WO2019049968A1 - 体外循環装置及びその気泡の排出方法 - Google Patents
体外循環装置及びその気泡の排出方法 Download PDFInfo
- Publication number
- WO2019049968A1 WO2019049968A1 PCT/JP2018/033151 JP2018033151W WO2019049968A1 WO 2019049968 A1 WO2019049968 A1 WO 2019049968A1 JP 2018033151 W JP2018033151 W JP 2018033151W WO 2019049968 A1 WO2019049968 A1 WO 2019049968A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- blood circuit
- negative pressure
- blood
- priming
- pump
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/36—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
- A61M1/3621—Extra-corporeal blood circuits
- A61M1/3643—Priming, rinsing before or after use
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/36—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
- A61M1/3621—Extra-corporeal blood circuits
- A61M1/3643—Priming, rinsing before or after use
- A61M1/3644—Mode of operation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/36—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
- A61M1/3621—Extra-corporeal blood circuits
- A61M1/3624—Level detectors; Level control
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/36—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
- A61M1/3621—Extra-corporeal blood circuits
- A61M1/3643—Priming, rinsing before or after use
- A61M1/3644—Mode of operation
- A61M1/3649—Mode of operation using dialysate as priming or rinsing liquid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B43/00—Machines, pumps, or pumping installations having flexible working members
- F04B43/12—Machines, pumps, or pumping installations having flexible working members having peristaltic action
- F04B43/1238—Machines, pumps, or pumping installations having flexible working members having peristaltic action using only one roller as the squeezing element, the roller moving on an arc of a circle during squeezing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B13/00—Pumps specially modified to deliver fixed or variable measured quantities
Definitions
- the present invention relates to an extracorporeal circulation device for purifying a patient's blood while extracorporeally circulating it, such as dialysis treatment using a dialyzer, and a method for discharging air bubbles thereof.
- a blood circuit is used for circulating the collected patient's blood extracorporeally and returning it to the body again, and such a blood circuit is, for example, a dialyzer (blood purifier) equipped with a hollow fiber membrane. It mainly comprises an arterial blood circuit and a venous blood circuit connected to each other. An artery-side puncture needle and a vein-side puncture needle are attached to the tip of each of the arterial blood circuit and the venous blood circuit, and each patient is punctured to perform extracorporeal circulation of blood in dialysis treatment.
- a dialyzer blood purifier
- a cover tube is connected, and an iron type blood pump is provided, which feeds the liquid by squeezing the cover tube with a roller.
- an iron type blood pump is provided, which feeds the liquid by squeezing the cover tube with a roller.
- a priming fluid supply line for supplying a priming fluid to the blood circuit is connected to the arterial blood circuit. Then, before the dialysis treatment, the priming step of supplying the priming solution from the priming solution supply line and discharging it from the overflow line to discharge air bubbles in the blood circuit and filling the priming solution in the flow path of the blood circuit is performed. (See, for example, Patent Document 1).
- the present applicant pays attention to the phenomenon that when the negative pressure is generated in the channel filled with the priming solution, the remaining microbubbles expand, and a plurality of adjacent bubbles gather to become relatively large bubbles,
- the present inventors diligently studied to smoothly and reliably discharge the microbubbles remaining in the cover tube by utilizing the phenomenon.
- the present invention has been made in view of such circumstances, and an object thereof is to provide an extracorporeal circulation device capable of discharging the microbubbles remaining after the priming step smoothly and reliably, and a method of discharging the bubbles.
- the invention according to claim 1 has an arterial blood circuit and a venous blood circuit, each proximal end of which is connected to a blood purifier, and from the tip of the arterial blood circuit to the tip of the venous blood circuit.
- An extracorporeal circulation device having a control unit for controlling the negative pressure generation unit, wherein the control unit discharges the priming solution supplied into the blood circuit from the discharge unit, and the flow path of the blood circuit
- In flowing bubbles of the site is, characterized in that to perform the discharge step to discharge from the discharge portion.
- the invention according to claim 2 is the extracorporeal circulatory apparatus according to claim 1, further comprising a blood pump for feeding liquid by squeezing the covered tube connected to the arterial blood circuit with a roller, and generating the negative pressure.
- the said part which generates a negative pressure by the part is characterized by including at least one part of the said covering tube.
- the invention according to claim 3 is the extracorporeal circulatory apparatus according to claim 2, wherein the negative pressure generating portion has the blood pump and an occlusion portion which occludes the portion filled with the priming solution in the blood circuit. It is characterized by
- the invention according to claim 4 is the extracorporeal circulatory apparatus according to claim 1 or 2, further comprising a level adjustment pump connected to a predetermined portion of the blood circuit and adjusting a liquid level of the predetermined portion.
- the negative pressure generating unit is characterized by including the level adjustment pump and a closed portion closing the portion filled with the priming solution in the blood circuit.
- the invention according to claim 5 relates to the extracorporeal circulation apparatus according to any one of claims 1 to 4, wherein an air trap chamber is connected to the vein-side blood circuit, and the discharge unit is the air It is characterized by comprising an overflow line extending from the top of the trap chamber.
- the invention according to claim 6 is the extracorporeal circulatory apparatus according to any one of claims 1 to 4, wherein the discharge part comprises the tip of the arterial blood circuit or the tip of the venous blood circuit. It features.
- the invention according to claim 7 has an arterial blood circuit and a venous blood circuit, each proximal end of which is connected to a blood purifier, and from the tip of the arterial blood circuit to the tip of the venous blood circuit.
- a blood circuit for circulating blood extracorporeally, a discharge unit for discharging the priming solution supplied into the blood circuit to the outside, and a negative pressure generating unit for generating a negative pressure at a site filled with the priming solution in the blood circuit A method of discharging air bubbles by the extracorporeal circulatory system, the priming step of discharging the priming solution supplied into the blood circuit from the discharge portion and filling the flow path of the blood circuit, and after the priming step A negative pressure generating step of generating a negative pressure at the part by the negative pressure generating part, and a flow of air bubbles of the part at which the negative pressure is generated in the negative pressure generating step Allowed, characterized in that to perform the discharge step to discharge from the discharge portion.
- the invention according to claim 8 comprises the blood pump according to claim 7, further comprising a pump for supplying liquid by squeezing the covered tube connected to the arterial blood circuit.
- the portion for generating the negative pressure in the negative pressure generation part is characterized in that it includes at least a part of the toroidal tube.
- the invention according to claim 9 is the method for discharging air bubbles by the extracorporeal circulatory apparatus according to claim 8, wherein the negative pressure generator occludes the blood pump and the site filled with the priming solution in the blood circuit. And a closed portion.
- the invention according to claim 10 is the method for discharging air bubbles by the extracorporeal circulation device according to claim 7 or 8, wherein the pump for level adjustment connected to a predetermined portion of the blood circuit and adjusting the liquid level of the predetermined portion
- the negative pressure generation unit includes the level adjustment pump and a closed portion closing the region filled with the priming solution in the blood circuit.
- the invention according to claim 11 relates to the method for discharging air bubbles by the extracorporeal circulation device according to any one of claims 7 to 10, wherein an air trap chamber is connected to the vein side blood circuit, and the discharge is performed.
- the section is characterized in that it comprises an overflow line extending from the top of the air trap chamber.
- the invention according to claim 12 is the method for discharging air bubbles by the extracorporeal circulation device according to any one of claims 7 to 10, wherein the discharge part is the tip of the arterial blood circuit or the venous blood circuit. It is characterized by comprising a tip.
- the negative pressure is generated in the negative pressure generating step of generating the negative pressure in the portion filled with the priming solution by the negative pressure generating portion; Since the air bubbles of the above-mentioned part are made to flow and the discharge step is performed to discharge from the discharge part, the micro bubbles remaining in the part filled with the priming solution are expanded by the negative pressure generated in the negative pressure generation step. Since the microbubbles can be enlarged by collecting a plurality of expanded bubbles, the microbubbles remaining after the priming step can be discharged smoothly and reliably.
- the blood pump is provided to feed liquid by squeezing the covered tube connected to the arterial blood circuit with a roller, and the site for generating the negative pressure in the negative pressure generating portion is Since at least a part of the covering tube is included, micro bubbles remaining in the covering tube can be discharged smoothly and reliably after the priming step.
- the negative pressure generator has a blood pump and an occlusion part which occludes a part filled with the priming solution in the blood circuit. Negative pressure can be generated at the site filled with the priming solution.
- the level adjustment pump is connected to a predetermined portion of the blood circuit and adjusts the liquid level of the predetermined portion, and the negative pressure generation unit is a level adjustment pump; Since the blood circuit has an occlusion part which occludes the part filled with priming fluid, a level adjustment pump necessary for liquid level adjustment can be diverted to generate negative pressure at the part filled with priming fluid .
- the air trap chamber is connected to the vein side blood circuit, and the discharge unit comprises the overflow line extending from the top of the air trap chamber.
- the priming step is performed by connecting the tip of the blood circuit and the tip of the vein-side blood circuit, the microbubbles remaining at the portion filled with the priming solution of the blood circuit can be favorably discharged from the overflow line.
- the discharge part is the tip of the arterial blood circuit or the tip of the venous blood circuit, so the tip of the arterial blood circuit and the tip of the venous blood circuit are not connected.
- the microbubbles remaining at the site filled with the priming solution in the blood circuit can be favorably discharged from the tip of the arterial blood circuit or the tip of the venous blood circuit.
- the schematic diagram which shows the dialysis apparatus (extracorporeal circulation apparatus) which concerns on the 1st Embodiment of this invention The perspective view which shows the blood pump applied to the same dialysis apparatus The top view which shows the state which attached the covering tube to the blood pump.
- the schematic diagram which shows the venous pressure measurement part applied to the same dialysis apparatus The schematic diagram which shows the state in which the priming process (overflow process) by the same dialysis apparatus is performed.
- the schematic diagram which shows the state in which the priming process (liquid feeding process) by the same dialysis apparatus is performed
- a schematic diagram showing a state in which a negative pressure generation process is performed by the same dialysis device
- the schematic diagram which shows the state in which the 1st discharge process by the same dialysis apparatus is performed
- the schematic diagram which shows the state in which the 2nd discharge process by the same dialysis apparatus is performed.
- the schematic diagram which shows the state in which the negative pressure generation process by the dialysis apparatus which concerns on other embodiment of this invention is performed.
- the schematic diagram which shows the state in which the negative pressure generation process by the dialysis apparatus which concerns on other embodiment of this invention is performed.
- the schematic diagram which shows the state in which the negative pressure generation process by the dialysis apparatus which concerns on other embodiment of this invention is performed. It is a figure which shows the dialysis apparatus (extracorporeal circulation apparatus) which concerns on the 2nd Embodiment of this invention, Comprising:
- the schematic diagram which shows the state in which the priming process (artery side priming process) is performed.
- the schematic diagram which shows the state in which the priming process (vein side priming process) by the same dialysis apparatus is performed A schematic diagram showing a state in which a negative pressure generation process is performed by the same dialysis device
- a schematic view showing the state in which the discharge step by the dialysis device is being performed Flow chart showing contents of control by control unit of dialysis device
- the schematic diagram which shows the state in which the negative pressure generation process by the dialysis apparatus which concerns on other embodiment of this invention is performed.
- the schematic diagram which shows the state in which the negative pressure generation process by the dialysis apparatus which concerns on other embodiment of this invention is performed.
- the extracorporeal circulation apparatus comprises a dialysis apparatus for performing dialysis treatment, and as shown in FIG. 1, a blood circuit comprising an arterial blood circuit 1 and a venous blood circuit 2, and an arterial blood A dialyzer 3 (blood purifier) connected to the proximal end of the circuit 1 and the proximal end of the vein-side blood circuit 2 and purifying blood flowing through the blood circuit, and an air trap chamber 5 connected to the vein-side blood circuit 2; A priming fluid supply line Ld connected to the arterial blood circuit 1 for supplying priming fluid into the blood circuit, and an overflow line Le for discharging the priming fluid supplied into the blood circuit through the priming fluid supply line Ld to the outside A negative pressure generator (in the present embodiment, the blood pump 4 and the blocker) that generates negative pressure at a portion filled with the priming fluid in the blood circuit and the blood circuit. And the electromagnetic valve V1), and a control unit E for controlling
- An arterial side puncture needle a is connected to the tip of the arterial side blood circuit 1 via a connector c, and an ironing type blood pump 4 is disposed in the middle.
- the vein-side puncture needle b is connected to the tip of the vein-side blood circuit 2 via the connector d, and the air trap chamber 5 is connected to the middle thereof.
- solenoid valves V1 and V2 for respectively blocking or opening the flow paths are connected to the distal end side (near connector c) of the arterial blood circuit 1 and the distal end side (near connector d) of the venous blood circuit 2 There is.
- the blood pump 4 when the blood pump 4 is driven in a state in which the patient punctures the artery-side puncture needle a and the vein-side puncture needle b, the patient's blood passes through the artery-side blood circuit 1 and reaches the dialyzer 3. Blood purification is performed by the dialyzer 3, and degassing is performed in the air trap chamber 5 and returned to the patient's body through the venous blood circuit 2. That is, the blood purification treatment is performed by purifying the patient's blood with the dialyzer 3 while circulating the blood from the tip of the arterial blood circuit 1 of the blood circuit to the tip of the venous blood circuit 2 extracorporeally.
- the side of the puncture needle for blood removal (blood collection) is referred to as the "artery side”
- the side of the puncture needle for blood return is referred to as the "vein side”.
- “Venous side” does not mean that the blood vessel to be punctured is defined by either an artery or a vein.
- a cover tube H is connected, and the cover tube H is connected to the blood pump 4 (specifically, In the mounting recess 12a) formed on the stator 12 of the blood pump 4 described later in detail based on FIGS.
- the covering tube H is compressed in the radial direction by the roller 14 (ironing portion) of the blood pump 4 (ironing type pump) and is longitudinally ironed while flowing the internal liquid in the rotation direction of the rotor 13. And consists of a flexible tube that is softer and larger in diameter than the other flexible tubes that make up the arterial blood circuit 1.
