WO2018124619A1 - 미생물 메타게놈 분석을 통한 방광암 진단방법 - Google Patents
미생물 메타게놈 분석을 통한 방광암 진단방법 Download PDFInfo
- Publication number
- WO2018124619A1 WO2018124619A1 PCT/KR2017/015177 KR2017015177W WO2018124619A1 WO 2018124619 A1 WO2018124619 A1 WO 2018124619A1 KR 2017015177 W KR2017015177 W KR 2017015177W WO 2018124619 A1 WO2018124619 A1 WO 2018124619A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bladder cancer
- derived
- bacteria
- extracellular vesicles
- decrease
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
Definitions
- the present invention relates to a method for diagnosing bladder cancer through a microbial metagenome analysis, and more specifically, the content of specific bacteria and archaea-derived extracellular vesicles by performing microbial metagenomic analysis of bacteria, archaea, etc. using a sample derived from a subject.
- the present invention relates to a method for diagnosing bladder cancer by analyzing the increase and decrease.
- Bladder cancer is a malignant tumor of the bladder, which accounts for 90% of the transitional epithelial cell carcinoma derived from the transitional epithelial cell in direct contact with urine, and other squamous cell carcinoma, adenocarcinoma and sarcoma.
- Bladder cancers can be divided into superficial bladder cancers limited to the bladder mucosa or submucosa, invasive bladder cancers involving the muscle layer, and metastatic bladder cancers that have spread to other organs.
- the symbiosis of the human body reaches 100 trillion times 10 times more than human cells, the number of genes of the microorganism is known to be more than 100 times the number of human genes.
- a microbiota is a microbial community, including bacteria, archaea, and eukarya that exist in a given settlement.
- the intestinal microbiota plays an important role in human physiology.
- it is known to have a great effect on human health and disease through interaction with human cells.
- the symbiotic bacteria secrete nanometer-sized vesicles to exchange information about genes and proteins in other cells.
- the mucous membrane forms a physical protective film that particles larger than 200 nanometers (nm) in size can't pass through, so that the symbiotic bacteria cannot pass through the mucosa, but bacterial-derived vesicles are usually less than 100 nanometers in size. It freely speaks to the mucous membrane and is absorbed by our body.
- Metagenomics also called environmental genomics, is an analysis of metagenomic data obtained from samples taken from the environment. Recently, it has become possible to list the bacterial composition of the human microflora by a method based on 16s ribosomal RNA (16s rRNA) sequencing. Next generation sequencing of 16s rDNA sequencing gene of 16s ribosomal RNA is performed. , NGS) platform (Nature. 2007 Oct 18; 449 (7164): 804-810).
- NGS NGS
- the present inventors In order to diagnose bladder cancer, the present inventors extracted a gene from bacteria and archaea-derived extracellular vesicles using blood and urine, a sample derived from a subject, and performed a metagenome analysis on the result, which may act as a causative factor of bladder cancer. Bacterial-derived extracellular vesicles were identified, which completed the present invention.
- an object of the present invention is to provide a method for providing information for diagnosing bladder cancer through metagenomic analysis of bacteria and archaea-derived extracellular vesicles.
- an object of the present invention is to provide a method for diagnosing bladder cancer and predicting the risk of developing bladder cancer through metagenomic analysis of the extracellular vesicles.
- the present invention provides a method for providing information for diagnosing bladder cancer, comprising the following steps:
- the present invention also provides a bladder cancer diagnostic method comprising the following steps:
- the present invention also provides a method for predicting the risk of developing bladder cancer, comprising the following steps:
- the subject sample may be blood or urine.
- Rubrobacterales, Erysipelotrichales, Burkholderiales, Enterobacteria isolated from the subject blood sample in step (c) It may be to compare the increase or decrease in the content of one or more order bacteria-derived extracellular vesicles selected from the group consisting of Enterobacteriales, Lactobacillales, Neisseriales, RF32.
- Oxalobacteraceae isolated from the subject blood sample in step (c) (Oxalobacteraceae), Rikenellaaceae (Erysipelotrichaceae), Basil Bacillaceae, Rhizobiaceae, Fusobacteriaceae, Pseudomonadaceae, Comamonadaceae, Planococcaceae, Enterobacteriaceci Enterobacteriaceae, Lachnospiraceae, Corynebacteriaceae, Deinococcaceae, Porphyromonadaceae, Neisseriaceae, Enterero Extracellular vesicles derived from one or more family bacteria selected from the group consisting of Enterococcaceae, Lactobacillaceae, Tissierellaceae, and Peptocacaaceae Of It may be to compare the amount of increase or decrease.
- the cyanobacteria, Gemmatimonadetes, Planctomycetes, Acidobacteria isolated from the urine sample of the subject in step (c) It may be to compare the increase and decrease of the content of one or more phylum bacteria-derived extracellular vesicles selected from the group consisting of, and Euryarchaeota.
- Bactobacteriia acidobacteriia
- Pedosphaerae Pedosphaerae
- Stramenopiles, Streptophyta, Pseudomonadales, Turicibacterales isolated from the subject urine sample in step (c) Increase or decrease in the amount of extracellular vesicles derived from one or more order bacteria selected from the group consisting of Turicibacterales, Methanobacteriales, Gemmatales, Acidobacteriales, and Ellin329 It may be to compare the.
- Flavobacteriaceae Lactobacillaceae, Pseudomonadaceae, Luminosity isolated from the subject urine sample in the step (c) Ruminococcaceae, Comamonadaceae, Turicibacteraceae, Clostridiaceae, Gordoniaaceae, Rikennellaceae, Pres 1 selected from the group consisting of Prevotellaceae, Methanobacteriaceae, Barnesiellaceae, Peptostreptococcaceae, and Koribacteraceae. It may be to compare the increase or decrease in the content of extracellular vesicles derived from species or more family (bacteria).
- the blood may be whole blood, serum, plasma, or blood monocytes.
