WO2018113538A1 - 一种以均苯为核心的有机化合物及其在有机电致发光器件上的应用 - Google Patents
一种以均苯为核心的有机化合物及其在有机电致发光器件上的应用 Download PDFInfo
- Publication number
- WO2018113538A1 WO2018113538A1 PCT/CN2017/115257 CN2017115257W WO2018113538A1 WO 2018113538 A1 WO2018113538 A1 WO 2018113538A1 CN 2017115257 W CN2017115257 W CN 2017115257W WO 2018113538 A1 WO2018113538 A1 WO 2018113538A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- compound
- formula
- organic compound
- molar ratio
- Prior art date
Links
- 0 *1c(cc2[o]c(cccc3)c3c2c2)c2-c2ccccc12 Chemical compound *1c(cc2[o]c(cccc3)c3c2c2)c2-c2ccccc12 0.000 description 6
- GLZRXQONNDPRPN-UHFFFAOYSA-N C[n](c1c2)c(cc(C=Cc(cccc3)c3O3)c3c3)c3c1cc1c2C=Cc(cccc2)c2O1 Chemical compound C[n](c1c2)c(cc(C=Cc(cccc3)c3O3)c3c3)c3c1cc1c2C=Cc(cccc2)c2O1 GLZRXQONNDPRPN-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/02—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
- C07D405/10—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D209/00—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D209/56—Ring systems containing three or more rings
- C07D209/80—[b, c]- or [b, d]-condensed
- C07D209/94—[b, c]- or [b, d]-condensed containing carbocyclic rings other than six-membered
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/02—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
- C07D405/04—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/14—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D409/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
- C07D409/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
- C07D409/10—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D409/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
- C07D409/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D421/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having selenium, tellurium, or halogen atoms as ring hetero atoms
- C07D421/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having selenium, tellurium, or halogen atoms as ring hetero atoms containing two hetero rings
- C07D421/10—Heterocyclic compounds containing two or more hetero rings, at least one ring having selenium, tellurium, or halogen atoms as ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
- C07D487/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/12—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains three hetero rings
- C07D487/14—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D491/00—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
- C07D491/02—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
- C07D491/04—Ortho-condensed systems
- C07D491/044—Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D491/00—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
- C07D491/02—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
- C07D491/04—Ortho-condensed systems
- C07D491/044—Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
- C07D491/048—Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D491/00—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
- C07D491/02—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
- C07D491/04—Ortho-condensed systems
- C07D491/044—Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
- C07D491/052—Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being six-membered
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D491/00—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
- C07D491/02—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
- C07D491/04—Ortho-condensed systems
- C07D491/056—Ortho-condensed systems with two or more oxygen atoms as ring hetero atoms in the oxygen-containing ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D491/00—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
- C07D491/12—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains three hetero rings
- C07D491/14—Ortho-condensed systems
- C07D491/153—Ortho-condensed systems the condensed system containing two rings with oxygen as ring hetero atom and one ring with nitrogen as ring hetero atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D495/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
- C07D495/02—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
- C07D495/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D495/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
- C07D495/12—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains three hetero rings
- C07D495/14—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D498/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
- C07D498/02—Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
- C07D498/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D498/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
- C07D498/12—Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains three hetero rings
- C07D498/14—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D513/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
- C07D513/02—Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
- C07D513/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D517/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having selenium, tellurium, or halogen atoms as ring hetero atoms
- C07D517/02—Heterocyclic compounds containing in the condensed system at least one hetero ring having selenium, tellurium, or halogen atoms as ring hetero atoms in which the condensed system contains two hetero rings
- C07D517/04—Ortho-condensed systems
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
- H10K85/626—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/653—Aromatic compounds comprising a hetero atom comprising only oxygen as heteroatom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/655—Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6572—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6574—Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6576—Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
Definitions
- the present invention relates to the field of semiconductor technology, and in particular, to an organic compound with isophthalic acid as its core and its application to an organic electroluminescent device.
- OLED Organic Light Emission Diodes
- the OLED light-emitting device is like a sandwich structure, including an electrode material film layer and an organic functional material sandwiched between different electrode film layers, and various functional materials are superposed on each other according to the purpose to form an OLED light-emitting device.
- the OLED light-emitting device functions as a current device.
- the positive and negative charges in the organic layer functional material film layer are applied by the electric field, the positive and negative charges are further recombined in the light-emitting layer, that is, the OLED electroluminescence is generated.
- OLED display technology has been applied in the fields of smart phones, tablet computers, etc., and will further expand to large-size applications such as television, but the luminous efficiency and service life of OLED devices are compared with actual product application requirements. Further improvement is needed.
- research on improving the performance of OLED light-emitting devices includes: reducing the driving voltage of the device, improving the luminous efficiency of the device, and improving the service life of the device.
- the OLED optoelectronic functional materials applied to OLED devices can be divided into two categories from the use of charge injection transport materials and luminescent materials. Further, the charge injection transport material may be further classified into an electron injection transport material, an electron blocking material, a hole injection transport material, and a hole blocking material, and the luminescent material may be further divided into a host luminescent material and a dopant material.
- organic functional materials are required to have good photoelectric properties.
- a charge transport material it is required to have good carrier mobility, high glass transition temperature, etc., as a main body of the light-emitting layer.
- the material has good bipolarity, appropriate HOMO/LUMO energy levels, and the like.
- the OLED photoelectric functional material film layer constituting the OLED device includes at least two layers or more, and the industrially applied OLED device structure includes a hole injection layer, a hole transport layer, an electron blocking layer, a light emitting layer, a hole blocking layer, and an electron transport.
- Layers, electron injection layers and other film layers, that is to say, the photoelectric functional materials applied to the OLED device include at least hole injection materials, hole transport materials, luminescent materials, electron transport materials, etc., and the material types and combinations are rich. And the characteristics of diversity.
- the photoelectric functional materials used have strong selectivity. The performance of the same material in different structural devices can also be completely different.
- the photoelectric characteristics of devices must be selected to be more suitable and higher performance OLED functional materials or material combinations in order to achieve high efficiency and long life of the device. And the comprehensive characteristics of low voltage.
- the development of OLED materials is still far from enough. It is lagging behind the requirements of panel manufacturers, and it is especially important to develop higher performance organic functional materials as material enterprises.
- the Applicant provides an organic compound having a homophenylene core as its core and its use in an organic electroluminescent device.
- the compound of the invention contains a homo-benzene structure, has high glass transition temperature and molecular thermal stability, suitable HOMO and LUMO energy levels, high Eg, and can optimize the photoelectric performance of the OLED device and the OLED device by optimizing the device structure. life.
- the technical solution of the present invention is as follows:
- the Applicant provides an organic compound having a perylene-based core, the structure of which is as shown in the general formula (1):
- X represents an oxygen atom, a sulfur atom, a selenium atom, a C 1-10 linear or branched alkyl substituted alkylene group, an aryl substituted alkylene group, an alkyl group or an aryl group.
- X represents an oxygen atom, a sulfur atom, a selenium atom, a C 1-10 linear or branched alkyl substituted alkylene group, an aryl substituted alkylene group, an alkyl group or an aryl group.
- Ar 1 and Ar 2 are each independently represented by a phenyl group, a diphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a phenanthryl group, a fluorenyl group, a furyl group, a thienyl group, a pyridyl group, a pyrimidinyl group, a pyridazinyl group, Pyrazinyl or triazinyl; Ar 1 is also represented as dibenzofuran, dibenzothiophene, 9,9-dimethylhydrazine or 9-phenyloxazole; Ar 2 is also represented as a single bond; Ar 1 , Ar 2 may be the same or different;
- R is represented by the structure represented by the general formula (2);
- R 1 and R 2 are each independently represented by a hydrogen atom, a structure represented by the formula (3) or (4); and R 1 and R 2 are not simultaneously a hydrogen atom;
- X 1 , X 2 , X 3 and X 4 are each independently represented by an oxygen atom, a sulfur atom, a selenium atom, a C 1-10 linear or branched alkyl-substituted alkylene group, an aryl-substituted alkylene group, One of an alkyl or aryl substituted tertiary amine group;
- Formula (3) or Formula (4) passes C L1 -C L2 bond, C L2 -C L3 bond, C L3 -C L4 bond, C L'1 -C L'2 bond, C L'2 -C
- the L'3 bond or the C L'3 -C L'4 bond is bonded to the formula (2).
- the specific structural formula of the organic compound is:
- the applicant also provides a preparation method of the organic compound, and the reaction equation occurring during the preparation is: when Ar 2 is a single bond,
- the preparation method comprises the following steps: weighing intermediates I and RH, and dissolving with toluene; adding Pd 2 (dba) 3 , tri-tert-butylphosphine and sodium tert-butoxide; and mixing the above reactants under an inert atmosphere; The reaction is carried out at a reaction temperature of 95 to 110 ° C for 10 to 24 hours, and the reaction solution is cooled and filtered, and the filtrate is rotary-screwed and passed through a silica gel column to obtain a target product; the molar ratio of the intermediate I to the R 2 H is 1:1.0 to 1.5.