- the blood pump 4 includes a stator 12, a rotor 13 that is rotationally driven in the stator 12, a roller 14 formed on the rotor 13, and a pair of upper and lower guide pins It is mainly comprised from 15 and the holding part 16 which hold
- a cover for covering the upper part of the stator 12 in the blood pump 4 is omitted.
- the stator 12 is provided with an attachment recess 12a to which the insertion tube H is attached, and as shown in FIGS. 2 and 3, the attachment tube H is attached along the inner peripheral wall surface forming the attachment recess 12a. It is configured as follows. Further, a rotor 13 which is rotationally driven by a motor is disposed substantially at the center of the mounting recess 12a. A pair of (two) rollers 14 and a guide pin 15 are disposed on the side surface of the rotor 13 (the surface facing the inner peripheral wall surface of the mounting recess 12 a).
- the roller 14 is rotatable around a rotation axis M (see FIG. 3) formed on the outer edge side of the rotor 13, and radially squeezes the covering tube H attached to the attachment recess 12a.
- the blood is allowed to flow in the arterial blood circuit 1 by limiting in the longitudinal direction (flow direction of blood) as the rotor 13 rotates. That is, when the covering tube H is mounted in the mounting recess 12 a and the rotor 13 is rotationally driven, the covering tube H is compressed between the roller 14 and the inner peripheral wall surface of the mounting recess 12 a and As the rotary drive is performed, it is possible to scrub in the rotational direction (longitudinal direction of the cover tube H). Since the blood in the artery-side blood circuit 1 is fed in the rotation direction of the rotor 13 by this ironing action, extracorporeal circulation in the artery-side blood circuit 1 is enabled.
- the rotor 13 is driven to rotate in the positive direction, and the roller 14 is rotated in the same direction (direction indicated by symbol ⁇ in FIG. 3) along the longitudinal direction of the covered tube H
- the dialyzer 3 blood purifier
- the rotor 13 is reversely driven to rotate the roller 14 in the same direction (reference numeral ⁇ in FIG. 3).
- the liquid can be fed from the dialyzer 3 (blood purifier) toward the tip of the arterial blood circuit 1 by rolling it along the longitudinal direction of the covering tube H while rotating it in the direction shown in.
- the guide pins 15 are, as shown in FIG. 2, formed of a pair of upper and lower pin-shaped members which are respectively formed to project from the upper end side and the lower end side of the rotor 13 toward the inner peripheral wall surface of the mounting recess 12a.
- the covering tube H is held between the pair of guide pins 15. That is, when the rotor 13 is driven, the cover tube H is held at a proper position by the pair of upper and lower guide pins 15 so that the cover tube H is not separated upward or downward from the mounting recess 12a.
- an overflow line Le exhaust portion
- the liquid (priming solution) overflowing the air trap chamber 5 is ejected to the outside It is configured as follows.
- a solenoid valve V3 is disposed on the overflow line Le, and the flow path of the overflow line Le can be closed or opened at any timing.
- the dialyzer 3 has a blood inlet 3a (blood inlet port), a blood outlet 3b (blood outlet port), a dialysate inlet 3c (dialysate channel inlet: dialysate inlet port), and a dialysate in its housing portion.
- the outlet 3d (dialysis fluid flow path outlet: dialysate outlet port) is formed, among which the proximal end of the arterial blood circuit 1 is in the blood inlet 3a and the venous blood circuit 2 in the blood outlet 3b. The proximal ends of are respectively connected.
- the dialysate inlet 3c and the dialysate outlet 3d are respectively connected to a dialysate inlet line La and a dialysate outlet line Lb extended from the main body of the dialysis device.
- a plurality of hollow fibers (not shown) are accommodated, and the hollow fibers constitute a blood purification membrane for purifying blood.
- a blood flow path (flow path between the blood inlet 3a and the blood outlet 3b) through which the patient's blood flows through the blood purification membrane and a dialysate flow path through which the dialysate flows (A flow path between the dialysate inlet 3c and the dialysate outlet 3d) is formed.
- a large number of minute holes (pores) penetrating the outer peripheral surface and the inner peripheral surface are formed to form a hollow fiber membrane, and blood is formed via the membrane. Impurities and the like therein are configured to permeate into the dialysate.
- the dual pump 10 is disposed across the dialysate introduction line La and the dialysate discharge line Lb in the dialysis apparatus main body, and is connected to the bypass line Lc bypassing the dual pump 10 in the dialysate discharge line Lb.
- a water removal pump 11 is provided for removing water from the patient's blood flowing in the space 3.
- One end of the dialysate introduction line La is connected to the dialyzer 3 (dialysate inlet 3c), and the other end is connected to a dialysate supply device (not shown) for preparing a dialysate of a predetermined concentration. .
- dialysate discharge line Lb is connected to the dialyzer 3 (dialysate outlet 3d), and the other end is connected to a drain unit (not shown), and the dialysate supplied from the dialysate supply device After reaching the dialyzer 3 through the dialysate introduction line La, the dialysate outlet line Lb is sent to the drainage section.
- the priming solution supply line Ld is connected to a predetermined position between the dual pump 10 and the dialyzer 3 in the dialysate introduction line La, and the other end is the blood pump 4 and the arterial air bubbles in the arterial blood circuit 1 It is connected to a predetermined position between itself and the detection unit 6.
- the priming fluid supply line Ld is provided with a solenoid valve V4 that closes or opens the flow path at an arbitrary timing. By opening the solenoid valve V4, the dialysate of the dialysis fluid introduction line La is opened. The priming solution is supplied to the arterial blood circuit 1.
- an arterial bubble detection unit 6 for detecting air bubbles in the liquid flowing through the portion is disposed, and on the distal end side of the venous blood circuit 2, the portion A vein-side air bubble detection unit 7 is provided which detects air bubbles in the liquid flowing in the air flow.
- reference numerals 8 and 9 respectively indicate blood discriminators respectively disposed on the distal end side of the arterial blood circuit 1 and on the distal end side of the vein blood circuit 2.
- a vein pressure measurement unit P that measures vein pressure is formed.
- the venous pressure measurement unit P is formed at a position between the dialyzer 3 and the air trap chamber 5 in the venous blood circuit 2, and measures the fluid pressure of the blood flowing through the venous blood circuit 2 to obtain blood. It is configured to measure the venous pressure of the patient during purification treatment over time.
- the vein pressure measurement unit P includes, for example, a chamber unit connected to the vein blood circuit 2 and a sensor that measures the fluid pressure in the chamber unit.
- the chamber portion is filled with a priming solution before blood purification treatment and with blood during blood purification treatment so that an air layer is not formed.
- the fluid pressure of the liquid (blood) flowing through the venous pressure measurement unit P is directly measured by the sensor, and the venous pressure of the patient undergoing blood purification treatment is monitored over time.
- the vein pressure measurement unit P has a chamber unit m1 connected to the vein side blood circuit 2, and a liquid in the chamber unit m1.
- a film m2 which does not transmit through is formed, and in the chamber section m1, a liquid phase Q1 filled with liquid and a gas phase Q2 filled with air can be formed.
- an air release line Lf extends from the gas phase Q2 side, and a level adjustment pump 17 formed of an ironing type pump is attached to the air release line Lf.
- the solenoid valves V1 to V4 close and open the flow path at each of the disposed portions by the opening and closing operation, and the opening and closing operation is controlled by the control unit E configured by a microcomputer or the like. It is supposed to be In particular, the control unit E in the present embodiment receives a detection signal from the vein-side air bubble detection unit 7 and controls the blood pump 4 and the solenoid valves V1 to V4, and is electrically connected to these components. ing.
- control unit E discharges the priming solution supplied from the priming solution supply line Ld from the overflow line Le (discharge unit) before dialysis treatment (before blood purification treatment) and A priming step for filling the flow path, a negative pressure generation step for generating a negative pressure at a portion filled with the priming solution by the blood pump 4 and the solenoid valve V1 (negative pressure generating portion) after the priming step, a negative pressure generation
- air bubbles in a portion where negative pressure is generated are made to flow, and a discharge process of discharging from the overflow line Le (discharge unit) is sequentially performed.
- the blood inlet 3a of the dialyzer 3 is directed upward (fixed by a fixing portion not shown), and the connector c and the connector d are connected.
- the priming step (the overflow step S1 and the liquid sending step S2) is performed.
- the priming step is a step of discharging the priming solution supplied from the priming solution supply line Ld from the overflow line Le (exhaust portion) and filling it in the flow path of the blood circuit, and in the present embodiment, the overflow step S1. (FIG. 5) and the liquid sending step S2 (FIG. 6) are repeated.
- the priming solution (dialysate) supplied from the priming solution supply line Ld is opened by opening the solenoid valves (V1 to V4) while stopping the blood pump 4. It is a step of flowing to the air trap chamber 5 and discharging the priming solution which overflowed the air trap chamber 5 to the outside through the overflow line Le.
- the priming fluid (dialysate) supplied through the priming fluid supply line Ld flows from the connection portion of the arterial blood circuit 1 with the priming fluid supply line Ld to the tip of the arterial blood circuit 1 and the vein blood.
- the flow path leading to the air trap chamber 5 and the air trap chamber 5 are filled via the connection with the tip of the circuit 2.
- the liquid transfer step S2 is performed.
- the electromagnetic pump (V1, V2) is opened while the blood pump 4 is driven to rotate in the reverse direction (rotational drive in ⁇ direction in FIG. 6).
- V4 are closed, and the priming solution (dialysate) filled in the overflow step S1 is sent (circulated) in the blood circuit.
- the priming solution flows upward from the lower side in the blood side flow passage in the dialyzer 3, and the air bubbles are smoothly moved upward and removed.
- the overflow step S1 is performed again. Then, after the overflow step S1 is performed for a predetermined time, the liquid sending step S2 is performed, and it is determined again at S3 whether or not there is air bubble detection.
- the priming solution is filled in the blood circuit and the air trap chamber 5.
- the negative pressure generation step S4 is performed.
- the solenoid valves (V1, V3, V4) are closed while the blood pump 4 is driven to rotate forward (rotationally driven in the direction of ⁇ in FIG. 7).
- This is a step of generating a negative pressure at the site filled with the priming solution by opening the valve V2.
- the negative pressure generating unit is constituted by the blood pump 4 and the solenoid valve V1 (blocked portion).
- the bubbles in the portion where the negative pressure is generated in the negative pressure generation step S4 are made to flow, and the discharge steps (first discharge step S5 and second discharge step S6) to discharge from the overflow line Le (discharge portion) are sequentially performed.
- the electromagnetic valves (V1, V2) are opened and the electromagnetic valves (V3, V4) are closed while the blood pump 4 is driven to rotate in the reverse direction. This is a step of causing the air bubble that has become large (it becomes large because a plurality of air bubbles expanded by the negative pressure is gathered) under the influence of the negative pressure in the negative pressure generation step S4 to flow to the air trap chamber 5.
- the second discharging step S6 flows to the air trap chamber 5 in the first discharging step S5 by opening the electromagnetic valves (V1 to V4) while stopping the blood pump 4 as shown in FIG.
- the air bubbles can be discharged to the outside through the overflow line Le.
- the effect of the negative pressure in the negative pressure generation step S4 is increased (the plurality of bubbles expanded due to the negative pressure is increased. ) Air bubbles can be discharged to the outside.
- the negative pressure is generated to generate the negative pressure at the site filled with the priming solution by the blood pump 4 and the solenoid valve V1 (negative pressure generating unit).
- Discharge step (first discharge step S5 and second discharge step S6) in which bubbles in a portion where negative pressure is generated in generation step S4 and negative pressure generation step S4 are made to flow and discharged from overflow line Le (discharge part)
- the microbubbles remaining in the area filled with the priming solution are expanded by the negative pressure generated in the negative pressure generation step S4, and the plurality of expanded cells are put together to enlarge the microbubbles.
- the microbubbles remaining after the priming step can be discharged smoothly and reliably.
- the blood pump 4 is configured to feed the liquid by squeezing the covered tube H connected to the artery-side blood circuit 1 with the roller 14, and at the same time, the negative pressure generator (in the present embodiment)
- the site where the negative pressure is generated by the blood pump 4 and the solenoid valve V1) includes at least a part of the covered tube H, so that microbubbles remaining in the covered tube H can be discharged smoothly and reliably after the priming step. be able to.
- the negative pressure generating portion includes the blood pump 4 and the solenoid valve V1 (occluded portion) that occludes the portion filled with the priming solution in the blood circuit, so the blood pump necessary for blood purification treatment 4 can be diverted to generate negative pressure at the site filled with the priming solution.
- the air trap chamber 5 is connected to the vein-side blood circuit 2, and the discharge unit for discharging the air bubbles is an overflow that extends from the upper portion of the air trap chamber 5. Since it comprises the line Le, when the tip of the arterial blood circuit 1 and the tip of the venous blood circuit 2 are connected to perform the priming step, the microbubbles remaining at the site filled with the priming fluid in the blood circuit are overflowed Good discharge from line Le.
- the solenoid valves (V1, V3, V4) are driven while the blood pump 4 is driven to rotate positively (rotationally driven in the .alpha. Direction in FIG. 7).
- the solenoid valve V2 In the closed state, and the solenoid valve V2 is in the open state, instead of this, as shown in FIG. 11, the blood pump 4 is driven to rotate forward (rotationally driven in the ⁇ direction in FIG. 11) and the solenoid valve (V2) , V3) may be closed, and the solenoid valve V1 may be opened, so that negative pressure may be formed in the flow path of the portion indicated by the thick line in the drawing.
- the negative pressure generating unit is constituted by the blood pump 4 and the solenoid valve V2 (blocked portion).
- the negative pressure generating unit is constituted by the blood pump 4 and the solenoid valve V1 (blocked portion).
- the site for generating the negative pressure in the negative pressure generation part includes at least a part of the covered tube H, so that micro bubbles remaining in the covered tube H can be discharged smoothly and reliably after the priming step. be able to.