- Extracellular vesicles secreted by bacteria and archaea present in the environment can be absorbed directly into the body and directly affect cancer development, and since bladder cancer is difficult to diagnose early due to difficult early diagnosis, the human body according to the present invention Metagenome analysis of extracellular vesicles derived from bacteria using the derived samples predicts the risk of bladder cancer in advance, and diagnoses and predicts the risk group of bladder cancer early, so that it can be delayed or prevented by proper management. Early diagnosis can reduce the incidence of bladder cancer and increase the therapeutic effect.
- metagenome analysis in patients diagnosed with bladder cancer can be used to avoid the causative agent to improve the course of the cancer or prevent recurrence.
- Figure 1a is a photograph of the distribution of bacteria and vesicles by time after the oral administration of enteric bacteria and bacterial derived vesicles (EV) to the mouse
- Figure 1b is 12 hours after oral administration, blood And several organs were extracted to evaluate the distribution of bacteria and vesicles in the body.
- Figure 2 shows the distribution of bacterial derived vesicles from bladder cancer patients and normal blood, and performing a metagenome analysis to show the distribution of bacterial derived vesicles (EVs) of significant diagnostic performance at the class level.
- EVs bacterial derived vesicles
- FIG. 3 is a result showing the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the order (neck) level after separating the bacteria-derived vesicles from bladder cancer patients and normal blood.
- EVs bacteria-derived vesicles
- Figure 4 shows the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the family level by separating the bacteria-derived vesicles in bladder cancer patients and normal blood, and performing a metagenome analysis.
- EVs bacteria-derived vesicles
- FIG. 5 is a result showing the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the genus level after separating the bacteria-derived vesicles from bladder cancer patients and normal blood.
- EVs bacteria-derived vesicles
- FIG. 6 is a result showing the distribution of bacteria-derived vesicles (EVs) of significant diagnostic performance at the phylum level by separating the bacteria-derived vesicles in bladder cancer patients and normal urine.
- EVs bacteria-derived vesicles
- FIG. 7 is a result showing the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the class level by separating the bacteria-derived vesicles from bladder cancer patients and normal urine.
- EVs bacteria-derived vesicles
- FIG. 8 shows the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the neck level after separation of bacteria-derived vesicles from bladder cancer patients and normal urine.
- EVs bacteria-derived vesicles
- FIG. 9 is a result showing the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the family level by separating the bacteria-derived vesicles from bladder cancer patients and normal urine.
- EVs bacteria-derived vesicles
- FIG. 10 is a result showing the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the genus level after separating the bacteria-derived vesicles in bladder cancer patients and normal urine.
- EVs bacteria-derived vesicles
- the present invention relates to a method for diagnosing bladder cancer through bacterial and archaea metagenomic analysis, and the present inventors extracted genes from bacterial and archaea-derived extracellular vesicles using a sample derived from a subject, and performed a metagenomic analysis on them. Bacterial-derived extracellular vesicles that could act as causative agents of bladder cancer were identified.
- the present invention comprises the steps of (a) extracting DNA from the extracellular vesicles isolated from the subject sample;
- (C) provides an information providing method for diagnosing bladder cancer comprising the step of comparing the increase and decrease of the content of bacteria and archaea-derived extracellular vesicles and the normal-derived sample through the sequencing of the PCR product.
- the term "diagnosis of bladder cancer” refers to determining whether bladder cancer is likely to develop, whether bladder cancer is relatively high, or whether bladder cancer has already occurred.
- the method of the present invention can be used to prevent or delay the onset of the disease through special and appropriate management as a patient at high risk of developing bladder cancer for any particular patient.
- the methods of the present invention can be used clinically to determine treatment by early diagnosis of bladder cancer and selection of the most appropriate treatment regimen.
- metagenome used in the present invention, also referred to as “metagenome”, refers to the total of the genome including all viruses, bacteria, fungi, etc. in an isolated area such as soil, animal intestine, It is mainly used as a concept of genome explaining the identification of many microorganisms at once using sequencer to analyze microorganisms which are not cultured.
- metagenome does not refer to one species of genome or genome, but refers to a kind of mixed dielectric as the genome of all species of one environmental unit. This is a term from the point of view of defining a species in the course of the evolution of biology in terms of functional species as well as various species that interact with each other to create a complete species.
- metagenome analysis was preferably performed using bacteria-derived extracellular vesicles isolated from blood and urine.
- the subject sample may be blood or urine, and the blood may preferably be whole blood, serum, plasma, or blood monocytes, but is not limited thereto.
- the metagenome analysis of the extracellular vesicles derived from bacteria and archaea was performed, and at the level of phylum, class, order, family, and genus, Each analysis identified bacterial vesicles that could actually cause bladder cancer.
- the contents of the extracellular vesicles derived from Rubrobacteria and Erysipelotrichi bacteria are found in bladder cancer patients and normal people. There was a significant difference between them (see Example 4).
- bacterial metagenomes were analyzed at the neck level for vesicles present in a blood sample derived from a subject, and Rubrobacterales, Erysipelotrichales, Burkholderiales, Enterobacteriales, Lactobacillales, Neisseriales, and RF32 neck bacterial derived cells. There was a significant difference in the content of external vesicles between bladder cancer patients and normal individuals (see Example 4).
- the bacterial metagenome of the vesicles present in the blood samples from the subject at the level of analysis Oxalobacteraceae, Rikenellaceae, Erysipelotrichaceae, Bacillaceae, Rhizobiaceae, Fusobacteriaceae, Pseudomonadaceae, Comamonadaceae, Planococcaceae, There were significant differences between Enterobacteriaceae, Lachnospiraceae, Corynebacteriaceae, Deinococcaceae, Porphyromonadaceae, Neisseriaceae, Enterococcaceae, Lactobacillaceae, Tissierellaceae, and Peptococcaceae and bacterial extracellular vesicles between normal and bladder cancer patients (see Example 4).
- Cupriavidus Eubacterium, Blautia, Catenibacterium, Collinsella, Geobacillus, Roseburia, Coprococcus, Faecalibacterium, Pseudomonas, Corynebacterium, Mucispirillum, Deinococcus, Anaerococcus, Dorea, Enterococcus, Adlercreutzia, Parabacteroides, Lactobacillus, rc4-4, Peptoniphilus, and Finegoldia were found to be significantly different between bladder cancer patients and normal individuals. See Example 4).
