WO2018116794A1 - 液圧制御装置およびブレーキシステム - Google Patents
液圧制御装置およびブレーキシステム Download PDFInfo
- Publication number
- WO2018116794A1 WO2018116794A1 PCT/JP2017/043427 JP2017043427W WO2018116794A1 WO 2018116794 A1 WO2018116794 A1 WO 2018116794A1 JP 2017043427 W JP2017043427 W JP 2017043427W WO 2018116794 A1 WO2018116794 A1 WO 2018116794A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- valve
- unit
- hydraulic
- stroke
- stroke simulator
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T13/00—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
- B60T13/10—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
- B60T13/66—Electrical control in fluid-pressure brake systems
- B60T13/68—Electrical control in fluid-pressure brake systems by electrically-controlled valves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T17/00—Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
- B60T17/18—Safety devices; Monitoring
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T8/00—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
- B60T8/17—Using electrical or electronic regulation means to control braking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T8/00—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
- B60T8/32—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
- B60T8/34—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
- B60T8/48—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition connecting the brake actuator to an alternative or additional source of fluid pressure, e.g. traction control systems
Definitions
- the present invention relates to a hydraulic pressure control device and a brake system.
- Patent Document 1 discloses a brake system that performs a brake-by-wire control in which a pump is operated using an electrical signal corresponding to a driver's brake operation and brake fluid pressure generated by the pump is supplied to a wheel cylinder.
- the brake system includes a stroke simulator that generates an operation reaction force on the brake pedal.
- a stroke simulator valve that opens when a driver operates a brake and functions as a stroke simulator is installed in a fluid path that connects the stroke simulator and the master cylinder.
- One of the objects of the present invention is to provide a hydraulic pressure control device and a brake system that can secure a pedal stroke even when the stroke simulator valve cannot be opened.
- a hydraulic pressure control device includes a second communication path in which one end is connected to a positive pressure chamber or a back pressure chamber of a stroke simulator, and a second communication path is connected to the suction side and the other end of the hydraulic pressure source.
- a stroke valve provided in the passage.
- FIG.3 S13 It is a figure which shows schematic structure of brake system BS of Embodiment 2 with a hydraulic circuit. It is a figure which shows schematic structure of brake system BS of Embodiment 3 with a hydraulic circuit. It is a figure which shows schematic structure of brake system BS of Embodiment 4 with a hydraulic circuit.
- FIG. 19 It is a figure which shows schematic structure of brake system BS of Embodiment 19 with a hydraulic circuit. It is a figure which shows schematic structure of brake system BS of Embodiment 20 with a hydraulic circuit. It is a figure which shows schematic structure of the brake system BS of Embodiment 21 with a hydraulic circuit. It is a figure which shows schematic structure of brake system BS of Embodiment 22 with a hydraulic circuit. It is a figure which shows schematic structure of brake system BS of Embodiment 23 with a hydraulic circuit. It is a figure which shows schematic structure of brake system BS of Embodiment 24 with a hydraulic circuit. It is a figure which shows schematic structure of brake system BS of Embodiment 25 with a hydraulic circuit.
- FIG. 38 is a diagram showing a schematic configuration of a brake system BS of Embodiment 27 together with a hydraulic circuit.
- FIG. 38 is a diagram showing a schematic configuration of a brake system BS of Embodiment 28 together with a hydraulic circuit. It is a figure which shows schematic structure of brake system BS of Embodiment 29 with a hydraulic circuit. It is a figure which shows schematic structure of brake system BS of Embodiment 30 with a hydraulic circuit. It is a figure which shows schematic structure of brake system BS of Embodiment 31 with a hydraulic circuit.
- FIG. 10 is a diagram showing a schematic configuration of a brake system BS of Embodiment 37 together with a hydraulic circuit.
- FIG. 1 is a diagram illustrating a schematic configuration of a brake system BS according to the first embodiment together with a hydraulic circuit.
- the brake system BS according to the first embodiment includes a vehicle including only an internal combustion engine (engine) as a prime mover for driving wheels, a hybrid vehicle including an electric motor / generator in addition to the internal combustion engine, and an electric motor. ⁇ Hydraulic brake system that can be installed in electric vehicles equipped only with generators.
- the brake system BS includes a disc-type brake operation unit on each of the wheels FL to RR.
- the brake system BS supplies friction brake force to the wheels FL to RR by supplying brake fluid as hydraulic fluid to the wheel cylinder W / C of the brake operation unit and pressing the brake pad against the brake disc.
- the brake system BS has two systems (primary system and secondary system) of brake piping.
- the brake piping type is the H piping type.
- P system primary system
- S system secondary system
- suffixes P and S are added to the end of the reference numerals to appropriately distinguish them.
- the brake system BS supplies brake fluid to each wheel cylinder W / C via the brake pipe.
- Brake system BS has a master cylinder unit 1, a first hydraulic unit 2, and a second hydraulic unit 3.
- the first hydraulic pressure unit 2 and the second hydraulic pressure unit 3 are hydraulic pressure control devices that control the brake hydraulic pressure (wheel cylinder hydraulic pressure) of each wheel cylinder W / C.
- the master cylinder unit 1 and the first hydraulic pressure unit 2 are a first hydraulic pressure unit in which a first primary pipe (connection liquid path) 4P, a first secondary pipe (connection liquid path) 4S, a reservoir pipe 5 and a reservoir pipe 5 are branched. Connect via reservoir piping 5A for 2.
- the master cylinder unit 1 and the second hydraulic pressure unit 3 are connected via a reservoir pipe 5B for the second hydraulic pressure unit 3 in which the reservoir pipe 5 and the reservoir pipe 5 are branched.
- the reservoir pipes 5A and 5B may be directly connected to the master cylinder unit 1 without branching the reservoir pipe 5.
- the first hydraulic unit 2 and the second hydraulic unit 3 are connected via a second primary pipe (connection liquid path) 6P and a second secondary pipe (connection liquid path) 6S.
- the second hydraulic unit 3 and each wheel cylinder W / C are connected via a wheel cylinder pipe (connection fluid path) 7FL, 7FR, 7RL, 7RR.
- the wheel cylinder pipes 7RL and 7RR are primary system connection liquid paths.
- the wheel cylinder pipes 7FL and 7FR are secondary system connection liquid paths.
- the master cylinder unit 1 has a brake pedal 8, an input rod 9, a reservoir tank 10, a master cylinder housing 11, a master cylinder 12, and a stroke sensor 13.
- the master cylinder unit 1 does not include a booster that boosts the brake operation force using the intake negative pressure of the engine or the like.
- the brake pedal 8 receives a driver's brake operation input.
- the input rod 9 is connected to the brake pedal 8.
- the reservoir tank 10 stores brake fluid at atmospheric pressure.
- the reservoir tank 10 has a supply port 14 and a supply port 15.
- the supply port 15 is connected to the reservoir pipe 5.
- the master cylinder housing 11 is a housing that houses (incorporates) the master cylinder 12 therein.
- the master cylinder housing 11 has a cylinder 16 for the master cylinder 12, a replenishment liquid path 17, and a supply liquid path 18 therein.
- One end of the replenishing liquid path 17 is connected to the cylinder 16.
- the other end of the replenishment liquid path 17 is connected to a replenishment port 19 that opens to the outer surface of the master cylinder housing 11.
- the supply port 19 is connected to the supply port 14 of the reservoir tank 10.
- One end of the supply liquid path 18 is connected to the cylinder 16.
- the other end of the supply liquid path 18 is connected to a supply port 20 that opens to the outer surface of the master cylinder housing 11.
- Supply port 20P is connected to primary pipe 4P.
- the supply port 20S is connected to the secondary pipe 4S.
- the master cylinder 12 is connected to the brake pedal 8 via the input rod 9, and generates a master cylinder hydraulic pressure in accordance with the operation of the brake pedal 8 by the driver.
- the master cylinder 12 has a piston 21 that moves in the axial direction in accordance with the operation of the brake pedal 8.
- the piston 21 is inside the cylinder 16 and defines a hydraulic chamber 22.
- the master cylinder 12 is a tandem type, and has, as a piston 21, a primary piston 21P pressed by the input rod 9 and a free piston type secondary piston 21S. Both pistons 21P and 21S are arranged in series. Both pistons 21P and 21S define a primary chamber 22P in the cylinder 16.
- the secondary piston 21S defines a secondary chamber 22S in the cylinder 16.
- Each hydraulic pressure chamber 22P, 22S replenishes brake fluid from the reservoir tank 10, and generates a master cylinder hydraulic pressure by the movement of the piston 21.
- the primary chamber 22P has a coil spring 23P as a return spring.
- the coil spring 23P is interposed between the pistons 21P and 21S.
- the secondary chamber 22S has a coil spring 23S as a return spring.
- the coil spring 23S is interposed between the bottom of the cylinder 16 and the piston 21S.
- Piston seals 24 and 25 are provided on the inner periphery of the cylinder 16.
- the piston seals 24 and 25 are a plurality of seal members that are in sliding contact with the pistons 21P and 21S and seal between the outer peripheral surfaces of the pistons 21P and 21S and the inner peripheral surface of the cylinder 16.
- Each piston seal is a well-known cup-shaped seal member (cup seal) having a lip portion on the inner diameter side.
- the first piston seal 24 allows the flow of brake fluid from the replenishment port 14 toward the primary chamber 22P and the secondary chamber 22S, and suppresses the flow of brake fluid in the reverse direction.
- the second piston seal 25 allows the flow of brake fluid toward the refill port 14 and suppresses the brake fluid from flowing out from the refill port 14.
- the stroke sensor 13 detects the movement amount (pedal stroke amount) of the primary piston 21P.
- the first hydraulic unit 2 includes a first hydraulic unit housing 26, a first motor 27, a first pump (first hydraulic pressure source) 28, a plurality of electromagnetic valves 29, a plurality of hydraulic pressure sensors 30, and the like. It has a control unit 31A.
- the first hydraulic unit housing 26 is a housing that houses (incorporates) valve bodies such as the first pump 28 and the plurality of electromagnetic valves 29 therein.
- the first hydraulic unit housing 26 has the above two systems (P system and S system) through which brake fluid flows.
- the two systems of circuits have a plurality of liquid paths.
- the plurality of liquid paths include a first connection liquid path (connection liquid path) 32, a first suction liquid path 33, a first discharge liquid path 34, a first reflux liquid path 35, a positive pressure liquid path (a positive pressure side first communication path). ) 36 and the positive pressure side second communication passage 37.
- the first hydraulic unit housing 26 also has a plurality of ports and an internal reservoir 38.
- the plurality of ports are a first input port 39, a first output port 40, and a positive pressure port (positive pressure side first communication path) 41.
- the first input port 39P is connected to the first primary pipe 4P.
- the first input port 39S is connected to the first secondary pipe 4S.
- the first output port 40P is connected to the second primary pipe 6P.
- the first output port 40S is connected to the second secondary pipe 6S.
- the positive pressure port 41 is connected to a positive pressure pipe (positive pressure side first communication path) 42.
- the internal reservoir 38 is a liquid reservoir capable of storing brake fluid.
- the internal reservoir 38 is connected to the reservoir pipe 5A.
- the first pump 28 sucks and discharges the brake fluid in the reservoir tank 10.
- the first pump 28 is, for example, a plunger pump having five plungers excellent in sound vibration performance and the like.
- the first motor 27 drives the first pump 28.
- the plurality of solenoid valves 29 and the like are solenoid valves that operate according to a control signal. In the plurality of solenoid valves 29 and the like, the valve body strokes in response to energization of the solenoid, and the opening and closing of the liquid path is switched (the liquid path is connected and disconnected).
- the plurality of electromagnetic valves 29 and the like generate a control hydraulic pressure by controlling the communication state of the circuit and adjusting the flow state of the brake fluid.
- the plurality of solenoid valves 29 and the like are a first shut-off valve 29, a first pressure regulating valve 43, a first communication valve 44, and a stroke valve 45.
- the first shut-off valve 29 and the first pressure regulating valve 43 are normally open proportional control valves that open in a non-energized state.
- the first communication valve 44 is a normally closed on / off valve that closes in a non-energized state.
- the stroke valve 45 is a normally open type on / off valve that closes in a non-energized state.
- the plurality of solenoid valves 29 and the like are in a non-energized state.
- the plurality of hydraulic pressure sensors 30 and the like are the first master cylinder hydraulic pressure sensor 30 and the first discharge pressure sensor 96.
- the first control unit 31A directly receives the detection signals of the stroke sensor 13, the first master cylinder hydraulic pressure sensor 30, and the first discharge pressure sensor 96.
- the first control unit 31A receives the detection signal of the wheel cylinder hydraulic pressure sensor 75 via the second control unit 31B and also receives information such as the vehicle speed via the CAN bus line (not shown).
- the first control unit 31A and the second control unit 31B perform communication via a communication line (which may be a CAN bus line).
- the first control unit 31A uses the received signals and information to open and close the plurality of electromagnetic valves 29 and the like installed in the first hydraulic unit housing 26 and rotate the first motor 27 based on a built-in program.
- the number ie, the discharge flow rate of the first pump 28) is controlled.
- One end of the first connection liquid path 32 is connected to the first input port 39.
- the other end of the first connection liquid path 32 is connected to the first output port 40.
- a first master cylinder hydraulic pressure sensor 30 is located at a position closer to the first input port 39S than the first shutoff valve 29S of the first connection fluid path 32S.
- one end of the positive pressure liquid path 36 is connected to this position.
- the other end of the positive pressure fluid path 36 is connected to the positive pressure port 41.
- the first master cylinder hydraulic pressure sensor 30 detects the master cylinder hydraulic pressure.
- One end of the first suction fluid path 33 is connected to the internal reservoir 38.
- the other end of the first suction fluid path 33 is connected to the first suction port 46 of the first pump 28.
- One end of the first discharge liquid passage 34 is connected to the first discharge port 47 of the first pump 28.
- the other end of the first discharge liquid path 34 branches into a P-system discharge liquid path 34P and an S-system discharge liquid path 34S.
- a first discharge pressure sensor 96 is provided in the first discharge liquid path 34. The first discharge pressure sensor 96 detects the discharge pressure of the first pump 28.
- Both the discharge liquid passages 34P and 34S are connected to a position closer to the first output port 40 than the first shutoff valve 29 of the first connection liquid passage 32.
- Both discharge liquid passages 34P, 34S have first communication valves 44P, 44S.
- the first reflux liquid path 35 is connected to the internal reservoir 38.
- the other end of the first reflux liquid path 35 is connected to the connection position of the first discharge liquid path 34 with both discharge liquid paths 34P and 34S.
- the first reflux liquid path 35 has a first pressure regulating valve 43.
- One end of the positive pressure side second communication passage 37 is connected to the positive pressure liquid passage 36.
- the other end of the positive pressure side second communication passage 37 is connected to the first reflux liquid passage 35.
- the positive pressure side second communication passage 37 has a stroke valve 45.
- the second hydraulic pressure unit 3 includes a second hydraulic pressure unit housing 48, a second motor 49, a second pump (second hydraulic pressure source) 50, a plurality of solenoid valves 51, a plurality of fluid pressure sensors 52, and the like, a stroke simulator. It has a unit 53 and a second control unit 31B.
- the second hydraulic unit housing 48 is a housing that houses (incorporates) valve bodies such as the second pump 50 and the plurality of electromagnetic valves 51 therein.
- the second hydraulic unit housing 48 has the above two systems (P system and S system) through which brake fluid flows.
- the two systems of circuits have a plurality of liquid paths.
- the plurality of liquid paths include a second connection liquid path (connection liquid path) 54, a second suction liquid path 55, a second discharge liquid path 56, a second reflux liquid path 57, a decompression liquid path 58, a replenishment liquid path 59, a back A pressure fluid passage (back pressure side first communication passage) 60, a first simulator fluid passage 61, and a second simulator fluid passage (back pressure side first communication passage) 62.
- the second hydraulic unit housing 48 has a plurality of ports and an internal reservoir 63.
- the plurality of ports are a second input port 64, a second output port 65, a supply port 66, and a back pressure port (back pressure side first communication path) 67.
- the second input port 64P is connected to the second primary pipe 6P.
- the second input port 64S is connected to the second secondary pipe 6S.
- the second output port 65 is connected to the wheel cylinder W / C.
- the supply port 66 is connected to a supply liquid path 68 of the stroke simulator 76.
- the back pressure port 67 is connected to a back pressure liquid path (back pressure side first communication path) 78b of the stroke simulator 76.
- the internal reservoir 63 is a liquid reservoir capable of storing brake fluid.
- the internal reservoir 63 is connected to the reservoir pipe 5B.
- the second pump 50 sucks and discharges the brake fluid in the reservoir tank 10.
- the second pump 50 is a plunger pump similar to the first pump 28.
- the second motor 49 drives the second pump 50.
- the plurality of solenoid valves 51 and the like are solenoid valves that operate according to a control signal. In the plurality of solenoid valves 51 and the like, the valve body strokes in response to energization of the solenoid, and the opening and closing of the liquid path is switched.
- the plurality of solenoid valves 51 and the like generate a control hydraulic pressure by controlling the communication state of the circuit and adjusting the flow state of the brake fluid.
- the plurality of solenoid valves 51 and the like include a second shut-off valve 51, a second pressure regulating valve 69, a second communication valve 70, a solenoid-in valve 71, a solenoid-out valve 72, a stroke simulator-in valve 73, and a stroke simulator out valve (stroke simulator valve). ) 74.
- the second shut-off valve 51, the second pressure regulating valve 69, and the solenoid-in valve 71 are normally open proportional control valves that open in a non-energized state.
- the second communication valve 70, the solenoid-out valve 72, the stroke simulator-in valve 73, and the stroke simulator-out valve 74 are normally closed on / off valves that close in a non-energized state. In FIG.
- the plurality of solenoid valves 51 and the like are in a non-energized state.
- the plurality of hydraulic pressure sensors 52 and the like are the second discharge pressure sensor 52 and the wheel cylinder hydraulic pressure sensor 75.
- the second control unit 31B directly receives detection signals from the stroke sensor 13, the second master cylinder hydraulic pressure sensor 52, and the wheel cylinder hydraulic pressure sensor 75.
- the second control unit 31B receives information such as the vehicle speed via a CAN bus line (not shown). Based on the built-in program, the second control unit 31B uses the received signals and information to open and close the plurality of electromagnetic valves 51 and the like installed in the second hydraulic unit housing 48 and to rotate the second motor 49. The number (that is, the discharge flow rate of the second pump 50) is controlled.
- the stroke simulator unit 53 is fixed to the second hydraulic unit housing 48.
- the stroke simulator unit 53 includes a stroke simulator 76, a positive pressure port (positive pressure side first communication path) 77, a positive pressure liquid path (positive pressure side first communication path) 78a, a replenishment liquid path 68, and a back pressure liquid path 78b.
- the stroke simulator 76 applies a reaction force and a stroke to the brake pedal 8 in accordance with the driver's brake operation.
- the stroke simulator 76 includes a cylinder 79, a piston 80, a positive pressure chamber 81, a back pressure chamber 82, and an elastic body 83 (a first spring 83a, a second spring 83b, and a bottomed damper 83c).
- the piston 80, the positive pressure chamber 81, the back pressure chamber 82, and the elastic body 83 are inside the cylinder 79.
- the piston 80 defines the inside of the cylinder 79 into a positive pressure chamber 81 and a back pressure chamber 82.
- the elastic body 83 biases the piston 80 in the direction in which the volume of the positive pressure chamber 81 is reduced.
- the elastic body 83 has a large spring constant in the order of the bottomed damper 83c, the second spring 83b, and the first spring 83a.
- a bottomed cylindrical retainer member 84 is interposed between the first spring 83a and the second spring 83b.
- the positive pressure chamber 81 is connected to the positive pressure liquid path 78a.
- the back pressure chamber 82 is connected to the back pressure port 67.
- the back pressure chamber 82 When the back pressure chamber 82 becomes negative pressure, the back pressure chamber 82 communicates with the supply port 66.
- brake fluid flows into the positive pressure chamber 81 from the secondary chamber 22S of the master cylinder 12 through the first secondary pipe 4S, the positive pressure pipe 42 and the positive pressure liquid passage 78a in accordance with the driver's brake operation, a pedal stroke is generated. At the same time, a braking operation reaction force is generated by the urging force of the elastic body 83.
- One end of the second connection liquid path 54 is connected to the second input port 64.
- the other end of the second connection liquid path 54P branches into a second connection liquid path 54c and a second connection liquid path 54d.
- the other end of the second connection liquid path 54S branches into a second connection liquid path 54a and a second connection liquid path 54b.
- the second connection liquid paths 54a to 54d are connected to the second output ports 65a to 65d.
- There is a second master cylinder hydraulic pressure sensor 52 at a position on the second input port 64S side of the second shutoff valve 51S in the second connection fluid path 54S.
- the second master cylinder hydraulic pressure sensor 52 detects the master cylinder hydraulic pressure.
- a bypass valve 85 has a check valve 86.
- the check valve 86 allows only the flow of brake fluid from the second input port 64 side toward the second output port 65 side.
- a solenoid-in valve 71 is provided in the second connection liquid paths 54a to 54d.
- a bypass valve 87 has a check valve 88.
- the check valve 88 allows only the flow of the brake fluid from the second output port 65 side to the second input port 64 side.
- One end of the second suction fluid path 55 is connected to the internal reservoir 63.
- the other end of the second suction fluid path 55 is connected to the second suction port 89 of the second pump 50.
- One end of the second discharge liquid path 56 is connected to the second discharge port 90 of the second pump 50.
- the other end of the second discharge liquid path 56 branches into a P-system discharge liquid path 56P and an S-system discharge liquid path 56S. Both discharge liquid paths 56P and 56S are connected to a position on the second output port 65 side of the second connection liquid path 54 with respect to the second shutoff valve 51.
- the two discharge fluid passages 56P and 56S have second communication valves 70P and 70S.
- One end of the second reflux liquid path 57 is connected to a connection position between the second discharge liquid path 56 and both discharge liquid paths 56P and 56S.
- the other end of the second reflux liquid path 57 is connected to the internal reservoir 63.
- the second reflux liquid passage 57 has a second pressure regulating valve 69.
- One end of the decompression liquid path 58 is connected to a position on the second output port 65 side of the solenoid-in valve 71 of the second connection liquid path 54.
- the other end of the decompression liquid path 58 is connected to the second reflux liquid path 57.
- the decompression liquid path 58 has a solenoid-out valve 72.
- One end of the replenishment liquid path 59 is connected to the replenishment port 66.
- the other end of the replenishing liquid path 59 is connected to a position closer to the internal reservoir 63 than the second pressure regulating valve 69 of the second reflux liquid path 57.
- One end of the back pressure fluid path 60 is connected to the back pressure port 67.
- the other end of the back pressure liquid path 60 is connected to a connection position between one end of the first simulator liquid path 61 and one end of the second simulator liquid path 62.
- the other end of the first simulator liquid path 61 is positioned on the second output port 65S side of the second shutoff valve 51S of the second connection liquid path 54S and on the second input port 64S side of the solenoid-in valves 71a and 71b. Connect with.
- the first simulator liquid passage 61 has a stroke simulator in valve 73.
- a bypass valve 91 has a check valve 92.
- the check valve 92 allows only the flow of the brake fluid from the back pressure fluid passage 60 side to the second connection fluid passage 54S side.
- the other end of the second simulator liquid passage 62 is connected to a position closer to the second pressure regulating valve 69 than a connection position of the second reflux liquid passage 57 to the replenishment liquid passage 59.
- the second simulator liquid passage 62 has a stroke simulator out valve 74.
- a bypass valve 93 has a check valve 94.
- the check valve 94 allows only the flow of brake fluid from the second reflux fluid passage 57 side to the back pressure fluid passage 60 side.
- FIG. 2 is a flowchart showing the flow of the boost control process of the second control unit 31B. This process is repeatedly executed at a predetermined calculation cycle.
- step S1 a pedal stroke amount is input.
- step S2 it is determined whether the pedal stroke amount is greater than or equal to the boost start stroke amount. If yes, go to step S3, if no, go to return.
- the boost start stroke amount is the minimum stroke amount that requires boost control.
- step S3 the second shut-off valve 51 is actuated in the valve closing direction to shut off the brake fluid flow between the master cylinder 12 and the second hydraulic pressure unit 3.
- the second communication valve 70 is operated in the valve opening direction so that the second connection liquid path 54P of the P system communicates with the second connection liquid path 54S of the S system.
- the stroke simulator out valve 74 is operated in the valve opening direction so that the brake fluid can be discharged from the back pressure chamber 82 of the stroke simulator 76 to the second connection fluid passage 54S, and the stroke simulator 76 is caused to function.
- step S4 a target wheel cylinder hydraulic pressure for obtaining a predetermined boost ratio is calculated based on the pedal stroke amount.
- the second motor 49 is operated at a predetermined rotational speed.
- step S6 the pedal stroke amount is input.
- step S7 it is determined whether the pedal stroke amount is smaller than the boost start stroke amount. If YES, the process proceeds to step S8, and if NO, the process returns to step S4.
- step S8 the second shut-off valve 51 and the second pressure regulating valve 69 are opened, the second communication valve 70 and the stroke simulator out valve 74 are closed, and the second motor 49 is stopped.
- FIG. 3 is a flowchart showing the flow of the boost control process of the first control unit 31A. This process is repeatedly executed at a predetermined calculation cycle.
- step S11 the state of the second hydraulic unit 3 is input.
- step S12 based on the state of the second hydraulic pressure unit 3, it is determined whether or not the stroke simulator out valve 74 is in a state where the valve cannot be opened. If YES, the process proceeds to step S13, and if NO, the process proceeds to return.
- step S13 boost control by the first hydraulic unit 2 is executed.
- FIG. 4 shows the flow of processing.
- step S21 the pedal stroke amount is input.
- step S22 it is determined whether the pedal stroke amount is greater than or equal to the boost start stroke amount. If YES, the process proceeds to step S23, and if NO, the process proceeds to return.
- the boost start stroke amount is the minimum stroke amount that requires boost control.
- step S23 the first shut-off valve 29 is actuated in the valve closing direction to shut off the brake fluid flow between the master cylinder 12 and the first hydraulic unit 2. Further, the first communication valve 44 is operated in the valve opening direction so that the first connection liquid path 32P of the P system communicates with the first connection liquid path 32S of the S system. Further, the stroke valve 45 is operated in the valve opening direction, and the secondary chamber 22S and the internal reservoir 38 are communicated.
- step S24 a target wheel cylinder hydraulic pressure for obtaining a predetermined boost ratio is calculated based on the pedal stroke amount.
- step S25 the first motor 27 is operated at a predetermined rotational speed. Further, the first pressure regulating valve 43 is proportionally controlled so that the target wheel cylinder hydraulic pressure is obtained. Further, the stroke valve 45 is controlled to be on / off (open / close). At this time, the on time and off time of the stroke valve 45 are adjusted according to the pedal stroke amount or the master cylinder hydraulic pressure.
- step S26 a pedal stroke amount is input.
- step S27 it is determined whether the pedal stroke amount is smaller than the boost start stroke amount. If YES, the process proceeds to step S28, and if NO, the process returns to step S24.
- step S28 the first shutoff valve 29 and the first pressure regulating valve 43 are opened, the first communication valve 44 and the stroke valve 45 are closed, and the first motor 27 is stopped.
- the positive pressure chamber 81 of the stroke simulator 76 is connected to one end, and the suction side (first reflux liquid path 35) of the first pump 28 is connected to the other end.
- the brake fluid pressure generated in the master cylinder 12 can be discharged from the positive pressure side second communication passage 37 to the internal reservoir 38 by operating the stroke valve 45 in the valve opening direction. Can be absorbed in the internal reservoir 38. Therefore, even if the stroke simulator out valve 74 cannot be opened, the pedal stroke can be secured and the brake-by-wire control can be continued. Further, since the stroke simulator is not required to be redundant, it is possible to suppress the increase in size and complexity of the brake system BS, and to improve the vehicle mountability and the collision safety.