- the molar ratio of Pd 2 (dba) 3 to intermediate I is 0.006 to 0.02:1
- the molar ratio of tri-tert-butylphosphine to intermediate I is 0.006 to 0.02:1
- the molar ratio of sodium t-butoxide to intermediate I The ratio is 2.0 to 3.0:1;
- the molar ratio of the intermediate I to R 1 -Ar 2 -B(OH) 2 is 1:1.0-1.5; the molar ratio of Pd(PPh 3 ) 4 to the intermediate I is 0.006-0.02:1, Na 2 CO The molar ratio of 3 to intermediate I is from 2.0 to 3.0:1.
- the Applicant also provides an application of the described organic compound for the preparation of an organic electroluminescent device.
- the Applicant also provides an organic electroluminescent device comprising at least one functional layer comprising the organic compound having a perylene-based core.
- the Applicant also provides an organic electroluminescent device comprising an electron blocking layer material, wherein the electron blocking layer material is an organic compound having a perylene group as claimed in any one of claims 1 to 3.
- the Applicant also provides an organic electroluminescent device comprising a light-emitting layer comprising the organic compound having a perylene as a core according to any one of claims 1 to 3.
- the structure of the organic compound of the invention makes the distribution of electrons and holes in the luminescent layer more balanced, and improves the hole injection and transport performance at the appropriate HOMO level; and at the appropriate LUMO level, it also acts as an electron blocking
- the effect of improving the recombination efficiency of the excitons in the luminescent layer; when used as the luminescent functional layer material of the OLED illuminating device, the homogenization of the benzene in the range of the invention can effectively improve the exciton utilization and the high fluorescence radiation efficiency, and reduce Efficiency roll-off at high current densities reduces device voltage and increases current efficiency and lifetime of the device.
- the organic compound of the invention When the organic compound of the invention is applied in the OLED device, the device structure is optimized, the film stability can be maintained, and the photoelectric performance of the OLED device and the lifetime of the OLED device can be effectively improved.
- the compound of the invention has good application effect and industrialization prospect in the OLED light-emitting device.
- 1 is a schematic structural view of an OLED device according to the present invention; wherein, 1, a transparent substrate layer, 2, an ITO anode layer, 3, a hole injection layer, 4, a hole transport layer 5, an electron blocking layer, 6. A light-emitting layer, 7. a hole blocking/electron transport layer, 8. an electron injection layer, and a cathode reflective electrode layer.
- Elemental analysis structure (Molecular formula C 18 H 12 Br 2 ): Theory C, 55.71; H, 3.12; Br, 41.18; ⁇ / RTI> C, 55.72; H, 3.11; Br, 41.17.
- HPLC-MS The theoretical molecular weight of the material was 385.93, and the measured molecular weight was 386.21.
- the intermediate I is prepared by the synthesis method of the intermediate A1, and the synthesis is divided into two steps: the intermediate V is synthesized from the raw material U and 1,3,5-tribromobenzene; then the intermediate I is synthesized from the intermediate V and the raw material W, specifically The structure is shown in Table 1.
- Elemental analysis structure (Molecular formula C 48 H 29 NO 2 ): calcd. C, 88.46; H, 4.48; N, 2.15; O, 4.91; Tests: C, 88.45; H, 4.47; N, 2.16; O, 4.92.
- HPLC-MS The theoretical molecular weight of the material was 651.22, and the measured molecular weight was 651.53.
- Elemental analysis structure (Molecular formula C 48 H 27 NO 3 ): Theory C, 86.60; H, 4.09; N, 2.10; O, 7.21.; Tests: C, 86.61; H, 4.07; N, 2.12; O, 7.20.
- HPLC-MS The theoretical molecular weight of the material was 665.20, and the measured molecular weight was 665.48.
- Elemental analysis structure (molecular formula C 48 H 29 NO 2 ): calcd. C, 88.46; H, 4.48; N, 2.15; O, 4.91; ⁇ / RTI> C, 88.45; H, 4.49; N, 2.13; O, 4.93.
- HPLC-MS The theoretical molecular weight of the material was 651.22, and the measured molecular weight was 651.49.
- Elemental analysis structure (Molecular formula C 48 H 29 NO 2 ): calcd. C, 88.46; H, 4.48; N, 2.15; O, 4.91; Tests: C, 88.47; H, 4.49; N, 2.14; O, 4.90.
- HPLC-MS The theoretical molecular weight of the material was 651.22, and the measured molecular weight was 651.54.
- Elemental analysis structure (Molecular formula C 24 H 14 BrNO): Theory C, 69.92; H, 3.42; Br, 19.38; N, 3.40; O, 3.88; Tests: C, 69.93; H, 3.43; Br, 19.36; , 3.41; O, 3.87.
- HPLC-MS The theoretical molecular weight of the material was 411.03, and the measured molecular weight was 411.42.
- Elemental analysis structure (Molecular formula C 24 H 16 BNO 3 ): Theory C, 76.42; H, 4.28; B, 2.87; N, 3.71; O, 12.72; Tests: C, 76.43; H, 4.27; B, 2.85; N, 3.72; O, 12.73.
- HPLC-MS The theoretical molecular weight of the material was 377.12, and the measured molecular weight was 377.42.
- Elemental analysis structure (Molecular formula C 48 H 29 NO 2 ): calcd. C, 88.46; H, 4.48; N, 2.15; O, 4.91; Tests: C, 88.45; H, 4.47; N, 2.16; O, 4.92.
- HPLC-MS The theoretical molecular weight of the material was 651.22, and the measured molecular weight was 651.48.
- the preparation method of the intermediate C2 was the same as that of Example 6, except that the raw material B3 was used instead of the raw material B2.
- the intermediate D2 was prepared in the same manner as in Example 6, except that the intermediate C1 was replaced with the intermediate C2.
- Compound 28 was prepared in the same manner as in Example 6, except that Intermediate D2 was replaced with Intermediate D2.
- Compound 29 was prepared in the same manner as in Example 3 except that the raw material B2 was used instead of the raw material B1.
- Elemental Analysis Structure (Molecular Formula C 55 H 35 NO): Theory C, 91.01; H, 4.86; N, 1.93; O, 2.20; ⁇ / RTI> ⁇ /RTI> C, 91.02; H, 4.87; N, 1.91; O, 2.20.
- HPLC-MS The theoretical molecular weight of the material was 725.27, and the measured molecular weight was 725.61.
- Compound 33 was prepared in the same manner as in Example 3 except that the raw material B3 was used instead of the raw material B1.
- Compound 38 was prepared in the same manner as in Example 2 except that the starting material B1 was replaced with the starting material B5.
- Elemental analysis structure (Molecular formula C 48 H 29 NO 2 ): calcd. C, 88.46; H, 4.48; N, 2.15; O, 4.91; ⁇ / RTI> C, 88.45; H, 4.46; N, 2.17; O, 4.92.
- HPLC-MS The theoretical molecular weight of the material was 651.22, and the measured molecular weight was 651.57.
- Compound 42 was prepared in the same manner as in Example 8, except that Intermediate A2 was used instead of Intermediate A4.
- Elemental analysis structure (molecular formula C 57 H 37 NO 2 ): calcd. C, 89.15; H, 4.86; N, 1.82; O, 4.17; ⁇ / RTI> ⁇ /RTI> C, 89.14; H, 4.85; N, 1.83; O, 4.18.
- HPLC-MS The theoretical molecular weight of the material was 767.28, and the measured molecular weight was 767.64.
- the preparation method of the compound 45 was the same as that of Example 2 except that the intermediate A1 was replaced with the intermediate A6, and the starting material B7 was replaced with the starting material B1.
- Elemental analysis structure (Molecular formula C 48 H 29 NO 2 ): calcd. C, 88.46; H, 4.48; N, 2.15; O, 4.91; Tests: C, 88.45; H, 4.49; N, 2.14; O, 4.92.
- HPLC-MS The theoretical molecular weight of the material was 651.22, and the measured molecular weight was 651.53.
- the compound 51 was prepared in the same manner as in Example 2 except that the intermediate A1 was replaced with the intermediate A7, and the starting material B1 was replaced with the starting material B1.
- Elemental Analysis Structure (Molecular Formula C 57 H 39 NO): Theory C, 90.81; H, 5.21.; N, 1.86; O, 2.12; Tests: C, 90.82; H, 5.22; N, 1.85; O, 2.11.
- HPLC-MS The theoretical molecular weight of the material was 753.30, and the measured molecular weight was 753.64.
- Compound 53 was prepared in the same manner as in Example 3 except that the starting material B1 was replaced with the starting material B7.
- Elemental analysis structure (Molecular formula C 48 H 27 NO 3 ): Theory C, 86.60; H, 4.09; N, 2.10; O, 7.21.; Tests: C, 86.61; H, 4.08; N, 2.11; O, 7.20.
- HPLC-MS The theoretical molecular weight of the material was 665.20, and the measured molecular weight was 665.54.
- Compound 57 was prepared in the same manner as in Example 3 except that the starting material B1 was replaced with the starting material B8.
- the preparation method of the intermediate C3 was the same as that of Example 6, except that the raw material B9 was used instead of the raw material B2.
- the intermediate D3 was prepared in the same manner as in Example 6, except that the intermediate C3 was replaced with the intermediate C3.
- Compound 66 was prepared in the same manner as in Example 6, except that Intermediate D3 was replaced with Intermediate D3.
- Compound 91 was prepared in the same manner as in Example 2 except that the raw material B10 was used instead of the raw material B1.