- the results of analyzing the bacterial metagenome at the gate level for the vesicles present in the urine sample derived from the subject the content of extracellular vesicles derived from Cyanobacteria, Gemmatimonadetes, Planctomycetes, Acidobacteria, and Euryarchaeota door bacteria
- the results of analysis of bacterial metagenome at the river level for vesicles present in the urine sample derived from the subject the content of extracellular vesicles derived from Chloroplast, Methanobacteria, Planctomycetia, Acidobacteriia, and Pedosphaerae river bacteria
- the bacterial metagenome was analyzed at the neck level for vesicles present in a urine sample derived from a subject, and Stramenopiles, Streptophyta, Pseudomonadales, Turicibacterales, Methanobacteriales, Gemmatales, Acidobacteriales, and Ellin329 throat bacteria
- the content of derived extracellular vesicles was significantly different between bladder cancer patients and normal subjects (see Example 5).
- the bacterial metagenome of the vesicles present in the subject-derived urine sample at the genus level Rhizobium, Proteus, Pseudomonas, Lactobacillus, Turicibacter, Ruminococcus, Klebsiella, Faecalibacterium, Brevundimonas
- the contents of extracellular vesicles derived from bacteria of the genus Clostridium, Jeotgalicoccus, Megasphaera, Gordonia, Prevotella, Actinobacillus, Thermoanaerobacterium, and Methanobrevibacter were significantly different between bladder cancer patients and normal individuals (see Example 5).
- the present invention through the results of the above Example, by identifying the bacteria-derived extracellular vesicles isolated from blood and urine by metagenomic analysis of bacteria-derived vesicles significantly changed in bladder cancer patients compared to normal people was identified , Metagenomic analysis confirmed that bladder cancer can be diagnosed by analyzing the increase and decrease of the contents of the bacteria-derived vesicles at each level.
- Example 1 Analysis of absorption, distribution, and excretion of intestinal bacteria and bacterial-derived vesicles
- the fluorescently labeled 50 ⁇ g of bacteria and bacteria-derived vesicles were administered in the same manner as above 12 hours.
- Blood, Heart, Lung, Liver, Kidney, Spleen, Adipose tissue, and Muscle were extracted from mice.
- the intestinal bacteria (Bacteria) were not absorbed into each organ, whereas the intestinal bacteria-derived extracellular vesicles (EV) were detected in the tissues, as shown in FIG. And distribution in liver, kidney, spleen, adipose tissue, and muscle.
- PCR was performed using the 16S rDNA primer shown in Table 1 to amplify the gene and perform sequencing (Illumina MiSeq sequencer). Output the result as a Standard Flowgram Format (SFF) file, convert the SFF file into a sequence file (.fasta) and a nucleotide quality score file using GS FLX software (v2.9), check the credit rating of the lead, and window (20 bps) The part with the average base call accuracy of less than 99% (Phred score ⁇ 20) was removed.
- SFF Standard Flowgram Format
- the Operational Taxonomy Unit performed UCLUST and USEARCH for clustering according to sequence similarity. Specifically, the clustering is based on 94% genus, 90% family, 85% order, 80% class, and 75% sequence similarity. OTU's door, river, neck, family and genus level classifications were performed, and bacteria with greater than 97% sequence similarity were analyzed using BLASTN and GreenGenes' 16S DNA sequence database (108,453 sequences) (QIIME).
- Example 3 By the method of Example 3, the vesicles were isolated from the blood of 91 patients with bladder cancer and 176 normal people of age and sex matched with metagenome sequencing. In the development of the diagnostic model, the strains whose p-value between the two groups is 0.05 or less and more than two times different between the two groups are selected in the t-test. under curve), sensitivity, and specificity.
- Example 3 By the method of Example 3, vesicles were isolated from urine of 42 patients with bladder cancer and 107 normal subjects matched with age and sex, followed by metagenome sequencing. In the development of the diagnostic model, the strains whose p-value between the two groups is 0.05 or less and more than two times different between the two groups are selected in the t-test. under curve), sensitivity, and specificity.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
본 발명은 미생물 메타게놈 분석을 통해 방광암을 진단하는 방법에 관한 것으로서, 보다 구체적으로는 피검체 유래 샘플을 이용해 세균 및 고세균 등의 미생물 메타게놈 분석을 수행하여 특정 미생물 유래 세포밖 소포의 함량 증감을 분석함으로써 방광암을 진단하는 방법에 관한 것이다. 환경에 존재하는 세균 등의 미생물에서 분비되는 세포밖 소포는 체내에 흡수되어 암 발생에 직접적인 영향을 미칠 수 있으며, 방광암은 증상이 나타나기 전 조기진단이 어려워 효율적인 치료가 어려운 실정이므로, 본 발명에 따른 인체 유래 샘플을 이용한 세균 및 고세균 등의 미생물 메타게놈 분석을 통해 방광암 발병의 위험도를 미리 예측함으로써 방광암의 위험군을 조기에 진단 및 예측하여 적절한 관리를 통해 발병 시기를 늦추거나 발병을 예방할 수 있으며, 발병 후에도 조기진단 할 수 있어 방광암의 발병률을 낮추고 치료효과를 높일 수 있다.
Description
본 발명은 미생물 메타게놈 분석을 통해 방광암을 진단하는 방법에 관한 것으로서, 보다 구체적으로는 피검체 유래 샘플을 이용해 세균, 고세균 등의 미생물 메타게놈 분석을 수행하여 특정 세균 및 고세균 유래 세포밖 소포의 함량 증감을 분석함으로써 방광암을 진단하는 방법에 관한 것이다.
방광암 (stomach carcinoma)은 방광에 생기는 악성종양으로 소변과 직접 접촉하는 이행상피세포에서 유래한 이행상피세포암이 90%를 차지하고, 그 외 편평상피세포암, 선암 및 육종 등이 생길 수 있다. 방광암은 방광점막이나 점막하층에 국한된 표재성 방광암과 근육층을 침범한 침윤성 방광암, 다른 장기로 전이된 전이성 방광암으로 나눌 수 있다.
