적으로는, 두께 약 1.0 내지 약 3.0 mm의 박막형 외장재 용도로 사용될 수 있다.
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.
실시예
하기 실시예 및 비교예에서 사용된 각 성분의 사양은 다음과 같다:
(A) 기초 수지
(A1) 폴리카보네이트 수지로서, LG-DOW社의 CALIBRE 200-3(유동지수(MI): 3 g/10분)를 사용하였다.
(A2) 고무변성 방향족 비닐계 공중합체 수지로서, 아크릴로니트릴-부타디엔-스티렌 공중합체(ABS) 수지(제조사: LG화학, 제품명: MA201)를 사용하였다.
(B) 인계 난연제
(B1) 인산 화합물로서, 방향족 폴리포스페이트(제조사: DAIHACHI, 제품명: CR-741)를 사용하였다.
(B2) 포스파젠계 화합물로서, 페녹시 사이클릭포스파젠 화합물(제조사: Otsuka Chemical Company, 제품명: SPS-100)을 사용하였다.
(C) 규회석
(C1) 평균 직경(세로) 길이가 7 ㎛(종횡비(세로(a):가로(b)) = 1 : 9)인 알킬 코팅된 규회석(제조사: NYCO, 제품명: NYGLOS 4W)를 사용하였다.
실시예 1~2 및 비교예 1~6
하기 표 1의 조성 및 함량에 따라, 상기 구성 성분을 텀블러 믹서로 10분 동안 혼합한 후, L/D=44, 직경 45 mm인 이축(twin screw type) 압출기에 첨가하고, 250℃ 및 교반 속도 250 rpm 조건에서 용융 및 압출하여 펠렛을 제조하였다. 제조된 펠렛은 80℃에서 5시간 이상 건조한 후, 250℃의 사출기(제조사: LG전선, 제품명: LGH-140N)에서 사출하여 시편을 제조하였다. 제조된 시편에 대하여 하기의 방법으로 물성을 평가하고, 그 결과를 하기 표 1에 나타내었다.
물성 측정 방법
(1) 내열성 평가: ASTM D648에 의거하여 열변형온도(HDT, 단위: ℃)를 측정하였다.
(2) 용융지수(MI, 단위: g/10분): ASTM D1238에 규정된 평가방법에 의하여 220℃, 10kgf 조건에서 측정하였다.
(3) 아이조드(IZOD) 충격 강도(단위: kgf·cm/cm): ASTM D256에 규정된 평가방법에 의거하여, 1/8" 두께의 아이조드 시편에 노치(Notch)를 만들어 평가하였다.
(4) 난연도 평가: 두께 1.2 mm (V) 및 1.5 mm (5V)의 시편을 제조하여, UL94 버티칼 버닝 플레임 테스트(UL94 Vertical Burning Flame Test) 방법으로 난연도(연소시간, 10초 및 60초 연소 횟수, burning drip 횟수)를 측정하였다.