- Elemental analysis structure (Molecular formula C 51 H 35 NO 2 ): calcd. C, 88.28; H, 5.08; N, 2.02; O, 4.61; HPLC-MS: The theoretical molecular weight of the material was 693.27, and the measured molecular weight was 693.63.
- Compound 97 was prepared in the same manner as in Example 2 except that the intermediate A1 was replaced with the intermediate A1 and the starting material B11 was used to replace the starting material B1.
- Elemental analysis structure (Molecular formula C 60 H 37 N 3 S 2 ): Theory C, 83.40; H, 4.32; N, 4.86; S, 7.42; Tests: C, 83.42; H, 4.34; N, 4.84; 7.40.
- HPLC-MS The theoretical molecular weight of the material was 863.24, and the measured molecular weight was 863.51.
- the organic compound of the present invention is used in a light-emitting device, and can be used as an electron blocking layer material or as a host material of a light-emitting layer.
- the thermal performance and HOMO energy levels of the compounds 5, 10, 19, 21, 23, 24, 28, 29, 32, 33, 38, 42, 45, 51, 53, 57 of the present invention were tested, and the test results are shown in Table 2. Shown.
- the glass transition temperature Tg is determined by differential scanning calorimetry (DSC, DSC204F1 differential scanning calorimeter, Germany), the heating rate is 10 ° C / min; the weight loss temperature Td is the temperature loss of 1% in the nitrogen atmosphere, The measurement was carried out on a TGA-50H thermogravimetric analyzer of Shimadzu Corporation, Japan, with a nitrogen flow rate of 20 mL/min; the highest occupied molecular orbital HOMO level was tested by an ionization energy test system (IPS3) and tested as an atmospheric environment.
- IPS3 ionization energy test system
- the organic compounds of the present invention have different HOMO energy levels and can be applied to different functional layers.
- the organic compound having the homogenyl group as the core has high thermal stability, so that the prepared content contains The lifetime of OLED devices inventing organic compounds has increased.
- the application effects of the OLED material synthesized by the present invention in a device will be described in detail below by means of Device Examples 1 to 16 and Comparative Example 1.
- the device embodiments 2 to 16 and the comparative example 1 of the present invention have the same fabrication process as the device embodiment 1, and the same substrate material and electrode material are used, and the film thickness of the electrode material is also consistent.
- the difference is that the devices 2 to 9 change the host material of the light-emitting layer in the device; the devices 10 to 16 use the material of the present invention as an electron blocking layer.
- the performance test results of the devices obtained in the respective examples are shown in Table 3.
- Example 1 An electroluminescent device, the preparation steps of which include:
- the hole injection layer material HAT-CN is deposited by vacuum evaporation, the thickness is 10nm, this layer serves as the hole injection layer 3;
- the electron blocking layer material NPB is evaporated by vacuum evaporation, the thickness is 20nm, the layer is the electron blocking layer 5;
- the electron transporting material TPBI is evaporated by vacuum evaporation to a thickness of 40 nm, and this organic material is used as the hole blocking/electron transporting layer 7;
- the layer is the electron injection layer 8;
- the layer is the cathode reflective electrode layer 9;
- This embodiment differs from Device Embodiment 1 in that the light-emitting layer host material of the electroluminescent device becomes the compound 38 of the present invention, and the doping materials are the masses of Ir(ppy) 3 , Ir(ppy) 3 and compound 38.
- the ratio of the measured data of the obtained electroluminescent device is shown in Table 3 at 10:90.
- This embodiment is different from Device Embodiment 1 in that the light-emitting layer host material of the electroluminescent device becomes the compound 10 of the present invention and the compound GHN, and the dopant material is Ir(ppy) 3 , compound 10, GHN and Ir ( The mass ratio of ppy) 3 is 60:30:10, and the detection data of the obtained electroluminescent device are shown in Table 3.
- This embodiment is different from the device embodiment 1 in that the light-emitting layer host material of the electroluminescent device becomes the compound 19 of the present invention and the compound GHN, and the doping material is Ir(ppy) 3 , compound 19, GHN and Ir ( The mass ratio of ppy) 3 is 60:30:10, and the detection data of the obtained electroluminescent device are shown in Table 3.
- This embodiment is different from the device embodiment 1 in that the light-emitting layer host material of the electroluminescent device becomes the compound 21 of the present invention and the compound GHN, and the doping material is Ir(ppy) 3 , compound 21, GHN and Ir ( The mass ratio of ppy) 3 is 60:30:10, and the detection data of the obtained electroluminescent device are shown in Table 3.
- This embodiment is different from the device embodiment 1 in that the light-emitting layer host material of the electroluminescent device becomes the compound 23 of the present invention and the compound GHN, and the doping material is Ir(ppy) 3 , compound 23, GHN and Ir ( The mass ratio of ppy) 3 is 60:30:10, and the detection data of the obtained electroluminescent device are shown in Table 3.
- This embodiment is different from the device embodiment 1 in that the light-emitting layer host material of the electroluminescent device becomes the compound 29 of the present invention and the compound GHN, and the doping materials are Ir(ppy) 3 , compound 29, GHN and Ir ( The mass ratio of ppy) 3 is 60:30:10, and the detection data of the obtained electroluminescent device are shown in Table 3.
- This embodiment is different from Device Embodiment 1 in that the light-emitting layer host material of the electroluminescent device becomes the compound 45 of the present invention and the compound GHN, the doping material Ir(ppy) 3 , the compound 45, the GHN and the Ir (ppy) 3 )
- the mass ratio of the three is 60:30:10, and the detection data of the obtained electroluminescent device is shown in Table 3.
- This embodiment is different from the device embodiment 1 in that the light-emitting layer host material of the electroluminescent device becomes the compound 53 of the present invention and the compound GHN, and the doping material is Ir(ppy) 3 , compound 53, GHN and Ir ( The mass ratio of ppy) 3 is 60:30:10, and the detection data of the obtained electroluminescent device are shown in Table 3.
- This embodiment differs from Device Embodiment 1 in that the material of the electron blocking layer of the electroluminescent device becomes the compound 24 of the present invention, the host material of the light-emitting layer 6 is a known compound CBP, and the doping material is Ir(ppy). 3 , Ir(ppy) 3 and CBP mass ratio is 10:90, the detection data of the obtained electroluminescent device is shown in Table 3.
- This embodiment differs from Device Embodiment 1 in that the material of the electron blocking layer of the electroluminescent device becomes the compound 28 of the present invention, the host material of the light-emitting layer 6 is a known compound CBP, and the doping material is Ir(ppy). 3 , Ir(ppy) 3 and CBP mass ratio is 10:90, the detection data of the obtained electroluminescent device is shown in Table 3.
- This embodiment differs from Device Embodiment 1 in that the material of the electron blocking layer of the electroluminescent device becomes the compound 32 of the present invention, the host material of the light-emitting layer 6 is a known compound CBP, and the doping material is Ir(ppy). 3 , Ir(ppy) 3 and CBP mass ratio is 10:90, the detection data of the obtained electroluminescent device is shown in Table 3.
- This embodiment differs from Device Embodiment 1 in that the material of the electron blocking layer of the electroluminescent device becomes the compound 33 of the present invention, the host material of the light-emitting layer 6 is a known compound CBP, and the doping material is Ir(ppy). 3 , Ir(ppy) 3 and CBP mass ratio is 10:90, the detection data of the obtained electroluminescent device is shown in Table 3.
- This embodiment differs from Device Embodiment 1 in that the material of the electron blocking layer of the electroluminescent device becomes the compound 42 of the present invention, the host material of the light-emitting layer 6 is a known compound CBP, and the doping material is Ir(ppy). 3 , Ir(ppy) 3 and CBP mass ratio is 10:90, the detection data of the obtained electroluminescent device is shown in Table 3.
- This embodiment differs from Device Embodiment 1 in that the material of the electron blocking layer of the electroluminescent device becomes the compound 51 of the present invention, the host material of the light-emitting layer 6 is a known compound CBP, and the doping material is Ir(ppy). 3 , Ir(ppy) 3 and CBP mass ratio is 10:90, the detection data of the obtained electroluminescent device is shown in Table 3.
- This embodiment differs from Device Embodiment 1 in that the material of the electron blocking layer of the electroluminescent device becomes the compound 57 of the present invention, the host material of the light-emitting layer 6 is a known compound CBP, and the doping material is Ir(ppy). 3 , Ir(ppy) 3 and CBP mass ratio is 10:90, the detection data of the obtained electroluminescent device is shown in Table 3.
- This embodiment differs from Device Embodiment 1 in that the light-emitting layer host material of the electroluminescent device becomes a known compound CBP, the doping material is Ir(ppy) 3 , and the mass ratio of Ir(ppy) 3 and CBP is The detection data of the obtained electroluminescent device is shown in Table 3 at 10:90.
- the life test system is the OLED device life tester jointly researched by the owner of the invention and Shanghai University.
- the OLED device prepared by the material of the present invention can maintain a long life at a high temperature
- the device examples 1 to 16 and the device comparative example 1 were subjected to a high-temperature driving life test at 85 ° C, and the results are shown in Table 4.