방광암의 가장 위험인자로서 흡연인 경우 흡연자가 방광암에 걸릴 가능성은 비흡연자 비해 두 배나 높다고 보고되고 있고, 방광은 신체를 통해 배출되는 마지막 장소이므로 흡연으로 인해 발생한 발암물질이 방광암의 1차적 위험인자라고 알려져 있다. 흡연 이외에도 직업적으로 노출되는 화학물질 등이 위험인자라고 주장되고 있다. 인종과 관련해선 백인인 흑인이나 히스패닉 인종에 비하여 두 배 이상의 높은 발생률을 보이고, 여성에 비하여 남성의 발병률이 4배 높다고 알려져 있다. 그러나, 현대의학의 발전에도 불구하고, 아직까지 비침습적인 방법으로 방광암을 예측하는 방법은 전무하고, 기존 진단방법으로는 방광암 등의 고형암이 진행된 경우에 발견되는 경우가 많기 때문에, 방광암으로 인한 사암을 예방하기 위해선 방광암 발생 및 원인인자를 미리 예측하여, 고위험군에서 방광암 발생을 예방하는 대책을 제공하는 것이 효율적인 방법이다.
한편, 인체에 공생하는 미생물은 100조에 이르러 인간 세포보다 10배 많으며, 미생물의 유전자수는 인간 유전자수의 100배가 넘는 것으로 알려지고 있다. 미생물총(microbiota)은 주어진 거주지에 존재하는 세균(bacteria), 고세균(archaea), 진핵생물(eukarya)을 포함한 미생물 군집(microbial community)을 말하고, 장내 미생물총은 사람의 생리현상에 중요한 역할을 하며, 인체 세포와 상호작용을 통해 인간의 건강과 질병에 큰 영향을 미치는 것으로 알려져 있다. 우리 몸에 공생하는 세균은 다른 세포로의 유전자, 단백질 등의 정보를 교환하기 위하여 나노미터 크기의 소포(vesicle)를 분비한다. 점막은 200 나노미터(nm) 크기 이상의 입자는 통과할 수 없는 물리적인 방어막을 형성하여 점막에 공생하는 세균인 경우에는 점막을 통과하지 못하지만, 세균 유래 소포는 크기가 대개 100 나노미터 크기 이하라서 비교적 자유롭게 점막을 통화하여 우리 몸에 흡수된다.
환경 유전체학이라고도 불리는 메타게놈학은 환경에서 채취한 샘플에서 얻은 메타게놈 자료에 대한 분석학이라고 할 수 있다. 최근 16s 리보솜 RNA(16s rRNA) 염기서열을 기반으로 한 방법으로 인간의 미생물총의 세균 구성을 목록화하는 것이 가능해졌으며, 16s 리보솜 RNA의 유전자인 16s rDNA 염기서열을 차세대 염기서열분석 (next generation sequencing, NGS) platform을 이용하여 분석한다(Nature. 2007 Oct 18; 449(7164): 804-810). 그러나 방광암 발병에 있어서, 혈액 또는 소변 등의 인체 유래물에서 세균 유래 소포에 존재하는 메타게놈 분석을 통해 방광암의 원인인자를 동정하고 방광암을 진단하는 방법에 대해서는 보고된 바가 없다.
본 발명자들은 방광암을 진단하기 위하여, 피검체 유래 샘플인 혈액 및 소변을 이용해 세균 및 고세균 유래 세포밖 소포로부터 유전자를 추출하고 이에 대하여 메타게놈 분석을 수행하였으며, 그 결과 방광암의 원인인자로 작용할 수 있는 세균 유래 세포밖 소포를 동정하였는바, 이에 기초하여 본 발명을 완성하였다.
이에, 본 발명은 세균 및 고세균 유래 세포밖 소포에 대한 메타게놈 분석을 통해 방광암 진단을 위한 정보제공방법을 제공하는 것을 목적으로 한다.
또한, 본 발명은 상기 세포밖 소포에 대한 메타게놈 분석을 통해 방광암 진단방법 및 방광암의 발병 위험도 예측방법을 제공하는 것을 목적으로 한다.
그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기와 같은 본 발명의 목적을 달성하기 위하여, 본 발명은 하기의 단계를 포함하는, 방광암 진단을 위한 정보제공방법을 제공한다:
(a) 피검체 샘플에서 분리한 세포밖 소포로부터 DNA를 추출하는 단계;
(b) 상기 추출한 DNA에 대하여 서열번호 1 및 서열번호 2의 프라이머 쌍을 이용하여 PCR을 수행하는 단계; 및
(c) 상기 PCR 산물의 서열분석을 통하여 정상인 유래 샘플과 세균 및/또는 고세균 유래 세포밖 소포의 함량 증감을 비교하는 단계.
또한, 본 발명은 하기의 단계를 포함하는, 방광암 진단방법을 제공한다:
(a) 피검체 샘플에서 분리한 세포밖 소포로부터 DNA를 추출하는 단계;
(b) 상기 추출한 DNA에 대하여 서열번호 1 및 서열번호 2의 프라이머 쌍을 이용하여 PCR을 수행하는 단계; 및
(c) 상기 PCR 산물의 서열분석을 통하여 정상인 유래 샘플과 세균 및/또는 고세균 유래 세포밖 소포의 함량 증감을 비교하는 단계.
또한, 본 발명은 하기의 단계를 포함하는, 방광암의 발병 위험도 예측방법을 제공한다:
(a) 피검체 샘플에서 분리한 세포밖 소포로부터 DNA를 추출하는 단계;
(b) 상기 추출한 DNA에 대하여 서열번호 1 및 서열번호 2의 프라이머 쌍을 이용하여 PCR을 수행하는 단계; 및
(c) 상기 PCR 산물의 서열분석을 통하여 정상인 유래 샘플과 세균 및/또는 고세균 유래 세포밖 소포의 함량 증감을 비교하는 단계.
본 발명의 일 구현예로, 상기 피검체 샘플은 혈액 또는 소변일 수 있다.
본 발명의 다른 구현예로, 상기 (c) 단계에서 상기 피검체 혈액 샘플에서 분리한 루브로박테리아(Rubrobacteria) 및 에리시펠로트릭스강(Erysipelotrichi)으로 이루어진 군으로부터 선택되는 1종 이상의 강(class) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것일 수 있다.
