Nothing Special   »   [go: up one dir, main page]

WO2019069633A1 - 二次元フリッカ測定装置及び二次元フリッカ測定方法 - Google Patents

二次元フリッカ測定装置及び二次元フリッカ測定方法 Download PDF

Info

Publication number
WO2019069633A1
WO2019069633A1 PCT/JP2018/033492 JP2018033492W WO2019069633A1 WO 2019069633 A1 WO2019069633 A1 WO 2019069633A1 JP 2018033492 W JP2018033492 W JP 2018033492W WO 2019069633 A1 WO2019069633 A1 WO 2019069633A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
flicker
unit
amount
dimensional
Prior art date
Application number
PCT/JP2018/033492
Other languages
English (en)
French (fr)
Inventor
宜弘 西川
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to CN201880063575.4A priority Critical patent/CN111164406B/zh
Priority to US16/641,877 priority patent/US11490028B2/en
Priority to JP2019546595A priority patent/JP7310606B2/ja
Publication of WO2019069633A1 publication Critical patent/WO2019069633A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/745Detection of flicker frequency or suppression of flicker wherein the flicker is caused by illumination, e.g. due to fluorescent tube illumination or pulsed LED illumination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays

Definitions

  • the present invention relates to, for example, a technique for measuring the amount of flicker on a display screen.
  • the flicker amount of the display screen has been evaluated by the flicker amount measured for one measurement area (measurement point) set in the display screen.
  • display screens have become larger.
  • the flicker amount of the display screen can not be evaluated with only the flicker amount of one measurement area, and it has been necessary to provide a plurality of measurement areas. Therefore, there has been proposed a technique for measuring the flicker amount for each of a plurality of measurement areas set in the display screen.
  • Patent Document 1 is a flicker measurement method for measuring the flicker of an image displayed on a display device, and the time is longer by a predetermined additional time than the period of the flicker to be measured.
  • An imaging control step of acquiring an imaging signal generated by sequentially imaging an image by an imaging device; and light intensity in the imaging signal acquired in the imaging control step as data for each additional time Discloses a flicker measurement method of performing a flicker waveform calculation step of calculating a waveform, wherein the flicker waveform calculation step calculates a flicker waveform for each divided area obtained by dividing an image in the imaging signal into a plurality of areas. doing.
  • the measured flicker amount is smaller than the true value of the flicker amount, as described later. This can be prevented by increasing the sampling frequency used to measure the amount of flicker (for example, 512 Hz).
  • the sampling frequency used to measure the amount of flicker for example, 512 Hz.
  • the flicker amount of each of the plurality of measurement areas is measured using a two-dimensional imaging device.
  • a two-dimensional imaging device there are a CCD (Charge Coupled Device) sensor and a CMOS (Complementary MOS) sensor.
  • CCD Charge Coupled Device
  • CMOS Complementary MOS
  • the measurement of the amount of flicker of each of the plurality of measurement areas has a larger amount of data than the measurement of the amount of flicker of one measurement area. Furthermore, when the sampling frequency is high, the amount of data is larger than when the sampling frequency is low. Therefore, when using a high sampling frequency to measure the flicker amount of each of a plurality of measurement areas, the CPU must process data at high speed, and a high performance CPU is required.
  • the present invention provides a two-dimensional flicker measurement device and a two-dimensional flicker measurement method capable of measuring the flicker amount of each of a plurality of measurement areas set in a measurement object with high accuracy using a low sampling frequency.
  • the purpose is
  • a two-dimensional flicker measurement device reflecting one aspect of the present invention includes a photometry unit, a first calculation unit, a second calculation unit, and a correction unit.
  • the photometry unit has a first function of measuring a two-dimensional area at a first sampling frequency, and a second function of measuring an area smaller than the two-dimensional area at a second sampling frequency higher than the first sampling frequency.
  • the function of The plurality of first calculation units are set to the measurement object based on the photometric quantity of the measurement object obtained by the photometry unit measuring the measurement object at the first sampling frequency. The flicker amount of each of the measurement areas of is calculated.
  • the second calculation unit is based on the photometric quantity of the predetermined measurement area obtained by the photometry section measuring the predetermined measurement area set in the measurement object at the second sampling frequency.
  • the flicker amount of the predetermined measurement area is calculated.
  • the correction unit includes the flicker amount calculated by the second calculation unit, and the photometry amount of the predetermined measurement area obtained by measuring the predetermined measurement area by the photometry unit at the first sampling frequency.
  • the flicker amount of each of the plurality of measurement regions calculated by the first calculation unit is corrected using the correction coefficient defined by the flicker amount of the predetermined measurement region calculated based on the reference.
  • FIG. 4 It is a figure which shows the relationship of the color display (DUT) which has a screen used as a measurement object, and a two-dimensional flicker measurement apparatus.
  • DUT color display
  • FIG. 4 It is a block diagram showing composition of a two-dimensional flicker measuring device concerning a 1st embodiment.
  • FIG. 3 is a schematic view showing a state in which a predetermined measurement area is set on the DUT screen shown in FIG. 2; It is a flowchart explaining the operation
  • the measurement target has a function of displaying an image, and in the embodiment, the screen 1 of the DUT (hereinafter, the DUT screen 1) is described as an example.
  • the object to be measured is not limited to the display screen, but may be, for example, a projection projector.
  • the two-dimensional flicker measurement device 3 sets a plurality of measurement areas on the DUT screen 1 based on the instruction of the measurer, and measures the flicker amount simultaneously for the plurality of measurement areas.
  • FIG. 2 is a schematic view of a plane of the DUT screen 1 in which a plurality of measurement areas 15 are set. Here, for example, 25 measurement areas 15 are set in the DUT screen 1.
  • the two-dimensional flicker measurement device 3 obtains the photometric amount based on the image information signal obtained from the measurement object, and calculates the flicker amount based on the photometric amount.
  • the photometric amount is an image information signal output from the two-dimensional imaging device provided in the two-dimensional flicker measurement device 3 and a physical amount that collectively refers to luminance.
  • the luminance can be obtained by arithmetic processing of the image information signal.
  • the two-dimensional flicker measurement device 3 measures the flicker amount by the contrast method, but may measure the flicker amount by the JEITA method.
  • FIG. 3 is a graph showing an example of a luminance signal indicating the luminance of one measurement area 15.
  • the horizontal axis indicates time, and the vertical axis indicates luminance.
  • the luminance signal can be viewed as the alternating current component being stacked on the direct current component.
  • the waveform of the luminance signal is generally in the shape of a sine curve. Assuming that the maximum value of the luminance signal is Lv_max and the minimum value is Lv_min, Lv_max and Lv_min are alternately repeated.
  • the flicker amount according to the contrast method is defined by the following equation.
  • FIG. 4 is a graph showing the measurement results of the luminance signal indicating the luminance of one measurement area 15 by the inventor.
  • the horizontal axis indicates time (milliseconds), and the vertical axis indicates luminance.
  • Lv_true is the true value of the luminance signal.
  • Lv_true has a sine curve-shaped waveform, like the luminance signal of FIG.
  • Lv_h_mes indicates the result of sampling Lv_true at a high sampling frequency.
  • Lv_l_mes indicates the result of sampling Lv_true at a low sampling frequency.
  • FIG. 5 is a graph obtained by enlarging the graph shown in FIG. 4 along the horizontal axis.
  • the maximum value, the minimum value, the value of the DC component, the flicker amount, and the flicker measurement error are shown in Table 1 for each of Lv_true, Lv_h_mes, and Lv_l_mes.
  • Lv_h_mes has a small sampling interval (high sampling frequency). Therefore, Lv_h_mes can roughly capture the maximum value of Lv_true, and the maximum value of Lv_h_mes is approximately the same as the maximum value of Lv_true. Similarly, Lv_h_mes can roughly capture the minimum value of Lv_true, and the minimum value of Lv_h_mes is approximately the same as the minimum value of Lv_true.
  • Lv_true is 1.5000
  • Lv_h_mes is 1.5002.
  • the flicker amount Lv_true is 1.3333
  • Lv_h_mess is 1.3332.
  • the flicker measurement error which is the difference from the true value, is ⁇ 0.01%.
  • Lv_true is 1.5000
  • Lv_l_mes is 1.5075
  • Lv_true is 1.3333
  • Lv_l_mess is 1.3194.
  • the flicker measurement error which is the difference from the true value is ⁇ 1.04%. In high-speed sampling, the flicker measurement error (difference from the true value) is smaller than in low-speed sampling. Thus, as the sampling frequency is lower, the measured value of the flicker amount becomes smaller than the true value of the flicker amount.
  • FIG. 6 is a block diagram showing the configuration of the two-dimensional flicker measurement device 3-1 according to the first embodiment.
  • the two-dimensional flicker measurement device 3-1 includes an optical lens 31, a two-dimensional imaging device 32, an arithmetic processing unit 33, and a communication unit 34.
  • the optical lens 31 converges the light L from the entire DUT screen 1.
  • the light L converged by the optical lens 31 is received by the two-dimensional imaging device 32.
  • the two-dimensional imaging element 32 (photometry unit) is, for example, a CMOS sensor, and is an image sensor having a two-dimensional imaging area.
  • the two-dimensional imaging device 32 captures an image of the DUT screen 1 on which an image is displayed at a predetermined frame rate, and outputs a signal (hereinafter referred to as a brightness signal SG) indicating brightness information of the captured image.
  • the luminance signal SG is a digital electrical signal.
  • the two-dimensional imaging device 32 has a full readout mode and a partial readout mode.
  • the entire readout mode is a mode in which all light receiving elements of the two-dimensional imaging element 32 are targeted for readout, and the DUT screen 1 is imaged at a first frame rate.
  • the first frame rate is a low frame rate (relatively low frame rate), for example, 168 fps, 128 fps, 60 fps.
  • the partial readout mode is a mode in which a part of the imaging area of the two-dimensional imaging element 32 is targeted for readout, and the DUT screen 1 is imaged at a second frame rate higher than the first frame rate.
  • Partial readout is a function of the two-dimensional imaging device. A part of the imaging area corresponds to a predetermined measurement area 15-1 shown in FIG. 7 to be described later, which is a mode in which only image information of the predetermined measurement area 15-1 can be extracted.
  • the partial reading the number of pixels to be read is reduced even in the normal two-dimensional imaging device 32, so that image information can be transferred at a high frame rate (a relatively high frame rate) such as 512 fps. Therefore, even the normal two-dimensional imaging device 32 can extract image information at a high sampling frequency.
  • the frame rate (first frame rate, second frame rate) of the two-dimensional imaging device 32 can be regarded as a sampling frequency. Therefore, in the case of the two-dimensional imaging device 32, the frame rate and the sampling frequency have the same value except for the unit. For the frame rate value, changing the unit from fps to Hz is the sampling frequency. For example, when the frame rate is 512 fps, the sampling frequency is 512 Hz.
  • the luminance signal SG output from the two-dimensional imaging device 32 under 512 fps is a digital signal sampled at 512 Hz.
  • the two-dimensional imaging device 32 is a specific example of the photometry unit.
  • the photometry unit has a first function of measuring a two-dimensional area at a first sampling frequency (for example, 128 Hz) and a second sampling frequency (for example, 512 Hz) higher than the first sampling frequency. And a second function of measuring a small area.
  • the full reading mode is the first function
  • the partial reading mode is the second function.
  • This light receiving device is provided, for example, in a spot type luminance meter, and a light receiving element (for example, a silicon photodiode) that receives light from a predetermined measurement area 15-1 (spot area) and an output from the light receiving element And A / D conversion circuit that converts a signal (luminance signal) from an analog signal to a digital signal at a high sampling frequency.
  • the signal (luminance signal) output from the AD conversion circuit is input to the arithmetic processing unit 33.
  • This aspect does not use the partial readout function of the two-dimensional imaging device 32.
  • the light receiving device is used to obtain the luminance signal of the predetermined measurement area 15 sampled at a high sampling frequency.
  • a photometric unit is configured by the light receiving device and the two-dimensional imaging device 32.
  • the arithmetic processing unit 33 is a hardware processor that executes various settings and calculations required to measure the flicker amount.
  • the arithmetic processing unit 33 is a microcomputer realized by a central processing unit (CPU), a random access memory (RAM), a read only memory (ROM), and the like.
  • the arithmetic processing unit 33 includes, as functional blocks, a first calculation unit 331, a second calculation unit 332, a correction coefficient calculation unit 333, a correction coefficient storage unit 334, and a correction unit 335. These will be described later.
  • part or all of the functions of the arithmetic processing unit 33 may be realized by processing by an FPGA (field programmable gate array) instead of or together with processing by the CPU.
  • part or all of the functions of the arithmetic processing unit 33 may be realized by processing by a dedicated hardware circuit instead of or in addition to processing by software.
  • the communication unit 34 is a communication interface through which the two-dimensional flicker measurement device 3-1 communicates with an external PC (Personal Computer) 5.
  • the measurer operates the PC 5 to make various settings (for example, designation of the center position of the measurement area 15, the number of measurement areas 15) necessary for the measurement of the flicker amount for the two-dimensional flicker measurement apparatus 3-1. , And the like to execute the measurement of the flicker amount.
  • the elements constituting the arithmetic processing unit 33 will be described.
  • the first calculator 331 determines a DUT screen based on the luminance signal SG obtained by capturing an image of the DUT screen 1 on which the two-dimensional imaging device 32 displays an image at a first frame rate (full readout mode).
  • the flicker amount of each of the 25 measurement areas 15 (FIG. 2) set to 1 is calculated.
  • the luminance signal SG is a signal sampled using a first sampling frequency (a low sampling frequency).
  • the first calculation unit 331 uses the photometric quantity of the DUT screen 1 obtained by metering the DUT screen 1 on which the photometry unit (two-dimensional imaging device 32) displays the image at the first sampling frequency.
  • the flicker amount of each of the 25 measurement areas 15 set on the DUT screen 1 is calculated.
  • the first frame rate is, for example, 128 fps
  • the first sampling frequency is 128 Hz.
  • 25 measurement areas 15 are described as the plurality of measurement areas 15 as an example, the number of the plurality of measurement areas 15 is not limited to 25.
  • the first calculator 331 determines a DUT screen based on the luminance signal SG obtained by capturing an image of the DUT screen 1 on which the two-dimensional imaging device 32 displays an image at a first frame rate (full readout mode).
  • the flicker amount of the predetermined measurement area 15-1 set to 1 is calculated.
  • the first calculation unit 331 measures the light of the predetermined measurement area 15-1 set on the DUT screen 1 on which the light measurement unit (two-dimensional imaging device 32) displays the image at the first sampling frequency.
  • the flicker amount of the predetermined measurement area 15-1 is calculated based on the photometric quantity of the predetermined measurement area 15-1 obtained by the above.
  • the predetermined measurement area 15-1 will be described.
  • FIG. 7 is a schematic view showing a state in which a predetermined measurement area 15-1 is set on the DUT screen 1 shown in FIG.
  • the number of predetermined measurement areas 15-1 is one.
  • the measurement area 15 located at the center of the DUT screen 1 is made a predetermined measurement area 15-1.
  • the predetermined measurement area 15-1 is set at the center of the DUT screen 1, but is not limited to this position.
  • an area provided separately from the 25 measurement areas 15 may be set as the predetermined measurement area 15-1. .
  • the second calculator 332 obtains a luminance signal SG obtained by imaging the DUT screen 1 on which an image is displayed by the two-dimensional imaging device 32 at the second frame rate (partial readout mode).
  • the flicker amount of the predetermined measurement area 15-1 is calculated based on This luminance signal is a signal sampled using the second sampling frequency (high sampling frequency).
  • the second calculating unit 332 measures the light of the predetermined measurement area 15-1 set on the DUT screen 1 on which the light measuring unit (two-dimensional imaging device 32) displays the image at the second sampling frequency.
  • the flicker amount of the predetermined measurement area 15-1 is calculated based on the photometric quantity of the predetermined measurement area 15-1 obtained by the above.
  • the second frame rate is, for example, 512 fps
  • the second sampling frequency is 512 Hz.
  • the correction coefficient calculation unit 333 calculates a correction coefficient.
  • the correction coefficient is obtained by imaging the DUT screen 1 on which the image is displayed at the first frame rate of the predetermined measurement area 15-1 calculated by the second calculation unit 332 and the first frame rate of the two-dimensional imaging device 32. It is defined by the flicker amount of the predetermined measurement area 15-1 calculated based on the luminance signal indicating the luminance of the predetermined measurement area 15-1 to be obtained. In other words, the correction coefficient is calculated based on the flicker amount of the predetermined measurement area 15-1 calculated by the second calculation unit 332, and the predetermined measurement area 15- at the first sampling frequency of the photometry unit (two-dimensional imaging device 32).
  • the correction coefficient uses the flicker amount calculated using the second sampling frequency (high sampling frequency) and the first sampling frequency (low sampling frequency) for the predetermined measurement area 15-1. It is defined by the calculated flicker amount.
  • the flicker amount in the predetermined measurement area 15-1 calculated by the second calculation unit 332 and the flicker amount in the predetermined measurement area 15-1 calculated by the first calculation unit 331 are defined. Correction coefficients are used.
  • the correction coefficient is represented, for example, by the following equation 1.
  • Fc_h is a flicker amount calculated using the second sampling frequency for a predetermined measurement area 15-1.
  • Fc — 1 is a flicker amount calculated using the first sampling frequency for a predetermined measurement area 15-1.
  • correction factor does not depend on the location (position)
  • one correction factor commonly applied to the 25 measurement areas 15 can be obtained (25 corrections corresponding to each of the 25 measurement areas 15). Coefficients are not determined).
  • the correction coefficient storage unit 334 stores the correction coefficient in advance before measuring the flicker amount of each of the 25 measurement areas 15 set in the DUT screen 1.
  • the correction unit 335 corrects the flicker amount of each of the 25 measurement areas 15 calculated by the first calculation unit 331 using the correction coefficient stored in the correction coefficient storage unit 334.
  • FIG. 8 is a flowchart illustrating this operation.
  • the measurer operates PC 5 to input a command for calculating a correction coefficient to two-dimensional flicker measurement device 3-1.
  • the arithmetic processing unit 33 sets the two-dimensional imaging device 32 in the partial reading mode, and sets the frame rate of the two-dimensional imaging device 32 at the second frame rate (for example, 512 fps) (step S1 in FIG. 8).
  • the second frame rate is, in other words, the second sampling frequency, which is 512 Hz at 512 fps.