표 1
실시예 | 비교예 | ||||||||
1 | 2 | 1 | 2 | 3 | 4 | 5 | 6 | ||
(A1) (중량%) | 77.8 | 77.8 | 77.8 | 76.5 | 77.8 | 77.8 | 77.8 | 77.8 | |
(A2) (중량%) | 22.2 | 22.2 | 22.2 | 23.5 | 22.2 | 22.2 | 22.2 | 22.2 | |
(B1) (중량부) | 11.1 | 11.1 | 11.1 | 17.7 | 11.1 | 11.1 | 11.1 | 11.1 | |
(B2)(B1:B2 중량비) | 10:1 | 10:1 | - | - | 10:1 | 10:1 | 25:1 | 3:1 | |
(C)(B1:C 중량비) | 10:1 | 5:1 | - | - | - | 10:3 | 10:1 | 10:1 | |
HDT | 90.8 | 90.1 | 88.7 | 79.8 | 90.3 | 89.2 | 91.0 | 77.5 | |
MI | 35.5 | 38.6 | 34.4 | 45.7 | 34.0 | 40.3 | 34.5 | 41.2 | |
Izod 충격강도 | 46.3 | 40.7 | 46.0 | 23.8 | 52.4 | 15.6 | 47.3 | 37.8 | |
1.2mmV난연도 | 연소시간(sec) | V-0(22.8) | V-0(21.5) | V-2(84.4) | V-0(35.3) | V-0(21.2) | V-0(30.1) | V-1(39.9) | V-0(10.1) |
10초 초과 연소(회) | - | - | 3 | - | - | - | 1 | - | |
Burning Drip(회) | - | - | 2 | - | - | - | - | - | |
1.5mm5V난연도 | 연소시간(sec) | 5VB(65.5) | 5VB(60.7) | Fail(104.1) | 5VB(68.3) | Fail(72.6) | 5VB(56.9) | 5VB(66.4) | 5VB(63.1) |
60초 초과 연소(회) | - | - | - | - | - | - | - | - | |
Burning Drip(회) | - | - | 2 | - | 4 | - | - | - |
상기 결과로부터, 본 발명에 따른 난연성 열가소성 수지 조성물은 UL94 난연도(시편 두께: 1.5 내지 3.0 mm) 5VB 등급의 난연성을 가지며, 내열성, 내충격성, 유동성, 이들의 물성 발란스 등이 우수함을 알 수 있다.
반면, 포스파젠 화합물 및 규회석을 사용하지 않을 경우(비교예 1), 실시예에 비해 난연성이 크게 저하되고, 내열성, 유동성 등이 저하됨을 알 수 있고, 포스파젠 화합물 및 규회석을 사용하지 않고 인산 화합물을 과량 사용할 경우(비교예 2), 실시예에 비해 내충격성이 크게 저하됨을 알 수 있다. 또한, 규회석을 사용하지 않을 경우(비교예 3), UL94 난연도(시편 두께: 1.5 내지 3.0 mm) 5VB 등급의 난연성을 갖지 못함을 알 수 있고, 규회석을 과량 사용할 경우(비교예 4), 실시예에 비해 내충격성이 크게 저하됨을 알 수 있다.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.
Claims (10)
- 폴리카보네이트 수지 및 고무변성 방향족 비닐계 공중합체 수지를 포함하는 기초 수지;인산 화합물 및 포스파젠계 화합물을 포함하는 인계 난연제; 및규회석을 포함하며,상기 인산 화합물의 함량은 상기 기초 수지 약 100 중량부에 대하여, 약 1 내지 약 20 중량부이고, 상기 인산 화합물 및 상기 포스파젠계 화합물의 중량비는 약 5 : 약 1 내지 약 20 : 약 1이며, 상기 인산 화합물 및 상기 규회석의 중량비는 약 4 : 약 1 내지 약 20 : 약 1인 것을 특징으로 하는 열가소성 수지 조성물.
- 제1항에 있어서, 상기 고무변성 방향족 비닐계 공중합체 수지는 고무질 중합체에 방향족 비닐계 단량체 및 상기 방향족 비닐계 단량체와 공중합 가능한 단량체가 그라프트 공중합된 그라프트 공중합체 수지 약 10 내지 약 100 중량%; 및 방향족 비닐계 단량체 및 상기 방향족 비닐계 단량체와 공중합 가능한 단량체가 공중합된 방향족 비닐계 공중합체 수지 약 0 내지 약 90 중량%를 포함하는 것을 특징으로 하는 열가소성 수지 조성물.
- 제1항에 있어서, 상기 포스파젠계 화합물은 하기 화학식 2로 표시되는 것을 특징으로 하는 열가소성 수지 조성물:[화학식 2]상기 화학식 3에서, R6, R7, R8, R9, R10, R11, R12, R13, R14 및 R15은 각각 독립적으로 C1-C6의 알킬기, C6-C20의 아릴기, C1-C6의 알킬기가 치환된 C6-C20의 아릴기, C6-C20의 아르알킬기, C1-C6의 알콕시기, C6-C20의 아릴옥시기, 아미노기 또는 히드록시기이고, R16은 C6-C30의 아릴렌기 또는 C1-C6의 알킬기가 치환된 C6-C30의 아릴렌기이며, a 및 b는 0 내지 10의 정수이고, n의 평균값은 약 0.3 내지 약 3이다.
