WO2018128101A1 - Ac-dcコンバータ - Google Patents
Ac-dcコンバータ Download PDFInfo
- Publication number
- WO2018128101A1 WO2018128101A1 PCT/JP2017/046279 JP2017046279W WO2018128101A1 WO 2018128101 A1 WO2018128101 A1 WO 2018128101A1 JP 2017046279 W JP2017046279 W JP 2017046279W WO 2018128101 A1 WO2018128101 A1 WO 2018128101A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- input
- output
- circuit
- switch
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0083—Converters characterised by their input or output configuration
- H02M1/0085—Partially controlled bridges
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/36—Means for starting or stopping converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/42—Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
- H02M1/4208—Arrangements for improving power factor of AC input
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/42—Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
- H02M1/4208—Arrangements for improving power factor of AC input
- H02M1/4225—Arrangements for improving power factor of AC input using a non-isolated boost converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/42—Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
- H02M1/4208—Arrangements for improving power factor of AC input
- H02M1/4233—Arrangements for improving power factor of AC input using a bridge converter comprising active switches
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/02—Conversion of ac power input into dc power output without possibility of reversal
- H02M7/04—Conversion of ac power input into dc power output without possibility of reversal by static converters
- H02M7/06—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
- H02M7/062—Avoiding or suppressing excessive transient voltages or currents
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/02—Conversion of ac power input into dc power output without possibility of reversal
- H02M7/04—Conversion of ac power input into dc power output without possibility of reversal by static converters
- H02M7/12—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/21—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/217—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Definitions
- the present invention relates to an AC-DC converter having an inrush current suppression circuit.
- FIG. 9 is a circuit configuration diagram of an AC-DC converter disclosed in Patent Document 1.
- the input AC voltage Vac output from the input AC power source 501 is input to the boost converter unit 503 via the input filter 502.
- the step-up converter unit 503 includes a bridge diode 530, an inductor 531, a switching transistor 532, a diode 533, a control drive circuit 534, and an output capacitor 535.
- the input AC voltage Vac input to the boost converter unit 503 is full-wave rectified by the bridge diode 530 and is intermittently applied to the inductor 531 by the switching operation of the switching transistor 532.
- the flyback voltage generated in the inductor 531 when the switching transistor 532 is turned off is added to the rectified voltage output from the bridge diode 530, rectified and smoothed by the diode 533 and the output capacitor 535, and output as the output DC voltage VO.
- the control driving circuit 534 controls the switching transistor 532 while controlling the on / off time ratio so that the input AC current flowing through the input AC line follows the input AC voltage waveform while substantially stabilizing the output DC voltage VO. Has an improvement function.
- the inrush current suppression circuit 504 includes an inrush current suppression resistor 510 between the bridge diode 530 and the switching transistor 532, and a thyristor 511 is attached in parallel with the inrush current suppression resistor 510, and the output capacitor 535. Is divided by a resistor 512 and a resistor 513, and the thyristor 511 is triggered via a diode 514 and a resistor 515.
- the input current is suppressed by the inrush current suppression resistor 510 when the output DC voltage VO is lower than the set value, and the thyristor 511 is triggered when the output DC voltage VO reaches the set value as the charging of the output capacitor 535 proceeds.
- the inrush current suppression resistor 510 is short-circuited. That is, when there is not enough charge in the output capacitor 535 at the initial stage when the input AC voltage Vac is applied, current flows through the inrush current suppression resistor 510, so that inrush current can be prevented and the output capacitor 535 is charged. Is stored and the thyristor 511 is turned on when the output DC voltage VO becomes equal to or higher than a certain value, so that no conduction loss due to the inrush current suppression resistor 510 occurs.
- the timing at which the inrush current suppression resistor 510 is short-circuited depends only on the set value reached by the output DC voltage VO.
- the absolute value of becomes greater than or equal to this set value an inrush current flows.
- the boost converter unit 503 it is necessary to set the set value higher than the spire value of the rated maximum input AC voltage, that is, the boost converter unit 503 needs to be set close to the output DC voltage sufficiently boosted by stable operation.
- the degree of freedom of value selection is significantly limited.
- the present invention provides a step-up AC-DC converter that receives an input AC voltage, such as a power factor correction converter, by applying an inrush current in a simple manner regardless of the input AC voltage or the circuit configuration of the boost converter unit.
- An object of the present invention is to provide an AC-DC converter having an inrush current suppression circuit that can be appropriately prevented.
- an AC-DC converter includes an input AC power source that outputs an input AC voltage, and a booster that converts the input AC voltage to an output DC voltage and outputs the output DC voltage from an output capacitor.
- a rush current suppression circuit wherein the rush current suppression circuit is inserted on a path that charges the output capacitor of the boost converter unit from the input AC power source and returns to the input AC power source.
- the inrush current suppressing circuit of the AC-DC converter when there is a possibility that the inrush current flows, the inrush current suppressing resistor is surely opened, and the inrush current can be suppressed.
- the boost converter unit includes a full-wave rectifier circuit that full-wave rectifies the input AC voltage, a series circuit of an inductor and a boost switch connected in parallel to the output of the full-wave rectifier circuit, and the boost switch
- a rectifying / smoothing circuit comprising a rectifier for rectifying and smoothing the voltage across the output capacitor and the output capacitor, and a control driving circuit for controlling and driving the step-up switch.
- the control circuit divides or level-shifts the output DC voltage and outputs an output detection voltage, and an input that divides or level-shifts the input rectified voltage and outputs an input detection voltage A detection circuit; and a comparator for comparing the output detection voltage and the input detection voltage, wherein the control circuit has a voltage difference between the output DC voltage and the input rectified voltage equal to or lower than a first reference value.
- the inrush current suppression condition can be set to the safe side in consideration of variations in the detection accuracy of the input / output voltage.
- the step-up converter unit includes a first input terminal that receives the input AC voltage from one end of the input AC power supply via an inductor, and a second input that receives the input AC voltage from the other end of the input AC power supply.
- a first series circuit that is a circuit in which a high-potential-side switch connected to the first input terminal and a low-potential-side switch are connected in series; a high-potential-side rectifier connected to the second input terminal;
- a second series circuit that is a circuit in which a low potential side rectifier is connected in series, a control drive circuit that controls and drives the high potential side switch and the low potential side switch, the first series circuit, and the second series
- the output capacitor connected in parallel with each of the circuits, and the control circuit is configured such that a potential at one end of the input AC power source is a ground potential of the boost converter unit and the output DC voltage.
- the inrush current can be surely suppressed with a simple circuit configuration in which one end of the input AC line is compared with the output DC voltage.
- the control circuit divides or level shifts the output DC voltage and outputs an output detection voltage, and the input detection voltage by dividing or level shifting the potential of one end of the input AC power supply.
- a first comparator that compares the input detection voltage with the ground potential of the boost converter unit, and a second comparator that compares the input detection voltage with the output detection voltage.
- the control circuit has a voltage difference between the output DC voltage and the potential of one end of the input AC power supply equal to or lower than a first reference value, and the output detection voltage and the boost converter unit When the voltage difference from the ground potential is less than or equal to the first reference value, the voltage dividing ratio or level shift amount of each detection circuit or the offset of each comparator is set so as to turn off the resistance short-circuit switch. You may adjust the pressure.
- the inrush current suppression condition can be set to the safe side in consideration of variations in the detection accuracy of the input / output voltage.
- the step-up converter unit receives a first input terminal that receives the input AC voltage from one end of the input AC power source via an inductor, and receives the input AC voltage from the other end of the input AC power source via an inductor.
- a first input circuit, a first series circuit that is a circuit in which a first high-potential side rectifier connected to the first input terminal and a first switch are connected in series, and the second input terminal connected to the second input terminal A second series circuit which is a circuit in which a second high potential side rectifier and a second switch are connected in series; a control drive circuit for controlling and driving the first switch and the second switch; the first series circuit; A first low potential side connected between the output capacitor connected in parallel with each of the second series circuits, a connection point between the first switch and the second switch, and one end of the input AC power supply; Adjustment And a second low potential side rectifier connected between a connection point between the first switch and the second switch and the other end of the input AC power supply, and the control circuit includes the input When
- the control circuit divides or level-shifts the output DC voltage and outputs an output detection voltage, and divides or level-shifts the potential of one end of the input AC power supply to A first input detection circuit that outputs an input detection voltage; a second input detection circuit that outputs a second input detection voltage by dividing or level-shifting the potential of the other end of the input AC power supply; and the output A first comparator that compares a detection voltage with the first input detection voltage; and a second comparator that compares the output detection voltage with the second input detection voltage;
- the circuit is configured such that the voltage difference between the output DC voltage and the potential at one end of the input AC power supply is equal to or less than a first reference value, and the voltage between the output detection voltage and the potential at the other end of the input AC power supply.
- the inrush current suppression condition can be set to the safe side in consideration of variations in the detection accuracy of the input / output voltage.
- the inrush current suppression circuit operates when the input AC voltage is equal to or higher than the output DC voltage. That is, the inrush current can be reliably suppressed in the case where there is a possibility that the inrush current flows, not only at the time of start-up but also at the time of recovery from an instantaneous input interruption such as an instantaneous power failure.
- FIG. 1 is a circuit configuration diagram of an AC-DC converter according to the first embodiment.
- FIG. 2A is a main portion waveform diagram when the input rectified voltage is higher than the output DC voltage in the AC-DC converter according to Embodiment 1.
- FIG. 2B is a main portion waveform diagram when the output DC voltage is higher than the input rectified voltage in the AC-DC converter according to Embodiment 1.
- FIG. 3 is a circuit configuration diagram of the AC-DC converter according to the second embodiment.
- FIG. 4A is a current path diagram in the positive phase of the AC-DC converter according to Embodiment 2.
- FIG. 4B is a current path diagram in the negative phase of the AC-DC converter according to Embodiment 2.
- FIG. 4A is a current path diagram in the positive phase of the AC-DC converter according to Embodiment 2.
- FIG. 4B is a current path diagram in the negative phase of the AC-DC converter according to Embodiment 2.
- FIG. 5A is a main portion waveform diagram in the case where the absolute value of the input AC voltage may be larger than the output DC voltage in the AC-DC converter according to Embodiment 2.
- FIG. 5B is a waveform diagram of main parts when the output DC voltage is always larger than the absolute value of the input AC voltage in the AC-DC converter according to Embodiment 2.
- FIG. 6 is a circuit configuration diagram of an AC-DC converter according to the third embodiment.
- FIG. 7A is a current path diagram in the positive phase of the AC-DC converter according to Embodiment 3.
- FIG. 7B is a current path diagram in the negative phase of the AC-DC converter according to Embodiment 3.
- FIG. 8A is a main portion waveform diagram when the absolute value of the input AC voltage may be larger than the output DC voltage in the AC-DC converter according to Embodiment 3.
- FIG. 8B is a waveform diagram of main parts when the output DC voltage is always larger than the absolute value of the input AC voltage in the AC-DC converter according to Embodiment 3.
- FIG. 9 is a circuit configuration diagram of an AC-DC converter disclosed in Patent Document 1. In FIG.
- FIG. 1 is a circuit configuration diagram of an AC-DC converter according to the first embodiment.
- the AC-DC converter includes an input AC power supply 1 that supplies an input AC voltage Vac, an input filter 2 for removing noise from the input AC line, and a boost converter unit. 3 and an inrush current suppression circuit 4.
- the boost converter unit 3 includes a bridge diode 30 that is a full-wave rectifier circuit, an inductor 31, a switching transistor 32 that is a boost switch, a diode 33 that is a rectifier, a control drive circuit 34, and an output capacitor 35.