- the brake system BS includes a first control unit 31A that opens and closes the stroke valve 45, and a second control unit 31B that opens and closes the stroke simulator out valve 74.
- control unit that controls the opening / closing operation of the stroke valve 45 is a control unit (second control unit 31B) that is different from the control unit (first control unit 31A) that controls the opening / closing operation of the stroke simulator out valve 74. .
- second control unit 31B the stroke valve 45 can be opened and closed, and the pedal stroke can be secured.
- the stroke simulator out valve 74 can be opened, and a pedal stroke can be secured. That is, even if a power failure occurs in one of the control units, the brake stroke can be maintained and the brake-by-wire control can be continued.
- the first control unit 31A opens and closes the stroke valve 45 by on / off control when the stroke simulator out valve 74 becomes impossible to open, a desired braking operation reaction force according to the pedal stroke amount and the master cylinder hydraulic pressure. Can be generated. As a result, a good pedal feeling can be realized.
- the stroke simulator unit 53 is provided integrally with the second hydraulic unit 3, the stroke simulator out valve 74 is installed in the second hydraulic unit 3, and the stroke valve 45 is installed in the first hydraulic unit 2. ing.
- the stroke simulator out valve 74 cannot be opened due to the power failure of the second hydraulic pressure unit 3, the brake fluid generated in the master cylinder 12 can be absorbed by the reservoir tank 10. Therefore, a pedal stroke is possible. Further, redundancy with respect to power failure can be realized only by the first control unit 31A and the second control unit 31B mounted on the first hydraulic unit 2 and the second hydraulic unit 3.
- the stroke valve 45 is installed in the master cylinder unit 1, an additional control unit is required to operate the stroke valve 45, which increases costs. In addition, the size and complexity of the master cylinder are increased.
- the stroke valve 45 is installed in the first hydraulic pressure unit 2, an increase in cost can be suppressed. In addition, since the enlargement and complexity of the area around the master cylinder can be suppressed, vehicle mountability and collision safety can be improved.
- One end of the positive pressure side second communication passage 37 is connected to the positive pressure chamber 81 of the stroke simulator 76, and the suction side and the other end of the first pump 28 are connected.
- one end of the positive pressure side second communication path 37 is connected to the back pressure chamber 82 side (the back pressure liquid path 60 or the back pressure liquid path 78b)
- the first hydraulic pressure unit 2 and the second hydraulic pressure unit 3 are connected. Since it is necessary to add piping between the two, the liquid path configuration becomes complicated.
- the positive pressure side second communication passage 37 is connected to the positive pressure chamber 81 side (positive pressure pipe 42), it is possible to suppress complication of the liquid path configuration.
- FIG. 5 is a diagram illustrating a schematic configuration of the brake system BS according to the second embodiment together with a hydraulic circuit.
- the brake system BS of the second embodiment is different from the first embodiment in that the positive pressure side second communication passage 37 and the stroke valve 45 are installed in the master cylinder unit 1, and that the master cylinder unit 1 has a third control unit 31C. Is different.
- One end of the positive pressure side second communication passage 37 is connected to the supply liquid passage 18S of the S system.
- the other end of the positive pressure side second communication passage 37 is connected to the S system replenishment liquid passage 17S.
- the third control unit 31C controls the opening / closing operation of the stroke valve 45.
- the operation of the stroke valve 45 is in accordance with the first embodiment.
- the brake system BS of the second embodiment stores the brake fluid pressure generated in the master cylinder 12 even when the power failure occurs in the second control unit 31B or when the stroke simulator out valve 74 is closed. Can be absorbed in tank 10. Therefore, there exists an effect similar to Embodiment 1.
- FIG. 6 is a diagram illustrating a schematic configuration of the brake system BS according to the third embodiment together with a hydraulic circuit.
- the stroke simulator unit 53 is fixed to the first hydraulic unit 2, and the stroke simulator in valve 73 and the stroke simulator out valve 74 are installed in the first hydraulic unit 2.
- the first hydraulic unit housing 26 has a replenishment port 66 and a back pressure port 67.
- the positive pressure port 41 is connected to the positive pressure liquid path 78a.
- the replenishment port 66 is connected to the replenishment liquid path 68.
- the back pressure port 67 is connected to the back pressure liquid path 78b.
- the first hydraulic unit housing 26 has a replenishing fluid path 59 and a back pressure fluid path 60.
- One end of the replenishment liquid path 59 is connected to the replenishment port 66.
- the other end of the replenishing liquid path 59 is connected to a position closer to the internal reservoir 63 than the first pressure regulating valve 43 of the first reflux liquid path 35.
- One end of the back pressure fluid path 60 is connected to the back pressure port 67.
- the other end of the back pressure liquid path 60 is connected to a connection position between one end of the first simulator liquid path 61 and one end of the second simulator liquid path 62.
- the other end of the first simulator liquid path 61 is a position between the first shutoff valve 29S of the first connection liquid path 32S and the first output port 40S, and the connection position with the discharge liquid path 34S of the S system. Connecting.
- the other end of the second simulator liquid path 62 is connected to a position closer to the first pressure regulating valve 43 than a connection position of the first reflux liquid path 35 to the replenishment liquid path 59.
- the second control unit 31B controls the opening / closing operation of the stroke simulator in valve 73 and the stroke simulator out valve 74.
- the operations of the stroke simulator in valve 73 and the stroke simulator out valve 74 are in accordance with the first embodiment.
- the brake system BS stores the brake fluid pressure generated in the master cylinder 12 even when a power failure occurs in the first control unit 31A or when the stroke simulator out valve 74 is closed. Can be absorbed in tank 10. Therefore, there exists an effect similar to Embodiment 1.
- FIG. 7 is a diagram showing a schematic configuration of the brake system BS of Embodiment 4 together with a hydraulic circuit.
- the brake system BS of the fourth embodiment is different from the third embodiment in that the positive pressure side second communication passage 37 and the stroke valve 45 are installed in the second hydraulic pressure unit 3.
- One end of the positive pressure side second communication passage 37 is connected to the internal reservoir 63.
- the other end of the positive pressure side second communication passage 37 is connected to a position closer to the second input port 64S than the second shutoff valve 51S of the second connection liquid passage 54S of the S system.
- the second control unit 31B controls the opening / closing operation of the stroke valve 45.
- the operation of the stroke valve 45 is in accordance with the first embodiment.
- the stroke simulator unit 53 is provided integrally with the first hydraulic unit 2, the stroke simulator out valve 74 is installed in the first hydraulic unit 2, and the stroke valve 45 is Installed in the second hydraulic unit 3.
- the brake fluid generated in the master cylinder 12 can be absorbed by the internal reservoir 63 even when a power failure occurs in the first control unit 31A or when the stroke simulator out valve 74 is closed. Therefore, there exists an effect similar to Embodiment 1.
- FIG. 8 is a diagram illustrating a schematic configuration of a brake system BS according to the fifth embodiment together with a hydraulic circuit.
- the brake system BS of the fifth embodiment is different from the third embodiment in that the stroke simulator in valve 73 and the stroke simulator out valve 74 are installed in the second hydraulic pressure unit 3 as in the first embodiment.
- One end of the back pressure pipe 97 is connected to the back pressure port 67.
- the other end of the back pressure pipe 97 is connected to the back pressure liquid path 78b.
- the brake system BS of the fifth embodiment stores the brake hydraulic pressure generated in the master cylinder 12 even when the power failure occurs in the second control unit 31B or when the stroke simulator out valve 74 is closed. Can be absorbed in tank 10. Therefore, there exists an effect similar to Embodiment 1.
- FIG. 9 is a diagram illustrating a schematic configuration of a brake system BS according to the sixth embodiment together with a hydraulic circuit.
- the brake system BS of the sixth embodiment is different from the fifth embodiment in that the positive pressure side second communication passage 37 and the stroke valve 45 are installed in the first hydraulic pressure unit 2 as in the first embodiment.
- the stroke simulator unit 53 is provided integrally with the first hydraulic unit 2
- the stroke simulator out valve 74 is installed in the second hydraulic unit 3
- the stroke valve 45 is Installed in the first hydraulic unit 2.
- FIG. 10 is a diagram illustrating a schematic configuration of a brake system BS according to the seventh embodiment together with a hydraulic circuit.
- the stroke simulator in valve 73 and the stroke simulator out valve 74 are installed in the master cylinder unit 1
- the stroke simulator unit 53 is accommodated in the master cylinder housing 11
- the difference from Embodiment 1 is that the master cylinder unit 1 has a third control unit 31C, and the positive pressure side second communication passage 37 and the stroke valve 45 are installed in the second hydraulic pressure unit 3.
- the master cylinder housing 11 has a back pressure port 98.
- the back pressure port 98 is connected to one end of the back pressure pipe 97.
- the other end of the back pressure pipe 97 is connected to the back pressure port 67.
- the master cylinder housing 11 has a positive pressure liquid path 78a, a back pressure liquid path 78b, a first simulator liquid path 61, and a second simulator liquid path 62.
- One end of the positive pressure liquid path 78a is connected to the supply liquid path 18S of the S system.
- the other end of the positive pressure liquid path 78 a is connected to the positive pressure chamber 81.
- One end of the back pressure liquid path 78 b is connected to a connection position between one end of the first simulator liquid path 61 and one end of the second simulator liquid path 62.
- the other end of the back pressure liquid passage 78b is connected to the back pressure chamber 82.
- the other end of the first simulator liquid path 61 is connected to the back pressure port 98.
- the other end of the second simulator liquid path 62 is connected to the S system replenishment liquid path 17S.
- the third control unit 31C controls the opening / closing operation of the stroke simulator in valve 73 and the stroke simulator out valve 74.
- the operations of the stroke simulator in valve 73 and the stroke simulator out valve 74 are in accordance with the first embodiment.
- One end of the positive pressure side second communication passage 37 is connected to the internal reservoir 38.
- the other end of the positive pressure side second communication passage 37 is connected to a position between the first master cylinder hydraulic pressure sensor 30 and the first shutoff valve 29S in the first connection fluid passage 32S of the S system.
- the first control unit 31A controls the opening / closing operation of the stroke valve 45.
- the operation of the stroke valve 45 is in accordance with the first embodiment.
- the brake fluid generated in the master cylinder 12 is supplied to the internal reservoir 38 even when a power failure occurs in the master cylinder unit 1 or when the stroke simulator out valve 74 is closed. Can be absorbed. Therefore, there exists an effect similar to Embodiment 1.
- FIG. 11 is a diagram illustrating a schematic configuration of a brake system BS according to the eighth embodiment together with a hydraulic circuit.
- the brake system BS of the seventh embodiment is different from the seventh embodiment in that the positive pressure side second communication passage 37 and the stroke valve 45 are installed in the second hydraulic pressure unit 3 as in the fourth embodiment.
- the second hydraulic unit housing 48 has a positive pressure port 99.
- One end of the positive pressure side second communication passage 37 is connected to the internal reservoir 63.
- the other end of the positive pressure side second communication passage 37 is connected to the positive pressure port 99.
- the second control unit 31B controls the opening / closing operation of the stroke valve 45.
- the operation of the stroke valve 45 is in accordance with the first embodiment.
- the master cylinder housing 11 has a positive pressure port 101 and a positive pressure liquid path 102.
- the positive pressure port 101 is connected to the other end of the positive pressure pipe 100 and one end of the positive pressure liquid path 102.
- the other end of the positive pressure liquid path 102 is connected to a position closer to the supply port 20P than the positive pressure liquid path 78a of the S system supply liquid path 18S.
- the brake fluid generated in the master cylinder 12 is supplied to the internal reservoir 63 even when the power failure occurs in the master cylinder unit 1 or the stroke simulator out valve 74 is closed. Can be absorbed. Therefore, there exists an effect similar to Embodiment 1.
- FIG. 12 is a diagram illustrating a schematic configuration of a brake system BS according to the ninth embodiment together with a hydraulic circuit.
- the brake system BS according to the ninth embodiment is similar to the second embodiment in that the positive pressure side second communication passage 37 and the stroke valve 45 are installed in the master cylinder unit 1, and the stroke simulator in valve 73 and the stroke simulator out valve. 74 differs from the seventh embodiment in that it is installed in the first hydraulic unit 2 as in the third embodiment.
- One end of the positive pressure side second communication passage 37 is connected to the supply liquid passage 18S of the S system.
- the other end of the positive pressure side second communication path 37 is connected to a positive pressure liquid path 78a.
- the back pressure liquid path 78 b is connected to one end of the back pressure pipe 97.
- the brake system BS stores the brake fluid pressure generated in the master cylinder 12 in the reservoir even when a power failure occurs in the second control unit 31B or when the stroke simulator out valve 74 is closed. Can be absorbed in tank 10. Therefore, there exists an effect similar to Embodiment 1.
- FIG. 13 is a diagram illustrating a schematic configuration of the brake system BS according to the tenth embodiment together with a hydraulic circuit.
- the brake system BS of the tenth embodiment is different from the ninth embodiment in that the positive pressure side second communication passage 37 and the stroke valve 45 are installed in the second hydraulic pressure unit 3 as in the fourth embodiment.
- the stroke simulator unit 53 is provided integrally with the master cylinder unit 1
- the stroke simulator out valve 74 is installed in the first hydraulic unit 2
- the stroke valve 45 is installed in the second hydraulic unit 3. Is installed.
- the brake fluid generated in the master cylinder 12 can be absorbed by the internal reservoir 63 even when a power failure occurs in the first control unit 31A or when the stroke simulator out valve 74 is closed. Therefore, there exists an effect similar to Embodiment 1.
- FIG. 14 is a diagram illustrating a schematic configuration of the brake system BS according to the eleventh embodiment together with a hydraulic circuit.
- the brake system BS of the eleventh embodiment is different from the ninth embodiment in that the stroke simulator in valve 73 and the stroke simulator out valve 74 are installed in the second hydraulic pressure unit 3 as in the first embodiment.
- the back pressure port 67 and the back pressure liquid channel 78b are connected by a back pressure pipe 97 as in the fifth embodiment.
- the brake system BS of the eleventh embodiment stores the brake fluid pressure generated in the master cylinder 12 in the reservoir even when the power failure occurs in the second control unit 31B or when the stroke simulator out valve 74 is closed. Can be absorbed in tank 10. Therefore, there exists an effect similar to Embodiment 1.
- FIG. 15 is a diagram showing a schematic configuration of a brake system BS of Embodiment 12 together with a hydraulic circuit.
- the brake system BS of the twelfth embodiment is different from the eleventh embodiment in that the positive pressure side second communication passage 37 and the stroke valve 45 are installed in the first hydraulic pressure unit 2 as in the seventh embodiment.
- the stroke simulator unit 53 is provided integrally with the master cylinder unit 1
- the stroke simulator out valve 74 is installed in the second hydraulic unit 3
- the stroke valve 45 is the first valve.
- Brake system installed in hydraulic unit 2.
- FIG. 16 is a diagram illustrating a schematic configuration of a brake system BS according to the thirteenth embodiment together with a hydraulic circuit.
- the positive pressure side second communication passage 37 and the stroke valve 45 are installed in the stroke simulator housing 103, and the stroke simulator unit 53 is housed in the stroke simulator housing 103.
- the stroke simulator housing 103 has a positive pressure port 104, a supply port 105, and a back pressure port.
- the positive pressure port 104 is connected to the positive pressure liquid path 78a.
- the supply port 105 is connected to the supply liquid path 68.
- the back pressure port 106 is connected to the back pressure liquid path 78b.
- the stroke simulator housing 103 has a fourth control unit 31D.
- the fourth control unit 31D controls the opening / closing operation of the stroke valve 45.
- the operation of the stroke valve 45 is in accordance with the first embodiment.
- the positive pressure port 104 and the positive pressure port 41 are connected via a positive pressure pipe 107.
- the supply port 105 and the supply port 66 are connected via a supply pipe 108.
- the back pressure port 106 and the back pressure port 67 are connected via a back pressure pipe 109.
- the brake system BS of the thirteenth embodiment uses the brake fluid pressure generated in the master cylinder 12 even if the power failure occurs in the first control unit 31A or the stroke simulator out valve 74 is closed. Can be absorbed by reservoir 38. Therefore, there exists an effect similar to Embodiment 1.
- FIG. 17 is a diagram illustrating a schematic configuration of a brake system BS according to the fourteenth embodiment together with a hydraulic circuit.
- the brake system BS of the fourteenth embodiment is different from the thirteenth embodiment in that the stroke simulator in valve 73 and the stroke simulator out valve 74 are installed in the second hydraulic pressure unit 3 as in the first embodiment.
- the brake hydraulic pressure generated in the master cylinder 12 is internally stored. Can be absorbed by reservoir 38. Therefore, there exists an effect similar to Embodiment 1.
- FIG. 18 is a diagram illustrating a schematic configuration of a brake system BS according to the fifteenth embodiment together with a hydraulic circuit.
- the positive pressure side second communication passage 37 and the stroke valve 45 are installed in the first hydraulic pressure unit 2 as in the sixth embodiment, the stroke simulator in valve 73 and the stroke simulator.
- the difference from Embodiment 14 is that the out valve 74 is installed in the stroke simulator housing 103.
- the back pressure liquid path 78 b is connected to a connection position between one end of the first simulator liquid path 61 and one end of the second simulator liquid path 62.
- the other end of the first simulator liquid path 61 is connected to the back pressure port 106.
- the other end of the second simulator liquid path 62 is connected to the replenishment liquid path 68.
- the fourth control unit 31D controls the opening / closing operation of the stroke simulator in valve 73 and the stroke simulator out valve 74.
- the operations of the stroke simulator in valve 73 and the stroke simulator out valve 74 are in accordance with the first embodiment.
- the brake system BS of the fifteenth embodiment uses the brake fluid pressure generated in the master cylinder 12 even if the power failure occurs in the fourth control unit 31D or the stroke simulator out valve 74 is closed. Can be absorbed by reservoir 38. Therefore, there exists an effect similar to Embodiment 1.
- FIG. 19 is a diagram illustrating a schematic configuration of a brake system BS according to the sixteenth embodiment together with a hydraulic circuit.
- the brake system BS of the sixteenth embodiment is different from the fifteenth embodiment in that the positive pressure side second communication passage 37 and the stroke valve 45 are installed in the second hydraulic pressure unit 3 as in the fourth embodiment.
- the brake fluid pressure generated in the master cylinder 12 is internally stored even when a power failure occurs in the fourth control unit 31D or when the stroke simulator out valve 74 is closed. Can be absorbed by reservoir 63. Therefore, there exists an effect similar to Embodiment 1.
- FIG. 20 is a diagram showing a schematic configuration of a brake system BS of Embodiment 17 together with a hydraulic circuit.
- the brake system BS of the seventeenth embodiment is different from the first embodiment in that a back pressure side second communication path 110 is provided instead of the positive pressure side second communication path 37.
- the first hydraulic unit housing 26 has a back pressure port 111.
- One end of the back pressure side second communication passage 110 is connected to the first reflux liquid passage 35.
- the other end of the back pressure side second communication passage 110 is connected to the back pressure port 111.
- the back pressure side second communication passage 110 has a stroke valve 45. The operation of the stroke valve 45 is in accordance with the first embodiment.
- the second hydraulic unit housing 48 has a back pressure port 112 and a back pressure fluid path 113.
- the back pressure port 111 and the back pressure port 112 are connected via a back pressure pipe 114.
- One end of the back pressure liquid passage 113 is connected to the back pressure port 112.
- the other end of the back pressure liquid path 113 is connected to the back pressure liquid path 60.
- the back pressure chamber 82 of the stroke simulator 76 is connected to one end, and the back pressure side second communication path is connected to the suction side (first reflux liquid path 35) and the other end of the second pump 50. 110 and a stroke valve 45 provided in the back pressure side second communication passage 110.
- the back pressure chamber 82 is operated by operating the stroke valve 45 in the valve opening direction.
- the brake fluid pressure can be discharged from the back pressure fluid passage 113, the back pressure pipe 114, and the back pressure side second communication passage 110 to the internal reservoir 38 and absorbed by the internal reservoir 38. Therefore, there exists an effect similar to Embodiment 1. Further, since the stroke simulator 76 functions even when the stroke simulator out valve 74 cannot be opened, a desired brake operation reaction force can be generated. As a result, a good pedal feeling can be realized.
- FIG. 21 is a diagram illustrating a schematic configuration of a brake system BS according to the eighteenth embodiment together with a hydraulic circuit.
- the brake system BS of the eighteenth embodiment is different from the second embodiment in that a back pressure side second communication path 110 is provided instead of the positive pressure side second communication path 37.
- the master cylinder housing 11 has a back pressure port 111.
- One end of the back pressure side second communication path 110 is connected to the S-system replenishment liquid path 17S.
- the other end of the back pressure side second communication passage 110 is connected to the back pressure port 111.
- the back pressure side second communication passage 110 has a stroke valve 45.
- the back pressure port 111 is connected to the back pressure port 112 via the back pressure pipe 114.
- the back pressure port 112 is connected to the back pressure liquid path 60 via the back pressure liquid path 113.
- the brake fluid pressure in the back pressure chamber 82 is stored in the reservoir tank even when the power failure occurs in the fourth control unit 31D or the stroke simulator out valve 74 is closed. 10 can absorb. Therefore, the same effects as those of the seventeenth embodiment are achieved.
- FIG. 22 is a diagram illustrating a schematic configuration of a brake system BS according to the nineteenth embodiment together with a hydraulic circuit.
- the brake system BS of the nineteenth embodiment is different from the third embodiment in that it includes a back pressure side second communication path 110 instead of the positive pressure side second communication path 37.
- the master cylinder housing 11 has a back pressure port 111.
- One end of the back pressure side second communication path 110 is connected to the S-system replenishment liquid path 17S.
- the other end of the back pressure side second communication passage 110 is connected to the back pressure port 111.
- the back pressure side second communication passage 110 has a stroke valve 45.
- the back pressure port 111 is connected to the back pressure port 112 via the back pressure pipe 114.
- the back pressure port 112 is connected to the back pressure liquid path 60 via the back pressure liquid path 113.
- the brake system BS according to the nineteenth embodiment can reduce the brake fluid pressure in the back pressure chamber 82 to the reservoir tank even when a power failure occurs in the first control unit 31A or when the stroke simulator out valve 74 is closed. 10 can absorb. Therefore, the same effects as those of the seventeenth embodiment are achieved.
- FIG. 23 is a diagram illustrating a schematic configuration of a brake system BS according to the twentieth embodiment together with a hydraulic circuit.
- the brake system BS of the twentieth embodiment is different from the fourth embodiment in that a back pressure side second communication path 110 is provided instead of the positive pressure side second communication path 37.
- the second hydraulic unit housing 48 has a back pressure port 111.
- One end of the back pressure side second communication path 110 is connected to the S-system replenishment liquid path 17S.
- the other end of the back pressure side second communication passage 110 is connected to the back pressure port 111.
- the back pressure side second communication passage 110 has a stroke valve 45.
- the first hydraulic unit housing 26 has a back pressure port 112 and a back pressure fluid path 113.
- the back pressure port 112 is connected to the back pressure port 111 via the back pressure pipe 114.
- One end of the back pressure liquid passage 113 is connected to the back pressure port 112.
- the other end of the back pressure port 113 is connected to the back pressure liquid path 60.
- the brake fluid pressure in the back pressure chamber 82 is stored in the internal reservoir even when the power failure occurs in the second control unit 31B or the stroke simulator out valve 74 is closed. 38 can be absorbed. Therefore, the same effects as those of the seventeenth embodiment are achieved.
- FIG. 24 is a diagram illustrating a schematic configuration of a brake system BS according to the twenty-first embodiment together with a hydraulic circuit.
- the brake system BS of the twenty-first embodiment is different from the fifth embodiment in that a back pressure side second communication path 110 is provided instead of the positive pressure side second communication path 37.
- the master cylinder housing 11 has a back pressure port 111.
- One end of the back pressure side second communication path 110 is connected to the S-system replenishment liquid path 17S.
- the other end of the back pressure side second communication passage 110 is connected to the back pressure port 111.
- the back pressure side second communication passage 110 has a stroke valve 45.
- the first hydraulic unit housing 26 has a back pressure port 112 and a back pressure fluid path 113.
- the back pressure port 112 is connected to the back pressure port 111 via the back pressure pipe 114.
- One end of the back pressure liquid passage 113 is connected to the back pressure port 112.
- the other end of the back pressure liquid passage 113 is connected to the back pressure liquid passage 78c of the stroke simulator 76.
- the back pressure liquid passage 78c is connected to the back pressure chamber 82.
- FIG. 25 is a diagram illustrating a schematic configuration of a brake system BS according to the twenty-second embodiment together with a hydraulic circuit.
- the brake system BS of the twenty-second embodiment is different from the sixth embodiment in that a back pressure-side second communication path 110 is provided instead of the positive pressure-side second communication path 37.
- the first hydraulic unit housing 26 has a back pressure port 67a.
- One end of the back pressure side second communication passage 110 is connected to the back pressure port 67a.
- the other end of the back pressure side second communication passage 110 is connected to the first reflux liquid passage 35.
- the back pressure side second communication passage 110 has a stroke valve 45.
- the back pressure port 67a is connected to the back pressure liquid path 78c of the stroke simulator 76.
- the back pressure liquid passage 78c is connected to the back pressure chamber 82.
- the brake fluid pressure in the back pressure chamber 82 is stored in the internal reservoir even when the power failure occurs in the second control unit 31B or the stroke simulator out valve 74 is closed. 38 can be absorbed. Therefore, the same effects as those of the seventeenth embodiment are achieved.
- FIG. 26 is a diagram illustrating a schematic configuration of a brake system BS according to the twenty-third embodiment together with a hydraulic circuit.
- the brake system BS according to the twenty-third embodiment is different from the seventh embodiment in that a back pressure-side second communication path 110 is provided instead of the positive pressure-side second communication path 37.
- the first hydraulic unit housing 26 has a back pressure port 111.
- One end of the back pressure side second communication passage 110 is connected to the internal reservoir 38.
- the other end of the back pressure side second communication passage 110 is connected to the back pressure port 111.
- the back pressure side second communication passage 110 has a stroke valve 45.
- the master cylinder housing 11 has a back pressure port 115 and a back pressure liquid path 117.
- the back pressure port 115 is connected to the back pressure port 111 via the back pressure pipe 116.
- One end of the back pressure fluid path 117 is connected to the back pressure port 115.
- the other end of the back pressure liquid path 117 is connected to a connection position between one end of the first simulator liquid path 61 and one end of the second simulator liquid path 62.
- FIG. 27 is a diagram illustrating a schematic configuration of a brake system BS according to the twenty-fourth embodiment together with a hydraulic circuit.
- the brake system BS of the twenty-fourth embodiment is different from the eighth embodiment in that a back pressure-side second communication passage 110 is provided instead of the positive pressure-side second communication passage 37.
- the second hydraulic unit housing 48 has a back pressure port 111.
- One end of the back pressure side second communication passage 110 is connected to the internal reservoir 63.
- the other end of the back pressure side second communication passage 110 is connected to the back pressure port 111.
- the back pressure side second communication passage 110 has a stroke valve 45.
- the master cylinder housing 11 has a back pressure port 115 and a back pressure liquid path 117.
- the back pressure port 115 is connected to the back pressure port 111 via the back pressure pipe 116.
- One end of the back pressure fluid path 117 is connected to the back pressure port 115.
- the other end of the back pressure port 117 is connected to a connection position between one end of the first simulator liquid passage 61 and one end of the second simulator liquid passage 62.
- the brake fluid pressure in the back pressure chamber 82 is supplied to the internal reservoir 63 even when a power failure occurs in the master cylinder unit 1 or when the stroke simulator out valve 74 is closed. Can be absorbed. Therefore, the same effects as those of the seventeenth embodiment are achieved.