- device examples 1 to 16 are device structures in which the materials of the present invention and known materials are combined. Compared with device comparative example 1, the OLED device provided by the present invention has a good driving life at high temperatures.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
本发明涉及一种以均苯为核心的有机化合物及其在OLED器件上的应用,本发明化合物具有较高的玻璃化温度和分子热稳定性,合适的HOMO和LUMO能级,较高的Eg;通过器件结构优化,可有效提升OLED器件的光电性能以及OLED器件的寿命。
Description
本发明涉及半导体技术领域,尤其涉及一种以均苯为核心的有机化合物及其在有机电致发光器件上的应用。
有机电致发光(OLED:Organic Light Emission Diodes)器件技术既可以用来制造新型显示产品,也可以用于制作新型照明产品,有望替代现有的液晶显示和荧光灯照明,应用前景十分广泛。OLED发光器件犹如三明治的结构,包括电极材料膜层以及夹在不同电极膜层之间的有机功能材料,各种不同功能材料根据用途相互叠加在一起共同组成OLED发光器件。OLED发光器件作为电流器件,当对其两端电极施加电压,并通过电场作用有机层功能材料膜层中的正负电荷时,正负电荷进一步在发光层中复合,即产生OLED电致发光。
当前,OLED显示技术已经在智能手机,平板电脑等领域获得应用,进一步还将向电视等大尺寸应用领域扩展,但是,和实际的产品应用要求相比,OLED器件的发光效率和使用寿命等性能还需要进一步提升。目前对OLED发光器件提高性能的研究包括:降低器件的驱动电压、提高器件的发光效率、提高器件的使用寿命等。为了实现OLED器件的性能的不断提升,不但需要从OLED器件结构和制作工艺的创新,更需要OLED光电功能材料不断研究和创新,创制出更高性能的OLED功能材料。
应用于OLED器件的OLED光电功能材料从用途上可划分为两大类,分别为电荷注入传输材料和发光材料。进一步,还可将电荷注入传输材料分为电子注入传输材料、电子阻挡材料、空穴注入传输材料和空穴阻挡材料,还可以将发光材料分为主体发光材料和掺杂材料。
为了制作高性能的OLED发光器件,要求各种有机功能材料具备良好的光电性能,譬如,作为电荷传输材料,要求具有良好的载流子迁移率,高玻璃化转化温度等,作为发光层的主体材料具有良好双极性,适当的HOMO/LUMO能阶等。
构成OLED器件的OLED光电功能材料膜层至少包括两层以上结构,产业上应用的OLED器件结构则包括空穴注入层、空穴传输层、电子阻挡层、发光层、空穴阻挡层、电子传输层、电子注入层等多种膜层,也就是说应用于OLED器件的光电功能材料至少包括空穴注入材料、空穴传输材料、发光材料、电子传输材料等,材料类型和搭配形式具有丰富性和多样性的特点。另外,对于不同结构的OLED器件搭配而言,所使用的光电功能材料具有较强的选择性,
相同的材料在不同结构器件中的性能表现也可能完全迥异。
因此,针对当前OLED器件的产业应用要求以及OLED器件的不同功能膜层,器件的光电特性需求,必须选择更适合、性能更高的OLED功能材料或材料组合,才能实现器件的高效率、长寿命和低电压的综合特性。就当前的OLED显示照明产业的实际需求而言,目前OLED材料的发展还远远不够,落后于面板制造企业的要求,作为材料企业开发更高性能的有机功能材料显得尤为重要。
发明内容
针对现有技术存在的上述问题,本申请人提供了一种以均苯为核心的有机化合物及其在有机电致发光器件上的应用。本发明化合物含有均苯结构,具有较高的玻璃化温度和分子热稳定性,合适的HOMO和LUMO能级,较高Eg,通过器件结构优化,可有效提升OLED器件的光电性能以及OLED器件的寿命。本发明的技术方案如下:
本申请人提供了一种以均苯为核心的有机化合物,所述有机化合物的结构如通式(1)所示:
通式(1)中,X表示为氧原子、硫原子、硒原子、C1-10直链或支链烷基取代的亚烷基、芳基取代的亚烷基、烷基或芳基取代的叔胺基中的一种;
Ar1、Ar2分别独立的表示为苯基、二联苯基、三联苯基、萘基、蒽基、菲基、芘基、呋喃基、噻吩基、吡啶基、嘧啶基、哒嗪基、吡嗪基或三嗪基;Ar1还表示为二苯并呋喃、二苯并噻吩、9,9-二甲基芴或9-苯基咔唑;Ar2还表示为单键;Ar1、Ar2可以相同或不同;
R表示为通式(2)所示结构;
通式(2)中,R1和R2分别独立的表示为氢原子、通式(3)或(4)所示的结构;且R1和R2不同时为氢原子;
通式(3)或通式(4)通过CL1-CL2键、CL2-CL3键、CL3-CL4键、CL′1-CL′2键、CL′2-CL′3键或CL′3-CL′4键和通式(2)连接。
优选的,所述通式(2)表示为:
优选的,所述有机化合物的具体结构式为:
本申请人还提供了一种所述有机化合物的制备方法,制备过程中发生的反应方程式为:当Ar2为单键时,
具体制备方法为:称取中间体I和R-H,用甲苯溶解;再加入Pd2(dba)3、三叔丁基膦、叔丁醇钠;在惰性气氛下,将上述反应物的混合溶液于反应温度95~110℃下反应10~24小时,冷却并过滤反应溶液,滤液旋蒸,过硅胶柱,得到目标产物;所述以中间体I与R2H的摩尔比为1:1.0~1.5,Pd2(dba)3与中间体I的摩尔比为0.006~0.02:1,三叔丁基膦与中间体I的摩尔比为0.006~0.02:1,叔丁醇钠与中间体I的摩尔比为2.0~3.0:1;
当Ar2不为单键时,
称取中间体I和R-Ar2-B(OH)2,用体积比为1.5~3:1的甲苯乙醇混合溶剂溶解;再加入Na2CO3水溶液、Pd(PPh3)4;在惰性气氛下,将上述反应物的混合溶液于反应温度95-100℃,反应10-24小时,冷却、过滤反应溶液,滤液旋蒸,过硅胶柱,得到目标产物;
所述中间体I与R1-Ar2-B(OH)2的摩尔比为1:1.0~1.5;Pd(PPh3)4与中间体I的摩尔比为0.006~0.02:1,Na2CO3与中间体I的摩尔比为2.0~3.0:1。
本申请人还提供了一种所述的有机化合物用于制备有机电致发光器件的应用。本申请人还提供了一种有机电致发光器件,所述有机电致发光器件包括至少一层功能层含有所述的以均苯为核心的有机化合物。
本申请人还提供了一种有机电致发光器件,包括电子阻挡层,所述电子阻挡层材料为权利要求1~3任一项所述的以均苯为核心的有机化合物。
本申请人还提供了一种有机电致发光器件,包括发光层,所述发光层含有权利要求1~3任一项所述的以均苯为核心的有机化合物。
本发明有益的技术效果在于:
本发明的有机化合物的结构使得电子和空穴在发光层的分布更加平衡,在恰当的HOMO能级下,提升了空穴注入和传输性能;在合适的LUMO能级下,又起到了电子阻挡的作用,提升激子在发光层中的复合效率;作为OLED发光器件的发光功能层材料使用时,均苯搭配本发明范围内的支链可有效提高激子利用率和高荧光辐射效率,降低高电流密度下的效率滚降,降低器件电压,提高器件的电流效率和寿命。
本发明的有机化合物在OLED器件应用时,通过器件结构优化,可保持高的膜层稳定性,可有效提升OLED器件的光电性能以及OLED器件的寿命。本发明所述化合物在OLED发光器件中具有良好的应用效果和产业化前景。
图1为本发明所列举的材料应用于OLED器件的结构示意图;其中,1、透明基板层,2、ITO阳极层,3、空穴注入层,4、空穴传输层5、电子阻挡层,6、发光层,7、空穴阻挡/电子传输层,8、电子注入层,9、阴极反射电极层。
实施例1:中间体I的合成
(1)称取1,3,5-三溴苯和原料U(Ar1-B(OH)2),用体积比为1.5~3.0:1的甲苯乙醇混合溶剂溶解;再加入Na2CO3水溶液、Pd(PPh3)4;在惰性气氛下,将上述混合溶液在95-100℃下,搅拌反应10-24小时,然后冷却至室温、过滤反应溶液,滤液旋蒸,过硅胶柱,得中间体V;所述原料U与1,3,5-三溴苯的摩尔比为1:1.5~3.0;Pd(PPh3)4与原料U的摩尔比为0.006~0.02:1,Na2CO3与原料U的摩尔比为2.0~3.0:1。
(2)称取中间体V和原料W,用体积比为1.5~3.0:1的甲苯乙醇混合溶剂溶解;再加入Na2CO3水溶液、Pd(PPh3)4;在惰性气氛下,将上述混合溶液于95-100℃下,搅拌反应10-24小时,然后冷却至室温、过滤反应溶液,滤液旋蒸,过硅胶柱,得到中间体I;所述原料W与中间体V的摩尔比为1:1.5~3.0;Pd(PPh3)4与原料W的摩尔比为0.006~0.02:1,Na2CO3与原料W的摩尔比为2.0~3.0:1。
选取中间体A1的合成为例:
(1)500mL的三口瓶,在通入氮气的气氛下,加入0.04mol原料U1(3-苯基苯硼酸),0.06mol1,3,5-三溴苯,用混合溶剂溶解(180ml甲苯,90ml乙醇),然后加入0.12mol Na2CO3水溶液(2M),通氮气搅拌1小时,然后加入0.0004mol Pd(PPh3)4,加热回流15小时,取样点板,反应完全。自然冷却,过滤,滤液旋蒸,过硅胶柱,得到中间体V1,HPLC纯度99.3%,收率58.8%。
元素分析结构(分子式C18H12Br2):理论值C,55.71;H,3.12;Br,41.18;测试值:C,55.72;H,3.11;Br,41.17。HPLC-MS:材料理论分子量为385.93,实测分子量386.21。
(2)250mL的三口瓶,在通入氮气的气氛下,加入0.02mol原料W1(4-二苯并呋喃硼酸),0.03mol中间体V1,用混合溶剂溶解(90ml甲苯,45ml乙醇),然后加入0.06mol Na2CO3水溶液(2M),通氮气搅拌1小时,然后加入0.0002mol Pd(PPh3)4,加热回流15小时,取样点板,反应完全。自然冷却,过滤,滤液旋蒸,过硅胶柱,得到中间体A1,HPLC纯度99.8%,收率57.9%。
元素分析结构(分子式C30H19BrO):理论值C,75.80;H,4.03;Br,16.81;O,3.37;测试值:C,75.82;H,4.01;Br,16.82;O,3.35。HPLC-MS:材料理论分子量为474.06,实测分子量474.39。
以中间体A1的合成方法制备中间体I,合成分为两步:由原料U和1,3,5-三溴苯合成中间体V;然后由中间体V和原料W合成中间体I,具体结构如表1所示。