- the input AC voltage Vac output from the input AC power source 1 is input to the boost converter unit 3 via the input filter 2.
- the input AC voltage Vac input to the boost converter unit 3 is full-wave rectified by the bridge diode 30 and output as the input rectified voltage VI.
- the input rectified voltage VI is intermittently applied to the inductor 31 by the switching operation of the switching transistor 32.
- the flyback voltage generated in the inductor 31 when the switching transistor 32 is turned off is added to the input rectified voltage VI, rectified and smoothed by the diode 33 and the output capacitor 35, and output from the output capacitor 35 as the output DC voltage VO.
- the control drive circuit 34 power-switches the switching transistor 32 while controlling the on / off time ratio so that the input AC current flowing through the input AC line follows the input AC voltage waveform while substantially stabilizing the output DC voltage VO. Has an improvement function.
- the inrush current suppression circuit 4 includes a control circuit having an inrush current suppression resistor 40, a resistance short-circuit switch 41, resistors 42 to 45, and a comparator 46.
- the inrush current suppression resistor 40 is connected between the bridge diode 30 and the switching transistor 32, and a resistance short-circuit switch 41 is connected in parallel with the inrush current suppression resistor 40.
- the resistors 42 and 43 divide the voltage between the terminals of the output capacitor 35, that is, the output DC voltage VO, and output the output detection voltage Vo.
- the resistors 44 and 45 divide the output voltage of the bridge diode 30, that is, the input rectified voltage VI, and output the input detection voltage Vi.
- the detection voltages Vo and Vi are input to the comparator 46 and compared.
- the ratio of the resistance values of the resistors 42 and 43 is equal to the ratio of the resistance values of the resistors 44 and 45, and the comparison of the detection voltages corresponds to the comparison of the input rectified voltage VI and the output DC voltage VO.
- the output of the comparator 46 becomes the drive signal Vd for the resistance short-circuit switch 41.
- FIG. 2A is a waveform diagram of the main part of the AC-DC converter of Embodiment 1 when the input rectified voltage VI is higher than the output DC voltage VO
- FIG. 2B is a case where the output DC voltage VO is higher than the input rectified voltage VI
- FIG. 2 is a main portion waveform diagram of the AC-DC converter according to the first embodiment. More specifically, FIGS. 2A and 2B show waveforms of the input AC voltage Vac, the input rectified voltage VI (input detection voltage Vi), the output DC voltage VO (output detection voltage Vo), and the drive signal Vd. ing.
- FIG. 2A is a waveform diagram of the main part of the AC-DC converter of Embodiment 1 when the input rectified voltage VI is higher than the output DC voltage VO
- FIG. 2B is a case where the output DC voltage VO is higher than the input rectified voltage VI.
- FIG. 2 is a main portion waveform diagram of the AC-DC converter according to the first embodiment. More specifically, FIGS.
- the drive signal Vd as a comparison result between the input detection voltage Vi and the output detection voltage Vo becomes “H” when the input detection voltage Vi is lower than the output detection voltage Vo, and the resistance short-circuit switch 41. Turn on. Conversely, when the input detection voltage Vi is higher than the output detection voltage Vo, it becomes “L” and the resistance short-circuit switch 41 is turned off.
- the resistance short-circuit switch 41 when the input rectified voltage VI, which is a full-wave rectified waveform, is higher than the output DC voltage VO, the resistance short-circuit switch 41 is turned off and the inrush current suppression resistor 40 on the current path is inrush current. Suppress.
- the resistance short-circuit switch 41 when the input rectified voltage VI is lower than the output DC voltage VO, the resistance short-circuit switch 41 is turned on and the inrush current suppression resistor 40 is short-circuited. That is, the resistance short-circuit switch 41 is turned off in a situation where there is a possibility that an inrush current in which the input rectified voltage VI is higher than the output DC voltage VO may flow regardless of whether the boost converter unit 3 is operating or is stopped.
- the inrush current suppression resistor 40 suppresses the inrush current.
- the inrush current suppression circuit operates when the absolute value of the input AC voltage is equal to or greater than the output DC voltage. That is, the inrush current can be reliably suppressed in the case where there is a possibility that the inrush current flows, not only at the time of start-up but also at the time of recovery from an instantaneous input interruption such as an instantaneous power failure.
- the input rectified voltage VI and the output DC voltage VO are mostly monitored for the control of the AC-DC converter from the beginning, and the detection result is obtained by using a few comparators 46 and logic circuits. Since the drive signal Vd of the resistance short-circuit switch 41 that short-circuits the inrush current suppression resistor 40 can be generated, the AC-DC converter according to the present embodiment has almost no increase in parts compared to the conventional AC-DC converter. .
- the input rectified voltage which is the absolute value of the input AC voltage
- the output DC voltage of the boost converter unit are detected by resistance voltage division, but may be detected by voltage division by a capacitor, for example. There may be a voltage level shift in the part. In the present embodiment, what is important is the detection accuracy, and is not limited to the detection method.
- the resistance short-circuit switch 41 is off, so that the region where the resistance short-circuit switch 41 is off is wide and safe.
- a first reference value for example, 10 V
- the voltage division ratio of the resistors 44 and 45 is made larger than the voltage division ratio of the resistances 42 and 43 in consideration of the variation of the resistance value and the like, and the input rectification is more than actual.
- the voltage VI may be detected largely.
- FIG. 3 is a circuit configuration diagram of the AC-DC converter according to the second embodiment.
- the AC-DC converter according to Embodiment 2 includes an input AC power source 1, an input filter 2 for removing noise from the input AC line, a boost converter unit 5, and an inrush current suppression circuit. 6.
- the boost converter unit 5 has a circuit configuration called a totem pole type bridgeless PFC, and includes an inductor 50, a high potential side switching transistor 51 as a high potential side switch, and a low potential side switching transistor 52 as a low potential side switch. , A high potential side diode 53 that is a high potential side rectifier, a low potential side diode 54 that is a low potential side rectifier, a control drive circuit 55, and an output capacitor 56. Of the lines of the input AC power supply 1, VA is input to the connection point between the high potential side switching transistor 51 and the low potential side switching transistor 52 via the inductor 50.
- the other line VB of the input AC power supply 1 is input to a connection point between the high potential side diode 53 and the low potential side diode 54.
- a series circuit of the high potential side switching transistor 51 and the low potential side switching transistor 52 and a series circuit of the high potential side diode 53 and the low potential side diode 54 are connected in parallel to the output capacitor 56.
- An output DC voltage VO is output from the output capacitor 56.
- the ground of the boost converter unit 5 is PG, and thereafter, each potential is based on this PG.
- the inrush current suppression circuit 6 is a control circuit including an inrush current suppression resistor 60, a resistance short-circuit switch 61, resistors 62 to 65, a first comparator 66, a second comparator 67, and a NOR circuit 68. Consists of.
- the inrush current suppression resistor 60 is connected between the output capacitor 56 and a connection point between the low potential side switching transistor 52 and the low potential side diode 54.
- the resistance short-circuit switch 61 is connected in parallel with the inrush current suppression resistor 60.
- the resistors 62 and 63 divide the voltage across the terminals of the output capacitor 56, that is, the output DC voltage VO, and output the output detection voltage Vo.
- the resistors 64 and 65 divide the potential of the AC line VA and output the input detection voltage Va.
- the first comparator 66 compares the input detection voltage Va with the ground PG, and outputs an “H” level signal when Va ⁇ PG.
- the second comparator 67 compares the input detection voltage Va with the output detection voltage Vo, and outputs an “H” level signal when Va> Vo.
- the ratio of the resistance values of the resistors 62 and 63 is equal to the ratio of the resistance values of the resistors 64 and 65, and the comparison of the detection voltages corresponds to the comparison of the input voltage VA and the output DC voltage VO.
- the NOR circuit 68 outputs a drive signal Vd that is a logical negative sum of the output of the first comparator 66 and the output of the second comparator 67.
- the resistance short-circuit switch 61 is ON / OFF controlled according to the drive signal Vd.
- the input AC voltage Vac input to the boost converter unit 5 is intermittently applied to the inductor 50 by the switching operation of the high potential side switching transistor 51 and the low potential side switching transistor 52, and the flyback of the inductor 50 is performed.
- the output voltage is output from the output capacitor 56 as the output DC voltage VO boosted by adding the voltages.
- the control drive circuit 55 controls the high potential side switching transistor 51 and the low potential while controlling the on / off time ratio so that the input AC current flowing through the input AC line follows the input AC voltage waveform while substantially stabilizing the output DC voltage VO. It has a power factor improving function for switching driving control of the side switching transistor 52.
- FIG. 4A is a current path diagram in the positive phase of the AC-DC converter according to the second embodiment
- FIG. 4B is a current path diagram in the negative phase of the AC-DC converter according to the second embodiment. More specifically, FIGS. 4A and 4B show a path through which an inrush current flows in an initial stage where the voltage of the output capacitor 56 is low when the input AC power supply 1 starts outputting the input AC voltage Vac.
- 4A shows a case where the positive phase is VA> VB
- FIG. 4B shows a case where the negative phase is VA ⁇ VB.
- a diode is connected in antiparallel to the switching transistor in the figure, but this operates as a bridgeless PFC, and when the switching transistor is turned off, it is not completely turned off but conducts unidirectionally like a diode.
- Inrush current does not flow when fully off, but the output capacitor 56 cannot be charged before the boost converter unit 5 operates. For this reason, the step-up switching operation is performed at a low output voltage, and the inductor 50 cannot release the excitation energy, and the direct current superimposition proceeds, resulting in an excessive inrush current.
- the switching transistor is a MOSFET, there is a parasitic diode such as a body diode, and this is utilized.
- FIG. 5A is a main portion waveform diagram in the case where the absolute value of the input AC voltage Vac may be larger than the output DC voltage VO in the AC-DC converter according to the second embodiment.
- FIG. 5B is a main portion waveform diagram when the output DC voltage VO is always larger than the absolute value of the input AC voltage Vac in the AC-DC converter according to Embodiment 2.
- the output of the first comparator 66 is such that the absolute value of the input AC voltage Vac is the output DC voltage when the input detection voltage Va is lower than the ground PG of the boost converter unit 5, that is, in the negative phase. It becomes “H” level when it is larger than VO.
- the output of the second comparator 67 is “H” level when the input detection voltage Va is higher than the output detection voltage Vo, that is, when the absolute value of the input AC voltage Vac is higher than the output DC voltage VO in the positive phase. It becomes.
- the resistance short-circuit switch 61 when the absolute value of the input AC voltage Vac is higher than the output DC voltage VO, the resistance short-circuit switch 61 is turned off, and the inrush current suppression resistor 60 on the current path suppresses the inrush current. .
- the resistance short-circuit switch 61 When the absolute value of the input AC voltage Vac is lower than the output DC voltage VO, the resistance short-circuit switch 61 is turned on and the inrush current suppression resistor 60 is short-circuited. That is, even if the boost converter unit 5 is operating or in a stopped state, the resistance short-circuit switch 61 is in an off state in a situation where an inrush current may flow, and the inrush current suppression resistor 60 suppresses the inrush current. To do. Further, as shown in FIG.
- the inrush current suppression circuit operates when the input AC voltage is equal to or higher than the output DC voltage. That is, the inrush current can be reliably suppressed in the case where there is a possibility that the inrush current flows, not only at the time of start-up but also at the time of recovery from an instantaneous input interruption such as an instantaneous power failure.
