WO2018111040A1 - 세균 메타게놈 분석을 통한 위암 진단방법 - Google Patents
세균 메타게놈 분석을 통한 위암 진단방법 Download PDFInfo
- Publication number
- WO2018111040A1 WO2018111040A1 PCT/KR2017/014860 KR2017014860W WO2018111040A1 WO 2018111040 A1 WO2018111040 A1 WO 2018111040A1 KR 2017014860 W KR2017014860 W KR 2017014860W WO 2018111040 A1 WO2018111040 A1 WO 2018111040A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sample
- isolated
- bacteria
- derived
- gastric cancer
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6888—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
- C12Q1/6895—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
- C12Q1/6886—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6869—Methods for sequencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6888—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
- C12Q1/689—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2531/00—Reactions of nucleic acids characterised by
- C12Q2531/10—Reactions of nucleic acids characterised by the purpose being amplify/increase the copy number of target nucleic acid
- C12Q2531/113—PCR
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/158—Expression markers
Definitions
- the present invention relates to a method for providing information for diagnosing gastric cancer through bacterial metagenome analysis, and more specifically, by performing bacterial metagenomic analysis on genomes present in vesicles separated from a sample derived from a subject, specific bacterial-derived extracellular vesicles.
- the present invention relates to a method for predicting the risk of gastric cancer and diagnosing gastric cancer by analyzing the increase and decrease of the amount of the gas.
- Gastric cancer has a high incidence rate in East Asia such as Korea, China, and Japan, and is relatively low in the West in the US and Europe. In Korea, the incidence rate is highest in both men and women, and the mortality rate is second only to lung cancer.
- Gastric cancer includes gastric adenocarcinoma in the gastric mucosa and malignant lymphoma, sarcoma, and interstitial tumor in the submucosa. Gastric adenocarcinoma accounts for 95% of all gastric cancers.
- the stomach is an organ that comes into contact with food for a long time, so it is expected that the factors in the food will be the cause of stomach cancer, and animal studies suggest that carcinogens in food are the most important factors of stomach cancer. Known.
- Gastric cancer can be detected early through regular examinations such as endoscopy. Early gastric cancer can be cured at about 90% through proper treatment. However, gastric cancer is still detected in cases where gastric cancer has already advanced and mortality is also high. It is classified as. Therefore, it is important to differentiate the countermeasures against early diagnosis and treatment by making it possible to predict the onset of gastric cancer, and research and technology development are required.
- Microbiota refers to a microbial community including bacteria, archaea and eukarya that exist in a given settlement.Intestinal microbiota is an important role in human physiology. It is known to have a great effect on human health and disease through interaction with human cells.
- the symbiotic bacteria secrete nanometer-sized vesicles to exchange information about genes and proteins in other cells.
- the mucous membrane forms a physical protective film that particles larger than 200 nanometers (nm) in size can't pass through, so that the symbiotic bacteria cannot pass through the mucosa, but bacterial-derived vesicles are usually less than 100 nanometers in size. It passes freely through the mucous membrane and is absorbed by our body.
- Metagenomics also called environmental genomics, is the study of meta-genomic data from samples taken from the environment. Recently, it has been possible to list the bacterial composition of the human microflora by a method based on 16s ribosomal RNA (16s rRNA) sequencing, and advances in sequencing technology have recently led to the next generation sequencing of 16s ribosomal RNA. , NGS) platform to analyze the sequence.
- NGS next generation sequencing of 16s ribosomal RNA.
- NGS next generation sequencing of 16s ribosomal RNA.
- gastric cancer there has been no report on a method for identifying the cause of gastric cancer and diagnosing gastric cancer through metagenomic analysis present in bacterial-derived vesicles in human derivatives such as blood, stool, or urine.
- the present inventors In order to diagnose gastric cancer, the present inventors extracted genes from vesicles present in blood, urine, and stool, which are samples derived from a subject, and performed bacterial metagenome analysis on the samples, and as a result, significantly increased or decreased in samples derived from gastric cancer patients. By identifying the bacteria-derived extracellular vesicles that can act as a causative factor and a diagnostic biomarker of gastric cancer, the present invention was completed.
- an object of the present invention is to provide a method for providing information for diagnosing gastric cancer through metagenomic analysis of genes present in bacteria-derived extracellular vesicles.
- the present invention provides a method for providing information for diagnosing gastric cancer, comprising the following steps:
- the present invention provides a method for diagnosing gastric cancer, comprising the following steps:
- the present invention provides a method for predicting the risk of developing gastric cancer, comprising the following steps:
- step (c) in the step (c), at least one phylum bacteria selected from the group consisting of Verrucomicrobia isolated from the urine sample, Cyanobacteria, Tenericutes isolated from the sample of feces, and Cyanobacteria
- Verrucomicrobia isolated from the urine sample a group consisting of Verrucomicrobia isolated from the urine sample, Cyanobacteria, Tenericutes isolated from the sample of feces, and Cyanobacteria
- the increase or decrease in the content of the derived extracellular vesicles can be compared.
- step (c) in the step (c), at least one class bacteria-derived extracellular selected from the group consisting of Verrucomicrobiae isolated from the subject's urine sample, and Chloroplast, Mollicutes isolated from the subject's stool sample
- Verrucomicrobiae isolated from the subject's urine sample and Chloroplast
- Mollicutes isolated from the subject's stool sample The increase or decrease of the contents of the vesicles can be compared.
- step (c) Cardiobacteriales isolated from the blood sample of the subject, RF39, Stramenopiles, Verrucomicrobiales, Sphingomonadales, Bifidobacteriales, Streptophyta, and Aeromonadales isolated from the urine sample, isolated from the feces sample
- the increase or decrease in the content of one or more order bacterial-derived extracellular vesicles selected from the group consisting of RF39, Neisseriales, and Enterobacteriales can be compared.
- the increase or decrease of the contents of the vesicles can be compared.
- step (c) Cupriavidus, Proteus, Atopobium, Micrococcus, Odoribacter, Faecalibacterium, Veillonella, Citrobacter, Delftia, Weissella, and Leuconostoc, isolated from the blood sample of the subject.
- the subject sample may be blood, urine, or stool.
- the blood may be whole blood, serum, plasma, or blood monocytes.
- Extracellular vesicles secreted by the bacteria present in the environment can be absorbed directly into the body and directly affect cancer development.
- Stomach cancer is a cancer with a high incidence and mortality rate in Korea.
- the risk group of gastric cancer is diagnosed and predicted early to delay or develop the disease through appropriate management. It can prevent the disease and early diagnosis even after the disease, which can lower the incidence of gastric cancer and increase the therapeutic effect.
- metagenome analysis in patients diagnosed with gastric cancer can be used to avoid gastrointestinal factor exposure and improve the progression of gastric cancer.
- Figures 1a and 1b is for evaluating the distribution of bacteria-derived extracellular vesicles in the body
- Figure 1a is an hourly (0h, 5min) after oral administration of intestinal bacteria (Bacteria) and bacteria-derived vesicles (EV) to the mouse
- 3h, 6h, and 12h is a photograph taken of their distribution
- Figure 1b is 12 hours after oral administration of intestinal bacteria (Bacteria) and bacteria-derived extracellular vesicles (EV) to the blood and various organs (Heart, Lung, Liver, Kidney, Spleen, Adipose Tissue, and Muscle) This is a photograph of the distribution of the bacteria and extracellular vesicles.
- Figure 2 shows the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the order of the neck (order) level after separation of bacteria-derived vesicles from gastric cancer patients and normal blood.
- EVs bacteria-derived vesicles
- FIG. 3 shows the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the family level after separation of bacteria-derived vesicles from gastric cancer patients and normal blood.
- EVs bacteria-derived vesicles
- FIG. 4 is a result showing the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the genus level by separating the bacteria-derived vesicles from gastric cancer patients and normal blood, and performing a metagenome analysis.
- EVs bacteria-derived vesicles
- FIG. 5 shows the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the phylum level by separating bacterial-derived vesicles from gastric cancer patients and normal urine.
- EVs bacteria-derived vesicles
- FIG. 6 shows the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at a class level after separation of bacteria-derived vesicles from gastric cancer patients and normal urine.
- EVs bacteria-derived vesicles
- FIG. 7 is a result showing the distribution of bacteria-derived vesicles (EVs) with a significant diagnostic performance at the order (neck) level after separating the bacteria-derived vesicles in gastric cancer patients and normal urine.
- EVs bacteria-derived vesicles
- FIG. 8 shows the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the family level after separation of bacteria-derived vesicles from gastric cancer patients and normal urine.
- EVs bacteria-derived vesicles
- FIG. 9 is a result showing the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the genus level by separating the bacteria-derived vesicles in gastric cancer patients and normal urine.
- EVs bacteria-derived vesicles
- FIG. 10 is a result showing the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the phylum level by separating the bacteria-derived vesicles in gastric cancer patients and normal feces.
- EVs bacteria-derived vesicles
- 11 is a result showing the distribution of bacteria-derived vesicles (EVs) with a significant diagnostic performance at the class level by separating bacteria-derived vesicles in gastric cancer patients and normal feces, and performing a metagenome analysis.
- EVs bacteria-derived vesicles
- EVs bacteria-derived vesicles
- FIG. 13 shows the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the family level after separation of bacteria-derived vesicles from gastric cancer patients and normal feces.
- EVs bacteria-derived vesicles
- EVs bacteria-derived vesicles
- the present invention relates to a method for diagnosing gastric cancer through bacterial metagenomic analysis, and the present inventors extracted genes from vesicles present in a sample derived from a subject such as blood, urine, and stool, and performed a bacterial metagenomic analysis. Bacterial-derived extracellular vesicles that could act as causative agents of gastric cancer were identified.
- the present invention comprises the steps of (a) extracting DNA from the vesicles separated from the subject sample;
- (c) it provides a method for providing information for the diagnosis of gastric cancer comprising the step of comparing the increase and decrease of the content of the normal-derived sample and bacterial-derived extracellular vesicles through the sequencing of the PCR product.
- the term "diagnosis of gastric cancer” refers to determining whether gastric cancer is likely to develop, whether gastric cancer is relatively more likely to develop, or whether gastric cancer has already developed.
- the method of the present invention can be used to prevent or delay the onset of the disease through special and appropriate management as a patient at high risk of developing gastric cancer for any particular patient.
- the methods of the present invention can be used clinically to determine treatment by early diagnosis of gastric cancer and selecting the most appropriate treatment regimen.
- metagenome is also referred to as a military genome, refers to the total of the genome including all viruses, bacteria, fungi, etc. in an isolated area, such as soil, animal intestine, is not mainly cultured It is used as a concept of genome to explain the identification of many microorganisms at once using sequencer to analyze microorganisms.
- metagenome does not refer to one species of genome or genome, but refers to a kind of mixed dielectric as the genome of all species of one environmental unit. This is a term from the point of view of defining a species in the course of the evolution of biology in terms of functional species as well as various species that interact with each other to create a complete species.
- rapid sequencing is used to analyze all DNA and RNA, regardless of species, to identify all species in one environment, and to identify interactions and metabolism.
- bacterial metagenome analysis was preferably performed using vesicles separated from blood and urine.
- bacteria-derived vesicle is a nano-sized substance formed of a membrane secreted by bacteria and archaea, and generically refers to a substance having a gene derived from bacteria in a vesicle.
- the subject sample may be blood, urine, or stool, and the blood may preferably be whole blood, serum, plasma, or blood monocytes, but is not limited thereto.
- the metagenome analysis of the bacterial-derived extracellular vesicles was performed, and analyzed at the phylum, class, order, family, and genus levels, respectively. By identifying the bacterial vesicles that can actually act as a causative agent or inhibitor of gastric cancer.