表1
实施例2:化合物5的合成:
250ml的三口瓶,在通入氮气的气氛下,加入0.01mol中间体A1,0.015mol原料B1,0.03mol叔丁醇钠,1×10-4mol Pd2(dba)3,1×10-4mol三叔丁基膦,150ml甲苯,加热回流24小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,纯度98.8%,收率72.3%。
元素分析结构(分子式C48H29NO2):理论值C,88.46;H,4.48;N,2.15;O,4.91;测试值:C,88.45;H,4.47;N,2.16;O,4.92。HPLC-MS:材料理论分子量为651.22,实测分子量651.53。
实施例3:化合物10的合成:
250ml的三口瓶,在通入氮气的气氛下,加入0.01mol中间体A2,0.015mol原料B1,0.03mol叔丁醇钠,1×10-4mol Pd2(dba)3,1×10-4mol三叔丁基膦,150ml甲苯,加热回流24小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,纯度98.9%,收率71.8%。
元素分析结构(分子式C48H27NO3):理论值C,86.60;H,4.09;N,2.10;O,7.21;测试值:C,86.61;H,4.07;N,2.12;O,7.20。HPLC-MS:材料理论分子量为665.20,实测分子量665.48。
实施例4:化合物19的合成:
250ml的三口瓶,在通入氮气的气氛下,加入0.01mol中间体A1,0.015mol原料B2,0.03mol叔丁醇钠,1×10-4mol Pd2(dba)3,1×10-4mol三叔丁基膦,150ml甲苯,加热回流24小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,纯度99.4%,收率71.5%。
元素分析结构(分子式C48H29NO2):理论值C,88.46;H,4.48;N,2.15;O,4.91;测试值:C,88.45;H,4.49;N,2.13;O,4.93。HPLC-MS:材料理论分子量为651.22,实测分子量651.49。
实施例5:化合物21的合成:
250ml的三口瓶,在通入氮气的气氛下,加入0.01mol中间体A3,0.015mol原料B2,0.03mol叔丁醇钠,1×10-4mol Pd2(dba)3,1×10-4mol三叔丁基膦,150ml甲苯,加热回流24小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,纯度99.2%,收率72.2%。
元素分析结构(分子式C48H29NO2):理论值C,88.46;H,4.48;N,2.15;O,4.91;测试值:C,88.47;H,4.49;N,2.14;O,4.90。HPLC-MS:材料理论分子量为651.22,实测分子量651.54。
实施例6:化合物23的合成:
(1)250ml的三口瓶,在通入氮气的气氛下,加入0.04mol原料B2,0.06mol 1,3-二溴苯,0.12mol叔丁醇钠,4×10-4mol Pd2(dba)3,4×10-4mol三叔丁基膦,150ml甲苯,加热回流24小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到中间体C1,纯度99.1%,收率62.2%。
元素分析结构(分子式C24H14BrNO):理论值C,69.92;H,3.42;Br,19.38;N,3.40;O,3.88;测试值:C,69.93;H,3.43;Br,19.36;N,3.41;O,3.87。HPLC-MS:材料理论分子量为411.03,实测分子量411.42。
(2)250ml的三口瓶,在通入氮气的气氛下,加入0.02mol中间体C1,40ml四氢呋喃溶解完全,冷却至-78℃,然后向反应体系中加入15mL的1.6mol/L正丁基锂的四氢呋喃溶液,在-78℃下反应3h后加入0.024mol硼酸三异丙酯,反应2h,然后将反应体系升至0℃,加入50mL的2mol/L盐酸溶液,搅拌3h,反应完全,加入乙醚萃取,萃取液加入无水硫酸镁干燥,旋蒸,用乙醇溶剂重结晶,得到中间体D1,纯度99.1%,收率62.2%。
元素分析结构(分子式C24H16BNO3):理论值C,76.42;H,4.28;B,2.87;N,3.71;O,12.72;测试值:C,76.43;H,4.27;B,2.85;N,3.72;O,12.73。HPLC-MS:材料理论分子量为377.12,实测分子量377.42。
(3)250mL的三口瓶,在通入氮气的气氛下,加入0.01mol中间体A4,0.015mol中间体D1,用混合溶剂溶解(90ml甲苯,45ml乙醇),然后加入0.03mol Na2CO3水溶液(2M),通氮气搅拌1小时,然后加入0.0001mol Pd(PPh3)4,加热回流15小时,取样点板,反应完全。自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,纯度99.4%,收率66.2%。
元素分析结构(分子式C48H29NO2):理论值C,88.46;H,4.48;N,2.15;O,4.91;测试值:C,88.45;H,4.47;N,2.16;O,4.92。HPLC-MS:材料理论分子量为651.22,实测分子量651.48。
实施例7:化合物24的合成:
化合物24的制备方法同实施例2,不同之处在于采用中间体B3替换中间体B1。元素分析结构(分子式C51H35NO):理论值C,90.37;H,5.20;N,2.07;O,2.36;测试值:C,90.37;H,5.20;N,2.07;O,2.36。HPLC-MS:材料理论分子量为677.27,实测分子量677.54。
实施例8:化合物28的合成:
中间体C2的制备方法同实施例6,不同之处在于采用原料B3替换原料B2。中间体D2的制备方法同实施例6,不同之处在于采用中间体C2替换中间体C1。化合物28的制备方法同实施例6,不同之处在于采用中间体D2替换中间体D1。
元素分析结构(分子式C51H35NO):理论值C,90.37;H,5.20;N,2.07;O,2.36;测试值:C,90.38;H,5.21;N,2.06;O,2.35。HPLC-MS:材料理论分子量为677.27,实测分子量677.55。
实施例9:化合物29的合成:
化合物29的制备方法同实施例3,不同之处在于采用原料B2替换原料B1。
元素分析结构(分子式C51H35NO):理论值C,90.37;H,5.20;N,2.07;O,2.36;测试值:
C,90.35;H,5.23;N,2.05;O,2.37。HPLC-MS:材料理论分子量为677.27,实测分子量677.52。
实施例10:化合物32的合成:
250ml的三口瓶,在通入氮气的气氛下,加入0.01mol中间体A4,0.015mol原料B4,0.03mol叔丁醇钠,1×10-4mol Pd2(dba)3,1×10-4mol三叔丁基膦,150ml甲苯,加热回流24小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,纯度99.2%,收率66.4%。
元素分析结构(分子式C55H35NO):理论值C,91.01;H,4.86;N,1.93;O,2.20;测试值:C,91.02;H,4.87;N,1.91;O,2.20。HPLC-MS:材料理论分子量为725.27,实测分子量725.61。
实施例11:化合物33的合成:
化合物33的制备方法同实施例3,不同之处在于采用原料B3替换原料B1。
元素分析结构(分子式C51H33NO2):理论值C,88.54;H,4.81;N,2.02;O,4.63;测试值:C,88.53;H,4.82;N,2.03;O,4.62。HPLC-MS:材料理论分子量为691.25,实测分子量691.25。
实施例12:化合物38的合成:
化合物38的制备方法同实施例2,不同之处在于采用原料B5替换原料B1。
元素分析结构(分子式C48H29NO2):理论值C,88.46;H,4.48;N,2.15;O,4.91;测试值:C,88.45;H,4.46;N,2.17;O,4.92。HPLC-MS:材料理论分子量为651.22,实测分子量651.57。
实施例13:化合物40的合成:
化合物40的制备方法同实施例2,不同之处在于采用中间体A5替换中间体A1,原料B6替换原料B1。元素分析结构(分子式C56H39NS):理论值C,88.74;H,5.19;N,1.85;S,4.23;测试值:C,88.72;H,5.21;N,1.86;S,4.21。HPLC-MS:材料理论分子量为757.28,实测分子量757.59。
实施例14:化合物42的合成:
化合物42的制备方法同实施例8,不同之处在于采用中间体A2替换中间体A4。元素分析结构(分子式C57H37NO2):理论值C,89.15;H,4.86;N,1.82;O,4.17;测试值:C,89.14;H,4.85;N,1.83;O,4.18。HPLC-MS:材料理论分子量为767.28,实测分子量767.64。
实施例15:化合物45的合成:
化合物45的制备方法同实施例2,不同之处在于采用中间体A6替换中间体A1,原料B7替换原料B1。元素分析结构(分子式C48H29NO2):理论值C,88.46;H,4.48;N,2.15;O,4.91;测试值:C,88.45;H,4.49;N,2.14;O,4.92。HPLC-MS:材料理论分子量为651.22,实测分子量651.53。
实施例16:化合物51的合成:
化合物51的制备方法同实施例2,不同之处在于采用中间体A7替换中间体A1,原料B8替换原料B1。元素分析结构(分子式C57H39NO):理论值C,90.81;H,5.21;N,1.86;O,2.12;
测试值:C,90.82;H,5.22;N,1.85;O,2.11。HPLC-MS:材料理论分子量为753.30,实测分子量753.64。
实施例17:化合物53的合成:
化合物53的制备方法同实施例3,不同之处在于采用原料B7替换原料B1。
元素分析结构(分子式C48H27NO3):理论值C,86.60;H,4.09;N,2.10;O,7.21;测试值:C,86.61;H,4.08;N,2.11;O,7.20。HPLC-MS:材料理论分子量为665.20,实测分子量665.54。
实施例18:化合物57的合成:
化合物57的制备方法同实施例3,不同之处在于采用原料B8替换原料B1。