- the input rectified voltage VI and the output DC voltage VO are mostly monitored for the control of the AC-DC converter from the beginning, and this detection result is obtained by using a few comparators and logic circuits. Since the drive signal Vd of the resistance short-circuit switch 61 that short-circuits the inrush current suppression resistor 60 can be generated, the AC-DC converter according to the present embodiment has almost no increase in parts compared to the conventional AC-DC converter.
- one line potential of the input AC voltage and the output DC voltage of the boost converter unit are detected by resistance voltage division, but may be detected by voltage division by a capacitor, for example. There may be a level shift. In the present embodiment, what is important is the detection accuracy, and is not limited to the detection method.
- the resistance short-circuit switch 61 is off, and a region where the resistance short-circuit switch 61 is off is widened on the safe side. To be.
- the resistance short-circuit switch 61 is turned off.
- the voltage division ratio of resistors 64 and 65 is made larger than the voltage division ratio of resistors 62 and 63 in consideration of variations in resistance values and the like, so that the input AC voltage is higher than actual. You may make it detect VA largely.
- FIG. 6 is a circuit configuration diagram of an AC-DC converter according to the third embodiment.
- the AC-DC converter according to Embodiment 3 includes an input AC power supply 1 that supplies an input AC voltage Vac between the input AC line VA and the input AC line VB, and noise in the input AC line. Is provided with an input filter 2, a boost converter unit 7, and an inrush current suppression circuit 8.
- the boost converter unit 7 includes a first inductor 70, a second inductor 71, a first high potential side diode 72 that is a first high potential side rectifier, a first switching transistor 73 that is a first switch, and a second high potential side rectifier.
- 77 a control drive circuit 78, and an output capacitor 79.
- the other end of the first inductor 70 connected to the input AC line VA is connected to a connection point between the first high potential side diode 72 and the first switching transistor 73.
- the other end of the second inductor 71 connected to the input AC line VB is connected to a connection point between the second high potential side diode 74 and the second switching transistor 75.
- the series circuit of the first high potential side diode 72 and the first switching transistor 73 and the series circuit of the second high potential side diode 74 and the second switching transistor 75 are connected in parallel with the output capacitor 79.
- An output DC voltage VO is output from the output capacitor 79.
- the first low potential side diode 76 is connected between the connection point of both switching transistors and the input AC line VA, and the second low potential side diode 77 is connected between the connection point of both switching transistors and the input AC line VB. Connected to. Further, the ground of the boost converter unit 7 is PG, and thereafter, each potential is based on this PG.
- the inrush current suppression circuit 8 includes an inrush current suppression resistor 80, a resistance short-circuit switch 81, resistors 82 to 85, 84a and 85a, a first comparator 86, a second comparator 87, and a NOR circuit 88. It is comprised with the control circuit which has.
- the inrush current suppression resistor 80 is connected between the output capacitor 79 and the connection point of the first switching transistor 73 and the second switching transistor 75.
- the resistance short-circuit switch 81 is connected in parallel with the inrush current suppression resistor 80.
- the resistors 82 and 83 divide the voltage across the output capacitor 79, that is, the output DC voltage VO, and output the output detection voltage Vo.
- the resistors 84 and 85 divide the potential of the AC line VA and output the input detection voltage Va.
- Resistors 84a and 85a divide the potential of AC line VB and output input detection voltage Vb.
- the first comparator 86 compares the input detection voltage Va and the output detection voltage Vo, and outputs an “H” level signal when Va> Vo.
- the second comparator 87 compares the input detection voltage Vb and the output detection voltage Vo, and outputs an “H” level signal when Vb> Vo.
- the ratio of the resistance values of the resistors 82 and 83, the ratio of the resistance values of the resistors 84 and 85, and the ratio of the resistance values of the resistors 84a and 85a are equal to each other.
- the NOR circuit 88 outputs a drive signal Vd that is a logical negative sum of the output of the first comparator 86 and the output of the second comparator 87, and the resistance short-circuit switch 81 is controlled to be turned on / off according to the drive signal Vd. Is done.
- the first switching transistor 73 performs the switching operation, and the second switching transistor 75 is fixed to the ON state. Accordingly, at the positive phase, the second inductor 71 is short-circuited at both ends by the second switching transistor 75 and the second low-potential side diode 77 and is not substantially involved in the operation.
- the input AC power supply 1 (VA) ⁇ the first inductor 70 ⁇ the first switching transistor 73 ⁇ the second low potential side diode 77 ⁇ the input AC power supply 1 (VB) A current flows through the path to excite the first inductor 70.
- the input AC power supply 1 (VA) ⁇ the first inductor 70 ⁇ the first high potential side diode 72 ⁇ the output capacitor 79 ⁇ the second low potential side diode 77 ⁇ the input AC power supply 1 (VB).
- VA input AC power supply 1
- VB input AC power supply 1
- the second switching transistor 75 performs the switching operation, and the first switching transistor 73 is fixed to the ON state. Therefore, at the negative phase, both ends of the first inductor 70 are short-circuited by the first switching transistor 73 and the first low-potential side diode 76 and are not substantially involved in the operation.
- the negative phase when the second switching transistor 75 is on, the input AC power supply 1 (VB) ⁇ the second inductor 71 ⁇ the second switching transistor 75 ⁇ the first low potential side diode 76 ⁇ the input AC power supply 1 (VA). A current flows through the path and excites the second inductor 71.
- the input AC power supply 1 (VB) ⁇ the second inductor 71 ⁇ the second high potential side diode 74 ⁇ the output capacitor 79 ⁇ the first low potential side diode 76 ⁇ the input AC power supply 1 (VA).
- the input AC voltage Vac input to the boost converter unit 7 is intermittently applied to the first inductor 70 or the second inductor 71 by the switching operation of the first switching transistor 73 or the second switching transistor 75, respectively. Then, the output flyback voltage is added and output from the output capacitor 79 as the output DC voltage VO boosted.
- the control drive circuit 78 controls the first switching transistor 73 and the second switching while controlling the on / off time ratio so that the input AC current flowing through the input AC line follows the input AC voltage waveform while substantially stabilizing the output DC voltage VO. It has a power factor improving function for switching driving control of the transistor 75.
- FIG. 7A is a current path diagram in the positive phase of the AC-DC converter according to the third embodiment
- FIG. 7B is a current path diagram in the negative phase of the AC-DC converter according to the third embodiment. More specifically, FIGS. 7A and 7B show paths through which an inrush current flows in the initial stage where the voltage of the output capacitor 79 is low when the input AC power supply 1 starts to output the input AC voltage Vac.
- FIG. 7A shows a positive phase where VA> VB
- FIG. 7B shows a negative phase where VA ⁇ VB.
- FIG. 8A is a main part waveform diagram in the case where the absolute value of the input AC voltage Vac may be larger than the output DC voltage VO in the AC-DC converter according to Embodiment 3.
- FIG. 8B is a main portion waveform diagram when the output DC voltage VO is always larger than the absolute value of the input AC voltage Vac in the AC-DC converter according to Embodiment 3.
- the output of the first comparator 86 is such that the absolute value of the input AC voltage Vac is greater than the output DC voltage VO when the input detection voltage Va is greater than the output detection voltage Vo, that is, in the positive phase.
- the output of the second comparator 87 is “H” level when the input detection voltage Vb is greater than the output detection voltage Vo, that is, when the absolute value of the input AC voltage Vac is greater than the output DC voltage VO in the negative phase. It becomes.
- the output of the NOR circuit 88 which is a negative logical sum of these, that is, the drive signal Vd becomes “L” level when the absolute value of the input AC voltage Vac is larger than the output DC voltage VO, and the resistance short-circuit switch 81 is turned off. To do.
- the resistance short-circuit switch 81 when the absolute value of the input AC voltage Vac is higher than the output DC voltage VO, the resistance short-circuit switch 81 is turned off, and the inrush current suppression resistor 80 on the current path suppresses the inrush current. .
- the resistance short-circuit switch 81 When the absolute value of the input AC voltage Vac is lower than the output DC voltage VO, the resistance short-circuit switch 81 is turned on and the inrush current suppression resistor 80 is short-circuited. That is, even when the boost converter unit 7 is operating or in a stopped state, the resistance short-circuit switch 81 is in an off state in a situation where an inrush current may flow, and the inrush current suppression resistor 80 suppresses the inrush current. To do. Further, as shown in FIG.
- the inrush current suppression circuit operates when the input AC voltage is equal to or higher than the output DC voltage. That is, the inrush current can be reliably suppressed in the case where there is a possibility that the inrush current flows, not only at the time of start-up but also at the time of recovery from an instantaneous input interruption such as an instantaneous power failure.
- the input rectified voltage VI and the output DC voltage VO are mostly monitored for the control of the AC-DC converter from the beginning, and this detection result is obtained by using a few comparators and logic circuits. Since the drive signal Vd of the resistance short-circuit switch 81 that short-circuits the inrush current suppression resistor 80 can be generated, the AC-DC converter according to the present embodiment has almost no increase in parts compared to the conventional AC-DC converter.
- both line potentials of the input AC voltage and the output DC voltage of the boost converter unit are detected by resistance voltage division, but may be detected by voltage division by a capacitor, for example. There may be a shift. In the present embodiment, what is important is the detection accuracy, and is not limited to the detection method.
- the resistance short-circuit switch 61 is off, and a region where the resistance short-circuit switch 81 is off is widened on the safe side. To be.
- the resistance short-circuit switch 81 is turned off.
- the voltage division ratio of resistors 84 and 85 and the voltage division ratio of resistors 84a and 85a are set to be higher than the voltage division ratio of resistors 82 and 83 in consideration of variations in resistance values.
- the input AC voltages VA and VB may be detected larger than actual values.
- the allowable value of the inrush current may be determined by the current tolerance of the switching transistor. If the current withstand capability of parts on the path through which the inrush current flows is not limited to switching transistors, the inrush current suppression resistance may be increased to reduce the inrush current tolerance, and inrush current may flow. In order to prevent this, the inrush current suppression resistor must be opened.
- the inrush current suppression resistor is opened under a situation where an inrush current can flow such that the absolute value of the input AC voltage is greater than or equal to the output DC voltage, a component with a small current resistance There is also a feature that can be used.
- the switch for short-circuiting the inrush current suppression resistor may be a semiconductor switch such as the thyristor shown in the conventional example, or a relay switch. It does not matter.
- the parallel circuit of the inrush current suppression resistor and the switch is not limited to the positions of the first to third embodiments, and may be on a current path that charges the output capacitor from the input AC power source and returns to the input AC power source. That's fine.
- the drive signal generated in the inrush current suppression circuit needs to be level-shifted or insulated and transmitted, but this is a design matter and not the gist of the present invention. Example disclosure was omitted.
- the inrush current suppression resistor is opened when the absolute value of the input AC voltage is higher than the output DC voltage, which is the gist of the present invention.
- this is one of the conditions for suppressing the inrush current, and the present invention is not limited to these configurations.
- the start signal and the inrush current of the present invention There may be a configuration in which a logical product with a drive signal generated in the suppression circuit is used as a drive signal for the resistance short-circuit switch.