- the content of extracellular vesicles derived from Cardiobacteriales neck bacteria is significant between gastric cancer patients and normal people. There was one difference (see Example 4).
- the bacterial metagenome of the vesicles present in the blood samples from the subject at the level of analysis Methylocystaceae, Exiguobacteraceae, Peptostreptococcaceae, Brevibacteriaceae, Mogibacteriaceae, Acetobacteraceae, Rikenellaceae, and Leuconostocaceae and bacteria
- the present invention as a result of analyzing the bacterial metagenome at the genus level for the vesicles present in the blood samples from the subject, Cupriavidus, Proteus, Atopobium, Micrococcus, Odoribacter, Faecalibacterium, Veillonella, Citrobacter, Delftia, The contents of the extracellular vesicles derived from the bacteria Weissella, and Leuconostoc were significantly different between gastric cancer patients and normal individuals (see Example 4).
- the results of analysis of the bacterial metagenome at the gate level of the vesicles present in the urine sample derived from the subject the content of extracellular vesicles derived from Verrucomicrobia, and Cyanobacteria door bacteria in gastric cancer patients and normal people There was a significant difference between them (see Example 5).
- the bacterial metagenome was analyzed at the neck level for the vesicles present in the urine sample derived from the subject, RF39, Stramenopiles, Verrucomicrobiales, Sphingomonadales, Bifidobacteriales, Streptophyta, and Aeromonadales There was a significant difference in the content of external vesicles between gastric cancer patients and normal individuals (see Example 5).
- the bacterial metagenome of the vesicles present in the subject-derived urine sample at an exaggerated level Exiguobacteraceae, Porphyromonadaceae, Prevotellaceae, Verrucomicrobiaceae, Sphingomonadaceae, Bifidobacteriaceae, Methylobacteriaceae, Planococcaceae, and Comamonadaceae
- Exiguobacteraceae Porphyromonadaceae
- Prevotellaceae Verrucomicrobiaceae
- Sphingomonadaceae Sphingomonadaceae
- Bifidobacteriaceae Methylobacteriaceae
- Planococcaceae Planococcaceae
- Comamonadaceae Comamonadaceae
- the bacterial metagenome of the vesicles present in the subject-derived urine sample at the genus level Morganella, Rhizobium, Exiguobacterium, Proteus, Parabacteroides, Adlercreutzia, Prevotella, Acinetobacter, Akkermansia
- the contents of extracellular vesicles derived from bacteria of the genus Oscillospira, Bifidobacterium, Faecalibacterium, Ruminococcus, Coprococcus, Pediococcus, and Citrobacter were significantly different between gastric cancer patients and normal individuals (see Example 5).
- the bacterial metagenome of the vesicles present in the subject-derived stool sample was analyzed at the gate level, the content of the extracellular vesicles derived from Tenericutes, Cyanobacteria door bacteria and gastric cancer patients and normal people There was a significant difference between them (see Example 6).
- the content of the extracellular vesicles derived from the Mollicutes strong bacteria was significant between gastric cancer patients and normal people. There was one difference (see Example 6).
- the amount of extracellular vesicles derived from RF39, Neisseriales, and Enterobacteriales neck bacteria was compared with those of gastric cancer patients. There was a significant difference between normal individuals (see Example 6).
- the bacterial metagenomics of the vesicles present in the subject-derived stool sample at an exaggerated level Peptostreptococcaceae, Neisseriaceae, Enterobacteriaceae, Staphylococcaceae, Oxalobacteraceae, Moraxellaceae, and Planococcaceae and bacteria-derived cells
- bacterial metagenome was analyzed at the genus level of the vesicles present in the sample derived from the subject, Cupriavidus, Proteus, Methylobacterium, Faecalibacterium, Neisseria, Staphylococcus, and bacteria derived from the genus Acinetobacter There was a significant difference in the content of external vesicles between gastric cancer patients and normal individuals (see Example 6).
- the present invention through the results of the above embodiment, by performing a bacterial metagenome analysis on the genomes present in the vesicles isolated from the blood, stool, and urine derived from the test subjects significantly changed in gastric cancer patients compared to normal people Bacterial-derived vesicles were identified, and metagenome analysis confirmed that gastric cancer could be diagnosed by analyzing the increase or decrease in the content of bacterial-derived vesicles at each level.
- the fluorescently labeled 50 ⁇ g of bacteria and bacteria-derived vesicles were administered in the same manner as above 12 hours.
- Blood, Heart, Lung, Liver, Kidney, Spleen, Adipose tissue, and Muscle were extracted from mice.
- the intestinal bacteria (Bacteria) were not absorbed into each organ, whereas the intestinal bacteria-derived extracellular vesicles (EV) were detected in the tissues, as shown in FIG. And distribution in liver, kidney, spleen, adipose tissue, and muscle.
- PCR was performed using the 16S rDNA primer shown in 1 to amplify the gene and perform sequencing (Illumina MiSeq sequencer). Output the result as a Standard Flowgram Format (SFF) file, convert the SFF file into a sequence file (.fasta) and a nucleotide quality score file using GS FLX software (v2.9), check the credit rating of the lead, and window (20 bps) The part with the average base call accuracy of less than 99% (Phred score ⁇ 20) was removed.
- SFF Standard Flowgram Format
- the Operational Taxonomy Unit performed UCLUST and USEARCH for clustering according to sequence similarity. Specifically, the clustering is based on 94% genus, 90% family, 85% order, 80% class, and 75% sequence similarity. OTU's door, river, neck, family and genus level classifications were performed, and BLASTN and GreenGenes' 16S DNA sequence database (108,453 sequences) were used to analyze bacteria with sequence similarities of more than 97% (QIIME).
- OTU Operational Taxonomy Unit
- metagenome sequencing was performed after separating the vesicles from the blood of 66 gastric cancer patients and 198 normal people of age and sex match.
- the strains whose p-value between the two groups is 0.05 or less and more than two times different between the two groups are selected in the t-test. under curve), sensitivity, and specificity.
- Bacterial-derived vesicles in the blood were analyzed at the genus level and diagnosed with one or more biomarkers selected from bacteria of the genus Cupriavidus, Proteus, Atopobium, Micrococcus, Odoribacter, Faecalibacterium, Veillonella, Citrobacter, Delftia, Weissella, and Leuconostoc When developed, the diagnostic performance for gastric cancer was significant (see Table 4 and Figure 4).
- metagenome sequencing was performed after separating the vesicles from the urine of 61 gastric cancer patients and 120 urine of age and sex matched normal.
- the strains whose p-value between the two groups is 0.05 or less and more than two times different between the two groups are selected in the t-test. under curve), sensitivity, and specificity.
- metagenome sequencing was performed after separating the vesicles from the stool of 63 patients with gastric cancer and 126 normal-matched age and sex.
- the strains whose p-value between the two groups is 0.05 or less and more than two times different between the two groups are selected in the t-test. under curve), sensitivity, and specificity.
- Method for providing information on the diagnosis of gastric cancer through bacterial metagenomic analysis by performing a bacterial metagenomic analysis on the genome present in the vesicles separated from the sample derived from the subject increase or decrease the content of specific bacterial-derived extracellular vesicles
- the analysis can be used to predict the risk of gastric cancer and to diagnose gastric cancer.
- Extracellular vesicles secreted by the bacteria present in the environment can be absorbed directly into the body and directly affect cancer development.
- Stomach cancer is a cancer with a high incidence and mortality rate in Korea.
- the risk group of gastric cancer can be diagnosed and predicted early to delay the onset of gastric cancer through appropriate management. It is possible to prevent the onset and prevent the onset, and to diagnose the cancer early after the onset of gastric cancer, thereby reducing the incidence of gastric cancer and increasing the therapeutic effect.
- the bacterial metagenomic analysis according to the present invention in patients diagnosed with gastric cancer can be used to improve the progression of gastric cancer or to prevent recurrence by avoiding causative agent exposure.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Immunology (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Pathology (AREA)
- Hospice & Palliative Care (AREA)
- Oncology (AREA)
- Botany (AREA)
- Mycology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
본 발명은 세균 메타게놈 분석을 통해 위암 진단에 대한 정보제공방법에 관한 것으로서, 보다 구체적으로는 피검자 유래 샘플에서 분리한 소포에 존재하는 유전자에 대해 세균 메타게놈 분석을 수행하여 특정 세균 유래 세포밖 소포의 함량 증감을 분석함으로써 위암의 발병 위험도 예측 및 위암을 진단하는 방법에 관한 것이다. 환경에 존재하는 세균에서 분비되는 세포밖 소포는 체내에 흡수되어 암 발생에 직접적인 영향을 미칠 수 있으며, 위암은 국내에서 발병률 및 사망률이 매우 높은 암으로 발병 예측을 통한 예방 및 조기진단이 매우 중요하므로, 본 발명에 따른 인체 유래 샘플에 존재하는 소포에서 세균 메타게놈 분석을 통해 위암 발병의 위험도를 미리 예측함으로써 위암의 위험군을 조기에 진단 및 예측하여 적절한 관리를 통해 발병 시기를 늦추거나 발병을 예방할 수 있으며, 발병 후에도 조기진단 할 수 있어 위암의 발병률을 낮추고 치료효과를 높일 수 있다. 또한, 위암으로 진단받은 환자에서 메타게놈 분석을 통해 원인인자 노출을 피함으로써 위암의 경과를 좋게 하거나, 재발을 막을 수 있다.
Description
본 발명은 세균 메타게놈 분석을 통해 위암 진단에 대한 정보제공방법에 관한 것으로서, 보다 구체적으로는 피검자 유래 샘플에서 분리한 소포에 존재하는 유전체에 대해 세균 메타게놈 분석을 수행하여 특정 세균 유래 세포밖 소포의 함량 증감을 분석함으로써 위암의 발병 위험도 예측 및 위암을 진단하는 방법에 관한 것이다.
위암(gastric cancer)은 전 세계에서 대한민국, 중국, 일본 등의 동아시아지역에서 많은 발생률을 보이며, 미국, 유럽 등의 서구에서는 상대적으로 발생률이 낮은 암이다. 대한민국의 경우 남녀를 통틀어 발생률 1위, 사망률은 폐암에 이어 2위를 차지하고 있고, 60대에서 가장 많은 발병률을 나타낸다. 위암은 위 점막상피에서 생기는 위선암(gastric adenocarcinoma)과 점막하층에서 생기는 악성림프종, 근육육종, 및 간질성 종양 등이 있으나, 위선암이 전체 위암의 95%를 차지한다. 위는 음식물이 입으로 들어와서 오랜 시간 접촉하는 장기이므로 음식물에 들어있는 인자가 위암의 원인이 될 확률이 높을 것으로 예상하고 있고, 동물실험을 통해 음식물에 들어있는 발암물질이 위암의 가장 중요한 요인으로 알려져 있다. 바이러스, 세균 등의 생물학적 인자에 의한 만성 염증이 암을 일으킨다는 사실은 오래전부터 제기되었다. 최근에 장내에 서식하는 세균에서 유래한 독소에 의한 Th17 면역반응 및 이로 인한 염증반응에 의해 대장암이 발생한다고 보고되었으며(Nat Commun. 2015 Apr 24; 6:6956), 위에 공생한다고 알려진 헬리코박터 파일로리균(Helicobacter pylori)에 의해서 위암이 발생한다고 알려지게 되었다.