본 발명의 다른 구현예로, 상기 (c) 단계에서 상기 피검체 혈액 샘플에서 분리한 루브로박테르목(Rubrobacterales), 에리시펠로트릭스목(Erysipelotrichales), 버크홀데리아레스(Burkholderiales), 엔테로박테리아레스(Enterobacteriales), 락토바실레아레스(Lactobacillales), 나이세리아레스(Neisseriales), RF32로 이루어진 군으로부터 선택되는 1종 이상의 목(order) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것일 수 있다.
본 발명의 또 다른 구현예로, 상기 (c) 단계에서 상기 피검체 혈액 샘플에서 분리한 옥살로박테라시에(Oxalobacteraceae), 리케넬라시에(Rikenellaceae), 에리시펠로트릭스과(Erysipelotrichaceae), 바실라시에(Bacillaceae), 리조비아시에(Rhizobiaceae), 푸소박테리아시에(Fusobacteriaceae), 슈도모나다시에(Pseudomonadaceae), 코마모나다시에(Comamonadaceae), 플라노코카시에(Planococcaceae), 엔테로박테리아시에(Enterobacteriaceae), 라크노스피라시에(Lachnospiraceae), 코리네박테리아시에(Corynebacteriaceae), 데이노코카시에(Deinococcaceae), 포르피로모나아시에(Porphyromonadaceae), 나이세리아시에(Neisseriaceae), 엔테로코카시에(Enterococcaceae), 락토바실라시에(Lactobacillaceae), 티시에렐라시에(Tissierellaceae), 및 펩토코카시에(Peptococcaceae)로 이루어진 군으로부터 선택되는 1종 이상의 과(family) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것일 수 있다.
본 발명의 또 다른 구현예로, 상기 (c) 단계에서 상기 피검체 혈액 샘플에서 분리한 쿠프리아비두스(Cupriavidus), 유박테리움(Eubacterium), 블라우티아(Blautia), 카테니박테리움(Catenibacterium), 콜린셀라(Collinsella), 지오바실러스(Geobacillus), 로즈뷰리아(Roseburia), 코프로코커스(Coprococcus), 패칼리박테리움(Faecalibacterium), 슈도모나스(Pseudomonas), 코리네박테리움(Corynebacterium), 무시스피릴리움(Mucispirillum), 데이노코커스(Deinococcus), 아내로코커스(Anaerococcus), 도레아(Dorea), 엔테로코커스(Enterococcus), 아들러크레우치아(Adlercreutzia), 파라박테로이데스(Parabacteroides), 락토바실러스(Lactobacillus), rc4-4, 펩토니펠러스(Peptoniphilus), 및 피네골디아(Finegoldia)로 이루어진 군으로부터 선택되는 1종 이상의 속(genus) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것일 수 있다.
본 발명의 또 다른 구현예로, 상기 (c) 단계에서 상기 피검체 소변 샘플에서 분리한 시아노박테리아(Cyanobacteria), 겜마티모나스균문(Gemmatimonadetes), 부유균문(Planctomycetes), 아키도박테리아(Acidobacteria), 및 유리고세균(Euryarchaeota)으로 이루어진 군으로부터 선택되는 1종 이상의 문(phylum) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것일 수 있다.
본 발명의 또 다른 구현예로, 상기 (c) 단계에서 상기 피검체 소변 샘플에서 분리한 클로로플라스트(Chloroplast), 메타노박테리아(Methanobacteria), 플랑크토미케스강(Planctomycetia), 아키도박테리움강(Acidobacteriia), 및 페도스파이라(Pedosphaerae)로 이루어진 군으로부터 선택되는 1종 이상의 강(class) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것일 수 있다.
본 발명의 또 다른 구현예로, 상기 (c) 단계에서 상기 피검체 소변 샘플에서 분리한 스트라메노필레스(Stramenopiles), 스트렙토피타(Streptophyta), 슈도모나달레스(Pseudomonadales), 투리시박테라레스(Turicibacterales), 메타노박테리아레스(Methanobacteriales), 겜마타레스(Gemmatales), 아키도박테리아레스(Acidobacteriales), 및 Ellin329로 이루어진 군으로부터 선택되는 1종 이상의 목(order) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것일 수 있다.
본 발명의 또 다른 구현예로, 상기 (c) 단계에서 상기 피검체 소변 샘플에서 분리한 플라보박테리아시에(Flavobacteriaceae), 락토바실라시에(Lactobacillaceae), 슈도모나다시에(Pseudomonadaceae), 루미노코카시에(Ruminococcaceae), 코마모나다시에(Comamonadaceae), 투리시박테라시아(Turicibacteraceae), 클로스트리디아시에(Clostridiaceae), 고르도니아시에(Gordoniaceae), 리케넬라시에(Rikenellaceae), 프레보텔라시에(Prevotellaceae), 메타노박테리아시에(Methanobacteriaceae), 바르네시엘라시에(Barnesiellaceae), 펩토스트렙토코카시에(Peptostreptococcaceae), 및 코리박테라시에(Koribacteraceae)로 이루어진 군으로부터 선택되는 1종 이상의 과(family) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것일 수 있다.
본 발명의 또 다른 구현예로, 상기 (c) 단계에서 상기 피검체 소변 샘플에서 분리한 리조비움(Rhizobium), 프로테우스(Proteus), 슈도모나스(Pseudomonas), 락토바실러스(Lactobacillus), 투리시박터(Turicibacter), 루미나코커스(Ruminococcus), 클렙시엘라(Klebsiella), 패칼리박테리움(Faecalibacterium), 브레분디모나스(Brevundimonas), 클로스트리듐(Clostridium), 요트갈리코커스(Jeotgalicoccus), 메가스페라(Megasphaera), 고르도니아(Gordonia), 프레보텔라(Prevotella), 악티노바실러스(Actinobacillus), 써모언에어로박테리움(Thermoanaerobacterium), 및 메타노브레비박터(Methanobrevibacter)로 이루어진 군으로부터 선택되는 1종 이상의 속(genus) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것일 수 있다.