- the present invention is useful for a power supply circuit that is supplied with power from an input AC power supply such as a commercial AC power supply and supplies a DC voltage to various electronic devices.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Rectifiers (AREA)
- Dc-Dc Converters (AREA)
Abstract
AC-DCコンバータは、入力交流電圧Vacを出力する入力交流電圧源(1)と、入力交流電圧を出力直流電圧VOに変換して出力コンデンサ(35)から出力する昇圧コンバータ部(3)と、突入電流抑制回路(4)とを備え、突入電流抑制回路(4)は、入力交流電圧源(1)から出力コンデンサ(35)を充電して入力交流電圧源(1)へ戻る経路上に挿入された突入電流抑制抵抗(40)と、突入電流抑制抵抗(40)を短絡する抵抗短絡スイッチ(41)と、入力交流電圧Vacの絶対値VIが出力直流電圧VOより大きい場合に抵抗短絡スイッチ(41)をオフする信号を生成する制御回路とを有する。
Description
本発明は、突入電流抑制回路を有するAC-DCコンバータに関する。
昇圧スイッチング方式のAC-DCコンバータにおいて、突入電流抑制回路は各種提案されているが、特許文献1に記載の突入電流抑制回路は、その回路構成が簡単な例である。
図9は、特許文献1に開示されているAC-DCコンバータの回路構成図である。図9において、入力交流電源501の出力する入力交流電圧Vacは、入力フィルタ502を介して昇圧コンバータ部503に入力される。昇圧コンバータ部503は、ブリッジダイオード530、インダクタ531、スイッチングトランジスタ532、ダイオード533、制御駆動回路534、出力コンデンサ535とから構成される。昇圧コンバータ部503に入力された入力交流電圧Vacは、ブリッジダイオード530によって全波整流され、スイッチングトランジスタ532のスイッチング動作によってインダクタ531に断続して印加される。スイッチングトランジスタ532のオフ時にインダクタ531に発生するフライバック電圧は、ブリッジダイオード530が出力する整流電圧に加算され、ダイオード533と出力コンデンサ535によって整流平滑されて出力直流電圧VOとして出力される。制御駆動回路534は、出力直流電圧VOを略安定化しながら入力交流ラインを流れる入力交流電流が入力交流電圧波形に追従するように、オンオフ時間比を制御しながらスイッチングトランジスタ532をスイッチング駆動する力率改善機能を有する。
図9において、突入電流抑制回路504は、ブリッジダイオード530とスイッチングトランジスタ532との間に突入電流抑制抵抗510を設けるとともに、この突入電流抑制抵抗510と並列にサイリスタ511とを取付けて、出力コンデンサ535の端子間電圧(即ち出力直流電圧VO)を抵抗512および抵抗513で分圧し、ダイオード514および抵抗515を介してサイリスタ511をトリガする構成を有する。この構成により、出力直流電圧VOが設定値以下では突入電流抑制抵抗510によって入力電流を抑制し、出力コンデンサ535の充電が進んで出力直流電圧VOが設定値に達したときにサイリスタ511をトリガして突入電流抑制抵抗510を短絡する。即ち、入力交流電圧Vacを印加し始めた初期段階において出力コンデンサ535に十分の電荷がないときには、突入電流抑制抵抗510を介して電流が流れるために、突入電流が防止でき、出力コンデンサ535に電荷が蓄えられて出力直流電圧VOが一定値以上になったときにサイリスタ511が導通するので、突入電流抑制抵抗510による導通損失が生じることがない。
しかしながら、上記の従来の構成の突入電流抑制回路を有するAC-DCコンバータでは、突入電流抑制抵抗510を短絡するタイミングを出力直流電圧VOが到達する設定値にのみ依存しているため、入力交流電圧の絶対値がこの設定値以上になると、突入電流が流れてしまう。突入電流を確実に防ぐには、設定値を定格最大入力交流電圧の尖塔値よりも高く、即ち昇圧コンバータ部503が安定動作して充分昇圧された出力直流電圧近くに設定する必要があり、設定値の選択自由度が著しく限定される。
上記に鑑み、本発明は、力率改善コンバータのように入力交流電圧を受電する昇圧型のAC-DCコンバータにおいて、入力交流電圧や昇圧コンバータ部の回路構成によらず簡便な方法で突入電流を適切に防止することのできる突入電流抑制回路を有するAC-DCコンバータの提供を目的とする。
上記の目的を達成するため、本発明の一態様に係るAC-DCコンバータは、入力交流電圧を出力する入力交流電源と、前記入力交流電圧を出力直流電圧に変換して出力コンデンサから出力する昇圧コンバータ部と、突入電流抑制回路と、を備え、前記突入電流抑制回路は、前記入力交流電源から前記昇圧コンバータ部の前記出力コンデンサを充電して前記入力交流電源へ戻る経路上に挿入された突入電流抑制抵抗と、前記突入電流抑制抵抗を短絡する抵抗短絡スイッチと、前記入力交流電圧の絶対値が前記出力直流電圧より大きい場合に、前記抵抗短絡スイッチをオフする信号を生成する制御回路と、を有する。
本発明に係るAC-DCコンバータの突入電流抑制回路によると、突入電流が流れる可能性の有る場合には確実に突入電流抑制抵抗が開放され、突入電流を抑制することができる。
また、前記昇圧コンバータ部は、前記入力交流電圧を全波整流する全波整流回路と、前記全波整流回路の出力に並列に接続された、インダクタと昇圧スイッチとの直列回路と、前記昇圧スイッチの両端電圧を整流平滑する整流器と前記出力コンデンサとからなる整流平滑回路と、前記昇圧スイッチを制御駆動する制御駆動回路と、を有し、前記制御回路は、前記全波整流回路の出力する入力整流電圧が前記出力直流電圧より大きい場合に、前記抵抗短絡スイッチをオフする信号を生成してもよい。この構成によると全波整流出力と出力直流電圧との比較という簡易な回路構成で確実な突入電流抑制をすることができる。
ここで、前記制御回路は、前記出力直流電圧を分圧またはレベルシフトして出力検出電圧を出力する出力検出回路と、前記入力整流電圧を分圧またはレベルシフトして入力検出電圧を出力する入力検出回路と、前記出力検出電圧と前記入力検出電圧とを比較する比較器と、を有し、前記制御回路は、前記出力直流電圧と前記入力整流電圧との電圧差が第1の基準値以下である場合に、前記抵抗短絡スイッチをオフするように、前記各検出回路の分圧比やレベルシフト量、あるいは前記比較器のオフセット電圧を調整するとよい。このことにより、入出力電圧の検出精度のばらつきを考慮して、突入電流抑制条件を安全側に設定することができる。
また、前記昇圧コンバータ部は、前記入力交流電源の一端からインダクタを介して前記入力交流電圧を受電する第1入力端子と、前記入力交流電源の他端から前記入力交流電圧を受電する第2入力端子と、前記第1入力端子に接続された高電位側スイッチと低電位側スイッチとが直列接続された回路である第1直列回路と、前記第2入力端子に接続された高電位側整流器と低電位側整流器とが直列接続された回路である第2直列回路と、前記高電位側スイッチと前記低電位側スイッチとを制御駆動する制御駆動回路と、前記第1直列回路および前記第2直列回路のそれぞれと並列に接続された前記出力コンデンサと、を有し、前記制御回路は、前記入力交流電源の一端の電位が前記昇圧コンバータ部のグランド電位と前記出力直流電圧との間にある場合に、前記抵抗短絡スイッチをオンするための信号を生成してもよい。この構成によると、トーテムポール型ブリッジレスPFCと称される回路方式において、入力交流ラインの一端と出力直流電圧との比較という簡易な回路構成で確実な突入電流抑制をすることができる。
ここで、前記制御回路は、前記出力直流電圧を分圧またはレベルシフトして出力検出電圧を出力する出力検出回路と、前記入力交流電源の一端の電位を分圧またはレベルシフトして入力検出電圧を出力する入力検出回路と、前記入力検出電圧と前記昇圧コンバータ部のグランド電位とを比較する第1の比較器と、前記入力検出電圧と前記出力検出電圧とを比較する第2の比較器と、を有し、前記制御回路は、前記出力直流電圧と前記入力交流電源の一端の電位との電圧差が第1の基準値以下である場合、かつ、前記出力検出電圧と前記昇圧コンバータ部のグランド電位との電圧差が前記第1の基準値以下である場合、前記抵抗短絡スイッチをオフするように、前記各検出回路の分圧比やレベルシフト量、あるいは前記各比較器のオフセット電圧を調整するとよい。このことにより、入出力電圧の検出精度のばらつきを考慮して、突入電流抑制条件を安全側に設定することができる。
また、前記昇圧コンバータ部は、前記入力交流電源の一端からインダクタを介して前記入力交流電圧を受電する第1入力端子と、前記入力交流電源の他端からインダクタを介して前記入力交流電圧を受電する第2入力端子と、前記第1入力端子に接続された第1高電位側整流器と第1スイッチとが直列接続された回路である第1直列回路と、前記第2入力端子に接続された第2高電位側整流器と第2スイッチとが直列接続された回路である第2直列回路と、前記第1スイッチと前記第2スイッチとを制御駆動する制御駆動回路と、前記第1直列回路および前記第2直列回路のそれぞれと並列に接続された前記出力コンデンサと、前記第1スイッチと前記第2スイッチとの接続点と前記入力交流電源の一端との間に接続された第1低電位側整流器と、前記第1スイッチと前記第2スイッチとの接続点と前記入力交流電源の他端との間に接続された第2低電位側整流器と、を有し、前記制御回路は、前記入力交流電源の一端の電位と他端の電位とが、ともに前記出力直流電圧より低い場合に、前記抵抗短絡スイッチをオンするための信号を生成してもよい。この構成によると、ダブル昇圧型ブリッジレスPFCと称される回路方式において、入力交流ラインの一端と出力直流電圧との比較という簡易な回路構成で確実な突入電流抑制をすることができる。
ここで、前記制御回路は、前記出力直流電圧を分圧またはレベルシフトして出力検出電圧を出力する出力検出回路と、前記入力交流電源の一端の電位を分圧またはレベルシフトして第1の入力検出電圧を出力する第1の入力検出回路と、前記入力交流電源の他端の電位を分圧またはレベルシフトして第2の入力検出電圧を出力する第2の入力検出回路と、前記出力検出電圧と前記第1の入力検出電圧とを比較する第1の比較器と、前記出力検出電圧と前記第2の入力検出電圧とを比較する第2の比較器と、を有し、前記制御回路は、前記出力直流電圧と前記入力交流電源の一端の電位との電圧差が第1の基準値以下である場合、かつ、前記出力検出電圧と前記入力交流電源の他端の電位との電圧差が前記第1の基準値以下である場合、前記抵抗短絡スイッチをオフするように、前記各検出回路の分圧比やレベルシフト量、あるいは前記各比較器のオフセット電圧を調整するとよい。このことにより、入出力電圧の検出精度のばらつきを考慮して、突入電流抑制条件を安全側に設定することができる。
本発明に係るAC-DCコンバータによると、入力交流電圧が出力直流電圧以上となる場合に突入電流抑制回路が動作する。即ち、起動時のみならず瞬時停電等の入力瞬断からの復帰時も含め、突入電流が流れる可能性がある場合において、突入電流を確実に抑制することができる。
(実施の形態1)
以下、本発明の実施の形態1に係るAC-DCコンバータについて、図面を参照しながら説明する。図1は、実施の形態1に係るAC-DCコンバータの回路構成図である。
以下、本発明の実施の形態1に係るAC-DCコンバータについて、図面を参照しながら説明する。図1は、実施の形態1に係るAC-DCコンバータの回路構成図である。
図1に示すように、実施の形態1に係るAC-DCコンバータは、入力交流電圧Vacを供給する入力交流電源1と、入力交流ラインのノイズを除去するための入力フィルタ2と、昇圧コンバータ部3と、突入電流抑制回路4とを備える。