위암은 내시경 등의 정기검진을 통해 조기에 발견할 수 있고, 조기위암의 경우 적절한 치료를 통해 90% 정도에서 완치를 기대할 수 있으나, 아직도 이미 위암이 진행된 경우에 발견되는 경우가 많고 사망률 또한 높은 암으로 분류되는 실정이다. 따라서 위암의 발병 여부를 미리 예측 가능하게 함으로써 조기진단 및 치료에 대한 대응방법을 차별화하는 것이 중요하며, 이에 대한 연구 및 기술개발이 요구된다.
한편, 인체에 공생하는 미생물은 100조에 이르러 인간 세포보다 10배 많으며, 미생물의 유전자수는 인간 유전자수의 100배가 넘는 것으로 알려지고 있다. 미생물총(microbiota 혹은 microbiome)은 주어진 거주지에 존재하는 세균(bacteria), 고세균(archaea), 진핵생물(eukarya)을 포함한 미생물 군집(microbial community)을 말하고, 장내 미생물총은 사람의 생리현상에 중요한 역할을 하며, 인체 세포와 상호작용을 통해 인간의 건강과 질병에 큰 영향을 미치는 것으로 알려져 있다. 우리 몸에 공생하는 세균은 다른 세포로의 유전자, 단백질 등의 정보를 교환하기 위하여 나노미터 크기의 소포(vesicle)를 분비한다. 점막은 200 나노미터(nm) 크기 이상의 입자는 통과할 수 없는 물리적인 방어막을 형성하여 점막에 공생하는 세균인 경우에는 점막을 통과하지 못하지만, 세균 유래 소포는 크기가 대개 100 나노미터 크기 이하라서 비교적 자유롭게 점막을 통과하여 우리 몸에 흡수된다.
환경 유전체학이라고도 불리는 메타게놈학은 환경에서 채취한 샘플에서 얻은 메타게놈 자료를 분석하는 학문이라고 할 수 있다. 최근 16s 리보솜 RNA(16s rRNA) 염기서열을 기반으로 한 방법으로 인간의 미생물총의 세균 구성을 목록화하는 것이 가능해졌으며, 시퀀싱 기술의 발전으로 최근에는 16s 리보솜 RNA를 차세대 염기서열분석(next generation sequencing, NGS) platform을 이용하여 서열을 분석한다. 그러나 위암 발병에 있어서, 혈액, 대변, 또는 소변 등의 인체 유래물에서 세균 유래 소포에 존재하는 메타게놈 분석을 통해 위암의 원인인자를 동정하고 위암을 진단하는 방법에 대해서는 보고된 바가 없다.
본 발명자들은 위암을 진단하기 위하여, 피검자 유래 샘플인 혈액, 소변, 및 대변에 존재하는 소포로부터 유전자를 추출하고 이에 대하여 세균 메타게놈 분석을 수행하였으며, 그 결과 위암 환자 유래 샘플에서 유의하게 증가하거나 감소하여 위암의 원인인자 및 진단 바이오마커로 작용할 수 있는 세균 유래 세포밖 소포를 동정하였는바, 이에 기초하여 본 발명을 완성하였다.
이에, 본 발명은 세균 유래 세포밖 소포에 존재하는 유전자에 대한 메타게놈 분석을 통해 위암 진단을 위한 정보제공방법을 제공하는 것을 목적으로 한다.
그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기와 같은 본 발명의 목적을 달성하기 위하여, 본 발명은 하기의 단계를 포함하는, 위암 진단을 위한 정보제공방법을 제공한다 :
(a) 피검자 샘플에서 분리한 세포밖 소포로부터 DNA를 추출하는 단계;
(b) 상기 추출한 DNA에 대하여 서열번호 1 및 서열번호 2의 프라이머 쌍을 이용하여 PCR을 수행하는 단계; 및
(c) 상기 PCR 산물의 서열분석을 통하여 정상인 유래 샘플과 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계.
그리고, 본 발명은 하기의 단계를 포함하는, 위암 진단방법을 제공한다 :
(a) 피검자 샘플에서 분리한 세포밖 소포로부터 DNA를 추출하는 단계;
(b) 상기 추출한 DNA에 대하여 서열번호 1 및 서열번호 2의 프라이머 쌍을 이용하여 PCR을 수행하는 단계; 및
(c) 상기 PCR 산물의 서열분석을 통하여 정상인 유래 샘플과 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계.
또한, 본 발명은 하기의 단계를 포함하는, 위암의 발병 위험도 예측방법을 제공한다 :
(a) 피검자 샘플에서 분리한 세포밖 소포로부터 DNA를 추출하는 단계;
(b) 상기 추출한 DNA에 대하여 서열번호 1 및 서열번호 2의 프라이머 쌍을 이용하여 PCR을 수행하는 단계; 및
(c) 상기 PCR 산물의 서열분석을 통하여 정상인 유래 샘플과 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계.
본 발명의 일구현예로, 상기 (c) 단계에서, 피검자 소변 샘플에서 분리한 Verrucomicrobia, 및 Cyanobacteria, 피검자 대변 샘플에서 분리한 Tenericutes, 및 Cyanobacteria로 이루어진 군으로부터 선택되는 1종 이상의 문(phylum) 세균 유래 세포밖 소포의 함량 증감을 비교할 수 있다.
본 발명의 일구현예로, 상기 (c) 단계에서, 피검자 소변 샘플에서 분리한 Verrucomicrobiae, 및 Chloroplast,피검자 대변 샘플에서 분리한 Mollicutes로 이루어진 군으로부터 선택되는 1종 이상의 강(class) 세균 유래 세포밖 소포의 함량 증감을 비교할 수 있다.
본 발명의 일구현예로, 상기 (c) 단계에서, 피검자 혈액 샘플에서 분리한 Cardiobacteriales,피검자 소변 샘플에서 분리한 RF39, Stramenopiles, Verrucomicrobiales, Sphingomonadales, Bifidobacteriales, Streptophyta, 및 Aeromonadales,피검자 대변 샘플에서 분리한 RF39, Neisseriales, 및 Enterobacteriales로 이루어진 군으로부터 선택되는 1종 이상의 목(order) 세균 유래 세포밖 소포의 함량 증감을 비교할 수 있다.
본 발명의 일구현예로, 상기 (c) 단계에서, 피검자 혈액 샘플에서 분리한 Methylocystaceae, Exiguobacteraceae, Peptostreptococcaceae, Brevibacteriaceae, Mogibacteriaceae, Acetobacteraceae, Rikenellaceae, 및 Leuconostocaceae, 피검자 소변 샘플에서 분리한 Exiguobacteraceae, Porphyromonadaceae, Prevotellaceae, Verrucomicrobiaceae, Sphingomonadaceae, Bifidobacteriaceae, Methylobacteriaceae, Planococcaceae, 및 Comamonadaceae, 피검자 대변 샘플에서 분리한 Peptostreptococcaceae, Neisseriaceae, Enterobacteriaceae, Staphylococcaceae, Oxalobacteraceae, Moraxellaceae, 및 Planococcaceae 로 이루어진 군으로부터 선택되는 1종 이상의 과(family) 세균 유래 세포밖 소포의 함량 증감을 비교할 수 있다.
본 발명의 일구현예로, 상기 (c) 단계에서, 피검자 혈액 샘플에서 분리한 Cupriavidus, Proteus, Atopobium, Micrococcus, Odoribacter, Faecalibacterium, Veillonella, Citrobacter, Delftia, Weissella, 및 Leuconostoc, 피검자 소변 샘플에서 분리한 Morganella, Rhizobium, Exiguobacterium, Proteus, Parabacteroides, Adlercreutzia, Prevotella, Acinetobacter, Akkermansia, Oscillospira, Bifidobacterium, Faecalibacterium, Ruminococcus, Coprococcus, Pediococcus, 및 Citrobacter, 피검자 대변 샘플에서 분리한 Cupriavidus, Proteus, Methylobacterium, Faecalibacterium, Neisseria, Staphylococcus, 및 Acinetobacter 로 이루어진 군으로부터 선택되는 1종 이상의 속(genus) 세균 유래 세포밖 소포의 함량 증감을 비교할 수 있다.
본 발명의 일구현예로, 상기 피검자 샘플은 혈액, 소변, 또는 대변일 수 있다.
본 발명의 일구현예로, 상기 혈액은 전혈, 혈청, 혈장, 또는 혈액 단핵구일 수 있다.
환경에 존재하는 세균에서 분비되는 세포밖 소포는 체내에 흡수되어 암 발생에 직접적인 영향을 미칠 수 있으며, 위암은 국내에서 발병률 및 사망률이 매우 높은 암으로써 발병 예측을 통한 예방 및 조기진단이 매우 중요하므로, 본 발명에 따른 인체 유래 샘플에 존재하는 소포 내 유전체에 대한 세균 메타게놈 분석을 통해 위암 발병의 위험도를 미리 예측함으로써 위암의 위험군을 조기에 진단 및 예측하여 적절한 관리를 통해 발병 시기를 늦추거나 발병을 예방할 수 있으며, 발병 후에도 조기진단 할 수 있어 위암의 발병률을 낮추고 치료효과를 높일 수 있다. 또한, 위암으로 진단받은 환자에서 메타게놈 분석을 통해 원인인자 노출을 피함으로써 위암의 경과를 좋게 하거나 재발을 막을 수 있다.
도 1a 및 도 1b는 체내에서 세균 유래 세포밖 소포의 분포양상을 평가하기 위한 것으로, 도 1a는 마우스에 장내 세균(Bacteria) 및 세균 유래 소포(EV)를 구강으로 투여한 후 시간별(0h, 5min, 3h, 6h, 및 12h)로 이들의 분포양상을 촬영한 사진이고, 도 1b는 마우스에 장내 세균(Bacteria) 및 세균 유래 세포밖 소포(EV)를 구강으로 투여하고 12시간 후 혈액 및 다양한 장기(심장, 폐, 간, 신장, 비장, 지방조직, 및 근육)를 적출하여 상기 세균 및 세포밖 소포의 분포양상을 촬영한 사진이다.
도 2는 위암환자 및 정상인 혈액에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 목(order) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.
도 3은 위암환자 및 정상인 혈액에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 과(family) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.
도 4는 위암환자 및 정상인 혈액에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 속(genus) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.
도 5는 위암환자 및 정상인 소변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 문(phylum) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.
도 6은 위암환자 및 정상인 소변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 강(class) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.
도 7은 위암환자 및 정상인 소변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 목(order) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.
도 8은 위암환자 및 정상인 소변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 과(family) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.
도 9는 위암환자 및 정상인 소변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 속(genus) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.
도 10은 위암환자 및 정상인 대변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 문(phylum) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.
도 11은 위암환자 및 정상인 대변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 강(class) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.
도 12는 위암환자 및 정상인 대변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 목(order) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.
도 13은 위암환자 및 정상인 대변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 과(family) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.
도 14는 위암환자 및 정상인 대변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 속(genus) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.
본 발명은 세균 메타게놈 분석을 통한 위암 진단방법에 관한 것으로서, 본 발명자들은 혈액, 소변, 및 대변 등의 피검자 유래 샘플에 존재하는 소포로부터 유전자를 추출하고, 이에 대하여 세균 메타게놈 분석을 수행하였으며, 위암의 원인인자로 작용할 수 있는 세균 유래 세포밖 소포를 동정하였다.
이에, 본 발명은 (a) 피검자 샘플에서 분리한 소포로부터 DNA를 추출하는 단계;
(b) 상기 추출한 DNA에 대하여 서열번호 1 및 서열번호 2의 프라이머 쌍을 이용하여 PCR을 수행하는 단계; 및
(c) 상기 PCR 산물의 서열분석을 통하여 정상인 유래 샘플과 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계를 포함하는 위암 진단을 위한 정보제공방법을 제공한다.