- the microbubbles attached to the blood inlet 3a of the dialyzer 3 also expand and gather together under the influence of the negative pressure generated by the negative pressure generating portion, so that the discharge can be easily performed.
- a level adjustment pump 17 is provided which is connected to a vein pressure measurement unit P formed at a predetermined site of the blood circuit (vein blood circuit 2) and adjusts the liquid level of the predetermined site.
- the negative pressure generation unit may be configured by the level adjustment pump 17 and the roller 14 of the blood pump 4 as a closed portion.
- the level adjustment pump 17 is attached to an air release line Lf extended from the vein pressure measurement unit P, and the air of the air layer formed in the vein pressure measurement unit P is released to the atmosphere. By discharging the liquid to the outside through Lf, the liquid level is adjusted (in the present embodiment, all the air in the chamber part of the vein pressure measuring part P is not discharged to form an air layer).
- the level adjustment pump 17 is driven while the blood pump 4 is stopped, the solenoid valves (V3, V4) are closed, and the solenoid valve ( By opening V1 and V2), a negative pressure can be generated at a portion (portion indicated by a thick line in the drawing) in which the priming solution is filled.
- the closed portion constituting the negative pressure generating portion is composed of the roller 14 of the blood pump 4 in the stopped state.
- the level adjustment pump 17 is provided, and the negative pressure generation unit includes the level adjustment pump 17 and a closed portion (the roller 14 of the blood pump 4) that blocks a portion filled with the priming solution in the blood circuit.
- the level adjustment pump 17 necessary for liquid level adjustment can be diverted to generate negative pressure at the site filled with the priming solution.
- the extracorporeal circulation apparatus comprises a dialysis apparatus for performing dialysis treatment, as in the first embodiment, and as shown in FIG. 14, a blood comprising an arterial blood circuit 1 and a venous blood circuit 2 A circuit, a dialyzer 3 (blood purifier) connected to the proximal end of the arterial blood circuit 1 and the proximal end of the venous blood circuit 2 to purify the blood flowing through the blood circuit, and the venous blood circuit 2 A priming fluid supply line Ld connected to the air trap chamber 5 and the arterial blood circuit 1 for supplying the priming fluid into the blood circuit, and negative pressure generation for generating a negative pressure at a site filled with the priming fluid in the blood circuit
- the control unit E mainly includes a control unit E (in the present embodiment, the blood pump 4 and the solenoid valve V1 as the closing unit) and a negative pressure generation unit (the blood pump 4 and the solenoid valve V1).
- the discharge unit (the discharge unit that discharges the priming solution supplied into the blood circuit through the priming solution supply line Ld) according to the present embodiment is the tip of the arterial blood circuit 1 or the vein blood circuit 2. It consists of the tip of the Further, in the present embodiment, the overflow line Le extended from the air trap chamber 5 according to the first embodiment is not provided.
- the same components as those in the first embodiment are denoted by the same reference numerals, and the detailed description thereof is omitted.
- control contents by the control unit E according to the present embodiment will be described based on a flowchart of FIG.
- the blood introduction port 3a of the dialyzer 3 is directed upward (fixed by a fixing portion not shown), and the connector c and the connector d are opened.
- the priming step (artery side priming step S1 and vein side priming step S2) is performed.
- the priming step is a step of discharging the priming solution supplied from the priming solution supply line Ld from the tip of the arterial blood circuit 1 and the tip (discharge part) of the venous blood circuit 2 and filling the flow path of the blood circuit
- the arterial side priming step S1 (FIG. 14) and the venous side priming step S2 (FIG. 15) are performed.
- the priming solution supplied from the priming solution supply line Ld is opened by opening the electromagnetic valves (V1, V2, V4) while stopping the blood pump 4.
- the dialysate is allowed to flow to the tip of the arterial blood circuit 1 and discharged from the tip to the outside.
- the priming fluid (dialysate) supplied through the priming fluid supply line Ld flows from the connecting portion of the arterial blood circuit 1 with the priming fluid supply line Ld to the tip of the arterial blood circuit 1. Will be filled.
- a vein side priming step S2 is performed.
- the priming solution is obtained by opening the solenoid valves (V2, V4) and closing the solenoid valve V1 while driving the blood pump 4 to rotate forward.
- the priming solution (dialysate) supplied from the supply line Ld is allowed to flow to the tip of the venous blood circuit 2 and is discharged from the tip to the outside.
- the priming solution (dialysate) supplied through the priming solution supply line Ld passes through the blood side flow path of the dialyzer 3 from the connection portion with the priming solution supply line Ld in the arterial side blood circuit 1.
- the flow path leading to the tip of the side blood circuit 2 is filled.
- the flow paths of the artery side blood circuit 1 and the vein side blood circuit 2 and the blood flow path of the dialyzer 3 Is filled (in the filling state), and the air trap chamber 5 and the chamber portion of the vein pressure measuring unit P are also in the state in which the priming solution is filled (the air layer is not formed).
- the negative pressure generation step S3 is performed.
- the blood pump 4 is driven to rotate in the positive direction and the electromagnetic valves (V1, V2, V4) are closed to allow the priming fluid to be filled in the negative region. It is a process of generating pressure.
- the negative pressure generating unit is constituted by the blood pump 4 and the solenoid valve V1 (blocked portion).
- a negative pressure can be generated at a portion (any portion) including a portion of the tube H (the flow path to the portion at which the roller 14 is immersed), so that portion (particularly, a portion of the covered tube H) Can be expanded, and adjacent bubbles can be put together to form relatively large bubbles.
- the residual microbubbles can be enlarged by the negative pressure generated in the negative pressure generation step S3, and the bubbles can be made to flow relatively easily at the flow rate by driving the blood pump 4.
- a discharge step S4 is performed in which the air bubbles in the portion where the negative pressure is generated in the negative pressure generation step S3 are made to flow and discharged from the tip (discharge portion) of the arterial blood circuit 1.
- the negative pressure generating step S3 is performed by opening the solenoid valves (V1, V2) and closing the solenoid valve V4 while driving the blood pump 4 to rotate in the reverse direction.
- the air bubbles that have become large due to the influence of the negative pressure due to are discharged from the tip of the arterial blood circuit 1.
- the dialysate is reversely filtered from the dialysate flow path of the dialyzer 3 to the blood flow path, and the dialysate is added to the arterial blood circuit 1 side, and the vein side It flows to the blood circuit 2 side and is discharged from its tip.
- negative pressure is generated at the site where the priming solution is filled by the blood pump 4 and the solenoid valve V1 (negative pressure generating portion). Because the negative pressure generation step S3 of causing the air flow and the discharge step of causing the air bubbles at the portion where the negative pressure is generated in the negative pressure generation step S3 to flow and discharging the air from the distal end (discharge portion) of the arterial blood circuit 1 are performed. Since the microbubbles remaining at the site filled with the priming solution are expanded by the negative pressure generated in the negative pressure generation step S3 and the plurality of expanded cells are put together, the microbubbles can be enlarged. The microbubbles remaining after the process can be discharged smoothly and reliably.
- the blood pump 4 is configured to feed the liquid by squeezing the covered tube H connected to the artery-side blood circuit 1 with the roller 14, and at the same time, the negative pressure generator (in the present embodiment)
- the site where the negative pressure is generated by the blood pump 4) includes at least a part of the covered tube H, so that micro bubbles remaining in the covered tube H can be discharged smoothly and reliably after the priming step.
- the negative pressure generating portion includes the blood pump 4 and the solenoid valve V1 (occluded portion) that occludes the portion filled with the priming solution in the blood circuit, so the blood pump necessary for blood purification treatment 4 can be diverted to generate negative pressure at the site filled with the priming solution.
- the discharge unit for discharging the air bubbles is the tip of the arterial blood circuit 1 (or may be the tip of the venous blood circuit 2).
- the priming step is performed without connecting the tip of the blood vessel 2 to the tip of the vein blood circuit 2, the microbubbles remaining at the site filled with the priming solution of the blood circuit It can be discharged well from the tip of the circuit).
- the electromagnetic valves (V1, V2, V4) are closed while the blood pump 4 is driven to rotate in the positive direction.
- the solenoid valves (V1, V2, V4) are closed, and negative pressure is formed in the flow path of the portion shown by thick lines in the figure. It is also good.
- the negative pressure generating unit is constituted by the blood pump 4, the solenoid valve V1, and the solenoid valve V2 (blocked portion).
- the site for generating the negative pressure in the negative pressure generation part includes at least a part of the covered tube H, so that micro bubbles remaining in the covered tube H can be discharged smoothly and reliably after the priming step. be able to.
- the microbubbles attached to the blood inlet 3a of the dialyzer 3 also expand and gather together under the influence of the negative pressure generated by the negative pressure generating portion, so that the discharge can be easily performed.
- a level adjustment pump 17 is provided which is connected to a vein pressure measuring unit P formed at a predetermined site of the blood circuit (vein blood circuit 2) and adjusts the liquid level of the predetermined site.
- the negative pressure generating unit may be configured by the level adjustment pump 17, the roller 14 of the blood pump 4 as the closing unit, and the solenoid valve V2.
- the level adjustment pump 17 is attached to an air release line Lf extended from the vein pressure measurement unit P, and the air of the air layer formed in the vein pressure measurement unit P is released to the atmosphere. By discharging the liquid to the outside through Lf, the liquid level is adjusted (in the present embodiment, all the air in the chamber part of the vein pressure measuring part P is not discharged to form an air layer).
- the level adjustment pump 17 is driven while the blood pump 4 is stopped, the solenoid valves (V2, V4) are closed, and the solenoid valve is closed.
- V1 in the open state, negative pressure can be generated at the site filled with the priming solution (the site indicated by the thick line in the figure).
- the closed portion constituting the negative pressure generating portion is composed of the roller 14 of the blood pump 4 in the stopped state and the solenoid valve V2.
- the negative pressure generation unit includes the level adjustment pump 17 and a closed portion (the roller 14 of the blood pump 4 and the like) that occludes the portion filled with the priming solution in the blood circuit. If a solenoid valve V2) is provided, the level adjustment pump 17 necessary for liquid level adjustment can be diverted to generate negative pressure at a portion filled with the priming solution.
- the priming step discharges the priming solution supplied from the priming solution supply line Ld (the overflow line Le or the arterial side blood circuit 1 Alternatively, as long as it is a step of draining from the tip of the vein side blood circuit 2 and the like and filling it in the flow path of the blood circuit, any other form of process may be used.
- one end of the priming fluid supply line Ld is connected to the dialysate introducing line La, and the solenoid valve V4 is opened to supply the dialysate as the priming fluid to the blood circuit.
- one end of the priming solution supply line Ld may be connected to a storage bag in which physiological saline is stored, and physiological saline as the priming solution may be supplied to the blood circuit.
- the priming fluid supply line Ld is not formed, and for example, the dialysis fluid (priming fluid) of the dialysis fluid introduction line La is filtered (reverse filtration) through the purification membrane of the dialyzer 3 (in the present embodiment, a hollow fiber membrane). , And may be supplied to the blood circuit (the arterial blood circuit 1 and the venous blood circuit 2).
- the priming solution As the priming solution, another fluid different from the dialysate or the physiological saline may be used.
- the present invention is applied to a dialysis device used at the time of dialysis treatment, but other devices for purifying the patient's blood while circulating it extracorporeally (eg, hemodiafiltration, hemofiltration, AFBF) Blood purification devices, plasma adsorption devices, etc.).
- An extracorporeal circulation device that causes bubbles in a portion where negative pressure is generated in the negative pressure generation step to flow and discharge the air from the discharge unit, and the method of discharging the air bubbles in other forms and applications Can also be applied.
- the extracorporeal circulation device is a concept including a blood purification device.
- the site filled with priming solution refers to all or part of the area filled with priming solution in the blood circuit.