昇圧コンバータ部3は、全波整流回路であるブリッジダイオード30、インダクタ31、昇圧スイッチであるスイッチングトランジスタ32、整流器であるダイオード33、制御駆動回路34、および出力コンデンサ35で構成される。入力交流電源1の出力する入力交流電圧Vacは、入力フィルタ2を介して昇圧コンバータ部3に入力される。昇圧コンバータ部3に入力された入力交流電圧Vacは、ブリッジダイオード30によって全波整流され、入力整流電圧VIとなって出力される。入力整流電圧VIは、スイッチングトランジスタ32のスイッチング動作によってインダクタ31に断続して印加される。スイッチングトランジスタ32のオフ時にインダクタ31に発生するフライバック電圧は、入力整流電圧VIに加算されてダイオード33と出力コンデンサ35によって整流平滑され、出力コンデンサ35から出力直流電圧VOとして出力される。制御駆動回路34は、出力直流電圧VOを略安定化しながら入力交流ラインを流れる入力交流電流が入力交流電圧波形に追従するように、オンオフ時間比を制御しながらスイッチングトランジスタ32をスイッチング駆動する力率改善機能を有する。
突入電流抑制回路4は、突入電流抑制抵抗40と、抵抗短絡スイッチ41と、抵抗42~45と、比較器46とを有する制御回路で構成される。突入電流抑制抵抗40は、ブリッジダイオード30とスイッチングトランジスタ32との間に接続され、この突入電流抑制抵抗40と並列に抵抗短絡スイッチ41が接続される。抵抗42および43は、出力コンデンサ35の端子間電圧、即ち出力直流電圧VOを分圧して出力検出電圧Voを出力する。抵抗44および45は、ブリッジダイオード30の出力電圧、即ち入力整流電圧VIを分圧して入力検出電圧Viを出力する。各検出電圧VoおよびViは、比較器46に入力されて比較される。ここで、抵抗42および43の抵抗値の比と、抵抗44および45の抵抗値の比とは等しく、各検出電圧の比較は入力整流電圧VIと出力直流電圧VOとを比較することに相当するように設定する。比較器46の出力が抵抗短絡スイッチ41の駆動信号Vdとなる。
図2Aは、入力整流電圧VIが出力直流電圧VOより高い場合における実施の形態1のAC-DCコンバータの要部波形図であり、図2Bは、出力直流電圧VOが入力整流電圧VIより高い場合における実施の形態1のAC-DCコンバータの要部波形図である。より具体的には、図2Aおよび図2Bには、入力交流電圧Vac、入力整流電圧VI(入力検出電圧Vi)、出力直流電圧VO(出力検出電圧Vo)、および駆動信号Vdの波形が示されている。以下に、実施の形態1のAC-DCコンバータの突入電流抑制の動作について図2を用いて説明する。
突入電流抑制回路4において、入力検出電圧Viと出力検出電圧Voとの比較結果である駆動信号Vdは、入力検出電圧Viが出力検出電圧Voより低いときに“H”となって抵抗短絡スイッチ41をオンする。逆に入力検出電圧Viが出力検出電圧Voより高いときに“L”となって抵抗短絡スイッチ41をオフする。
即ち、図2Aのように、全波整流波形である入力整流電圧VIが出力直流電圧VOより高い時は、抵抗短絡スイッチ41はオフ状態となり、電流経路上にある突入電流抑制抵抗40が突入電流を抑制する。一方、入力整流電圧VIが出力直流電圧VOより低い時は、抵抗短絡スイッチ41はオン状態となり、突入電流抑制抵抗40は短絡される。即ち、昇圧コンバータ部3が動作していても、停止状態であっても、入力整流電圧VIが出力直流電圧VOより高いという突入電流が流れる可能性がある状況では、抵抗短絡スイッチ41はオフ状態であり、突入電流抑制抵抗40が突入電流を抑制する。
また、図2Bのように、昇圧コンバータ部3が動作して出力直流電圧VOが充分に高くなって常時VO>VIの状態にあり、突入電流が流れる可能性の無い状況では、抵抗短絡スイッチ41はオン状態となる。この状態では、突入電流抑制抵抗40は短絡されて突入電流抑制抵抗40による導通損失が生じることがない。
以上のように、本実施の形態に係るAC-DCコンバータによると、入力交流電圧の絶対値が出力直流電圧以上となる場合に突入電流抑制回路が動作する。即ち、起動時のみならず瞬時停電等の入力瞬断からの復帰時も含め、突入電流が流れる可能性がある場合において、突入電流を確実に抑制することができる。
また、入力整流電圧VIと出力直流電圧VOは、元々、AC-DCコンバータの制御のために監視されている場合がほとんどであり、この検出結果を、わずかの比較器46や論理回路を用いて、突入電流抑制抵抗40を短絡する抵抗短絡スイッチ41の駆動信号Vdを生成できるので、本実施の形態に係るAC-DCコンバータでは、従来のAC-DCコンバータと比較して、部品増はほとんど無い。
尚、本実施の形態において、入力交流電圧の絶対値である入力整流電圧や昇圧コンバータ部の出力直流電圧を抵抗分圧によって検出したが、例えばコンデンサによる分圧により検出しても構わないし、一部に電圧レベルシフトがあっても構わない。本実施の形態において、重要なのは検出精度であって、検出方式に制限されるものではない。
また、突入電流を確実に抑制するためにも、検出精度を考慮したマージンを持たせるとよい。即ち、入力整流電圧VIと昇圧コンバータ部の出力直流電圧VOとが同じ電圧の時には、抵抗短絡スイッチ41はオフであることが望ましく、抵抗短絡スイッチ41がオフである領域を広く安全側となるようにする。例えば、出力直流電圧VOと入力整流電圧VIとの電圧差が、マージンとして第1の基準値(例えば10V)以下である時には、抵抗短絡スイッチ41をオフにする。本実施の形態1のような抵抗分圧であれば、抵抗値のばらつき等も考慮して、抵抗42および43の分圧比よりも抵抗44および45の分圧比を大きくし、実際よりも入力整流電圧VIが大きく検出されるようにしてもよい。
(実施の形態2)
図3は、実施の形態2に係るAC-DCコンバータの回路構成図である。同図に示すように、実施の形態2に係るAC-DCコンバータは、入力交流電源1と、入力交流ラインのノイズを除去するための入力フィルタ2と、昇圧コンバータ部5と、突入電流抑制回路6とを備える。
図3は、実施の形態2に係るAC-DCコンバータの回路構成図である。同図に示すように、実施の形態2に係るAC-DCコンバータは、入力交流電源1と、入力交流ラインのノイズを除去するための入力フィルタ2と、昇圧コンバータ部5と、突入電流抑制回路6とを備える。
昇圧コンバータ部5は、トーテムポール型のブリッジレスPFCと称される回路構成であり、インダクタ50、高電位側スイッチである高電位側スイッチングトランジスタ51、低電位側スイッチである低電位側スイッチングトランジスタ52、高電位側整流器である高電位側ダイオード53、低電位側整流器である低電位側ダイオード54、制御駆動回路55、および出力コンデンサ56で構成される。入力交流電源1のラインのうち、インダクタ50を介して、高電位側スイッチングトランジスタ51と低電位側スイッチングトランジスタ52との接続点に入力される方をVAとする。入力交流電源1のもう片方のラインVBは、高電位側ダイオード53と低電位側ダイオード54との接続点に入力される。高電位側スイッチングトランジスタ51および低電位側スイッチングトランジスタ52の直列回路と、高電位側ダイオード53および低電位側ダイオード54の直列回路とは、出力コンデンサ56に並列接続される。出力コンデンサ56からは出力直流電圧VOが出力される。また、昇圧コンバータ部5のグランドをPGとし、以後、各電位はこのPGを基準にする。
突入電流抑制回路6は、突入電流抑制抵抗60と、抵抗短絡スイッチ61と、抵抗62~65と、第1の比較器66と、第2の比較器67と、NOR回路68とを有する制御回路で構成される。突入電流抑制抵抗60は、出力コンデンサ56と低電位側スイッチングトランジスタ52および低電位側ダイオード54の接続点との間に接続される。抵抗短絡スイッチ61は、突入電流抑制抵抗60と並列に接続される。抵抗62および63は、出力コンデンサ56の端子間電圧、即ち出力直流電圧VOを分圧して出力検出電圧Voを出力する。抵抗64および65は、交流ラインVAの電位を分圧して入力検出電圧Vaを出力する。第1の比較器66は、入力検出電圧VaとグランドPGとを比較し、Va<PGの時に”H”レベルの信号を出力する。第2の比較器67は、入力検出電圧Vaと出力検出電圧Voとを比較し、Va>Voの時に”H”レベルの信号を出力する。ここで、抵抗62および63の抵抗値の比と、抵抗64および65の抵抗値の比とは等しく、各検出電圧の比較は入力電圧VAと出力直流電圧VOとを比較することに相当するように設定する。NOR回路68は、第1の比較器66の出力と第2の比較器67の出力との論理否定和である駆動信号Vdを出力する。抵抗短絡スイッチ61は、駆動信号Vdに応じてオンオフ制御される。
以上のように構成された本実施の形態に係るAC-DCコンバータの動作を、以下に説明する。
まず、交流ラインVAがVBより高電位となる正位相の場合、低電位側スイッチングトランジスタ52がオンおよび高電位側スイッチングトランジスタ51がオフの時、入力交流電源1(VA)→インダクタ50→低電位側スイッチングトランジスタ52→低電位側ダイオード54→入力交流電源1(VB)の経路で電流が流れ、インダクタ50を励磁する。逆に低電位側スイッチングトランジスタ52がオフおよび高電位側スイッチングトランジスタ51がオンの時、入力交流電源1(VA)→インダクタ50→高電位側スイッチングトランジスタ51→出力コンデンサ56→低電位側ダイオード54→入力交流電源1(VB)の経路で電流が流れ、インダクタ50の蓄積エネルギーを出力コンデンサ56の充電電流として放出する。
次に、交流ラインVAがVBより低電位となる負位相の場合、高電位側スイッチングトランジスタ51がオンおよび低電位側スイッチングトランジスタ52がオフの時、入力交流電源1(VB)→高電位側ダイオード53→高電位側スイッチングトランジスタ51→インダクタ50→入力交流電源1(VA)の経路で電流が流れ、インダクタ50を励磁する。逆に高電位側スイッチングトランジスタ51がオフおよび低電位側スイッチングトランジスタ52がオンの時、入力交流電源1(VB)→高電位側ダイオード53→出力コンデンサ56→低電位側スイッチングトランジスタ52→インダクタ50→入力交流電源1(VA)の経路で電流が流れ、インダクタ50の蓄積エネルギーを出力コンデンサ56の充電電流として放出する。
以上のように、昇圧コンバータ部5に入力された入力交流電圧Vacは、高電位側スイッチングトランジスタ51および低電位側スイッチングトランジスタ52のスイッチング動作によってインダクタ50に断続して印加され、インダクタ50のフライバック電圧が加算されることによって昇圧された出力直流電圧VOとして出力コンデンサ56から出力される。制御駆動回路55は、出力直流電圧VOを略安定化しながら入力交流ラインを流れる入力交流電流が入力交流電圧波形に追従するように、オンオフ時間比を制御しながら高電位側スイッチングトランジスタ51と低電位側スイッチングトランジスタ52とをスイッチング駆動制御する力率改善機能を有する。
図4Aは、実施の形態2に係るAC-DCコンバータの正位相における電流経路図であり、図4Bは、実施の形態2に係るAC-DCコンバータの負位相における電流経路図である。より具体的には、図4Aおよび図4Bは、入力交流電源1が入力交流電圧Vacを出力し始めた、出力コンデンサ56の電圧が低い初期段階において、突入電流が流れる経路を示す。図4Aは、VA>VBの正位相、図4Bは、VA<VBの負位相の場合である。図中のスイッチングトランジスタには逆並列にダイオードを接続しているが、これはブリッジレスPFCとして動作する上で、スイッチングトランジスタのオフ時において完全なオフ状態ではなく、ダイオードのように単方向導通する特性が望ましいことによる。完全なオフでは突入電流は流れないが、昇圧コンバータ部5の動作前に出力コンデンサ56を充電できない。このため低い出力電圧で昇圧スイッチング動作することになり、インダクタ50は励磁エネルギーの放出ができず、直流重畳が進んで結果的に過大な突入電流が流れてしまう。スイッチングトランジスタがMOSFETの場合であればボディダイオードのような寄生ダイオードがあるのでこれを活用し、IGBTの場合には別途ダイオードが接続される。近年開発の進んでいる窒化半導体トランジスタの場合には、構造上のボディダイオードは存在しないが、ゲートがオフ状態であってもドレイン-ソース間に逆方向に電圧が印加されるとチャネル間が導通するモードがあり、これが見かけ上ボディダイオードが存在するのと同様の動作をする。そして突入電流はこの単方向導通するスイッチングトランジスタを流れるので、ピーク電流耐量の少ないスイッチングトランジスタを使用する場合には、突入電流の流れる可能性がある状況、即ち、入力交流電圧の絶対値が出力直流電圧より大きい状況では確実に突入電流を抑制する必要がある。
以下、実施の形態2に係るAC-DCコンバータの突入電流抑制動作を、図5Aおよび図5Bを用いて説明する。