본 발명에서 사용되는 용어, "위암 진단" 이란 환자에 대하여 위암이 발병할 가능성이 있는지, 위암이 발병할 가능성이 상대적으로 높은지, 또는 위암이 이미 발병하였는지 여부를 판별하는 것을 의미한다. 본 발명의 방법은 임의의 특정 환자에 대한 위암 발병 위험도가 높은 환자로써 특별하고 적절한 관리를 통하여 발병 시기를 늦추거나 발병하지 않도록 하는데 사용할 수 있다. 또한, 본 발명의 방법은 위암을 조기에 진단하여 가장 적절한 치료방식을 선택함으로써 치료를 결정하기 위해 임상적으로 사용될 수 있다.
본 발명에서 사용되는 용어, 메타게놈(metagenome)이란 군유전체라고도 하며, 흙, 동물의 장 등 고립된 지역 내의 모든 바이러스, 세균, 곰팡이 등을 포함하는 유전체의 총합을 의미하는 것으로, 주로 배양이 되지 않는 미생물을 분석하기 위해서 서열분석기를 사용하여 한꺼번에 많은 미생물을 동정하는 것을 설명하는 유전체의 개념으로 쓰인다. 특히, 메타게놈은 한 종의 게놈 또는 유전체를 말하는 것이 아니라, 한 환경단위의 모든 종의 유전체로서 일종의 혼합유전체를 말한다. 이는 오믹스적으로 생물학이 발전하는 과정에서 한 종을 정의할 때 기능적으로 기존의 한 종뿐만 아니라, 다양한 종이 서로 상호작용하여 완전한 종을 만든다는 관점에서 나온 용어이다. 기술적으로는 빠른 서열분석법을 이용해서, 종에 관계없이 모든 DNA, RNA를 분석하여, 한 환경 내에서의 모든 종을 동정하고, 상호작용, 대사작용을 규명하는 기법의 대상이다. 본 발명에서는 바람직하게 혈액 및 소변에서 분리한 소포를 이용하여 세균 메타게놈 분석을 실시하였다.
본 발명에서 사용되는 용어, "세균 유래 소포" 란 세균 및 고세균이 분비하는 막으로 형성된 나노크기의 물질로서, 소포에 세균에서 유래하는 유전자를 갖고 있는 물질을 총칭한다.
본 발명에 있어서, 상기 피검자 샘플은 혈액, 소변, 또는 대변일 수 있고, 상기 혈액은 바람직하게 전혈, 혈청, 혈장, 또는 혈액 단핵구일 수 있으나, 이것으로 제한되는 것은 아니다.
본 발명의 실시예에서는 상기 세균 유래 세포밖 소포에 대한 메타게놈 분석을 실시하였으며, 문(phylum), 강(class), 목(order), 과(family), 및 속(genus) 수준에서 각각 분석하여 실제로 위암 발생의 원인인자 혹은 억제인자로 작용할 수 있는 세균 유래 소포를 동정하였다.
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 혈액 샘플에 존재하는 소포에 대하여 세균 메타게놈을 목 수준에서 분석한 결과, Cardiobacteriales 목 세균 유래 세포밖 소포의 함량이 위암환자와 정상인에 사이에 유의한 차이가 있었다(실시예 4 참조).
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 혈액 샘플에 존재하는 소포에 대하여 세균 메타게놈을 과 수준에서 분석한 결과, Methylocystaceae, Exiguobacteraceae, Peptostreptococcaceae, Brevibacteriaceae, Mogibacteriaceae, Acetobacteraceae, Rikenellaceae, 및 Leuconostocaceae 과 세균 유래 세포밖 소포의 함량이 위암환자와 정상인에 사이에 유의한 차이가 있었다(실시예 4 참조).
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 혈액 샘플에 존재하는 소포에 대하여 세균 메타게놈을 속 수준에서 분석한 결과, Cupriavidus, Proteus, Atopobium, Micrococcus, Odoribacter, Faecalibacterium, Veillonella, Citrobacter, Delftia, Weissella, 및 Leuconostoc 속 세균 유래 세포밖 소포의 함량이 위암환자와 정상인에 사이에 유의한 차이가 있었다(실시예 4 참조).
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 소변 샘플에 존재하는 소포에 대하여 세균 메타게놈을 문 수준에서 분석한 결과, Verrucomicrobia, 및 Cyanobacteria 문 세균 유래 세포밖 소포의 함량이 위암환자와 정상인에 사이에 유의한 차이가 있었다(실시예 5 참조).
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 소변 샘플에 존재하는 소포에 대하여 세균 메타게놈을 강 수준에서 분석한 결과, Verrucomicrobiae, 및 Chloroplast 강 세균 유래 세포밖 소포의 함량이 위암환자와 정상인에 사이에 유의한 차이가 있었다(실시예 5 참조).
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 소변 샘플에 존재하는 소포에 대하여 세균 메타게놈을 목 수준에서 분석한 결과, RF39, Stramenopiles, Verrucomicrobiales, Sphingomonadales, Bifidobacteriales, Streptophyta, 및 Aeromonadales 목 세균 유래 세포밖 소포의 함량이 위암환자와 정상인에 사이에 유의한 차이가 있었다(실시예 5 참조).
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 소변 샘플에 존재하는 소포에 대하여 세균 메타게놈을 과 수준에서 분석한 결과, Exiguobacteraceae, Porphyromonadaceae, Prevotellaceae, Verrucomicrobiaceae, Sphingomonadaceae, Bifidobacteriaceae, Methylobacteriaceae, Planococcaceae, 및 Comamonadaceae 과 세균 유래 세포밖 소포의 함량이 위암환자와 정상인에 사이에 유의한 차이가 있었다(실시예 5 참조).
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 소변 샘플에 존재하는 소포에 대하여 세균 메타게놈을 속 수준에서 분석한 결과, Morganella, Rhizobium, Exiguobacterium, Proteus, Parabacteroides, Adlercreutzia, Prevotella, Acinetobacter, Akkermansia, Oscillospira, Bifidobacterium, Faecalibacterium, Ruminococcus, Coprococcus, Pediococcus, 및 Citrobacter 속 세균 유래 세포밖 소포의 함량이 위암환자와 정상인에 사이에 유의한 차이가 있었다(실시예 5 참조).
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 대변 샘플에 존재하는 소포에 대하여 세균 메타게놈을 문 수준에서 분석한 결과, Tenericutes, 및 Cyanobacteria 문 세균 유래 세포밖 소포의 함량이 위암환자와 정상인에 사이에 유의한 차이가 있었다(실시예 6 참조).
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 대변 샘플에 존재하는 소포에 대하여 세균 메타게놈을 강 수준에서 분석한 결과, Mollicutes 강 세균 유래 세포밖 소포의 함량이 위암환자와 정상인에 사이에 유의한 차이가 있었다(실시예 6 참조).
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 대변 샘플에 존재하는 소포에 대하여 세균 메타게놈을 목 수준에서 분석한 결과, RF39, Neisseriales, 및 Enterobacteriales 목 세균 유래 세포밖 소포의 함량이 위암환자와 정상인에 사이에 유의한 차이가 있었다(실시예 6 참조).
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 대변 샘플에 존재하는 소포에 대하여 세균 메타게놈을 과 수준에서 분석한 결과, Peptostreptococcaceae, Neisseriaceae, Enterobacteriaceae, Staphylococcaceae, Oxalobacteraceae, Moraxellaceae, 및 Planococcaceae 과 세균 유래 세포밖 소포의 함량이 위암환자와 정상인에 사이에 유의한 차이가 있었다(실시예 6 참조).
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 대변 샘플에 존재하는 소포에 대하여 세균 메타게놈을 속 수준에서 분석한 결과, Cupriavidus, Proteus, Methylobacterium, Faecalibacterium, Neisseria, Staphylococcus, 및 Acinetobacter 속 세균 유래 세포밖 소포의 함량이 위암환자와 정상인에 사이에 유의한 차이가 있었다(실시예 6 참조).
본 발명은 상기와 같은 실시예 결과를 통해, 피검자 유래 혈액, 대변, 및 소변으로부터 분리한 소포에 존재하는 유전체에 대하여 세균 메타게놈 분석을 실시함으로써 정상인과 비교하여 위암환자에서 함량이 유의하게 변화한 세균 유래 소포들을 동정하였으며, 메타게놈 분석을 통해 상기 각 수준에서 세균 유래 소포들의 함량 증감을 분석함으로써 위암을 진단할 수 있음을 확인하였다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
[실시예]
실시예 1. 장내 세균 및 세균 유래 소포의 체내 흡수, 분포, 및 배설 양상 분석
장내 세균과 세균 유래 소포가 위장관을 통해 전신적으로 흡수되는 지를 평가하기 위하여 다음과 같은 방법으로 실험을 수행하였다. 마우스의 위장에 형광으로 표지한 장내세균과 장내 세균 유래 소포를 각각 50 μg의 용량으로 위장관으로 투여하고 0분, 5분, 3시간, 6시간, 12시간 후에 형광을 측정하였다. 마우스 전체 이미지를 관찰한 결과, 도 1a에 나타낸 바와 같이, 상기 세균(Bacteria)인 경우에는 전신적으로 흡수되지 않았지만, 세균 유래 소포(EV)인 경우에는, 투여 후 5분에 전신적으로 흡수되었고, 투여 3시간 후에는 방광에 형광이 진하게 관찰되어, 소포가 비뇨기계로 배설됨을 알 수 있었다. 또한, 소포는 투여 12시간까지 체내에 존재함을 알 수 있었다.
장내세균과 장내 세균유래 소포가 전신적으로 흡수된 후, 여러 장기로 침윤된 양상을 평가하기 위하여, 형광으로 표지한 50 μg의 세균과 세균유래 소포를 상기의 방법과 같이 투여한 다음 12시간째에 마우스로부터 혈액(Blood), 심장(Heart), 폐(Lung), 간(Liver), 신장(Kidney), 비장(Spleen), 지방조직(Adipose tissue), 및 근육(Muscle)을 적출하였다. 상기 적출한 조직들에서 형광을 관찰한 결과, 도1b에 나타낸 바와 같이, 상기 장내 세균(Bacteria)은 각 장기에 흡수되지 않은 반면, 상기 장내 세균 유래 세포밖 소포(EV)는 혈액, 심장, 폐, 간, 신장, 비장, 지방조직, 및 근육에 분포하는 것을 확인하였다.
실시예 2. 혈액, 대변, 및 소변으로부터 소포 분리 및 DNA 추출
혈액, 대변, 및 소변으로부터 소포를 분리하고 DNA를 추출하기 위해, 먼저 10 ㎖ 튜브에 혈액, 대변, 또는 소변을 넣고 원심분리(3,500 x g, 10min, 4℃)를 실시하여 부유물을 가라앉혀 상등액만을 회수한 후 새로운 10 ㎖ 튜브에 옮겼다. 0.22 ㎛ 필터를 사용하여 상기 회수한 상등액으로부터 세균 및 이물질을 제거한 후, 센트리프랩튜브(centripreigugal filters 50 kD)에 옮기고 1500 x g, 4℃에서 15분간 원심분리하여 50 kD 보다 작은 물질은 버리고 10 ㎖까지 농축 시켰다. 다시 한 번 0.22 ㎛ 필터를 사용하여 박테리아 및 이물질을 제거한 후, Type 90ti 로터로 150,000 x g, 4℃에서 3시간 동안 초고속원심분리방법을 사용하여 상등액을 버리고 덩어리진 pellet을 생리식염수(PBS)로 녹여 소포를 수득하였다.