  • the arithmetic processing unit 33 performs control of causing the two-dimensional imaging device 32 to capture an image of the DUT screen 1 on which the image is displayed under the setting of step S1 (step S2 in FIG. 8).
  • the luminance signal SG output from the two-dimensional imaging element 32 is input to the arithmetic processing unit 33 over a preset period (time) (step S3 in FIG. 8).
  • the luminance signal SG here is a luminance signal indicating the luminance of the predetermined measurement area 15-1.
  • the predetermined measurement area 15-1 corresponds to an area of the imaging area of the two-dimensional imaging device 32 which is partially read out.
  • the second calculator 332 calculates the flicker amount of the predetermined measurement area 15-1 based on the luminance signal SG input to the arithmetic processing unit 33 in step S3 (step S4 in FIG. 8).
  • the flicker amount here is the flicker amount (Fc_h) calculated using the second sampling frequency for the predetermined measurement area 15-1.
  • the arithmetic processing unit 33 changes the setting of the two-dimensional imaging device 32 from the partial readout mode to the entire readout mode. Thereby, the arithmetic processing unit 33 sets the frame rate of the two-dimensional imaging device 32 to the first frame rate (for example, 128 fps) (step S5 in FIG. 8).
  • the first frame rate is, in other words, the first sampling frequency, which is 128 Hz at 128 fps.
  • the arithmetic processing unit 33 controls the two-dimensional imaging device 32 to capture an image of the DUT screen 1 on which the image is displayed under the setting of step S5 (step S6 in FIG. 8).
  • the luminance signal SG output from the two-dimensional imaging device 32 is input to the arithmetic processing unit 33 over a preset period (time) (step S7 in FIG. 8).
  • the luminance signal SG here is a luminance signal indicating the luminance of the entire area of the DUT screen 1.
  • the entire area of the DUT screen 1 includes 25 measurement areas 15 (a plurality of measurement areas 15) shown in FIG.
  • the first calculator 331 determines flicker of the predetermined measurement area 15-1 based on the luminance signal SG of the predetermined measurement area 15-1 among the luminance signals SG input to the arithmetic processing unit 33 in step S7.
  • the amount is calculated (step S8 in FIG. 8).
  • the flicker amount here is the flicker amount (Fc_l) calculated using the first sampling frequency for the predetermined measurement area 15-1.
  • the correction coefficient calculation unit 333 calculates a correction coefficient using the flicker amount (Fc_h) calculated in step S4, the flicker amount (Fc_l) calculated in step S8, and Equation 1 (see FIG. 8). Step S9).
  • the correction factor is commonly applied to the 25 measurement areas 15.
  • the correction coefficient calculation unit 333 stores the calculated correction coefficient in the correction coefficient storage unit 334.
  • the correction coefficient may be calculated before shipment from the two-dimensional flicker measurement device 3-1 and stored in the correction coefficient storage unit 334. According to this, the measurer (user) may not calculate the correction coefficient using the two-dimensional flicker measurement device 3-1.
  • FIG. 9 is a flowchart explaining this.
  • the measurer operates PC 5 to input a command to measure the amount of flicker to two-dimensional flicker measurement device 3-1.
  • the arithmetic processing unit 33 sets the two-dimensional imaging device 32 to the entire readout mode, and sets the frame rate of the two-dimensional imaging device 32 to the first frame rate (step S11 in FIG. 9).
  • the first frame rate in step S11 is the same value as the first frame rate in step S5 of FIG. Here, it is 128 fps.
  • the arithmetic processing unit 33 performs control of causing the two-dimensional imaging element 32 to capture an image of the DUT screen 1 on which the image is displayed under the setting of step S11 (step S12 of FIG. 9). Thereby, the luminance signal SG output from the two-dimensional imaging element 32 is input to the arithmetic processing unit 33 (step S13 in FIG. 9).
  • the luminance signal SG here is a luminance signal indicating the luminance of the entire area of the DUT screen 1.
  • the entire area of the DUT screen 1 includes 25 measurement areas 15 (a plurality of measurement areas 15) shown in FIG.
  • the first calculation unit 331 calculates the flicker amount of each of the 25 measurement areas 15 based on the luminance signal SG input to the arithmetic processing unit 33 in step S13 (step S14 in FIG. 9).
  • the flicker amount here is the flicker amount calculated using the first sampling frequency for each of the 25 measurement regions 15.
  • the correction unit 335 corrects the flicker amount of each of the 25 measurement areas 15 calculated in step S14 using the correction coefficient stored in the correction coefficient storage unit 334 (step S15 in FIG. 9).
  • the following equation 2 is used for this correction.
  • F (x, y) _l_mes represents the flicker amount of each of the 25 measurement areas 15 calculated by the first calculation unit 331 in step S14.
  • F (x, y) _true represents the flicker amount of each of the 25 measurement areas 15 corrected in step S15.
  • (X, y) indicate the coordinates of the center point of each of the 25 measurement areas 15.
  • a value obtained by multiplying the flicker amount of the first measurement area 15 calculated by the first calculation unit 331 by the correction coefficient becomes the corrected flicker amount for the first measurement area 15
  • a value obtained by multiplying the flicker amount in the second measurement area 15 calculated by the calculation unit 331 by the correction coefficient is the corrected flicker amount for the second measurement area 15,...
  • the first calculation unit 331 A value obtained by multiplying the flicker amount of the 25th measurement region 15 calculated by the correction coefficient by the correction amount becomes the corrected flicker amount for the 25th measurement region 15.
  • the arithmetic processing unit 33 transmits the corrected flicker amount to the PC 5 for each of the 25 measurement areas 15 using the communication unit 34.
  • the PC 5 displays these flicker amounts on the screen of the PC 5 as measurement values of the flicker amounts of the 25 measurement areas 15 (step S16 in FIG. 9).
  • the two-dimensional flicker measurement device 3-1 uses the first sampling frequency (low sampling frequency) for each of 25 measurement regions 15 (a plurality of measurement regions 15). Then, the flicker amount is calculated (step S14 in FIG. 9) and corrected with the correction coefficient (step S15 in FIG. 9). Therefore, the flicker amount of each of the 25 measurement areas 15 set in the DUT screen 1 can be measured with high accuracy using the low sampling frequency.
  • the luminance signal SG indicating the luminance of the DUT screen 1 obtained by imaging the DUT screen 1 displaying the image at the first frame rate with respect to the two-dimensional imaging device 32 (step S12 in FIG. 9, step S13), interpolation (such as Lagrange interpolation) may be performed. According to this, even if there is no correction coefficient, it is possible to measure the flicker amount of each of the 25 measurement areas 15 set on the DUT screen 1 with high accuracy.
  • the modification 1 can change the correction coefficient in accordance with the value of the drive frequency (frequency of the vertical synchronization signal) of the DUT screen 1.
  • the drive frequency of the first DUT screen 1 is f1
  • the drive frequency of the second DUT screen 1 is f2 (f12f2).
  • the correction coefficient is k1
  • the correction coefficient is k2 (k1 ⁇ k2).
  • the correction coefficient storage unit 334 stores the drive frequency f1 and the correction coefficient k1 in association with each other, and stores the drive frequency f2 and the correction coefficient k2 in association with each other. That is, the correction coefficient storage unit 334 stores in advance a plurality of correction coefficients calculated according to the value of the drive frequency of the DUT screen 1.
  • the correction unit 335 reads the correction coefficient k1 from the correction coefficient storage unit 334 and uses the correction coefficient k1 to perform the first calculation.
  • the flicker amount of each of the 25 measurement areas 15 calculated by the unit 331 is corrected.
  • the drive frequency of the DUT screen 1 may be measured automatically by the two-dimensional flicker measurement device 3-1 using a known technique, or the measurer may use the PC 5 to measure the two-dimensional flicker measurement device 3-1. You may enter
  • the correction unit 335 reads the correction coefficient k2 from the correction coefficient storage unit 334, and uses the correction coefficient k2 to perform the first calculation.
  • the flicker amount of each of the 25 measurement areas 15 calculated by the unit 331 is corrected.
  • the correction unit 335 uses the correction coefficient corresponding to the value of the drive frequency of the DUT screen 1 among the plurality of correction coefficients stored in the correction coefficient storage unit 334, and uses the first calculation unit 331. The flicker amount of each of the 25 measurement areas 15 calculated is corrected.
  • the correction coefficient changes in accordance with the value of the drive frequency of the DUT screen 1. Therefore, when the same correction coefficient is used for the DUT screen 1 of different drive frequency, the measurement accuracy of the flicker amount decreases. According to the first modification, since the correction coefficient is changed in accordance with the value of the drive frequency of the DUT screen 1, such a thing can be prevented.
  • Modification 2 changes the correction coefficient according to the value of the first frame rate (the first frame rate can be reworded as the first sampling frequency). For example, if the value of the first frame rate is v1, the correction coefficient is k1, and if the value of the first frame rate is v2, the correction coefficient is k2 (v1 ⁇ v2, k1 ⁇ k2).
  • the correction coefficient storage unit 334 stores the first frame rate v1 and the correction coefficient k1 in association with each other, and stores the first frame rate v2 and the correction coefficient k2 in association with each other. Thus, the correction coefficient storage unit 334 stores in advance a plurality of correction coefficients calculated according to the value of the first frame rate.
  • the measurer Before the measurement of the flicker amount of each of the 25 measurement regions 15, the measurer inputs the first frame rate value to the two-dimensional flicker measurement device 3-1 using the PC 5 (first input unit) .
  • the correction unit 335 reads the correction coefficient k1 from the correction coefficient storage unit 334, and uses the correction coefficient k1 to calculate the 25 calculated by the first calculation unit 331. Each flicker amount of the measurement area 15 is corrected.
  • the correction unit 335 reads the correction coefficient k2 from the correction coefficient storage unit 334, and uses the correction coefficient k2 to calculate the twenty-five calculated by the first calculation unit 331. Each flicker amount of the measurement area 15 is corrected.
  • correction unit 335 is designated using PC 5 among the plurality of correction coefficients stored in correction coefficient storage unit 334.
  • the flicker amount of each of the 25 measurement areas 15 calculated by the first calculation unit 331 is corrected using the correction coefficient corresponding to the value.
  • the correction factor changes according to the value of the first frame rate. Therefore, regardless of the value of the first frame rate, when the same correction coefficient is used, the measurement accuracy of the flicker amount decreases. According to the second modification, since the value of the correction coefficient is changed according to the value of the first frame rate, such a thing can be prevented.
  • the third modification will be described with reference to FIG.
  • the third modification is a combination of the first modification and the second modification.
  • the drive frequency of the first DUT screen 1 is f1
  • the drive frequency of the second DUT screen 1 is f2 (f12f2)
  • the first frame rate is v1 and v2 (v11, v2). ).
  • the first frame rate can be reworded as a first sampling frequency.
  • the correction coefficient is k1, and in the case of the combination of the drive frequency f1 and the first frame rate v2, the correction coefficient is k2, the drive frequency f2 and the first frame rate In the case of the combination with v1, the correction coefficient is k3, and in the case of the combination of the drive frequency f2 and the first frame rate v2, the correction coefficient is k4 (k1, k2, k3 and k4 are different values).
  • the correction coefficient storage unit 334 stores the combination of the drive frequency f1 and the first frame rate v1 in association with the correction coefficient k1, and stores the combination of the drive frequency f1 and the first frame rate v2 and the correction coefficient.
  • k2 is stored in association with each other, and a combination of the drive frequency f2 and the first frame rate v1 is stored in association with the correction coefficient k3.
  • a combination of the drive frequency f2 with the first frame rate v2 And the correction coefficient k4 are stored in association with each other.
  • the correction coefficient storage unit 334 calculates the plurality of correction coefficients calculated according to the combination of the value of the drive frequency of the DUT screen 1 and the value of the first frame rate in each of the 25 measurement areas 15. It is stored in advance before the measurement of the flicker amount.
  • the measurer Before the measurement of the flicker amount of each of the 25 measurement regions 15, the measurer inputs the first frame rate value to the two-dimensional flicker measurement device 3-1 using the PC 5 (second input unit) . If the first frame rate v1 is input and the drive frequency of the DUT screen 1 is f1, the correction unit 335 reads the correction coefficient k1 from the correction coefficient storage unit 334 and uses the correction coefficient k1 to The flicker amount of each of the 25 measurement areas 15 calculated by the first calculation unit 331 is corrected.
  • the correction unit 335 When the first frame rate v2 is input and the drive frequency of the DUT screen 1 is f1, the correction unit 335 reads the correction coefficient k2 from the correction coefficient storage unit 334 and uses the correction coefficient k2 to The flicker amount of each of the 25 measurement areas 15 calculated by the first calculation unit 331 is corrected. If the first frame rate v1 is input and the drive frequency of the DUT screen 1 is f2, the correction unit 335 reads the correction coefficient k3 from the correction coefficient storage unit 334 and uses the correction coefficient k3 to The flicker amount of each of the 25 measurement areas 15 calculated by the first calculation unit 331 is corrected.
  • the correction unit 335 reads the correction coefficient k4 from the correction coefficient storage unit 334 and uses the correction coefficient k4 to The flicker amount of each of the 25 measurement areas 15 calculated by the first calculation unit 331 is corrected.
  • the correction unit 335 selects one of the plurality of correction coefficients stored in the correction coefficient storage unit 334. , Flicker amount of each of the 25 measurement areas 15 calculated by the first calculation unit 331 using a correction coefficient corresponding to a combination of the value specified using the PC 5 and the value of the drive frequency of the DUT screen 1 Correct the
  • the measurer can select whether to correct the flicker amount. Before the measurement of the flicker amount of each of the 25 measurement areas 15, the measurer uses the PC 5 (third input unit) to instruct whether or not to correct the flicker amount with the two-dimensional flicker measurement device 3- Enter 1 When the instruction to correct the flicker amount is input, the correction unit 335 corrects the flicker amount of each of the 25 measurement areas 15 calculated by the first calculation unit 331 in step S14 (step S15).
  • the correction unit 335 does not correct the flicker amount of each of the 25 measurement areas 15 calculated by the first calculation unit 331 in step S14. That is, the process of step S15 is not performed.
  • the arithmetic processing unit 33 uses the communication unit 34 to transmit the flicker amount (the uncorrected flicker amount) of the 25 measurement areas 15 calculated by the first calculation unit 331 in step S 14 to the PC 5.
  • the PC 5 displays these flicker amounts on the screen of the PC 5 as measurement values of the respective flicker amounts of the plurality of measurement areas 15.
  • the respective flicker amounts of the 25 measurement regions 15 calculated by the first calculation unit 331 can be obtained as relative values of the flicker amounts of the 25 measurement regions 15 without being corrected by the correction coefficient. If the relative value of the flicker amount of each of the 25 measurement areas 15 is sufficient, the measurer instructs not to correct the flicker amount using the PC 5 (third input unit).
  • the modification 4 is also applicable to the second embodiment described below.
  • FIG. 10 is a block diagram showing the configuration of a two-dimensional flicker measurement device 3-2 according to the second embodiment.
  • the two-dimensional flicker measurement device 3-2 according to the second embodiment calculates the correction coefficient in real time when measuring the flicker amount of each of the 25 measurement regions 15.
  • the difference between the two-dimensional flicker measurement device 3-2 according to the second embodiment and the two-dimensional flicker measurement device 3-1 according to the first embodiment will be described.
  • the two-dimensional flicker measurement device 3-2 includes a light splitting unit 35 to which the light L having passed through the optical lens 31 is incident.
  • the light splitting unit 35 splits the light L into the light L1 and the light L2.
  • the light splitting unit 35 is, for example, a half mirror.
  • the two-dimensional flicker measurement device 3-2 uses a first two-dimensional image sensor 36 (first photometric unit) and a second two-dimensional image sensor 37 (second Photometry unit).
  • the first two-dimensional imaging device 36 is disposed in the optical path of the light L1 (one of the two split lights).
  • the second two-dimensional imaging device 37 is disposed in the optical path of the light L2 (the other divided light).
  • the first two-dimensional imaging device 36 captures an image of the DUT screen 1 on which an image is displayed at a first frame rate in the entire readout mode, and outputs a luminance signal SG of the captured image.
  • the first two-dimensional imaging device 36 is, for example, a CMOS sensor or a CCD sensor.
  • the first photometry unit has a first function of measuring the two-dimensional area at the first sampling frequency.
  • the second two-dimensional imaging device 37 captures an image of the DUT screen 1 on which the image is displayed at the second frame rate in the partial readout mode, and outputs a luminance signal SG of the captured image.
  • the second two-dimensional imaging device 37 is, for example, a CMOS sensor.
  • the second photometry unit has a second function of measuring the area smaller than the two-dimensional area at the second sampling frequency higher than the first sampling frequency.
  • the second photometric unit includes a light receiving element (for example, silicon photodiode) for receiving light from a predetermined measurement area 15-1 (spot area), and a signal output from the light receiving element from an analog signal to a digital signal And an AD conversion circuit for converting into According to the second photometric unit, partial transfer is unnecessary because the signal transfer speed is high.
  • a light receiving element for example, silicon photodiode
  • 15-1 spot area
  • AD conversion circuit for converting into According to the second photometric unit, partial transfer is unnecessary because the signal transfer speed is high.
  • the luminance signal SG output from the first two-dimensional imaging device 36 and the luminance signal SG output from the second two-dimensional imaging device 37 are input to the arithmetic processing unit 33.
  • the arithmetic processing unit 33 includes a first calculation unit 336, a second calculation unit 337, a third calculation unit 338, a correction unit 339, and a timing control unit 340.
  • the components other than the timing control unit 340 will be described later.
  • the timing control unit 340 sets the first two-dimensional imaging device in the imaging timings aligned in time series when the second two-dimensional imaging device 37 captures an image of the DUT screen 1 at the second frame rate.
  • control is performed to include imaging timings arranged in time series.
  • FIG. 11 is an explanatory diagram for explaining control of imaging timing.
  • the second frame rate is an integral multiple of the first frame rate.
  • the second frame rate is 500 fps
  • the first frame rate is 100 fps.
  • the imaging timing T1 is arranged in time series at intervals of 0.01 seconds. Since the imaging timing T2 of the second two-dimensional imaging element 37 is 500 fps, the imaging timing T2 is arranged in time series at intervals of 0.002 seconds.
  • the timing control unit 340 sets the reference clock to 100 Hz clock and 500 Hz clock, respectively.
  • a divider circuit is provided to divide the frequency.
  • the first two-dimensional imaging device 36 uses a clock of 100 Hz as a timing signal, and captures an image based on this timing signal.