元素分析结构(分子式C51H33NO2):理论值C,88.54;H,4.81;N,2.02;O,4.63;测试值:C,88.55;H,4.83;N,2.01;O,4.61。HPLC-MS:材料理论分子量为691.25,实测分子量691.67。
实施例19:化合物66的合成:
中间体C3的制备方法同实施例6,不同之处在于采用原料B9替换原料B2。中间体D3的制备方法同实施例6,不同之处在于采用中间体C3替换中间体C1。化合物66的制备方法同实施例6,不同之处在于采用中间体D3替换中间体D1。
元素分析结构(分子式C58H41N3S):理论值C,85.79;H,5.09;N,5.17;S,3.95;测试值:C,85.80;H,5.11;N,5.15;S,3.94。HPLC-MS:材料理论分子量为811.30,实测分子量811.68。
实施例20:化合物91的合成:
化合物91的制备方法同实施例2,不同之处在于采用原料B10替换原料B1。
元素分析结构(分子式C51H35NO2):理论值C,88.28;H,5.08;N,2.02;O,4.61;测试值:C,88.29;H,5.06;N,2.03;O,4.62。HPLC-MS:材料理论分子量为693.27,实测分子量693.63。
实施例21:化合物97的合成:
化合物97的制备方法同实施例2,不同之处在于采用采用中间体A9替换中间体A1及原料B11替换原料B1。
元素分析结构(分子式C60H37N3S2):理论值C,83.40;H,4.32;N,4.86;S,7.42;测试值:C,83.42;H,4.34;N,4.84;S,7.40。HPLC-MS:材料理论分子量为863.24,实测分子量863.51。
本发明的有机化合物在发光器件中使用,可以作为电子阻挡层材料,也可以作为发光层主客体材料使用。对本发明化合物5、10、19、21、23、24、28、29、32、33、38、42、45、51、53、57分别进行热性能、HOMO能级的测试,检测结果如表2所示。
表2
化合物 | Tg(℃) | Td(℃) | HOMO能级(ev) | 功能层 |
化合物5 | 128 | 395 | -5.84 | 发光层 |
化合物10 | 137 | 408 | -5.85 | 发光层 |
化合物19 | 129 | 396 | -5.86 | 发光层 |
化合物21 | 128 | 397 | -5.85 | 发光层 |
化合物23 | 130 | 398 | -5.82 | 发光层 |
化合物24 | 132 | 403 | -5.68 | 电子阻挡层 |
化合物28 | 131 | 404 | -5.65 | 电子阻挡层 |
化合物29 | 138 | 409 | -5.87 | 发光层 |
化合物32 | 142 | 417 | -5.66 | 电子阻挡层 |
化合物33 | 138 | 410 | -5.72 | 电子阻挡层 |
化合物38 | 133 | 403 | -5.82 | 发光层 |
化合物42 | 139 | 411 | -5.67 | 电子阻挡层 |
化合物45 | 134 | 405 | -5.83 | 发光层 |
化合物51 | 143 | 418 | -5.69 | 电子阻挡层 |
化合物53 | 135 | 412 | -5.84 | 发光层 |
化合物57 | 136 | 414 | -5.71 | 电子阻挡层 |
注:玻璃化温度Tg由示差扫描量热法(DSC,德国耐驰公司DSC204F1示差扫描量热仪)测定,升温速率10℃/min;热失重温度Td是在氮气气氛中失重1%的温度,在日本岛津公司的TGA-50H热重分析仪上进行测定,氮气流量为20mL/min;最高占据分子轨道HOMO能级是由电离能量测试系统(IPS3)测试,测试为大气环境。
由上表数据可知,本发明的有机化合物具有不同的HOMO能级,可应用于不同的功能层,本发明以均苯为核心的有机化合物具有较高的热稳定性,使得所制作的含有本发明有机化合物的OLED器件寿命提升。
以下通过器件实施例1~16和比较例1详细说明本发明合成的OLED材料在器件中的应用效果。本发明所述器件实施例2~16、比较例1与器件实施例1相比所述器件的制作工艺完全相同,并且所采用了相同的基板材料和电极材料,电极材料的膜厚也保持一致,所不同的是器件2~9对器件中的发光层的主体材料做了变换;器件10~16为使用本发明所述材料作为电子阻挡层应用。各实施例所得器件的性能测试结果如表3所示。
器件实施例1:一种电致发光器件,其制备步骤包括:
a)清洗透明基板层1上的ITO阳极层2,分别用去离子水、丙酮、乙醇超声清洗各15分钟,然后在等离子体清洗器中处理2分钟;
b)在ITO阳极层2上,通过真空蒸镀方式蒸镀空穴注入层材料HAT-CN,厚度为10nm,这层作为空穴注入层3;
c)在空穴注入层3上,通过真空蒸镀方式蒸镀空穴传输材料NPB,厚度为60nm,该层为空穴传输层4;
d)在空穴传输层4上,通过真空蒸镀方式蒸镀电子阻挡层材料NPB,厚度为20nm,该层为电子阻挡层5;
e)在电子阻挡层5之上蒸镀发光层6,使用本发明化合物5作为作为主体材料,Ir(ppy)3作为掺杂材料,Ir(ppy)3和化合物5的质量比为10:90,厚度为30nm;
f)在发光层6之上,通过真空蒸镀方式蒸镀电子传输材料TPBI,厚度为40nm,这层有机材料作为空穴阻挡/电子传输层7使用;
g)在空穴阻挡/电子传输层7之上,真空蒸镀电子注入层LiF,厚度为1nm,该层为电子注入层8;
h)在电子注入层8之上,真空蒸镀阴极Al(100nm),该层为阴极反射电极层9;
按照上述步骤完成电致发光器件的制作后,测量器件的电流效率和寿命,其结果见表3所示。相关材料的分子机构式如下所示:
器件实施例2
本实施例与器件实施例1的不同之处在于:电致发光器件的发光层主体材料变为本发明化合物38,掺杂材料为Ir(ppy)3,Ir(ppy)3和化合物38的质量比为10:90,所得电致发光器件的检测数据见表3所示。
器件实施例3
本实施例与器件实施例1的不同之处在于:电致发光器件的发光层主体材料变为本发明化
合物10和化合物GHN,掺杂材料为Ir(ppy)3,化合物10、GHN和Ir(ppy)3三者质量比为60:30:10,所得电致发光器件的检测数据见表3所示。
器件实施例4
本实施例与器件实施例1的不同之处在于:电致发光器件的发光层主体材料变为本发明化合物19和化合物GHN,掺杂材料为Ir(ppy)3,化合物19、GHN和Ir(ppy)3三者质量比为60:30:10,所得电致发光器件的检测数据见表3所示。
器件实施例5
本实施例与器件实施例1的不同之处在于:电致发光器件的发光层主体材料变为本发明化合物21和化合物GHN,掺杂材料为Ir(ppy)3,化合物21、GHN和Ir(ppy)3三者质量比为60:30:10,所得电致发光器件的检测数据见表3所示。
器件实施例6
本实施例与器件实施例1的不同之处在于:电致发光器件的发光层主体材料变为本发明化合物23和化合物GHN,掺杂材料为Ir(ppy)3,化合物23、GHN和Ir(ppy)3三者质量比为60:30:10,所得电致发光器件的检测数据见表3所示。
器件实施例7
本实施例与器件实施例1的不同之处在于:电致发光器件的发光层主体材料变为本发明化合物29和化合物GHN,掺杂材料为Ir(ppy)3,化合物29、GHN和Ir(ppy)3三者质量比为60:30:10,所得电致发光器件的检测数据见表3所示。
器件实施例8
本实施例与器件实施例1的不同之处在于:电致发光器件的发光层主体材料变为本发明化合物45和化合物GHN,掺杂材料Ir(ppy)3,化合物45、GHN和Ir(ppy)3三者质量比为60:30:10,所得电致发光器件的检测数据见表3所示。
器件实施例9
本实施例与器件实施例1的不同之处在于:电致发光器件的发光层主体材料变为本发明化合物53和化合物GHN,掺杂材料为Ir(ppy)3,化合物53、GHN和Ir(ppy)3三者质量比为为60:30:10,所得电致发光器件的检测数据见表3所示。
器件实施例10
本实施例与器件实施例1的不同之处在于:电致发光器件的电子阻挡层的材料变为本发明化合物24,发光层6的主体材料为公知化合物CBP,掺杂材料为Ir(ppy)3,Ir(ppy)3和CBP的质量比为10:90,所得电致发光器件的检测数据见表3所示。
器件实施例11
本实施例与器件实施例1的不同之处在于:电致发光器件的电子阻挡层的材料变为本发明化合物28,发光层6的主体材料为公知化合物CBP,掺杂材料为Ir(ppy)3,Ir(ppy)3和CBP的质量比为10:90,所得电致发光器件的检测数据见表3所示。
器件实施例12
本实施例与器件实施例1的不同之处在于:电致发光器件的电子阻挡层的材料变为本发明化合物32,发光层6的主体材料为公知化合物CBP,掺杂材料为Ir(ppy)3,Ir(ppy)3和CBP的质量比为10:90,所得电致发光器件的检测数据见表3所示。
器件实施例13
本实施例与器件实施例1的不同之处在于:电致发光器件的电子阻挡层的材料变为本发明化合物33,发光层6的主体材料为公知化合物CBP,掺杂材料为Ir(ppy)3,Ir(ppy)3和CBP的质量比为10:90,所得电致发光器件的检测数据见表3所示。
器件实施例14
本实施例与器件实施例1的不同之处在于:电致发光器件的电子阻挡层的材料变为本发明化合物42,发光层6的主体材料为公知化合物CBP,掺杂材料为Ir(ppy)3,Ir(ppy)3和CBP的质量比为10:90,所得电致发光器件的检测数据见表3所示。
器件实施例15
本实施例与器件实施例1的不同之处在于:电致发光器件的电子阻挡层的材料变为本发明化合物51,发光层6的主体材料为公知化合物CBP,掺杂材料为Ir(ppy)3,Ir(ppy)3和CBP的质量比为10:90,所得电致发光器件的检测数据见表3所示。
器件实施例16
本实施例与器件实施例1的不同之处在于:电致发光器件的电子阻挡层的材料变为本发明化合物57,发光层6的主体材料为公知化合物CBP,掺杂材料为Ir(ppy)3,Ir(ppy)3和CBP的质量比为10:90,所得电致发光器件的检测数据见表3所示。
器件比较例1
本实施例与器件实施例1的不同之处在于:电致发光器件的发光层主体材料变为公知化合物CBP,掺杂材料为Ir(ppy)3,Ir(ppy)3和CBP的质量比为10:90,所得电致发光器件的检测数据见表3所示。
表3
编号 | 电流效率(cd/A) | 色彩 | LT95寿命(Hr)@5000nits |
器件实施例1 | 33.6 | 绿光 | 8.8 |
器件实施例2 | 36.4 | 绿光 | 9.5 |