본 발명의 또 다른 구현예로, 상기 혈액은 전혈, 혈청, 혈장, 또는 혈액 단핵구일 수 있다.
환경에 존재하는 세균 및 고세균에서 분비되는 세포밖 소포는 체내에 흡수되어 암 발생에 직접적인 영향을 미칠 수 있으며, 방광암은 증상이 나타나기 전 조기진단이 어려워 효율적인 치료가 어려운 실정이므로, 본 발명에 따른 인체 유래 샘플을 이용한 세균 유래 세포밖 소포의 메타게놈 분석을 통해 방광암 발병의 위험도를 미리 예측함으로써 방광암의 위험군을 조기에 진단 및 예측하여 적절한 관리를 통해 발병 시기를 늦추거나 발병을 예방할 수 있으며, 발병 후에도 조기진단 할 수 있어 방광암의 발병률을 낮추고 치료효과를 높일 수 있다. 또한, 방광암으로 진단받은 환자에서 메타게놈 분석을 통해 원인인자 노출을 피함으로써 암의 경과를 좋게 하거나, 재발을 막을 수 있다.
도 1a은, 마우스에 장내 세균과 세균유래 소포 (EV)를 구강으로 투여한 후, 시간별로 세균과 소포의 분포양상을 촬영한 사진이고, 도 1b는 구강으로 투여한 후 12시간째에, 혈액 및 여러 장기를 적출하여, 세균과 소포의 체내 분포양상을 평가한 그림이다.
도 2는 방광암환자 및 정상인 혈액에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 강(class) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.
도 3은 방광암환자 및 정상인 혈액에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 목(order) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.
도 4는 방광암환자 및 정상인 혈액에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 과(family) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.
도 5는 방광암환자 및 정상인 혈액에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 속(genus) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.
도 6은 방광암환자 및 정상인 소변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 문(phylum) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.
도 7은 방광암환자 및 정상인 소변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 강(class) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.
도 8은 방광암환자 및 정상인 소변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 목(order) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.
도 9는 방광암환자 및 정상인 소변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 과(family) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.
도 10은 방광암환자 및 정상인 소변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 속(genus) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.
본 발명은 세균 및 고세균 메타게놈 분석을 통해 방광암을 진단하는 방법에 관한 것으로서, 본 발명자들은 피검체 유래 샘플을 이용해 세균 및 고세균 유래 세포밖 소포로부터 유전자를 추출하고 이에 대하여 메타게놈 분석을 수행하였으며, 방광암의 원인인자로 작용할 수 있는 세균 유래 세포밖 소포를 동정하였다.
이에, 본 발명은 (a) 피검체 샘플에서 분리한 세포밖 소포로부터 DNA를 추출하는 단계;
(b) 상기 추출한 DNA에 대하여 서열번호 1 및 서열번호 2의 프라이머 쌍을 이용하여 PCR을 수행하는 단계; 및
(c) 상기 PCR 산물의 서열분석을 통하여 정상인 유래 샘플과 세균 및 고세균 유래 세포밖 소포의 함량 증감을 비교하는 단계를 포함하는 방광암을 진단하기 위한 정보제공방법을 제공한다.
본 발명에서 사용되는 용어, "방광암 진단" 이란 환자에 대하여 방광암이 발병할 가능성이 있는지, 방광암이 발병할 가능성이 상대적으로 높은지, 또는 방광암이 이미 발병하였는지 여부를 판별하는 것을 의미한다. 본 발명의 방법은 임의의 특정 환자에 대한 방광암 발병 위험도가 높은 환자로써 특별하고 적절한 관리를 통하여 발병 시기를 늦추거나 발병하지 않도록 하는데 사용할 수 있다. 또한, 본 발명의 방법은 방광암을 조기에 진단하여 가장 적절한 치료방식을 선택함으로써 치료를 결정하기 위해 임상적으로 사용될 수 있다.
본 발명에서 사용되는 용어, "메타게놈(metagenome)"이란 "군유전체"라고도 하며, 흙, 동물의 장 등 고립된 지역 내의 모든 바이러스, 세균, 곰팡이 등을 포함하는 유전체의 총합을 의미하는 것으로, 주로 배양이 되지 않는 미생물을 분석하기 위해서 서열분석기를 사용하여 한꺼번에 많은 미생물을 동정하는 것을 설명하는 유전체의 개념으로 쓰인다. 특히, 메타게놈은 한 종의 게놈 또는 유전체를 말하는 것이 아니라, 한 환경단위의 모든 종의 유전체로서 일종의 혼합유전체를 말한다. 이는 오믹스적으로 생물학이 발전하는 과정에서 한 종을 정의할 때 기능적으로 기존의 한 종뿐만 아니라, 다양한 종이 서로 상호작용하여 완전한 종을 만든다는 관점에서 나온 용어이다. 기술적으로는 빠른 서열분석법을 이용해서, 종에 관계없이 모든 DNA, RNA를 분석하여, 한 환경 내에서의 모든 종을 동정하고, 상호작용, 대사작용을 규명하는 기법의 대상이다. 본 발명에서는 바람직하게 혈액 및 소변에서 분리한 세균 유래 세포밖 소포를 이용하여 메타게놈 분석을 실시하였다.
본 발명에 있어서, 상기 피검체 샘플은 혈액 또는 소변일 수 있고, 상기 혈액은 바람직하게 전혈, 혈청, 혈장, 또는 혈액 단핵구일 수 있으나, 이것으로 제한되는 것은 아니다.
본 발명의 실시예에서는 상기 세균 및 고세균 유래 세포밖 소포에 대한 메타게놈 분석을 실시하였으며, 문(phylum), 강(class), 목(order), 과(family), 및 속(genus) 수준에서 각각 분석하여 실제로 방광암 발생의 원인으로 작용할 수 있는 세균 유래 소포를 동정하였다.
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 혈액 샘플에 존재하는 소포에 대하여 세균 메타게놈을 강 수준에서 분석한 결과, Rubrobacteria, 및 Erysipelotrichi 강 세균 유래 세포밖 소포의 함량이 방광암환자와 정상인에 사이에 유의한 차이가 있었다(실시예 4 참조).