  • the second two-dimensional imaging device 37 uses a clock of 500 Hz as a timing signal, and captures an image based on this timing signal.
  • the imaging timing T2 of the second two-dimensional imaging device 37 becomes equal to the imaging timing T1 of the first two-dimensional imaging device 36 in a cycle of once every five times. This is because the first two-dimensional imaging device 36 is in an imaging timing T2 aligned in time series when the second two-dimensional imaging device 37 captures an image of the DUT screen 1 at the second frame rate. This means that the imaging timing T1 aligned in time series is included when imaging the DUT screen 1 displaying an image at the first frame rate.
  • FIG. 12 is a flowchart illustrating this operation.
  • an image is displayed on DUT screen 1, and light dividing unit 35 divides light L from the entire DUT screen 1 into light L1 and light L2.
  • the measurer operates the PC 5 to input a command to measure the amount of flicker to the two-dimensional flicker measurement device 3-2.
  • the arithmetic processing unit 33 causes the first two-dimensional imaging element 36 to image the DUT screen 1 displaying the image at the first frame rate, and performs the second two-dimensional imaging at the second frame rate. Control is made to cause the element 37 to pick up an image (step S21 in FIG. 12).
  • the timing control unit 340 controls the imaging timing T1 of the first two-dimensional imaging device 36 and the imaging timing T2 of the second two-dimensional imaging device 37, as described with reference to FIG.
  • the first two-dimensional imaging device 36 outputs the luminance signal SG when the first two-dimensional imaging device 36 images the DUT screen 1 on which the image is displayed at the first frame rate.
  • the second two-dimensional imaging device 37 outputs the luminance signal SG by imaging the DUT screen 1 on which the second two-dimensional imaging device 37 displays an image at the second frame rate.
  • the luminance signal SG output from the first two-dimensional imaging device 36 and the luminance signal SG output from the second two-dimensional imaging device 37 are input to the arithmetic processing unit 33 (step S22 in FIG. 12).
  • the luminance signal SG output from the first two-dimensional imaging device 36 is a luminance signal indicating the luminance of the entire area of the DUT screen 1.
  • the entire area of the DUT screen 1 includes 25 measurement areas 15 (a plurality of measurement areas 15) shown in FIG.
  • the luminance signal SG output from the second two-dimensional imaging device 37 is a signal indicating the luminance of the predetermined measurement area 15-1.
  • the predetermined measurement area 15-1 corresponds to an area to be partially read out of the imaging area of the second two-dimensional imaging element 37.
  • the first calculator 336 calculates the flicker amount of each of the 25 measurement areas 15, and the second calculator 337 calculates the flicker amount of the predetermined measurement area 15-1 (step S23 in FIG. 12). ).
  • the first calculation unit 336 outputs the luminance signal SG output from the first two-dimensional imaging device 36 and input to the arithmetic processing unit 33 (a DUT whose first two-dimensional imaging device 36 displays an image)
  • the amount of flicker of each of the 25 measurement areas 15 is calculated based on the luminance signal SG indicating the luminance of the DUT screen 1 obtained by imaging the screen 1.
  • the first calculation unit 336 is based on the photometric quantity of the DUT screen 1 obtained by measuring the DUT screen 1 on which the first photometry unit (the first two-dimensional imaging device 36) displays an image. Then, the flicker amount of each of the 25 measurement areas 15 is calculated.
  • the second calculation unit 337 captures the luminance signal SG output from the second two-dimensional imaging device 37 and input to the arithmetic processing unit 33 (the image of the DUT screen 1 on which the second two-dimensional imaging device 37 displays an image
  • the flicker amount of the predetermined measurement area 15-1 is calculated based on the luminance signal SG indicating the luminance of the predetermined measurement area 15-1 obtained by
  • the second calculation unit 337 measures the predetermined measurement area 15-1 set on the DUT screen on which the second photometry unit (the second two-dimensional imaging device 37) displays the image.
  • the flicker amount of the predetermined measurement area 15-1 is calculated based on the photometric quantity of the predetermined measurement area 15-1 to be obtained.
  • the third calculating unit 338 calculates the flickering amount of the central measuring area 15 (that is, the predetermined measuring area 15-1) among the flickering amounts of the 25 measuring areas 15 calculated by the first calculating unit 336.
  • the correction coefficient is calculated using the flicker amount calculated by the second calculation unit 337 and the equation 1 (step S24 in FIG. 12).
  • the correction unit 339 corrects the flicker amount of each of the 25 measurement areas 15 calculated in step S23 using the correction coefficient calculated in step S24 (step S25 in FIG. 12).
  • the above equation 2 is used for this correction.
  • the arithmetic processing unit 33 transmits the corrected flicker amount to the PC 5 for each of the 25 measurement areas 15 using the communication unit 34.
  • the PC 5 displays these flicker amounts on the screen of the PC 5 as measurement values of the flicker amounts of the 25 measurement areas 15 (step S26 in FIG. 12).
  • a two-dimensional imaging device for imaging the DUT screen 1 at a first frame rate and a two-dimensional imaging device for imaging the DUT screen 1 at a second frame rate (The second two-dimensional imaging device 37) are separated.
  • the light dividing unit 35 divides the light L from the DUT screen 1 into two, the first two-dimensional imaging device 36 is disposed in the optical path of one of the two divided light L 1, and the second two-dimensional imaging device 37 It is disposed in the optical path of the other split light L2. Therefore, according to the second embodiment, when measuring the flicker amount of each of the 25 measurement regions 15, it is possible to calculate the correction coefficient in real time. Thereby, the measurement accuracy of the flicker amount of each of the 25 measurement regions 15 can be improved.
  • a two-dimensional flicker measurement device includes a first function of measuring a two-dimensional area at a first sampling frequency and a second sampling frequency higher than the first sampling frequency.
  • a photometry unit having a second function of measuring an area smaller than a two-dimensional area; and a photometric quantity of the measurement object obtained by the photometry unit measuring the measurement object at the first sampling frequency
  • First measuring unit that calculates the flicker amount of each of the plurality of measurement areas set for the measurement object, and the photometry unit sets the measurement object at the second sampling frequency
  • a second calculation unit that calculates the flicker amount of the predetermined measurement area based on the photometric quantity of the predetermined measurement area obtained by measuring the predetermined measurement area; and the second calculation unit
  • the predetermined measurement area calculated on the basis of the calculated flicker amount and the photometric quantity of the predetermined measurement area obtained by measuring the predetermined measurement area by the photometry unit at the first sampling frequency
  • a correction unit configured to correct the flicker amount of each of the plurality of measurement areas calculated by the
  • Any one of the plurality of measurement areas may be a predetermined measurement area, or the plurality of measurement areas and another area may be a predetermined measurement area.
  • the latter flicker amount defining the correction coefficient (that is, the predetermined measurement area calculated based on the photometric quantity of the predetermined measurement area obtained by measuring the predetermined measurement area by the photometry unit at the first sampling frequency
  • the flicker amount may be calculated in advance by the first calculation unit before the flicker amounts of the plurality of measurement areas are calculated by the first calculation unit.
  • the correction coefficient Before the measurement of each flicker amount of the measurement area, the correction coefficient is stored in advance), and when the flicker amount of each of the plurality of measurement areas is calculated by the first calculation unit, the first calculation unit It may be calculated (according to this, the correction coefficient is calculated in real time at the time of measuring the flicker amount of each of the plurality of measurement areas).
  • the first calculation unit determines the measurement object based on the photometric quantity (for example, luminance) of the measurement object obtained by measuring the measurement object at the first sampling frequency (low sampling frequency) by the photometry unit.
  • the flicker amount of each of the plurality of measurement areas set in is calculated.
  • the second calculation unit is configured to measure the photometric amount of a predetermined measurement area (for example, luminance) obtained by measuring the predetermined measurement area set in the measurement object at the second sampling frequency (high sampling frequency). The amount of flicker in a predetermined measurement area is calculated on the basis of.
  • a predetermined measurement area for example, luminance
  • the correction coefficient is based on the flicker amount of the predetermined measurement area calculated by the second calculation unit and the photometric amount of the predetermined measurement area obtained by measuring the predetermined measurement area by the photometry unit at the first sampling frequency. It is defined by the flicker amount of the predetermined measurement area calculated by In other words, the correction coefficient is a flicker amount obtained using the second sampling frequency (high sampling frequency) and a first sampling frequency (low sampling frequency) for a predetermined measurement area. It is defined by the quantity.
  • the correction unit is configured to calculate the flicker amount of each of the plurality of measurement areas calculated by the first calculation unit using the correction coefficient (each of the plurality of measurement areas calculated by the first calculation unit using the first sampling frequency). Correct the flicker amount). Thereby, the measurement accuracy of the flicker amount can be increased.
  • the two-dimensional flicker measurement device calculates the flicker amount using the first sampling frequency (low sampling frequency) for each of the plurality of measurement regions, and uses the correction coefficient to correct. Therefore, the low sampling frequency can be used to measure the flicker amount of each of the plurality of measurement areas set in the measurement object with high accuracy.
  • the image processing apparatus further includes a storage unit that stores in advance the correction coefficient calculated before the measurement of the flicker amount of each of the plurality of measurement areas, and the correction unit further includes the correction coefficient stored in the storage unit.
  • the flicker amount of each of the plurality of measurement areas calculated by the first calculation unit is corrected using
  • the correction coefficient stored in the storage unit may be calculated using a two-dimensional flicker measurement device before shipment from the two-dimensional flicker measurement device, or the user may measure the object using the two-dimensional flicker measurement device. It may be calculated using a two-dimensional flicker measurement device before measuring the flicker amount of each of the plurality of measurement regions set to.
  • the storage unit stores in advance the plurality of correction coefficients calculated according to the value of the drive frequency of the measurement object, and the correction unit stores the plurality of correction coefficients stored in the storage unit.
  • the flicker amount of each of the plurality of measurement areas calculated by the first calculation unit is corrected using the correction coefficient corresponding to the value of the drive frequency of the measurement object among the correction coefficients.
  • the correction coefficient changes according to the value of the drive frequency of the measurement object (for example, display screen). Therefore, when the same correction coefficient is used for measurement objects of different drive frequencies, the measurement accuracy of the flicker amount decreases. According to this configuration, since the correction coefficient is changed according to the value of the drive frequency of the measurement object, such a thing can be prevented.
  • the above-mentioned configuration further includes a first input unit, and the storage unit stores in advance a plurality of the correction coefficients calculated according to the value of the first sampling frequency, and the first input unit
  • the correction unit is designated using the first input unit among the plurality of correction coefficients stored in the storage unit.
  • the flicker amount of each of the plurality of measurement areas calculated by the first calculation unit is corrected using the correction coefficient corresponding to the value.
  • This configuration assumes that the two-dimensional flicker measurement device has a function capable of changing the value of the first sampling frequency.
  • the correction coefficient changes in accordance with the value of the first sampling frequency. Therefore, regardless of the value of the first sampling frequency, when the same correction coefficient is used, the measurement accuracy of the flicker amount decreases. According to this configuration, since the value of the correction coefficient is changed according to the value of the first sampling frequency, such a thing can be prevented.
  • the semiconductor device further includes a second input unit
  • the storage unit is configured to calculate the plurality of correction coefficients calculated according to a combination of the value of the drive frequency of the measurement object and the value of the first sampling frequency. Is stored in advance, and when the value of the first sampling frequency is designated using the second input unit, the correction unit is configured to store the plurality of correction coefficients stored in the storage unit. Among them, the plurality of the plurality calculated by the first calculation unit using the correction coefficient corresponding to the combination of the value designated using the second input unit and the value of the drive frequency of the measurement object The flicker amount of each of the measurement areas is corrected.
  • This configuration is a combination of the above two configurations (the correction coefficient is changed according to the value of the drive frequency of the measurement object. The correction coefficient is changed according to the value of the first sampling frequency). This configuration has the same effect as the above two configurations.
  • the photometry unit includes a two-dimensional imaging device having the first function and the second function, and the second function is a partial readout function.
  • the first function and the second function are realized by one two-dimensional imaging device.
  • the semiconductor device further includes a light splitting unit that splits light from the object to be measured into two, and the photometry unit is disposed in the optical path of one of the two split lights. And a second photometry unit disposed in the light path of the other light split into two and having the second function, and the first calculation unit includes the first photometry unit.
  • the second calculation unit calculates the flicker amount of each of the plurality of measurement areas based on the photometric quantity of the measurement subject obtained by photometrically measuring the measurement subject.
  • the second photometry unit calculates the flicker amount of the predetermined measurement area based on the photometric amount of the predetermined measurement area obtained by measuring the predetermined measurement area, and one of the plurality of measurement areas Is the predetermined measurement area, and the two-dimensional flicker measurement device Among the flicker amounts of the plurality of measurement areas calculated by the first calculation unit, the flicker amount of the predetermined measurement area and the flicker amount calculated by the second calculation unit are used.
  • the system further includes a third calculation unit that calculates a correction coefficient, and the correction unit is configured to calculate the plurality of measurement areas calculated by the first calculation unit using the correction coefficient calculated by the third calculation unit. Correct each flicker amount.
  • a light measuring unit that measures light at a first sampling frequency and a light measuring unit (second light measuring unit) that measures light at a second sampling frequency are separately provided.
  • the light splitting unit splits the light from the object to be measured into two, the first photometric unit is disposed in the light path of one of the two split light, and the second photometric unit is in the other two split light path Be placed. Therefore, according to this configuration, it is possible to calculate the correction coefficient in real time when measuring the flicker amount of each of the plurality of measurement areas. Thereby, the measurement accuracy of the flicker amount of each of the plurality of measurement areas can be improved.
  • the first photometry unit includes a first two-dimensional imaging device
  • the second photometry unit is a second two-dimensional imaging device having a partial readout function as the second function
  • it includes a light receiving element that receives light from a spot area smaller than the imaging area of the first two-dimensional imaging element.
  • the second photometry unit does not have to be a two-dimensional imaging device because it measures the predetermined measurement area set in the measurement object.
  • a third input unit is further provided, and before the measurement of the flicker amount of each of the plurality of measurement areas, when an instruction to correct the flicker amount is issued using the third input unit, The correction unit corrects the flicker amount of each of the plurality of measurement areas calculated by the first calculation unit, and uses the third input unit before measuring the flicker amount of each of the plurality of measurement areas. When an instruction not to correct the flicker amount is given, the correction unit does not correct the flicker amount of each of the plurality of measurement areas calculated by the first calculation unit.
  • the flicker amount of each of the plurality of measurement regions calculated by the first calculation unit can be obtained as a relative value of the flicker amount of each of the plurality of measurement regions even without correction by the correction coefficient. If the relative value of the flicker amount of each of the plurality of measurement areas is sufficient, the measurer instructs not to correct the flicker amount using the third input unit.
  • a two-dimensional flicker measurement method includes a first function of measuring a two-dimensional area at a first sampling frequency, and a second sampling frequency higher than the first sampling frequency.
  • a two-dimensional flicker measurement method for measuring the amount of flicker of each of a plurality of measurement areas set on a measurement object, using a photometry unit having a second function of measuring an area smaller than a dimensional area.
  • Each of the plurality of measurement areas set for the measurement object based on the photometric quantity of the measurement object obtained by the photometry unit measuring the measurement object at the first sampling frequency In the first calculation step of calculating each flicker amount, and the photometry unit photometrically measuring a predetermined measurement area set for the measurement object at the second sampling frequency A second calculation step of calculating a flicker amount of the predetermined measurement area based on the obtained light measurement amount of the predetermined measurement area, the flicker amount calculated in the second calculation step, and the photometry unit A correction defined by the flicker amount of the predetermined measurement area calculated based on the photometric amount of the predetermined measurement area obtained by measuring the predetermined measurement area at the first sampling frequency Correcting the flicker amount of each of the plurality of measurement areas calculated in the first calculation step using a coefficient.
  • the two-dimensional flicker measurement method according to the second aspect of the embodiment defines the two-dimensional flicker measurement device according to the first aspect of the embodiment from the viewpoint of the method, and the two-dimensional flicker measurement according to the first aspect of the embodiment It has the same effect as the device.
  • a two-dimensional flicker measurement device and a two-dimensional flicker measurement method can be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Signal Processing (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Measurement Of Radiation (AREA)
  • Studio Devices (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Liquid Crystal (AREA)