Landscapes
- Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Anesthesiology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Cardiology (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- External Artificial Organs (AREA)
- Urology & Nephrology (AREA)
- Emergency Medicine (AREA)
Abstract
本発明は、各々の基端が血液浄化器に接続される動脈側血液回路及び静脈側血液回路を有するとともに、当該動脈側血液回路の先端から静脈側血液回路の先端まで患者の血液を体外循環させる血液回路と、前記血液回路内に供給されたプライミング液を外部に排出させる排出部と、前記血液回路におけるプライミング液が充填された部位に陰圧を発生させる陰圧発生部と、前記陰圧発生部を制御する制御部とを有する体外循環装置であって、前記制御部は、前記血液回路内に供給されたプライミング液を前記排出部から排出させるとともに前記血液回路の流路内に充填させるプライミング工程と、前記プライミング工程後、前記陰圧発生部によって前記部位に陰圧を発生させる陰圧発生工程と、前記陰圧発生工程にて陰圧を発生させた前記部位の気泡を流動させ、前記排出部から排出させる排出工程とを行わせることを特徴とするものである。
Description
本発明は、ダイアライザを使用した透析治療など、患者の血液を体外循環させつつ浄化するための体外循環装置及びその気泡の排出方法に関するものである。
一般に、透析治療時においては、採取した患者の血液を体外循環させて再び体内に戻すための血液回路が用いられており、かかる血液回路は、例えば中空糸膜を具備したダイアライザ(血液浄化器)と接続する動脈側血液回路及び静脈側血液回路から主に構成されている。これら動脈側血液回路及び静脈側血液回路の各先端には、動脈側穿刺針及び静脈側穿刺針が取り付けられ、それぞれが患者に穿刺されて透析治療における血液の体外循環が行われることとなる。
このうち、動脈側血液回路には、被しごきチューブが接続されるとともに、当該被しごきチューブをローラにてしごくことにより送液するしごき型の血液ポンプが配設されている。かかる血液ポンプを駆動させることにより、血液回路内において患者の血液を体外循環させることができるので、その体外循環する血液に対してダイアライザによる血液浄化治療が施されることとなる。
また、動脈側血液回路には、血液回路にプライミング液を供給するためのプライミング液供給ラインが接続されている。そして、透析治療前、プライミング液供給ラインからプライミング液を供給しつつオーバーフローラインから排出させて血液回路内の気泡を排出させるとともに、血液回路の流路内にプライミング液を充填させるプライミング工程が行われるようになっている(例えば、特許文献1参照)。
しかしながら、上記従来の体外循環装置においては、特に被しごきチューブに充填されたプライミング液中に微小気泡が残留した場合、その微小気泡を血液回路外に排出させるためには、大量且つ流速が高いプライミング液が必要となってしまう虞があった。また、このような微小気泡の残留は、被しごきチューブに限らず、プライミング液が充填される血液回路の流路全般に亘って生じ得ることから、プライミング工程で残留した微小気泡を円滑且つ確実に除去する要求が高まっている。
しかるに、本出願人は、プライミング液が充填された流路に陰圧を発生させると、残留した微小気泡が膨張し、隣接する複数の気泡がまとまって比較的大きな気泡となる現象に着目し、当該現象を利用して、被しごきチューブ内に残留した微小気泡を円滑且つ確実に排出することを鋭意検討した。
本発明は、このような事情に鑑みてなされたもので、プライミング工程後に残留した微小気泡を円滑且つ確実に排出させることができる体外循環装置及びその気泡の排出方法を提供することにある。
請求項1記載の発明は、各々の基端が血液浄化器に接続される動脈側血液回路及び静脈側血液回路を有するとともに、当該動脈側血液回路の先端から静脈側血液回路の先端まで患者の血液を体外循環させる血液回路と、前記血液回路内に供給されたプライミング液を外部に排出させる排出部と、前記血液回路におけるプライミング液が充填された部位に陰圧を発生させる陰圧発生部と、前記陰圧発生部を制御する制御部とを有する体外循環装置であって、前記制御部は、前記血液回路内に供給されたプライミング液を前記排出部から排出させるとともに前記血液回路の流路内に充填させるプライミング工程と、前記プライミング工程後、前記陰圧発生部によって前記部位に陰圧を発生させる陰圧発生工程と、前記陰圧発生工程にて陰圧を発生させた前記部位の気泡を流動させ、前記排出部から排出させる排出工程とを行わせることを特徴とする。
請求項2記載の発明は、請求項1記載の体外循環装置において、前記動脈側血液回路に接続された被しごきチューブをローラでしごくことにより送液する血液ポンプを具備するとともに、前記陰圧発生部で陰圧を発生させる前記部位は、前記被しごきチューブの少なくとも一部を含むことを特徴とする。
請求項3記載の発明は、請求項2記載の体外循環装置において、前記陰圧発生部は、前記血液ポンプと、前記血液回路におけるプライミング液が充填された前記部位を閉塞する閉塞部とを有することを特徴とする。
請求項4記載の発明は、請求項1又は請求項2記載の体外循環装置において、前記血液回路の所定部位に接続され、当該所定部位の液面を調整するレベル調整用ポンプを具備するとともに、前記陰圧発生部は、前記レベル調整用ポンプと、前記血液回路におけるプライミング液が充填された前記部位を閉塞する閉塞部とを有することを特徴とする。
請求項5記載の発明は、請求項1~4の何れか1つに記載の体外循環装置において、前記静脈側血液回路には、エアトラップチャンバが接続されるとともに、前記排出部は、当該エアトラップチャンバの上部から延設されたオーバーフローラインから成ることを特徴とする。
請求項6記載の発明は、請求項1~4の何れか1つに記載の体外循環装置において、前記排出部は、前記動脈側血液回路の先端又は前記静脈側血液回路の先端から成ることを特徴とする。
請求項7記載の発明は、各々の基端が血液浄化器に接続される動脈側血液回路及び静脈側血液回路を有するとともに、当該動脈側血液回路の先端から静脈側血液回路の先端まで患者の血液を体外循環させる血液回路と、前記血液回路内に供給されたプライミング液を外部に排出させる排出部と、前記血液回路におけるプライミング液が充填された部位に陰圧を発生させる陰圧発生部とを有する体外循環装置による気泡の排出方法であって、前記血液回路内に供給されたプライミング液を前記排出部から排出させるとともに前記血液回路の流路内に充填させるプライミング工程と、前記プライミング工程後、前記陰圧発生部によって前記部位に陰圧を発生させる陰圧発生工程と、前記陰圧発生工程にて陰圧を発生させた前記部位の気泡を流動させ、前記排出部から排出させる排出工程とを行わせることを特徴とする。
請求項8記載の発明は、請求項7記載の体外循環装置による気泡の排出方法において、前記動脈側血液回路に接続された被しごきチューブをローラでしごくことにより送液する血液ポンプを具備するとともに、前記陰圧発生部で陰圧を発生させる前記部位は、前記被しごきチューブの少なくとも一部を含むことを特徴とする。
請求項9記載の発明は、請求項8記載の体外循環装置による気泡の排出方法において、前記陰圧発生部は、前記血液ポンプと、前記血液回路におけるプライミング液が充填された前記部位を閉塞する閉塞部とを有することを特徴とする。
請求項10記載の発明は、請求項7又は請求項8記載の体外循環装置による気泡の排出方法において、前記血液回路の所定部位に接続され、当該所定部位の液面を調整するレベル調整用ポンプを具備するとともに、前記陰圧発生部は、前記レベル調整用ポンプと、前記血液回路におけるプライミング液が充填された前記部位を閉塞する閉塞部とを有することを特徴とする。
請求項11記載の発明は、請求項7~10の何れか1つに記載の体外循環装置による気泡の排出方法において、前記静脈側血液回路には、エアトラップチャンバが接続されるとともに、前記排出部は、当該エアトラップチャンバの上部から延設されたオーバーフローラインから成ることを特徴とする。
請求項12記載の発明は、請求項7~10の何れか1つに記載の体外循環装置による気泡の排出方法において、前記排出部は、前記動脈側血液回路の先端又は前記静脈側血液回路の先端から成ることを特徴とする。
請求項1、7の発明によれば、プライミング工程後、陰圧発生部によってプライミング液が充填された部位に陰圧を発生させる陰圧発生工程と、陰圧発生工程にて陰圧を発生させた部位の気泡を流動させ、排出部から排出させる排出工程とを行わせるので、陰圧発生工程にて発生させた陰圧によってプライミング液が充填された部位に残留した微小気泡を膨張させ、その膨張した複数の気泡をまとめることで微小気泡を大きくすることができるので、プライミング工程後に残留した微小気泡を円滑且つ確実に排出させることができる。
請求項2、8の発明によれば、動脈側血液回路に接続された被しごきチューブをローラでしごくことにより送液する血液ポンプを具備するとともに、陰圧発生部で陰圧を発生させる部位は、被しごきチューブの少なくとも一部を含むので、プライミング工程後、被しごきチューブに残留した微小気泡を円滑且つ確実に排出させることができる。
請求項3、9の発明によれば、陰圧発生部は、血液ポンプと、血液回路におけるプライミング液が充填された部位を閉塞する閉塞部とを有するので、血液浄化治療に必要な血液ポンプを流用してプライミング液が充填された部位に陰圧を発生させることができる。
請求項4、10の発明によれば、血液回路の所定部位に接続され、当該所定部位の液面を調整するレベル調整用ポンプを具備するとともに、陰圧発生部は、レベル調整用ポンプと、血液回路におけるプライミング液が充填された部位を閉塞する閉塞部とを有するので、液面調整に必要なレベル調整用ポンプを流用してプライミング液が充填された部位に陰圧を発生させることができる。
請求項5、11の発明によれば、静脈側血液回路には、エアトラップチャンバが接続されるとともに、排出部は、当該エアトラップチャンバの上部から延設されたオーバーフローラインから成るので、動脈側血液回路の先端と静脈側血液回路の先端とを接続してプライミング工程を行った際、血液回路のプライミング液が充填された部位に残留した微小気泡をオーバーフローラインから良好に排出させることができる。
請求項6、12の発明によれば、排出部は、動脈側血液回路の先端又は静脈側血液回路の先端から成るので、動脈側血液回路の先端と静脈側血液回路の先端とを接続しないでプライミング工程を行った際、血液回路のプライミング液が充填された部位に残留した微小気泡を動脈側血液回路の先端又は静脈側血液回路の先端から良好に排出させることができる。
以下、本発明の実施形態について図面を参照しながら具体的に説明する。
第1の実施形態に係る体外循環装置は、透析治療を行うための透析装置から成り、図1に示すように、動脈側血液回路1及び静脈側血液回路2から成る血液回路と、動脈側血液回路1の基端及び静脈側血液回路2の基端に接続され、血液回路を流れる血液を浄化するダイアライザ3(血液浄化器)と、静脈側血液回路2に接続されたエアトラップチャンバ5と、動脈側血液回路1に接続され、血液回路内にプライミング液を供給するプライミング液供給ラインLdと、プライミング液供給ラインLdにて血液回路内に供給されたプライミング液を外部に排出させるオーバーフローラインLe(排出部)と、血液回路におけるプライミング液が充填された部位に陰圧を発生させる陰圧発生部(本実施形態においては血液ポンプ4及び閉塞部としての電磁弁V1)と、陰圧発生部(血液ポンプ4及び電磁弁V1)を制御する制御部Eとから主に構成されている。
第1の実施形態に係る体外循環装置は、透析治療を行うための透析装置から成り、図1に示すように、動脈側血液回路1及び静脈側血液回路2から成る血液回路と、動脈側血液回路1の基端及び静脈側血液回路2の基端に接続され、血液回路を流れる血液を浄化するダイアライザ3(血液浄化器)と、静脈側血液回路2に接続されたエアトラップチャンバ5と、動脈側血液回路1に接続され、血液回路内にプライミング液を供給するプライミング液供給ラインLdと、プライミング液供給ラインLdにて血液回路内に供給されたプライミング液を外部に排出させるオーバーフローラインLe(排出部)と、血液回路におけるプライミング液が充填された部位に陰圧を発生させる陰圧発生部(本実施形態においては血液ポンプ4及び閉塞部としての電磁弁V1)と、陰圧発生部(血液ポンプ4及び電磁弁V1)を制御する制御部Eとから主に構成されている。
動脈側血液回路1には、その先端にコネクタcを介して動脈側穿刺針aが接続されるとともに、途中にしごき型の血液ポンプ4が配設されている。静脈側血液回路2には、その先端にコネクタdを介して静脈側穿刺針bが接続されるとともに、途中にエアトラップチャンバ5が接続されている。さらに、動脈側血液回路1の先端側(コネクタc近傍)及び静脈側血液回路2の先端側(コネクタd近傍)には、それら流路をそれぞれ閉塞又は開放する電磁弁V1及びV2が接続されている。
そして、動脈側穿刺針a及び静脈側穿刺針bを患者に穿刺した状態で、血液ポンプ4を駆動させると、患者の血液は、動脈側血液回路1を通ってダイアライザ3に至った後、該ダイアライザ3によって血液浄化が施され、エアトラップチャンバ5で除泡がなされつつ静脈側血液回路2を通って患者の体内に戻る。すなわち、患者の血液を血液回路の動脈側血液回路1の先端から静脈側血液回路2の先端まで体外循環させつつダイアライザ3にて浄化することにより血液浄化治療が行われるのである。なお、本明細書においては、血液を脱血(採血)する穿刺針の側を「動脈側」と称し、血液を返血する穿刺針の側を「静脈側」と称しており、「動脈側」及び「静脈側」とは、穿刺の対象となる血管が動脈及び静脈の何れかによって定義されるものではない。
また、動脈側血液回路1の途中(プライミング液供給ラインLdの接続部とダイアライザ3との間)には、被しごきチューブHが接続されており、当該被しごきチューブHを血液ポンプ4(具体的には、図2、3に基づいて後で詳述する血液ポンプ4のステータ12に形成された取付凹部12a)に取り付けることが可能とされている。かかる被しごきチューブHは、血液ポンプ4(しごき型ポンプ)のローラ14(しごき部)にて径方向に圧縮されつつ長手方向にしごかれて内部の液体をロータ13の回転方向に流動させるものであり、動脈側血液回路1を構成する他の可撓性チューブより軟質且つ大径の可撓性チューブから成る。
本実施形態に係る血液ポンプ4は、図2、3に示すように、ステータ12と、ステータ12内で回転駆動するロータ13と、該ロータ13に形成されたローラ14と、上下一対のガイドピン15と、被しごきチューブHを把持して固定する把持部16とから主に構成されている。なお、同図においては、血液ポンプ4におけるステータ12の上部を覆うカバーについて省略してある。
ステータ12は、被しごきチューブHが取り付けられる取付凹部12aが形成されたもので、図2、3に示すように、当該取付凹部12aを形成する内周壁面に沿って被しごきチューブHが取り付けられるよう構成されている。また、取付凹部12aの略中央には、モータにより回転駆動するロータ13が配設されている。かかるロータ13の側面(取付凹部12aの内周壁面と対向する面)には、一対(2つ)のローラ14と、ガイドピン15とが配設されている。
ローラ14は、ロータ13の外縁側に形成された回転軸M(図3参照)を中心として回転可能とされたもので、取付凹部12aに取り付けられた被しごきチューブHを径方向に圧縮しつつ当該ロータ13の回転に伴い長手方向(血液の流動方向)にしごくことにより、動脈側血液回路1内で血液を流動させるものである。すなわち、取付凹部12a内に被しごきチューブHを取り付けてロータ13を回転駆動させると、ローラ14と取付凹部12aの内周壁面との間で当該被しごきチューブHが圧縮されるとともに、ロータ13の回転駆動に伴ってその回転方向(被しごきチューブHの長手方向)にしごき得るのである。かかるしごき作用により、動脈側血液回路1内の血液がロータ13の回転方向に送液されることとなるので、当該動脈側血液回路1内で体外循環させることが可能とされている。
さらに、本実施形態に係る血液ポンプ4は、ロータ13を正回転駆動させてローラ14を同方向(図3の符号αで示す方向)に回動させつつ被しごきチューブHの長手方向に沿って転動させることにより動脈側血液回路1の先端からダイアライザ3(血液浄化器)に向かって送液可能とされるとともに、ロータ13を逆回転駆動させてローラ14を同方向(図3の符号βで示す方向)に回動させつつ被しごきチューブHの長手方向に沿って転動させることによりダイアライザ3(血液浄化器)から動脈側血液回路1の先端に向かって送液可能とされている。