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 혈액 샘플에 존재하는 소포에 대하여 세균 메타게놈을 목 수준에서 분석한 결과, Rubrobacterales, Erysipelotrichales, Burkholderiales, Enterobacteriales, Lactobacillales, Neisseriales, 및 RF32 목 세균 유래 세포밖 소포의 함량이 방광암환자와 정상인에 사이에 유의한 차이가 있었다(실시예 4 참조).
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 혈액 샘플에 존재하는 소포에 대하여 세균 메타게놈을 과 수준에서 분석한 결과, Oxalobacteraceae, Rikenellaceae, Erysipelotrichaceae, Bacillaceae, Rhizobiaceae, Fusobacteriaceae, Pseudomonadaceae, Comamonadaceae, Planococcaceae, Enterobacteriaceae, Lachnospiraceae, Corynebacteriaceae, Deinococcaceae, Porphyromonadaceae, Neisseriaceae, Enterococcaceae, Lactobacillaceae, Tissierellaceae, 및 Peptococcaceae 과 세균 유래 세포밖 소포의 함량이 방광암환자와 정상인에 사이에 유의한 차이가 있었다(실시예 4 참조).
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 혈액 샘플에 존재하는 소포에 대하여 세균 메타게놈을 속 수준에서 분석한 결과, Cupriavidus, Eubacterium, Blautia, Catenibacterium, Collinsella, Geobacillus, Roseburia, Coprococcus, Faecalibacterium, Pseudomonas, Corynebacterium, Mucispirillum, Deinococcus, Anaerococcus, Dorea, Enterococcus, Adlercreutzia, Parabacteroides, Lactobacillus, rc4-4, Peptoniphilus, 및 Finegoldia 속 세균 유래 세포밖 소포의 함량이 방광암환자와 정상인에 사이에 유의한 차이가 있었다(실시예 4 참조).
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 소변 샘플에 존재하는 소포에 대하여 세균 메타게놈을 문 수준에서 분석한 결과, Cyanobacteria, Gemmatimonadetes, Planctomycetes, Acidobacteria, 및 Euryarchaeota 문 세균 유래 세포밖 소포의 함량이 방광암환자와 정상인에 사이에 유의한 차이가 있었다(실시예 5 참조).
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 소변 샘플에 존재하는 소포에 대하여 세균 메타게놈을 강 수준에서 분석한 결과, Chloroplast, Methanobacteria, Planctomycetia, Acidobacteriia, 및 Pedosphaerae 강 세균 유래 세포밖 소포의 함량이 방광암환자와 정상인에 사이에 유의한 차이가 있었다(실시예 5 참조).
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 소변 샘플에 존재하는 소포에 대하여 세균 메타게놈을 목 수준에서 분석한 결과, Stramenopiles, Streptophyta, Pseudomonadales, Turicibacterales, Methanobacteriales, Gemmatales, Acidobacteriales, 및 Ellin329 목 세균 유래 세포밖 소포의 함량이 방광암환자와 정상인에 사이에 유의한 차이가 있었다(실시예 5 참조).
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 소변 샘플에 존재하는 소포에 대하여 세균 메타게놈을 과 수준에서 분석한 결과, Flavobacteriaceae, Lactobacillaceae, Pseudomonadaceae, Ruminococcaceae, Comamonadaceae, Turicibacteraceae, Clostridiaceae, Gordoniaceae, Rikenellaceae, Prevotellaceae, Methanobacteriaceae, Barnesiellaceae, Peptostreptococcaceae, 및 Koribacteraceae 과 세균 유래 세포밖 소포의 함량이 방광암환자와 정상인에 사이에 유의한 차이가 있었다(실시예 5 참조).
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 소변 샘플에 존재하는 소포에 대하여 세균 메타게놈을 속 수준에서 분석한 결과, Rhizobium, Proteus, Pseudomonas, Lactobacillus, Turicibacter, Ruminococcus, Klebsiella, Faecalibacterium, Brevundimonas, Clostridium, Jeotgalicoccus, Megasphaera, Gordonia, Prevotella, Actinobacillus, Thermoanaerobacterium, 속 Methanobrevibacter 속 세균 유래 세포밖 소포의 함량이 방광암환자와 정상인에 사이에 유의한 차이가 있었다(실시예 5 참조).
본 발명은 상기와 같은 실시예 결과를 통해, 혈액 및 소변으로부터 분리한 세균 유래 세포밖 소포에 대하여 메타게놈 분석을 실시함으로써 정상인과 비교하여 방광암환자에서 함량이 유의하게 변화한 세균 유래 소포들을 동정하였으며, 메타게놈 분석을 통해 상기 각 수준에서 세균 유래 소포들의 함량 증감을 분석함으로써 방광암을 진단할 수 있음을 확인하였다.
[실시예]
실시예
1. 장내 세균 및 세균 유래 소포의 체내 흡수, 분포, 및 배설 양상 분석
장내 세균과 세균 유래 소포가 위장관을 통해 전신적으로 흡수되는 지를 평가하기 위하여 다음과 같은 방법으로 실험을 수행하였다. 마우스의 위장에 형광으로 표지한 장내세균과 장내 세균 유래 소포를 각각 50 μg의 용량으로 위장관으로 투여하고 0분, 5분, 3시간, 6시간, 12시간 후에 형광을 측정하였다. 마우스 전체 이미지를 관찰한 결과, 도 1a에 나타낸 바와 같이, 상기 세균(Bacteria)인 경우에는 전신적으로 흡수되지 않았지만, 세균 유래 소포(EV)인 경우에는, 투여 후 5분에 전신적으로 흡수되었고, 투여 3시간 후에는 방광에 형광이 진하게 관찰되어, 소포가 비뇨기계로 배설됨을 알 수 있었다. 또한, 소포는 투여 12시간까지 체내에 존재함을 알 수 있었다.