- 제1항에 있어서, 상기 규회석은 평균 세로 길이(직경)가 약 5 내지 약 1,000 ㎛이고, 종횡비(세로:가로)가 약 1 : 약 3 내지 약 1 : 약 15인 것을 특징으로 하는 열가소성 수지 조성물.
- 제1항에 있어서, 상기 폴리카보네이트 수지의 함량은 전체 기초 수지 중 약 50 내지 약 99 중량%이고, 상기 고무변성 방향족 비닐계 공중합체 수지의 함량은 전체 기초 수지 중 약 1 내지 약 50 중량%인 것을 특징으로 하는 열가소성 수지 조성물.
- 제1항에 있어서, 상기 열가소성 수지 조성물은 약 1.5 내지 약 3.0 mm 두께 시편에 대하여, UL94 기준에 따라 측정한 난연도가 5VB인 것을 특징으로 하는 열가소성 수지 조성물.
- 제1항에 있어서, 상기 열가소성 수지 조성물은 ASTM D256에 의거하여 측정한 약 1/8" 두께 시편의 아이조드 충격강도가 약 10 내지 약 70 kgf·cm/cm이고, ASTM D648에 의거하여 측정한 열변형온도(HDT)가 약 70 내지 약 120℃이며, ASTM D1238에 의거하여 약 220℃ 및 약 10 kgf 조건에서 측정한 용융지수(MI)가 약 5 내지 약 60 g/10분인 것을 특징으로 하는 열가소성 수지 조성물.
- 제1항 내지 제8항 중 어느 한 항에 따른 열가소성 수지 조성물로부터 형성된 성형품.
- 제9항에 있어서, 상기 성형품은 두께 약 1.0 내지 약 3.0 mm의 박막형 외장재인 것을 특징으로 하는 성형품.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2014-0131850 | 2014-09-30 | ||
KR1020140131850A KR101743330B1 (ko) | 2014-09-30 | 2014-09-30 | 난연성 열가소성 수지 조성물 및 이를 포함하는 성형품 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016052821A1 true WO2016052821A1 (ko) | 2016-04-07 |
Family
ID=55630830
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2015/001582 WO2016052821A1 (ko) | 2014-09-30 | 2015-02-16 | 난연성 열가소성 수지 조성물 및 이를 포함하는 성형품 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101743330B1 (ko) |
WO (1) | WO2016052821A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115702208A (zh) * | 2020-05-27 | 2023-02-14 | 乐天化学株式会社 | 用于激光直接结构化工艺的热塑性树脂组合物及包含它的成型品 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010072918A (ko) * | 1998-08-26 | 2001-07-31 | 오츠카 유지로 | 분말상 난연제 |
KR20040012675A (ko) * | 2000-10-26 | 2004-02-11 | 니폰 에이 엔 엘 가부시키가이샤 | 난연 및 전자기파 실딩성 열가소성 수지 조성물 |
KR100540582B1 (ko) * | 1999-07-12 | 2006-01-10 | 제일모직주식회사 | 난연성 열가소성 수지조성물 |
KR101194557B1 (ko) * | 2005-02-15 | 2012-10-25 | 미쓰비시 엔지니어링-플라스틱스 코포레이션 | 폴리카보네이트 수지 조성물 및 그의 성형품 |
US20130203905A1 (en) * | 2010-05-27 | 2013-08-08 | Wintech Polymer Ltd. | Polybutylene terephthalate resin composition |
-
2014
- 2014-09-30 KR KR1020140131850A patent/KR101743330B1/ko active IP Right Grant
-
2015
- 2015-02-16 WO PCT/KR2015/001582 patent/WO2016052821A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010072918A (ko) * | 1998-08-26 | 2001-07-31 | 오츠카 유지로 | 분말상 난연제 |
KR100540582B1 (ko) * | 1999-07-12 | 2006-01-10 | 제일모직주식회사 | 난연성 열가소성 수지조성물 |