Abstract

二次元フリッカ測定装置は、第1のサンプリング周波数で測定対象物を測光することにより得られる測光量を基にして、測定対象物に設定された複数の測定領域のぞれぞれのフリッカ量を算出する第1の算出部と、第2のサンプリング周波数で測定対象物に設定された所定の測定領域を測光することにより得られる測光量を基にして、所定の測定領域のフリッカ量を算出する第2の算出部と、第2の算出部が算出したフリッカ量と、第1のサンプリング周波数で所定の測定領域を測光することにより得られる測光量を基にして算出された所定の測定領域のフリッカ量と、によって規定される補正係数を用いて、第1の算出部が算出した複数の測定領域のそれぞれのフリッカ量を補正する補正部と、を備える。

Description

二次元フリッカ測定装置及び二次元フリッカ測定方法
 本発明は、例えば、ディスプレイ画面のフリッカ量を測定する技術に関する。
 従来、ディスプレイ画面内に設定された1つの測定領域(測定点)について測定されたフリッカ量によって、ディスプレイ画面のフリッカ量が評価されていた。しかしながら、近年、ディスプレイ画面が大型化している。大型のディスプレイ画面の場合、1つ測定領域のフリッカ量だけでは、ディスプレイ画面のフリッカ量の評価ができず、測定領域を複数設ける必要がでてきた。そこで、ディスプレイ画面内に設定された複数の測定領域のそれぞれについて、フリッカ量を測定する技術が提案されている。
 このような技術として、例えば、特許文献1は、表示装置で表示される画像のフリッカを測定するフリッカ測定方法であって、測定対象のフリッカの周期より所定の追加時間分長い時間間隔で、前記画像を撮像装置で順次撮像させて生成される撮像信号を取得する画像撮像制御工程と、この画像撮像制御工程で取得した撮像信号における光の強さを、前記追加時間毎のデータとして前記フリッカの波形を演算するフリッカ波形演算工程と、を実施し、前記フリッカ波形演算工程は、前記撮像信号における画像を複数の領域に分割した分割領域毎にフリッカの波形をそれぞれ演算する、フリッカ測定方法を開示している。
 低いサンプリング周波数(例えば、128Hz)を用いてフリッカ量が測定された場合、後で説明するように、フリッカ量の真値に比べて、測定されたフリッカ量が小さくなる。フリッカ量の測定に用いるサンプリング周波数を高くすれば(例えば、512Hz)、これを防止することができる。しかし、高いサンプリング周波数を用いて、複数の測定領域のそれぞれのフリッカ量を測定する場合、以下の問題が生じる。
 複数の測定領域のそれぞれのフリッカ量は、二次元撮像素子を用いて測定される。二次元撮像素子として、CCD(Charge Coupled Device)センサー、CMOS(Complementary MOS)センサーがある。いずれも蓄積電荷の量が多いと、出力信号が大きくなり、蓄積電荷の量が少ないと、出力信号が小さくなる。サンプリング周波数が高くなると、電荷の蓄積時間が短くなるので、出力信号が低下する。従って、出力信号のSN比が悪くなる。
 複数の測定領域のそれぞれのフリッカ量の測定は、一つの測定領域のフリッカ量の測定と比べて、データ量が多くなる。さらに、サンプリング周波数が高い場合、サンプリング周波数が低い場合と比べて、データ量が多くなる。従って、高いサンプリング周波数を用いて、複数の測定領域のそれぞれのフリッカ量を測定する場合、CPUは、高速でデータを処理しなければならず、高性能なCPUが要求される。
 ここでの高いサンプリング周波数とは、例えば、512Hzである。この値は、通常の二次元撮像素子のフレームレート(例えば、60fps(=60Hz)、128fps(=128Hz))と比べて、相当大きい。通常の二次元撮像素子では、高いサンプリング周波数に対応することができない。
特開2011-169842号公報
 本発明は、低いサンプリング周波数を用いて、測定対象物に設定された複数の測定領域のそれぞれのフリッカ量を高精度に測定することができる二次元フリッカ測定装置及び二次元フリッカ測定方法を提供することを目的とする。
 上述した目的を実現するために、本発明の一側面を反映した二次元フリッカ測定装置は、測光部と、第1の算出部と、第2の算出部と、補正部と、を備える。前記測光部は、第1のサンプリング周波数で二次元領域を測光する第1の機能と、前記第1のサンプリング周波数より高い第2のサンプリング周波数で、前記二次元領域より小さい領域を測光する第2の機能と、を有する。前記第1の算出部は、前記測光部が前記第1のサンプリング周波数で測定対象物を測光することにより得られる前記測定対象物の測光量を基にして、前記測定対象物に設定された複数の測定領域のぞれぞれのフリッカ量を算出する。前記第2の算出部は、前記測光部が前記第2のサンプリング周波数で前記測定対象物に設定された所定の測定領域を測光することにより得られる前記所定の測定領域の測光量を基にして、前記所定の測定領域のフリッカ量を算出する。前記補正部は、前記第2の算出部が算出したフリッカ量と、前記測光部が前記第1のサンプリング周波数で前記所定の測定領域を測光することにより得られる前記所定の測定領域の測光量を基にして算出された前記所定の測定領域のフリッカ量と、によって規定される補正係数を用いて、前記第1の算出部が算出した前記複数の測定領域のそれぞれのフリッカ量を補正する。
 発明の1又は複数の実施形態により与えられる利点及び特徴は以下に与えられる詳細な説明及び添付図面から十分に理解される。これら詳細な説明及び添付図面は、例としてのみ与えられるものであり本発明の限定の定義として意図されるものではない。
測定対象物となる画面を有するカラーディスプレイ(DUT)と二次元フリッカ測定装置との関係を示す図である。 複数の測定領域が設定されたDUT画面の平面の模式図である。 一つの測定領域の輝度を示す輝度信号の一例を示すグラフである。 本発明者が、一つの測定領域の輝度を示す輝度信号を測定した結果を示すグラフである。 図4に示すグラフを横軸に沿って拡大したグラフである。 第1実施形態に係る二次元フリッカ測定装置の構成を示すブロック図である。 図2に示すDUT画面において、所定の測定領域が設定された状態を示す模式図である。 第1実施形態に係る二次元フリッカ測定装置を用いて、補正係数を算出する動作を説明するフローチャートである。 第1実施形態に係る二次元フリッカ測定装置を用いて、DUT画面内の25個の測定領域のそれぞれのフリッカ量を測定する動作を説明するフローチャートである。 第2実施形態に係る二次元フリッカ測定装置の構成を示すブロック図である。 撮像タイミングの制御を説明する説明図である。 第2実施形態に係る二次元フリッカ装置の動作で説明するフローチャートである。
 以下、図面を参照して、本発明の1又は複数の実施形態が説明される。しかし、発明の範囲は、開示された実施形態に限定されない。
 各図において、同一符号を付した構成は、同一の構成であることを示し、その構成について、既に説明している内容については、その説明を省略する。本明細書において、総称する場合には添え字を省略した参照符号(例えば、二次元フリッカ測定装置3)で示し、個別の構成を指す場合には添え字を付した参照符号(例えば、二次元フリッカ測定装置3-1,3-2)で示す。
 図1は、測定対象物となる画面1を有するカラーディスプレイ(DUT=Device Under Test)と二次元フリッカ測定装置3との関係を示す図である。測定対象物は、画像を表示する機能を有しており、実施形態では、DUTの画面1(以下、DUT画面1)を例にして説明する。測定対象物は、ディスプレイ画面に限らず、他に、例えば、投射型プロジェクターでもよい。
 二次元フリッカ測定装置3は、測定者の指示に基づいて、DUT画面1に複数の測定領域を設定し、複数の測定領域について、同時にフリッカ量を測定する。図2は、複数の測定領域15が設定されたDUT画面1の平面の模式図である。ここでは、DUT画面1に、例えば、25個の測定領域15が設定されている。
 以下では、輝度を用いてフリッカ量が測定される例で説明するが、測光量(明るさ)でもよい。二次元フリッカ測定装置3は、測定対象物から得られた画像情報信号を基にして、測光量を求め、この測光量を基にして、フリッカ量を演算する。測光量は、二次元フリッカ測定装置3に備えられる二次元撮像素子から出力される画像情報信号、および、輝度を総称する物理量である。輝度は、画像情報信号を演算処理して求められる。
 フリッカ量の測定方式として、コントラスト方式とJEITA(Japan Electronics and Information Technology Industries Association)方式とがある。二次元フリッカ測定装置3は、コントラスト方式でフリッカ量を測定するが、JEITA方式でフリッカ量を測定してもよい。
 図3は、一つの測定領域15の輝度を示す輝度信号の一例を示すグラフである。横軸が時間を示し、縦軸が輝度を示す。輝度信号は、直流成分の上に交流成分が積み重なっていると見ることができる。輝度信号の波形は、一般的にサインカーブ形状である。輝度信号の最大値をLv_max、最小値をLv_min、とすると、Lv_maxとLv_minとが交互に繰り返される。
 コントラスト方式によるフリッカ量は、以下の式で定義される。
  フリッカ量=交流成分AC/直流成分DC
 輝度信号のサンプリング周波数が低くなると、フリッカ量の測定値がフリッカ量の真値と比べて小さくなることを説明する。図4は、本発明者が、一つの測定領域15の輝度を示す輝度信号を測定した結果を示すグラフである。横軸が時間(ミリ秒)を示し、縦軸が輝度を示す。Lv_trueは、輝度信号の真値である。Lv_trueは、図3の輝度信号と同様に、サインカーブ形状の波形を有する。Lv_h_mesは、高いサンプリング周波数でLv_trueをサンプリングした結果を示す。Lv_l_mesは、低いサンプリング周波数でLv_trueをサンプリングした結果を示す。図5は、図4に示すグラフを横軸に沿って拡大したグラフである。Lv_true、Lv_h_mes、Lv_l_mesのそれぞれについて、最大値、最小値、直流成分の値、フリッカ量、フリッカ測定誤差を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1及び図5を参照して、Lv_h_mesは、サンプリングの間隔が小さい(サンプリング周波数が高い)。このため、Lv_h_mesは、Lv_trueの最大値を概ね捕捉できており、Lv_h_mesの最大値は、Lv_trueの最大値と概ね同じとなる。同様に、Lv_h_mesは、Lv_trueの最小値を概ね捕捉できており、Lv_h_mesの最小値は、Lv_trueの最小値と概ね同じとなる。直流成分の値について、Lv_trueは、1.5000であるのに対して、Lv_h_mesは、1.5002である。フリッカ量について、Lv_trueは、1.3333であるのに対して、Lv_h_messは、が1.3332である。真値との差であるフリッカ測定誤差は、-0.01%である。
 これに対して、Lv_l_mesは、サンプリングの間隔が大きい(サンプリング周波数が低い)。このため、Lv_trueの最大値を捕捉できず、これより小さい値(=2.4945)を捕捉している。同じ理由で、Lv_trueの最小値を捕捉できず、これより大きい値(=0.5055)を捕捉している。直流成分の値について、Lv_trueは、1.5000であるのに対して、Lv_l_mesは、1.5075である。フリッカ量について、Lv_trueは、1.3333であるのに対して、Lv_l_messは、が1.3194である。真値との差であるフリッカ測定誤差は、-1.04%である。高速サンプリングの方が、低速サンプリングよりフリッカ測定誤差(真値との差)が小さくなる。このように、サンプリング周波数が低いほど、フリッカ量の測定値がフリッカ量の真値より小さくなる。
 図6は、第1実施形態に係る二次元フリッカ測定装置3-1の構成を示すブロック図である。二次元フリッカ測定装置3-1は、光学レンズ31と、二次元撮像素子32と、演算処理部33と、通信部34と、を備える。光学レンズ31は、DUT画面1の全体からの光Lを収束する。光学レンズ31で収束された光Lは、二次元撮像素子32で受光される。
 二次元撮像素子32(測光部)は、例えば、CMOSセンサーであり、二次元の撮像領域を有する画像センサーである。二次元撮像素子32は、画像を表示したDUT画面1を所定のフレームレートで撮像し、撮像した画像の輝度情報を示す信号(以下、輝度信号SG)を出力する。輝度信号SGは、デジタルの電気信号である。
 二次元撮像素子32は、全体読み出しモードと部分読み出しモードとを有する。全体読み出しモードは、二次元撮像素子32の全受光素子を読み出しの対象とし、第1のフレームレートでDUT画面1を撮像するモードである。第1のフレームレートは、低いフレームレート(相対的に低いフレームレート)であり、例えば、168fps、128fps、60fpsである。
 部分読み出しモードは、二次元撮像素子32の撮像領域の一部分を読み出しの対象とし、第1のフレームレートより高い第2のフレームレートでDUT画面1を撮像するモードである。部分読み出しは、二次元撮像素子が有する機能である。撮像領域の一部分が、後で説明する図7に示す所定の測定領域15-1と対応し、所定の測定領域15-1の画像情報のみを取り出すことができるモードである。部分読み出しによれば、通常の二次元撮像素子32でも、読み出す画素数が少なくなるので、例えば、512fpsのような高いフレームレート(相対的に高いフレームレート)で画像情報を転送できる。よって、通常の二次元撮像素子32でも、高いサンプリング周波数で画像情報を取り出すことができる。
 二次元撮像素子32のフレームレート(第1のフレームレート、第2のフレームレート)は、サンプリング周波数と見なすことができる。従って、二次元撮像素子32の場合、フレームレートとサンプリング周波数とは、単位が異なるだけで、値は同じである。フレームレートの値について、単位をfpsからHzに変えるとサンプリング周波数となる。例えば、フレームレートが512fpsのとき、サンプリング周波数は512Hzとなる。512fpsの下で二次元撮像素子32が出力した輝度信号SGは、512Hzでサンプリングされたデジタル信号である。
 以上説明したように、二次元撮像素子32は、測光部の具体例である。測光部は、第1のサンプリング周波数(例えば、128Hz)で二次元領域を測光する第1の機能と、第1のサンプリング周波数より高い第2のサンプリング周波数(例えば、512Hz)で、二次元領域より小さい領域を測光する第2の機能と、を有する。第1実施形態において、全体読み出しモードが第1の機能であり、部分読み出しモードが第2の機能である。