상기 방법에 따라 혈액, 대변, 및 소변으로부터 분리한 소포 100 ㎕를 100℃에서 끓여서 내부의 DNA를 지질 밖으로 나오게 한 후 얼음에 5분 동안 식혔다. 다음으로 남은 부유물을 제거하기 위하여 10,000 x g, 4℃에서 30분간 원심분리하고 상등액 만을 모은 후 Nanodrop을 이용하여 DNA 양을 정량하였다. 이후 상기 추출된 DNA에 세균 유래 DNA가 존재하는지 확인하기 위하여 하기 표 1에 나타낸 16s rDNA primer로 PCR을 수행하여 상기 추출된 유전자에 세균 유래 유전자가 존재하는 것을 확인하였다.
primer | 서열 | 서열번호 | |
16S rDNA | 16S_V3_F | 5'-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3' | 1 |
16S_V4_R | 5'-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-3 | 2 |
실시예 3. 혈액, 대변, 및 소변에서 추출한 DNA를 이용한 메타게놈 분석
상기 실시예 2의 방법으로 유전자를 추출한 후, 상기 1에 나타낸 16S rDNA 프라이머를 사용하여 PCR을 실시하여 유전자를 증폭시키고 시퀀싱(Illumina MiSeq sequencer)을 수행하였다. 결과를 Standard Flowgram Format(SFF) 파일로 출력하고 GS FLX software(v2.9)를 이용하여 SFF 파일을 sequence 파일(.fasta)과 nucleotide quality score 파일로 변환한 다음 리드의 신용도 평가를 확인하고, window(20 bps) 평균 base call accuracy가 99% 미만(Phred score <20)인 부분을 제거하였다. 질이 낮은 부분을 제거한 후, 리드의 길이가 300 bps 이상인 것만 이용하였으며(Sickle version 1.33), 결과 분석을 위해 Operational Taxonomy Unit(OTU)은 UCLUST와 USEARCH를 이용하여 시퀀스 유사도에 따라 클러스터링을 수행하였다. 구체적으로 속(genus)은 94%, 과(family)는 90%, 목(order)은 85%, 강(class)은 80%, 문(phylum)은 75% 시퀀스 유사도를 기준으로 클러스터링을 하고 각 OTU의 문, 강, 목, 과, 속 레벨의 분류를 수행하고, BLASTN와 GreenGenes의 16S DNA 시퀀스 데이터베이스(108,453 시퀀스)를 이용하여 97% 이상의 시퀀스 유사도 갖는 세균을 분석하였다(QIIME).
실시예 4. 혈액에서 분리한 세균유래 소포 메타게놈 분석 기반 위암 진단모형
상기 실시예 3의 방법으로, 위암환자 66명과 나이와 성별을 매칭한 정상인 198명의 혈액에서 소포를 분리한 후 메타게놈 시퀀싱을 수행하였다. 진단모형 개발은 먼저 t-test에서 두 군 사이의 p값이 0.05 이하이고, 두 군 사이에 2배 이상 차이가 나는 균주를 선정하고 난 후, logistic regression analysis 방법으로 진단적 성능 지표인 AUC(area under curve), 민감도, 및 특이도를 산출하였다.
혈액 내 세균유래 소포를 목(order) 수준에서 분석한 결과, Cardiobacteriales 목 세균 바이오마커로 진단모형을 개발하였을 때, 위암에 대한 진단적 성능이 유의하게 나타났다 (표 2 및 도 2 참조).
대조군 | 위암 | t-test | |||||||
Mean | SD | Mean | SD | Ratio | p-value | AUC | sensitivity | specificity | |
o__Cardiobacteriales | 0.0003 | 0.0009 | 0.0000 | 0.0001 | 0.05 | 0.00012 | 0.57 | 0.15 | 0.95 |
혈액 내 세균유래 소포를 과(family) 수준에서 분석한 결과, Methylocystaceae, Exiguobacteraceae, Peptostreptococcaceae, Brevibacteriaceae, Mogibacteriaceae, Acetobacteraceae, Rikenellaceae, 및 Leuconostocaceae 과 세균에서 선택되는 하나 이상의 바이오마커로 진단모형을 개발하였을 때, 위암에 대한 진단적 성능이 유의하게 나타났다 (표 3 및 도 3 참조).
대조군 | 위암 | t-test | |||||||
Mean | SD | Mean | SD | Ratio | p-value | AUC | sensitivity | specificity | |
f__Methylocystaceae | 0.0005 | 0.0019 | 0.0000 | 0.0001 | 0.08 | 0.00067 | 0.58 | 0.17 | 0.88 |
f__[Exiguobacteraceae] | 0.0014 | 0.0057 | 0.0003 | 0.0009 | 0.21 | 0.00847 | 0.50 | 0.07 | 0.98 |
f__Peptostreptococcaceae | 0.0025 | 0.0069 | 0.0007 | 0.0015 | 0.29 | 0.00102 | 0.65 | 0.32 | 0.88 |
f__Brevibacteriaceae | 0.0024 | 0.0072 | 0.0008 | 0.0019 | 0.35 | 0.00563 | 0.58 | 0.17 | 0.92 |
f__[Mogibacteriaceae] | 0.0008 | 0.0022 | 0.0003 | 0.0005 | 0.35 | 0.00142 | 0.54 | 0.19 | 0.91 |
f__Acetobacteraceae | 0.0016 | 0.0035 | 0.0006 | 0.0010 | 0.36 | 0.00042 | 0.57 | 0.15 | 0.95 |
f__Rikenellaceae | 0.0028 | 0.0063 | 0.0012 | 0.0023 | 0.42 | 0.00214 | 0.56 | 0.20 | 0.94 |
f__Leuconostocaceae | 0.0054 | 0.0083 | 0.0311 | 0.0473 | 5.78 | 0.00004 | 0.62 | 0.98 | 0.32 |
혈액 내 세균유래 소포를 속(genus) 수준에서 분석한 결과, Cupriavidus, Proteus, Atopobium, Micrococcus, Odoribacter, Faecalibacterium, Veillonella, Citrobacter, Delftia, Weissella, 및 Leuconostoc 속 세균에서 선택되는 하나 이상의 바이오마커로 진단모형을 개발하였을 때, 위암에 대한 진단적 성능이 유의하게 나타났다 (표 4 및 도 4 참조).
대조군 | 위암 | t-test | |||||||
Mean | SD | Mean | SD | Ratio | p-value | AUC | sensitivity | specificity | |
g__Cupriavidus | 0.0094 | 0.0158 | 0.0013 | 0.0026 | 0.13 | 0.00000 | 0.85 | 0.78 | 0.85 |
g__Proteus | 0.0138 | 0.0298 | 0.0028 | 0.0051 | 0.21 | 0.00000 | 0.61 | 0.35 | 0.85 |
g__Atopobium | 0.0006 | 0.0013 | 0.0002 | 0.0004 | 0.29 | 0.00010 | 0.65 | 0.67 | 0.44 |
g__Micrococcus | 0.0082 | 0.0115 | 0.0029 | 0.0051 | 0.35 | 0.00000 | 0.65 | 0.52 | 0.67 |
g__Odoribacter | 0.0004 | 0.0014 | 0.0002 | 0.0003 | 0.36 | 0.00927 | 0.63 | 0.48 | 0.77 |
g__Faecalibacterium | 0.0176 | 0.0243 | 0.0065 | 0.0090 | 0.37 | 0.00000 | 0.64 | 0.39 | 0.90 |
g__Veillonella | 0.0066 | 0.0122 | 0.0031 | 0.0043 | 0.47 | 0.00061 | 0.69 | 0.54 | 0.64 |
g__Citrobacter | 0.0065 | 0.0096 | 0.0238 | 0.0373 | 3.68 | 0.00040 | 0.73 | 0.98 | 0.33 |
g__Delftia | 0.0004 | 0.0011 | 0.0021 | 0.0034 | 5.95 | 0.00010 | 0.64 | 0.38 | 0.87 |
g__Weissella | 0.0021 | 0.0052 | 0.0144 | 0.0230 | 6.90 | 0.00005 | 0.69 | 0.55 | 0.67 |
g__Leuconostoc | 0.0014 | 0.0051 | 0.0161 | 0.0271 | 11.79 | 0.00004 | 0.61 | 0.58 | 0.56 |
실시예 5. 소변에서 분리한 세균유래 소포 메타게놈 분석 기반 위암 진단모형
상기 실시예 3의 방법으로, 위암환자 61명과 나이와 성별을 매칭한 정상인 120명의 소변에서 소포를 분리한 후 메타게놈 시퀀싱을 수행하였다. 진단모형 개발은 먼저 t-test에서 두 군 사이의 p값이 0.05 이하이고, 두 군 사이에 2배 이상 차이가 나는 균주를 선정하고 난 후, logistic regression analysis 방법으로 진단적 성능 지표인 AUC(area under curve), 민감도, 및 특이도를 산출하였다.
소변 내 세균유래 소포를 문(phylum) 수준에서 분석한 결과, Verrucomicrobia, 및 Cyanobacteria 문 세균에서 선택되는 하나 이상의 바이오마커로 진단모형을 개발하였을 때, 위암에 대한 진단적 성능이 유의하게 나타났다 (표 5 및 도 5 참조).
대조군 | 위암 | t-test | |||||||
Mean | SD | Mean | SD | Ratio | p-value | AUC | sensitivity | specificity | |
p__Verrucomicrobia | 0.0303 | 0.0358 | 0.0149 | 0.0173 | 0.49 | 0.00042 | 0.64 | 0.80 | 0.33 |
p__Cyanobacteria | 0.0291 | 0.0397 | 0.0810 | 0.1400 | 2.79 | 0.00512 | 0.52 | 0.97 | 0.19 |
소변 내 세균유래 소포를 강(class) 수준에서 분석한 결과, Verrucomicrobiae, 및 Chloroplast 강 세균에서 선택되는 하나 이상의 바이오마커로 진단모형을 개발하였을 때, 위암에 대한 진단적 성능이 유의하게 나타났다 (표 6 및 도 6 참조).
대조군 | 위암 | t-test | |||||||
Mean | SD | Mean | SD | Ratio | p-value | AUC | sensitivity | specificity | |
c__Verrucomicrobiae | 0.0301 | 0.0356 | 0.0144 | 0.0174 | 0.48 | 0.00031 | 0.65 | 0.79 | 0.38 |
c__Chloroplast | 0.0286 | 0.0396 | 0.0793 | 0.1386 | 2.77 | 0.00581 | 0.52 | 0.97 | 0.19 |
소변 내 세균유래 소포를 목(order) 수준에서 분석한 결과, RF39, Stramenopiles, Verrucomicrobiales, Sphingomonadales, Bifidobacteriales, Streptophyta, 및 Aeromonadales 목 세균에서 선택되는 하나 이상의 바이오마커로 진단모형을 개발하였을 때, 위암에 대한 진단적 성능이 유의하게 나타났다 (표 7 및 도 7 참조).