- FIG. 28 is a diagram showing a schematic configuration of a brake system BS of Embodiment 25 together with a hydraulic circuit.
- the brake system BS of the twenty-fifth embodiment is different from the ninth embodiment in that a back pressure-side second communication passage 110 is provided instead of the positive pressure-side second communication passage 37.
- One end of the back pressure side second communication path 110 is connected to the S-system replenishment liquid path 17S.
- the other end of the back pressure side second communication passage 110 is connected to the back pressure chamber 82.
- the back pressure side second communication passage 110 has a stroke valve 45.
- the brake fluid pressure in the back pressure chamber 82 is stored in the reservoir tank. 10 can absorb. Therefore, the same effects as those of the seventeenth embodiment are achieved.
- FIG. 29 is a diagram showing a schematic configuration of a brake system BS of Embodiment 26 together with a hydraulic circuit.
- the brake system BS of the twenty-sixth embodiment is different from the tenth embodiment in that a back pressure side second communication path 110 is provided instead of the positive pressure side second communication path 37.
- the second hydraulic unit housing 48 has a back pressure port 111.
- One end of the back pressure side second communication passage 110 is connected to the internal reservoir 63.
- the other end of the back pressure side second communication passage 110 is connected to the back pressure port 111.
- the back pressure side second communication passage 110 has a stroke valve 45.
- the first hydraulic unit housing 26 has a back pressure port 112 and a back pressure fluid path 113.
- the back pressure port 112 is connected to the back pressure port 111 via the back pressure pipe 114.
- One end of the back pressure liquid passage 113 is connected to the back pressure port 112.
- the other end of the back pressure liquid path 113 is connected to the back pressure liquid path 60.
- the brake fluid pressure in the back pressure chamber 82 is stored in the internal reservoir even when a power failure occurs in the first control unit 31A or the stroke simulator out valve 74 is closed. Can be absorbed with 63. Therefore, the same effects as those of the seventeenth embodiment are achieved.
- FIG. 30 is a diagram showing a schematic configuration of a brake system BS of Embodiment 27 together with a hydraulic circuit.
- the brake system BS of the twenty-seventh embodiment is different from the eleventh embodiment in that a back pressure side second communication path 110 is provided instead of the positive pressure side second communication path 37.
- One end of the back pressure side second communication path 110 is connected to the S-system replenishment liquid path 17S.
- the other end of the back pressure side second communication passage 110 is connected to the back pressure chamber 82.
- the back pressure side second communication passage 110 has a stroke valve 45.
- the brake fluid pressure in the back pressure chamber 82 is stored in the reservoir tank even when the power failure occurs in the second control unit 31B or when the stroke simulator out valve 74 is closed. 10 can absorb. Therefore, the same effects as those of the seventeenth embodiment are achieved.
- FIG. 31 is a diagram showing a schematic configuration of a brake system BS of Embodiment 28 together with a hydraulic circuit.
- the brake system BS of the twenty-eighth embodiment is different from the twelfth embodiment in that a back pressure side second communication passage 110 is provided instead of the positive pressure side second communication passage 37.
- the first hydraulic unit housing 26 has a back pressure port 111.
- the back pressure port 111 is connected to the back pressure pipe 97 via the back pressure pipe 114.
- One end of the back pressure side second communication passage 110 is connected to the back pressure port 111.
- the other end of the back pressure side second communication passage 110 is connected to the internal reservoir 38.
- the back pressure side second communication passage 110 has a stroke valve 45.
- the brake fluid pressure in the back pressure chamber 82 is stored in the internal reservoir even when the power failure occurs in the second control unit 31B or the stroke simulator out valve 74 is closed. 38 can be absorbed. Therefore, the same effects as those of the seventeenth embodiment are achieved.
- FIG. 32 is a diagram illustrating a schematic configuration of a brake system BS according to Embodiment 29 together with a hydraulic circuit.
- the brake system BS according to the twenty-ninth embodiment is different from the thirteenth embodiment in that a back pressure-side second communication passage 110 is provided instead of the positive pressure-side second communication passage 37.
- One end of the back pressure side second communication path 110 is connected to the replenishing liquid path 68.
- the other end of the back pressure side second communication path 110 is connected to the back pressure liquid path 68.
- the back pressure side second communication passage 110 has a stroke valve 45.
- the brake system BS of Embodiment 29 uses the brake fluid pressure in the back pressure chamber 82 as an internal reservoir even when a power failure occurs in the first control unit 31A or when the stroke simulator out valve 74 is closed. 38 can be absorbed. Therefore, the same effects as those of the seventeenth embodiment are achieved.
- FIG. 33 is a diagram illustrating a schematic configuration of a brake system BS according to the thirtieth embodiment together with a hydraulic circuit.
- the brake system BS of the thirtieth embodiment is different from the fourteenth embodiment in that a back pressure side second communication path 110 is provided instead of the positive pressure side second communication path 37.
- One end of the back pressure side second communication path 110 is connected to the replenishing liquid path 68.
- the other end of the back pressure side second communication passage 110 is connected to the back pressure liquid passage 78b.
- the back pressure side second communication passage 110 has a stroke valve 45.
- the brake system BS of Embodiment 30 uses the brake fluid pressure in the back pressure chamber 82 as an internal reservoir even when a power failure occurs in the second control unit 31B or when the stroke simulator out valve 74 is closed. 38 can be absorbed. Therefore, the same effects as those of the seventeenth embodiment are achieved.
- FIG. 34 is a diagram showing a schematic configuration of the brake system BS of the embodiment 31 together with a hydraulic circuit.
- the brake system BS according to the thirty-first embodiment is different from the fifteenth embodiment in that a back pressure side second communication path 110 is provided instead of the positive pressure side second communication path 37.
- the stroke simulator housing 103 has a back pressure port 111.
- One end of the back pressure side second communication passage 110 is connected to the first reflux liquid passage 35.
- the other end of the back pressure side second communication passage 110 is connected to the back pressure port 111.
- the back pressure side second communication passage 110 has a stroke valve 45.
- the second hydraulic unit housing 26 has a back pressure port 118 and a back pressure fluid path 120.
- the back pressure port 118 is connected to the back pressure port 111 via the back pressure pipe 119.
- One end of the back pressure fluid passage 120 is connected to the back pressure port 118.
- the other end of the back pressure liquid path 120 is connected to a connection position between one end of the first simulator liquid path 61 and one end of the second simulator liquid path 62.
- the brake system BS of Embodiment 31 uses the brake fluid pressure in the back pressure chamber 82 as an internal reservoir even when a power failure occurs in the fourth control unit 31D or when the stroke simulator out valve 74 is closed. 38 can be absorbed. Therefore, the same effects as those of the seventeenth embodiment are achieved.
- FIG. 35 is a diagram showing a schematic configuration of a brake system BS of Embodiment 32 together with a hydraulic circuit.
- the brake system BS of the thirty-second embodiment is different from the sixteenth embodiment in that a back pressure-side second communication path 110 is provided instead of the positive pressure-side second communication path 37.
- the second hydraulic unit housing 48 has a back pressure port 111.
- One end of the back pressure side second communication passage 110 is connected to the second reflux liquid passage 57.
- the other end of the back pressure side second communication passage 110 is connected to the back pressure port 111.
- the back pressure side second communication passage 110 has a stroke valve 45.
- the stroke simulator housing 103 has a back pressure port 118 and a back pressure fluid path 120.
- the back pressure port 118 is connected to the back pressure port 111 via the back pressure pipe 119.
- One end of the back pressure fluid passage 120 is connected to the back pressure port 118.
- the other end of the back pressure liquid path 120 is connected to a connection position between one end of the first simulator liquid path 61 and one end of the second simulator liquid path 62.
- the brake system BS of the thirty-second embodiment uses the brake fluid pressure in the back pressure chamber 82 as an internal reservoir even when a power failure occurs in the fourth control unit 31D or when the stroke simulator out valve 74 is closed. Can be absorbed with 63. Therefore, the same effects as those of the seventeenth embodiment are achieved.
- FIG. 36 is a diagram showing a schematic configuration of a brake system BS of Embodiment 33 together with a hydraulic circuit.
- the brake system BS of the thirty-third embodiment is different from the first embodiment in that the first hydraulic unit 2 includes a reaction force generating unit 121 and an electromagnetic valve 122.
- the first hydraulic unit housing 26 has a positive pressure fluid path 123 and a back pressure fluid path 124.
- One end of the positive pressure liquid path 123 is connected to a position closer to the first input port 39P than the first shutoff valve 29P of the first connection liquid path 32P of the P system.
- the other end of the positive pressure fluid path 123 is connected to the positive pressure chamber 125 of the reaction force generator 121.
- the electromagnetic valve 122 is a normally closed type on / off valve.
- One end of the back pressure fluid passage 124 is connected to a position closer to the internal reservoir 38 than the first pressure regulating valve 43 of the first reflux fluid passage 35.
- the other end of the back pressure liquid passage 124 is connected to the back pressure chamber 126 of the reaction force generator 121.
- a first master cylinder hydraulic pressure sensor 30 is located at a position where the first connection hydraulic path 32P of the P system is connected to the positive pressure liquid path 123.
- a fluid pressure sensor 127 is located at a position closer to the first output port 40 than the first shutoff valve 29 in the first connection fluid path 32.
- the reaction force generation unit 121 includes a cylinder 128, a piston 129, a positive pressure chamber 125, a back pressure chamber 126, and an elastic body 130.
- the piston 129, the positive pressure chamber 125, the back pressure chamber 126, and the elastic body 130 are inside the cylinder 128.
- the piston 129 defines the inside of the cylinder 128 into a positive pressure chamber 125 and a back pressure chamber 126.
- the elastic body 130 urges the piston 129 in the direction in which the volume of the positive pressure chamber 125 decreases.
- the elastic body 130 has a spring constant larger than that of the second spring 83b of the stroke simulator 76.
- the stroke simulator 76 has only the first spring 83a and the second spring 83b as the elastic body 83, and does not have the bottomed damper 83c as in the first embodiment.
- the elastic body 130 of the reaction force generation unit 121 simulates the function of the bottomed damper 83c.
- the first control unit 31A When there is no power failure in the second control unit 31B and the stroke simulator out valve 74 is not closed, the first control unit 31A is operated when the brake pedal 8 is operated and the secondary piston 21S makes a full stroke. 122 is operated in the valve opening direction, and the reaction force generation unit 121 is caused to function to generate a brake operation reaction force. Thereby, pedal feeling with a feeling of bottom can be realized.
- the first control unit 31A operates when the brake pedal 8 is operated and the secondary piston 21S makes a full stroke.
- the valve 45 is closed, the electromagnetic valve 122 is operated in the valve opening direction, and the reaction force generator 121 is caused to function to generate a brake operation reaction force.
- the S system first shut-off valve 29S and the first communication valve 44S are operated in the valve opening direction, and the first pressure regulating valve 43 is proportionally controlled, so that the brake fluid pressure in the secondary chamber 22S is adjusted to the primary chamber.
- the primary chamber 22P of the master cylinder 12 and the positive pressure chamber 125 are connected, and the suction side (first reflux fluid path 35) of the first pump 28 and the back pressure chamber 126 are connected to each other.
- a reaction force generator 121 for generating an operation reaction force on the pedal 8 and an electromagnetic valve 122 provided between the positive pressure chamber 125 of the reaction force generator 121 and the first connection fluid path 32P of the master cylinder 12.
- the first control unit 31A uses the stroke valve 45 and the reaction force generator 121 to operate the brake when the power failure occurs in the second control unit 31B or when the stroke simulator out valve 74 is closed.
- a reaction force can be generated. Therefore, there exists an effect similar to Embodiment 1. Further, since it is not necessary to generate a pedal feeling in the entire pedal stroke by the stroke valve 45, the control of the stroke valve 45 can be simplified.
- FIG. 37 is a diagram illustrating a schematic configuration of a brake system BS according to the thirty-fourth embodiment together with a hydraulic circuit.
- the brake system BS of the thirty-fourth embodiment is different from the thirty-third embodiment in that the first hydraulic unit 2 has an electromagnetic valve 131.
- the electromagnetic valve 131 has a first output port 40P side from the first master cylinder hydraulic pressure sensor 30 in the first connection fluid path 32P of the P system, and a first input port 39P from the connection position with the positive pressure fluid path 123. In the side position.
- the electromagnetic valve 131 is a normally open type proportional control valve.
- the first control unit 31A closes the electromagnetic valve 131, operates the first communication valve 44P of the P system and the electromagnetic valve 122 in the valve opening direction, and activates the first motor 27.
- the brake fluid pressure is stored in the reaction force generator 121 by operating at a predetermined rotational speed.
- the second control unit 31B closes the solenoid-in valve 71 to avoid an increase in the wheel cylinder hydraulic pressure.
- the first control unit 31A opens the solenoid valve 122 in the valve opening direction when the brake pedal 8 is operated. Operate.
- the brake fluid stored in the reaction force generator 121 is sent from the first connection fluid path 32P to the second fluid pressure unit 3, so that the wheel cylinder fluid pressure increase response in steer-by-wire control is improved. it can.
- the operation when the power failure occurs in the second control unit 31B or when the stroke simulator out valve 74 is closed is the same as in the thirty-third embodiment. Therefore, the same effects as those of the embodiment 33 are achieved.
- FIG. 38 is a diagram showing a schematic configuration of a brake system BS of Embodiment 35 together with a hydraulic circuit.
- the brake system BS of Embodiment 35 is different from Embodiment 33 in that the stroke simulator unit 53 is omitted.
- the positive pressure port 41 and the back pressure port 67 are connected via a positive pressure pipe 42.
- the brake system BS of the thirty-fifth embodiment generates a brake operation reaction force by the on / off control of the stroke valve 45 and the reaction force generation unit 121 regardless of whether or not the stroke simulator out valve 74 cannot be opened.
- the operations of the stroke valve 45 and the electromagnetic valve 122 are in accordance with the thirty-third embodiment.
- the second hydraulic unit 3 can be prevented from increasing in size by omitting the stroke simulator.
- FIG. 39 is a diagram showing a schematic configuration of a brake system BS of Embodiment 36 together with a hydraulic circuit.
- the brake system BS according to the thirty-sixth embodiment is different from the third embodiment in that the back pressure chamber 82 of the stroke simulator 76 is opened to the atmosphere, and the stroke simulator valve 132 is provided in place of the stroke simulator in valve 73 and the stroke simulator out valve 74. Is different.
- the stroke simulator valve 132 is in the positive pressure fluid path 36.
- the stroke simulator valve 132 is a normally closed type on / off valve.
- the first control unit 31A controls the opening / closing operation of the stroke simulator valve 132.
- the operation of the stroke simulator valve 132 conforms to the operation of the stroke simulator out valve 74 of the first embodiment.
- the second hydraulic unit housing 48 has a stroke valve 45 and a bypass passage 133.
- One end of the bypass passage 133 is connected to the internal reservoir 63.
- the other end of the bypass passage 133 is connected to the second input port 64S side of the second shutoff valve 51S of the second connection liquid passage 54S of the S system.
- a stroke valve 45 is provided in the bypass passage 133.
- the second control unit 31B controls the opening / closing operation of the stroke valve 45.
- the operation of the stroke valve 45 is in accordance with the first embodiment.
- the brake system BS of Embodiment 36 includes a bypass passage 133 that connects the second connection liquid passage 54S and the internal reservoir 63, and a stroke valve 45 provided in the bypass passage 133. Therefore, even if the power failure occurs in the first control unit 31A or the stroke simulator valve 132 is closed, the stroke is generated in the master cylinder 12 by operating the stroke valve 45 in the valve opening direction.
- the brake fluid pressure can be discharged from the bypass passage 133 to the internal reservoir 38 and can be absorbed by the internal reservoir 38. Therefore, there exists an effect similar to Embodiment 1.
- FIG. 40 is a diagram illustrating a schematic configuration of the brake system BS of the thirty-seventh embodiment together with a hydraulic circuit.
- the brake system of the thirty-seventh embodiment is different from the thirty-sixth embodiment in that one end of the bypass passage 133 is connected to the positive pressure chamber 81 of the stroke simulator 76.
- the second hydraulic unit housing 48 has a positive pressure port 134.
- One end of the bypass passage 133 is connected to the positive pressure port 134.
- the first hydraulic unit housing 26 has a positive pressure port 135 and a bypass passage 137.
- the positive pressure port 135 is connected to the positive pressure port 134 via the positive pressure pipe 136.
- One end of the bypass passage 137 is connected to the positive pressure port 135.
- the other end of the bypass passage 137 is connected to a position closer to the positive pressure port 41 than the stroke simulator valve 132 of the positive pressure liquid passage 36. Therefore, the brake system BS of the thirty-seventh embodiment bypasses the brake fluid generated in the master cylinder 12 even when the power failure occurs in the first control unit 31A or the stroke simulator valve 132 is closed.
- the positive pressure chamber 81 can be supplied from the passages 133 and 137. That is, the normal operation of the stroke simulator 76 can be maintained. Therefore, the same function and effect as in the thirty-sixth embodiment are achieved.
- the stroke operation valve may be a proportional control valve
- the brake operation reaction force may be generated by adjusting the opening of the stroke valve by proportional control.
- One end of the second communication path may be directly connected to the positive pressure chamber or the back pressure chamber, or may be branched from the positive pressure side first communication path or the back pressure side first communication path.
- the suction side of the hydraulic pressure source connected to the other end of the second communication path may be a low pressure portion such as a reservoir, an internal reservoir, a pump suction fluid path, or the like.
- One end of the bypass passage may be directly connected to the positive pressure chamber or the back pressure chamber, or may be branched from the positive pressure side first communication passage.
- the hydraulic pressure control device is a connection that connects a master cylinder that generates brake hydraulic pressure in response to a brake pedal operation and a wheel cylinder that applies braking force to wheels in response to the brake hydraulic pressure.
- the first communication path, the stroke simulator valve provided in the back pressure side first communication path, one end connected to the positive pressure chamber or the back pressure chamber, and the suction side of the hydraulic pressure source Comprising a second communication passage having an end, and a stroke valve provided in the second communication passage.
- a first control unit that opens and closes the stroke valve and a second control unit that opens and closes the stroke simulator valve are provided.
- the first control unit operates the stroke valve in a valve opening direction when the second control unit fails or when the stroke simulator valve fails to close.
- the first control unit opens and closes the stroke valve when the second control unit fails or when the stroke simulator valve fails to close.
- the one end of the second communication path is connected to the positive pressure chamber.
- the brake pedal includes a first chamber connected to the master cylinder and a second chamber connected to the suction side of the hydraulic pressure source.
- a reaction force generation unit that generates an operation reaction force; and an electromagnetic valve provided in a connection path between the first chamber of the reaction force generation unit and the master cylinder.
- the one end of the second communication path is connected to the back pressure chamber.
- the hydraulic pressure control device includes a master cylinder that generates a brake hydraulic pressure according to a brake pedal operation, and a wheel cylinder that applies a braking force to a wheel according to the brake hydraulic pressure.
- a connection fluid path for connecting the two, a shutoff valve disposed in the connection fluid path, a fluid pressure source for discharging brake fluid to the wheel cylinder side of the shutoff valve in the connection fluid path, and the brake A positive pressure side first communication path connecting a positive pressure chamber of a stroke simulator that generates an operational reaction force to the pedal and the master cylinder; a stroke simulator valve provided in the positive pressure side first communication path;
- the master cylinder side of the stroke simulator valve, or the connecting fluid passage, the positive pressure chamber, or the suction side of the fluid pressure source It comprises a bypass passage connecting, and a stroke valve provided in the bypass passage.
- a first control unit that opens and closes the stroke valve and a second control unit that opens and closes the stroke simulator valve are provided.
- the first control unit operates the stroke valve in a valve opening direction when the second control unit fails or when the stroke simulator valve fails to close.
- the brake system includes: a master cylinder unit including a master cylinder that generates a brake hydraulic pressure in response to a brake pedal operation; and a first hydraulic pressure unit connected to the master cylinder unit.
- a first input port connected to the master cylinder; a first connection fluid path connected to the first input port; a first shut-off valve disposed in the first connection fluid path; A first output port connected to one connection fluid path, and a first hydraulic pressure source that discharges brake fluid to the first output port side of the first shutoff valve in the first connection fluid path.
- a stroke simulator unit including a stroke simulator for generating an operation reaction force on the brake pedal; a positive pressure side connecting the positive pressure chamber of the stroke simulator and the master cylinder; A back pressure side first communication path connecting the back pressure chamber of the stroke simulator and the suction side of the first hydraulic pressure source or the second hydraulic pressure source; and the back pressure side first communication path.
- said A stroke simulator valve disposed in any of the star cylinder unit, the first hydraulic unit, the second hydraulic unit, and the stroke simulator unit; one end connected to the positive pressure chamber or the back pressure chamber; A second communication path having a second end connected to the suction side of the hydraulic pressure source; and disposed in a unit different from the unit provided in the second communication path and disposed with the stroke simulator valve.
- the stroke simulator unit is provided integrally with the second hydraulic unit, the stroke simulator valve is installed in the second hydraulic unit, and the stroke valve is the first hydraulic unit. Installed in the hydraulic unit.
- the one end of the second communication path is connected to the positive pressure chamber.
- the one end of the second communication path is connected to the back pressure chamber.
- the stroke simulator unit is provided integrally with the first hydraulic unit, and the stroke simulator valve is installed in the first hydraulic unit, The stroke valve is installed in the second hydraulic unit.
- the stroke simulator unit is provided integrally with the first hydraulic unit, and the stroke simulator valve is installed in the second hydraulic unit, The stroke valve is installed in the first hydraulic unit.
- the stroke simulator unit is provided integrally with the master cylinder unit, the stroke simulator valve is installed in the first hydraulic unit, and the stroke valve Is installed in the second hydraulic unit.
- the stroke simulator unit is provided integrally with the master cylinder unit, the stroke simulator valve is installed in the second hydraulic unit, and the stroke valve Is installed in the first hydraulic unit.
- a first control unit that opens and closes the stroke valve and a second control unit that opens and closes the stroke simulator valve are provided.
- the brake system includes: a master cylinder unit including a master cylinder that generates a brake hydraulic pressure in response to a brake pedal operation; and a first hydraulic pressure unit connected to the master cylinder unit.
- a first input port connected to the master cylinder; a first connection fluid path connected to the first input port; a first shut-off valve disposed in the first connection fluid path; A first output port connected to one connection fluid path, and a first hydraulic pressure source that discharges brake fluid to the first output port side of the first shutoff valve in the first connection fluid path.
- a positive pressure side first communication path provided in the positive pressure side first communication path, of the master cylinder unit, the first hydraulic pressure unit, the second hydraulic pressure unit, and the stroke simulator unit;
- a stroke simulator valve arranged at a distance; the master cylinder side of the positive pressure side first communication passage, the connecting cylinder, the positive pressure chamber, or the hydraulic pressure side of the stroke simulator valve;
- a bypass passage connecting the suction side of the source; and a stroke valve provided in the bypass passage and disposed in a unit different from the unit in which the stroke simulator valve is disposed.