ガイドピン15は、図2に示すように、ロータ13の上端側及び下端側から取付凹部12aの内周壁面に向かってそれぞれ突出形成された上下一対のピン状部材から成るものであり、これら上下一対のガイドピン15の間に被しごきチューブHが保持されることとなる。すなわち、ロータ13の駆動時、上下一対のガイドピン15により被しごきチューブHを正規の位置に保持させ、取付凹部12aから被しごきチューブHが上方又は下方に離脱しないようになっているのである。
エアトラップチャンバ5には、上部から延びて先端が大気解放とされたオーバーフローラインLe(排出部)が延設されており、当該エアトラップチャンバ5をオーバーフローした液体(プライミング液)を外部に排出させるよう構成されている。このオーバーフローラインLeには、電磁弁V3が配設されており、当該オーバーフローラインLeの流路を任意タイミングで閉塞又は開放可能とされている。
ダイアライザ3は、その筐体部に、血液導入口3a(血液導入ポート)、血液導出口3b(血液導出ポート)、透析液導入口3c(透析液流路入口:透析液導入ポート)及び透析液導出口3d(透析液流路出口:透析液導出ポート)が形成されており、このうち血液導入口3aには動脈側血液回路1の基端が、血液導出口3bには静脈側血液回路2の基端がそれぞれ接続されている。また、透析液導入口3c及び透析液導出口3dは、透析装置本体から延設された透析液導入ラインLa及び透析液排出ラインLbにそれぞれ接続されている。
ダイアライザ3内には、複数の中空糸(不図示)が収容されており、この中空糸が血液を浄化するための血液浄化膜を構成している。而して、ダイアライザ3内には、血液浄化膜を介して患者の血液が流れる血液流路(血液導入口3aと血液導出口3bとの間の流路)及び透析液が流れる透析液流路(透析液導入口3cと透析液導出口3dとの間の流路)が形成されている。そして、血液浄化膜を構成する中空糸には、その外周面と内周面とを貫通した微小な孔(ポア)が多数形成されて中空糸膜を形成しており、該膜を介して血液中の不純物等が透析液内に透過するよう構成されている。
複式ポンプ10は、透析装置本体内で透析液導入ラインLa及び透析液排出ラインLbに跨って配設されているとともに、透析液排出ラインLbにおける複式ポンプ10をバイパスするバイパスラインLcには、ダイアライザ3中を流れる患者の血液から水分を除去するための除水ポンプ11が配設されている。なお、透析液導入ラインLaの一端は、ダイアライザ3(透析液導入口3c)に接続されるとともに、他端が所定濃度の透析液を調製する透析液供給装置(不図示)に接続されている。また、透析液排出ラインLbの一端は、ダイアライザ3(透析液導出口3d)に接続されるとともに、他端が図示しない排液部と接続されており、透析液供給装置から供給された透析液が透析液導入ラインLaを通ってダイアライザ3に至った後、透析液排出ラインLbを通って排液部に送られるようになっている。
プライミング液供給ラインLdは、その一端が透析液導入ラインLaにおける複式ポンプ10とダイアライザ3との間の所定位置に接続されるとともに、他端が動脈側血液回路1における血液ポンプ4と動脈側気泡検知部6との間の所定位置に接続されている。かかるプライミング液供給ラインLdには、その流路を任意タイミングで閉塞又は開放する電磁弁V4が配設されており、当該電磁弁V4を開状態とすることで、透析液導入ラインLaの透析液(プライミング液)を動脈側血液回路1に供給するようになっている。
一方、動脈側血液回路1の先端側には、その部位を流れる液体中の気泡を検知する動脈側気泡検知部6が配設されるとともに、静脈側血液回路2の先端側には、その部位を流れる液体中の気泡を検知する静脈側気泡検知部7が配設されている。なお、図中符号8、9は、動脈側血液回路1の先端側及び静脈側血液回路2の先端側にそれぞれ配設された血液判別器をそれぞれ示している。
また、本実施形態における静脈側血液回路2には、静脈圧を計測する静脈圧計測部Pが形成されている。この静脈圧計測部Pは、静脈側血液回路2におけるダイアライザ3とエアトラップチャンバ5との間の位置に形成されており、静脈側血液回路2を流れる血液の液圧を計測することにより、血液浄化治療中の患者の静脈圧を経時的に計測するよう構成されている。
なお、本実施形態に係る静脈圧計測部Pは、例えば静脈側血液回路2に接続されたチャンバ部及び当該チャンバ部内の液圧を計測するセンサ等から構成されている。チャンバ部は、血液浄化治療前においてはプライミング液、血液浄化治療中においては血液で満たされた状態とされ、空気層が形成されないようになっている。しかして、静脈圧計測部Pを流れる液体(血液)の液圧がセンサによって直接計測され、血液浄化治療中の患者の静脈圧を経時的に監視するものとされている。
具体的には、本実施形態に係る静脈圧計測部Pは、図4(a)に示すように、静脈側血液回路2に接続されたチャンバ部m1を有するとともに、そのチャンバ部m1内に液体を透過しない膜m2が形成されており、当該チャンバ部m1内において、液体が充填される液相Q1と、空気が充填される気相Q2とが形成可能とされている。さらに、気相Q2側からは、大気開放ラインLfが延設されており、その大気開放ラインLfに、しごき型ポンプから成るレベル調整用ポンプ17が取り付けられている。そして、同図(b)に示すように、レベル調整用ポンプ17を駆動させることにより、気相Q2内の空気を外部に排出させることにより、チャンバ部m1内における膜m2の位置(液面)を調整する(本実施形態においてはチャンバ部m1内の空気を全て排出して空気層を形成しない)ようになっている。
電磁弁V1~V4は、上述のように開閉動作により、配設された各々の部位における流路を閉塞及び開放するものであり、その開閉動作がマイコン等で構成された制御部Eにて制御されるようになっている。特に、本実施形態における制御部Eは、静脈側気泡検知部7による検知信号を受信し且つ血液ポンプ4及び各電磁弁V1~V4を制御するものとされ、これら構成要素と電気的に接続されている。
ここで、本実施形態に係る制御部Eは、透析治療前(血液浄化治療前)において、プライミング液供給ラインLdから供給されたプライミング液をオーバーフローラインLe(排出部)から排出させるとともに血液回路の流路内に充填させるプライミング工程と、プライミング工程後、血液ポンプ4及び電磁弁V1(陰圧発生部)によってプライミング液が充填された部位に陰圧を発生させる陰圧発生工程と、陰圧発生工程にて陰圧を発生させた部位の気泡を流動させ、オーバーフローラインLe(排出部)から排出させる排出工程とを順次行わせるようになっている。
以下、本実施形態に係る制御部Eによる制御内容について、図10のフローチャートに基づいて説明する。
血液浄化治療前において、図5、6に示すように、ダイアライザ3の血液導入口3aが上方を向いた状態(図示しない固定部により固定)とし、且つ、コネクタcとコネクタdとを接続して互いの流路を連通させた後、プライミング工程(オーバーフロー工程S1及び送液工程S2)を行わせる。かかるプライミング工程は、プライミング液供給ラインLdから供給されたプライミング液をオーバーフローラインLe(排出部)から排出させるとともに血液回路の流路内に充填させる工程であり、本実施形態においては、オーバーフロー工程S1(図5)と送液工程S2(図6)とが繰り返し行われる。
血液浄化治療前において、図5、6に示すように、ダイアライザ3の血液導入口3aが上方を向いた状態(図示しない固定部により固定)とし、且つ、コネクタcとコネクタdとを接続して互いの流路を連通させた後、プライミング工程(オーバーフロー工程S1及び送液工程S2)を行わせる。かかるプライミング工程は、プライミング液供給ラインLdから供給されたプライミング液をオーバーフローラインLe(排出部)から排出させるとともに血液回路の流路内に充填させる工程であり、本実施形態においては、オーバーフロー工程S1(図5)と送液工程S2(図6)とが繰り返し行われる。
オーバーフロー工程S1は、図5に示すように、血液ポンプ4を停止させつつ電磁弁(V1~V4)を開状態とすることにより、プライミング液供給ラインLdから供給されたプライミング液(透析液)をエアトラップチャンバ5まで流動させ、当該エアトラップチャンバ5をオーバーフローしたプライミング液をオーバーフローラインLeを介して外部に排出させる工程である。これにより、プライミング液供給ラインLdにて供給されたプライミング液(透析液)は、動脈側血液回路1におけるプライミング液供給ラインLdとの接続部から、動脈側血液回路1の先端部と静脈側血液回路2の先端部との接続部を介し、エアトラップチャンバ5に至る流路及び当該エアトラップチャンバ5内に充填されることとなる。
そして、オーバーフロー工程S1が開始されてから所定時間経過すると、送液工程S2が行われる。かかる送液工程S2は、図6に示すように、血液ポンプ4を逆回転駆動(図6のβ方向へ回転駆動)させつつ電磁弁(V1、V2)を開状態、且つ、電磁弁(V3、V4)を閉状態とすることにより、オーバーフロー工程S1にて充填されたプライミング液(透析液)を血液回路内で送液(循環)させる工程である。これにより、ダイアライザ3内の血液側流路を下方から上方に向けてプライミング液が流れることとなり、気泡がスムーズに上方へ移動して除去されることとなる。
上記の如き送液工程S2の後、静脈側気泡検知部7が気泡検知したか否かが判定され(S3)、気泡検知が検知されたと判定すると、再びオーバーフロー工程S1が行われることとなる。そして、オーバーフロー工程S1が所定時間行われた後、送液工程S2が行われ、再度S3にて気泡検知があるか否かが判定される。こうして、静脈側気泡検知部7による気泡検知がなくなるまでオーバーフロー工程S1と送液工程S2とが繰り返し行われることにより、血液回路及びエアトラップチャンバ5内にプライミング液が充填されることとなる。
そして、S3にて静脈側気泡検知部7による気泡検知がないと判定され、プライミング工程(オーバーフロー工程S1及び送液工程S2)が終了すると、動脈側血液回路1及び静脈側血液回路2の流路、並びにダイアライザ3の血液流路には、プライミング液が満たされた状態(充填状態)とされるとともに、エアトラップチャンバ5及び静脈圧計測部Pのチャンバ部もプライミング液が満たされた状態(空気層が形成されない状態)とされる。
上記のようにプライミング工程が終了すると、陰圧発生工程S4が行われる。かかる陰圧発生工程S4は、図7に示すように、血液ポンプ4を正回転駆動(図7のα方向へ回転駆動)させつつ電磁弁(V1、V3、V4)を閉状態、且つ、電磁弁V2を開状態とすることにより、プライミング液が充填された部位に陰圧を発生させる工程である。この場合、陰圧発生部は、血液ポンプ4と電磁弁V1(閉塞部)とにより構成される。
すなわち、電磁弁(V1、V4)を閉状態としつつ血液ポンプ4を正回転駆動(図7のα方向へ回転駆動)させると、動脈側血液回路1における血液ポンプ4と電磁弁V1との間の流路に加え、被しごきチューブHの一部(ローラ14でしごかれている部位までの流路)を含む部位(任意部位)に陰圧を発生させることができるので、その部位(特に、被しごきチューブHの一部)に残留した微小気泡を膨張させることができ、隣接する複数の気泡がまとまって比較的大きな気泡とすることができるのである。これにより、陰圧発生工程S4で発生した陰圧により、残留した微小気泡を大きくすることができ、血液ポンプ4の駆動による流量で当該気泡を比較的容易に流動させることができる。
その後、陰圧発生工程S4にて陰圧を発生させた部位の気泡を流動させ、オーバーフローラインLe(排出部)から排出させる排出工程(第1排出工程S5及び第2排出工程S6)が順次行われる。第1排出工程S5は、図8に示すように、血液ポンプ4を逆回転駆動させつつ電磁弁(V1、V2)を開状態、且つ、電磁弁(V3、V4)を閉状態とすることにより、陰圧発生工程S4による陰圧の影響で大きくなった(陰圧により膨張した複数の気泡がまとまることで大きくなった)気泡をエアトラップチャンバ5まで流動させる工程である。
そして、第1排出工程S5の後、第2排出工程S6が行われる。かかる第2排出工程S6は、図9に示すように、血液ポンプ4を停止させつつ電磁弁(V1~V4)を開状態とすることにより、第1排出工程S5にてエアトラップチャンバ5まで流れた気泡をオーバーフローラインLeを介して外部に排出させることができる。このように、第1排出工程S5及び第2排出工程S6を経ることにより、陰圧発生工程S4による陰圧の影響で大きくなった(陰圧により膨張した複数の気泡がまとまることで大きくなった)気泡を外部に排出させることができる。
本実施形態によれば、プライミング工程(オーバーフロー工程S1及び送液工程S2)後、血液ポンプ4及び電磁弁V1(陰圧発生部)によってプライミング液が充填された部位に陰圧を発生させる陰圧発生工程S4と、陰圧発生工程S4にて陰圧を発生させた部位の気泡を流動させ、オーバーフローラインLe(排出部)から排出させる排出工程(第1排出工程S5及び第2排出工程S6)とを行わせるので、陰圧発生工程S4にて発生させた陰圧によってプライミング液が充填された部位に残留した微小気泡を膨張させ、その膨張した複数の気泡をまとめることで微小気泡を大きくすることができるので、プライミング工程後に残留した微小気泡を円滑且つ確実に排出させることができる。
また、本実施形態によれば、動脈側血液回路1に接続された被しごきチューブHをローラ14でしごくことにより送液する血液ポンプ4を具備するとともに、陰圧発生部(本実施形態においては当該血液ポンプ4及び電磁弁V1)で陰圧を発生させる部位は、被しごきチューブHの少なくとも一部を含むので、プライミング工程後、被しごきチューブHに残留した微小気泡を円滑且つ確実に排出させることができる。特に、本実施形態に係る陰圧発生部は、血液ポンプ4と、血液回路におけるプライミング液が充填された部位を閉塞する電磁弁V1(閉塞部)を有するので、血液浄化治療に必要な血液ポンプ4を流用してプライミング液が充填された部位に陰圧を発生させることができる。
さらに、本実施形態によれば、静脈側血液回路2には、エアトラップチャンバ5が接続されるとともに、気泡を排出するための排出部は、当該エアトラップチャンバ5の上部から延設されたオーバーフローラインLeから成るので、動脈側血液回路1の先端と静脈側血液回路2の先端とを接続してプライミング工程を行った際、血液回路のプライミング液が充填された部位に残留した微小気泡をオーバーフローラインLeから良好に排出させることができる。
しかるに、本実施形態に係る陰圧発生工程S4は、図7に示すように、血液ポンプ4を正回転駆動(図7のα方向へ回転駆動)させつつ電磁弁(V1、V3、V4)を閉状態、且つ、電磁弁V2を開状態としているが、これに代えて、図11に示すように、血液ポンプ4を正回転駆動(図11のα方向へ回転駆動)させつつ電磁弁(V2、V3、V4)を閉状態、且つ、電磁弁V1を開状態とし、同図中太線で示す部位の流路に陰圧を形成するようにしてもよい。この場合、陰圧発生部は、血液ポンプ4と電磁弁V2(閉塞部)とにより構成される。
また、図12に示すように、血液ポンプ4を逆回転駆動させつつ電磁弁(V1、V3、V4)を閉状態、且つ、電磁弁V2を開状態とし、同図中太線で示す部位の流路に陰圧を形成するようにしてもよい。この場合、陰圧発生部は、血液ポンプ4と電磁弁V1(閉塞部)とにより構成される。この場合にも、陰圧発生部で陰圧を発生させる部位は、被しごきチューブHの少なくとも一部を含むので、プライミング工程後、被しごきチューブHに残留した微小気泡を円滑且つ確実に排出させることができる。さらに、この場合、ダイアライザ3の血液導入口3aに付着した微小気泡も陰圧発生部により発生した陰圧の影響で膨張してまとまり大きくなるので、その排出を容易に行わせることができる。
さらに、図13に示すように、血液回路(静脈側血液回路2)の所定部位に形成された静脈圧計測部Pに接続され、当該所定部位の液面を調整するレベル調整用ポンプ17を具備するもの(同図及び図5参照)とし、陰圧発生部は、当該レベル調整用ポンプ17と、閉塞部としての血液ポンプ4のローラ14とで構成されるものとしてもよい。このレベル調整ポンプ17は、同図に示すように、静脈圧計測部Pから延設された大気開放ラインLfに取り付けられ、静脈圧計測部P内に形成された空気層の空気を大気開放ラインLfを介して外部に排出することにより、液面を調整する(本実施形態においては静脈圧計測部Pのチャンバ部の空気を全て排出して空気層を形成しない)ようになっている。
しかして、陰圧発生工程S4において、図13に示すように、血液ポンプ4を停止させつつレベル調整用ポンプ17を駆動させるとともに、電磁弁(V3、V4)を閉状態、且つ、電磁弁(V1、V2)を開状態とすることにより、プライミング液が充填された部位(図中太線で示された部位)に陰圧を発生させることができる。この場合、陰圧発生部を構成する閉塞部は、停止状態の血液ポンプ4のローラ14から成る。