대조군 | 위암 | t-test | |||||||
Mean | SD | Mean | SD | Ratio | p-value | AUC | sensitivity | specificity | |
o__RF39 | 0.0052 | 0.0115 | 0.0006 | 0.0009 | 0.11 | 0.00017 | 0.73 | 0.54 | 0.78 |
o__Stramenopiles | 0.0049 | 0.0080 | 0.0006 | 0.0016 | 0.13 | 0.00000 | 0.57 | 0.96 | 0.13 |
o__Verrucomicrobiales | 0.0301 | 0.0356 | 0.0144 | 0.0174 | 0.48 | 0.00031 | 0.65 | 0.79 | 0.38 |
o__Sphingomonadales | 0.0100 | 0.0089 | 0.0202 | 0.0236 | 2.02 | 0.00147 | 0.60 | 0.93 | 0.33 |
o__Bifidobacteriales | 0.0129 | 0.0175 | 0.0281 | 0.0355 | 2.17 | 0.00217 | 0.60 | 0.93 | 0.27 |
o__Streptophyta | 0.0237 | 0.0378 | 0.0785 | 0.1383 | 3.30 | 0.00289 | 0.55 | 0.96 | 0.22 |
o__Aeromonadales | 0.0002 | 0.0005 | 0.0007 | 0.0018 | 4.19 | 0.01455 | 0.61 | 0.95 | 0.17 |
소변 내 세균유래 소포를 과(family) 수준에서 분석한 결과, Exiguobacteraceae, Porphyromonadaceae, Prevotellaceae, Verrucomicrobiaceae, Sphingomonadaceae, Bifidobacteriaceae, Methylobacteriaceae, Planococcaceae, 및 Comamonadaceae 과 세균에서 선택되는 하나 이상의 바이오마커로 진단모형을 개발하였을 때, 위암에 대한 진단적 성능이 유의하게 나타났다 (표 8 및 도 8 참조).
대조군 | 위암 | t-test | |||||||
Mean | SD | Mean | SD | Ratio | p-value | AUC | sensitivity | specificity | |
f__[Exiguobacteraceae] | 0.0039 | 0.0106 | 0.0002 | 0.0006 | 0.05 | 0.00098 | 0.56 | 0.88 | 0.22 |
f__Porphyromonadaceae | 0.0177 | 0.0187 | 0.0063 | 0.0109 | 0.36 | 0.00000 | 0.61 | 0.94 | 0.22 |
f__Prevotellaceae | 0.0464 | 0.0728 | 0.0188 | 0.0140 | 0.41 | 0.00051 | 0.48 | 0.33 | 0.80 |
f__Verrucomicrobiaceae | 0.0301 | 0.0356 | 0.0144 | 0.0174 | 0.48 | 0.00031 | 0.65 | 0.79 | 0.38 |
f__Sphingomonadaceae | 0.0098 | 0.0088 | 0.0196 | 0.0231 | 2.01 | 0.00170 | 0.60 | 0.93 | 0.34 |
f__Bifidobacteriaceae | 0.0129 | 0.0175 | 0.0281 | 0.0355 | 2.17 | 0.00217 | 0.34 | 0.15 | 0.81 |
f__Methylobacteriaceae | 0.0034 | 0.0046 | 0.0075 | 0.0102 | 2.20 | 0.00353 | 0.54 | 0.92 | 0.22 |
f__Planococcaceae | 0.0022 | 0.0034 | 0.0062 | 0.0083 | 2.83 | 0.00043 | 0.50 | 0.99 | 0.03 |
f__Comamonadaceae | 0.0024 | 0.0032 | 0.0095 | 0.0164 | 4.02 | 0.00098 | 0.53 | 0.26 | 0.72 |
소변 내 세균유래 소포를 속(genus) 수준에서 분석한 결과, Morganella, Rhizobium, Exiguobacterium, Proteus, Parabacteroides, Adlercreutzia, Prevotella, Acinetobacter, Akkermansia, Oscillospira, Bifidobacterium, Faecalibacterium, Ruminococcus, Coprococcus, Pediococcus, 및 Citrobacter 속 세균에서 선택되는 하나 이상의 바이오마커로 진단모형을 개발하였을 때, 위암에 대한 진단적 성능이 유의하게 나타났다 (표 9 및 도 9 참조).
대조군 | 위암 | t-test | |||||||
Mean | SD | Mean | SD | Ratio | p-value | AUC | sensitivity | specificity | |
g__Morganella | 0.0082 | 0.0217 | 0.0000 | 0.0001 | 0.00 | 0.00038 | 0.53 | 0.16 | 0.88 |
g__Rhizobium | 0.0060 | 0.0063 | 0.0001 | 0.0002 | 0.01 | 0.00000 | 0.66 | 0.92 | 0.33 |
g__Exiguobacterium | 0.0039 | 0.0106 | 0.0002 | 0.0006 | 0.05 | 0.00100 | 0.60 | 0.95 | 0.11 |
g__Proteus | 0.0184 | 0.0212 | 0.0015 | 0.0031 | 0.08 | 0.00000 | 0.49 | 0.99 | 0.14 |
g__Parabacteroides | 0.0143 | 0.0179 | 0.0034 | 0.0056 | 0.24 | 0.00000 | 0.61 | 0.95 | 0.19 |
g__Adlercreutzia | 0.0020 | 0.0042 | 0.0007 | 0.0009 | 0.33 | 0.00350 | 0.57 | 0.94 | 0.20 |
g__Prevotella | 0.0464 | 0.0728 | 0.0188 | 0.0140 | 0.41 | 0.00051 | 0.48 | 0.33 | 0.80 |
g__Acinetobacter | 0.0776 | 0.1128 | 0.0338 | 0.0407 | 0.44 | 0.00073 | 0.56 | 0.29 | 0.80 |
g__Akkermansia | 0.0299 | 0.0355 | 0.0143 | 0.0171 | 0.48 | 0.00031 | 0.65 | 0.78 | 0.38 |
g__Oscillospira | 0.0052 | 0.0053 | 0.0025 | 0.0039 | 0.49 | 0.00034 | 0.72 | 0.72 | 0.61 |
g__Bifidobacterium | 0.0099 | 0.0120 | 0.0267 | 0.0355 | 2.70 | 0.00050 | 0.61 | 0.95 | 0.27 |
g__Faecalibacterium | 0.0087 | 0.0140 | 0.0239 | 0.0397 | 2.74 | 0.00438 | 0.60 | 0.93 | 0.28 |
g__[Ruminococcus] | 0.0012 | 0.0017 | 0.0036 | 0.0050 | 3.10 | 0.00034 | 0.71 | 0.45 | 0.84 |
g__Coprococcus | 0.0025 | 0.0035 | 0.0132 | 0.0212 | 5.31 | 0.00017 | 0.57 | 0.32 | 0.81 |
g__Pediococcus | 0.0003 | 0.0013 | 0.0030 | 0.0042 | 8.54 | 0.00001 | 0.50 | 0.55 | 0.48 |
g__Citrobacter | 0.0005 | 0.0013 | 0.0103 | 0.0235 | 20.12 | 0.00147 | 0.56 | 0.96 | 0.08 |
실시예 6. 대변에서 분리한 세균유래 소포 메타게놈 분석 기반 위암 진단모형
상기 실시예 3의 방법으로, 위암환자 63명과 나이와 성별을 매칭한 정상인 126명의 대변에서 소포를 분리한 후 메타게놈 시퀀싱을 수행하였다. 진단모형 개발은 먼저 t-test에서 두 군 사이의 p값이 0.05 이하이고, 두 군 사이에 2배 이상 차이가 나는 균주를 선정하고 난 후, logistic regression analysis 방법으로 진단적 성능 지표인 AUC(area under curve), 민감도, 및 특이도를 산출하였다.
소변 내 세균유래 소포를 문(phylum) 수준에서 분석한 결과, Tenericutes, 및 Cyanobacteria 문 세균에서 선택되는 하나 이상의 바이오마커로 진단모형을 개발하였을 때, 위암에 대한 진단적 성능이 유의하게 나타났다 (표 10 및 도 10 참조).
대조군 | 위암 | t-test | |||||||
Mean | SD | Mean | SD | p-value | Ratio | AUC | sensitivity | specificity | |
p__Tenericutes | 0.0100 | 0.0257 | 0.0030 | 0.0072 | 0.0000 | 0.30 | 0.78 | 1.00 | 0.11 |
p__Cyanobacteria | 0.0068 | 0.0223 | 0.0029 | 0.0054 | 0.0054 | 0.43 | 0.78 | 1.00 | 0.08 |
소변 내 세균유래 소포를 강(class) 수준에서 분석한 결과, Mollicutes 강 세균에서 선택되는 하나 이상의 바이오마커로 진단모형을 개발하였을 때, 위암에 대한 진단적 성능이 유의하게 나타났다 (표 11 및 도 11 참조).
대조군 | 위암 | t-test | |||||||
Taxon | Mean | SD | Mean | SD | p-value | Ratio | AUC | sensitivity | specificity |
c__Mollicutes | 0.0096 | 0.0256 | 0.0030 | 0.0071 | 0.0001 | 0.31 | 0.78 | 1.00 | 0.11 |
소변 내 세균유래 소포를 목(order) 수준에서 분석한 결과, RF39, Neisseriales, 및 Enterobacteriales 목 세균에서 선택되는 하나 이상의 바이오마커로 진단모형을 개발하였을 때, 위암에 대한 진단적 성능이 유의하게 나타났다 (표 12 및 도 12 참조).
대조군 | 위암 | t-test | |||||||
Taxon | Mean | SD | Mean | SD | p-value | Ratio | AUC | sensitivity | specificity |
o__RF39 | 0.0091 | 0.0250 | 0.0029 | 0.0071 | 0.0001 | 0.32 | 0.78 | 1.00 | 0.11 |
o__Neisseriales | 0.0022 | 0.0045 | 0.0008 | 0.0014 | 0.0000 | 0.35 | 0.80 | 0.98 | 0.17 |
o__Enterobacteriales | 0.0740 | 0.1133 | 0.0356 | 0.0481 | 0.0000 | 0.48 | 0.79 | 0.99 | 0.10 |
소변 내 세균유래 소포를 과(family) 수준에서 분석한 결과, Peptostreptococcaceae, Neisseriaceae, Enterobacteriaceae, Staphylococcaceae, Oxalobacteraceae, Moraxellaceae, 및 Planococcaceae 과 세균에서 선택되는 하나 이상의 바이오마커로 진단모형을 개발하였을 때, 위암에 대한 진단적 성능이 유의하게 나타났다 (표 13 및 도 13 참조).
대조군 | 위암 | t-test | |||||||
Taxon | Mean | SD | Mean | SD | p-value | Ratio | AUC | sensitivity | specificity |
f__Peptostreptococcaceae | 0.0270 | 0.0617 | 0.0062 | 0.0275 | 0.0000 | 0.23 | 0.84 | 0.99 | 0.08 |
f__Neisseriaceae | 0.0022 | 0.0045 | 0.0008 | 0.0014 | 0.0000 | 0.35 | 0.80 | 0.98 | 0.17 |
f__Enterobacteriaceae | 0.0740 | 0.1133 | 0.0356 | 0.0481 | 0.0000 | 0.48 | 0.79 | 0.99 | 0.10 |
f__Staphylococcaceae | 0.0103 | 0.0189 | 0.0047 | 0.0073 | 0.0000 | 0.45 | 0.79 | 0.99 | 0.10 |
f__Oxalobacteraceae | 0.0075 | 0.0339 | 0.0016 | 0.0024 | 0.0014 | 0.21 | 0.79 | 0.99 | 0.08 |
f__Moraxellaceae | 0.0232 | 0.0440 | 0.0112 | 0.0135 | 0.0000 | 0.48 | 0.78 | 0.99 | 0.10 |
f__Planococcaceae | 0.0016 | 0.0063 | 0.0005 | 0.0012 | 0.0032 | 0.33 | 0.78 | 0.99 | 0.08 |
소변 내 세균유래 소포를 속(genus) 수준에서 분석한 결과, Cupriavidus, Proteus, Methylobacterium, Faecalibacterium, Neisseria, Staphylococcus, 및 Acinetobacter 속 세균에서 선택되는 하나 이상의 바이오마커로 진단모형을 개발하였을 때, 위암에 대한 진단적 성능이 유의하게 나타났다 (표 14 및 도 14 참조).