 なお、二次元フリッカ測定装置3-1と、以下の受光装置(不図示)と、を備える態様でもよい。この受光装置は、例えば、スポットタイプの輝度計に備えられ、所定の測定領域15-1(スポット領域)からの光を受光する受光素子(例えば、シリコンフォトダイオード)と、受光素子から出力された信号(輝度信号)を、高いサンプリング周波数でアナログ信号からデジタル信号に変換するAD変換回路と、を含む。AD変換回路から出力された信号(輝度信号)が演算処理部33に入力される。この態様は、二次元撮像素子32の部分読み出し機能を用いない。この態様は、受光装置を用いて、高いサンプリング周波数でサンプリングされた、所定の測定領域15の輝度信号を得ている。この態様では、受光装置と二次元撮像素子32とにより、測光部が構成される。
 演算処理部33は、フリッカ量の測定に必要な各種の設定、演算を実行するハードウェアプロセッサである。詳しくは、演算処理部33は、CPU(Central Processing Unit)、RAM(Random Access Memory)、および、ROM(Read Only Memory)等によって実現されるマイクロコンピュータである。演算処理部33は、機能ブロックとして、第1の算出部331と、第2の算出部332と、補正係数算出部333と、補正係数記憶部334と、補正部335と、を備える。これらについては後で説明する。
 なお、演算処理部33の機能の一部又は全部は、CPUによる処理に替えて、又は、これと共に、FPGA(field programmable gate array)による処理によって実現されてもよい。又、同様に、演算処理部33の機能の一部又は全部は、ソフトウェアによる処理に替えて、又は、これと共に、専用のハードウェア回路による処理によって実現されてもよい。
 通信部34は、二次元フリッカ測定装置3-1が外部のPC(Personal Computer)5と通信する通信インターフェイスである。測定者は、PC5を操作することにより、二次元フリッカ測定装置3-1に対して、フリッカ量の測定に必要な各種設定(例えば、測定領域15の中心位置の指定、測定領域15の数)、フリッカ量の測定を実行する命令等をする。
 演算処理部33を構成する要素について説明する。第1の算出部331は、二次元撮像素子32が第1のフレームレート(全体読み出しモード)で、画像を表示したDUT画面1を撮像することにより得られる輝度信号SGを基にして、DUT画面1に設定された25個の測定領域15(図2)のぞれぞれのフリッカ量を算出する。この輝度信号SGは、第1のサンプリング周波数(低いサンプリング周波数)を用いてサンプリングされた信号である。言い換えれば、第1の算出部331は、測光部(二次元撮像素子32)が第1のサンプリング周波数で、画像を表示したDUT画面1を測光することにより得られるDUT画面1の測光量を基にして、DUT画面1に設定された25個の測定領域15のぞれぞれのフリッカ量を算出する。第1のフレームレートが、例えば、128fpsのとき、第1のサンプリング周波数は128Hzとなる。複数の測定領域15として25個の測定領域15を例にして説明するが、複数の測定領域15の数は25個に限定されない。
 第1の算出部331は、二次元撮像素子32が第1のフレームレート(全体読み出しモード)で、画像を表示したDUT画面1を撮像することにより得られる輝度信号SGを基にして、DUT画面1に設定された所定の測定領域15-1のフリッカ量を算出する。言い換えれば、第1の算出部331は、測光部(二次元撮像素子32)が第1のサンプリング周波数で、画像を表示したDUT画面1に設定された所定の測定領域15-1を測光することにより得られる所定の測定領域15-1の測光量を基にして、所定の測定領域15-1のフリッカ量を算出する。所定の測定領域15-1について説明する。図7は、図2に示すDUT画面1において、所定の測定領域15-1が設定された状態を示す模式図である。所定の測定領域15-1の数は、一つである。図2に示す25個の測定領域15のうち、DUT画面1の中央に位置する測定領域15が所定の測定領域15-1にされている。所定の測定領域15-1は、DUT画面1の中央に設定されているが、この位置に限定されない。25個の測定領域15の中の一つが所定の測定領域15-1にされているが、25個の測定領域15とは別に設けられた領域が所定の測定領域15-1にされてもよい。
 図6を参照して、第2の算出部332は、二次元撮像素子32が第2のフレームレート(部分読み出しモード)で、画像を表示したDUT画面1を撮像することにより得られる輝度信号SGを基にして、所定の測定領域15-1のフリッカ量を算出する。この輝度信号は、第2のサンプリング周波数(高いサンプリング周波数)を用いてサンプリングされた信号である。言い換えれば、第2の算出部332は、測光部(二次元撮像素子32)が第2のサンプリング周波数で、画像を表示したDUT画面1に設定された所定の測定領域15-1を測光することにより得られる所定の測定領域15-1の測光量を基にして、所定の測定領域15-1のフリッカ量を算出する。第2のフレームレートが、例えば、512fpsのとき、第2のサンプリング周波数は512Hzとなる。
 補正係数算出部333は、補正係数を算出する。補正係数は、第2の算出部332が算出した所定の測定領域15-1のフリッカ量と、二次元撮像素子32が第1のフレームレートで、画像を表示したDUT画面1を撮像することにより得られる所定の測定領域15-1の輝度を示す輝度信号を基にして算出された所定の測定領域15-1のフリッカ量と、によって規定される。言い換えれば、補正係数は、第2の算出部332が算出した所定の測定領域15-1のフリッカ量と、測光部(二次元撮像素子32)が第1のサンプリング周波数で所定の測定領域15-1を測光することにより得られる所定の測定領域15-1の測光量を基にして算出された所定の測定領域15-1のフリッカ量と、によって規定される。さらに、言い換えれば、補正係数は、所定の測定領域15-1について、第2のサンプリング周波数(高いサンプリング周波数)を用いて算出されたフリッカ量と、第1のサンプリング周波数(低いサンプリング周波数)を用いて算出されたフリッカ量と、によって規定される。第1実施形態では、第2の算出部332が算出した所定の測定領域15-1のフリッカ量と、第1の算出部331が算出した所定の測定領域15-1のフリッカ量と、によって規定される補正係数が用いられる。
 補正係数は、例えば、以下の式1で示される。
    k=Fc_h/Fc_l・・・式1
 ここで、kは、補正係数である。Fc_hは、所定の測定領域15-1について、第2のサンプリング周波数を用いて算出されたフリッカ量である。Fc_lは、所定の測定領域15-1について、第1のサンプリング周波数を用いて算出されたフリッカ量である。
 補正係数は、場所(位置)に依存しないので、25個の測定領域15に対して共通に適用される一つの補正係数が求められる(25個の測定領域15のそれぞれに対応する25個の補正係数が求められるのではない)。
 補正係数記憶部334は、DUT画面1に設定された25個の測定領域15のそれぞれのフリッカ量の測定前に、補正係数を予め記憶している。
 補正部335は、補正係数記憶部334に記憶されている補正係数を用いて、第1の算出部331が算出した25個の測定領域15のそれぞれのフリッカ量を補正する。
 第1実施形態に係る二次元フリッカ測定装置3-1を用いて、補正係数を算出する動作について説明する。図8は、この動作を説明するフローチャートである。
 図6を参照して、測定者は、PC5を操作して、補正係数を算出する命令を二次元フリッカ測定装置3-1に入力する。これにより、演算処理部33は、二次元撮像素子32を部分読み出しモードに設定し、二次元撮像素子32のフレームレートを第2のフレームレート(例えば、512fps)に設定する(図8のステップS1)。第2のフレームレートは、言い換えれば、第2のサンプリング周波数であり、512fpsのとき、512Hzである。
 演算処理部33は、ステップS1の設定の下で、画像を表示したDUT画面1を二次元撮像素子32に撮像させる制御をする(図8のステップS2)。これにより、予め設定された期間(時間)にわたって、二次元撮像素子32から出力された輝度信号SGが、演算処理部33に入力する(図8のステップS3)。ここでの輝度信号SGは、所定の測定領域15-1の輝度を示す輝度信号である。所定の測定領域15-1は、二次元撮像素子32の撮像領域のうち、部分読み出しされる領域と対応している。
 第2の算出部332は、ステップS3で演算処理部33に入力された輝度信号SGを基にして、所定の測定領域15-1のフリッカ量を算出する(図8のステップS4)。ここでのフリッカ量は、所定の測定領域15-1について、第2のサンプリング周波数を用いて算出されたフリッカ量(Fc_h)である。
 次に、演算処理部33は、部分読み出しモードから全体読み出しモードに、二次元撮像素子32の設定を変える。これにより、演算処理部33は、二次元撮像素子32のフレームレートを第1のフレームレート(例えば、128fps)に設定する(図8のステップS5)。第1のフレームレートは、言い換えれば、第1のサンプリング周波数であり、128fpsのとき、128Hzである。
 演算処理部33は、ステップS5の設定の下で、画像を表示したDUT画面1を二次元撮像素子32に撮像させる制御をする(図8のステップS6)。これにより、予め設定された期間(時間)にわたって、二次元撮像素子32から出力された輝度信号SGが、演算処理部33に入力する(図8のステップS7)。ここでの輝度信号SGは、DUT画面1の全領域の輝度を示す輝度信号である。DUT画面1の全領域には、図2に示す25個の測定領域15(複数の測定領域15)が含まれる。
 第1の算出部331は、ステップS7で演算処理部33に入力された輝度信号SGのうち、所定の測定領域15-1の輝度信号SGを基にして、所定の測定領域15-1のフリッカ量を算出する(図8のステップS8)。ここでのフリッカ量は、所定の測定領域15-1について、第1のサンプリング周波数を用いて算出されたフリッカ量(Fc_l)である。
 補正係数算出部333は、ステップS4で算出されたフリッカ量(Fc_h)と、ステップS8で算出されたフリッカ量(Fc_l)と、式1と、を用いて、補正係数を算出する(図8のステップS9)。この補正係数は、25個の測定領域15に対して共通に適用される。補正係数算出部333は、算出した補正係数を補正係数記憶部334に記憶させる。なお、補正係数は、二次元フリッカ測定装置3-1の工場出荷前に算出され、補正係数記憶部334に記憶されてもよい。これによれば、測定者(ユーザー)は、二次元フリッカ測定装置3-1を用いて補正係数を算出しなくてもよい。
 次に、第1実施形態に係る二次元フリッカ測定装置3-1を用いて、DUT画面1に設定された25個の測定領域15のそれぞれのフリッカ量を測定する動作を説明する。図9は、これを説明するフローチャートである。
 図6を参照して、測定者は、PC5を操作して、フリッカ量を測定する命令を二次元フリッカ測定装置3-1に入力する。これにより、演算処理部33は、二次元撮像素子32を全体読み出しモードに設定し、二次元撮像素子32のフレームレートを第1のフレームレートに設定する(図9のステップS11)。ステップS11での第1のフレームレートは、図8のステップS5での第1のフレームレートと同じ値である。ここでは、128fpsである。
 演算処理部33は、ステップS11の設定の下で、画像を表示したDUT画面1を二次元撮像素子32に撮像させる制御をする(図9のステップS12)。これにより、二次元撮像素子32から出力された輝度信号SGが、演算処理部33に入力する(図9のステップS13)。ここでの輝度信号SGは、DUT画面1の全領域の輝度を示す輝度信号である。DUT画面1の全領域には、図2に示す25個の測定領域15(複数の測定領域15)が含まれる。
 第1の算出部331は、ステップS13で演算処理部33に入力された輝度信号SGを基にして、25個の測定領域15のそれぞれのフリッカ量を算出する(図9のステップS14)。ここでのフリッカ量は、25個の測定領域15のそれぞれについて、第1のサンプリング周波数を用いて算出されたフリッカ量である。
 補正部335は、補正係数記憶部334に記憶されている補正係数を用いて、ステップS14で算出された25個の測定領域15のそれぞれのフリッカ量を補正する(図9のステップS15)。この補正には、以下の式2が用いられる。
  F(x,y)_true=k×F(x,y)_l_mes・・・式2
 ここで、kは、補正係数である。F(x,y)_l_mesは、ステップS14で第1の算出部331によって算出された25個の測定領域15のそれぞれのフリッカ量を示す。F(x,y)_trueは、ステップS15で補正された25個の測定領域15のそれぞれのフリッカ量を示す。(x,y)は、25個の測定領域15のそれぞれの中心点の座標を示す。
 具体的に説明すると、第1の算出部331が算出した1番目の測定領域15のフリッカ量に補正係数を掛け算した値が、1番目の測定領域15について、補正されたフリッカ量となり、第1の算出部331が算出した2番目の測定領域15のフリッカ量に補正係数を掛け算した値が、2番目の測定領域15について、補正されたフリッカ量となり、・・・、第1の算出部331が算出した25番目の測定領域15のフリッカ量に補正係数を掛け算した値が、25番目の測定領域15について、補正されたフリッカ量となる。
 演算処理部33は、通信部34を用いて、25個の測定領域15のそれぞれについて、補正後のフリッカ量をPC5へ送信する。PC5は、これらのフリッカ量を、25個の測定領域15のそれぞれのフリッカ量の測定値として、PC5の画面に表示させる(図9のステップS16)。
 以上のように、第1実施形態に係る二次元フリッカ測定装置3-1は、25個の測定領域15(複数の測定領域15)のそれぞれについて、第1のサンプリング周波数(低いサンプリング周波数)を用いてフリッカ量を算出し(図9のステップS14)、補正係数で補正する(図9のステップS15)。従って、低いサンプリング周波数を用いて、DUT画面1に設定された25個の測定領域15のそれぞれのフリッカ量を高精度に測定することができる。
 なお、二次元撮像素子32が第1のフレームレートで、画像を表示したDUT画面1を撮像することにより得られるDUT画面1の輝度を示す輝度信号SGに対して(図9のステップS12、ステップS13)、補間(ラグランジュ補間等)してもよい。これによれば、補正係数がなくても、DUT画面1に設定された25個の測定領域15のそれぞれのフリッカ量を高精度に測定することができる。
 第1実施形態の変形例を説明する。図6を参照して、変形例1を説明する。変形例1は、DUT画面1の駆動周波数(垂直同期信号の周波数)の値に応じて補正係数を変えることが可能である。例えば、第1のDUT画面1の駆動周波数がf1とし、第2のDUT画面1の駆動周波数がf2とする(f1≠f2)。駆動周波数f1の場合、補正係数がk1とし、駆動周波数f2の場合、補正係数がk2とする(k1≠k2)。補正係数記憶部334は、駆動周波数f1と補正係数k1とを対応づけて記憶しており、駆動周波数f2と補正係数k2とを対応づけて記憶している。すなわち、補正係数記憶部334は、DUT画面1の駆動周波数の値に応じて算出された複数の補正係数を予め記憶している。