このように、レベル調整用ポンプ17を具備するとともに、陰圧発生部は、レベル調整用ポンプ17と、血液回路におけるプライミング液が充填された部位を閉塞する閉塞部(血液ポンプ4のローラ14)とを有するものとすれば、液面調整に必要なレベル調整用ポンプ17を流用してプライミング液が充填された部位に陰圧を発生させることができる。
次に、本発明に係る第2の実施形態について説明する。
本実施形態に係る体外循環装置は、第1の実施形態と同様、透析治療を行うための透析装置から成り、図14に示すように、動脈側血液回路1及び静脈側血液回路2から成る血液回路と、動脈側血液回路1の基端及び静脈側血液回路2の基端に接続され、血液回路を流れる血液を浄化するダイアライザ3(血液浄化器)と、静脈側血液回路2に接続されたエアトラップチャンバ5と、動脈側血液回路1に接続され、血液回路内にプライミング液を供給するプライミング液供給ラインLdと、血液回路におけるプライミング液が充填された部位に陰圧を発生させる陰圧発生部(本実施形態においては血液ポンプ4及び閉塞部としての電磁弁V1)と、陰圧発生部(血液ポンプ4及び電磁弁V1)を制御する制御部Eとから主に構成されている。
本実施形態に係る体外循環装置は、第1の実施形態と同様、透析治療を行うための透析装置から成り、図14に示すように、動脈側血液回路1及び静脈側血液回路2から成る血液回路と、動脈側血液回路1の基端及び静脈側血液回路2の基端に接続され、血液回路を流れる血液を浄化するダイアライザ3(血液浄化器)と、静脈側血液回路2に接続されたエアトラップチャンバ5と、動脈側血液回路1に接続され、血液回路内にプライミング液を供給するプライミング液供給ラインLdと、血液回路におけるプライミング液が充填された部位に陰圧を発生させる陰圧発生部(本実施形態においては血液ポンプ4及び閉塞部としての電磁弁V1)と、陰圧発生部(血液ポンプ4及び電磁弁V1)を制御する制御部Eとから主に構成されている。
ここで、本実施形態に係る排出部(プライミング液供給ラインLdにて血液回路内に供給されたプライミング液を外部に排出させる排出部)は、動脈側血液回路1の先端又は静脈側血液回路2の先端から成るものとされている。また、本実施形態においては、第1の実施形態に係るエアトラップチャンバ5から延設されたオーバーフローラインLeを具備していない。なお、第1の実施形態と同様の構成要素には同一の符号を付すこととし、それらの詳細な説明を省略する。
以下、本実施形態に係る制御部Eによる制御内容について、図18のフローチャートに基づいて説明する。
血液浄化治療前において、図14、15に示すように、ダイアライザ3の血液導入口3aが上方を向いた状態(図示しない固定部により固定)とし、且つ、コネクタcとコネクタdとを開放した状態(コネクタ同士を接続しない状態)とした後、プライミング工程(動脈側プライミング工程S1及び静脈側プライミング工程S2)を行わせる。かかるプライミング工程は、プライミング液供給ラインLdから供給されたプライミング液を動脈側血液回路1の先端及び静脈側血液回路2の先端(排出部)から排出させるとともに血液回路の流路内に充填させる工程であり、本実施形態においては、動脈側プライミング工程S1(図14)と静脈側プライミング工程S2(図15)とが行われる。
血液浄化治療前において、図14、15に示すように、ダイアライザ3の血液導入口3aが上方を向いた状態(図示しない固定部により固定)とし、且つ、コネクタcとコネクタdとを開放した状態(コネクタ同士を接続しない状態)とした後、プライミング工程(動脈側プライミング工程S1及び静脈側プライミング工程S2)を行わせる。かかるプライミング工程は、プライミング液供給ラインLdから供給されたプライミング液を動脈側血液回路1の先端及び静脈側血液回路2の先端(排出部)から排出させるとともに血液回路の流路内に充填させる工程であり、本実施形態においては、動脈側プライミング工程S1(図14)と静脈側プライミング工程S2(図15)とが行われる。
動脈側プライミング工程S1は、図14に示すように、血液ポンプ4を停止させつつ電磁弁(V1、V2、V4)を開状態とすることにより、プライミング液供給ラインLdから供給されたプライミング液(透析液)を動脈側血液回路1の先端まで流動させ、当該先端から外部に排出させる工程である。これにより、プライミング液供給ラインLdにて供給されたプライミング液(透析液)は、動脈側血液回路1におけるプライミング液供給ラインLdとの接続部から、動脈側血液回路1の先端部に至る流路に充填されることとなる。
そして、動脈側プライミング工程S1が開始されてから所定時間経過すると、静脈側プライミング工程S2が行われる。かかる静脈側プライミング工程S2は、図15に示すように、血液ポンプ4を正回転駆動させつつ電磁弁(V2、V4)を開状態、且つ、電磁弁V1を閉状態とすることにより、プライミング液供給ラインLdから供給されたプライミング液(透析液)を静脈側血液回路2の先端まで流動させ、当該先端から外部に排出させる工程である。これにより、プライミング液供給ラインLdにて供給されたプライミング液(透析液)は、動脈側血液回路1におけるプライミング液供給ラインLdとの接続部から、ダイアライザ3の血液側流路を介して、動脈側血液回路2の先端部に至る流路に充填されることとなる。
その後、静脈側プライミング工程S2が開始されてから所定時間経過すると、プライミング工程が終了すると、動脈側血液回路1及び静脈側血液回路2の流路、並びにダイアライザ3の血液流路には、プライミング液が満たされた状態(充填状態)とされるとともに、エアトラップチャンバ5及び静脈圧計測部Pのチャンバ部もプライミング液が満たされた状態(空気層が形成されない状態)とされる。
上記のようにプライミング工程が終了すると、陰圧発生工程S3が行われる。かかる陰圧発生工程S3は、図16に示すように、血液ポンプ4を正回転駆動させつつ電磁弁(V1、V2、V4)を閉状態とすることにより、プライミング液が充填された部位に陰圧を発生させる工程である。この場合、陰圧発生部は、血液ポンプ4と電磁弁V1(閉塞部)とにより構成される。
すなわち、電磁弁(V1、V2、V4)を閉状態としつつ血液ポンプ4を正回転駆動させると、動脈側血液回路1における血液ポンプ4と電磁弁V1との間の流路に加え、被しごきチューブHの一部(ローラ14でしごかれている部位までの流路)を含む部位(任意部位)に陰圧を発生させることができるので、その部位(特に、被しごきチューブHの一部)に残留した微小気泡を膨張させることができ、隣接する気泡同士をまとめて比較的大きな気泡とすることができるのである。これにより、陰圧発生工程S3で発生した陰圧により、残留した微小気泡を大きくすることができ、血液ポンプ4の駆動による流量で当該気泡を比較的容易に流動させることができる。
その後、陰圧発生工程S3にて陰圧を発生させた部位の気泡を流動させ、動脈側血液回路1の先端(排出部)から排出させる排出工程S4が行われる。排出工程S4は、図17に示すように、血液ポンプ4を逆回転駆動させつつ電磁弁(V1、V2)を開状態、且つ、電磁弁V4を閉状態とすることにより、陰圧発生工程S3による陰圧の影響で大きくなった気泡を動脈側血液回路1の先端から排出させる。
このように、排出工程S4を経ることにより、陰圧発生工程S3による陰圧の影響で大きくなった(陰圧により膨張した複数の気泡がまとまることで大きくなった)気泡を外部に排出させることができる。なお、本実施形態に係る排出工程S4においては、ダイアライザ3の透析液流路から血液流路に透析液が逆濾過されており、その透析液が動脈側血液回路1側に加えて、静脈側血液回路2側に流動し、その先端から排出されるようになっている。
本実施形態によれば、プライミング工程(動脈側プライミング工程S1及び静脈側プライミング工程S2)後、血液ポンプ4及び電磁弁V1(陰圧発生部)によってプライミング液が充填された部位に陰圧を発生させる陰圧発生工程S3と、陰圧発生工程S3にて陰圧を発生させた部位の気泡を流動させ、動脈側血液回路1の先端(排出部)から排出させる排出工程とを行わせるので、陰圧発生工程S3にて発生させた陰圧によってプライミング液が充填された部位に残留した微小気泡を膨張させ、その膨張した複数の気泡をまとめることで微小気泡を大きくすることができるので、プライミング工程後に残留した微小気泡を円滑且つ確実に排出させることができる。
また、本実施形態によれば、動脈側血液回路1に接続された被しごきチューブHをローラ14でしごくことにより送液する血液ポンプ4を具備するとともに、陰圧発生部(本実施形態においては当該血液ポンプ4)で陰圧を発生させる部位は、被しごきチューブHの少なくとも一部を含むので、プライミング工程後、被しごきチューブHに残留した微小気泡を円滑且つ確実に排出させることができる。特に、本実施形態に係る陰圧発生部は、血液ポンプ4と、血液回路におけるプライミング液が充填された部位を閉塞する電磁弁V1(閉塞部)を有するので、血液浄化治療に必要な血液ポンプ4を流用してプライミング液が充填された部位に陰圧を発生させることができる。
さらに、本実施形態によれば、気泡を排出するための排出部は、動脈側血液回路1の先端(又は静脈側血液回路2の先端であってもよい)から成るので、動脈側血液回路1の先端と静脈側血液回路2の先端とを接続しないでプライミング工程を行った際、血液回路のプライミング液が充填された部位に残留した微小気泡を動脈側血液回路1の先端(又は静脈側血液回路の先端)から良好に排出させることができる。
しかるに、本実施形態に係る陰圧発生工程S3は、図16に示すように、血液ポンプ4を正回転駆動させつつ電磁弁(V1、V2、V4)を閉状態としているが、これに代えて、図19に示すように、血液ポンプ4を逆回転駆動させつつ電磁弁(V1、V2、V4)を閉状態とし、同図中太線で示す部位の流路に陰圧を形成するようにしてもよい。この場合、陰圧発生部は、血液ポンプ4と電磁弁V1及び電磁弁V2(閉塞部)とにより構成される。この場合にも、陰圧発生部で陰圧を発生させる部位は、被しごきチューブHの少なくとも一部を含むので、プライミング工程後、被しごきチューブHに残留した微小気泡を円滑且つ確実に排出させることができる。さらに、この場合、ダイアライザ3の血液導入口3aに付着した微小気泡も陰圧発生部により発生した陰圧の影響で膨張してまとまり大きくなるので、その排出を容易に行わせることができる。
さらに、図20に示すように、血液回路(静脈側血液回路2)の所定部位に形成された静脈圧計測部Pに接続され、当該所定部位の液面を調整するレベル調整用ポンプ17を具備するものとし、陰圧発生部が当該レベル調整用ポンプ17と、閉塞部としての血液ポンプ4のローラ14及び電磁弁V2とで構成されるものとしてもよい。このレベル調整ポンプ17は、同図に示すように、静脈圧計測部Pから延設された大気開放ラインLfに取り付けられ、静脈圧計測部P内に形成された空気層の空気を大気開放ラインLfを介して外部に排出することにより、液面を調整する(本実施形態においては静脈圧計測部Pのチャンバ部の空気を全て排出して空気層を形成しない)ようになっている。
しかして、陰圧発生工程S3においては、図20に示すように、血液ポンプ4を停止させつつレベル調整用ポンプ17を駆動させるとともに、電磁弁(V2、V4)を閉状態、且つ、電磁弁V1を開状態とすることにより、プライミング液が充填された部位(図中太線で示された部位)に陰圧を発生させることができる。この場合、陰圧発生部を構成する閉塞部は、停止状態の血液ポンプ4のローラ14と、電磁弁V2とから成る。
このように、レベル調整用ポンプ17を具備するとともに、陰圧発生部は、レベル調整用ポンプ17と、血液回路におけるプライミング液が充填された部位を閉塞する閉塞部(血液ポンプ4のローラ14及び電磁弁V2)とを有するものとすれば、液面調整に必要なレベル調整用ポンプ17を流用してプライミング液が充填された部位に陰圧を発生させることができる。
以上、本実施形態について説明したが、本発明はこれに限定されるものではなく、プライミング工程は、プライミング液供給ラインLdから供給されたプライミング液を排出部(オーバーフローラインLeや動脈側血液回路1若しくは静脈側血液回路2の先端等)から排出させるとともに血液回路の流路内に充填させる工程であれば、他の如何なる形態の工程であってもよい。
また、本実施形態に係るプライミング液供給ラインLdは、その一端が透析液導入ラインLaに接続され、電磁弁V4を開状態とすることで血液回路に対してプライミング液としての透析液を供給するものとされているが、例えば生理食塩液が収容された収容バッグにプライミング液供給ラインLdの一端を接続し、血液回路に対してプライミング液としての生理食塩液を供給するものとしてもよい。さらに、プライミング液供給ラインLdを形成せず、例えばダイアライザ3の浄化膜(本実施形態においては中空糸膜)を介して透析液導入ラインLaの透析液(プライミング液)を濾過(逆濾過)させ、血液回路(動脈側血液回路1及び静脈側血液回路2)に供給するものであってもよい。
なお、プライミング液として、透析液や生理食塩液とは異なる他の液体を用いるものとしてもよい。また、本実施形態においては、透析治療時に用いられる透析装置に適用しているが、患者の血液を体外循環させつつ浄化する他の装置(例えば血液濾過透析法、血液濾過法、AFBFで使用される血液浄化装置、血漿吸着装置など)に適用してもよい。
プライミング液を排出部から排出させるとともに血液回路の流路内に充填させるプライミング工程と、プライミング工程後、陰圧発生部によってプライミング液が充填された部位に陰圧を発生させる陰圧発生工程と、陰圧発生工程にて陰圧を発生させた部位の気泡を流動させ、排出部から排出させる排出工程とを行わせる体外循環装置及びその気泡の排出方法であれば、他の形態及び用途のものにも適用することができる。また、体外循環装置は血液浄化装置を含む概念である。
また、プライミング液が充填された部位とは、血液回路におけるプライミング液が充填された領域の全部又は一部を云う。
また、プライミング液が充填された部位とは、血液回路におけるプライミング液が充填された領域の全部又は一部を云う。
1 動脈側血液回路
2 静脈側血液回路
3 ダイアライザ(血液浄化器)
4 血液ポンプ(陰圧発生部)
5 エアトラップチャンバ
6 動脈側気泡検知部
7 静脈側気泡検知部
8、9 血液判別器
10 複式ポンプ
11 除水ポンプ
12 ステータ
12a 取付凹部
13 ロータ
14 ローラ(しごき部)
15 ガイドピン
16 把持部
17 レベル調整用ポンプ(陰圧発生部)
P 静脈圧計測部
H 被しごきチューブ
E 制御部
La 透析液導入ライン
Lb 透析液排出ライン
Lc バイパスライン
Ld プライミング液供給ライン
Le オーバーフローライン
Lf 大気開放ライン
2 静脈側血液回路
3 ダイアライザ(血液浄化器)
4 血液ポンプ(陰圧発生部)
5 エアトラップチャンバ
6 動脈側気泡検知部
7 静脈側気泡検知部
8、9 血液判別器
10 複式ポンプ
11 除水ポンプ
12 ステータ
12a 取付凹部
13 ロータ
14 ローラ(しごき部)
15 ガイドピン
16 把持部
17 レベル調整用ポンプ(陰圧発生部)
P 静脈圧計測部
H 被しごきチューブ
E 制御部
La 透析液導入ライン
Lb 透析液排出ライン
Lc バイパスライン
Ld プライミング液供給ライン
Le オーバーフローライン
Lf 大気開放ライン
Claims (12)
- 各々の基端が血液浄化器に接続される動脈側血液回路及び静脈側血液回路を有するとともに、当該動脈側血液回路の先端から静脈側血液回路の先端まで患者の血液を体外循環させる血液回路と、
前記血液回路内に供給されたプライミング液を外部に排出させる排出部と、
前記血液回路におけるプライミング液が充填された部位に陰圧を発生させる陰圧発生部と、
前記陰圧発生部を制御する制御部と、
を有する体外循環装置であって、
前記制御部は、
前記血液回路内に供給されたプライミング液を前記排出部から排出させるとともに前記血液回路の流路内に充填させるプライミング工程と、
前記プライミング工程後、前記陰圧発生部によって前記部位に陰圧を発生させる陰圧発生工程と、
前記陰圧発生工程にて陰圧を発生させた前記部位の気泡を流動させ、前記排出部から排出させる排出工程と、
を行わせることを特徴とする体外循環装置。 - 前記動脈側血液回路に接続された被しごきチューブをローラでしごくことにより送液する血液ポンプを具備するとともに、前記陰圧発生部で陰圧を発生させる前記部位は、前記被しごきチューブの少なくとも一部を含むことを特徴とする請求項1記載の体外循環装置。
- 前記陰圧発生部は、前記血液ポンプと、前記血液回路におけるプライミング液が充填された前記部位を閉塞する閉塞部とを有することを特徴とする請求項2記載の体外循環装置。
- 前記血液回路の所定部位に接続され、当該所定部位の液面を調整するレベル調整用ポンプを具備するとともに、前記陰圧発生部は、前記レベル調整用ポンプと、前記血液回路におけるプライミング液が充填された前記部位を閉塞する閉塞部とを有することを特徴とする請求項1又は請求項2記載の体外循環装置。