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Regulating Braking Force (AREA)
- Braking Systems And Boosters (AREA)
- Valves And Accessory Devices For Braking Systems (AREA)
Abstract
ストロークシミュレータ弁が開弁不能となってもペダルストロークを確保できる液圧制御装置およびブレーキシステムを提供する。 液圧制御装置は、マスタシリンダとホイルシリンダとを接続する接続液路と、接続液路に配置された遮断弁と、接続液路のうちの遮断弁よりもホイルシリンダ側にブレーキ液を吐出する液圧源と、ストロークシミュレータの正圧室とマスタシリンダとを接続する正圧側第1連通路と、ストロークシミュレータの背圧室と液圧源の吸入側とを接続する背圧側第1連通路と、背圧側第1連通路に設けられたストロークシミュレータ弁と、正圧室または背圧室に接続される一端と液圧源の吸入側に接続される他端とを有する第2連通路と、第2連通路に設けられたストローク弁と、を備える。
Description
本発明は、液圧制御装置およびブレーキシステムに関する。
特許文献1には、ドライバのブレーキ操作に応じた電気信号を利用してポンプを作動させ、ポンプが発生するブレーキ液圧をホイルシリンダに供給するブレーキ・バイ・ワイヤ制御を行うブレーキシステムが開示されている。ブレーキシステムは、ブレーキペダルに操作反力を発生させるストロークシミュレータを有する。ストロークシミュレータおよびマスタシリンダ間を接続する液路には、ドライバのブレーキ操作時に開弁してストロークシミュレータを機能させるストロークシミュレータ弁が設置されている。
しかしながら、上記従来技術にあっては、ストロークシミュレータ弁が開弁不能になると、ストロークシミュレータが機能せず、マスタシリンダで発生したブレーキ液圧を吸収できないため、ペダルストロークを確保できないという問題があった。
本発明の目的の一つは、ストロークシミュレータ弁が開弁不能となってもペダルストロークを確保できる液圧制御装置およびブレーキシステムを提供することにある。
本発明の目的の一つは、ストロークシミュレータ弁が開弁不能となってもペダルストロークを確保できる液圧制御装置およびブレーキシステムを提供することにある。
本発明の一実施形態における液圧制御装置は、ストロークシミュレータの正圧室または背圧室と一端が接続し、液圧源の吸入側と他端が接続する第2連通路と、第2連通路に設けられたストローク弁と、を備える。
よって、ストロークシミュレータ弁が開弁不能となってもペダルストロークを確保できる。
〔実施形態1〕
図1は、実施形態1のブレーキシステムBSの概略構成を液圧回路と共に示す図である。
実施形態1のブレーキシステムBSは、車輪を駆動する原動機として内燃機関(エンジン)のみを備えた車両のほか、内燃機関に加えて電動式のモータ・ジェネレータを備えたハイブリッド車や、電動式のモータ・ジェネレータのみを備えた電気自動車等に搭載可能な液圧式ブレーキシステムである。ブレーキシステムBSは、各車輪FL~RRにディスク式のブレーキ作動ユニットを備える。ブレーキシステムBSは、ブレーキ作動ユニットのホイルシリンダW/Cに作動液であるブレーキ液を供給し、ブレーキパッドをブレーキディスクに押し付けることにより、各車輪FL~RRに摩擦制動力を付与する。ブレーキシステムBSは2系統(プライマリ系統、セカンダリ系統)のブレーキ配管を有する。ブレーキ配管形式は、H配管形式である。なお、X配管形式等、他の配管形式を採用してもよい。以下、プライマリ系統(P系統)に対応する部材とセカンダリ系統(S系統)に対応する部材とを区別する場合は、その符号の末尾に添字P,Sを付して適宜区別する。ブレーキシステムBSは、ブレーキ配管を介して各ホイルシリンダW/Cにブレーキ液を供給する。
図1は、実施形態1のブレーキシステムBSの概略構成を液圧回路と共に示す図である。
実施形態1のブレーキシステムBSは、車輪を駆動する原動機として内燃機関(エンジン)のみを備えた車両のほか、内燃機関に加えて電動式のモータ・ジェネレータを備えたハイブリッド車や、電動式のモータ・ジェネレータのみを備えた電気自動車等に搭載可能な液圧式ブレーキシステムである。ブレーキシステムBSは、各車輪FL~RRにディスク式のブレーキ作動ユニットを備える。ブレーキシステムBSは、ブレーキ作動ユニットのホイルシリンダW/Cに作動液であるブレーキ液を供給し、ブレーキパッドをブレーキディスクに押し付けることにより、各車輪FL~RRに摩擦制動力を付与する。ブレーキシステムBSは2系統(プライマリ系統、セカンダリ系統)のブレーキ配管を有する。ブレーキ配管形式は、H配管形式である。なお、X配管形式等、他の配管形式を採用してもよい。以下、プライマリ系統(P系統)に対応する部材とセカンダリ系統(S系統)に対応する部材とを区別する場合は、その符号の末尾に添字P,Sを付して適宜区別する。ブレーキシステムBSは、ブレーキ配管を介して各ホイルシリンダW/Cにブレーキ液を供給する。
ブレーキシステムBSは、マスタシリンダユニット1、第1液圧ユニット2および第2液圧ユニット3を有する。第1液圧ユニット2および第2液圧ユニット3は、各ホイルシリンダW/Cのブレーキ液圧(ホイルシリンダ液圧)を制御する液圧制御装置である。マスタシリンダユニット1と第1液圧ユニット2は、第1プライマリ配管(接続液路)4P、第1セカンダリ配管(接続液路)4S、リザーバ配管5とリザーバ配管5が分岐した第1液圧ユニット2用のリザーバ配管5Aを介して接続する。マスタシリンダユニット1と第2液圧ユニット3は、リザーバ配管5とリザーバ配管5が分岐した第2液圧ユニット3用のリザーバ配管5Bを介して接続する。なお、リザーバ配管5は分岐させずに、リザーバ配管5A、5Bそれぞれを直接マスタシリンダユニット1に接続する構成としてもよい。第1液圧ユニット2と第2液圧ユニット3は、第2プライマリ配管(接続液路)6Pおよび第2セカンダリ配管(接続液路)6Sを介して接続する。第2液圧ユニット3と各ホイルシリンダW/Cは、ホイルシリンダ配管(接続液路)7FL,7FR,7RL,7RRを介して接続する。ホイルシリンダ配管7RL,7RRはプライマリ系統接続液路である。ホイルシリンダ配管7FL,7FRはセカンダリ系統接続液路である。
マスタシリンダユニット1は、ブレーキペダル8、インプットロッド9、リザーバタンク10、マスタシリンダハウジング11、マスタシリンダ12およびストロークセンサ13を有する。マスタシリンダユニット1は、エンジンの吸気負圧等を利用してブレーキ操作力を倍力する倍力装置を備えていない。ブレーキペダル8は、ドライバのブレーキ操作の入力を受ける。インプットロッド9は、ブレーキペダル8に接続する。リザーバタンク10は、ブレーキ液を大気圧で貯留する。リザーバタンク10は補給ポート14および供給ポート15を有する。供給ポート15はリザーバ配管5と接続する。マスタシリンダハウジング11は、その内部にマスタシリンダ12を収容(内蔵)する筐体である。マスタシリンダハウジング11は、その内部にマスタシリンダ12用のシリンダ16、補給液路17および供給液路18を有する。補給液路17の一端はシリンダ16と接続する。補給液路17の他端は、マスタシリンダハウジング11の外表面に開口する補給ポート19と接続する。補給ポート19はリザーバタンク10の補給ポート14と接続する。供給液路18の一端はシリンダ16と接続する。供給液路18の他端は、マスタシリンダハウジング11の外表面に開口する供給ポート20と接続する。供給ポート20Pはプライマリ配管4Pと接続する。供給ポート20Sはセカンダリ配管4Sと接続する。
マスタシリンダ12は、インプットロッド9を介してブレーキペダル8に接続し、ドライバによるブレーキペダル8の操作に応じてマスタシリンダ液圧を発生する。マスタシリンダ12は、ブレーキペダル8の操作に応じて軸方向に移動するピストン21を有する。ピストン21はシリンダ16の内部にあり、液圧室22を画成する。マスタシリンダ12は、タンデム型であり、ピストン21として、インプットロッド9が押圧するプライマリピストン21Pと、フリーピストン型のセカンダリピストン21Sとを有する。両ピストン21P,21Sは直列に並ぶ。両ピストン21P,21Sはシリンダ16内にプライマリ室22Pを画成する。セカンダリピストン21Sはシリンダ16内にセカンダリ室22Sを画成する。各液圧室22P,22Sは、リザーバタンク10からブレーキ液を補給し、上記ピストン21の移動によりマスタシリンダ液圧を発生する。プライマリ室22Pには戻しばねとしてのコイルスプリング23Pがある。コイルスプリング23Pは両ピストン21P,21S間に介在する。セカンダリ室22Sには、戻しばねとしてのコイルスプリング23Sがある。コイルスプリング23Sはシリンダ16の底部とピストン21Sとの間に介在する。シリンダ16の内周にはピストンシール24,25がある。ピストンシール24,25は、各ピストン21P,21Sに摺接して各ピストン21P,21Sの外周面とシリンダ16の内周面との間をシールする複数のシール部材である。各ピストンシールは、内径側にリップ部を備える周知の断面カップ状のシール部材(カップシール)である。リップ部がピストン21の外周面に接した状態では、一方向へのブレーキ液の流れを許容し、他方向へのブレーキ液の流れを抑制する。第1ピストンシール24は、補給ポート14からプライマリ室22P、セカンダリ室22Sへ向かうブレーキ液の流れを許容し、逆方向のブレーキ液の流れを抑制する。第2ピストンシール25は、補給ポート14へ向かうブレーキ液の流れを許容し、補給ポート14からのブレーキ液の流出を抑制する。ストロークセンサ13は、プライマリピストン21Pの移動量(ペダルストローク量)を検出する。
第1液圧ユニット2は、第1液圧ユニットハウジング26、第1モータ27、第1ポンプ(第1液圧源)28、複数の電磁弁29等、複数の液圧センサ30等および第1コントロールユニット31Aを有する。第1液圧ユニットハウジング26は、その内部に第1ポンプ28や複数の電磁弁29等の弁体を収容(内蔵)する筐体である。第1液圧ユニットハウジング26は、その内部に、ブレーキ液が流通する上記2系統(P系統およびS系統)の回路を有する。2系統の回路は複数の液路を有する。複数の液路は、第1接続液路(接続液路)32、第1吸入液路33、第1吐出液路34、第1還流液路35、正圧液路(正圧側第1連通路)36および正圧側第2連通路37である。また、第1液圧ユニットハウジング26は複数のポートおよび内部リザーバ38を有する。複数のポートは、第1入力ポート39、第1出力ポート40および正圧ポート(正圧側第1連通路)41である。第1入力ポート39Pは第1プライマリ配管4Pと接続する。第1入力ポート39Sは第1セカンダリ配管4Sと接続する。第1出力ポート40Pは第2プライマリ配管6Pと接続する。第1出力ポート40Sは第2セカンダリ配管6Sと接続する。正圧ポート41は、正圧配管(正圧側第1連通路)42と接続する。内部リザーバ38はブレーキ液を貯留可能な液溜まりである。内部リザーバ38はリザーバ配管5Aと接続する。
第1ポンプ28は、リザーバタンク10内のブレーキ液を吸入して吐出する。第1ポンプ28は、例えば、音振性能等に優れた5つのプランジャを有するプランジャポンプである。第1モータ27は第1ポンプ28を駆動する。複数の電磁弁29等は、制御信号に応じて動作するソレノイドバルブである。複数の電磁弁29等は、ソレノイドへの通電に応じて弁体がストロークし、液路の開閉を切り替える(液路を断接する。)。複数の電磁弁29等は、上記回路の連通状態を制御し、ブレーキ液の流通状態を調整することにより、制御液圧を発生する。複数の電磁弁29等は、第1遮断弁29、第1調圧弁43、第1連通弁44およびストローク弁45である。第1遮断弁29および第1調圧弁43は、非通電状態で開弁するノーマルオープン型の比例制御弁である。第1連通弁44は、非通電状態で閉弁するノーマルクローズ型のオンオフ弁である。ストローク弁45は、非通電状態で閉弁するノーマルオープン型のオンオフ弁である。図1において複数の電磁弁29等は非通電状態である。複数の液圧センサ30等は、第1マスタシリンダ液圧センサ30および第1吐出圧センサ96である。
第1コントロールユニット31Aは、ストロークセンサ13、第1マスタシリンダ液圧センサ30および第1吐出圧センサ96の検出信号を直接受信する。また、第1コントロールユニット31Aは、第2コントロールユニット31Bを介してホイルシリンダ液圧センサ75の検出信号を受信するほか、図外のCANバスラインを介して車速等の情報を受信する。第1コントロールユニット31Aおよび第2コントロールユニット31Bは、通信線(CANバスラインでもよい。)を介して通信を行う。第1コントロールユニット31Aは、内蔵するプログラムに基づき、受信した各信号および各情報を用いて第1液圧ユニットハウジング26に設置された複数の電磁弁29等の開閉動作や第1モータ27の回転数(すなわち第1ポンプ28の吐出流量)を制御する。
第1コントロールユニット31Aは、ストロークセンサ13、第1マスタシリンダ液圧センサ30および第1吐出圧センサ96の検出信号を直接受信する。また、第1コントロールユニット31Aは、第2コントロールユニット31Bを介してホイルシリンダ液圧センサ75の検出信号を受信するほか、図外のCANバスラインを介して車速等の情報を受信する。第1コントロールユニット31Aおよび第2コントロールユニット31Bは、通信線(CANバスラインでもよい。)を介して通信を行う。第1コントロールユニット31Aは、内蔵するプログラムに基づき、受信した各信号および各情報を用いて第1液圧ユニットハウジング26に設置された複数の電磁弁29等の開閉動作や第1モータ27の回転数(すなわち第1ポンプ28の吐出流量)を制御する。
以下、第1液圧ユニット2のブレーキ液圧回路を説明する。
第1接続液路32の一端は第1入力ポート39と接続する。第1接続液路32の他端は第1出力ポート40と接続する。第1接続液路32には第1遮断弁29がある。第1接続液路32Sの第1遮断弁29Sよりも第1入力ポート39S側の位置には、第1マスタシリンダ液圧センサ30がある。また、この位置には正圧液路36の一端が接続する。正圧液路36の他端は正圧ポート41と接続する。第1マスタシリンダ液圧センサ30は、マスタシリンダ液圧を検出する。第1吸入液路33の一端は内部リザーバ38と接続する。第1吸入液路33の他端は第1ポンプ28の第1吸入ポート46と接続する。第1吐出液路34の一端は第1ポンプ28の第1吐出ポート47と接続する。第1吐出液路34の他端は、P系統の吐出液路34PとS系統の吐出液路34Sとに分岐する。第1吐出液路34には、第1吐出圧センサ96がある。第1吐出圧センサ96は、第1ポンプ28の吐出圧を検出する。両吐出液路34P,34Sは、第1接続液路32の第1遮断弁29よりも第1出力ポート40側の位置と接続する。両吐出液路34P,34Sには第1連通弁44P,44Sがある。第1還流液路35の一端は内部リザーバ38と接続する。第1還流液路35の他端は、第1吐出液路34が両吐出液路34P,34Sとの接続位置と接続する。第1還流液路35には第1調圧弁43がある。正圧側第2連通路37の一端は、正圧液路36と接続する。正圧側第2連通路37の他端は第1還流液路35と接続する。正圧側第2連通路37にはストローク弁45がある。
第1接続液路32の一端は第1入力ポート39と接続する。第1接続液路32の他端は第1出力ポート40と接続する。第1接続液路32には第1遮断弁29がある。第1接続液路32Sの第1遮断弁29Sよりも第1入力ポート39S側の位置には、第1マスタシリンダ液圧センサ30がある。また、この位置には正圧液路36の一端が接続する。正圧液路36の他端は正圧ポート41と接続する。第1マスタシリンダ液圧センサ30は、マスタシリンダ液圧を検出する。第1吸入液路33の一端は内部リザーバ38と接続する。第1吸入液路33の他端は第1ポンプ28の第1吸入ポート46と接続する。第1吐出液路34の一端は第1ポンプ28の第1吐出ポート47と接続する。第1吐出液路34の他端は、P系統の吐出液路34PとS系統の吐出液路34Sとに分岐する。第1吐出液路34には、第1吐出圧センサ96がある。第1吐出圧センサ96は、第1ポンプ28の吐出圧を検出する。両吐出液路34P,34Sは、第1接続液路32の第1遮断弁29よりも第1出力ポート40側の位置と接続する。両吐出液路34P,34Sには第1連通弁44P,44Sがある。第1還流液路35の一端は内部リザーバ38と接続する。第1還流液路35の他端は、第1吐出液路34が両吐出液路34P,34Sとの接続位置と接続する。第1還流液路35には第1調圧弁43がある。正圧側第2連通路37の一端は、正圧液路36と接続する。正圧側第2連通路37の他端は第1還流液路35と接続する。正圧側第2連通路37にはストローク弁45がある。
第2液圧ユニット3は、第2液圧ユニットハウジング48、第2モータ49、第2ポンプ(第2液圧源)50、複数の電磁弁51等、複数の液圧センサ52等、ストロークシミュレータユニット53および第2コントロールユニット31Bを有する。以下、各車輪FL,FR,RL,RRに対応する部材を区別する場合には、その符号の末尾にそれぞれ添字a,b,c,dを付して適宜区別する。第2液圧ユニットハウジング48は、その内部に第2ポンプ50や複数の電磁弁51等の弁体を収容(内蔵)する筐体である。第2液圧ユニットハウジング48は、その内部に、ブレーキ液が流通する上記2系統(P系統およびS系統)の回路を有する。2系統の回路は複数の液路を有する。複数の液路は、第2接続液路(接続液路)54、第2吸入液路55、第2吐出液路56、第2還流液路57、減圧液路58、補給液路59、背圧液路(背圧側第1連通路)60、第1シミュレータ液路61および第2シミュレータ液路(背圧側第1連通路)62である。また、第2液圧ユニットハウジング48は、複数のポートおよび内部リザーバ63を有する。複数のポートは、第2入力ポート64、第2出力ポート65、補給ポート66および背圧ポート(背圧側第1連通路)67である。第2入力ポート64Pは第2プライマリ配管6Pと接続する。第2入力ポート64Sは第2セカンダリ配管6Sと接続する。第2出力ポート65はホイルシリンダW/Cと接続する。補給ポート66はストロークシミュレータ76の補給液路68と接続する。背圧ポート67はストロークシミュレータ76の背圧液路(背圧側第1連通路)78bと接続する。内部リザーバ63はブレーキ液を貯留可能な液溜まりである。内部リザーバ63はリザーバ配管5Bと接続する。
第2ポンプ50は、リザーバタンク10内のブレーキ液を吸入して吐出する。第2ポンプ50は第1ポンプ28と同様のプランジャポンプである。第2モータ49は第2ポンプ50を駆動する。複数の電磁弁51等は、制御信号に応じて動作するソレノイドバルブである。複数の電磁弁51等は、ソレノイドへの通電に応じて弁体がストロークし、液路の開閉を切り替える。複数の電磁弁51等は、上記回路の連通状態を制御し、ブレーキ液の流通状態を調整することにより、制御液圧を発生する。複数の電磁弁51等は、第2遮断弁51、第2調圧弁69、第2連通弁70、ソレノイドイン弁71、ソレノイドアウト弁72、ストロークシミュレータイン弁73およびストロークシミュレータアウト弁(ストロークシミュレータ弁)74である。第2遮断弁51、第2調圧弁69およびソレノイドイン弁71は、非通電状態で開弁するノーマルオープン型の比例制御弁である。第2連通弁70、ソレノイドアウト弁72、ストロークシミュレータイン弁73およびストロークシミュレータアウト弁74は、非通電状態で閉弁するノーマルクローズ型のオンオフ弁である。図1において複数の電磁弁51等は非通電状態である。複数の液圧センサ52等は、第2吐出圧センサ52およびホイルシリンダ液圧センサ75である。
第2コントロールユニット31Bは、ストロークセンサ13、第2マスタシリンダ液圧センサ52およびホイルシリンダ液圧センサ75の検出信号を直接受信する。また、第2コントロールユニット31Bは、図外のCANバスラインを介して車速等の情報を受信する。第2コントロールユニット31Bは、内蔵するプログラムに基づき、受信した各信号および各情報を用いて第2液圧ユニットハウジング48に設置された複数の電磁弁51等の開閉動作や第2モータ49の回転数(すなわち第2ポンプ50の吐出流量)を制御する。
第2コントロールユニット31Bは、ストロークセンサ13、第2マスタシリンダ液圧センサ52およびホイルシリンダ液圧センサ75の検出信号を直接受信する。また、第2コントロールユニット31Bは、図外のCANバスラインを介して車速等の情報を受信する。第2コントロールユニット31Bは、内蔵するプログラムに基づき、受信した各信号および各情報を用いて第2液圧ユニットハウジング48に設置された複数の電磁弁51等の開閉動作や第2モータ49の回転数(すなわち第2ポンプ50の吐出流量)を制御する。
ストロークシミュレータユニット53は、第2液圧ユニットハウジング48に固定されている。ストロークシミュレータユニット53は、ストロークシミュレータ76、正圧ポート(正圧側第1連通路)77、正圧液路(正圧側第1連通路)78a、補給液路68および背圧液路78bを有する。ストロークシミュレータ76は、ドライバのブレーキ操作に応じて、ブレーキペダル8に反力およびストロークを付与する。ストロークシミュレータ76は、シリンダ79、ピストン80、正圧室81、背圧室82および弾性体83(第1スプリング83a、第2スプリング83b、底付きダンパ83c)を有する。ピストン80、正圧室81、背圧室82および弾性体83はシリンダ79の内部にある。ピストン80は、シリンダ79の内部を正圧室81と背圧室82とに画成する。弾性体83は、正圧室81の容積が縮小する方向にピストン80を付勢する。弾性体83は、底付きダンパ83c、第2スプリング83b、第1スプリング83aの順にばね定数が大きい。第1スプリング83aと第2スプリング83bとの間には有底円筒状のリテーナ部材84が介在する。正圧室81は正圧液路78aと接続する。背圧室82は背圧ポート67と接続する。なお、背圧室82が負圧になると、背圧室82は補給ポート66と連通する。ドライバのブレーキ操作に応じてマスタシリンダ12のセカンダリ室22Sから第1セカンダリ配管4S、正圧配管42および正圧液路78aを介して正圧室81にブレーキ液が流入すると、ペダルストロークが発生し、同時に弾性体83の付勢力によりブレーキ操作反力が生成される。
以下、第2液圧ユニット3のブレーキ液圧回路を説明する。
第2接続液路54の一端は第2入力ポート64と接続する。第2接続液路54Pの他端は、第2接続液路54cと第2接続液路54dとに分岐する。第2接続液路54Sの他端は、第2接続液路54aと第2接続液路54bとに分岐する。第2接続液路54a~54dは第2出力ポート65a~65dと接続する。第2接続液路54には第2遮断弁51がある。第2接続液路54Sの第2遮断弁51Sよりも第2入力ポート64S側の位置には、第2マスタシリンダ液圧センサ52がある。第2マスタシリンダ液圧センサ52は、マスタシリンダ液圧を検出する。第2遮断弁51をバイパスして第2接続液路54と並列にバイパス液路85がある。バイパス液路85にはチェック弁86がある。チェック弁86は第2入力ポート64の側から第2出力ポート65の側へ向かうブレーキ液の流れのみを許容する。第2接続液路54a~54dには、ソレノイドイン弁71がある。ソレノイドイン弁71をバイパスして第2接続液路54と並列にバイパス液路87がある。バイパス液路87にはチェック弁88がある。チェック弁88は第2出力ポート65の側から第2入力ポート64の側へ向かうブレーキ液の流れのみを許容する。
第2吸入液路55の一端は内部リザーバ63と接続する。第2吸入液路55の他端は第2ポンプ50の第2吸入ポート89と接続する。第2吐出液路56の一端は第2ポンプ50の第2吐出ポート90と接続する。第2吐出液路56の他端は、P系統の吐出液路56PとS系統の吐出液路56Sとに分岐する。両吐出液路56P,56Sは、第2接続液路54の第2遮断弁51よりも第2出力ポート65側の位置と接続する。両吐出液路56P,56Sには第2連通弁70P,70Sがある。第2還流液路57の一端は、第2吐出液路56と両吐出液路56P,56Sとの接続位置と接続する。第2還流液路57の他端は内部リザーバ63と接続する。第2還流液路57には第2調圧弁69がある。減圧液路58の一端は、第2接続液路54のソレノイドイン弁71よりも第2出力ポート65側の位置と接続する。減圧液路58の他端は第2還流液路57と接続する。減圧液路58にはソレノイドアウト弁72がある。
第2接続液路54の一端は第2入力ポート64と接続する。第2接続液路54Pの他端は、第2接続液路54cと第2接続液路54dとに分岐する。第2接続液路54Sの他端は、第2接続液路54aと第2接続液路54bとに分岐する。第2接続液路54a~54dは第2出力ポート65a~65dと接続する。第2接続液路54には第2遮断弁51がある。第2接続液路54Sの第2遮断弁51Sよりも第2入力ポート64S側の位置には、第2マスタシリンダ液圧センサ52がある。第2マスタシリンダ液圧センサ52は、マスタシリンダ液圧を検出する。第2遮断弁51をバイパスして第2接続液路54と並列にバイパス液路85がある。バイパス液路85にはチェック弁86がある。チェック弁86は第2入力ポート64の側から第2出力ポート65の側へ向かうブレーキ液の流れのみを許容する。第2接続液路54a~54dには、ソレノイドイン弁71がある。ソレノイドイン弁71をバイパスして第2接続液路54と並列にバイパス液路87がある。バイパス液路87にはチェック弁88がある。チェック弁88は第2出力ポート65の側から第2入力ポート64の側へ向かうブレーキ液の流れのみを許容する。
第2吸入液路55の一端は内部リザーバ63と接続する。第2吸入液路55の他端は第2ポンプ50の第2吸入ポート89と接続する。第2吐出液路56の一端は第2ポンプ50の第2吐出ポート90と接続する。第2吐出液路56の他端は、P系統の吐出液路56PとS系統の吐出液路56Sとに分岐する。両吐出液路56P,56Sは、第2接続液路54の第2遮断弁51よりも第2出力ポート65側の位置と接続する。両吐出液路56P,56Sには第2連通弁70P,70Sがある。第2還流液路57の一端は、第2吐出液路56と両吐出液路56P,56Sとの接続位置と接続する。第2還流液路57の他端は内部リザーバ63と接続する。第2還流液路57には第2調圧弁69がある。減圧液路58の一端は、第2接続液路54のソレノイドイン弁71よりも第2出力ポート65側の位置と接続する。減圧液路58の他端は第2還流液路57と接続する。減圧液路58にはソレノイドアウト弁72がある。
補給液路59の一端は補給ポート66と接続する。補給液路59の他端は第2還流液路57の第2調圧弁69よりも内部リザーバ63側の位置と接続する。背圧液路60の一端は背圧ポート67と接続する。背圧液路60の他端は、第1シミュレータ液路61の一端と第2シミュレータ液路62の一端との接続位置と接続する。第1シミュレータ液路61の他端は、第2接続液路54Sの第2遮断弁51Sよりも第2出力ポート65S側、かつ、ソレノイドイン弁71a,71bよりも第2入力ポート64S側の位置と接続する。第1シミュレータ液路61にはストロークシミュレータイン弁73がある。ストロークシミュレータイン弁73をバイパスして第1シミュレータ液路61と並列にバイパス液路91がある。バイパス液路91にはチェック弁92がある。チェック弁92は背圧液路60の側から第2接続液路54Sの側へ向かうブレーキ液の流れのみを許容する。第2シミュレータ液路62の他端は、第2還流液路57の補給液路59との接続位置よりも第2調圧弁69側の位置と接続する。第2シミュレータ液路62にはストロークシミュレータアウト弁74がある。ストロークシミュレータアウト弁74をバイパスして第2シミュレータ液路62と並列にバイパス液路93がある。バイパス液路93にはチェック弁94がある。チェック弁94は第2還流液路57の側から背圧液路60の側へ向かうブレーキ液の流れのみを許容する。
次に、ドライバのブレーキ操作が行われたときのブレーキシステムBSの動作を説明する。
実施形態1のマスタシリンダユニット1は、ドライバのブレーキ操作力を倍力する倍力装置を有していない。このため、第2コントロールユニット31Bは、ドライバのブレーキ操作が行われると、以下に示す倍力制御を実施する。図2は、第2コントロールユニット31Bの倍力制御処理の流れを示すフローチャートである。この処理は所定の演算周期で繰り返し実行される。
ステップS1では、ペダルストローク量を入力する。
ステップS2では、ペダルストローク量が倍力開始ストローク量以上であるかを判定する。YESの場合はステップS3へ進み、NOの場合はリターンへ進む。倍力開始ストローク量は倍力制御が必要となる最低限のストローク量である。
ステップS3では、第2遮断弁51を閉弁方向に作動させ、マスタシリンダ12と第2液圧ユニット3との間のブレーキ液の流通を遮断する。また、第2連通弁70を開弁方向に作動させ、P系統の第2接続液路54PとS系統の第2接続液路54Sとを連通させる。さらに、ストロークシミュレータアウト弁74を開弁方向に作動させ、ストロークシミュレータ76の背圧室82から第2接続液路54Sへブレーキ液を排出可能な状態とし、ストロークシミュレータ76を機能させる。
ステップS4では、ペダルストローク量に基づき、所定の倍力比を得るための目標ホイルシリンダ液圧を演算する。
ステップS5では、第2モータ49を所定の回転数で作動させる。また、目標ホイルシリンダ液圧が得られるように第2調圧弁69を比例制御する。
ステップS6では、ペダルストローク量を入力する。
ステップS7では、ペダルストローク量が倍力開始ストローク量よりも小さいかを判定する。YESの場合はステップS8へ進み、NOの場合はステップS4へ戻る。
ステップS8では、第2遮断弁51および第2調圧弁69を開弁し、第2連通弁70およびストロークシミュレータアウト弁74を閉弁し、第2モータ49を停止させる。
以上の動作により、ドライバのブレーキ操作力を低減しつつ、ドライバの要求に応じた車両減速度が得られる。また、ストロークシミュレータ76により良好なペダルフィーリングを実現できる。
実施形態1のマスタシリンダユニット1は、ドライバのブレーキ操作力を倍力する倍力装置を有していない。このため、第2コントロールユニット31Bは、ドライバのブレーキ操作が行われると、以下に示す倍力制御を実施する。図2は、第2コントロールユニット31Bの倍力制御処理の流れを示すフローチャートである。この処理は所定の演算周期で繰り返し実行される。
ステップS1では、ペダルストローク量を入力する。
ステップS2では、ペダルストローク量が倍力開始ストローク量以上であるかを判定する。YESの場合はステップS3へ進み、NOの場合はリターンへ進む。倍力開始ストローク量は倍力制御が必要となる最低限のストローク量である。
ステップS3では、第2遮断弁51を閉弁方向に作動させ、マスタシリンダ12と第2液圧ユニット3との間のブレーキ液の流通を遮断する。また、第2連通弁70を開弁方向に作動させ、P系統の第2接続液路54PとS系統の第2接続液路54Sとを連通させる。さらに、ストロークシミュレータアウト弁74を開弁方向に作動させ、ストロークシミュレータ76の背圧室82から第2接続液路54Sへブレーキ液を排出可能な状態とし、ストロークシミュレータ76を機能させる。
ステップS4では、ペダルストローク量に基づき、所定の倍力比を得るための目標ホイルシリンダ液圧を演算する。
ステップS5では、第2モータ49を所定の回転数で作動させる。また、目標ホイルシリンダ液圧が得られるように第2調圧弁69を比例制御する。
ステップS6では、ペダルストローク量を入力する。
ステップS7では、ペダルストローク量が倍力開始ストローク量よりも小さいかを判定する。YESの場合はステップS8へ進み、NOの場合はステップS4へ戻る。
ステップS8では、第2遮断弁51および第2調圧弁69を開弁し、第2連通弁70およびストロークシミュレータアウト弁74を閉弁し、第2モータ49を停止させる。
以上の動作により、ドライバのブレーキ操作力を低減しつつ、ドライバの要求に応じた車両減速度が得られる。また、ストロークシミュレータ76により良好なペダルフィーリングを実現できる。
一方、第1コントロールユニット31Aは、ドライバのブレーキ操作が行われると、以下に示す第2液圧ユニット3の故障判定制御を実施する。図3は、第1コントロールユニット31Aの倍力制御処理の流れを示すフローチャートである。この処理は所定の演算周期で繰り返し実行される。
ステップS11では、第2液圧ユニット3の状態を入力する。