 補正部335は、DUT画面1の駆動周波数がf1の場合(第1のDUT画面1の場合)、補正係数記憶部334から補正係数k1を読み出して、補正係数k1を用いて、第1の算出部331が算出した25個の測定領域15のそれぞれのフリッカ量を補正する。DUT画面1の駆動周波数は、二次元フリッカ測定装置3-1が公知の技術を用いて、自動的に測定してもよいし、測定者がPC5を用いて、二次元フリッカ測定装置3-1に入力してもよい。
 補正部335は、DUT画面1の駆動周波数がf2の場合(第2のDUT画面1の場合)、補正係数記憶部334から補正係数k2を読み出して、補正係数k2を用いて、第1の算出部331が算出した25個の測定領域15のそれぞれのフリッカ量を補正する。
 以上のように、補正部335は、補正係数記憶部334に記憶されている複数の補正係数のうち、DUT画面1の駆動周波数の値に対応する補正係数を用いて、第1の算出部331が算出した25個の測定領域15のそれぞれのフリッカ量を補正する。
 DUT画面1の駆動周波数の値に応じて補正係数が変わる。従って、異なる駆動周波数のDUT画面1について、同じ補正係数が用いられると、フリッカ量の測定精度が低下する。変形例1によれば、DUT画面1の駆動周波数の値に応じて補正係数を変えるので、そのようなことを防止できる。
 図6を参照して、変形例2を説明する。変形例2は、第1のフレームレートの値に応じて補正係数を変える(第1のフレームレートは、第1のサンプリング周波数と言い換えることができる)。例えば、第1のフレームレートの値がv1の場合、補正係数がk1とし、第1のフレームレートの値がv2の場合、補正係数がk2とする(v1≠v2、k1≠k2)。補正係数記憶部334は、第1のフレームレートv1と補正係数k1とを対応づけて記憶しており、第1のフレームレートv2と補正係数k2とを対応づけて記憶している。このように、補正係数記憶部334は、第1のフレームレートの値に応じて算出された複数の補正係数を予め記憶している。
 25個の測定領域15のそれぞれのフリッカ量の測定前に、測定者がPC5(第1の入力部)を用いて、第1のフレームレートの値を二次元フリッカ測定装置3-1に入力する。第1のフレームレートv1が入力されている場合、補正部335は、補正係数記憶部334から補正係数k1を読み出して、補正係数k1を用いて、第1の算出部331が算出した25個の測定領域15のそれぞれのフリッカ量を補正する。第1のフレームレートv2が入力されている場合、補正部335は、補正係数記憶部334から補正係数k2を読み出して、補正係数k2を用いて、第1の算出部331が算出した25個の測定領域15のそれぞれのフリッカ量を補正する。
 このように、補正部335は、PC5を用いて第1のフレームレートの値が指定されたとき、補正係数記憶部334に記憶されている複数の補正係数のうち、PC5を用いて指定された値に対応する補正係数を用いて、第1の算出部331が算出した25個の測定領域15のそれぞれのフリッカ量を補正する。
 第1のフレームレートの値に応じて補正係数が変わる。従って、第1のフレームレートの値に関わらず、同じ補正係数が用いられると、フリッカ量の測定精度が低下する。変形例2によれば、第1のフレームレートの値に応じて補正係数の値を変えるので、そのようなことを防止できる。
 図6を参照して、変形例3を説明する。変形例3は、変形例1と変形例2との組み合わせである。例えば、第1のDUT画面1の駆動周波数がf1とし、第2のDUT画面1の駆動周波数がf2とし(f1≠f2)、第1のフレームレートの値がv1,v2とする(v1≠v2)。第1のフレームレートは、第1のサンプリング周波数と言い換えることができる。駆動周波数f1と第1フレームレートv1との組み合わせの場合、補正係数がk1とし、駆動周波数f1と第1フレームレートv2との組み合わせの場合、補正係数がk2とし、駆動周波数f2と第1フレームレートv1との組み合わせの場合、補正係数がk3とし、駆動周波数f2と第1フレームレートv2との組み合わせの場合、補正係数がk4とする(k1、k2、k3、k4はそれぞれ異なる値である)。
 補正係数記憶部334は、駆動周波数f1と第1フレームレートv1との組み合わせと、補正係数k1とを対応づけて記憶しており、駆動周波数f1と第1フレームレートv2との組み合わせと、補正係数k2とを対応づけて記憶しており、駆動周波数f2と第1フレームレートv1との組み合わせと、補正係数k3とを対応づけて記憶しており、駆動周波数f2と第1フレームレートv2との組み合わせと、補正係数k4とを対応づけて記憶している。このように、補正係数記憶部334は、DUT画面1の駆動周波数の値と第1のフレームレートの値との組み合わせに応じて算出された複数の補正係数を、25個の測定領域15のそれぞれのフリッカ量の測定前に予め記憶している。
 25個の測定領域15のそれぞれのフリッカ量の測定前に、測定者がPC5(第2の入力部)を用いて、第1のフレームレートの値を二次元フリッカ測定装置3-1に入力する。第1のフレームレートv1が入力されており、かつ、DUT画面1の駆動周波数がf1の場合、補正部335は、補正係数記憶部334から補正係数k1を読み出して、補正係数k1を用いて、第1の算出部331が算出した25個の測定領域15のそれぞれのフリッカ量を補正する。第1のフレームレートv2が入力されており、かつ、DUT画面1の駆動周波数がf1の場合、補正部335は、補正係数記憶部334から補正係数k2を読み出して、補正係数k2を用いて、第1の算出部331が算出した25個の測定領域15のそれぞれのフリッカ量を補正する。第1のフレームレートv1が入力されており、かつ、DUT画面1の駆動周波数がf2の場合、補正部335は、補正係数記憶部334から補正係数k3を読み出して、補正係数k3を用いて、第1の算出部331が算出した25個の測定領域15のそれぞれのフリッカ量を補正する。第1のフレームレートv2が入力されており、かつ、DUT画面1の駆動周波数がf2の場合、補正部335は、補正係数記憶部334から補正係数k4を読み出して、補正係数k4を用いて、第1の算出部331が算出した25個の測定領域15のそれぞれのフリッカ量を補正する。
 このように、PC5(第2の入力部)を用いて、第1のフレームレートの値が指定されたとき、補正部335は、補正係数記憶部334に記憶されている複数の補正係数のうち、PC5を用いて指定された値とDUT画面1の駆動周波数の値との組み合わせに対応する補正係数を用いて、第1の算出部331が算出した25個の測定領域15のそれぞれのフリッカ量を補正する。
 変形例3によれば、変形例1、変形例2と同様の効果を有する。
 図6及び図9を参照して、変形例4を説明する。変形例4は、フリッカ量を補正するか否かを測定者が選択することができる。測定者は、25個の測定領域15のそれぞれのフリッカ量の測定前に、PC5(第3の入力部)を用いて、フリッカ量を補正するか否かの指示を二次元フリッカ測定装置3-1に入力する。フリッカ量を補正する指示が入力されていたとき、補正部335は、ステップS14で第1の算出部331が算出した25個の測定領域15のそれぞれのフリッカ量を補正する(ステップS15)。
 これに対して、フリッカ量を補正しない指示が入力されていたとき、補正部335は、ステップS14で第1の算出部331が算出した25個の測定領域15のそれぞれのフリッカ量を補正しない。すなわち、ステップS15の処理がされない。演算処理部33は、通信部34を用いて、ステップS14で第1の算出部331が算出した25個の測定領域15のそれぞれのフリッカ量(補正されていないフリッカ量)をPC5へ送信する。PC5はこれらのフリッカ量を、複数の測定領域15のそれぞれのフリッカ量の測定値として、PC5の画面に表示させる。
 第1の算出部331が算出した25個の測定領域15のそれぞれのフリッカ量は、補正係数によって補正されなくても、25個の測定領域15のそれぞれのフリッカ量の相対値が分かる。25個の測定領域15のそれぞれのフリッカ量の相対値で十分であれば、測定者は、PC5(第3の入力部)を用いてフリッカ量を補正しない指示をする。
 変形例4は、次に説明する第2実施形態にも適用できる。
 第2実施形態を説明する。図10は、第2実施形態に係る二次元フリッカ測定装置3-2の構成を示すブロック図である。第2実施形態に係る二次元フリッカ測定装置3-2は、25個の測定領域15のそれぞれのフリッカ量を測定する際に、補正係数をリアルタイムで算出する。第2実施形態に係る二次元フリッカ測定装置3-2が、第1実施形態に係る二次元フリッカ測定装置3-1と異なる点を説明する。
 二次元フリッカ測定装置3-2は、光学レンズ31を通過した光Lが入射する光分割部35を備える。光分割部35は、光Lを、光L1と光L2とに二分割する。光分割部35は、例えば、ハーフミラーである。
 二次元フリッカ測定装置3-2は、二次元撮像素子32の替わりに、測光部として、第1の二次元撮像素子36(第1の測光部)と第2の二次元撮像素子37(第2の測光部)とを備える。第1の二次元撮像素子36は、光L1(二分割された一方の光)の光路に配置されている。第2の二次元撮像素子37は、光L2(二分割された他方の光)の光路に配置されている。
 第1の二次元撮像素子36(第1の測光部)は、全体読み出しモードにおいて、画像を表示したDUT画面1を第1のフレームレートで撮像し、撮像した画像の輝度信号SGを出力する。第1の二次元撮像素子36は、例えば、CMOSセンサー、CCDセンサーである。このように、第1の測光部は、第1のサンプリング周波数で二次元領域を測光する第1の機能を有する。
 第2の二次元撮像素子37(第2の測光部)は、部分読み出しモードにおいて、画像を表示したDUT画面1を第2のフレームレートで撮像し、撮像した画像の輝度信号SGを出力する。第2の二次元撮像素子37は、例えば、CMOSセンサーである。このように、第2の測光部は、第1のサンプリング周波数より高い第2のサンプリング周波数で、二次元領域より小さい領域を測光する第2の機能を有する。
 第2の二次元撮像素子37の替わりに、以下の第2の測光部でもよい。この第2の測光部は、所定の測定領域15-1(スポット領域)からの光を受光する受光素子(例えば、シリコンフォトダイオード)と、受光素子から出力された信号を、アナログ信号からデジタル信号に変換するAD変換回路と、を含む。この第2の測光部によれば、信号の転送速度が速いので、部分読み出しは不要である。
 第1の二次元撮像素子36から出力された輝度信号SGと、第2の二次元撮像素子37から出力された輝度信号SGとは、演算処理部33に入力される。
 演算処理部33は、第1の算出部336と、第2の算出部337と、第3の算出部338と、補正部339と、タイミング制御部340と、を備える。タイミング制御部340以外は、後で説明する。タイミング制御部340は、第2の二次元撮像素子37が第2のフレームレートで画像を表示したDUT画面1を撮像する際に時系列に並ぶ撮像タイミングの中に、第1の二次元撮像素子36が第1のフレームレートで画像を表示したDUT画面1を撮像する際に時系列に並ぶ撮像タイミングが含まれる制御をする。図11は、撮像タイミングの制御を説明する説明図である。第2のフレームレートは、第1のフレームレートの整数倍である。ここでは、第2のフレームレートが500fps、第1のフレームレートが100fpsを例にして説明する。
 第1の二次元撮像素子36のフレームレートは100fpsなので、撮像タイミングT1は0.01秒間隔で時系列に並ぶ。第2の二次元撮像素子37の撮像タイミングT2は500fpsなので、撮像タイミングT2は0.002秒間隔で時系列に並ぶ。第1の二次元撮像素子36と第2の二次元撮像素子37との位相差の要因を排除するために、例えば、タイミング制御部340は、基準クロックをそれぞれ、100Hzのクロック、500Hzのクロックに分周する分周回路を備える。第1の二次元撮像素子36は、100Hzのクロックをタイミング信号とし、このタイミング信号を基準にして撮像する。第2の二次元撮像素子37は、500Hzのクロックをタイミング信号とし、このタイミング信号を基準にして撮像する。これにより、第2の二次元撮像素子37の撮像タイミングT2が、5回に1回の周期で、第1の二次元撮像素子36の撮像タイミングT1と同じになる。これは、第2の二次元撮像素子37が第2のフレームレートで画像を表示したDUT画面1を撮像する際に時系列に並ぶ撮像タイミングT2の中に、第1の二次元撮像素子36が第1のフレームレートで画像を表示したDUT画面1を撮像する際に時系列に並ぶ撮像タイミングT1が含まれることを意味する。
 次に、第2実施形態に係る二次元フリッカ装置3-2の動作で説明する。図12は、この動作を説明するフローチャートである。
 図10を参照して、DUT画面1には画像が表示されており、光分割部35は、DUT画面1の全体からの光Lを光L1と光L2とに分割する。これにより、光L1が第1の二次元撮像素子36に入射し、光L2が第2の二次元撮像素子37に入射している。測定者は、PC5を操作して、フリッカ量を測定する命令を二次元フリッカ測定装置3-2に入力する。これにより、演算処理部33は、画像を表示したDUT画面1を、第1のフレームレートで第1の二次元撮像素子36に撮像させ、かつ、第2のフレームレートで第2の二次元撮像素子37に撮像させる制御をする(図12のステップS21)。タイミング制御部340は、図11で説明したように、第1の二次元撮像素子36の撮像タイミングT1と第2の二次元撮像素子37の撮像タイミングT2とを制御している。
 第1の二次元撮像素子36が第1のフレームレートで画像を表示したDUT画面1を撮像することにより、第1の二次元撮像素子36は輝度信号SGを出力する。第2の二次元撮像素子37が第2のフレームレートで画像を表示したDUT画面1を撮像することにより、第2の二次元撮像素子37は輝度信号SGを出力する。第1の二次元撮像素子36から出力された輝度信号SGと、第2の二次元撮像素子37から出力された輝度信号SGとが、演算処理部33に入力する(図12のステップS22)。第1の二次元撮像素子36から出力された輝度信号SGは、DUT画面1の全領域の輝度を示す輝度信号である。DUT画面1の全領域には、図2に示す25個の測定領域15(複数の測定領域15)が含まれる。第2の二次元撮像素子37から出力された輝度信号SGは、所定の測定領域15-1の輝度を示す信号である。所定の測定領域15-1は、第2の二次元撮像素子37の撮像領域のうち、部分読み出しされる領域と対応している。