器件实施例3 | 44.8 | 绿光 | 14.0 |
器件实施例4 | 50.4 | 绿光 | 16.3 |
器件实施例5 | 47.6 | 绿光 | 15.5 |
器件实施例6 | 44.8 | 绿光 | 14.5 |
器件实施例7 | 53.2 | 绿光 | 17.0 |
器件实施例8 | 47.6 | 绿光 | 14.8 |
器件实施例9 | 50.4 | 绿光 | 15.8 |
器件实施例10 | 36.4 | 绿光 | 10.5 |
器件实施例11 | 39.2 | 绿光 | 11.3 |
器件实施例12 | 36.4 | 绿光 | 10.8 |
器件实施例13 | 42 | 绿光 | 12.3 |
器件实施例14 | 39.2 | 绿光 | 11.8 |
器件实施例15 | 42 | 绿光 | 12.8 |
器件实施例16 | 44.8 | 绿光 | 13.5 |
器件比较例1 | 28 | 绿光 | 2.5 |
注:寿命测试系统为本发明所有权人与上海大学共同研究的OLED器件寿命测试仪。
由表3的结果可以看出本发明所述以均苯为核心的机化合物可应用于OLED发光器件制作,并且与器件比较例1相比,无论是效率还是寿命均比已知OLED材料获得较大改观,特别是器件的寿命衰减获得较大的提升。
进一步的本发明材料制备的的OLED器件在高温下能够保持长寿命,将器件实施例1~16和器件比较例1在85℃进行高温驱动寿命测试,所得结果如表4所示。
表4
从表4的数据可知,器件实施例1~16为本发明材料和已知材料搭配的器件结构,和器件比较例1相比,高温下,本发明提供的OLED器件具有很好的驱动寿命。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (8)
- 一种以均苯为核心的有机化合物,其特征在于,所述有机化合物的结构如通式(1)所示:通式(1)中,X表示为氧原子、硫原子、硒原子、C1-10直链或支链烷基取代的亚烷基、芳基取代的亚烷基、烷基或芳基取代的叔胺基中的一种;Ar1、Ar2分别独立的表示为苯基、二联苯基、三联苯基、萘基、蒽基、菲基、芘基、呋喃基、噻吩基、吡啶基、嘧啶基、哒嗪基、吡嗪基或三嗪基;Ar1还表示为二苯并呋喃、二苯并噻吩、9,9-二甲基芴或9-苯基咔唑;Ar2还表示为单键;Ar1、Ar2可以相同或不同;R表示为通式(2)所示结构;通式(2)中,R1和R2分别独立的表示为氢原子、通式(3)或(4)所示的结构;且R1和R2不同时为氢原子;通式(3)或通式(4)通过CL1-CL2键、CL2-CL3键、CL3-CL4键、CL′1-CL′2键、CL′2-CL′3键或CL′3-CL′4键和通式(2)连接。
- 一种权利要求1~3任一项所述有机化合物的制备方法,其特征在于,制备过程中发生的反应方程式为:当Ar2为单键时,具体制备方法为:称取中间体I和R-H,用甲苯溶解;再加入Pd2(dba)3、三叔丁基膦、叔丁醇钠;在惰性气氛下,将上述反应物的混合溶液于反应温度95~110℃下反应10~24小时,冷却并过滤反应溶 液,滤液旋蒸,过硅胶柱,得到目标产物;所述以中间体I与R2H的摩尔比为1:1.0~1.5,Pd2(dba)3与中间体I的摩尔比为0.006~0.02:1,三叔丁基膦与中间体I的摩尔比为0.006~0.02:1,叔丁醇钠与中间体I的摩尔比为2.0~3.0:1;当Ar2不为单键时,称取中间体I和R-Ar2-B(OH)2,用体积比为1.5~3:1的甲苯乙醇混合溶剂溶解;再加入Na2CO3水溶液、Pd(PPh3)4;在惰性气氛下,将上述反应物的混合溶液于反应温度95-100℃,反应10-24小时,冷却、过滤反应溶液,滤液旋蒸,过硅胶柱,得到目标产物;所述中间体I与R1-Ar2-B(OH)2的摩尔比为1:1.0~1.5;Pd(PPh3)4与中间体I的摩尔比为0.006~0.02:1,Na2CO3与中间体I的摩尔比为2.0~3.0:1。
- 一种如权利要求1~3任一项所述的有机化合物用于制备有机电致发光器件。
- 一种有机电致发光器件,其特征在于,所述有机电致发光器件包括至少一层功能层含有权利要求1~3任一项所述的以均苯为核心的有机化合物。
- 一种有机电致发光器件,包括电子阻挡层,其特征在于,所述电子阻挡层材料为权利要求1~3任一项所述的以均苯为核心的有机化合物。
- 一种有机电致发光器件,包括发光层,其特征在于,所述发光层含有权利要求1~3任一项所述的以均苯为核心的有机化合物。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611206370.6A CN106674210A (zh) | 2016-12-23 | 2016-12-23 | 一种以均苯为核心的有机化合物及其在有机电致发光器件上的应用 |
CN201611206370.6 | 2016-12-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018113538A1 true WO2018113538A1 (zh) | 2018-06-28 |
Family
ID=58870353
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/115257 WO2018113538A1 (zh) | 2016-12-23 | 2017-12-08 | 一种以均苯为核心的有机化合物及其在有机电致发光器件上的应用 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106674210A (zh) |
WO (1) | WO2018113538A1 (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020242165A1 (ko) * | 2019-05-24 | 2020-12-03 | 머티어리얼사이언스 주식회사 | 유기 화합물 및 이를 포함하는 유기전계발광소자 |
WO2021066623A1 (ko) * | 2019-10-01 | 2021-04-08 | 주식회사 엘지화학 | 유기 발광 소자 |
US20220081450A1 (en) * | 2018-12-14 | 2022-03-17 | Idemitsu Kosan Co.,Ltd. | Organic electroluminescent element, compound, material for organic electroluminescent element, and electronic device |
US20220123231A1 (en) * | 2020-10-16 | 2022-04-21 | Semiconductor Energy Laboratory Co., Ltd. | Organic Compound, Light-Emitting Device, Light-Emitting Apparatus, Electronic Device, Display Device, and Lighting Device |
CN114560875A (zh) * | 2022-02-14 | 2022-05-31 | 西安凯翔光电科技有限公司 | 一种有机覆盖层材料和有机电致发光器件 |
US20230113918A1 (en) * | 2020-02-04 | 2023-04-13 | Kyulux, Inc. | Host material, composition, and organic electroluminescent element |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106674210A (zh) * | 2016-12-23 | 2017-05-17 | 江苏三月光电科技有限公司 | 一种以均苯为核心的有机化合物及其在有机电致发光器件上的应用 |
KR102438617B1 (ko) * | 2017-09-25 | 2022-08-31 | (주)피엔에이치테크 | 유기발광 화합물 및 이를 포함하는 유기전계발광소자 |
CN109928962A (zh) * | 2017-12-18 | 2019-06-25 | 江苏三月光电科技有限公司 | 一种以咔唑为核心的化合物、制备方法及其在有机电致发光器件上的应用 |
CN109659448B (zh) * | 2017-12-27 | 2021-07-06 | 广州华睿光电材料有限公司 | 有机混合物、组合物及有机电子器件 |
CN108912138B (zh) * | 2018-07-23 | 2021-06-18 | 西安瑞联新材料股份有限公司 | 一种吖啶类衍生物杂环芳香族化合物及其在有机电致发光元件中的应用 |
CN116114399A (zh) | 2020-09-04 | 2023-05-12 | Sfc株式会社 | 多环芳族衍生物化合物和使用其的有机电致发光装置 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103030585A (zh) * | 2011-10-10 | 2013-04-10 | 三星显示有限公司 | 杂环化合物、有机发光二极管和平板显示装置 |
CN104471021A (zh) * | 2012-06-04 | 2015-03-25 | 株式会社P&Htech | 新的有机电致发光器件用化合物及包含该化合物的有机电致发光器件 |
WO2015080404A1 (ko) * | 2013-11-28 | 2015-06-04 | 덕산네오룩스 주식회사 | 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 |
WO2016048109A1 (en) * | 2014-09-26 | 2016-03-31 | Rohm And Haas Electronic Materials Korea Ltd. | Organic electroluminescent compound, and organic electroluminescent material and organic electroluminescent device comprising the same |
KR20160060572A (ko) * | 2014-11-19 | 2016-05-30 | 주식회사 엠비케이 | 유기 발광 화합물, 잉크 조성물, 유기 발광 소자 및 전자 기기 |