KR20040012675A (ko) * | 2000-10-26 | 2004-02-11 | 니폰 에이 엔 엘 가부시키가이샤 | 난연 및 전자기파 실딩성 열가소성 수지 조성물 |
KR101194557B1 (ko) * | 2005-02-15 | 2012-10-25 | 미쓰비시 엔지니어링-플라스틱스 코포레이션 | 폴리카보네이트 수지 조성물 및 그의 성형품 |
US20130203905A1 (en) * | 2010-05-27 | 2013-08-08 | Wintech Polymer Ltd. | Polybutylene terephthalate resin composition |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115702208A (zh) * | 2020-05-27 | 2023-02-14 | 乐天化学株式会社 | 用于激光直接结构化工艺的热塑性树脂组合物及包含它的成型品 |
Also Published As
Publication number | Publication date |
---|---|
KR20160039059A (ko) | 2016-04-08 |
KR101743330B1 (ko) | 2017-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013115538A1 (ko) | 비할로겐 난연 고강성 폴리카보네이트 수지 조성물 | |
KR20010012029A (ko) | 난연성 열가소성 수지조성물 | |
WO2012053698A1 (ko) | 폴리카보네이트 수지 조성물 및 이를 이용한 성형품 | |
WO2011081287A2 (ko) | 중합형 인계 화합물을 포함하는 열가소성 수지 조성물, 상기 조성물로부터 성형된 플라스틱 성형품 및 중합형 인계 화합물의 제조방법 | |
WO2012091307A2 (ko) | 난연성 열가소성 수지 조성물 | |
WO2018117424A2 (ko) | 전기적 특성이 우수한 열가소성 수지 조성물 및 이를 이용하여 제조된 성형품 | |
KR101664845B1 (ko) | 저수축 열가소성 수지 조성물 및 이를 포함하는 성형품 | |
WO2018070631A1 (ko) | 열가소성 수지 조성물 및 이로부터 제조된 성형품 | |
WO2019212171A1 (ko) | 폴리카보네이트 수지 조성물 및 이로부터 형성된 성형품 | |
WO2021020741A1 (ko) | 열가소성 수지 조성물 및 이로부터 형성된 성형품 | |
WO2019132584A1 (ko) | 열가소성 수지 조성물 및 이로부터 형성된 성형품 | |
WO2016108539A1 (ko) | 폴리카보네이트 수지 조성물 및 이를 포함하는 성형품 | |
WO2018124790A2 (ko) | 열가소성 수지 조성물 및 이를 이용한 성형품 | |
KR20120078559A (ko) | 폴리카보네이트 수지 조성물 및 이를 포함하는 성형품 | |
KR20030055443A (ko) | 난연성 열가소성 수지조성물 | |
WO2013100303A1 (ko) | 고광택 폴리카보네이트계 수지 조성물 및 그 성형품 | |
WO2016052821A1 (ko) | 난연성 열가소성 수지 조성물 및 이를 포함하는 성형품 | |
WO2020111618A1 (ko) | 열가소성 수지 조성물 및 이로부터 제조된 성형품 | |
WO2018117438A1 (ko) | 수지 조성물 및 이로부터 제조된 성형품 | |
US8133946B2 (en) | Non-halogen flameproof polycarbonate resin composition | |
WO2018124482A2 (ko) | 수지 조성물 및 이로부터 제조된 성형품 | |
WO2013100295A1 (ko) | 난연성 열가소성 수지 조성물 및 이로부터 제조된 성형품 | |
WO2020046013A1 (ko) | 패브릭 질감을 갖는 성형품 | |
WO2020111778A1 (ko) | 열가소성 수지 조성물 및 이를 이용한 성형품 | |
WO2020091279A1 (ko) | 금속질감의 외관을 갖는 고강성 열가소성 수지 및 이를 이용하여 제조된 성형품 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15845839 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15845839 Country of ref document: EP Kind code of ref document: A1 |