ステップS12では、第2液圧ユニット3の状態に基づき、ストロークシミュレータアウト弁74が開弁不能な状態であるかを判定する。YESの場合はステップS13へ進み、NOの場合はリターンへ進む。ストロークシミュレータアウト弁74が開弁不能な状態とは、ストロークシミュレータアウト弁74が閉故障している状態(メカ的に閉弁状態から開弁状態に復帰できない状態)や第2コントロールユニット31Bが失陥(電源失陥等)している状態をいう。
ステップS13では、第1液圧ユニット2による倍力制御を実行する。図4に処理の流れを示す。
ステップS11では、第2液圧ユニット3の状態を入力する。
ステップS12では、第2液圧ユニット3の状態に基づき、ストロークシミュレータアウト弁74が開弁不能な状態であるかを判定する。YESの場合はステップS13へ進み、NOの場合はリターンへ進む。ストロークシミュレータアウト弁74が開弁不能な状態とは、ストロークシミュレータアウト弁74が閉故障している状態(メカ的に閉弁状態から開弁状態に復帰できない状態)や第2コントロールユニット31Bが失陥(電源失陥等)している状態をいう。
ステップS13では、第1液圧ユニット2による倍力制御を実行する。図4に処理の流れを示す。
ステップS21では、ペダルストローク量を入力する。
ステップS22では、ペダルストローク量が倍力開始ストローク量以上であるかを判定する。YESの場合はステップS23へ進み、NOの場合はリターンへ進む。倍力開始ストローク量は倍力制御が必要となる最低限のストローク量である。
ステップS23では、第1遮断弁29を閉弁方向に作動させ、マスタシリンダ12と第1液圧ユニット2との間のブレーキ液の流通を遮断する。また、第1連通弁44を開弁方向に作動させ、P系統の第1接続液路32PとS系統の第1接続液路32Sとを連通させる。さらに、ストローク弁45を開弁方向に作動させ、セカンダリ室22Sと内部リザーバ38とを連通させる。これにより、ストロークシミュレータアウト弁74が開弁不能であっても、マスタシリンダ12で発生したブレーキ液圧を内部リザーバ38で吸収できるため、ペダルストロークが可能となる。
ステップS24では、ペダルストローク量に基づき、所定の倍力比を得るための目標ホイルシリンダ液圧を演算する。
ステップS25では、第1モータ27を所定の回転数で作動させる。また、目標ホイルシリンダ液圧が得られるように第1調圧弁43を比例制御する。さらに、ストローク弁45をオンオフ(開閉)制御する。このとき、ペダルストローク量またはマスタシリンダ液圧に応じてストローク弁45のオン時間およびオフ時間を調整する。具体的には、ペダルストローク量が大きいほど、またはマスタシリンダ液圧が高いほどオン時間を短くすることにより、ストロークシミュレータ76の弾性体83によるブレーキ操作反力に近似したブレーキ操作反力を生成できる。これにより、ストロークシミュレータアウト弁74が開弁不能であっても、良好なペダルフィーリングを確保できる。
ステップS26では、ペダルストローク量を入力する。
ステップS27では、ペダルストローク量が倍力開始ストローク量よりも小さいかを判定する。YESの場合はステップS28へ進み、NOの場合はステップS24へ戻る。
ステップS28では、第1遮断弁29および第1調圧弁43を開き、第1連通弁44およびストローク弁45を閉じ、第1モータ27を停止する。
ステップS22では、ペダルストローク量が倍力開始ストローク量以上であるかを判定する。YESの場合はステップS23へ進み、NOの場合はリターンへ進む。倍力開始ストローク量は倍力制御が必要となる最低限のストローク量である。
ステップS23では、第1遮断弁29を閉弁方向に作動させ、マスタシリンダ12と第1液圧ユニット2との間のブレーキ液の流通を遮断する。また、第1連通弁44を開弁方向に作動させ、P系統の第1接続液路32PとS系統の第1接続液路32Sとを連通させる。さらに、ストローク弁45を開弁方向に作動させ、セカンダリ室22Sと内部リザーバ38とを連通させる。これにより、ストロークシミュレータアウト弁74が開弁不能であっても、マスタシリンダ12で発生したブレーキ液圧を内部リザーバ38で吸収できるため、ペダルストロークが可能となる。
ステップS24では、ペダルストローク量に基づき、所定の倍力比を得るための目標ホイルシリンダ液圧を演算する。
ステップS25では、第1モータ27を所定の回転数で作動させる。また、目標ホイルシリンダ液圧が得られるように第1調圧弁43を比例制御する。さらに、ストローク弁45をオンオフ(開閉)制御する。このとき、ペダルストローク量またはマスタシリンダ液圧に応じてストローク弁45のオン時間およびオフ時間を調整する。具体的には、ペダルストローク量が大きいほど、またはマスタシリンダ液圧が高いほどオン時間を短くすることにより、ストロークシミュレータ76の弾性体83によるブレーキ操作反力に近似したブレーキ操作反力を生成できる。これにより、ストロークシミュレータアウト弁74が開弁不能であっても、良好なペダルフィーリングを確保できる。
ステップS26では、ペダルストローク量を入力する。
ステップS27では、ペダルストローク量が倍力開始ストローク量よりも小さいかを判定する。YESの場合はステップS28へ進み、NOの場合はステップS24へ戻る。
ステップS28では、第1遮断弁29および第1調圧弁43を開き、第1連通弁44およびストローク弁45を閉じ、第1モータ27を停止する。
以上のように、実施形態1のブレーキシステムBSは、ストロークシミュレータ76の正圧室81と一端が接続し、第1ポンプ28の吸入側(第1還流液路35)と他端が接続する正圧側第2連通路37と、正圧側第2連通路37に設けられたストローク弁45と、を備える。ストロークシミュレータアウト弁74が開弁不能になると、背圧室82が第2還流液路57から遮断される。よって、ドライバがブレーキペダル8を踏んでも背圧室82からブレーキ液が排出されず、ストロークシミュレータ76が作動不能となる。このとき、実施形態1のブレーキシステムBSでは、ストローク弁45を開弁方向に動作させることにより、マスタシリンダ12で発生したブレーキ液圧を正圧側第2連通路37から内部リザーバ38へと排出でき、内部リザーバ38で吸収できる。よって、ストロークシミュレータアウト弁74が開弁不能となっても、ペダルストロークを確保でき、ブレーキ・バイ・ワイヤ制御を継続できる。また、ストロークシミュレータの冗長化が不要であるため、ブレーキシステムBSの大型化・複雑化を抑制でき、車両搭載性および衝突安全性を向上できる。
ブレーキシステムBSは、ストローク弁45を開閉作動させる第1コントロールユニット31Aと、ストロークシミュレータアウト弁74を開閉作動させる第2コントロールユニット31Bと、を備える。つまり、ストローク弁45の開閉動作を制御するコントロールユニットは、ストロークシミュレータアウト弁74の開閉動作を制御するコントロールユニット(第1コントロールユニット31A)とは別のコントロールユニット(第2コントロールユニット31B)である。これにより、第2コントロールユニット31Bに電源失陥が生じた場合であっても、ストローク弁45を開閉作動でき、ペダルストロークを確保できる。また、第1コントロールユニット31Bに電源失陥が生じた場合であっても、ストロークシミュレータアウト弁74を開弁でき、ペダルストロークを確保できる。つまり、一方のコントロールユニットに電源失陥が生じた場合であっても、ペダルストロークを確保してブレーキ・バイ・ワイヤ制御を継続できる。
第1コントロールユニット31Aは、ストロークシミュレータアウト弁74が開弁不能となったとき、ストローク弁45をオンオフ制御により開閉作動させるため、ペダルストローク量やマスタシリンダ液圧に応じて所望のブレーキ操作反力を生成できる。この結果、良好なペダルフィーリングを実現できる。
ブレーキシステムBSは、ストローク弁45を開閉作動させる第1コントロールユニット31Aと、ストロークシミュレータアウト弁74を開閉作動させる第2コントロールユニット31Bと、を備える。つまり、ストローク弁45の開閉動作を制御するコントロールユニットは、ストロークシミュレータアウト弁74の開閉動作を制御するコントロールユニット(第1コントロールユニット31A)とは別のコントロールユニット(第2コントロールユニット31B)である。これにより、第2コントロールユニット31Bに電源失陥が生じた場合であっても、ストローク弁45を開閉作動でき、ペダルストロークを確保できる。また、第1コントロールユニット31Bに電源失陥が生じた場合であっても、ストロークシミュレータアウト弁74を開弁でき、ペダルストロークを確保できる。つまり、一方のコントロールユニットに電源失陥が生じた場合であっても、ペダルストロークを確保してブレーキ・バイ・ワイヤ制御を継続できる。
第1コントロールユニット31Aは、ストロークシミュレータアウト弁74が開弁不能となったとき、ストローク弁45をオンオフ制御により開閉作動させるため、ペダルストローク量やマスタシリンダ液圧に応じて所望のブレーキ操作反力を生成できる。この結果、良好なペダルフィーリングを実現できる。
ストロークシミュレータユニット53は、第2液圧ユニット3と一体的に設けられ、ストロークシミュレータアウト弁74は、第2液圧ユニット3に設置され、ストローク弁45は、第1液圧ユニット2に設置されている。これにより、第2液圧ユニット3の電源失陥によりストロークシミュレータアウト弁74が開弁不能となった場合であっても、マスタシリンダ12で発生したブレーキ液をリザーバタンク10で吸収できる。よって、ペダルストロークが可能である。また、第1液圧ユニット2および第2液圧ユニット3に搭載された第1コントロールユニット31Aおよび第2コントロールユニット31Bのみで電源失陥に対する冗長化を実現できる。ここで、仮にストローク弁45をマスタシリンダユニット1に設置した場合、ストローク弁45を作動させるために追加のコントロールユニットが必要となり、コストアップを伴う。また、マスタシリンダ周りの大型化・複雑化を招く。実施形態1では、ストローク弁45を第1液圧ユニット2に設置したことにより、コストアップを抑制できる。また、マスタシリンダ周りの大型化・複雑化を抑制できるため、車両搭載性および衝突安全性を向上できる。
正圧側第2連通路37は、ストロークシミュレータ76の正圧室81と一端が接続し、第1ポンプ28の吸入側と他端が接続する。ここで、仮に正圧側第2連通路37の一端を背圧室82側(背圧液路60または背圧液路78b)と接続した場合、第1液圧ユニット2と第2液圧ユニット3との間に配管を追加する必要があるため、液路構成の複雑化を招く。実施形態1では、正圧側第2連通路37を正圧室81側(正圧配管42)と接続したため、液路構成の複雑化を抑制できると。
正圧側第2連通路37は、ストロークシミュレータ76の正圧室81と一端が接続し、第1ポンプ28の吸入側と他端が接続する。ここで、仮に正圧側第2連通路37の一端を背圧室82側(背圧液路60または背圧液路78b)と接続した場合、第1液圧ユニット2と第2液圧ユニット3との間に配管を追加する必要があるため、液路構成の複雑化を招く。実施形態1では、正圧側第2連通路37を正圧室81側(正圧配管42)と接続したため、液路構成の複雑化を抑制できると。
〔実施形態2〕
図5は、実施形態2のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態2のブレーキシステムBSは、正圧側第2連通路37およびストローク弁45がマスタシリンダユニット1に設置されている点、マスタシリンダユニット1が第3コントロールユニット31Cを有する点で実施形態1と相違する。
正圧側第2連通路37の一端はS系統の供給液路18Sと接続する。正圧側第2連通路37の他端はS系統の補給液路17Sと接続する。第3コントロールユニット31Cは、ストローク弁45の開閉動作を制御する。ストローク弁45の動作は実施形態1に準じる。
実施形態2のブレーキシステムBSは、第2コントロールユニット31Bに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、マスタシリンダ12で発生したブレーキ液圧をリザーバタンク10で吸収できる。よって、実施形態1と同様の作用効果を奏する。
図5は、実施形態2のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態2のブレーキシステムBSは、正圧側第2連通路37およびストローク弁45がマスタシリンダユニット1に設置されている点、マスタシリンダユニット1が第3コントロールユニット31Cを有する点で実施形態1と相違する。
正圧側第2連通路37の一端はS系統の供給液路18Sと接続する。正圧側第2連通路37の他端はS系統の補給液路17Sと接続する。第3コントロールユニット31Cは、ストローク弁45の開閉動作を制御する。ストローク弁45の動作は実施形態1に準じる。
実施形態2のブレーキシステムBSは、第2コントロールユニット31Bに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、マスタシリンダ12で発生したブレーキ液圧をリザーバタンク10で吸収できる。よって、実施形態1と同様の作用効果を奏する。
〔実施形態3〕
図6は、実施形態3のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態3のブレーキシステムBSは、ストロークシミュレータユニット53が第1液圧ユニット2と固定されている点、ストロークシミュレータイン弁73およびストロークシミュレータアウト弁74が第1液圧ユニット2に設置されている点で実施形態2と相違する。
第1液圧ユニットハウジング26は、補給ポート66および背圧ポート67を有する。正圧ポート41は、正圧液路78aと接続する。補給ポート66は、補給液路68と接続する。背圧ポート67は、背圧液路78bと接続する。第1液圧ユニットハウジング26は、補給液路59および背圧液路60を有する。補給液路59の一端は補給ポート66と接続する。補給液路59の他端は、第1還流液路35の第1調圧弁43よりも内部リザーバ63側の位置と接続する。背圧液路60の一端は背圧ポート67と接続する。背圧液路60の他端は、第1シミュレータ液路61の一端と第2シミュレータ液路62の一端との接続位置と接続する。第1シミュレータ液路61の他端は、第1接続液路32Sの第1遮断弁29Sと第1出力ポート40Sとの間の位置であって、S系統の吐出液路34Sとの接続位置と接続する。第2シミュレータ液路62の他端は、第1還流液路35の補給液路59との接続位置よりも第1調圧弁43側の位置と接続する。第2コントロールユニット31Bは、ストロークシミュレータイン弁73およびストロークシミュレータアウト弁74の開閉動作を制御する。ストロークシミュレータイン弁73およびストロークシミュレータアウト弁74の動作は実施形態1に準じる。
実施形態3のブレーキシステムBSは、第1コントロールユニット31Aに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、マスタシリンダ12で発生したブレーキ液圧をリザーバタンク10で吸収できる。よって、実施形態1と同様の作用効果を奏する。
図6は、実施形態3のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態3のブレーキシステムBSは、ストロークシミュレータユニット53が第1液圧ユニット2と固定されている点、ストロークシミュレータイン弁73およびストロークシミュレータアウト弁74が第1液圧ユニット2に設置されている点で実施形態2と相違する。
第1液圧ユニットハウジング26は、補給ポート66および背圧ポート67を有する。正圧ポート41は、正圧液路78aと接続する。補給ポート66は、補給液路68と接続する。背圧ポート67は、背圧液路78bと接続する。第1液圧ユニットハウジング26は、補給液路59および背圧液路60を有する。補給液路59の一端は補給ポート66と接続する。補給液路59の他端は、第1還流液路35の第1調圧弁43よりも内部リザーバ63側の位置と接続する。背圧液路60の一端は背圧ポート67と接続する。背圧液路60の他端は、第1シミュレータ液路61の一端と第2シミュレータ液路62の一端との接続位置と接続する。第1シミュレータ液路61の他端は、第1接続液路32Sの第1遮断弁29Sと第1出力ポート40Sとの間の位置であって、S系統の吐出液路34Sとの接続位置と接続する。第2シミュレータ液路62の他端は、第1還流液路35の補給液路59との接続位置よりも第1調圧弁43側の位置と接続する。第2コントロールユニット31Bは、ストロークシミュレータイン弁73およびストロークシミュレータアウト弁74の開閉動作を制御する。ストロークシミュレータイン弁73およびストロークシミュレータアウト弁74の動作は実施形態1に準じる。
実施形態3のブレーキシステムBSは、第1コントロールユニット31Aに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、マスタシリンダ12で発生したブレーキ液圧をリザーバタンク10で吸収できる。よって、実施形態1と同様の作用効果を奏する。
〔実施形態4〕
図7は、実施形態4のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態4のブレーキシステムBSは、正圧側第2連通路37およびストローク弁45が第2液圧ユニット3に設置されている点で実施形態3と相違する。
正圧側第2連通路37の一端は内部リザーバ63と接続する。正圧側第2連通路37の他端は、S系統の第2接続液路54Sの第2遮断弁51Sよりも第2入力ポート64S側の位置と接続する。第2コントロールユニット31Bは、ストローク弁45の開閉動作を制御する。ストローク弁45の動作は実施形態1に準じる。
実施形態4のブレーキシステムBSにおいて、ストロークシミュレータユニット53は、第1液圧ユニット2と一体的に設けられ、ストロークシミュレータアウト弁74は、第1液圧ユニット2に設置され、ストローク弁45は、第2液圧ユニット3に設置されている。これにより、第1コントロールユニット31Aに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、マスタシリンダ12で発生したブレーキ液を内部リザーバ63で吸収できる。よって、実施形態1と同様の作用効果を奏する。
図7は、実施形態4のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態4のブレーキシステムBSは、正圧側第2連通路37およびストローク弁45が第2液圧ユニット3に設置されている点で実施形態3と相違する。
正圧側第2連通路37の一端は内部リザーバ63と接続する。正圧側第2連通路37の他端は、S系統の第2接続液路54Sの第2遮断弁51Sよりも第2入力ポート64S側の位置と接続する。第2コントロールユニット31Bは、ストローク弁45の開閉動作を制御する。ストローク弁45の動作は実施形態1に準じる。
実施形態4のブレーキシステムBSにおいて、ストロークシミュレータユニット53は、第1液圧ユニット2と一体的に設けられ、ストロークシミュレータアウト弁74は、第1液圧ユニット2に設置され、ストローク弁45は、第2液圧ユニット3に設置されている。これにより、第1コントロールユニット31Aに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、マスタシリンダ12で発生したブレーキ液を内部リザーバ63で吸収できる。よって、実施形態1と同様の作用効果を奏する。
〔実施形態5〕
図8は、実施形態5のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態5のブレーキシステムBSは、ストロークシミュレータイン弁73およびストロークシミュレータアウト弁74が、実施形態1と同様に、第2液圧ユニット3に設置されている点で実施形態3と相違する。
背圧配管97の一端は背圧ポート67と接続する。背圧配管97の他端は背圧液路78bと接続する。
実施形態5のブレーキシステムBSは、第2コントロールユニット31Bに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、マスタシリンダ12で発生したブレーキ液圧をリザーバタンク10で吸収できる。よって、実施形態1と同様の作用効果を奏する。
図8は、実施形態5のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態5のブレーキシステムBSは、ストロークシミュレータイン弁73およびストロークシミュレータアウト弁74が、実施形態1と同様に、第2液圧ユニット3に設置されている点で実施形態3と相違する。
背圧配管97の一端は背圧ポート67と接続する。背圧配管97の他端は背圧液路78bと接続する。
実施形態5のブレーキシステムBSは、第2コントロールユニット31Bに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、マスタシリンダ12で発生したブレーキ液圧をリザーバタンク10で吸収できる。よって、実施形態1と同様の作用効果を奏する。
〔実施形態6〕
図9は、実施形態6のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態6のブレーキシステムBSは、正圧側第2連通路37およびストローク弁45が、実施形態1と同様に、第1液圧ユニット2に設置されている点で実施形態5と相違する。
実施形態6のブレーキシステムBSにおいて、ストロークシミュレータユニット53は、第1液圧ユニット2と一体的に設けられ、ストロークシミュレータアウト弁74は、第2液圧ユニット3に設置され、ストローク弁45は、第1液圧ユニット2に設置されている。これにより、第2コントロールユニット31Bに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、マスタシリンダ12で発生したブレーキ液を内部リザーバ38で吸収できる。よって、実施形態1と同様の作用効果を奏する。
図9は、実施形態6のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態6のブレーキシステムBSは、正圧側第2連通路37およびストローク弁45が、実施形態1と同様に、第1液圧ユニット2に設置されている点で実施形態5と相違する。
実施形態6のブレーキシステムBSにおいて、ストロークシミュレータユニット53は、第1液圧ユニット2と一体的に設けられ、ストロークシミュレータアウト弁74は、第2液圧ユニット3に設置され、ストローク弁45は、第1液圧ユニット2に設置されている。これにより、第2コントロールユニット31Bに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、マスタシリンダ12で発生したブレーキ液を内部リザーバ38で吸収できる。よって、実施形態1と同様の作用効果を奏する。
〔実施形態7〕
図10は、実施形態7のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態7のブレーキシステムBSは、ストロークシミュレータイン弁73およびストロークシミュレータアウト弁74がマスタシリンダユニット1に設置されている点、ストロークシミュレータユニット53がマスタシリンダハウジング11の内部に収容されている点、マスタシリンダユニット1が第3コントロールユニット31Cを有する点、正圧側第2連通路37およびストローク弁45が第2液圧ユニット3に設置されている点で実施形態1と相違する。
マスタシリンダハウジング11は、背圧ポート98を有する。背圧ポート98は、背圧配管97の一端と接続する。背圧配管97の他端は背圧ポート67と接続する。マスタシリンダハウジング11は、正圧液路78a、背圧液路78b、第1シミュレータ液路61および第2シミュレータ液路62を有する。正圧液路78aの一端はS系統の供給液路18Sと接続する。正圧液路78aの他端は正圧室81と接続する。背圧液路78bの一端は、第1シミュレータ液路61の一端と第2シミュレータ液路62の一端との接続位置と接続する。背圧液路78bの他端は、背圧室82と接続する。第1シミュレータ液路61の他端は、背圧ポート98と接続する。第2シミュレータ液路62の他端は、S系統の補給液路17Sと接続する。第3コントロールユニット31Cは、ストロークシミュレータイン弁73およびストロークシミュレータアウト弁74の開閉動作を制御する。ストロークシミュレータイン弁73およびストロークシミュレータアウト弁74の動作は実施形態1に準じる。正圧側第2連通路37の一端は内部リザーバ38と接続する。正圧側第2連通路37の他端はS系統の第1接続液路32Sの第1マスタシリンダ液圧センサ30と第1遮断弁29Sとの間の位置と接続する。第1コントロールユニット31Aは、ストローク弁45の開閉動作を制御する。ストローク弁45の動作は実施形態1に準じる。
実施形態7のブレーキシステムBSは、マスタシリンダユニット1に電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、マスタシリンダ12で発生したブレーキ液を内部リザーバ38で吸収できる。よって、実施形態1と同様の作用効果を奏する。
図10は、実施形態7のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態7のブレーキシステムBSは、ストロークシミュレータイン弁73およびストロークシミュレータアウト弁74がマスタシリンダユニット1に設置されている点、ストロークシミュレータユニット53がマスタシリンダハウジング11の内部に収容されている点、マスタシリンダユニット1が第3コントロールユニット31Cを有する点、正圧側第2連通路37およびストローク弁45が第2液圧ユニット3に設置されている点で実施形態1と相違する。
マスタシリンダハウジング11は、背圧ポート98を有する。背圧ポート98は、背圧配管97の一端と接続する。背圧配管97の他端は背圧ポート67と接続する。マスタシリンダハウジング11は、正圧液路78a、背圧液路78b、第1シミュレータ液路61および第2シミュレータ液路62を有する。正圧液路78aの一端はS系統の供給液路18Sと接続する。正圧液路78aの他端は正圧室81と接続する。背圧液路78bの一端は、第1シミュレータ液路61の一端と第2シミュレータ液路62の一端との接続位置と接続する。背圧液路78bの他端は、背圧室82と接続する。第1シミュレータ液路61の他端は、背圧ポート98と接続する。第2シミュレータ液路62の他端は、S系統の補給液路17Sと接続する。第3コントロールユニット31Cは、ストロークシミュレータイン弁73およびストロークシミュレータアウト弁74の開閉動作を制御する。ストロークシミュレータイン弁73およびストロークシミュレータアウト弁74の動作は実施形態1に準じる。正圧側第2連通路37の一端は内部リザーバ38と接続する。正圧側第2連通路37の他端はS系統の第1接続液路32Sの第1マスタシリンダ液圧センサ30と第1遮断弁29Sとの間の位置と接続する。第1コントロールユニット31Aは、ストローク弁45の開閉動作を制御する。ストローク弁45の動作は実施形態1に準じる。
実施形態7のブレーキシステムBSは、マスタシリンダユニット1に電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、マスタシリンダ12で発生したブレーキ液を内部リザーバ38で吸収できる。よって、実施形態1と同様の作用効果を奏する。
〔実施形態8〕
図11は、実施形態8のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態7のブレーキシステムBSは、正圧側第2連通路37およびストローク弁45が、実施形態4と同様に、第2液圧ユニット3に設置されている点で実施形態7と相違する。
第2液圧ユニットハウジング48は、正圧ポート99を有する。正圧側第2連通路37の一端は内部リザーバ63と接続する。正圧側第2連通路37の他端は正圧ポート99と接続する。第2コントロールユニット31Bは、ストローク弁45の開閉動作を制御する。ストローク弁45の動作は実施形態1に準じる。正圧ポート99には、正圧配管100の一端が接続する。マスタシリンダハウジング11は、正圧ポート101および正圧液路102を有する。正圧ポート101には、正圧配管100の他端および正圧液路102の一端と接続する。正圧液路102の他端は、S系統の供給液路18Sの正圧液路78aよりも供給ポート20P側の位置と接続する。
実施形態8のブレーキシステムBSは、マスタシリンダユニット1に電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、マスタシリンダ12で発生したブレーキ液を内部リザーバ63で吸収できる。よって、実施形態1と同様の作用効果を奏する。
図11は、実施形態8のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態7のブレーキシステムBSは、正圧側第2連通路37およびストローク弁45が、実施形態4と同様に、第2液圧ユニット3に設置されている点で実施形態7と相違する。
第2液圧ユニットハウジング48は、正圧ポート99を有する。正圧側第2連通路37の一端は内部リザーバ63と接続する。正圧側第2連通路37の他端は正圧ポート99と接続する。第2コントロールユニット31Bは、ストローク弁45の開閉動作を制御する。ストローク弁45の動作は実施形態1に準じる。正圧ポート99には、正圧配管100の一端が接続する。マスタシリンダハウジング11は、正圧ポート101および正圧液路102を有する。正圧ポート101には、正圧配管100の他端および正圧液路102の一端と接続する。正圧液路102の他端は、S系統の供給液路18Sの正圧液路78aよりも供給ポート20P側の位置と接続する。
実施形態8のブレーキシステムBSは、マスタシリンダユニット1に電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、マスタシリンダ12で発生したブレーキ液を内部リザーバ63で吸収できる。よって、実施形態1と同様の作用効果を奏する。
〔実施形態9〕
図12は、実施形態9のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態9のブレーキシステムBSは、正圧側第2連通路37およびストローク弁45が、実施形態2と同様に、マスタシリンダユニット1に設置されている点、ストロークシミュレータイン弁73およびストロークシミュレータアウト弁74が、実施形態3と同様に、第1液圧ユニット2に設置されている点で実施形態7と相違する。
正圧側第2連通路37の一端はS系統の供給液路18Sと接続する。正圧側第2連通路37の他端は正圧液路78aと接続する。背圧液路78bは背圧配管97の一端と接続する。背圧配管97の他端は第1液圧ユニットハウジング26の背圧ポート67と接続する。
実施形態9のブレーキシステムBSは、第2コントロールユニット31Bに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、マスタシリンダ12で発生したブレーキ液圧をリザーバタンク10で吸収できる。よって、実施形態1と同様の作用効果を奏する。
図12は、実施形態9のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態9のブレーキシステムBSは、正圧側第2連通路37およびストローク弁45が、実施形態2と同様に、マスタシリンダユニット1に設置されている点、ストロークシミュレータイン弁73およびストロークシミュレータアウト弁74が、実施形態3と同様に、第1液圧ユニット2に設置されている点で実施形態7と相違する。
正圧側第2連通路37の一端はS系統の供給液路18Sと接続する。正圧側第2連通路37の他端は正圧液路78aと接続する。背圧液路78bは背圧配管97の一端と接続する。背圧配管97の他端は第1液圧ユニットハウジング26の背圧ポート67と接続する。
実施形態9のブレーキシステムBSは、第2コントロールユニット31Bに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、マスタシリンダ12で発生したブレーキ液圧をリザーバタンク10で吸収できる。よって、実施形態1と同様の作用効果を奏する。
〔実施形態10〕
図13は、実施形態10のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態10のブレーキシステムBSは、正圧側第2連通路37およびストローク弁45が、実施形態4と同様に、第2液圧ユニット3に設置されている点で実施形態9と相違する。