 第1の算出部336は、25個の測定領域15のそれぞれのフリッカ量を算出し、第2の算出部337は、所定の測定領域15-1のフリッカ量を算出する(図12のステップS23)。詳しく説明すると、第1の算出部336は、第1の二次元撮像素子36から出力され、演算処理部33に入力された輝度信号SG(第1の二次元撮像素子36が画像を表示したDUT画面1を撮像することにより得られる、DUT画面1の輝度を示す輝度信号SG)を基にして、25個の測定領域15のぞれぞれのフリッカ量を算出する。言い換えれば、第1の算出部336は、第1の測光部(第1の二次元撮像素子36)が画像を表示したDUT画面1を測光することにより得られる、DUT画面1の測光量を基にして、25個の測定領域15のぞれぞれのフリッカ量を算出する。
 第2の算出部337は、第2の二次元撮像素子37から出力され、演算処理部33に入力された輝度信号SG(第2の二次元撮像素子37が画像を表示したDUT画面1を撮像することにより得られる、所定の測定領域15-1の輝度を示す輝度信号SG)を基にして、所定の測定領域15-1のフリッカ量を算出する。言い換えれば、第2の算出部337は、第2の測光部(第2の二次元撮像素子37)が、画像を表示したDUT画面に設定された所定の測定領域15-1を測光することにより得られる所定の測定領域15-1の測光量を基にして、所定の測定領域15-1のフリッカ量を算出する。
 第3の算出部338は、第1の算出部336が算出した25個の測定領域15のそれぞれのフリッカ量のうち、中央の測定領域15(すなわち、所定の測定領域15-1)のフリッカ量と、第2の算出部337が算出したフリッカ量と、式1と、を用いて、補正係数を算出する(図12のステップS24)。
 補正部339は、ステップS24で算出された補正係数を用いて、ステップS23で算出された25個の測定領域15のそれぞれのフリッカ量を補正する(図12のステップS25)。この補正には、上記式2が用いられる。
 演算処理部33は、通信部34を用いて、25個の測定領域15のそれぞれについて、補正後のフリッカ量をPC5へ送信する。PC5は、これらのフリッカ量を、25個の測定領域15のそれぞれのフリッカ量の測定値として、PC5の画面に表示させる(図12のステップS26)。
 第2実施形態の主な効果を説明する。第2実施形態は、第1のフレームレートでDUT画面1を撮像する二次元撮像素子(第1の二次元撮像素子36)と、第2のフレームレートでDUT画面1を撮像する二次元撮像素子(第2の二次元撮像素子37)と、を別々にしている。光分割部35がDUT画面1からの光Lを二分割し、第1の二次元撮像素子36が二分割された一方の光L1の光路に配置され、第2の二次元撮像素子37が二分割された他方の光L2の光路に配置される。従って、第2実施形態によれば、25個の測定領域15のそれぞれのフリッカ量を測定するときに、リアルタイムで補正係数を算出することができる。これにより、25個の測定領域15のそれぞれのフリッカ量の測定精度を向上させることができる。
(実施形態の纏め)
 実施形態の第1局面に係る二次元フリッカ測定装置は、第1のサンプリング周波数で二次元領域を測光する第1の機能と、前記第1のサンプリング周波数より高い第2のサンプリング周波数で、前記二次元領域より小さい領域を測光する第2の機能と、を有する測光部と、前記測光部が前記第1のサンプリング周波数で測定対象物を測光することにより得られる前記測定対象物の測光量を基にして、前記測定対象物に設定された複数の測定領域のぞれぞれのフリッカ量を算出する第1の算出部と、前記測光部が前記第2のサンプリング周波数で前記測定対象物に設定された所定の測定領域を測光することにより得られる前記所定の測定領域の測光量を基にして、前記所定の測定領域のフリッカ量を算出する第2の算出部と、前記第2の算出部が算出したフリッカ量と、前記測光部が前記第1のサンプリング周波数で前記所定の測定領域を測光することにより得られる前記所定の測定領域の測光量を基にして算出された前記所定の測定領域のフリッカ量と、によって規定される補正係数を用いて、前記第1の算出部が算出した前記複数の測定領域のそれぞれのフリッカ量を補正する補正部と、を備える。
 複数の測定領域のいずれか一つが所定の測定領域にされてもよいし、複数の測定領域と別の領域が所定の測定領域にされてもよい。
 補正係数を規定する後者のフリッカ量(すなわち、測光部が第1のサンプリング周波数で所定の測定領域を測光することにより得られる所定の測定領域の測光量を基にして算出された所定の測定領域のフリッカ量)は、第1の算出部によって、複数の測定領域のそれぞれのフリッカ量が算出される前に、第1の算出部によって予め算出されてもよいし(これによれば、複数の測定領域のそれぞれのフリッカ量の測定前に、補正係数が予め記憶される)、第1の算出部によって、複数の測定領域のそれぞれのフリッカ量が算出されるときに、第1の算出部によって算出されてもよい(これによれば、複数の測定領域のそれぞれのフリッカ量の測定時に補正係数がリアルタイムに算出される)。
 第1の算出部は、測光部が第1のサンプリング周波数(低いサンプリング周波数)で測定対象物を測光することにより得られる測定対象物の測光量(例えば、輝度)を基にして、測定対象物に設定された複数の測定領域のぞれぞれのフリッカ量を算出する。
 第2の算出部は、測光部が第2のサンプリング周波数(高いサンプリング周波数)で測定対象物に設定された所定の測定領域を測光することにより得られる所定の測定領域の測光量(例えば、輝度)を基にして、所定の測定領域のフリッカ量を算出する。
 補正係数は、第2の算出部が算出した所定の測定領域のフリッカ量と、測光部が第1のサンプリング周波数で所定の測定領域を測光することにより得られる所定の測定領域の測光量を基にして算出された所定の測定領域のフリッカ量と、によって規定される。言い換えれば、補正係数は、所定の測定領域について、第2のサンプリング周波数(高いサンプリング周波数)を用いて求められたフリッカ量と、第1のサンプリング周波数(低いサンプリング周波数)を用いて求められたフリッカ量と、によって規定される。補正部は、この補正係数によって、第1の算出部が算出した複数の測定領域のそれぞれのフリッカ量(第1の算出部が第1のサンプリング周波数を用いて算出した複数の測定領域のそれぞれのフリッカ量)を補正する。これにより、フリッカ量の測定精度を高くすることができる。
 以上のように、実施形態の第1局面に係る二次元フリッカ測定装置は、複数の測定領域のそれぞれについて、第1のサンプリング周波数(低いサンプリング周波数)を用いてフリッカ量を算出し、補正係数で補正する。従って、低いサンプリング周波数を用いて、測定対象物に設定された複数の測定領域のそれぞれのフリッカ量を高精度に測定することができる。
 上記構成において、前記複数の測定領域のそれぞれのフリッカ量の測定前に算出された前記補正係数を予め記憶する記憶部をさらに備え、前記補正部は、前記記憶部に記憶されている前記補正係数を用いて、前記第1の算出部が算出した前記複数の測定領域のそれぞれのフリッカ量を補正する。
 記憶部に記憶されている補正係数は、二次元フリッカ測定装置の工場出荷前に、二次元フリッカ測定装置を用いて算出されてもよいし、ユーザーが二次元フリッカ測定装置を用いて測定対象物に設定された複数の測定領域のそれぞれのフリッカ量を測定する前に、二次元フリッカ測定装置を用いて算出されてもよい。
 上記構成において、前記記憶部は、前記測定対象物の駆動周波数の値に応じて算出された複数の前記補正係数を予め記憶しており、前記補正部は、前記記憶部に記憶されている複数の前記補正係数のうち、前記測定対象物の駆動周波数の値に対応する前記補正係数を用いて、前記第1の算出部が算出した前記複数の測定領域のそれぞれのフリッカ量を補正する。
 測定対象物(例えば、ディスプレイ画面)の駆動周波数の値に応じて補正係数が変わる。従って、異なる駆動周波数の測定対象物について、同じ補正係数が用いられると、フリッカ量の測定精度が低下する。この構成によれば、測定対象物の駆動周波数の値に応じて補正係数を変えるので、そのようなことを防止できる。
 上記構成において、第1の入力部をさらに備え、前記記憶部は、前記第1のサンプリング周波数の値に応じて算出された複数の前記補正係数を予め記憶しており、前記第1の入力部を用いて、前記第1のサンプリング周波数の値が指定されたとき、前記補正部は、前記記憶部に記憶されている複数の前記補正係数のうち、前記第1の入力部を用いて指定された値に対応する前記補正係数を用いて、前記第1の算出部が算出した前記複数の測定領域のそれぞれのフリッカ量を補正する。
 この構成は、二次元フリッカ測定装置が、第1のサンプリング周波数の値を変えることができる機能を有することを前提とする。第1のサンプリング周波数の値に応じて補正係数が変わる。従って、第1のサンプリング周波数の値に関わらず、同じ補正係数が用いられると、フリッカ量の測定精度が低下する。この構成によれば、第1のサンプリング周波数の値に応じて補正係数の値を変えるので、そのようなことを防止できる。
 上記構成において、第2の入力部をさらに備え、前記記憶部は、前記測定対象物の駆動周波数の値と前記第1のサンプリング周波数の値との組み合わせに応じて算出された複数の前記補正係数を予め記憶しており、前記第2の入力部を用いて、前記第1のサンプリング周波数の値が指定されたとき、前記補正部は、前記記憶部に記憶されている複数の前記補正係数のうち、前記第2の入力部を用いて指定された値と前記測定対象物の駆動周波数の値との組み合わせに対応する前記補正係数を用いて、前記第1の算出部が算出した前記複数の測定領域のそれぞれのフリッカ量を補正する。
 この構成は、上記二つの構成(測定対象物の駆動周波数の値に応じて補正係数を変える。第1のサンプリング周波数の値に応じて補正係数を変える。)の組み合わせである。この構成は、上記二つの構成と同様の効果を有する。
 上記構成において、前記測光部は、前記第1の機能及び前記第2の機能を有する二次元撮像素子を含み、前記第2の機能は、部分読み出し機能である。
 この構成によれば、一つの二次元撮像素子によって、第1の機能及び第2の機能が実現される。
 上記構成において、前記測定対象物からの光を二分割する光分割部をさらに備え、前記測光部は、前記二分割された一方の光の光路に配置され、前記第1の機能を有する第1の測光部と、前記二分割された他方の光の光路に配置され、前記第2の機能を有する第2の測光部と、を備え、前記第1の算出部は、前記第1の測光部が前記測定対象物を測光することにより得られる前記測定対象物の測光量を基にして、前記複数の測定領域のぞれぞれのフリッカ量を算出し、前記第2の算出部は、前記第2の測光部が前記所定の測定領域を測光することにより得られる前記所定の測定領域の測光量を基にして、前記所定の測定領域のフリッカ量を算出し、前記複数の測定領域の一つが前記所定の測定領域であり、前記二次元フリッカ測定装置は、前記第1の算出部が算出した前記複数の測定領域のそれぞれのフリッカ量のうち、前記所定の測定領域のフリッカ量と、前記第2の算出部が算出したフリッカ量と、を用いて、前記補正係数を算出する第3の算出部をさらに備え、前記補正部は、前記第3の算出部が算出した前記補正係数を用いて、前記第1の算出部が算出した前記複数の測定領域のそれぞれのフリッカ量を補正する。
 この構成は、第1のサンプリング周波数で測光する測光部(第1の測光部)と、第2のサンプリング周波数で測光する測光部(第2の測光部)と、を別々にしている。光分割部が測定対象物からの光を二分割し、第1の測光部が二分割された一方の光の光路に配置され、第2の測光部が二分割された他方の光の光路に配置される。従って、この構成によれば、複数の測定領域のそれぞれのフリッカ量を測定するときに、リアルタイムで補正係数を算出することができる。これにより、複数の測定領域のそれぞれのフリッカ量の測定精度を向上させることができる。
 上記構成において、前記第1の測光部は、第1の二次元撮像素子を含み、前記第2の測光部は、前記第2の機能となる部分読み出し機能を有する第2の二次元撮像素子、又は、前記第1の二次元撮像素子の撮像領域より小さいスポット領域からの光を受光する受光素子を含む。
 この構成は、第1の測光部及び第2の測光部を具体的に規定する。第2の測光部は、測定対象物に設定された所定の測定領域を測光するので、二次元撮像素子でなくてもよい。
 上記構成において、第3の入力部をさらに備え、前記複数の測定領域のそれぞれのフリッカ量の測定前に、前記第3の入力部を用いて、フリッカ量を補正する指示がされたとき、前記補正部は、前記第1の算出部が算出した前記複数の測定領域のそれぞれのフリッカ量を補正し、前記複数の測定領域のそれぞれのフリッカ量の測定前に、前記第3の入力部を用いて、フリッカ量を補正しない指示がされたとき、前記補正部は、前記第1の算出部が算出した前記複数の測定領域のそれぞれのフリッカ量を補正しない。
 第1の算出部が算出した複数の測定領域のそれぞれのフリッカ量は、補正係数によって補正されなくても、複数の測定領域のそれぞれのフリッカ量の相対値が分かる。複数の測定領域のそれぞれのフリッカ量の相対値で十分であれば、測定者は、第3の入力部を用いてフリッカ量を補正しない指示をする。
 実施形態の第2局面に係る二次元フリッカ測定方法は、第1のサンプリング周波数で二次元領域を測光する第1の機能と、前記第1のサンプリング周波数より高い第2のサンプリング周波数で、前記二次元領域より小さい領域を測光する第2の機能と、を有する測光部を用いて、測定対象物に設定された複数の測定領域のそれぞれのフリッカ量を測定する二次元フリッカ測定方法であって、前記測光部が前記第1のサンプリング周波数で前記測定対象物を測光することにより得られる前記測定対象物の測光量を基にして、前記測定対象物に設定された前記複数の測定領域のぞれぞれのフリッカ量を算出する第1の算出ステップと、前記測光部が前記第2のサンプリング周波数で前記測定対象物に設定された所定の測定領域を測光することにより得られる前記所定の測定領域の測光量を基にして、前記所定の測定領域のフリッカ量を算出する第2の算出ステップと、前記第2の算出ステップで算出したフリッカ量と、前記測光部が前記第1のサンプリング周波数で前記所定の測定領域を測光することにより得られる前記所定の測定領域の測光量を基にして算出された前記所定の測定領域のフリッカ量と、によって規定される補正係数を用いて、前記第1の算出ステップで算出した前記複数の測定領域のそれぞれのフリッカ量を補正する補正ステップと、を備える。
 実施形態の第2局面に係る二次元フリッカ測定方法は、実施形態の第1局面に係る二次元フリッカ測定装置を方法の観点から規定しており、実施形態の第1局面に係る二次元フリッカ測定装置と同様の作用効果を有する。
 本発明の実施形態が詳細に図示され、かつ、説明されたが、それは単なる図例及び実例であって限定ではない。本発明の範囲は、添付されたクレームの文言によって解釈されるべきである。
 2017年10月5日に提出された日本国特許出願特願2017-195103は、その全体の開示が、その全体において参照によりここに組み込まれる。
 本発明によれば、二次元フリッカ測定装置及び二次元フリッカ測定方法を提供することができる。