대조군 | 위암 | t-test | |||||||
Taxon | Mean | SD | Mean | SD | p-value | Ratio | AUC | sensitivity | specificity |
g__Cupriavidus | 0.0054 | 0.0308 | 0.0000 | 0.0001 | 0.0011 | 0.01 | 0.83 | 0.97 | 0.21 |
g__Proteus | 0.0117 | 0.0265 | 0.0005 | 0.0018 | 0.0000 | 0.04 | 0.83 | 0.98 | 0.16 |
g__Methylobacterium | 0.0041 | 0.0184 | 0.0007 | 0.0016 | 0.0007 | 0.16 | 0.78 | 1.00 | 0.10 |
g__Faecalibacterium | 0.0684 | 0.0897 | 0.0194 | 0.0282 | 0.0000 | 0.28 | 0.84 | 0.97 | 0.24 |
g__Neisseria | 0.0013 | 0.0037 | 0.0004 | 0.0010 | 0.0002 | 0.33 | 0.79 | 0.99 | 0.08 |
g__Staphylococcus | 0.0100 | 0.0188 | 0.0044 | 0.0068 | 0.0000 | 0.44 | 0.79 | 0.99 | 0.10 |
g__Acinetobacter | 0.0134 | 0.0222 | 0.0063 | 0.0073 | 0.0000 | 0.47 | 0.79 | 0.99 | 0.11 |
상기 진술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
본 발명에 따른 세균 메타게놈 분석을 통해 위암 진단에 대한 정보를 제공하는 방법은 피검자 유래 샘플에서 분리한 소포에 존재하는 유전체에 대해 세균 메타게놈 분석을 수행하여 특정 세균 유래 세포밖 소포의 함량 증감을 분석함으로써 위암의 발병 위험도를 예측하고 위암을 진단하는데 이용할 수 있다. 환경에 존재하는 세균에서 분비되는 세포밖 소포는 체내에 흡수되어 암 발생에 직접적인 영향을 미칠 수 있으며, 위암은 국내에서 발병률 및 사망률이 매우 높은 암으로써 발병 예측을 통한 예방 및 조기진단이 매우 중요하므로, 본 발명에 따른 인체 유래 샘플에 존재하는 소포 내 유전체에 대한 세균 메타게놈 분석을 통해 위암 발병의 위험도를 미리 예측함으로써 위암의 위험군을 조기에 진단 및 예측하여 적절한 관리를 통해 위암의 발병 시기를 늦추거나 발병을 예방할 수 있으며, 위암의 발병 후에도 조기진단 할 수 있어 위암의 발병률을 낮추고 치료효과를 높일 수 있다. 또한, 위암으로 진단받은 환자에서 본 발명에 따른 세균 메타게놈 분석은 원인인자 노출을 피함으로써 위암의 경과를 좋게 하거나 재발을 막는데 이용할 수 있다.
Claims (16)
- 하기의 단계를 포함하는, 위암 진단을 위한 정보제공방법:(a) 피검자 샘플에서 분리한 세포밖 소포로부터 DNA를 추출하는 단계;(b) 상기 추출한 DNA에 대하여 서열번호 1 및 서열번호 2의 프라이머 쌍을 이용하여 PCR을 수행하는 단계; 및(c) 상기 PCR 산물의 서열분석을 통하여 정상인 유래 샘플과 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계.
- 제1항에 있어서,상기 (c) 단계에서, 피검자 소변 샘플에서 분리한 Verrucomicrobia, 및 Cyanobacteria, 피검자 대변 샘플에서 분리한 Tenericutes, 및 Cyanobacteria로 이루어진 군으로부터 선택되는 1종 이상의 문(phylum) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것을 특징으로 하는, 정보제공방법.
- 제1항에 있어서,상기 (c) 단계에서, 피검자 소변 샘플에서 분리한 Verrucomicrobiae, 및 Chloroplast,피검자 대변 샘플에서 분리한 Mollicutes로 이루어진 군으로부터 선택되는 1종 이상의 강(class) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것을 특징으로 하는, 정보제공방법.
- 제1항에 있어서,상기 (c) 단계에서, 피검자 혈액 샘플에서 분리한 Cardiobacteriales,피검자 소변 샘플에서 분리한 RF39, Stramenopiles, Verrucomicrobiales, Sphingomonadales, Bifidobacteriales, Streptophyta, 및 Aeromonadales,피검자 대변 샘플에서 분리한 RF39, Neisseriales, 및 Enterobacteriales로 이루어진 군으로부터 선택되는 1종 이상의 목(order) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것을 특징으로 하는, 정보제공방법.
- 제1항에 있어서,상기 (c) 단계에서, 피검자 혈액 샘플에서 분리한 Methylocystaceae, Exiguobacteraceae, Peptostreptococcaceae, Brevibacteriaceae, Mogibacteriaceae, Acetobacteraceae, Rikenellaceae, 및 Leuconostocaceae, 피검자 소변 샘플에서 분리한 Exiguobacteraceae, Porphyromonadaceae, Prevotellaceae, Verrucomicrobiaceae, Sphingomonadaceae, Bifidobacteriaceae, Methylobacteriaceae, Planococcaceae, 및 Comamonadaceae, 피검자 대변 샘플에서 분리한 Peptostreptococcaceae, Neisseriaceae, Enterobacteriaceae, Staphylococcaceae, Oxalobacteraceae, Moraxellaceae, 및 Planococcaceae 로 이루어진 군으로부터 선택되는 1종 이상의 과(family) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것을 특징으로 하는, 정보제공방법.
- 제1항에 있어서,상기 (c) 단계에서, 피검자 혈액 샘플에서 분리한 Cupriavidus, Proteus, Atopobium, Micrococcus, Odoribacter, Faecalibacterium, Veillonella, Citrobacter, Delftia, Weissella, 및 Leuconostoc, 피검자 소변 샘플에서 분리한 Morganella, Rhizobium, Exiguobacterium, Proteus, Parabacteroides, Adlercreutzia, Prevotella, Acinetobacter, Akkermansia, Oscillospira, Bifidobacterium, Faecalibacterium, Ruminococcus, Coprococcus, Pediococcus, 및 Citrobacter, 피검자 대변 샘플에서 분리한 Cupriavidus, Proteus, Methylobacterium, Faecalibacterium, Neisseria, Staphylococcus, 및 Acinetobacter 로 이루어진 군으로부터 선택되는 1종 이상의 속(genus) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것을 특징으로 하는, 정보제공방법.
- 제1항에 있어서,상기 피검자 샘플은 혈액, 소변, 또는 대변인 것을 특징으로 하는, 정보제공방법.
- 제7항에 있어서,상기 혈액은 전혈, 혈청, 혈장, 또는 혈액 단핵구인 것을 특징으로 하는, 정보제공방법.
- 하기의 단계를 포함하는, 위암 진단방법:(a) 피검자 샘플에서 분리한 세포밖 소포로부터 DNA를 추출하는 단계;(b) 상기 추출한 DNA에 대하여 서열번호 1 및 서열번호 2의 프라이머 쌍을 이용하여 PCR을 수행하는 단계; 및(c) 상기 PCR 산물의 서열분석을 통하여 정상인 유래 샘플과 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계.
- 제9항에 있어서,상기 (c) 단계에서, 피검자 소변 샘플에서 분리한 Verrucomicrobia, 및 Cyanobacteria, 피검자 대변 샘플에서 분리한 Tenericutes, 및 Cyanobacteria로 이루어진 군으로부터 선택되는 1종 이상의 문(phylum) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것을 특징으로 하는, 위암 진단방법.
- 제9항에 있어서,상기 (c) 단계에서, 피검자 소변 샘플에서 분리한 Verrucomicrobiae, 및 Chloroplast,피검자 대변 샘플에서 분리한 Mollicutes로 이루어진 군으로부터 선택되는 1종 이상의 강(class) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것을 특징으로 하는, 위암 진단방법.
- 제9항에 있어서,상기 (c) 단계에서, 피검자 혈액 샘플에서 분리한 Cardiobacteriales,피검자 소변 샘플에서 분리한 RF39, Stramenopiles, Verrucomicrobiales, Sphingomonadales, Bifidobacteriales, Streptophyta, 및 Aeromonadales,피검자 대변 샘플에서 분리한 RF39, Neisseriales, 및 Enterobacteriales로 이루어진 군으로부터 선택되는 1종 이상의 목(order) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것을 특징으로 하는, 위암 진단방법.
- 제9항에 있어서,상기 (c) 단계에서, 피검자 혈액 샘플에서 분리한 Methylocystaceae, Exiguobacteraceae, Peptostreptococcaceae, Brevibacteriaceae, Mogibacteriaceae, Acetobacteraceae, Rikenellaceae, 및 Leuconostocaceae, 피검자 소변 샘플에서 분리한 Exiguobacteraceae, Porphyromonadaceae, Prevotellaceae, Verrucomicrobiaceae, Sphingomonadaceae, Bifidobacteriaceae, Methylobacteriaceae, Planococcaceae, 및 Comamonadaceae, 피검자 대변 샘플에서 분리한 Peptostreptococcaceae, Neisseriaceae, Enterobacteriaceae, Staphylococcaceae, Oxalobacteraceae, Moraxellaceae, 및 Planococcaceae 로 이루어진 군으로부터 선택되는 1종 이상의 과(family) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것을 특징으로 하는, 위암 진단방법.
- 제9항에 있어서,상기 (c) 단계에서, 피검자 혈액 샘플에서 분리한 Cupriavidus, Proteus, Atopobium, Micrococcus, Odoribacter, Faecalibacterium, Veillonella, Citrobacter, Delftia, Weissella, 및 Leuconostoc, 피검자 소변 샘플에서 분리한 Morganella, Rhizobium, Exiguobacterium, Proteus, Parabacteroides, Adlercreutzia, Prevotella, Acinetobacter, Akkermansia, Oscillospira, Bifidobacterium, Faecalibacterium, Ruminococcus, Coprococcus, Pediococcus, 및 Citrobacter, 피검자 대변 샘플에서 분리한 Cupriavidus, Proteus, Methylobacterium, Faecalibacterium, Neisseria, Staphylococcus, 및 Acinetobacter 로 이루어진 군으로부터 선택되는 1종 이상의 속(genus) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것을 특징으로 하는, 위암 진단방법.
- 제9항에 있어서,상기 피검자 샘플은 혈액, 소변, 또는 대변인 것을 특징으로 하는, 위암 진단방법.