実施形態10において、ストロークシミュレータユニット53は、マスタシリンダユニット1と一体的に設けられ、ストロークシミュレータアウト弁74は、第1液圧ユニット2に設置され、ストローク弁45は、第2液圧ユニット3に設置されている。これにより、第1コントロールユニット31Aに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、マスタシリンダ12で発生したブレーキ液を内部リザーバ63で吸収できる。よって、実施形態1と同様の作用効果を奏する。
図13は、実施形態10のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態10のブレーキシステムBSは、正圧側第2連通路37およびストローク弁45が、実施形態4と同様に、第2液圧ユニット3に設置されている点で実施形態9と相違する。
実施形態10において、ストロークシミュレータユニット53は、マスタシリンダユニット1と一体的に設けられ、ストロークシミュレータアウト弁74は、第1液圧ユニット2に設置され、ストローク弁45は、第2液圧ユニット3に設置されている。これにより、第1コントロールユニット31Aに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、マスタシリンダ12で発生したブレーキ液を内部リザーバ63で吸収できる。よって、実施形態1と同様の作用効果を奏する。
〔実施形態11〕
図14は、実施形態11のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態11のブレーキシステムBSは、ストロークシミュレータイン弁73およびストロークシミュレータアウト弁74が、実施形態1と同様に、第2液圧ユニット3に設置されている点で実施形態9と相違する。背圧ポート67と背圧液路78bは、実施形態5と同様、背圧配管97により接続される。
実施形態11のブレーキシステムBSは、第2コントロールユニット31Bに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、マスタシリンダ12で発生したブレーキ液圧をリザーバタンク10で吸収できる。よって、実施形態1と同様の作用効果を奏する。
図14は、実施形態11のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態11のブレーキシステムBSは、ストロークシミュレータイン弁73およびストロークシミュレータアウト弁74が、実施形態1と同様に、第2液圧ユニット3に設置されている点で実施形態9と相違する。背圧ポート67と背圧液路78bは、実施形態5と同様、背圧配管97により接続される。
実施形態11のブレーキシステムBSは、第2コントロールユニット31Bに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、マスタシリンダ12で発生したブレーキ液圧をリザーバタンク10で吸収できる。よって、実施形態1と同様の作用効果を奏する。
〔実施形態12〕
図15は、実施形態12のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態12のブレーキシステムBSは、正圧側第2連通路37およびストローク弁45が、実施形態7と同様に、第1液圧ユニット2に設置されている点で実施形態11と相違する。
実施形態12のブレーキシステムBSにおいて、ストロークシミュレータユニット53は、マスタシリンダユニット1と一体的に設けられ、ストロークシミュレータアウト弁74は、第2液圧ユニット3に設置され、ストローク弁45は、第1液圧ユニット2に設置されているブレーキシステム。これにより、第2コントロールユニット31Bに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、マスタシリンダ12で発生したブレーキ液を内部リザーバ38で吸収できる。よって、実施形態1と同様の作用効果を奏する。
図15は、実施形態12のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態12のブレーキシステムBSは、正圧側第2連通路37およびストローク弁45が、実施形態7と同様に、第1液圧ユニット2に設置されている点で実施形態11と相違する。
実施形態12のブレーキシステムBSにおいて、ストロークシミュレータユニット53は、マスタシリンダユニット1と一体的に設けられ、ストロークシミュレータアウト弁74は、第2液圧ユニット3に設置され、ストローク弁45は、第1液圧ユニット2に設置されているブレーキシステム。これにより、第2コントロールユニット31Bに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、マスタシリンダ12で発生したブレーキ液を内部リザーバ38で吸収できる。よって、実施形態1と同様の作用効果を奏する。
〔実施形態13〕
図16は、実施形態13のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態13のブレーキシステムBSは、正圧側第2連通路37およびストローク弁45がストロークシミュレータハウジング103に設置されている点、ストロークシミュレータユニット53がストロークシミュレータハウジング103の内部に収容されている点で実施形態4と相違する。
ストロークシミュレータハウジング103は、正圧ポート104、補給ポート105および背圧ポート106を有する。正圧ポート104は正圧液路78aと接続する。補給ポート105は補給液路68と接続する。背圧ポート106は背圧液路78bと接続する。正圧側第2連通路37の一端は正圧液路78aと接続する。正圧側第2連通路37の他端は補給液路68と接続する。ストロークシミュレータハウジング103は、第4コントロールユニット31Dを有する。第4コントロールユニット31Dは、ストローク弁45の開閉動作を制御する。ストローク弁45の動作は実施形態1に準じる。正圧ポート104と正圧ポート41は、正圧配管107を介して接続する。補給ポート105と補給ポート66は、補給配管108を介して接続する。背圧ポート106と背圧ポート67は、背圧配管109を介して接続する。
実施形態13のブレーキシステムBSは、第1コントロールユニット31Aに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、マスタシリンダ12で発生したブレーキ液圧を内部リザーバ38で吸収できる。よって、実施形態1と同様の作用効果を奏する。
図16は、実施形態13のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態13のブレーキシステムBSは、正圧側第2連通路37およびストローク弁45がストロークシミュレータハウジング103に設置されている点、ストロークシミュレータユニット53がストロークシミュレータハウジング103の内部に収容されている点で実施形態4と相違する。
ストロークシミュレータハウジング103は、正圧ポート104、補給ポート105および背圧ポート106を有する。正圧ポート104は正圧液路78aと接続する。補給ポート105は補給液路68と接続する。背圧ポート106は背圧液路78bと接続する。正圧側第2連通路37の一端は正圧液路78aと接続する。正圧側第2連通路37の他端は補給液路68と接続する。ストロークシミュレータハウジング103は、第4コントロールユニット31Dを有する。第4コントロールユニット31Dは、ストローク弁45の開閉動作を制御する。ストローク弁45の動作は実施形態1に準じる。正圧ポート104と正圧ポート41は、正圧配管107を介して接続する。補給ポート105と補給ポート66は、補給配管108を介して接続する。背圧ポート106と背圧ポート67は、背圧配管109を介して接続する。
実施形態13のブレーキシステムBSは、第1コントロールユニット31Aに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、マスタシリンダ12で発生したブレーキ液圧を内部リザーバ38で吸収できる。よって、実施形態1と同様の作用効果を奏する。
〔実施形態14〕
図17は、実施形態14のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態14のブレーキシステムBSは、ストロークシミュレータイン弁73およびストロークシミュレータアウト弁74が、実施形態1と同様に、第2液圧ユニット3に設置されている点で実施形態13と相違する。
実施形態14のブレーキシステムBSは、第2コントロールユニット31Bに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、マスタシリンダ12で発生したブレーキ液圧を内部リザーバ38で吸収できる。よって、実施形態1と同様の作用効果を奏する。
図17は、実施形態14のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態14のブレーキシステムBSは、ストロークシミュレータイン弁73およびストロークシミュレータアウト弁74が、実施形態1と同様に、第2液圧ユニット3に設置されている点で実施形態13と相違する。
実施形態14のブレーキシステムBSは、第2コントロールユニット31Bに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、マスタシリンダ12で発生したブレーキ液圧を内部リザーバ38で吸収できる。よって、実施形態1と同様の作用効果を奏する。
〔実施形態15〕
図18は、実施形態15のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態15のブレーキシステムBSは、正圧側第2連通路37およびストローク弁45が、実施形態6と同様に、第1液圧ユニット2に設置されている点、ストロークシミュレータイン弁73およびストロークシミュレータアウト弁74がストロークシミュレータハウジング103に設置されている点で実施形態14と相違する。
背圧液路78bは、第1シミュレータ液路61の一端と第2シミュレータ液路62の一端との接続位置と接続する。第1シミュレータ液路61の他端は背圧ポート106と接続する。第2シミュレータ液路62の他端は補給液路68と接続する。第4コントロールユニット31Dは、ストロークシミュレータイン弁73およびストロークシミュレータアウト弁74の開閉動作を制御する。ストロークシミュレータイン弁73およびストロークシミュレータアウト弁74の動作は実施形態1に準じる。
実施形態15のブレーキシステムBSは、第4コントロールユニット31Dに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、マスタシリンダ12で発生したブレーキ液圧を内部リザーバ38で吸収できる。よって、実施形態1と同様の作用効果を奏する。
図18は、実施形態15のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態15のブレーキシステムBSは、正圧側第2連通路37およびストローク弁45が、実施形態6と同様に、第1液圧ユニット2に設置されている点、ストロークシミュレータイン弁73およびストロークシミュレータアウト弁74がストロークシミュレータハウジング103に設置されている点で実施形態14と相違する。
背圧液路78bは、第1シミュレータ液路61の一端と第2シミュレータ液路62の一端との接続位置と接続する。第1シミュレータ液路61の他端は背圧ポート106と接続する。第2シミュレータ液路62の他端は補給液路68と接続する。第4コントロールユニット31Dは、ストロークシミュレータイン弁73およびストロークシミュレータアウト弁74の開閉動作を制御する。ストロークシミュレータイン弁73およびストロークシミュレータアウト弁74の動作は実施形態1に準じる。
実施形態15のブレーキシステムBSは、第4コントロールユニット31Dに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、マスタシリンダ12で発生したブレーキ液圧を内部リザーバ38で吸収できる。よって、実施形態1と同様の作用効果を奏する。
〔実施形態16〕
図19は、実施形態16のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態16のブレーキシステムBSは、正圧側第2連通路37およびストローク弁45が、実施形態4と同様に、第2液圧ユニット3に設置されている点で実施形態15と相違する。
実施形態16のブレーキシステムBSは、第4コントロールユニット31Dに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、マスタシリンダ12で発生したブレーキ液圧を内部リザーバ63で吸収できる。よって、実施形態1と同様の作用効果を奏する。
図19は、実施形態16のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態16のブレーキシステムBSは、正圧側第2連通路37およびストローク弁45が、実施形態4と同様に、第2液圧ユニット3に設置されている点で実施形態15と相違する。
実施形態16のブレーキシステムBSは、第4コントロールユニット31Dに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、マスタシリンダ12で発生したブレーキ液圧を内部リザーバ63で吸収できる。よって、実施形態1と同様の作用効果を奏する。
〔実施形態17〕
図20は、実施形態17のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態17のブレーキシステムBSは、正圧側第2連通路37に代えて背圧側第2連通路110を有する点で実施形態1と相違する。
第1液圧ユニットハウジング26は、背圧ポート111を有する。背圧側第2連通路110の一端は第1還流液路35と接続する。背圧側第2連通路110の他端は背圧ポート111と接続する。背圧側第2連通路110にはストローク弁45がある。ストローク弁45の動作は実施形態1に準じる。第2液圧ユニットハウジング48は、背圧ポート112および背圧液路113を有する。背圧ポート111と背圧ポート112は背圧配管114を介して接続する。背圧液路113の一端は背圧ポート112と接続する。背圧液路113の他端は背圧液路60と接続する。
実施形態17のブレーキシステムBSは、ストロークシミュレータ76の背圧室82と一端が接続し、第2ポンプ50の吸入側(第1還流液路35)と他端が接続する背圧側第2連通路110と、背圧側第2連通路110に設けられたストローク弁45と、を備える。これにより、第2コントロールユニット31Bに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、ストローク弁45を開弁方向に動作させることにより、背圧室82のブレーキ液圧を背圧液路113、背圧配管114、背圧側第2連通路110から内部リザーバ38へと排出でき、内部リザーバ38で吸収できる。よって、実施形態1と同様の作用効果を奏する。
また、ストロークシミュレータアウト弁74が開弁不能となってもストロークシミュレータ76が機能するため、所望のブレーキ操作反力を生成できる。この結果、良好なペダルフィーリングを実現できる。
図20は、実施形態17のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態17のブレーキシステムBSは、正圧側第2連通路37に代えて背圧側第2連通路110を有する点で実施形態1と相違する。
第1液圧ユニットハウジング26は、背圧ポート111を有する。背圧側第2連通路110の一端は第1還流液路35と接続する。背圧側第2連通路110の他端は背圧ポート111と接続する。背圧側第2連通路110にはストローク弁45がある。ストローク弁45の動作は実施形態1に準じる。第2液圧ユニットハウジング48は、背圧ポート112および背圧液路113を有する。背圧ポート111と背圧ポート112は背圧配管114を介して接続する。背圧液路113の一端は背圧ポート112と接続する。背圧液路113の他端は背圧液路60と接続する。
実施形態17のブレーキシステムBSは、ストロークシミュレータ76の背圧室82と一端が接続し、第2ポンプ50の吸入側(第1還流液路35)と他端が接続する背圧側第2連通路110と、背圧側第2連通路110に設けられたストローク弁45と、を備える。これにより、第2コントロールユニット31Bに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、ストローク弁45を開弁方向に動作させることにより、背圧室82のブレーキ液圧を背圧液路113、背圧配管114、背圧側第2連通路110から内部リザーバ38へと排出でき、内部リザーバ38で吸収できる。よって、実施形態1と同様の作用効果を奏する。
また、ストロークシミュレータアウト弁74が開弁不能となってもストロークシミュレータ76が機能するため、所望のブレーキ操作反力を生成できる。この結果、良好なペダルフィーリングを実現できる。
〔実施形態18〕
図21は、実施形態18のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態18のブレーキシステムBSは、正圧側第2連通路37に代えて背圧側第2連通路110を有する点で実施形態2と相違する。
マスタシリンダハウジング11は、背圧ポート111を有する。背圧側第2連通路110の一端はS系統の補給液路17Sと接続する。背圧側第2連通路110の他端は背圧ポート111と接続する。背圧側第2連通路110にはストローク弁45がある。背圧ポート111は、背圧配管114を介して背圧ポート112と接続する。背圧ポート112は、背圧液路113を介して背圧液路60と接続する。
実施形態18のブレーキシステムBSは、第4コントロールユニット31Dに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、背圧室82のブレーキ液圧をリザーバタンク10で吸収できる。よって、実施形態17と同様の作用効果を奏する。
図21は、実施形態18のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態18のブレーキシステムBSは、正圧側第2連通路37に代えて背圧側第2連通路110を有する点で実施形態2と相違する。
マスタシリンダハウジング11は、背圧ポート111を有する。背圧側第2連通路110の一端はS系統の補給液路17Sと接続する。背圧側第2連通路110の他端は背圧ポート111と接続する。背圧側第2連通路110にはストローク弁45がある。背圧ポート111は、背圧配管114を介して背圧ポート112と接続する。背圧ポート112は、背圧液路113を介して背圧液路60と接続する。
実施形態18のブレーキシステムBSは、第4コントロールユニット31Dに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、背圧室82のブレーキ液圧をリザーバタンク10で吸収できる。よって、実施形態17と同様の作用効果を奏する。
〔実施形態19〕
図22は、実施形態19のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態19のブレーキシステムBSは、正圧側第2連通路37に代えて背圧側第2連通路110を有する点で実施形態3と相違する。
マスタシリンダハウジング11は、背圧ポート111を有する。背圧側第2連通路110の一端はS系統の補給液路17Sと接続する。背圧側第2連通路110の他端は背圧ポート111と接続する。背圧側第2連通路110にはストローク弁45がある。背圧ポート111は、背圧配管114を介して背圧ポート112と接続する。背圧ポート112は、背圧液路113を介して背圧液路60と接続する。
実施形態19のブレーキシステムBSは、第1コントロールユニット31Aに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、背圧室82のブレーキ液圧をリザーバタンク10で吸収できる。よって、実施形態17と同様の作用効果を奏する。
図22は、実施形態19のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態19のブレーキシステムBSは、正圧側第2連通路37に代えて背圧側第2連通路110を有する点で実施形態3と相違する。
マスタシリンダハウジング11は、背圧ポート111を有する。背圧側第2連通路110の一端はS系統の補給液路17Sと接続する。背圧側第2連通路110の他端は背圧ポート111と接続する。背圧側第2連通路110にはストローク弁45がある。背圧ポート111は、背圧配管114を介して背圧ポート112と接続する。背圧ポート112は、背圧液路113を介して背圧液路60と接続する。
実施形態19のブレーキシステムBSは、第1コントロールユニット31Aに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、背圧室82のブレーキ液圧をリザーバタンク10で吸収できる。よって、実施形態17と同様の作用効果を奏する。
〔実施形態20〕
図23は、実施形態20のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態20のブレーキシステムBSは、正圧側第2連通路37に代えて背圧側第2連通路110を有する点で実施形態4と相違する。
第2液圧ユニットハウジング48は、背圧ポート111を有する。背圧側第2連通路110の一端はS系統の補給液路17Sと接続する。背圧側第2連通路110の他端は背圧ポート111と接続する。背圧側第2連通路110にはストローク弁45がある。第1液圧ユニットハウジング26は、背圧ポート112および背圧液路113を有する。背圧ポート112は、背圧配管114を介して背圧ポート111と接続する。背圧液路113の一端は背圧ポート112と接続する。背圧ポート113の他端は背圧液路60と接続する。
実施形態20のブレーキシステムBSは、第2コントロールユニット31Bに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、背圧室82のブレーキ液圧を内部リザーバ38で吸収できる。よって、実施形態17と同様の作用効果を奏する。
図23は、実施形態20のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態20のブレーキシステムBSは、正圧側第2連通路37に代えて背圧側第2連通路110を有する点で実施形態4と相違する。
第2液圧ユニットハウジング48は、背圧ポート111を有する。背圧側第2連通路110の一端はS系統の補給液路17Sと接続する。背圧側第2連通路110の他端は背圧ポート111と接続する。背圧側第2連通路110にはストローク弁45がある。第1液圧ユニットハウジング26は、背圧ポート112および背圧液路113を有する。背圧ポート112は、背圧配管114を介して背圧ポート111と接続する。背圧液路113の一端は背圧ポート112と接続する。背圧ポート113の他端は背圧液路60と接続する。
実施形態20のブレーキシステムBSは、第2コントロールユニット31Bに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、背圧室82のブレーキ液圧を内部リザーバ38で吸収できる。よって、実施形態17と同様の作用効果を奏する。
〔実施形態21〕
図24は、実施形態21のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態21のブレーキシステムBSは、正圧側第2連通路37に代えて背圧側第2連通路110を有する点で実施形態5と相違する。
マスタシリンダハウジング11は、背圧ポート111を有する。背圧側第2連通路110の一端はS系統の補給液路17Sと接続する。背圧側第2連通路110の他端は背圧ポート111と接続する。背圧側第2連通路110にはストローク弁45がある。第1液圧ユニットハウジング26は、背圧ポート112および背圧液路113を有する。背圧ポート112は、背圧配管114を介して背圧ポート111と接続する。背圧液路113の一端は背圧ポート112と接続する。背圧液路113の他端はストロークシミュレータ76の背圧液路78cと接続する。背圧液路78cは背圧室82と接続する。
実施形態21のブレーキシステムBSでは、第2コントロールユニット31Bに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、背圧室82のブレーキ液圧をリザーバタンク10で吸収できる。よって、実施形態17と同様の作用効果を奏する。
図24は、実施形態21のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態21のブレーキシステムBSは、正圧側第2連通路37に代えて背圧側第2連通路110を有する点で実施形態5と相違する。
マスタシリンダハウジング11は、背圧ポート111を有する。背圧側第2連通路110の一端はS系統の補給液路17Sと接続する。背圧側第2連通路110の他端は背圧ポート111と接続する。背圧側第2連通路110にはストローク弁45がある。第1液圧ユニットハウジング26は、背圧ポート112および背圧液路113を有する。背圧ポート112は、背圧配管114を介して背圧ポート111と接続する。背圧液路113の一端は背圧ポート112と接続する。背圧液路113の他端はストロークシミュレータ76の背圧液路78cと接続する。背圧液路78cは背圧室82と接続する。
実施形態21のブレーキシステムBSでは、第2コントロールユニット31Bに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、背圧室82のブレーキ液圧をリザーバタンク10で吸収できる。よって、実施形態17と同様の作用効果を奏する。
〔実施形態22〕
図25は、実施形態22のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態22のブレーキシステムBSは、正圧側第2連通路37に代えて背圧側第2連通路110を有する点で実施形態6と相違する。
第1液圧ユニットハウジング26は、背圧ポート67aを有する。背圧側第2連通路110の一端は背圧ポート67aと接続する。背圧側第2連通路110の他端は第1還流液路35と接続する。背圧側第2連通路110にはストローク弁45がある。背圧ポート67aはストロークシミュレータ76の背圧液路78cと接続する。背圧液路78cは背圧室82と接続する。
実施形態22のブレーキシステムBSは、第2コントロールユニット31Bに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、背圧室82のブレーキ液圧を内部リザーバ38で吸収できる。よって、実施形態17と同様の作用効果を奏する。
図25は、実施形態22のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態22のブレーキシステムBSは、正圧側第2連通路37に代えて背圧側第2連通路110を有する点で実施形態6と相違する。
第1液圧ユニットハウジング26は、背圧ポート67aを有する。背圧側第2連通路110の一端は背圧ポート67aと接続する。背圧側第2連通路110の他端は第1還流液路35と接続する。背圧側第2連通路110にはストローク弁45がある。背圧ポート67aはストロークシミュレータ76の背圧液路78cと接続する。背圧液路78cは背圧室82と接続する。
実施形態22のブレーキシステムBSは、第2コントロールユニット31Bに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、背圧室82のブレーキ液圧を内部リザーバ38で吸収できる。よって、実施形態17と同様の作用効果を奏する。
〔実施形態23〕
図26は、実施形態23のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態23のブレーキシステムBSは、正圧側第2連通路37に代えて背圧側第2連通路110を有する点で実施形態7と相違する。
第1液圧ユニットハウジング26は、背圧ポート111を有する。背圧側第2連通路110の一端は内部リザーバ38と接続する。背圧側第2連通路110の他端は背圧ポート111と接続する。背圧側第2連通路110にはストローク弁45がある。マスタシリンダハウジング11は、背圧ポート115および背圧液路117を有する。背圧ポート115は、背圧配管116を介して背圧ポート111と接続する。背圧液路117の一端は背圧ポート115と接続する。背圧液路117の他端は、第1シミュレータ液路61の一端と第2シミュレータ液路62の一端との接続位置と接続する。
実施形態23のブレーキシステムBSは、マスタシリンダユニット1に電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、背圧室82のブレーキ液圧を内部リザーバ38で吸収できる。よって、実施形態17と同様の作用効果を奏する。
図26は、実施形態23のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態23のブレーキシステムBSは、正圧側第2連通路37に代えて背圧側第2連通路110を有する点で実施形態7と相違する。
第1液圧ユニットハウジング26は、背圧ポート111を有する。背圧側第2連通路110の一端は内部リザーバ38と接続する。背圧側第2連通路110の他端は背圧ポート111と接続する。背圧側第2連通路110にはストローク弁45がある。マスタシリンダハウジング11は、背圧ポート115および背圧液路117を有する。背圧ポート115は、背圧配管116を介して背圧ポート111と接続する。背圧液路117の一端は背圧ポート115と接続する。背圧液路117の他端は、第1シミュレータ液路61の一端と第2シミュレータ液路62の一端との接続位置と接続する。
実施形態23のブレーキシステムBSは、マスタシリンダユニット1に電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、背圧室82のブレーキ液圧を内部リザーバ38で吸収できる。よって、実施形態17と同様の作用効果を奏する。
〔実施形態24〕
図27は、実施形態24のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態24のブレーキシステムBSは、正圧側第2連通路37に代えて背圧側第2連通路110を有する点で実施形態8と相違する。
第2液圧ユニットハウジング48は、背圧ポート111を有する。背圧側第2連通路110の一端は内部リザーバ63と接続する。背圧側第2連通路110の他端は背圧ポート111と接続する。背圧側第2連通路110にはストローク弁45がある。マスタシリンダハウジング11は、背圧ポート115および背圧液路117を有する。背圧ポート115は、背圧配管116を介して背圧ポート111と接続する。背圧液路117の一端は背圧ポート115と接続する。背圧ポート117の他端は、第1シミュレータ液路61の一端と第2シミュレータ液路62の一端との接続位置と接続する。
実施形態24のブレーキシステムBSは、マスタシリンダユニット1に電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、背圧室82のブレーキ液圧を内部リザーバ63で吸収できる。よって、実施形態17と同様の作用効果を奏する。
図27は、実施形態24のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態24のブレーキシステムBSは、正圧側第2連通路37に代えて背圧側第2連通路110を有する点で実施形態8と相違する。
第2液圧ユニットハウジング48は、背圧ポート111を有する。背圧側第2連通路110の一端は内部リザーバ63と接続する。背圧側第2連通路110の他端は背圧ポート111と接続する。背圧側第2連通路110にはストローク弁45がある。マスタシリンダハウジング11は、背圧ポート115および背圧液路117を有する。背圧ポート115は、背圧配管116を介して背圧ポート111と接続する。背圧液路117の一端は背圧ポート115と接続する。背圧ポート117の他端は、第1シミュレータ液路61の一端と第2シミュレータ液路62の一端との接続位置と接続する。
実施形態24のブレーキシステムBSは、マスタシリンダユニット1に電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、背圧室82のブレーキ液圧を内部リザーバ63で吸収できる。よって、実施形態17と同様の作用効果を奏する。
〔実施形態25〕