- 前記静脈側血液回路には、エアトラップチャンバが接続されるとともに、前記排出部は、当該エアトラップチャンバの上部から延設されたオーバーフローラインから成ることを特徴とする請求項1~4の何れか1つに記載の体外循環装置。
- 前記排出部は、前記動脈側血液回路の先端又は前記静脈側血液回路の先端から成ることを特徴とする請求項1~4の何れか1つに記載の体外循環装置。
- 各々の基端が血液浄化器に接続される動脈側血液回路及び静脈側血液回路を有するとともに、当該動脈側血液回路の先端から静脈側血液回路の先端まで患者の血液を体外循環させる血液回路と、
前記血液回路内に供給されたプライミング液を外部に排出させる排出部と、
前記血液回路におけるプライミング液が充填された部位に陰圧を発生させる陰圧発生部と、
を有する体外循環装置による気泡の排出方法であって、
前記血液回路内に供給されたプライミング液を前記排出部から排出させるとともに前記血液回路の流路内に充填させるプライミング工程と、
前記プライミング工程後、前記陰圧発生部によって前記部位に陰圧を発生させる陰圧発生工程と、
前記陰圧発生工程にて陰圧を発生させた前記部位の気泡を流動させ、前記排出部から排出させる排出工程と、
を行わせることを特徴とする体外循環装置による気泡の排出方法。 - 前記動脈側血液回路に接続された被しごきチューブをローラでしごくことにより送液する血液ポンプを具備するとともに、前記陰圧発生部で陰圧を発生させる前記部位は、前記被しごきチューブの少なくとも一部を含むことを特徴とする請求項7記載の体外循環装置による気泡の排出方法。
- 前記陰圧発生部は、前記血液ポンプと、前記血液回路におけるプライミング液が充填された前記部位を閉塞する閉塞部とを有することを特徴とする請求項8記載の体外循環装置による気泡の排出方法。
- 前記血液回路の所定部位に接続され、当該所定部位の液面を調整するレベル調整用ポンプを具備するとともに、前記陰圧発生部は、前記レベル調整用ポンプと、前記血液回路におけるプライミング液が充填された前記部位を閉塞する閉塞部とを有することを特徴とする請求項7又は請求項8記載の体外循環装置による気泡の排出方法。
- 前記静脈側血液回路には、エアトラップチャンバが接続されるとともに、前記排出部は、当該エアトラップチャンバの上部から延設されたオーバーフローラインから成ることを特徴とする請求項7~10の何れか1つに記載の体外循環装置による気泡の排出方法。
- 前記排出部は、前記動脈側血液回路の先端又は前記静脈側血液回路の先端から成ることを特徴とする請求項7~10の何れか1つに記載の体外循環装置による気泡の排出方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880057940.0A CN111093733A (zh) | 2017-09-07 | 2018-09-07 | 体外循环装置及其气泡的排出方法 |
EP18854122.1A EP3679967B1 (en) | 2017-09-07 | 2018-09-07 | Extracorporeal circulation apparatus and method of discharging bubbles therefrom |
US16/811,042 US11406747B2 (en) | 2017-09-07 | 2020-03-06 | Extracorporeal circulation apparatus and method of discharging bubbles therefrom |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-172561 | 2017-09-07 | ||
JP2017172561A JP6462077B1 (ja) | 2017-09-07 | 2017-09-07 | 血液浄化装置及びその気泡の排出方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/811,042 Continuation US11406747B2 (en) | 2017-09-07 | 2020-03-06 | Extracorporeal circulation apparatus and method of discharging bubbles therefrom |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019049968A1 true WO2019049968A1 (ja) | 2019-03-14 |
Family
ID=65228941
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/033151 WO2019049968A1 (ja) | 2017-09-07 | 2018-09-07 | 体外循環装置及びその気泡の排出方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11406747B2 (ja) |
EP (1) | EP3679967B1 (ja) |
JP (1) | JP6462077B1 (ja) |
CN (1) | CN111093733A (ja) |
WO (1) | WO2019049968A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220105252A1 (en) * | 2019-01-22 | 2022-04-07 | Fresenius Medical Care Deutschland Gmbh | Method for filling a membrane |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2884853T3 (es) | 2019-08-19 | 2021-12-13 | Gambro Lundia Ab | Método de cebado de un circuito de sangre extracorpóreo de un aparato para el tratamiento de sangre extracorpóreo y aparato para el tratamiento de sangre extracorpóreo |
CN114344596B (zh) * | 2021-12-27 | 2023-07-25 | 健帆生物科技集团股份有限公司 | 血液灌流器的排气控制系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010273693A (ja) | 2008-12-16 | 2010-12-09 | Nikkiso Co Ltd | 血液浄化装置及びそのプライミング方法 |
JP2012192099A (ja) * | 2011-03-17 | 2012-10-11 | Nikkiso Co Ltd | 血液浄化装置 |
JP2015092977A (ja) * | 2013-11-11 | 2015-05-18 | 日機装株式会社 | 血液浄化装置及びそのプライミング方法 |
WO2016020061A2 (de) * | 2014-08-05 | 2016-02-11 | Fresenius Medical Care Deutschland Gmbh | Verfahren zum auswaschen von gasblasen in einem extrakorporalen blutkreislauf |
Family Cites Families (84)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3046788A (en) | 1960-08-04 | 1962-07-31 | Baldwin Lima Hamilton Corp | Fluid pressure electrical transducer |
GB1564347A (en) | 1975-09-23 | 1980-04-10 | Souriau & Cie | Apparatus for and method of detecting injection of fuel inan internal combustion engine for example a diesel engine |
JPS56113083A (en) | 1980-02-12 | 1981-09-05 | Terumo Corp | Choke detection method and device for peristaltic liquid pump |
US4460355A (en) | 1982-06-11 | 1984-07-17 | Ivac Corporation | Fluid pressure monitoring system |
US4498843A (en) | 1982-08-02 | 1985-02-12 | Schneider Philip H | Insulin infusion pump |
US4534756A (en) | 1983-04-11 | 1985-08-13 | Ivac Corporation | Fault detection apparatus and method for parenteral infusion system |
US4558996A (en) | 1983-06-30 | 1985-12-17 | Organon Teknika Corporation | Easy load peristaltic pump |
DE8418491U1 (de) | 1984-06-19 | 1984-09-20 | Richard Wolf Gmbh, 7134 Knittlingen | Schlauchpumpe fuer spuelfluessigkeiten |
US4762518A (en) | 1986-08-01 | 1988-08-09 | Pancretec, Inc. | Blockage hazard alarm in an intravenous system |
US4743228A (en) | 1986-08-18 | 1988-05-10 | Ivac Corporation | Fluid flow monitoring method and system |
US4784576A (en) | 1986-09-02 | 1988-11-15 | Critikon, Inc. | Pump pressure sensor |
JPS6422357A (en) | 1987-07-15 | 1989-01-25 | Brother Ind Ltd | Garbage disposal plant |
JPH0617022Y2 (ja) | 1988-11-24 | 1994-05-02 | オーバル機器工業株式会社 | 弾性チューブポンプ |
JPH031290U (ja) | 1989-05-25 | 1991-01-09 | ||
US6039078A (en) | 1989-09-22 | 2000-03-21 | Tamari; Yehuda | Inline extracorporeal reservoir and pressure isolator |
US5814004A (en) | 1989-09-22 | 1998-09-29 | Tamari; Yehuda | System for regulating pressure within an extracorporeal circuit |
US5215450A (en) | 1991-03-14 | 1993-06-01 | Yehuda Tamari | Innovative pumping system for peristaltic pumps |
US5429483A (en) | 1989-09-22 | 1995-07-04 | Tamari; Yehuda | Pressure sensitive valves for extracorporeal pumping |
US5927951A (en) | 1989-09-22 | 1999-07-27 | Tamari; Yehuda | Safety devices for peristaltic pumps |
US5813842A (en) | 1989-09-22 | 1998-09-29 | Tamari; Yehuda | Pressure sensitive valves for extracorporeal pumping-3 |
US5336051A (en) | 1989-09-22 | 1994-08-09 | Yehuda Tamari | Inline non-invasive pressure monitoring system for pumps |
US5024099A (en) | 1989-11-20 | 1991-06-18 | Setra Systems, Inc. | Pressure transducer with flow-through measurement capability |
JPH0628117Y2 (ja) | 1990-05-30 | 1994-08-03 | 株式会社三陽電機製作所 | ローラポンプ |
DE69315450T2 (de) | 1992-01-22 | 1998-05-20 | Alaris Medical Systems Inc N D | Zustandbestimmung einer Flüssigkeitsschlauchleitung |
FR2710537B1 (fr) | 1993-09-30 | 1995-12-01 | Becton Dickinson Co | Procédé et dispositif de détection d'occlusions dans une ligne de perfusion. |
SE9303319D0 (sv) | 1993-10-11 | 1993-10-11 | Gambro Ab | Sätt att beräkna och/eller styra flöder under en viss tidsperiod genom en peristaltisk pump samt en monitor anpassad för utövning av detta sätt |
US5577891A (en) | 1993-11-30 | 1996-11-26 | Instech Laboratories, Inc. | Low power portable resuscitation pump |
US5380172A (en) | 1993-12-29 | 1995-01-10 | Ulbing; Otmar | Peristaltic action precision pump filler |
DE69526613T2 (de) | 1994-07-12 | 2002-08-29 | Medrad, Inc. | Informationswegregelkreis für ein System, das medizinische Flüssigkeiten ausliefert |
US5514102A (en) | 1995-05-05 | 1996-05-07 | Zevex Incorporated | Pressure monitoring enteral feeding system and method |
US5827223A (en) | 1995-08-31 | 1998-10-27 | Alaris Medical Systems, Inc. | Upstream occulsion detection system |
SE508374C2 (sv) | 1995-09-12 | 1998-09-28 | Gambro Med Tech Ab | Förfarande och anordning för detektering av tillståndet hos en blodkärlsaccess |
US7004924B1 (en) | 1998-02-11 | 2006-02-28 | Nxstage Medical, Inc. | Methods, systems, and kits for the extracorporeal processing of blood |
US6374084B1 (en) | 1999-02-01 | 2002-04-16 | Avaya Technology Corp. | Method and system for calibrating electronic devices using polynomial fit calibration scheme |
US6423029B1 (en) | 1999-04-29 | 2002-07-23 | Medtronic, Inc. | System and method for detecting abnormal medicament pump fluid pressure |