WO2016148390A1 (en) * | 2015-03-13 | 2016-09-22 | Rohm And Haas Electronic Materials Korea Ltd. | A plurality of host materials and organic electroluminescent device comprising the same |
WO2017025164A1 (de) * | 2015-08-11 | 2017-02-16 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
CN106674210A (zh) * | 2016-12-23 | 2017-05-17 | 江苏三月光电科技有限公司 | 一种以均苯为核心的有机化合物及其在有机电致发光器件上的应用 |
CN107056750A (zh) * | 2016-04-25 | 2017-08-18 | 中节能万润股份有限公司 | 一种以四联苯为核心的化合物及其应用 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102178086B1 (ko) * | 2014-04-03 | 2020-11-12 | 덕산네오룩스 주식회사 | 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 |
CN106243057B (zh) * | 2016-04-25 | 2018-09-18 | 中节能万润股份有限公司 | 一种基于氮杂均苯结构的化合物及其在oled上的应用 |
-
2016
- 2016-12-23 CN CN201611206370.6A patent/CN106674210A/zh active Pending
-
2017
- 2017-12-08 WO PCT/CN2017/115257 patent/WO2018113538A1/zh active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103030585A (zh) * | 2011-10-10 | 2013-04-10 | 三星显示有限公司 | 杂环化合物、有机发光二极管和平板显示装置 |
CN104471021A (zh) * | 2012-06-04 | 2015-03-25 | 株式会社P&Htech | 新的有机电致发光器件用化合物及包含该化合物的有机电致发光器件 |
WO2015080404A1 (ko) * | 2013-11-28 | 2015-06-04 | 덕산네오룩스 주식회사 | 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 |
WO2016048109A1 (en) * | 2014-09-26 | 2016-03-31 | Rohm And Haas Electronic Materials Korea Ltd. | Organic electroluminescent compound, and organic electroluminescent material and organic electroluminescent device comprising the same |
KR20160060572A (ko) * | 2014-11-19 | 2016-05-30 | 주식회사 엠비케이 | 유기 발광 화합물, 잉크 조성물, 유기 발광 소자 및 전자 기기 |
WO2016148390A1 (en) * | 2015-03-13 | 2016-09-22 | Rohm And Haas Electronic Materials Korea Ltd. | A plurality of host materials and organic electroluminescent device comprising the same |
WO2017025164A1 (de) * | 2015-08-11 | 2017-02-16 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
CN107056750A (zh) * | 2016-04-25 | 2017-08-18 | 中节能万润股份有限公司 | 一种以四联苯为核心的化合物及其应用 |
CN106674210A (zh) * | 2016-12-23 | 2017-05-17 | 江苏三月光电科技有限公司 | 一种以均苯为核心的有机化合物及其在有机电致发光器件上的应用 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220081450A1 (en) * | 2018-12-14 | 2022-03-17 | Idemitsu Kosan Co.,Ltd. | Organic electroluminescent element, compound, material for organic electroluminescent element, and electronic device |
WO2020242165A1 (ko) * | 2019-05-24 | 2020-12-03 | 머티어리얼사이언스 주식회사 | 유기 화합물 및 이를 포함하는 유기전계발광소자 |
WO2021066623A1 (ko) * | 2019-10-01 | 2021-04-08 | 주식회사 엘지화학 | 유기 발광 소자 |
US20230113918A1 (en) * | 2020-02-04 | 2023-04-13 | Kyulux, Inc. | Host material, composition, and organic electroluminescent element |
US20220123231A1 (en) * | 2020-10-16 | 2022-04-21 | Semiconductor Energy Laboratory Co., Ltd. | Organic Compound, Light-Emitting Device, Light-Emitting Apparatus, Electronic Device, Display Device, and Lighting Device |
CN114560875A (zh) * | 2022-02-14 | 2022-05-31 | 西安凯翔光电科技有限公司 | 一种有机覆盖层材料和有机电致发光器件 |
CN114560875B (zh) * | 2022-02-14 | 2023-04-18 | 西安凯翔光电科技有限公司 | 一种有机覆盖层材料和有机电致发光器件 |
Also Published As
Publication number | Publication date |
---|---|
CN106674210A (zh) | 2017-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018113538A1 (zh) | 一种以均苯为核心的有机化合物及其在有机电致发光器件上的应用 | |
CN107021926B (zh) | 一种含有氮杂螺芴和含氮六元杂环的化合物及其在oled上的应用 | |
WO2020135687A1 (zh) | 一种含硼化合物及其制备方法和其应用 | |
CN107586261B (zh) | 一种含有螺二苯并环庚烯芴的有机化合物及其应用 | |
WO2018033087A1 (zh) | 一种以蒽酮为核心的化合物及其应用 | |
WO2017215549A1 (zh) | 一种有机电致发光化合物及其应用 | |
WO2019185061A1 (zh) | 一种基于双二甲基芴的化合物、制备方法及其应用 | |
CN110964021A (zh) | 一种以芴为核心的化合物、制备方法及其应用 | |
WO2020135686A1 (zh) | 一种以咔唑衍生物为核心的有机化合物及其在有机电致发光器件上的应用 | |
WO2019085683A1 (zh) | 一种含有蒽酮和含氮杂环的化合物及其在oled上的应用 | |
CN110317140B (zh) | 一种以芳胺接双二甲基芴为核心的化合物及其应用 | |
WO2018041123A1 (zh) | 以芴和含氮六元杂环为核心的化合物及在有机发光器件中的应用 | |
CN113135903B (zh) | 一种芳香族二苯并呋喃类衍生物及其应用 | |
CN110526901A (zh) | 一种有机发光材料及其制备有机电致发光器件的应用 | |
CN113004259B (zh) | 一种以蒽酮骨架为核心的化合物及其应用 | |
WO2020135790A1 (zh) | 一种含硼的化合物及其在有机电致发光器件上的应用 | |
CN110835304A (zh) | 一种以螺芴烯结构为核心的化合物及其制备方法和其应用 | |
CN106478610A (zh) | 一种含有氧杂蒽的有机化合物及其在oled器件上的应用 | |
CN110835318B (zh) | 一种以氮杂芴为核心的有机化合物及其制备方法与应用 | |
CN110642732B (zh) | 一种含螺芴蒽酮结构的有机化合物及其应用 | |
WO2019085759A1 (zh) | 一种以氮杂螺芴和芳基酮为核心的化合物、其制备方法及其在oled上的应用 | |
CN107021925B (zh) | 一种以氮杂二苯并环庚酮为核心的化合物及其在oled上的应用 | |
CN110577488A (zh) | 一种以咔唑为核心的化合物及其在有机电致发光器件上的应用 | |
WO2019114769A1 (zh) | 一种含有吡啶并吲哚的化合物及其在有机电致发光器件上的应用 | |
WO2019196948A1 (zh) | 一种以芳基酮为核心的化合物、其制备方法及其在oled上的应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17884919 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17884919 Country of ref document: EP Kind code of ref document: A1 |