図28は、実施形態25のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態25のブレーキシステムBSは、正圧側第2連通路37に代えて背圧側第2連通路110を有する点で実施形態9と相違する。
背圧側第2連通路110の一端はS系統の補給液路17Sと接続する。背圧側第2連通路110の他端は背圧室82と接続する。背圧側第2連通路110にはストローク弁45がある。
実施形態25のブレーキシステムBSは、第2コントロールユニット31Bに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、背圧室82のブレーキ液圧をリザーバタンク10で吸収できる。よって、実施形態17と同様の作用効果を奏する。
図28は、実施形態25のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態25のブレーキシステムBSは、正圧側第2連通路37に代えて背圧側第2連通路110を有する点で実施形態9と相違する。
背圧側第2連通路110の一端はS系統の補給液路17Sと接続する。背圧側第2連通路110の他端は背圧室82と接続する。背圧側第2連通路110にはストローク弁45がある。
実施形態25のブレーキシステムBSは、第2コントロールユニット31Bに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、背圧室82のブレーキ液圧をリザーバタンク10で吸収できる。よって、実施形態17と同様の作用効果を奏する。
〔実施形態26〕
図29は、実施形態26のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態26のブレーキシステムBSは、正圧側第2連通路37に代えて背圧側第2連通路110を有する点で実施形態10と相違する。
第2液圧ユニットハウジング48は、背圧ポート111を有する。背圧側第2連通路110の一端は内部リザーバ63と接続する。背圧側第2連通路110の他端は背圧ポート111と接続する。背圧側第2連通路110にはストローク弁45がある。第1液圧ユニットハウジング26は、背圧ポート112および背圧液路113を有する。背圧ポート112は、背圧配管114を介して背圧ポート111と接続する。背圧液路113の一端は背圧ポート112と接続する。背圧液路113の他端は背圧液路60と接続する。
実施形態26のブレーキシステムBSは、第1コントロールユニット31Aに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、背圧室82のブレーキ液圧を内部リザーバ63で吸収できる。よって、実施形態17と同様の作用効果を奏する。
図29は、実施形態26のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態26のブレーキシステムBSは、正圧側第2連通路37に代えて背圧側第2連通路110を有する点で実施形態10と相違する。
第2液圧ユニットハウジング48は、背圧ポート111を有する。背圧側第2連通路110の一端は内部リザーバ63と接続する。背圧側第2連通路110の他端は背圧ポート111と接続する。背圧側第2連通路110にはストローク弁45がある。第1液圧ユニットハウジング26は、背圧ポート112および背圧液路113を有する。背圧ポート112は、背圧配管114を介して背圧ポート111と接続する。背圧液路113の一端は背圧ポート112と接続する。背圧液路113の他端は背圧液路60と接続する。
実施形態26のブレーキシステムBSは、第1コントロールユニット31Aに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、背圧室82のブレーキ液圧を内部リザーバ63で吸収できる。よって、実施形態17と同様の作用効果を奏する。
〔実施形態27〕
図30は、実施形態27のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態27のブレーキシステムBSは、正圧側第2連通路37に代えて背圧側第2連通路110を有する点で実施形態11と相違する。背圧側第2連通路110の一端はS系統の補給液路17Sと接続する。背圧側第2連通路110の他端は背圧室82と接続する。背圧側第2連通路110にはストローク弁45がある。
実施形態27のブレーキシステムBSは、第2コントロールユニット31Bに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、背圧室82のブレーキ液圧をリザーバタンク10で吸収できる。よって、実施形態17と同様の作用効果を奏する。
図30は、実施形態27のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態27のブレーキシステムBSは、正圧側第2連通路37に代えて背圧側第2連通路110を有する点で実施形態11と相違する。背圧側第2連通路110の一端はS系統の補給液路17Sと接続する。背圧側第2連通路110の他端は背圧室82と接続する。背圧側第2連通路110にはストローク弁45がある。
実施形態27のブレーキシステムBSは、第2コントロールユニット31Bに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、背圧室82のブレーキ液圧をリザーバタンク10で吸収できる。よって、実施形態17と同様の作用効果を奏する。
〔実施形態28〕
図31は、実施形態28のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態28のブレーキシステムBSは、正圧側第2連通路37に代えて背圧側第2連通路110を有する点で実施形態12と相違する。
第1液圧ユニットハウジング26は、背圧ポート111を有する。背圧ポート111は、背圧配管114を介して背圧配管97と接続する。背圧側第2連通路110の一端は背圧ポート111と接続する。背圧側第2連通路110の他端は内部リザーバ38と接続する。背圧側第2連通路110にはストローク弁45がある。
実施形態28のブレーキシステムBSは、第2コントロールユニット31Bに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、背圧室82のブレーキ液圧を内部リザーバ38で吸収できる。よって、実施形態17と同様の作用効果を奏する。
図31は、実施形態28のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態28のブレーキシステムBSは、正圧側第2連通路37に代えて背圧側第2連通路110を有する点で実施形態12と相違する。
第1液圧ユニットハウジング26は、背圧ポート111を有する。背圧ポート111は、背圧配管114を介して背圧配管97と接続する。背圧側第2連通路110の一端は背圧ポート111と接続する。背圧側第2連通路110の他端は内部リザーバ38と接続する。背圧側第2連通路110にはストローク弁45がある。
実施形態28のブレーキシステムBSは、第2コントロールユニット31Bに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、背圧室82のブレーキ液圧を内部リザーバ38で吸収できる。よって、実施形態17と同様の作用効果を奏する。
〔実施形態29〕
図32は、実施形態29のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態29のブレーキシステムBSは、正圧側第2連通路37に代えて背圧側第2連通路110を有する点で実施形態13と相違する。背圧側第2連通路110の一端は補給液路68と接続する。背圧側第2連通路110の他端は背圧液路68と接続する。背圧側第2連通路110にはストローク弁45がある。
実施形態29のブレーキシステムBSは、第1コントロールユニット31Aに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、背圧室82のブレーキ液圧を内部リザーバ38で吸収できる。よって、実施形態17と同様の作用効果を奏する。
図32は、実施形態29のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態29のブレーキシステムBSは、正圧側第2連通路37に代えて背圧側第2連通路110を有する点で実施形態13と相違する。背圧側第2連通路110の一端は補給液路68と接続する。背圧側第2連通路110の他端は背圧液路68と接続する。背圧側第2連通路110にはストローク弁45がある。
実施形態29のブレーキシステムBSは、第1コントロールユニット31Aに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、背圧室82のブレーキ液圧を内部リザーバ38で吸収できる。よって、実施形態17と同様の作用効果を奏する。
〔実施形態30〕
図33は、実施形態30のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態30のブレーキシステムBSは、正圧側第2連通路37に代えて背圧側第2連通路110を有する点で実施形態14と相違する。背圧側第2連通路110の一端は補給液路68と接続する。背圧側第2連通路110の他端は背圧液路78bと接続する。背圧側第2連通路110にはストローク弁45がある。
実施形態30のブレーキシステムBSは、第2コントロールユニット31Bに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、背圧室82のブレーキ液圧を内部リザーバ38で吸収できる。よって、実施形態17と同様の作用効果を奏する。
図33は、実施形態30のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態30のブレーキシステムBSは、正圧側第2連通路37に代えて背圧側第2連通路110を有する点で実施形態14と相違する。背圧側第2連通路110の一端は補給液路68と接続する。背圧側第2連通路110の他端は背圧液路78bと接続する。背圧側第2連通路110にはストローク弁45がある。
実施形態30のブレーキシステムBSは、第2コントロールユニット31Bに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、背圧室82のブレーキ液圧を内部リザーバ38で吸収できる。よって、実施形態17と同様の作用効果を奏する。
〔実施形態31〕
図34は、実施形態31のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態31のブレーキシステムBSは、正圧側第2連通路37に代えて背圧側第2連通路110を有する点で実施形態15と相違する。
ストロークシミュレータハウジング103は、背圧ポート111を有する。背圧側第2連通路110の一端は第1還流液路35と接続する。背圧側第2連通路110の他端は背圧ポート111と接続する。背圧側第2連通路110にはストローク弁45がある。第2液圧ユニットハウジング26は、背圧ポート118および背圧液路120を有する。背圧ポート118は、背圧配管119を介して背圧ポート111と接続する。背圧液路120の一端は背圧ポート118と接続する。背圧液路120の他端は、第1シミュレータ液路61の一端と第2シミュレータ液路62の一端との接続位置と接続する。
実施形態31のブレーキシステムBSは、第4コントロールユニット31Dに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、背圧室82のブレーキ液圧を内部リザーバ38で吸収できる。よって、実施形態17と同様の作用効果を奏する。
図34は、実施形態31のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態31のブレーキシステムBSは、正圧側第2連通路37に代えて背圧側第2連通路110を有する点で実施形態15と相違する。
ストロークシミュレータハウジング103は、背圧ポート111を有する。背圧側第2連通路110の一端は第1還流液路35と接続する。背圧側第2連通路110の他端は背圧ポート111と接続する。背圧側第2連通路110にはストローク弁45がある。第2液圧ユニットハウジング26は、背圧ポート118および背圧液路120を有する。背圧ポート118は、背圧配管119を介して背圧ポート111と接続する。背圧液路120の一端は背圧ポート118と接続する。背圧液路120の他端は、第1シミュレータ液路61の一端と第2シミュレータ液路62の一端との接続位置と接続する。
実施形態31のブレーキシステムBSは、第4コントロールユニット31Dに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、背圧室82のブレーキ液圧を内部リザーバ38で吸収できる。よって、実施形態17と同様の作用効果を奏する。
〔実施形態32〕
図35は、実施形態32のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態32のブレーキシステムBSは、正圧側第2連通路37に代えて背圧側第2連通路110を有する点で実施形態16と相違する。
第2液圧ユニットハウジング48は、背圧ポート111を有する。背圧側第2連通路110の一端は第2還流液路57と接続する。背圧側第2連通路110の他端は背圧ポート111と接続する。背圧側第2連通路110にはストローク弁45がある。ストロークシミュレータハウジング103は、背圧ポート118および背圧液路120を有する。背圧ポート118は、背圧配管119を介して背圧ポート111と接続する。背圧液路120の一端は背圧ポート118と接続する。背圧液路120の他端は、第1シミュレータ液路61の一端と第2シミュレータ液路62の一端との接続位置と接続する。
実施形態32のブレーキシステムBSは、第4コントロールユニット31Dに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、背圧室82のブレーキ液圧を内部リザーバ63で吸収できる。よって、実施形態17と同様の作用効果を奏する。
図35は、実施形態32のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態32のブレーキシステムBSは、正圧側第2連通路37に代えて背圧側第2連通路110を有する点で実施形態16と相違する。
第2液圧ユニットハウジング48は、背圧ポート111を有する。背圧側第2連通路110の一端は第2還流液路57と接続する。背圧側第2連通路110の他端は背圧ポート111と接続する。背圧側第2連通路110にはストローク弁45がある。ストロークシミュレータハウジング103は、背圧ポート118および背圧液路120を有する。背圧ポート118は、背圧配管119を介して背圧ポート111と接続する。背圧液路120の一端は背圧ポート118と接続する。背圧液路120の他端は、第1シミュレータ液路61の一端と第2シミュレータ液路62の一端との接続位置と接続する。
実施形態32のブレーキシステムBSは、第4コントロールユニット31Dに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合であっても、背圧室82のブレーキ液圧を内部リザーバ63で吸収できる。よって、実施形態17と同様の作用効果を奏する。
〔実施形態33〕
図36は、実施形態33のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態33のブレーキシステムBSは、第1液圧ユニット2が反力生成部121および電磁弁122を有する点で実施形態1と相違する。
第1液圧ユニットハウジング26は、正圧液路123および背圧液路124を有する。正圧液路123の一端はP系統の第1接続液路32Pの第1遮断弁29Pよりも第1入力ポート39P側の位置と接続する。正圧液路123の他端は反力生成部121の正圧室125と接続する。正圧液路123には電磁弁122がある。電磁弁122はノーマルクローズ型のオンオフ弁である。背圧液路124の一端は第1還流液路35の第1調圧弁43よりも内部リザーバ38側の位置と接続する。背圧液路124の他端は反力生成部121の背圧室126と接続する。P系統の第1接続液路32Pの正圧液路123との接続位置には、第1マスタシリンダ液圧センサ30がある。第1接続液路32の第1遮断弁29よりも第1出力ポート40側の位置には液圧センサ127がある。反力生成部121は、シリンダ128、ピストン129、正圧室125、背圧室126および弾性体130を有する。ピストン129、正圧室125、背圧室126および弾性体130はシリンダ128の内部にある。ピストン129は、シリンダ128の内部を正圧室125と背圧室126とに画成する。弾性体130は、正圧室125の容積が縮小する方向にピストン129を付勢する。弾性体130はストロークシミュレータ76の第2スプリング83bよりもばね定数が大きい。なお、ストロークシミュレータ76は、弾性体83として第1スプリング83aおよび第2スプリング83bのみを有し、実施形態1のような底付きダンパ83cを持たない。反力生成部121の弾性体130は底付きダンパ83cの機能を模擬する。
図36は、実施形態33のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態33のブレーキシステムBSは、第1液圧ユニット2が反力生成部121および電磁弁122を有する点で実施形態1と相違する。
第1液圧ユニットハウジング26は、正圧液路123および背圧液路124を有する。正圧液路123の一端はP系統の第1接続液路32Pの第1遮断弁29Pよりも第1入力ポート39P側の位置と接続する。正圧液路123の他端は反力生成部121の正圧室125と接続する。正圧液路123には電磁弁122がある。電磁弁122はノーマルクローズ型のオンオフ弁である。背圧液路124の一端は第1還流液路35の第1調圧弁43よりも内部リザーバ38側の位置と接続する。背圧液路124の他端は反力生成部121の背圧室126と接続する。P系統の第1接続液路32Pの正圧液路123との接続位置には、第1マスタシリンダ液圧センサ30がある。第1接続液路32の第1遮断弁29よりも第1出力ポート40側の位置には液圧センサ127がある。反力生成部121は、シリンダ128、ピストン129、正圧室125、背圧室126および弾性体130を有する。ピストン129、正圧室125、背圧室126および弾性体130はシリンダ128の内部にある。ピストン129は、シリンダ128の内部を正圧室125と背圧室126とに画成する。弾性体130は、正圧室125の容積が縮小する方向にピストン129を付勢する。弾性体130はストロークシミュレータ76の第2スプリング83bよりもばね定数が大きい。なお、ストロークシミュレータ76は、弾性体83として第1スプリング83aおよび第2スプリング83bのみを有し、実施形態1のような底付きダンパ83cを持たない。反力生成部121の弾性体130は底付きダンパ83cの機能を模擬する。
第1コントロールユニット31Aは、第2コントロールユニット31Bに電源失陥がなく、かつ、ストロークシミュレータアウト弁74が閉故障していない場合、ブレーキペダル8が操作されてセカンダリピストン21Sがフルストロークすると電磁弁122を開弁方向に作動させ、反力生成部121を機能させてブレーキ操作反力を生成する。これにより、底付き感のあるペダルフィーリングを実現できる。一方、第1コントロールユニット31Aは、第2コントロールユニット31Bに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合、ブレーキペダル8が操作されてセカンダリピストン21Sがフルストロークするとストローク弁45を閉弁し、電磁弁122を開弁方向に作動させ、反力生成部121を機能させてブレーキ操作反力を生成する。ブレーキペダル8の戻し時はS系統の第1遮断弁29Sおよび第1連通弁44Sを開弁方向に作動させ、第1調圧弁43を比例制御することでセカンダリ室22Sのブレーキ液圧をプライマリ室22Pのブレーキ液圧と同等とする。
実施形態33のブレーキシステムBSは、マスタシリンダ12のプライマリ室22Pと正圧室125が接続し、第1ポンプ28の吸入側(第1還流液路35)と背圧室126が接続し、ブレーキペダル8に操作反力を発生させる反力生成部121と、反力生成部121の正圧室125とマスタシリンダ12の第1接続液路32Pとの間に設けられた電磁弁122と、を備える。これにより、第1コントロールユニット31Aは、第2コントロールユニット31Bに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合、ストローク弁45および反力生成部121を用いてブレーキ操作反力を生成できる。よって、実施形態1と同様の作用効果を奏する。また、ストローク弁45でペダルストローク全域のペダルフィーリングを生成する必要が無いため、ストローク弁45の制御を簡素化できる。
実施形態33のブレーキシステムBSは、マスタシリンダ12のプライマリ室22Pと正圧室125が接続し、第1ポンプ28の吸入側(第1還流液路35)と背圧室126が接続し、ブレーキペダル8に操作反力を発生させる反力生成部121と、反力生成部121の正圧室125とマスタシリンダ12の第1接続液路32Pとの間に設けられた電磁弁122と、を備える。これにより、第1コントロールユニット31Aは、第2コントロールユニット31Bに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合、ストローク弁45および反力生成部121を用いてブレーキ操作反力を生成できる。よって、実施形態1と同様の作用効果を奏する。また、ストローク弁45でペダルストローク全域のペダルフィーリングを生成する必要が無いため、ストローク弁45の制御を簡素化できる。
〔実施形態34〕
図37は、実施形態34のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態34のブレーキシステムBSは、第1液圧ユニット2が電磁弁131を有する点で実施形態33と相違する。
電磁弁131は、P系統の第1接続液路32Pの第1マスタシリンダ液圧センサ30よりも第1出力ポート40P側、かつ、正圧液路123との接続位置よりも第1入力ポート39P側の位置にある。電磁弁131はノーマルオープン型の比例制御弁である。
第1コントロールユニット31Aは、ブレーキペダル8が操作されていないとき、電磁弁131を閉弁し、P系統の第1連通弁44Pおよび電磁弁122を開弁方向に作動させ、第1モータ27を所定の回転数で作動させて反力生成部121にブレーキ液圧を蓄える。このとき、第2コントロールユニット31Bは、ソレノイドイン弁71を閉弁し、ホイルシリンダ液圧の上昇を回避する。第1コントロールユニット31Aは、第2コントロールユニット31Bに電源失陥がなく、かつ、ストロークシミュレータアウト弁74が閉故障していない場合、ブレーキペダル8が操作されると電磁弁122を開弁方向に作動させる。これにより、反力生成部121に蓄えられたブレーキ液は第1接続液路32Pから第2液圧ユニット3に送られるため、ステア・バイ・ワイヤ制御におけるホイルシリンダ液圧の昇圧応答性を向上できる。
第2コントロールユニット31Bに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合の動作は実施形態33と同様である。よって、実施形態33と同様の作用効果を奏する。
図37は、実施形態34のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態34のブレーキシステムBSは、第1液圧ユニット2が電磁弁131を有する点で実施形態33と相違する。
電磁弁131は、P系統の第1接続液路32Pの第1マスタシリンダ液圧センサ30よりも第1出力ポート40P側、かつ、正圧液路123との接続位置よりも第1入力ポート39P側の位置にある。電磁弁131はノーマルオープン型の比例制御弁である。
第1コントロールユニット31Aは、ブレーキペダル8が操作されていないとき、電磁弁131を閉弁し、P系統の第1連通弁44Pおよび電磁弁122を開弁方向に作動させ、第1モータ27を所定の回転数で作動させて反力生成部121にブレーキ液圧を蓄える。このとき、第2コントロールユニット31Bは、ソレノイドイン弁71を閉弁し、ホイルシリンダ液圧の上昇を回避する。第1コントロールユニット31Aは、第2コントロールユニット31Bに電源失陥がなく、かつ、ストロークシミュレータアウト弁74が閉故障していない場合、ブレーキペダル8が操作されると電磁弁122を開弁方向に作動させる。これにより、反力生成部121に蓄えられたブレーキ液は第1接続液路32Pから第2液圧ユニット3に送られるため、ステア・バイ・ワイヤ制御におけるホイルシリンダ液圧の昇圧応答性を向上できる。
第2コントロールユニット31Bに電源失陥が生じた場合、またはストロークシミュレータアウト弁74が閉故障した場合の動作は実施形態33と同様である。よって、実施形態33と同様の作用効果を奏する。
〔実施形態35〕
図38は、実施形態35のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態35のブレーキシステムBSは、ストロークシミュレータユニット53を省略した点で実施形態33と相違する。正圧ポート41と背圧ポート67は正圧配管42を介して接続する。
実施形態35のブレーキシステムBSは、ストロークシミュレータアウト弁74が開弁不能か否かにかかわらず、ストローク弁45のオンオフ制御と反力生成部121によりブレーキ操作反力を生成する。ストローク弁45および電磁弁122の動作は実施形態33に準じる。実施形態35のブレーキシステムBSでは、ストロークシミュレータを省略したことにより、第2液圧ユニット3の大型化を抑制できる。
図38は、実施形態35のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態35のブレーキシステムBSは、ストロークシミュレータユニット53を省略した点で実施形態33と相違する。正圧ポート41と背圧ポート67は正圧配管42を介して接続する。
実施形態35のブレーキシステムBSは、ストロークシミュレータアウト弁74が開弁不能か否かにかかわらず、ストローク弁45のオンオフ制御と反力生成部121によりブレーキ操作反力を生成する。ストローク弁45および電磁弁122の動作は実施形態33に準じる。実施形態35のブレーキシステムBSでは、ストロークシミュレータを省略したことにより、第2液圧ユニット3の大型化を抑制できる。
〔実施形態36〕
図39は、実施形態36のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態36のブレーキシステムBSは、ストロークシミュレータ76の背圧室82が大気開放されている点、ストロークシミュレータイン弁73およびストロークシミュレータアウト弁74に代えてストロークシミュレータ弁132を有する点で実施形態3と相違する。
ストロークシミュレータ弁132は正圧液路36にある。ストロークシミュレータ弁132は、ノーマルクローズ型のオンオフ弁である。第1コントロールユニット31Aは、ストロークシミュレータ弁132の開閉動作を制御する。ストロークシミュレータ弁132の動作は実施形態1のストロークシミュレータアウト弁74の動作に準じる。第2液圧ユニットハウジング48は、ストローク弁45およびバイパス通路133を有する。バイパス通路133の一端は内部リザーバ63と接続する。バイパス通路133の他端はS系統の第2接続液路54Sの第2遮断弁51Sよりも第2入力ポート64S側と接続する。バイパス通路133にはストローク弁45がある。第2コントロールユニット31Bは、ストローク弁45の開閉動作を制御する。ストローク弁45の動作は実施形態1に準じる。
実施形態36のブレーキシステムBSは、第2接続液路54Sと内部リザーバ63とを接続するバイパス通路133と、バイパス通路133に設けられたストローク弁45と、を備える。よって、第1コントロールユニット31Aに電源失陥が生じた場合、またはストロークシミュレータ弁132が閉故障した場合であっても、ストローク弁45を開弁方向に動作させることにより、マスタシリンダ12で発生したブレーキ液圧をバイパス通路133から内部リザーバ38へと排出でき、内部リザーバ38で吸収できる。よって、実施形態1と同様の作用効果を奏する。
図39は、実施形態36のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態36のブレーキシステムBSは、ストロークシミュレータ76の背圧室82が大気開放されている点、ストロークシミュレータイン弁73およびストロークシミュレータアウト弁74に代えてストロークシミュレータ弁132を有する点で実施形態3と相違する。
ストロークシミュレータ弁132は正圧液路36にある。ストロークシミュレータ弁132は、ノーマルクローズ型のオンオフ弁である。第1コントロールユニット31Aは、ストロークシミュレータ弁132の開閉動作を制御する。ストロークシミュレータ弁132の動作は実施形態1のストロークシミュレータアウト弁74の動作に準じる。第2液圧ユニットハウジング48は、ストローク弁45およびバイパス通路133を有する。バイパス通路133の一端は内部リザーバ63と接続する。バイパス通路133の他端はS系統の第2接続液路54Sの第2遮断弁51Sよりも第2入力ポート64S側と接続する。バイパス通路133にはストローク弁45がある。第2コントロールユニット31Bは、ストローク弁45の開閉動作を制御する。ストローク弁45の動作は実施形態1に準じる。
実施形態36のブレーキシステムBSは、第2接続液路54Sと内部リザーバ63とを接続するバイパス通路133と、バイパス通路133に設けられたストローク弁45と、を備える。よって、第1コントロールユニット31Aに電源失陥が生じた場合、またはストロークシミュレータ弁132が閉故障した場合であっても、ストローク弁45を開弁方向に動作させることにより、マスタシリンダ12で発生したブレーキ液圧をバイパス通路133から内部リザーバ38へと排出でき、内部リザーバ38で吸収できる。よって、実施形態1と同様の作用効果を奏する。
〔実施形態37〕
図40は、実施形態37のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態37のブレーキシステムは、バイパス通路133の一端をストロークシミュレータ76の正圧室81と接続した点で実施形態36と相違する。
第2液圧ユニットハウジング48は正圧ポート134を有する。バイパス通路133の一端は正圧ポート134と接続する。第1液圧ユニットハウジング26は、正圧ポート135、バイパス通路137を有する。正圧ポート135は正圧配管136を介して正圧ポート134と接続する。バイパス通路137の一端は正圧ポート135と接続する。バイパス通路137の他端は、正圧液路36のストロークシミュレータ弁132よりも正圧ポート41側の位置と接続する。
実施形態37のブレーキシステムBSは、よって、第1コントロールユニット31Aに電源失陥が生じた場合、またはストロークシミュレータ弁132が閉故障した場合であっても、マスタシリンダ12で発生したブレーキ液をバイパス通路133,137から正圧室81へ供給できる。つまり、ストロークシミュレータ76の正常な作動を維持できる。よって、実施形態36と同様の作用効果を奏する。
図40は、実施形態37のブレーキシステムBSの概略構成を液圧回路と共に示す図である。実施形態37のブレーキシステムは、バイパス通路133の一端をストロークシミュレータ76の正圧室81と接続した点で実施形態36と相違する。
第2液圧ユニットハウジング48は正圧ポート134を有する。バイパス通路133の一端は正圧ポート134と接続する。第1液圧ユニットハウジング26は、正圧ポート135、バイパス通路137を有する。正圧ポート135は正圧配管136を介して正圧ポート134と接続する。バイパス通路137の一端は正圧ポート135と接続する。バイパス通路137の他端は、正圧液路36のストロークシミュレータ弁132よりも正圧ポート41側の位置と接続する。
実施形態37のブレーキシステムBSは、よって、第1コントロールユニット31Aに電源失陥が生じた場合、またはストロークシミュレータ弁132が閉故障した場合であっても、マスタシリンダ12で発生したブレーキ液をバイパス通路133,137から正圧室81へ供給できる。つまり、ストロークシミュレータ76の正常な作動を維持できる。よって、実施形態36と同様の作用効果を奏する。
〔他の実施形態〕