DE19960668C1 (de) | 1999-12-15 | 2001-08-16 | W O M Gmbh Physikalisch Medizi | Schlauchkasette für eine peristaltische Pumpe |
US6497680B1 (en) | 1999-12-17 | 2002-12-24 | Abbott Laboratories | Method for compensating for pressure differences across valves in cassette type IV pump |
JP4557452B2 (ja) | 2001-03-13 | 2010-10-06 | 日本電産サーボ株式会社 | ローラポンプ |
US6659976B2 (en) | 2001-04-16 | 2003-12-09 | Zevek, Inc. | Feeding set adaptor |
CA2455982C (en) | 2001-07-31 | 2008-03-25 | Scott Laboratories, Inc. | Apparatuses and methods for providing iv infusion administration |
JP3424681B1 (ja) | 2001-09-12 | 2003-07-07 | セイコーエプソン株式会社 | 液体吐出装置及び液体吐出装置を備えた機器 |
JP4457235B2 (ja) | 2001-12-18 | 2010-04-28 | 株式会社北九州バイオフィジックス研究所 | 自動血液透析装置および該装置を使用したプライミング方法。 |
JP2003265601A (ja) | 2002-03-19 | 2003-09-24 | Nikkiso Co Ltd | 血液回路 |
US6731216B2 (en) | 2002-05-20 | 2004-05-04 | B. Braun Medical, Inc. | Proper tubing installation testing method and apparatus for a peristaltic pump |
JP2004049494A (ja) | 2002-07-18 | 2004-02-19 | Jms Co Ltd | 自動返血装置 |
US6893414B2 (en) | 2002-08-12 | 2005-05-17 | Breg, Inc. | Integrated infusion and aspiration system and method |
US6868720B2 (en) | 2002-10-16 | 2005-03-22 | Alcon, Inc. | Testing of pressure sensor in surgical cassette |
US7223079B2 (en) | 2003-07-28 | 2007-05-29 | The Coca-Cola Company | Quick loading peristaltic pump |
EP1768456B1 (en) | 2004-05-27 | 2013-06-26 | Kyocera Corporation | Ceramic heater, and glow plug using the same |
US7615028B2 (en) | 2004-12-03 | 2009-11-10 | Chf Solutions Inc. | Extracorporeal blood treatment and system having reversible blood pumps |
DE102005055133A1 (de) | 2005-08-18 | 2007-02-22 | Pace Aerospace Engineering And Information Technology Gmbh | System für den maschinengestützten Entwurf technischer Vorrichtungen |
CA2624654C (en) | 2005-10-04 | 2012-03-20 | The Director General, Defence Research And Development Organisation | Bioactive water fraction from gomphostemma niveum |
US8011905B2 (en) | 2005-11-17 | 2011-09-06 | Novartis Ag | Surgical cassette |
JP4798653B2 (ja) * | 2005-11-18 | 2011-10-19 | 日機装株式会社 | 血液浄化装置 |
JP4889297B2 (ja) * | 2005-12-19 | 2012-03-07 | 株式会社ジェイ・エム・エス | 血液透析装置 |
DK1818664T3 (da) | 2006-02-13 | 2013-08-05 | Hoffmann La Roche | Apparat til erkendelse af en trykændring i et mikrodoseringsapparats væskebane |
DE102006008325B4 (de) | 2006-02-20 | 2013-09-12 | W.O.M. World Of Medicine Ag | Schlauchkassette für eine peristaltische Pumpe |
US20070258838A1 (en) | 2006-05-03 | 2007-11-08 | Sherwood Services Ag | Peristaltic cooling pump system |
JP4812101B2 (ja) | 2006-06-23 | 2011-11-09 | 日機装株式会社 | しごき型ポンプ及びその可撓性チューブの取り外し方法 |
JP4930981B2 (ja) | 2006-06-23 | 2012-05-16 | 日機装株式会社 | しごき型ポンプ |
US8591453B2 (en) | 2006-12-20 | 2013-11-26 | Linvatec Corporation | Dual pump arthroscopic irrigation/aspiration system with outflow control |
US7980835B2 (en) | 2007-01-19 | 2011-07-19 | Cole-Parmer Instrument Company | Tube retainer system for a peristaltic pump |
JP4549359B2 (ja) | 2007-02-28 | 2010-09-22 | 日本電産サーボ株式会社 | チューブポンプ |
JP4976198B2 (ja) | 2007-05-24 | 2012-07-18 | アトムメディカル株式会社 | 医療用輸液装置 |
US8272857B2 (en) | 2008-02-22 | 2012-09-25 | Medtronic Xomed, Inc. | Method and system for loading of tubing into a pumping device |
JP2009285128A (ja) * | 2008-05-29 | 2009-12-10 | Nikkiso Co Ltd | 血液浄化装置及びそのプライミング液用ドリップチャンバの液溜まり形成方法 |
JP5241337B2 (ja) | 2008-06-12 | 2013-07-17 | 日機装株式会社 | ローラポンプ及びローラポンプを備えた血液浄化装置 |
DE102008039022B4 (de) | 2008-08-21 | 2014-08-28 | Fresenius Medical Care Deutschland Gmbh | Verfahren und Vorrichtung zum Überwachen einer peristaltischen Schlauchpumpe zur Förderung einer Flüssigkeit in einer Schlauchleitung |
US9078964B2 (en) | 2008-08-21 | 2015-07-14 | Sur-Real Industries, Inc. | Pump device, tube device and method for movement and collection of fluid |
JP5397747B2 (ja) | 2009-02-16 | 2014-01-22 | ニプロ株式会社 | チューブポンプ |
JP5337618B2 (ja) | 2009-08-04 | 2013-11-06 | 日機装株式会社 | 脱血圧検知手段の校正方法及び血液浄化装置 |
US20110033318A1 (en) | 2009-08-05 | 2011-02-10 | Ramirez Jr Emilio A | Single Motor Multiple Pumps |
GB0920928D0 (en) | 2009-11-30 | 2010-01-13 | Morgan Electro Ceramics Ltd | Sensors for detecting gas in, and pressure of, a liquid |
JP5026558B2 (ja) | 2010-05-24 | 2012-09-12 | 株式会社ジェイ・エム・エス | 血液透析装置 |
CA2812768C (en) | 2010-10-01 | 2016-05-17 | Zevex, Inc. | Pressure monitoring system for infusion pumps |
KR101835692B1 (ko) | 2010-10-01 | 2018-03-07 | 제벡스, 아이엔씨. | 자유-유동 방지 폐쇄기 및 프라이밍 액츄에이터 패드 |
JP2012192100A (ja) | 2011-03-17 | 2012-10-11 | Nikkiso Co Ltd | 血液浄化装置 |
EP2749858B1 (en) | 2011-08-22 | 2018-04-25 | Nikkiso Company Limited | Fluid flow path pressure detection device |
JP5247864B2 (ja) * | 2011-08-31 | 2013-07-24 | 日機装株式会社 | 血液浄化装置 |
JP5469728B1 (ja) | 2012-10-19 | 2014-04-16 | 日機装株式会社 | 液体流路の圧力検出装置 |
JP5587958B2 (ja) | 2012-10-19 | 2014-09-10 | 日機装株式会社 | しごき型ポンプ |
DE102012024341B3 (de) * | 2012-12-13 | 2014-02-13 | Fresenius Medical Care Deutschland Gmbh | Vorrichtung und Verfahren zum Überwachen eines extrakorporalen Blutkreislaufs zur Erkennung von Luftblasen |
JP5863871B2 (ja) | 2014-04-15 | 2016-02-17 | 日機装株式会社 | 装着部材及びしごき型ポンプ |
EP3315150B1 (en) | 2015-06-24 | 2020-12-09 | Nikkiso Co., Ltd. | Blood purifying device |
-
2017
- 2017-09-07 JP JP2017172561A patent/JP6462077B1/ja active Active
-
2018
- 2018-09-07 EP EP18854122.1A patent/EP3679967B1/en active Active
- 2018-09-07 WO PCT/JP2018/033151 patent/WO2019049968A1/ja unknown
- 2018-09-07 CN CN201880057940.0A patent/CN111093733A/zh active Pending
-
2020
- 2020-03-06 US US16/811,042 patent/US11406747B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010273693A (ja) | 2008-12-16 | 2010-12-09 | Nikkiso Co Ltd | 血液浄化装置及びそのプライミング方法 |
JP2012192099A (ja) * | 2011-03-17 | 2012-10-11 | Nikkiso Co Ltd | 血液浄化装置 |
JP2015092977A (ja) * | 2013-11-11 | 2015-05-18 | 日機装株式会社 | 血液浄化装置及びそのプライミング方法 |
WO2016020061A2 (de) * | 2014-08-05 | 2016-02-11 | Fresenius Medical Care Deutschland Gmbh | Verfahren zum auswaschen von gasblasen in einem extrakorporalen blutkreislauf |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220105252A1 (en) * | 2019-01-22 | 2022-04-07 | Fresenius Medical Care Deutschland Gmbh | Method for filling a membrane |
Also Published As
Publication number | Publication date |
---|---|
US11406747B2 (en) | 2022-08-09 |
EP3679967A4 (en) | 2021-06-02 |
JP2019047854A (ja) | 2019-03-28 |
EP3679967A1 (en) | 2020-07-15 |
EP3679967B1 (en) | 2022-10-26 |
JP6462077B1 (ja) | 2019-01-30 |
US20200206406A1 (en) | 2020-07-02 |
CN111093733A (zh) | 2020-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6685374B2 (ja) | 血液浄化装置及びそのプライミング方法 | |
JP5294985B2 (ja) | 血液浄化装置及びそのプライミング方法 | |
JP5247864B2 (ja) | 血液浄化装置 | |
JP4798653B2 (ja) | 血液浄化装置 | |
WO2009153955A1 (ja) | 血液浄化装置及びそのプライミング方法 | |
JP6813484B2 (ja) | 血液浄化装置 | |
JP5220171B2 (ja) | 血液浄化装置 | |
JP6516559B2 (ja) | 血液浄化装置 | |
JP6475104B2 (ja) | 血液浄化装置 | |
WO2019049968A1 (ja) | 体外循環装置及びその気泡の排出方法 | |
JP5319381B2 (ja) | 血液浄化装置及びその気泡除去方法 | |
JP6053107B2 (ja) | 血液浄化装置及びそのプライミング方法 | |
JP2011136003A (ja) | 血液浄化装置及びそのプライミング方法 | |
JP6424041B2 (ja) | 血液浄化装置 | |
JP6464238B1 (ja) | 血液浄化装置及びその気泡の排出方法 | |
JP2009268762A (ja) | 血液浄化装置及びその血液浄化手段の判別方法 | |
JP6501340B2 (ja) | 血液浄化装置 | |
JP6462076B1 (ja) | 血液浄化装置及びそのプライミング方法 | |
JP2017217274A (ja) | 血液浄化装置及びその接続確認方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18854122 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018854122 Country of ref document: EP Effective date: 20200407 |