図5Aは、実施の形態2に係るAC-DCコンバータにおける、入力交流電圧Vacの絶対値が出力直流電圧VOより大きいことがある場合の要部波形図である。また、図5Bは、実施の形態2に係るAC-DCコンバータにおける、出力直流電圧VOが入力交流電圧Vacの絶対値より常に大きい場合の要部波形図である。図5Aおよび図5Bには、入力交流電圧Vac(=VA-VB)、入力電圧VA(入力検出電圧Va)、出力直流電圧VO(出力検出電圧Vo)、および駆動信号Vdが示されている。なお、図示はしていないが、もう片方の入力ラインVBの電位は、正位相時には低電位側ダイオード54が導通しているので、昇圧コンバータ部5のグランドPGとなり、負位相時には高電位側ダイオード53が導通しているので、出力直流電圧VOとなっている。従って、入力電圧VAは正位相時には入力交流電圧Vacとなるが、負位相時には出力直流電圧VOと入力交流電圧Vacとの差電圧(VO+Vac=VO-|Vac|)となる。
突入電流抑制回路6において、第1の比較器66の出力は、入力検出電圧Vaが昇圧コンバータ部5のグランドPGより低い時、即ち、負位相時において入力交流電圧Vacの絶対値が出力直流電圧VOより大きい時に“H”レベルとなる。一方、第2の比較器67の出力は、入力検出電圧Vaが出力検出電圧Voより大きい時、即ち、正位相時において入力交流電圧Vacの絶対値が出力直流電圧VOより大きい時に“H”レベルとなる。これらの否定論理和であるNOR回路68の出力、即ち、駆動信号Vdは、入力交流電圧Vacの絶対値が出力直流電圧VOより大きい時に”L”レベルとなって抵抗短絡スイッチ61をオフ状態にする。
即ち、図5Aのように、入力交流電圧Vacの絶対値が出力直流電圧VOより高い時は、抵抗短絡スイッチ61はオフ状態となり、電流経路上にある突入電流抑制抵抗60が突入電流を抑制する。また、入力交流電圧Vacの絶対値が出力直流電圧VOより低い時は、抵抗短絡スイッチ61はオン状態となり、突入電流抑制抵抗60は短絡される。即ち、昇圧コンバータ部5が動作していても、停止状態であっても、突入電流が流れる可能性がある状況では抵抗短絡スイッチ61はオフ状態であり、突入電流抑制抵抗60が突入電流を抑制する。また、図5Bのように、昇圧コンバータ部5が動作して出力直流電圧VOが充分に高くなって常時VO>VAの状態にあり、突入電流が流れる可能性の無い状況では抵抗短絡スイッチ61はオン状態である。このため、突入電流抑制抵抗60は短絡されて突入電流抑制抵抗60による導通損失が生じることがない。
以上のように、本実施の形態に係るAC-DCコンバータによると、入力交流電圧が出力直流電圧以上となる場合に突入電流抑制回路が動作する。即ち、起動時のみならず瞬時停電等の入力瞬断からの復帰時も含め、突入電流が流れる可能性がある場合において、突入電流を確実に抑制することができる。
また、入力整流電圧VIと出力直流電圧VOは、元々、AC-DCコンバータの制御のために監視されている場合がほとんどであり、この検出結果を、わずかの比較器および論理回路を用いて、突入電流抑制抵抗60を短絡する抵抗短絡スイッチ61の駆動信号Vdを生成できるので、本実施の形態に係るAC-DCコンバータでは、従来のAC-DCコンバータと比較して、部品増はほとんど無い。
尚、本実施の形態において、入力交流電圧の一方のライン電位や昇圧コンバータ部の出力直流電圧を抵抗分圧によって検出したが、例えばコンデンサによる分圧により検出しても構わないし、一部に電圧レベルシフトがあっても構わない。本実施の形態において、重要なのは検出精度であって、検出方式に制限されるものではない。
また、突入電流を確実に抑制するためにも、検出精度を考慮したマージンを持たせるとよい。即ち、入力交流電圧の一方のライン電位と昇圧コンバータ部の出力直流電圧とが同じ電圧の時には、抵抗短絡スイッチ61はオフであることが望ましく、抵抗短絡スイッチ61がオフである領域を広く安全側となるようにする。例えば、出力直流電圧(VO)と入力交流電源の一端の電位(VA)との電圧差が、マージンとして第1の基準値(例えば10V)以下である時、及び出力検出電圧Voと昇圧コンバータ部グランド電位(PG)との電圧差が上記第1の基準値以下である時には、抵抗短絡スイッチ61をオフにする。本実施の形態のように抵抗分圧であれば、抵抗値のばらつき等も考慮して、抵抗62および63の分圧比よりも抵抗64および65の分圧比を大きくし、実際よりも入力交流電圧VAが大きく検出されるようにしてもよい。
(実施の形態3)
図6は、実施の形態3に係るAC-DCコンバータの回路構成図である。図6に示すように、実施の形態3に係るAC-DCコンバータは、入力交流ラインVAと入力交流ラインVBとの間に入力交流電圧Vacを供給する入力交流電源1と、入力交流ラインのノイズを除去するための入力フィルタ2と、昇圧コンバータ部7と、突入電流抑制回路8とを備える。
図6は、実施の形態3に係るAC-DCコンバータの回路構成図である。図6に示すように、実施の形態3に係るAC-DCコンバータは、入力交流ラインVAと入力交流ラインVBとの間に入力交流電圧Vacを供給する入力交流電源1と、入力交流ラインのノイズを除去するための入力フィルタ2と、昇圧コンバータ部7と、突入電流抑制回路8とを備える。
昇圧コンバータ部7は、第1インダクタ70、第2インダクタ71、第1高電位側整流器である第1高電位側ダイオード72、第1スイッチである第1スイッチングトランジスタ73、第2高電位側整流器である第2高電位側ダイオード74、第2スイッチである第2スイッチングトランジスタ75、第1低電位側整流器である第1低電位側ダイオード76、第2低電位側整流器である第2低電位側ダイオード77、制御駆動回路78、および出力コンデンサ79で構成される。入力交流ラインVAに接続される第1インダクタ70の他端は、第1高電位側ダイオード72と第1スイッチングトランジスタ73との接続点に接続される。入力交流ラインVBに接続される第2インダクタ71の他端は、第2高電位側ダイオード74と第2スイッチングトランジスタ75との接続点に接続される。第1高電位側ダイオード72および第1スイッチングトランジスタ73の直列回路と、第2高電位側ダイオード74および第2スイッチングトランジスタ75の直列回路とは、出力コンデンサ79と並列に接続される。出力コンデンサ79から出力直流電圧VOが出力される。第1低電位側ダイオード76は、両スイッチングトランジスタの接続点と入力交流ラインVAとの間に接続され、第2低電位側ダイオード77は、両スイッチングトランジスタの接続点と入力交流ラインVBとの間に接続される。また、昇圧コンバータ部7のグランドをPGとし、以後、各電位はこのPGを基準にする。
突入電流抑制回路8は、突入電流抑制抵抗80と、抵抗短絡スイッチ81と、抵抗82~85、84aおよび85aと、第1の比較器86と、第2の比較器87と、NOR回路88とを有する制御回路で構成される。突入電流抑制抵抗80は、出力コンデンサ79と第1スイッチングトランジスタ73および第2スイッチングトランジスタ75の接続点との間に接続される。抵抗短絡スイッチ81は、突入電流抑制抵抗80と並列に接続される。抵抗82および83は、出力コンデンサ79の端子間電圧、即ち出力直流電圧VOを分圧して出力検出電圧Voを出力する。抵抗84および85は、交流ラインVAの電位を分圧して入力検出電圧Vaを出力する。抵抗84aおよび85aは、交流ラインVBの電位を分圧して入力検出電圧Vbを出力する。第1の比較器86は、入力検出電圧Vaと出力検出電圧Voとを比較し、Va>Voの時に“H”レベルの信号を出力する。第2の比較器87は、入力検出電圧Vbと出力検出電圧Voとを比較し、Vb>Voの時に“H”レベルの信号を出力する。ここで、抵抗82および83の抵抗値の比と、抵抗84および85の抵抗値の比と、抵抗84aおよび85aの抵抗値の比とは等しく、各検出電圧の比較は、入力電圧VAと出力直流電圧VOとを比較し、また、入力電圧VBと出力直流電圧VOとを比較することに相当するように設定する。NOR回路88は、第1の比較器86の出力と第2の比較器87の出力との論理否定和である駆動信号Vdを出力し、抵抗短絡スイッチ81はこの駆動信号Vdに応じてオンオフ制御される。
以上のように構成された本実施の形態に係るAC-DCコンバータの動作を、以下に説明する。
まず、交流ラインVAがVBより高電位となる正位相の場合、第1スイッチングトランジスタ73がスイッチング動作し、第2スイッチングトランジスタ75はオン状態に固定される。従って正位相時では、第2インダクタ71は、第2スイッチングトランジスタ75および第2低電位側ダイオード77によって両端が短絡され、実質的に動作に関与しない。正位相時において、第1スイッチングトランジスタ73がオンの時、入力交流電源1(VA)→第1インダクタ70→第1スイッチングトランジスタ73→第2低電位側ダイオード77→入力交流電源1(VB)の経路で電流が流れ、第1インダクタ70を励磁する。第1スイッチングトランジスタ73がオフすると、入力交流電源1(VA)→第1インダクタ70→第1高電位側ダイオード72→出力コンデンサ79→第2低電位側ダイオード77→入力交流電源1(VB)の経路で電流が流れ、第1インダクタ70の蓄積エネルギーを出力コンデンサ79への充電電流として放出する。
次に、交流ラインVAがVBより低電位となる負位相の場合、第2スイッチングトランジスタ75がスイッチング動作し、第1スイッチングトランジスタ73はオン状態に固定される。従って負位相時では、第1インダクタ70は、第1スイッチングトランジスタ73および第1低電位側ダイオード76によって両端が短絡され、実質的に動作に関与しない。負位相時において、第2スイッチングトランジスタ75がオンの時、入力交流電源1(VB)→第2インダクタ71→第2スイッチングトランジスタ75→第1低電位側ダイオード76→入力交流電源1(VA)の経路で電流が流れ、第2インダクタ71を励磁する。第2スイッチングトランジスタ75がオフすると、入力交流電源1(VB)→第2インダクタ71→第2高電位側ダイオード74→出力コンデンサ79→第1低電位側ダイオード76→入力交流電源1(VA)の経路で電流が流れ、第2インダクタ71の蓄積エネルギーを出力コンデンサ79への充電電流として放出する。
以上のように、昇圧コンバータ部7に入力された入力交流電圧Vacは、第1スイッチングトランジスタ73または第2スイッチングトランジスタ75のスイッチング動作により、それぞれ第1インダクタ70または第2インダクタ71に断続して印加され、発生するフライバック電圧が加算されることによって昇圧された出力直流電圧VOとして出力コンデンサ79から出力される。制御駆動回路78は、出力直流電圧VOを略安定化しながら入力交流ラインを流れる入力交流電流が入力交流電圧波形に追従するように、オンオフ時間比を制御しながら第1スイッチングトランジスタ73と第2スイッチングトランジスタ75とをスイッチング駆動制御する力率改善機能を有する。
図7Aは、実施の形態3に係るAC-DCコンバータの正位相における電流経路図であり、図7Bは、実施の形態3に係るAC-DCコンバータの負位相における電流経路図である。より具体的には、図7Aおよび図7Bは、入力交流電源1が入力交流電圧Vacを出力し始めた、出力コンデンサ79の電圧が低い初期段階において、突入電流が流れる経路を示す。図7Aは、VA>VBの正位相、図7Bは、VA<VBの負位相の場合である。
以下、実施の形態3に係るAC-DCコンバータの突入電流抑制動作を、図8Aおよび図8Bを用いて説明する。
図8Aは、実施の形態3に係るAC-DCコンバータにおける、入力交流電圧Vacの絶対値が出力直流電圧VOより大きいことがある場合の要部波形図である。また、図8Bは、実施の形態3に係るAC-DCコンバータにおける、出力直流電圧VOが入力交流電圧Vacの絶対値より常に大きい場合の要部波形図である。図8Aおよび図8Bには、入力交流電圧Vac(=VA-VB)、入力電圧VA(入力検出電圧Va)、入力電圧VB(入力検出電圧Vb)、出力直流電圧VO(出力検出電圧Vo)、および駆動信号Vdが示されている。
突入電流抑制回路8において、第1の比較器86の出力は、入力検出電圧Vaが出力検出電圧Voより大きい時、即ち、正位相時において入力交流電圧Vacの絶対値が出力直流電圧VOより大きい時に“H”レベルとなる。一方、第2の比較器87の出力は、入力検出電圧Vbが出力検出電圧Voより大きい時、即ち、負位相時において入力交流電圧Vacの絶対値が出力直流電圧VOより大きい時に“H”レベルとなる。これらの否定論理和であるNOR回路88の出力、即ち、駆動信号Vdは、入力交流電圧Vacの絶対値が出力直流電圧VOより大きい時に”L”レベルとなって抵抗短絡スイッチ81をオフ状態にする。