Claims (10)

  1.  第1のサンプリング周波数で二次元領域を測光する第1の機能と、前記第1のサンプリング周波数より高い第2のサンプリング周波数で、前記二次元領域より小さい領域を測光する第2の機能と、を有する測光部と、
     前記測光部が前記第1のサンプリング周波数で測定対象物を測光することにより得られる前記測定対象物の測光量を基にして、前記測定対象物に設定された複数の測定領域のぞれぞれのフリッカ量を算出する第1の算出部と、
     前記測光部が前記第2のサンプリング周波数で前記測定対象物に設定された所定の測定領域を測光することにより得られる前記所定の測定領域の測光量を基にして、前記所定の測定領域のフリッカ量を算出する第2の算出部と、
     前記第2の算出部が算出したフリッカ量と、前記測光部が前記第1のサンプリング周波数で前記所定の測定領域を測光することにより得られる前記所定の測定領域の測光量を基にして算出された前記所定の測定領域のフリッカ量と、によって規定される補正係数を用いて、前記第1の算出部が算出した前記複数の測定領域のそれぞれのフリッカ量を補正する補正部と、を備える二次元フリッカ測定装置。
  2.  前記複数の測定領域のそれぞれのフリッカ量の測定前に算出された前記補正係数を予め記憶する記憶部をさらに備え、
     前記補正部は、前記記憶部に記憶されている前記補正係数を用いて、前記第1の算出部が算出した前記複数の測定領域のそれぞれのフリッカ量を補正する、請求項1に記載の二次元フリッカ測定装置。
  3.  前記記憶部は、前記測定対象物の駆動周波数の値に応じて算出された複数の前記補正係数を予め記憶しており、
     前記補正部は、前記記憶部に記憶されている複数の前記補正係数のうち、前記測定対象物の駆動周波数の値に対応する前記補正係数を用いて、前記第1の算出部が算出した前記複数の測定領域のそれぞれのフリッカ量を補正する、請求項2に記載の二次元フリッカ測定装置。
  4.  第1の入力部をさらに備え、
     前記記憶部は、前記第1のサンプリング周波数の値に応じて算出された複数の前記補正係数を予め記憶しており、
     前記第1の入力部を用いて、前記第1のサンプリング周波数の値が指定されたとき、前記補正部は、前記記憶部に記憶されている複数の前記補正係数のうち、前記第1の入力部を用いて指定された値に対応する前記補正係数を用いて、前記第1の算出部が算出した前記複数の測定領域のそれぞれのフリッカ量を補正する、請求項2に記載の二次元フリッカ測定装置。
  5.  第2の入力部をさらに備え、
     前記記憶部は、前記測定対象物の駆動周波数の値と前記第1のサンプリング周波数の値との組み合わせに応じて算出された複数の前記補正係数を予め記憶しており、
     前記第2の入力部を用いて、前記第1のサンプリング周波数の値が指定されたとき、前記補正部は、前記記憶部に記憶されている複数の前記補正係数のうち、前記第2の入力部を用いて指定された値と前記測定対象物の駆動周波数の値との組み合わせに対応する前記補正係数を用いて、前記第1の算出部が算出した前記複数の測定領域のそれぞれのフリッカ量を補正する、請求項2に記載の二次元フリッカ測定装置。
  6.  前記測光部は、前記第1の機能及び前記第2の機能を有する二次元撮像素子を含み、
     前記第2の機能は、部分読み出し機能である、請求項1~5のいずれか一項に記載の二次元フリッカ測定装置。
  7.  前記測定対象物からの光を二分割する光分割部をさらに備え、
     前記測光部は、前記二分割された一方の光の光路に配置され、前記第1の機能を有する第1の測光部と、前記二分割された他方の光の光路に配置され、前記第2の機能を有する第2の測光部と、を備え、
     前記第1の算出部は、前記第1の測光部が前記測定対象物を測光することにより得られる前記測定対象物の測光量を基にして、前記複数の測定領域のぞれぞれのフリッカ量を算出し、
     前記第2の算出部は、前記第2の測光部が前記所定の測定領域を測光することにより得られる前記所定の測定領域の測光量を基にして、前記所定の測定領域のフリッカ量を算出し、
     前記複数の測定領域の一つが前記所定の測定領域であり、
     前記二次元フリッカ測定装置は、前記第1の算出部が算出した前記複数の測定領域のそれぞれのフリッカ量のうち、前記所定の測定領域のフリッカ量と、前記第2の算出部が算出したフリッカ量と、を用いて、前記補正係数を算出する第3の算出部をさらに備え、
     前記補正部は、前記第3の算出部が算出した前記補正係数を用いて、前記第1の算出部が算出した前記複数の測定領域のそれぞれのフリッカ量を補正する、請求項1に記載の二次元フリッカ測定装置。
  8.  前記第1の測光部は、第1の二次元撮像素子を含み、
     前記第2の測光部は、前記第2の機能となる部分読み出し機能を有する第2の二次元撮像素子、又は、前記第1の二次元撮像素子の撮像領域より小さいスポット領域からの光を受光する受光素子を含む、請求項7に記載の二次元フリッカ測定装置。
  9.  第3の入力部をさらに備え、
     前記複数の測定領域のそれぞれのフリッカ量の測定前に、前記第3の入力部を用いて、フリッカ量を補正する指示がされたとき、前記補正部は、前記第1の算出部が算出した前記複数の測定領域のそれぞれのフリッカ量を補正し、前記複数の測定領域のそれぞれのフリッカ量の測定前に、前記第3の入力部を用いて、フリッカ量を補正しない指示がされたとき、前記補正部は、前記第1の算出部が算出した前記複数の測定領域のそれぞれのフリッカ量を補正しない、請求項1~8のいずれか一項に記載の二次元フリッカ測定装置。
  10.  第1のサンプリング周波数で二次元領域を測光する第1の機能と、前記第1のサンプリング周波数より高い第2のサンプリング周波数で、前記二次元領域より小さい領域を測光する第2の機能と、を有する測光部を用いて、測定対象物に設定された複数の測定領域のそれぞれのフリッカ量を測定する二次元フリッカ測定方法であって、
     前記測光部が前記第1のサンプリング周波数で前記測定対象物を測光することにより得られる前記測定対象物の測光量を基にして、前記測定対象物に設定された前記複数の測定領域のぞれぞれのフリッカ量を算出する第1の算出ステップと、
     前記測光部が前記第2のサンプリング周波数で前記測定対象物に設定された所定の測定領域を測光することにより得られる前記所定の測定領域の測光量を基にして、前記所定の測定領域のフリッカ量を算出する第2の算出ステップと、
     前記第2の算出ステップで算出したフリッカ量と、前記測光部が前記第1のサンプリング周波数で前記所定の測定領域を測光することにより得られる前記所定の測定領域の測光量を基にして算出された前記所定の測定領域のフリッカ量と、によって規定される補正係数を用いて、前記第1の算出ステップで算出した前記複数の測定領域のそれぞれのフリッカ量を補正する補正ステップと、を備える二次元フリッカ測定方法。
PCT/JP2018/033492 2017-10-05 2018-09-10 二次元フリッカ測定装置及び二次元フリッカ測定方法 WO2019069633A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880063575.4A CN111164406B (zh) 2017-10-05 2018-09-10 二维闪烁测定装置及二维闪烁测定方法
US16/641,877 US11490028B2 (en) 2017-10-05 2018-09-10 Two-dimensional flicker measurement apparatus and two-dimensional flicker measurement method
JP2019546595A JP7310606B2 (ja) 2017-10-05 2018-09-10 二次元フリッカ測定装置及び二次元フリッカ測定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017195103 2017-10-05
JP2017-195103 2017-10-05

Publications (1)

Publication Number Publication Date
WO2019069633A1 true WO2019069633A1 (ja) 2019-04-11

Family

ID=65994395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033492 WO2019069633A1 (ja) 2017-10-05 2018-09-10 二次元フリッカ測定装置及び二次元フリッカ測定方法

Country Status (4)

Country Link
US (1) US11490028B2 (ja)
JP (1) JP7310606B2 (ja)
CN (1) CN111164406B (ja)
WO (1) WO2019069633A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021246125A1 (ja) * 2020-06-01 2021-12-09 コニカミノルタ株式会社 光波形計測装置及び計測方法
WO2023149337A1 (ja) * 2022-02-07 2023-08-10 コニカミノルタ株式会社 ディスプレイ光計測装置及び光計測方法、データ処理装置並びにプログラム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102639447B1 (ko) * 2018-12-19 2024-02-23 삼성디스플레이 주식회사 구동 컨트롤러, 그것을 포함하는 표시 장치 및 표시 장치의 구동 방법
CN112351216B (zh) * 2020-10-10 2022-04-05 深圳开阳电子股份有限公司 检测和消除视频闪烁的方法及图像处理设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006091149A (ja) * 2004-09-21 2006-04-06 Seiko Epson Corp フリッカ測定方法、および、フリッカ測定装置
JP2006189869A (ja) * 2005-01-04 2006-07-20 Samsung Electronics Co Ltd 液晶表示装置に対するフリッカー自動抑制方法及び装置
JP2012120132A (ja) * 2010-12-03 2012-06-21 Nikon Corp 撮像装置およびプログラム
WO2017038675A1 (ja) * 2015-09-02 2017-03-09 コニカミノルタ株式会社 二次元測色装置及び二次元測色方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005109535A (ja) * 2003-09-26 2005-04-21 Sony Corp フリッカ測定装置
WO2008105322A1 (ja) * 2007-02-28 2008-09-04 Nippon Telegraph And Telephone Corporation 光リフレクトメトリ測定方法および装置
JP2008304305A (ja) 2007-06-07 2008-12-18 Toshiba Mach Co Ltd 正弦波の振幅検出方法および装置
JP5301815B2 (ja) * 2007-11-20 2013-09-25 浜松ホトニクス株式会社 瞬目計測装置
JP2011163947A (ja) * 2010-02-10 2011-08-25 Seiko Epson Corp 光特性測定方法およびその装置
JP2011169842A (ja) 2010-02-22 2011-09-01 Seiko Epson Corp フリッカー測定方法およびその装置
JP2015115922A (ja) * 2013-12-16 2015-06-22 オリンパス株式会社 撮像装置および撮像方法
EP3054273B8 (en) * 2015-02-09 2019-09-11 Instrument Systems Optische Messtechnik GmbH Colorimetry system for display testing
JP6175587B2 (ja) * 2015-03-02 2017-08-02 富士フイルム株式会社 撮像装置、フリッカ検出方法、及びフリッカ検出プログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006091149A (ja) * 2004-09-21 2006-04-06 Seiko Epson Corp フリッカ測定方法、および、フリッカ測定装置
JP2006189869A (ja) * 2005-01-04 2006-07-20 Samsung Electronics Co Ltd 液晶表示装置に対するフリッカー自動抑制方法及び装置
JP2012120132A (ja) * 2010-12-03 2012-06-21 Nikon Corp 撮像装置およびプログラム
WO2017038675A1 (ja) * 2015-09-02 2017-03-09 コニカミノルタ株式会社 二次元測色装置及び二次元測色方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021246125A1 (ja) * 2020-06-01 2021-12-09 コニカミノルタ株式会社 光波形計測装置及び計測方法
WO2023149337A1 (ja) * 2022-02-07 2023-08-10 コニカミノルタ株式会社 ディスプレイ光計測装置及び光計測方法、データ処理装置並びにプログラム

Also Published As

Publication number Publication date
JPWO2019069633A1 (ja) 2020-12-17
US11490028B2 (en) 2022-11-01
US20200252536A1 (en) 2020-08-06
CN111164406A (zh) 2020-05-15
JP7310606B2 (ja) 2023-07-19
CN111164406B (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
US8350951B2 (en) Image sensing apparatus and image data correction method
WO2019069633A1 (ja) 二次元フリッカ測定装置及び二次元フリッカ測定方法
US10002436B2 (en) Image processing device, image processing method, and solid-state imaging device
CN111164407B (zh) 二维闪烁测量装置、二维闪烁测量系统、二维闪烁测量方法以及二维闪烁测量程序
JP5523124B2 (ja) 撮像装置
KR20060129954A (ko) 화상 처리 장치 및 촬상 장치
CN106063249A (zh) 摄像装置及其控制方法以及计算机可读记录介质
JPWO2005043891A1 (ja) 画像補正方法および撮像装置
US20130155275A1 (en) Image capturing apparatus, image capturing method, and computer-readable recording medium storing image capturing program
JPWO2006051914A1 (ja) フリッカ補正方法及びフリッカ補正回路並びにそれらを用いた撮像装置
US20140375838A1 (en) Imaging apparatus and flicker reduction method
JP6521676B2 (ja) 動き情報取得装置および動き情報取得方法
WO2012147337A1 (ja) フリッカ検出装置、フリッカ検出方法およびフリッカ検出プログラム
JP6525525B2 (ja) 撮像装置及びその制御方法、プログラム、記憶媒体
JP5082137B2 (ja) 投射型画像表示装置、画像表示システム、および色むら補正方法
JP5440245B2 (ja) 撮像装置
US10757381B2 (en) Image projection apparatus and its control method
JP5088361B2 (ja) 画像処理装置および撮像装置
JP6570252B2 (ja) 画像処理装置、情報処理方法及びプログラム
WO2020066187A1 (ja) 撮像素子、撮像装置、画像データ処理方法、及びプログラム
JP2014103461A (ja) 収差補正機能付き画像読取装置
WO2016174701A1 (ja) 内視鏡装置及び3次元形状計測方法
JP2018190201A (ja) 画像処理装置、画像処理方法およびプログラム
WO2021038692A1 (ja) 撮像装置、撮像方法、および映像処理プログラム
JP2016122941A (ja) 画像処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18863849

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019546595

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18863849

Country of ref document: EP

Kind code of ref document: A1