- 제15항에 있어서,상기 혈액은 전혈, 혈청, 혈장, 또는 혈액 단핵구인 것을 특징으로 하는, 위암 진단방법.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019531914A JP6846833B2 (ja) | 2016-12-16 | 2017-12-15 | 細菌メタゲノム解析による胃癌診断方法 |
US16/469,212 US20200157632A1 (en) | 2016-12-16 | 2017-12-15 | Method of diagnosing gastric cancer through bacterial metagenome analysis |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20160172584 | 2016-12-16 | ||
KR10-2016-0172584 | 2016-12-16 | ||
KR1020170072432A KR101833502B1 (ko) | 2016-12-16 | 2017-06-09 | 세균 메타게놈 분석을 통한 위암 진단방법 |
KR10-2017-0072432 | 2017-06-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018111040A1 true WO2018111040A1 (ko) | 2018-06-21 |
Family
ID=61726998
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/014860 WO2018111040A1 (ko) | 2016-12-16 | 2017-12-15 | 세균 메타게놈 분석을 통한 위암 진단방법 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20200157632A1 (ko) |
JP (1) | JP6846833B2 (ko) |
KR (1) | KR101833502B1 (ko) |
CN (2) | CN114717316A (ko) |
WO (1) | WO2018111040A1 (ko) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3763829A4 (en) * | 2018-03-05 | 2021-12-01 | MD Healthcare Inc. | NANOVESICLES FROM ENHYDROBACTER BACTERIA, AND THEIR USE |
EP3760743A4 (en) * | 2018-02-28 | 2021-12-01 | MD Healthcare Inc. | NANOVEICLES DERIVED FROM RHIZOBIUM SP. BACTERIA, AND THEIR USE |
EP3760742A4 (en) * | 2018-02-28 | 2021-12-01 | MD Healthcare Inc. | MICROCOCCAL BACTERIA-DERIVED NANOVESICS AND USES |
WO2021252877A1 (en) * | 2020-06-11 | 2021-12-16 | Evelo Biosciences, Inc. | Compositions and methods for treating diseases and disorders using oscillospiraceae microbial extracellular vesicles |
JP2022516988A (ja) * | 2019-01-09 | 2022-03-03 | エムディー ヘルスケア インコーポレイテッド | デイノコッカス属細菌由来ナノ小胞及びその用途 |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102095355B1 (ko) | 2018-01-12 | 2020-03-31 | 주식회사 엠디헬스케어 | 모르가넬라 속 세균 유래 나노소포 및 이의 용도 |
WO2019139279A1 (ko) * | 2018-01-12 | 2019-07-18 | 주식회사 엠디헬스케어 | 모르가넬라 속 세균 유래 나노소포 및 이의 용도 |
KR102087105B1 (ko) * | 2018-02-21 | 2020-03-10 | 주식회사 엠디헬스케어 | 큐프리아비더스 속 세균 유래 나노소포 및 이의 용도 |
KR102122885B1 (ko) * | 2018-02-23 | 2020-06-15 | 주식회사 엠디헬스케어 | 엑시구오박테리움 속 세균 유래 나노소포 및 이의 용도 |
KR102118199B1 (ko) * | 2018-02-26 | 2020-06-02 | 주식회사 엠디헬스케어 | 아토포비움 속 세균 유래 나노소포 및 이의 용도 |
KR102101692B1 (ko) * | 2018-03-05 | 2020-04-20 | 주식회사 엠디헬스케어 | 락토바실러스 속 세균 유래 나노소포 및 이의 용도 |
KR102118993B1 (ko) * | 2018-03-06 | 2020-06-05 | 주식회사 엠디헬스케어 | 프레보텔라 속 세균 유래 나노소포 및 이의 용도 |
KR102118996B1 (ko) * | 2018-03-06 | 2020-06-05 | 주식회사 엠디헬스케어 | 베일로넬라 속 세균 유래 나노소포 및 이의 용도 |
KR102185983B1 (ko) * | 2018-03-06 | 2020-12-03 | 주식회사 엠디헬스케어 | 콜린셀라 속 세균 유래 나노소포 및 이의 용도 |
CN109234187B (zh) * | 2018-08-15 | 2021-06-15 | 李晓明 | 一株莠去津降解菌及其应用 |
KR102286042B1 (ko) * | 2019-01-09 | 2021-08-03 | 주식회사 엠디헬스케어 | 데이노코커스 속 세균 유래 나노소포 및 이의 용도 |
KR102285335B1 (ko) * | 2019-02-14 | 2021-08-04 | 주식회사 엠디헬스케어 | 로치아 속 세균 유래 나노소포 및 이의 용도 |
KR102379022B1 (ko) * | 2019-05-24 | 2022-03-28 | 주식회사 엠디헬스케어 | qPCR 분석을 통한 위암 진단방법 |
KR102542476B1 (ko) | 2020-06-22 | 2023-06-12 | 한국생명공학연구원 | 오도리박터 스플란크니쿠스 또는 이의 배양액을 유효성분으로 포함하는 암 예방 또는 치료용 조성물 |
CN115011710B (zh) * | 2022-02-09 | 2023-09-15 | 江苏省肿瘤医院 | 一种与胃癌预后相关的胃内菌群标志物及其应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110025603A (ko) * | 2009-09-04 | 2011-03-10 | 주식회사이언메딕스 | 그람 양성 세균유래 세포밖 소포체 및 이의 용도 |
KR20120132183A (ko) * | 2011-05-27 | 2012-12-05 | 포항공과대학교 산학협력단 | 종양 조직에서 유래한 나노소포체 및 이를 이용한 암 백신 |
US20130065769A1 (en) * | 2011-09-08 | 2013-03-14 | The Regents Of The University Of California | Salivary biomarkers for gastric cancer detection |
KR20160073157A (ko) * | 2014-12-16 | 2016-06-24 | 이화여자대학교 산학협력단 | 세균 유래의 나노소포체를 이용한 세균성 감염질환 원인균 동정방법 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101445243B1 (ko) | 2014-03-28 | 2014-09-29 | 서울대학교산학협력단 | 장내 세균의 군집과 기능의 변화를 이용한 대사성 및 염증성 질환의 조기진단 |
-
2017
- 2017-06-09 KR KR1020170072432A patent/KR101833502B1/ko active IP Right Grant
- 2017-08-31 CN CN202210343775.3A patent/CN114717316A/zh active Pending
- 2017-08-31 CN CN201710769238.4A patent/CN108220410A/zh active Pending
- 2017-12-15 WO PCT/KR2017/014860 patent/WO2018111040A1/ko active Application Filing
- 2017-12-15 US US16/469,212 patent/US20200157632A1/en not_active Abandoned
- 2017-12-15 JP JP2019531914A patent/JP6846833B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110025603A (ko) * | 2009-09-04 | 2011-03-10 | 주식회사이언메딕스 | 그람 양성 세균유래 세포밖 소포체 및 이의 용도 |
KR20120132183A (ko) * | 2011-05-27 | 2012-12-05 | 포항공과대학교 산학협력단 | 종양 조직에서 유래한 나노소포체 및 이를 이용한 암 백신 |
US20130065769A1 (en) * | 2011-09-08 | 2013-03-14 | The Regents Of The University Of California | Salivary biomarkers for gastric cancer detection |
KR20160073157A (ko) * | 2014-12-16 | 2016-06-24 | 이화여자대학교 산학협력단 | 세균 유래의 나노소포체를 이용한 세균성 감염질환 원인균 동정방법 |
Non-Patent Citations (1)
Title |
---|
TSENG, CHING-HUNG ET AL.: "Gastric Microbiota and Predicted Gene Functions Are Altered after Subtotal Gastrectomy in Patients with Gastric Cancer", SCIENTIFIC REPORTS, vol. 6, 10 February 2016 (2016-02-10), pages 1 - 8, XP055492905 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3760743A4 (en) * | 2018-02-28 | 2021-12-01 | MD Healthcare Inc. | NANOVEICLES DERIVED FROM RHIZOBIUM SP. BACTERIA, AND THEIR USE |
EP3760742A4 (en) * | 2018-02-28 | 2021-12-01 | MD Healthcare Inc. | MICROCOCCAL BACTERIA-DERIVED NANOVESICS AND USES |
EP3763829A4 (en) * | 2018-03-05 | 2021-12-01 | MD Healthcare Inc. | NANOVESICLES FROM ENHYDROBACTER BACTERIA, AND THEIR USE |
US11554144B2 (en) | 2018-03-05 | 2023-01-17 | Md Healthcare Inc. | Nanovesicles derived from enhydrobacter bacteria, and use thereof |
JP2022516988A (ja) * | 2019-01-09 | 2022-03-03 | エムディー ヘルスケア インコーポレイテッド | デイノコッカス属細菌由来ナノ小胞及びその用途 |
JP7291424B2 (ja) | 2019-01-09 | 2023-06-15 | エムディー ヘルスケア インコーポレイテッド | デイノコッカス属細菌由来ナノ小胞及びその用途 |
WO2021252877A1 (en) * | 2020-06-11 | 2021-12-16 | Evelo Biosciences, Inc. | Compositions and methods for treating diseases and disorders using oscillospiraceae microbial extracellular vesicles |
CN115942944A (zh) * | 2020-06-11 | 2023-04-07 | 伊夫罗生物科学公司 | 使用颤螺旋菌科微生物胞外囊泡治疗疾病和障碍的组合物和方法 |
Also Published As
Publication number | Publication date |
---|---|
CN114717316A (zh) | 2022-07-08 |
US20200157632A1 (en) | 2020-05-21 |
JP2020501563A (ja) | 2020-01-23 |
JP6846833B2 (ja) | 2021-03-24 |
KR101833502B1 (ko) | 2018-03-05 |
CN108220410A (zh) | 2018-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018111040A1 (ko) | 세균 메타게놈 분석을 통한 위암 진단방법 | |
WO2018124617A1 (ko) | 세균 메타게놈 분석을 통한 폐암 진단 방법 | |
WO2018124606A1 (ko) | 미생물 메타게놈 분석을 통한 유방암 진단방법 | |
KR101940445B1 (ko) | 세균 메타게놈 분석을 통한 당뇨병 진단 방법 | |
WO2018155960A1 (ko) | 미생물 메타게놈 분석을 통한 난소암 진단방법 | |
WO2018155961A1 (ko) | 세균 메타게놈 분석을 통한 파킨슨병 진단방법 | |
KR101940426B1 (ko) | 세균 메타게놈 분석을 통한 대장종양 진단 방법 | |
WO2016099076A1 (ko) | 세균 유래의 나노소포체를 이용한 세균성 감염질환 원인균 동정방법 | |
WO2019160284A1 (ko) | 세균 메타게놈 분석을 통한 뇌졸중 진단방법 | |
WO2018155950A1 (ko) | 세균 메타게놈 분석을 통한 당뇨병 진단 방법 | |
KR102019646B1 (ko) | 미생물 메타게놈 분석을 통한 아토피피부염 진단방법 | |
US12084721B2 (en) | Inflammatory bowel disease diagnostic method by means of bacterial metagenomic analysis | |
WO2019147080A1 (ko) | 세균 메타게놈 분석을 통한 우울증 진단방법 | |
WO2018155967A1 (ko) | 세균 메타게놈 분석을 통한 만성폐쇄성기도질환 진단 방법 | |
KR102019648B1 (ko) | 천식환자에서 세균 메타게놈 분석을 통한 폐암 진단방법 | |
WO2018225945A1 (ko) | 미생물 메타게놈 분석을 통한 아토피피부염 진단방법 | |
KR102008451B1 (ko) | 세균 메타게놈 분석을 통한 자폐증 진단방법 | |
KR101940446B1 (ko) | 미생물 메타게놈 분석을 통한 난소암 진단방법 | |
WO2018124619A1 (ko) | 미생물 메타게놈 분석을 통한 방광암 진단방법 | |
WO2019146966A1 (ko) | 세균 메타게놈 분석을 통한 담관암 진단방법 | |
KR101936006B1 (ko) | 미생물 메타게놈 분석을 통한 방광암 진단방법 | |
WO2019156325A1 (ko) | 세균 메타게놈 분석을 통한 과민성 장증후군 진단방법 | |
WO2018124742A1 (ko) | 세균 메타게놈 분석을 통한 전립선질환 진단 방법 | |
WO2018124618A1 (ko) | 세균 메타게놈 분석을 통한 췌장암 진단방법 | |
WO2018216912A1 (ko) | 세균 메타게놈 분석을 통한 자폐증 진단방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17881809 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019531914 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17881809 Country of ref document: EP Kind code of ref document: A1 |