即ち、図8Aのように、入力交流電圧Vacの絶対値が出力直流電圧VOより高い時は、抵抗短絡スイッチ81はオフ状態となり、電流経路上にある突入電流抑制抵抗80が突入電流を抑制する。また、入力交流電圧Vacの絶対値が出力直流電圧VOより低い時は、抵抗短絡スイッチ81はオン状態となり、突入電流抑制抵抗80は短絡される。即ち、昇圧コンバータ部7が動作していても、停止状態であっても、突入電流が流れる可能性がある状況では抵抗短絡スイッチ81はオフ状態であり、突入電流抑制抵抗80が突入電流を抑制する。また、図8Bのように、昇圧コンバータ部7が動作して出力直流電圧VOが充分に高くなって常時VO>VAおよびVO>VBの状態にあり、突入電流が流れる可能性の無い状況では抵抗短絡スイッチ81はオン状態である。このため、突入電流抑制抵抗80は短絡されて突入電流抑制抵抗80による導通損失が生じることがない。
以上のように、本実施の形態に係るAC-DCコンバータによると、入力交流電圧が出力直流電圧以上となる場合に突入電流抑制回路が動作する。即ち、起動時のみならず瞬時停電等の入力瞬断からの復帰時も含め、突入電流が流れる可能性がある場合において、突入電流を確実に抑制することができる。
また、入力整流電圧VIと出力直流電圧VOは、元々、AC-DCコンバータの制御のために監視されている場合がほとんどであり、この検出結果を、わずかの比較器および論理回路を用いて、突入電流抑制抵抗80を短絡する抵抗短絡スイッチ81の駆動信号Vdを生成できるので、本実施の形態に係るAC-DCコンバータでは、従来のAC-DCコンバータと比較して、部品増はほとんど無い。
尚、本実施の形態において、入力交流電圧の両ライン電位や昇圧コンバータ部の出力直流電圧を抵抗分圧によって検出したが、例えばコンデンサによる分圧により検出しても構わないし、一部に電圧レベルシフトがあっても構わない。本実施の形態において、重要なのは検出精度であって、検出方式に制限されるものではない。
また、突入電流を確実に抑制するためにも、検出精度を考慮したマージンを持たせるとよい。即ち、入力交流電圧の一方のライン電位と昇圧コンバータ部の出力直流電圧とが同じ電圧の時には、抵抗短絡スイッチ61はオフであることが望ましく、抵抗短絡スイッチ81がオフである領域を広く安全側となるようにする。例えば、出力直流電圧VOと入力交流電源の一端の電位VAとの電圧差が、マージンとして第1の基準値(例えば10V)以下である時、及び前記出力検出電圧と前記入力交流電源の他端の電位VBとの電圧差が上記第1の基準値以下である時、抵抗短絡スイッチ81をオフにする。本実施の形態のように抵抗分圧であれば、抵抗値のばらつき等も考慮して、抵抗82および83の分圧比よりも、抵抗84および85の分圧比ならびに抵抗84aおよび85aの分圧比を大きくし、実際よりも入力交流電圧VAおよびVBが大きく検出されるようにしてもよい。
(その他の実施の形態)
以上、本発明に係るAC-DCコンバータについて、実施の形態1~3に基づいて説明したが、本発明は、これらの実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を上記実施の形態1~3に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の範囲内に含まれる。
以上、本発明に係るAC-DCコンバータについて、実施の形態1~3に基づいて説明したが、本発明は、これらの実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を上記実施の形態1~3に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の範囲内に含まれる。
尚、実施の形態2のようなトーテムポール型のブリッジレスPFCの場合、突入電流が流れる経路上にスイッチングトランジスタがあると、突入電流の許容値がスイッチングトランジスタの電流耐量によって決まる場合がある。スイッチングトランジスタに限らず、突入電流が流れる経路上の部品の電流耐量が少なければ、突入電流抑制抵抗の抵抗値を大きくして突入電流の許容値を下げるとともに、突入電流の流れる可能性が有る場合には確実に突入電流抑制抵抗を開放しなくてはならない。上記実施の形態に係るAC-DCコンバータでは、入力交流電圧の絶対値が出力直流電圧以上であるという突入電流の流れ得る状況下で突入電流抑制抵抗を開放しているので、電流耐量の小さな部品が使用できるという特長も有する。
また、実施の形態1~3に係るAC-DCコンバータにおいて、突入電流抑制抵抗を短絡するスイッチは、従来例で示したサイリスタのような半導体スイッチであってもよいし、リレースイッチのようなものであっても構わない。また、突入電流抑制抵抗とスイッチとの並列回路は、実施の形態1~3の位置に限定されるものではなく、入力交流電源から出力コンデンサを充電して入力交流電源へ戻る電流経路上であればよい。スイッチの接続位置によっては突入電流抑制回路内で生成する駆動信号を、レベルシフトしたり絶縁伝達したりする必要があるが、それは設計事項であって本発明の要諦ではないので、詳しい説明や回路例の開示は省略した。
また、実施の形態1~3に係るAC-DCコンバータの突入電流抑制回路では、本発明の要諦となる、入力交流電圧の絶対値が出力直流電圧より高いと突入電流抑制抵抗を開放する、という構成のみを説明してきたが、これは突入電流を抑制するための条件の一つであって、本発明はこれらの構成に限定されるものではない。例えば、あるシステムの中で、電源部に入力交流電圧を印加して起動してもよい条件が整い、起動開始信号が電源部に入力される際に、該起動開始信号と本発明の突入電流抑制回路内で生成される駆動信号との論理積を抵抗短絡スイッチの駆動信号とする、といった構成もあり得る。
本発明は、商用交流電源のような入力交流電源から電力供給され、各種電子機器に直流電圧を供給する電源回路等に有用である。
1、501 入力交流電源
2、502 入力フィルタ
3、503 昇圧コンバータ部
4 突入電流抑制回路
5、7 昇圧コンバータ部
6、8、504 突入電流抑制回路
30、530 ブリッジダイオード
31、50、531 インダクタ
32、532 スイッチングトランジスタ
33、514、533 ダイオード
34、55、78、534 制御駆動回路
35、56、79、535 出力コンデンサ
40、60、80、510 突入電流抑制抵抗
41、61、81 抵抗短絡スイッチ
42、43、44、45、62、63、64、65、82、83、84、84a、85、85a、512、513、515 抵抗
46 比較器
51 高電位側スイッチングトランジスタ
52 低電位側スイッチングトランジスタ
53 高電位側ダイオード
54 低電位側ダイオード
66、86 第1の比較器
67、87 第2の比較器
68、88 NOR回路
70 第1インダクタ
71 第2インダクタ
72 第1高電位側ダイオード
73 第1スイッチングトランジスタ
74 第2高電位側ダイオード
75 第2スイッチングトランジスタ
76 第1低電位側ダイオード
77 第2低電位側ダイオード
511 サイリスタ
2、502 入力フィルタ
3、503 昇圧コンバータ部
4 突入電流抑制回路
5、7 昇圧コンバータ部
6、8、504 突入電流抑制回路
30、530 ブリッジダイオード
31、50、531 インダクタ
32、532 スイッチングトランジスタ
33、514、533 ダイオード
34、55、78、534 制御駆動回路
35、56、79、535 出力コンデンサ
40、60、80、510 突入電流抑制抵抗
41、61、81 抵抗短絡スイッチ
42、43、44、45、62、63、64、65、82、83、84、84a、85、85a、512、513、515 抵抗
46 比較器
51 高電位側スイッチングトランジスタ
52 低電位側スイッチングトランジスタ
53 高電位側ダイオード
54 低電位側ダイオード
66、86 第1の比較器
67、87 第2の比較器
68、88 NOR回路
70 第1インダクタ
71 第2インダクタ
72 第1高電位側ダイオード
73 第1スイッチングトランジスタ
74 第2高電位側ダイオード
75 第2スイッチングトランジスタ
76 第1低電位側ダイオード
77 第2低電位側ダイオード
511 サイリスタ
Claims (7)
- 入力交流電圧を出力する入力交流電源と、
前記入力交流電圧を出力直流電圧に変換して出力コンデンサから出力する昇圧コンバータ部と、
突入電流抑制回路と、を備え、
前記突入電流抑制回路は、
前記入力交流電源から前記昇圧コンバータ部の前記出力コンデンサを充電して前記入力交流電源へ戻る経路上に挿入された突入電流抑制抵抗と、
前記突入電流抑制抵抗を短絡する抵抗短絡スイッチと、
前記入力交流電圧の絶対値が前記出力直流電圧より大きい場合に、前記抵抗短絡スイッチをオフする信号を生成する制御回路と、を有する、
AC-DCコンバータ。 - 前記昇圧コンバータ部は、
前記入力交流電圧を全波整流する全波整流回路と、
前記全波整流回路の出力に並列に接続された、インダクタと昇圧スイッチとの直列回路と、
前記昇圧スイッチの両端電圧を整流平滑する整流器と前記出力コンデンサとからなる整流平滑回路と、
前記昇圧スイッチを制御駆動する制御駆動回路と、を有し、
前記制御回路は、前記全波整流回路の出力する入力整流電圧が前記出力直流電圧より大きい場合に、前記抵抗短絡スイッチをオフする信号を生成する、
請求項1に記載のAC-DCコンバータ。 - 前記制御回路は、
前記出力直流電圧を分圧またはレベルシフトして出力検出電圧を出力する出力検出回路と、
前記入力整流電圧を分圧またはレベルシフトして入力検出電圧を出力する入力検出回路と、
前記出力検出電圧と前記入力検出電圧とを比較する比較器と、を有し、
前記制御回路は、前記出力直流電圧と前記入力整流電圧との電圧差が第1の基準値以下である場合に、前記抵抗短絡スイッチをオフする、
請求項2に記載のAC-DCコンバータ。 - 前記昇圧コンバータ部は、
前記入力交流電源の一端からインダクタを介して前記入力交流電圧を受電する第1入力端子と、
前記入力交流電源の他端から前記入力交流電圧を受電する第2入力端子と、
前記第1入力端子に接続された高電位側スイッチと低電位側スイッチとが直列接続された回路である第1直列回路と、
前記第2入力端子に接続された高電位側整流器と低電位側整流器とが直列接続された回路である第2直列回路と、
前記高電位側スイッチと前記低電位側スイッチとを制御駆動する制御駆動回路と、
前記第1直列回路および前記第2直列回路のそれぞれと並列に接続された前記出力コンデンサと、を有し、
前記制御回路は、前記入力交流電源の一端の電位が前記昇圧コンバータ部のグランド電位と前記出力直流電圧との間にある場合に、前記抵抗短絡スイッチをオンするための信号を生成する、
請求項1に記載のAC-DCコンバータ。 - 前記制御回路は、
前記出力直流電圧を分圧またはレベルシフトして出力検出電圧を出力する出力検出回路と、
前記入力交流電源の一端の電位を分圧またはレベルシフトして入力検出電圧を出力する入力検出回路と、
前記入力検出電圧と前記昇圧コンバータ部のグランド電位とを比較する第1の比較器と、
前記入力検出電圧と前記出力検出電圧とを比較する第2の比較器と、を有し、
前記制御回路は、前記出力直流電圧と前記入力交流電源の一端の電位との電圧差が第1の基準値以下である場合、かつ、前記出力検出電圧と前記昇圧コンバータ部のグランド電位との電圧差が前記第1の基準値以下である場合、前記抵抗短絡スイッチをオフする、
請求項4に記載のAC-DCコンバータ。 - 前記昇圧コンバータ部は、
前記入力交流電源の一端からインダクタを介して前記入力交流電圧を受電する第1入力端子と、
前記入力交流電源の他端からインダクタを介して前記入力交流電圧を受電する第2入力端子と、
前記第1入力端子に接続された第1高電位側整流器と第1スイッチとが直列接続された回路である第1直列回路と、
前記第2入力端子に接続された第2高電位側整流器と第2スイッチとが直列接続された回路である第2直列回路と、
前記第1スイッチと前記第2スイッチとを制御駆動する制御駆動回路と、
前記第1直列回路および前記第2直列回路のそれぞれと並列に接続された前記出力コンデンサと、