以上、本発明を実施するための実施形態を説明したが、本発明の具体的な構成は実施形態の構成に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても本発明に含まれる。また、上述した課題の少なくとも一部を解決できる範囲、または、効果の少なくとも一部を奏する範囲において、特許請求の範囲および明細書に記載された各構成要素の任意の組み合わせ、または、省略が可能である。
例えば、ストローク弁を比例制御弁とし、比例制御によりストローク弁の開度を調整することでブレーキ操作反力を生成してもよい。
第2連通路の一端は、正圧室または背圧室と直接接続してもよいし、正圧側第1連通路または背圧側第1連通路から分岐してもよい。
第2連通路の他端と接続する液圧源の吸入側は、リザーバ、内部リザーバ、ポンプ吸入液路等の低圧部であればよい。
バイパス通路の一端は、正圧室または背圧室と直接接続してもよいし、正圧側第1連通路から分岐してもよい。
以上、本発明を実施するための実施形態を説明したが、本発明の具体的な構成は実施形態の構成に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても本発明に含まれる。また、上述した課題の少なくとも一部を解決できる範囲、または、効果の少なくとも一部を奏する範囲において、特許請求の範囲および明細書に記載された各構成要素の任意の組み合わせ、または、省略が可能である。
例えば、ストローク弁を比例制御弁とし、比例制御によりストローク弁の開度を調整することでブレーキ操作反力を生成してもよい。
第2連通路の一端は、正圧室または背圧室と直接接続してもよいし、正圧側第1連通路または背圧側第1連通路から分岐してもよい。
第2連通路の他端と接続する液圧源の吸入側は、リザーバ、内部リザーバ、ポンプ吸入液路等の低圧部であればよい。
バイパス通路の一端は、正圧室または背圧室と直接接続してもよいし、正圧側第1連通路から分岐してもよい。
以上説明した実施形態から把握し得る他の態様について、以下に記載する。
液圧制御装置は、その一つの態様において、ブレーキペダル操作に応じてブレーキ液圧を発生させるマスタシリンダと、前記ブレーキ液圧に応じて車輪に制動力を付与するホイルシリンダと、を接続する接続液路と、前記接続液路に配置された遮断弁と、前記接続液路のうちの前記遮断弁よりも前記ホイルシリンダ側にブレーキ液を吐出する液圧源と、前記ブレーキペダルに操作反力を発生させるストロークシミュレータの正圧室と、前記マスタシリンダと、を接続する正圧側第1連通路と、前記ストロークシミュレータの背圧室と、前記液圧源の吸入側と、を接続する背圧側第1連通路と、前記背圧側第1連通路に設けられたストロークシミュレータ弁と、前記正圧室または前記背圧室に接続される一端と前記液圧源の吸入側に接続される他端とを有する第2連通路と、前記第2連通路に設けられたストローク弁と、を備える。
より好ましい態様では、上記態様において、前記ストローク弁を開閉作動させる第1コントロールユニットと、前記ストロークシミュレータ弁を開閉作動させる第2コントロールユニットと、を備える。
液圧制御装置は、その一つの態様において、ブレーキペダル操作に応じてブレーキ液圧を発生させるマスタシリンダと、前記ブレーキ液圧に応じて車輪に制動力を付与するホイルシリンダと、を接続する接続液路と、前記接続液路に配置された遮断弁と、前記接続液路のうちの前記遮断弁よりも前記ホイルシリンダ側にブレーキ液を吐出する液圧源と、前記ブレーキペダルに操作反力を発生させるストロークシミュレータの正圧室と、前記マスタシリンダと、を接続する正圧側第1連通路と、前記ストロークシミュレータの背圧室と、前記液圧源の吸入側と、を接続する背圧側第1連通路と、前記背圧側第1連通路に設けられたストロークシミュレータ弁と、前記正圧室または前記背圧室に接続される一端と前記液圧源の吸入側に接続される他端とを有する第2連通路と、前記第2連通路に設けられたストローク弁と、を備える。
より好ましい態様では、上記態様において、前記ストローク弁を開閉作動させる第1コントロールユニットと、前記ストロークシミュレータ弁を開閉作動させる第2コントロールユニットと、を備える。
別の好ましい態様では、上記態様のいずれかにおいて、前記第1コントロールユニットは、前記第2コントロールユニットが失陥した場合または前記ストロークシミュレータ弁が閉故障した場合、前記ストローク弁を開弁方向に作動させる。
さらに別の好ましい態様では、上記態様のいずれかにおいて、前記第1コントロールユニットは、前記第2コントロールユニットが失陥した場合または前記ストロークシミュレータ弁が閉故障した場合、前記ストローク弁を開閉作動させる。
さらに別の好ましい態様では、上記態様のいずれかにおいて、前記第2連通路の前記一端は、前記正圧室に接続される。
さらに別の好ましい態様では、上記態様のいずれかにおいて、前記マスタシリンダに接続される第1室と
、前記液圧源の吸入側に接続される第2室と、を有し、前記ブレーキペダルに操作反力を発生させる反力生成部と、前記反力生成部の前記第1室と前記マスタシリンダとの接続路に設けられた電磁弁と、を備える。
さらに別の好ましい態様では、上記態様のいずれかにおいて、前記第2連通路の前記一端は、前記背圧室に接続される。
さらに別の好ましい態様では、上記態様のいずれかにおいて、前記第1コントロールユニットは、前記第2コントロールユニットが失陥した場合または前記ストロークシミュレータ弁が閉故障した場合、前記ストローク弁を開閉作動させる。
さらに別の好ましい態様では、上記態様のいずれかにおいて、前記第2連通路の前記一端は、前記正圧室に接続される。
さらに別の好ましい態様では、上記態様のいずれかにおいて、前記マスタシリンダに接続される第1室と
、前記液圧源の吸入側に接続される第2室と、を有し、前記ブレーキペダルに操作反力を発生させる反力生成部と、前記反力生成部の前記第1室と前記マスタシリンダとの接続路に設けられた電磁弁と、を備える。
さらに別の好ましい態様では、上記態様のいずれかにおいて、前記第2連通路の前記一端は、前記背圧室に接続される。
また、他の観点から、液圧制御装置は、ある態様において、ブレーキペダル操作に応じてブレーキ液圧を発生させるマスタシリンダと、前記ブレーキ液圧に応じて車輪に制動力を付与するホイルシリンダと、を接続する接続液路と、前記接続液路に配置された遮断弁と、前記接続液路のうちの前記遮断弁よりも前記ホイルシリンダ側にブレーキ液を吐出する液圧源と、前記ブレーキペダルに操作反力を発生させるストロークシミュレータの正圧室と、前記マスタシリンダと、を接続する正圧側第1連通路と、前記正圧側第1連通路に設けられたストロークシミュレータ弁と、前記正圧側第1連通路のうちの前記ストロークシミュレータ弁よりも前記マスタシリンダ側、または、前記接続液路と、前記正圧室、または、前記液圧源の吸入側と、を接続するバイパス通路と、前記バイパス通路に設けられたストローク弁と、を備える。
好ましくは、上記態様において、前記ストローク弁を開閉作動させる第1コントロールユニットと、前記ストロークシミュレータ弁を開閉作動させる第2コントロールユニットと、を備える。
別の好ましい態様では、上記態様のいずれかにおいて、前記第1コントロールユニットは、前記第2コントロールユニットが失陥した場合または前記ストロークシミュレータ弁が閉故障した場合、前記ストローク弁を開弁方向に作動させる。
好ましくは、上記態様において、前記ストローク弁を開閉作動させる第1コントロールユニットと、前記ストロークシミュレータ弁を開閉作動させる第2コントロールユニットと、を備える。
別の好ましい態様では、上記態様のいずれかにおいて、前記第1コントロールユニットは、前記第2コントロールユニットが失陥した場合または前記ストロークシミュレータ弁が閉故障した場合、前記ストローク弁を開弁方向に作動させる。
また、他の観点から、ブレーキシステムは、ある態様において、ブレーキペダル操作に応じてブレーキ液圧を発生させるマスタシリンダを備えるマスタシリンダユニットと;前記マスタシリンダユニットに接続された第1液圧ユニットであって、前記マスタシリンダに接続される第1入力ポートと、前記第1入力ポートに接続される第1接続液路と、前記第1接続液路に配置された第1遮断弁と、前記第1接続液路に接続される第1出力ポートと、前記第1接続液路のうちの前記第1遮断弁よりも前記第1出力ポート側にブレーキ液を吐出する第1液圧源と、を備える第1液圧ユニットと;前記第1液圧ユニットに接続された第2液圧ユニットであって、前記第1出力ポートに接続される第2入力ポートと、前記第2入力ポートに接続される第2接続液路と、前記第2接続液路に配置された第2遮断弁と、前記第2接続液路に接続される一端部とブレーキ液圧に応じて車輪に制動力を付与するホイルシリンダに接続される他端部とを有する第2出力ポートと、前記第2接続液路のうちの前記第2遮断弁よりも前記第2出力ポート側にブレーキ液を吐出する第2液圧源と、を備える第2液圧ユニットと;前記ブレーキペダルに操作反力を発生させるストロークシミュレータを備えるストロークシミュレータユニットと;前記ストロークシミュレータの正圧室と、前記マスタシリンダと、を接続する正圧側第1連通路と;前記ストロークシミュレータの背圧室と、前記第1液圧源または第2液圧源の吸入側と、を接続する背圧側第1連通路と;前記背圧側第1連通路に設けられ、前記マスタシリンダユニットと第1液圧ユニットと第2液圧ユニットと前記ストロークシミュレータユニットとのうちのいずれかに配置されたストロークシミュレータ弁と;前記正圧室または前記背圧室に接続される一端と、前記液圧源の吸入側に接続される他端と、を有する第2連通路と;前記第2連通路に設けられ、前記ストロークシミュレータ弁が配置されたユニットとは別のユニットに配置されたストローク弁と、を備える。
好ましくは、上記態様において、前記ストロークシミュレータユニットは、前記第2液圧ユニットと一体的に設けられ、前記ストロークシミュレータ弁は、前記第2液圧ユニットに設置され、前記ストローク弁は、前記第1液圧ユニットに設置されている。
別の好ましい態様では、上記態様のいずれかにおいて、前記第2連通路の前記一端は、前記正圧室に接続される。
さらに別の好ましい態様では、上記態様のいずれかにおいて、前記第2連通路の前記一端は、前記背圧室に接続される。
さらに別の好ましい態様では、上記態様のいずれかにおいて、前記ストロークシミュレータユニットは、前記第1液圧ユニットと一体的に設けられ、前記ストロークシミュレータ弁は、前記第1液圧ユニットに設置され、前記ストローク弁は、前記第2液圧ユニットに設置されている。
さらに別の好ましい態様では、上記態様のいずれかにおいて、前記ストロークシミュレータユニットは、前記第1液圧ユニットと一体的に設けられ、前記ストロークシミュレータ弁は、前記第2液圧ユニットに設置され、前記ストローク弁は、前記第1液圧ユニットに設置されている。
さらに別の好ましい態様では、上記態様のいずれかにおいて、前記ストロークシミュレータユニットは、前記マスタシリンダユニットと一体的に設けられ、前記ストロークシミュレータ弁は、前記第1液圧ユニットに設置され、前記ストローク弁は、前記第2液圧ユニットに設置されている。
さらに別の好ましい態様では、上記態様のいずれかにおいて、前記ストロークシミュレータユニットは、前記マスタシリンダユニットと一体的に設けられ、前記ストロークシミュレータ弁は、前記第2液圧ユニットに設置され、前記ストローク弁は、前記第1液圧ユニットに設置されている。
さらに別の好ましい態様では、上記態様のいずれかにおいて、前記ストローク弁を開閉作動させる第1コントロールユニットと、前記ストロークシミュレータ弁を開閉作動させる第2コントロールユニットと、を備える。
別の好ましい態様では、上記態様のいずれかにおいて、前記第2連通路の前記一端は、前記正圧室に接続される。
さらに別の好ましい態様では、上記態様のいずれかにおいて、前記第2連通路の前記一端は、前記背圧室に接続される。
さらに別の好ましい態様では、上記態様のいずれかにおいて、前記ストロークシミュレータユニットは、前記第1液圧ユニットと一体的に設けられ、前記ストロークシミュレータ弁は、前記第1液圧ユニットに設置され、前記ストローク弁は、前記第2液圧ユニットに設置されている。
さらに別の好ましい態様では、上記態様のいずれかにおいて、前記ストロークシミュレータユニットは、前記第1液圧ユニットと一体的に設けられ、前記ストロークシミュレータ弁は、前記第2液圧ユニットに設置され、前記ストローク弁は、前記第1液圧ユニットに設置されている。
さらに別の好ましい態様では、上記態様のいずれかにおいて、前記ストロークシミュレータユニットは、前記マスタシリンダユニットと一体的に設けられ、前記ストロークシミュレータ弁は、前記第1液圧ユニットに設置され、前記ストローク弁は、前記第2液圧ユニットに設置されている。
さらに別の好ましい態様では、上記態様のいずれかにおいて、前記ストロークシミュレータユニットは、前記マスタシリンダユニットと一体的に設けられ、前記ストロークシミュレータ弁は、前記第2液圧ユニットに設置され、前記ストローク弁は、前記第1液圧ユニットに設置されている。
さらに別の好ましい態様では、上記態様のいずれかにおいて、前記ストローク弁を開閉作動させる第1コントロールユニットと、前記ストロークシミュレータ弁を開閉作動させる第2コントロールユニットと、を備える。
さらに、他の観点から、ブレーキシステムは、ある態様において、ブレーキペダル操作に応じてブレーキ液圧を発生させるマスタシリンダを備えるマスタシリンダユニットと;前記マスタシリンダユニットに接続された第1液圧ユニットであって、前記マスタシリンダに接続される第1入力ポートと、前記第1入力ポートに接続される第1接続液路と、前記第1接続液路に配置された第1遮断弁と、前記第1接続液路に接続される第1出力ポートと、前記第1接続液路のうちの前記第1遮断弁よりも前記第1出力ポート側にブレーキ液を吐出する第1液圧源と、を備える第1液圧ユニットと;前記第1液圧ユニットに接続された第2液圧ユニットであって、前記第1出力ポートに接続される第2入力ポートと、前記第2入力ポートに接続される第2接続液路と、前記第2接続液路に配置された第2遮断弁と、前記第2接続液路に接続される一端部と、ブレーキ液圧に応じて車輪に制動力を付与するホイルシリンダに接続される他端部と、を有する第2出力ポートと、前記第2接続液路のうちの前記第2遮断弁よりも前記第2出力ポート側にブレーキ液を吐出する第2液圧源と、を備える第2液圧ユニットと;前記ブレーキペダルに操作反力を発生させるストロークシミュレータを備えるストロークシミュレータユニットと;前記ストロークシミュレータの正圧室と、前記マスタシリンダと、を接続する正圧側第1連通路と;前記正圧側第1連通路に設けられ、前記マスタシリンダユニットと第1液圧ユニットと第2液圧ユニットと前記ストロークシミュレータユニットとのうちのいずれかに配置されたストロークシミュレータ弁と;前記正圧側第1連通路のうちの前記ストロークシミュレータ弁よりも前記マスタシリンダ側、または、前記接続液路と、前記正圧室、または、前記液圧源の吸入側と、を接続するバイパス通路と;前記バイパス通路に設けられ、前記ストロークシミュレータ弁が配置されたユニットとは別のユニットに配置されたストローク弁と、を備える。
本願は、2016年12月21日出願の日本特許出願番号2016-247565号に基づく優先権を主張する。2016年12月21日出願の日本特許出願番号2016-247565号の明細書、特許請求の範囲、図面及び要約書を含む全ての開示内容は、参照により全体として本願に組み込まれる。
BS ブレーキシステム、FL,FR,RL,RR 車輪、W/C ホイルシリンダ、1 マスタシリンダユニット、2 第1液圧ユニット、3 第2液圧ユニット、4P プライマリ配管(接続液路)、4S セカンダリ配管(接続液路)、6P プライマリ配管(接続液路)、6S セカンダリ配管(接続液路)、7FL,7FR,7RL,7RR ホイルシリンダ配管(接続液路)、8 ブレーキペダル、12 マスタシリンダ、28 第1ポンプ(第1液圧源)、31A 第1コントロールユニット、31B 第2コントロールユニット、32 第1接続液路(接続液路)、36 正圧液路(正圧側第1連通路)、37 正圧側第2連通路、39 第1入力ポート、40 第1出力ポート、41 正圧ポート(正圧側第1連通路)、42 正圧配管(正圧側第1連通路)、45 ストローク弁、50 第2ポンプ(第2液圧源)、51第2遮断弁、53 ストロークシミュレータユニット、54 第2接続液路(接続液路)、60 背圧液路(背圧側第1連通路)、62 第2シミュレータ液路(背圧側第1連通路)、64 第2入力ポート、65 第2出力ポート、67 背圧ポート(背圧側第1連通路)、74 ストロークシミュレータアウト弁(ストロークシミュレータ弁)、76 ストロークシミュレータ、77 正圧ポート(正圧側第1連通路)、78a 正圧液路(正圧側第1連通路)、78b 背圧液路(背圧側第1連通路)、81 正圧室、82 背圧室、110 背圧側第2連通路、121 反力生成部、122 電磁弁、132 ストロークシミュレータ弁、133 バイパス通路
Claims (20)
- 液圧制御装置であって、
ブレーキペダル操作に応じてブレーキ液圧を発生させるマスタシリンダと、前記ブレーキ液圧に応じて車輪に制動力を付与するホイルシリンダと、を接続する接続液路と、
前記接続液路に配置された遮断弁と、
前記接続液路のうちの前記遮断弁よりも前記ホイルシリンダ側にブレーキ液を吐出する液圧源と、
前記ブレーキペダルに操作反力を発生させるストロークシミュレータの正圧室と、前記マスタシリンダと、を接続する正圧側第1連通路と、
前記ストロークシミュレータの背圧室と、前記液圧源の吸入側と、を接続する背圧側第1連通路と、
前記背圧側第1連通路に設けられたストロークシミュレータ弁と、
前記正圧室または前記背圧室に接続される一端と、前記液圧源の吸入側に接続される他端と、を有する第2連通路と、
前記第2連通路に設けられたストローク弁と、
を備える液圧制御装置。 - 請求項1に記載の液圧制御装置において、
前記ストローク弁を開閉作動させる第1コントロールユニットと、
前記ストロークシミュレータ弁を開閉作動させる第2コントロールユニットと、
を備える液圧制御装置。 - 請求項2に記載の液圧制御装置において、
前記第1コントロールユニットは、前記第2コントロールユニットが失陥した場合または前記ストロークシミュレータ弁が閉故障した場合、前記ストローク弁を開弁方向に作動させる
液圧制御装置。 - 請求項2に記載の液圧制御装置において、
前記第1コントロールユニットは、前記第2コントロールユニットが失陥した場合または前記ストロークシミュレータ弁が閉故障した場合、前記ストローク弁を開閉作動させる
液圧制御装置。 - 請求項1に記載の液圧制御装置において、
前記第2連通路の前記一端は、前記正圧室に接続される
液圧制御装置。 - 請求項5に記載の液圧制御装置において、
前記マスタシリンダに接続される第1室と、前記液圧源の吸入側に接続される第2室と、を有し、前記ブレーキペダルに操作反力を発生させる反力生成部と、
前記反力生成部の前記第1室と前記マスタシリンダとの接続路に設けられた電磁弁と、
を備える液圧制御装置。 - 請求項1に記載の液圧制御装置において、
前記第2連通路の前記一端は、前記背圧室に接続される
液圧制御装置。 - 液圧制御装置であって、
ブレーキペダル操作に応じてブレーキ液圧を発生させるマスタシリンダと、前記ブレーキ液圧に応じて車輪に制動力を付与するホイルシリンダと、を接続する接続液路と、
前記接続液路に配置された遮断弁と、
前記接続液路のうちの前記遮断弁よりも前記ホイルシリンダ側にブレーキ液を吐出する液圧源と、
前記ブレーキペダルに操作反力を発生させるストロークシミュレータの正圧室と、前記マスタシリンダと、を接続する正圧側第1連通路と、
前記正圧側第1連通路に設けられたストロークシミュレータ弁と、
前記正圧側第1連通路のうちの前記ストロークシミュレータ弁よりも前記マスタシリンダ側、または、前記接続液路と、前記正圧室、または、前記液圧源の吸入側と、を接続するバイパス通路と、
前記バイパス通路に設けられたストローク弁と、
を備える液圧制御装置。 - 請求項8に記載の液圧制御装置において、
前記ストローク弁を開閉作動させる第1コントロールユニットと、
前記ストロークシミュレータ弁を開閉作動させる第2コントロールユニットと、
を備える液圧制御装置。 - 請求項9に記載の液圧制御装置において、
前記第1コントロールユニットは、前記第2コントロールユニットが失陥した場合または前記ストロークシミュレータ弁が閉故障した場合、前記ストローク弁を開弁方向に作動させる
液圧制御装置。 - ブレーキシステムであって、
ブレーキペダル操作に応じてブレーキ液圧を発生させるマスタシリンダを備えるマスタシリンダユニットと、
前記マスタシリンダユニットに接続された第1液圧ユニットであって、
前記マスタシリンダに接続される第1入力ポートと、
前記第1入力ポートに接続される第1接続液路と、
前記第1接続液路に配置された第1遮断弁と、
前記第1接続液路に接続される第1出力ポートと、
前記第1接続液路のうちの前記第1遮断弁よりも前記第1出力ポート側にブレーキ液を吐出する第1液圧源と、
を備える第1液圧ユニットと、
前記第1液圧ユニットに接続された第2液圧ユニットであって、
前記第1出力ポートに接続される第2入力ポートと、
前記第2入力ポートに接続される第2接続液路と、
前記第2接続液路に配置された第2遮断弁と、
前記第2接続液路に接続される一端部と、ブレーキ液圧に応じて車輪に制動力を付与するホイルシリンダに接続される他端部と、を有する第2出力ポートと、
前記第2接続液路のうちの前記第2遮断弁よりも前記第2出力ポート側にブレーキ液を吐出する第2液圧源と、
を備える第2液圧ユニットと、
前記ブレーキペダルに操作反力を発生させるストロークシミュレータを備えるストロークシミュレータユニットと、
前記ストロークシミュレータの正圧室と、前記マスタシリンダと、を接続する正圧側第1連通路と、
前記ストロークシミュレータの背圧室と、前記第1液圧源または第2液圧源の吸入側と、を接続する背圧側第1連通路と、
前記背圧側第1連通路に設けられ、前記マスタシリンダユニットと第1液圧ユニットと第2液圧ユニットと前記ストロークシミュレータユニットとのうちのいずれかに配置されたストロークシミュレータ弁と、
前記正圧室または前記背圧室に接続される一端と、前記液圧源の吸入側に接続される他端と、を有する第2連通路と、
前記第2連通路に設けられ、前記ストロークシミュレータ弁が配置されたユニットとは別のユニットに配置されたストローク弁と、
を備えるブレーキシステム。 - 請求項11に記載のブレーキシステムにおいて、
前記ストロークシミュレータユニットは、前記第2液圧ユニットと一体的に設けられ、
前記ストロークシミュレータ弁は、前記第2液圧ユニットに設置され、
前記ストローク弁は、前記第1液圧ユニットに設置されている
ブレーキシステム。 - 請求項12に記載のブレーキシステムにおいて、
前記第2連通路の前記一端は、前記正圧室に接続される
ブレーキシステム。 - 請求項12に記載のブレーキシステムにおいて、
前記第2連通路の前記一端は、前記背圧室に接続される
ブレーキシステム。 - 請求項11に記載のブレーキシステムにおいて、
前記ストロークシミュレータユニットは、前記第1液圧ユニットと一体的に設けられ、
前記ストロークシミュレータ弁は、前記第1液圧ユニットに設置され、
前記ストローク弁は、前記第2液圧ユニットに設置されている
ブレーキシステム。 - 請求項11に記載のブレーキシステムにおいて、
前記ストロークシミュレータユニットは、前記第1液圧ユニットと一体的に設けられ、
前記ストロークシミュレータ弁は、前記第2液圧ユニットに設置され、
前記ストローク弁は、前記第1液圧ユニットに設置されている
ブレーキシステム。 - 請求項11に記載のブレーキシステムにおいて、
前記ストロークシミュレータユニットは、前記マスタシリンダユニットと一体的に設けられ、
前記ストロークシミュレータ弁は、前記第1液圧ユニットに設置され、
前記ストローク弁は、前記第2液圧ユニットに設置されている
ブレーキシステム。 - 請求項11に記載のブレーキシステムにおいて、
前記ストロークシミュレータユニットは、前記マスタシリンダユニットと一体的に設けられ、
前記ストロークシミュレータ弁は、前記第2液圧ユニットに設置され、
前記ストローク弁は、前記第1液圧ユニットに設置されている
ブレーキシステム。 - 請求項11に記載のブレーキシステムにおいて、
前記ストローク弁を開閉作動させる第1コントロールユニットと、
前記ストロークシミュレータ弁を開閉作動させる第2コントロールユニットと、
を備えるブレーキシステム。 - ブレーキシステムであって、
ブレーキペダル操作に応じてブレーキ液圧を発生させるマスタシリンダを備えるマスタシリンダユニットと、
前記マスタシリンダユニットに接続された第1液圧ユニットであって、
前記マスタシリンダに接続される第1入力ポートと、
前記第1入力ポートに接続される第1接続液路と、
前記第1接続液路に配置された第1遮断弁と、
前記第1接続液路に接続される第1出力ポートと、
前記第1接続液路のうちの前記第1遮断弁よりも前記第1出力ポート側にブレーキ液を吐出する第1液圧源と、
を備える第1液圧ユニットと、
前記第1液圧ユニットに接続された第2液圧ユニットであって、
前記第1出力ポートに接続される第2入力ポートと、
前記第2入力ポートに接続される第2接続液路と、
前記第2接続液路に配置された第2遮断弁と、
前記第2接続液路に接続される一端部と、ブレーキ液圧に応じて車輪に制動力を付与するホイルシリンダに接続される他端部と、を有する第2出力ポートと、
前記第2接続液路のうちの前記第2遮断弁よりも前記第2出力ポート側にブレーキ液を吐出する第2液圧源と、
を備える第2液圧ユニットと、
前記ブレーキペダルに操作反力を発生させるストロークシミュレータを備えるストロークシミュレータユニットと、
前記ストロークシミュレータの正圧室と、前記マスタシリンダと、を接続する正圧側第1連通路と、
前記正圧側第1連通路に設けられ、前記マスタシリンダユニットと第1液圧ユニットと第2液圧ユニットと前記ストロークシミュレータユニットとのうちのいずれかに配置されたストロークシミュレータ弁と、
前記正圧側第1連通路のうちの前記ストロークシミュレータ弁よりも前記マスタシリンダ側、または、前記接続液路と、前記正圧室、または、前記液圧源の吸入側と、を接続するバイパス通路と、
前記バイパス通路に設けられ、前記ストロークシミュレータ弁が配置されたユニットとは別のユニットに配置されたストローク弁と、
を備えるブレーキシステム。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-247565 | 2016-12-21 | ||
JP2016247565A JP6750497B2 (ja) | 2016-12-21 | 2016-12-21 | 液圧制御装置およびブレーキシステム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018116794A1 true WO2018116794A1 (ja) | 2018-06-28 |
Family
ID=62626109
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/043427 WO2018116794A1 (ja) | 2016-12-21 | 2017-12-04 | 液圧制御装置およびブレーキシステム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6750497B2 (ja) |
WO (1) | WO2018116794A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020026225A (ja) * | 2018-08-13 | 2020-02-20 | 日立オートモティブシステムズ株式会社 | ブレーキ制御装置 |
JP7202824B2 (ja) * | 2018-09-18 | 2023-01-12 | 日立Astemo株式会社 | ストロークシミュレータおよびブレーキ制御装置 |
JP2021011215A (ja) * | 2019-07-08 | 2021-02-04 | 株式会社アドヴィックス | 車両の制動制御装置 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012001069A (ja) * | 2010-06-16 | 2012-01-05 | Toyota Motor Corp | マスタシリンダ装置 |
WO2015162744A1 (ja) * | 2014-04-24 | 2015-10-29 | 日立オートモティブシステムズ株式会社 | ブレーキ制御装置、ブレーキシステム、及びブレーキ液圧発生方法 |
-
2016
- 2016-12-21 JP JP2016247565A patent/JP6750497B2/ja active Active
-
2017
- 2017-12-04 WO PCT/JP2017/043427 patent/WO2018116794A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012001069A (ja) * | 2010-06-16 | 2012-01-05 | Toyota Motor Corp | マスタシリンダ装置 |
WO2015162744A1 (ja) * | 2014-04-24 | 2015-10-29 | 日立オートモティブシステムズ株式会社 | ブレーキ制御装置、ブレーキシステム、及びブレーキ液圧発生方法 |
Also Published As
Publication number | Publication date |
---|---|
JP6750497B2 (ja) | 2020-09-02 |
JP2018100018A (ja) | 2018-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9499149B2 (en) | Brake hydraulic pressure generator | |
US8025345B2 (en) | Vehicle brake system | |
WO2016125813A1 (ja) | 液圧制御装置及びブレーキシステム | |
JP2000203413A (ja) | 液圧ブレ―キ装置 | |
WO2017208728A1 (ja) | 液圧制御装置およびブレーキシステム | |
WO2017203961A1 (ja) | 液圧制御装置およびブレーキシステム | |
WO2017006631A1 (ja) | ブレーキ制御装置およびブレーキシステム | |
JP2019059458A (ja) | 制動制御装置 | |
WO2018116794A1 (ja) | 液圧制御装置およびブレーキシステム | |
WO2019146404A1 (ja) | ブレーキ制御装置およびブレーキ制御装置の故障検出方法 | |
JP6245696B2 (ja) | ブレーキ液圧発生装置 | |
JP5927093B2 (ja) | ブレーキ装置 | |
JP7093276B2 (ja) | ブレーキ制御装置 | |
WO2021187435A1 (ja) | 車両用制動装置 | |
JP6202741B2 (ja) | ブレーキ液圧発生装置 | |
JP6291655B2 (ja) | ブレーキシステム | |
JP6317659B2 (ja) | 車両用ブレーキシステム | |
JP2019147458A (ja) | ブレーキ制御装置及びブレーキ制御装置用電磁弁 | |
WO2021200661A1 (ja) | 車両用制動装置 | |
WO2017047312A1 (ja) | ブレーキ装置及びブレーキシステム | |
JP6973065B2 (ja) | 車両用制動装置 | |
JP6720723B2 (ja) | 車両用制動装置 | |
WO2019017203A1 (ja) | ブレーキ装置及びブレーキ制御方法 | |
JP2019018637A (ja) | ブレーキ装置、ブレーキ制御方法及びブレーキシステム | |
JP2000142366A (ja) | 液圧システムおよびこの液圧システムを用いたブレーキシステム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17883261 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17883261 Country of ref document: EP Kind code of ref document: A1 |