前記第1スイッチと前記第2スイッチとの接続点と前記入力交流電源の一端との間に接続された第1低電位側整流器と、
前記第1スイッチと前記第2スイッチとの接続点と前記入力交流電源の他端との間に接続された第2低電位側整流器と、を有し、
前記制御回路は、前記入力交流電源の一端の電位と他端の電位とが、ともに前記出力直流電圧より低い場合に、前記抵抗短絡スイッチをオンするための信号を生成する、
請求項1に記載のAC-DCコンバータ。 - 前記制御回路は、
前記出力直流電圧を分圧またはレベルシフトして出力検出電圧を出力する出力検出回路と、
前記入力交流電源の一端の電位を分圧またはレベルシフトして第1の入力検出電圧を出力する第1の入力検出回路と、
前記入力交流電源の他端の電位を分圧またはレベルシフトして第2の入力検出電圧を出力する第2の入力検出回路と、
前記出力検出電圧と前記第1の入力検出電圧とを比較する第1の比較器と、
前記出力検出電圧と前記第2の入力検出電圧とを比較する第2の比較器と、を有し、
前記制御回路は、前記出力直流電圧と前記入力交流電源の一端の電位との電圧差が第1の基準値以下である場合、かつ、前記出力検出電圧と前記入力交流電源の他端の電位との電圧差が前記第1の基準値以下である場合、前記抵抗短絡スイッチをオフする、
請求項6に記載のAC-DCコンバータ。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018560363A JP6964240B2 (ja) | 2017-01-06 | 2017-12-25 | Ac−dcコンバータ |
US16/455,623 US10530269B2 (en) | 2017-01-06 | 2019-06-27 | AC-DC converter |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017001353 | 2017-01-06 | ||
JP2017-001353 | 2017-01-06 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/455,623 Continuation US10530269B2 (en) | 2017-01-06 | 2019-06-27 | AC-DC converter |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018128101A1 true WO2018128101A1 (ja) | 2018-07-12 |
Family
ID=62789297
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/046279 WO2018128101A1 (ja) | 2017-01-06 | 2017-12-25 | Ac-dcコンバータ |
Country Status (3)
Country | Link |
---|---|
US (1) | US10530269B2 (ja) |
JP (1) | JP6964240B2 (ja) |
WO (1) | WO2018128101A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020054134A (ja) * | 2018-09-27 | 2020-04-02 | Tdk株式会社 | スイッチング電源装置 |
JP2020096398A (ja) * | 2018-12-10 | 2020-06-18 | 三菱電機株式会社 | 力率補償電源装置およびled照明装置 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11418125B2 (en) | 2019-10-25 | 2022-08-16 | The Research Foundation For The State University Of New York | Three phase bidirectional AC-DC converter with bipolar voltage fed resonant stages |
US11811307B2 (en) * | 2020-03-12 | 2023-11-07 | Texas Instruments Incorporated | Methods and apparatus to improve power factor correction circuits with voltage multiplier assist |
CN112104213A (zh) * | 2020-07-26 | 2020-12-18 | 南京博兰得电能技术发展有限公司 | 一种浪涌电流抑制电路 |
CN112968616B (zh) * | 2021-02-19 | 2022-02-15 | 北京泰力控科技有限公司 | 交直流转换器及交直流转换系统 |
EP4148962A1 (en) * | 2021-09-13 | 2023-03-15 | Infineon Technologies Austria AG | Method of operating a power converter, control circuit, and power converter |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0799775A (ja) * | 1993-09-27 | 1995-04-11 | Canon Inc | 電源装置 |
JP2002281745A (ja) * | 2001-03-21 | 2002-09-27 | Sony Corp | 電源装置 |
WO2016143102A1 (ja) * | 2015-03-11 | 2016-09-15 | 三菱電機株式会社 | 電源装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08126331A (ja) | 1994-10-28 | 1996-05-17 | Mita Ind Co Ltd | 直流安定化電源回路 |
JPH10155272A (ja) | 1996-11-20 | 1998-06-09 | Matsushita Electric Ind Co Ltd | 電源装置 |
JP4288702B2 (ja) | 2004-03-31 | 2009-07-01 | Tdkラムダ株式会社 | スイッチング電源装置 |
US20060274468A1 (en) * | 2005-06-03 | 2006-12-07 | Phadke Vijay G | Active inrush current control using a relay for AC to DC converters |
-
2017
- 2017-12-25 WO PCT/JP2017/046279 patent/WO2018128101A1/ja active Application Filing
- 2017-12-25 JP JP2018560363A patent/JP6964240B2/ja active Active
-
2019
- 2019-06-27 US US16/455,623 patent/US10530269B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0799775A (ja) * | 1993-09-27 | 1995-04-11 | Canon Inc | 電源装置 |
JP2002281745A (ja) * | 2001-03-21 | 2002-09-27 | Sony Corp | 電源装置 |
WO2016143102A1 (ja) * | 2015-03-11 | 2016-09-15 | 三菱電機株式会社 | 電源装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020054134A (ja) * | 2018-09-27 | 2020-04-02 | Tdk株式会社 | スイッチング電源装置 |
JP7087887B2 (ja) | 2018-09-27 | 2022-06-21 | Tdk株式会社 | スイッチング電源装置 |
JP2020096398A (ja) * | 2018-12-10 | 2020-06-18 | 三菱電機株式会社 | 力率補償電源装置およびled照明装置 |
Also Published As
Publication number | Publication date |
---|---|
JP6964240B2 (ja) | 2021-11-10 |
JPWO2018128101A1 (ja) | 2019-11-07 |
US20190326829A1 (en) | 2019-10-24 |
US10530269B2 (en) | 2020-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018128101A1 (ja) | Ac-dcコンバータ | |
US10158282B1 (en) | Switching power supply device | |
TWI475786B (zh) | System controller and method for power conversion system | |
JP5056395B2 (ja) | スイッチング電源装置 | |
JP6255577B2 (ja) | 直流電源回路 | |
US20160336856A1 (en) | Voltage stabilizing circuit | |
US9787210B2 (en) | Precharging apparatus and power converter | |
JP2017127109A (ja) | スイッチング電源装置 | |
KR101851930B1 (ko) | 교류-직류 컨버터 | |
US20230033953A1 (en) | Systems and methods for adjusting output voltages with output voltage detection on secondary sides of power converters | |
JP6012822B1 (ja) | 電力変換装置 | |
EP2672620B1 (en) | Power factor improvement circuit | |
CN111033999A (zh) | 功率因数改善电路及半导体装置 | |
JP2007110869A (ja) | 電力変換装置 | |
JP7404666B2 (ja) | 集積回路、電源回路 | |
JP6300664B2 (ja) | 鉄道車両用電源回路 | |
JP5203444B2 (ja) | スイッチング電源装置 | |
US11637489B2 (en) | Isolated DC/DC converter and AC/DC converter | |
US11190107B2 (en) | Auxiliary power supply circuit, power supply apparatus, and power supply circuit | |
US7330359B2 (en) | Power supply unit | |
JP6484529B2 (ja) | スイッチング電源装置 | |
JP5927142B2 (ja) | スイッチング電源装置及びその制御方法 | |
WO2017203687A1 (ja) | スイッチング電源制御回路及びスイッチング電源装置 | |
JP6797036B2 (ja) | スイッチング電源装置 | |
JP2005295627A (ja) | 全波整流平滑回路およびスイッチング電源装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17889902 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018560363 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17889902 Country of ref document: EP Kind code of ref document: A1 |