장내세균과 장내 세균유래 소포가 전신적으로 흡수된 후, 여러 장기로 침윤된 양상을 평가하기 위하여, 형광으로 표지한 50 μg의 세균과 세균유래 소포를 상기의 방법과 같이 투여한 다음 12시간째에 마우스로부터 혈액(Blood), 심장(Heart), 폐(Lung), 간(Liver), 신장(Kidney), 비장(Spleen), 지방조직(Adipose tissue), 및 근육(Muscle)을 적출하였다. 상기 적출한 조직들에서 형광을 관찰한 결과, 도1b에 나타낸 바와 같이, 상기 장내 세균(Bacteria)은 각 장기에 흡수되지 않은 반면, 상기 장내 세균 유래 세포밖 소포(EV)는 혈액, 심장, 폐, 간, 신장, 비장, 지방조직, 및 근육에 분포하는 것을 확인하였다.
실시예 2. 혈액 및 소변으로부터 소포 분리 및 DNA 추출
혈액 및 소변으로부터 소포를 분리하고 DNA를 추출하기 위해, 먼저 10 ㎖ 튜브에 혈액 또는 소변을 넣고 원심분리(3,500 x g, 10min, 4℃)를 실시하여 부유물을 가라앉혀 상등액만을 회수한 후 새로운 10 ㎖ 튜브에 옮겼다. 0.22 ㎛ 필터를 사용하여 상기 회수한 상등액으로부터 세균 및 이물질을 제거한 후, 센트리프랩튜브(centripreigugal filters 50 kD)에 옮기고 1500 x g, 4℃에서 15분간 원심분리하여 50 kD 보다 작은 물질은 버리고 10 ㎖까지 농축 시켰다. 다시 한 번 0.22 ㎛ 필터를 사용하여 박테리아 및 이물질을 제거한 후, Type 90ti 로터로 150,000 x g, 4℃에서 3시간 동안 초고속원심분리방법을 사용하여 상등액을 버리고 덩어리진 pellet을 생리식염수(PBS)로 녹여 소포를 수득하였다.
상기 방법에 따라 혈액 및 소변으로부터 분리한 소포 100 ㎕를 100℃에서 끓여서 내부의 DNA를 지질 밖으로 나오게 한 후 얼음에 5분 동안 식혔다. 다음으로 남은 부유물을 제거하기 위하여 10,000 x g, 4℃에서 30분간 원심분리하고 상등액 만을 모은 후 Nanodrop을 이용하여 DNA 양을 정량하였다. 이후 상기 추출된 DNA에 세균 유래 DNA가 존재하는지 확인하기 위하여 하기 표 1에 나타낸 16s rDNA primer로 PCR을 수행하여 상기 추출된 유전자에 세균 유래 유전자가 존재하는 것을 확인하였다.
primer | 서열 | 서열번호 | |
16S rDNA | 16S_V3_F | 5'-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3' | 1 |
16S_V4_R | 5'-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-3' | 2 |
실시예 3. 혈액 및 소변에서 추출한 DNA를 이용한 메타게놈 분석
상기 실시예 2의 방법으로 유전자를 추출한 후, 상기 표1에 나타낸 16S rDNA 프라이머를 사용하여 PCR을 실시하여 유전자를 증폭시키고 시퀀싱(Illumina MiSeq sequencer)을 수행하였다. 결과를 Standard Flowgram Format(SFF) 파일로 출력하고 GS FLX software(v2.9)를 이용하여 SFF 파일을 sequence 파일(.fasta)과 nucleotide quality score 파일로 변환한 다음 리드의 신용도 평가를 확인하고, window(20 bps) 평균 base call accuracy가 99% 미만(Phred score <20)인 부분을 제거하였다. 질이 낮은 부분을 제거한 후, 리드의 길이가 300 bps 이상인 것만 이용하였으며(Sickle version 1.33), 결과 분석을 위해 Operational Taxonomy Unit(OTU)은 UCLUST와 USEARCH를 이용하여 시퀀스 유사도에 따라 클러스터링을 수행하였다. 구체적으로 속(genus)은 94%, 과(family)는 90%, 목(order)은 85%, 강(class)은 80%, 문(phylum)은 75% 시퀀스 유사도를 기준으로 클러스터링을 하고 각 OTU의 문, 강, 목, 과, 속 레벨의 분류를 수행하고, BLASTN와 GreenGenes의 16S DNA 시퀀스 데이터베이스(108,453 시퀀스)를 이용하여 97% 이상의 시퀀스 유사도 갖는 박테리아를 분석하였다(QIIME).
실시예
4. 혈액에서 분리한
세균유래
소포
메타게놈
분석 기반 방광암 진단모형
상기 실시예 3의 방법으로, 방광암환자 91명과 나이와 성별을 매칭한 정상인 176명의 혈액에서 소포를 분리한 후 메타게놈 시퀀싱을 수행하였다. 진단모형 개발은 먼저 t-test에서 두 군 사이의 p값이 0.05 이하이고, 두 군 사이에 2배 이상 차이가 나는 균주를 선정하고 난 후, logistic regression analysis 방법으로 진단적 성능 지표인 AUC(area under curve), 민감도, 및 특이도를 산출하였다.
혈액 내 세균유래 소포를 강(class) 수준에서 분석한 결과, Rubrobacteria, 및 Erysipelotrichi 강 세균 바이오마커로 진단모형을 개발하였을 때, 방광암에 대한 진단적 성능이 유의하게 나타났다 (표 2 및 도 2 참조).
대조군 | 방광암 | t-test | Training Set | Test Set | ||||||||
Taxon | Mean | SD | Mean | SD | p-value | Ratio | AUC | sensitivity | specificity | AUC | sensitivity | specificity |
c__Rubrobacteria | 0.0009 | 0.0026 | 0.0000 | 0.0000 | 0.0001 | 0.05 | 0.65 | 0.90 | 0.27 | 0.52 | 0.84 | 0.09 |
c__Erysipelotrichi | 0.0100 | 0.0162 | 0.0013 | 0.0013 | 0.0000 | 0.13 | 0.78 | 0.92 | 0.39 | 0.74 | 0.80 | 0.28 |
혈액 내 세균유래 소포를 목(order) 수준에서 분석한 결과, Rubrobacterales, Erysipelotrichales, Burkholderiales, Enterobacteriales, Lactobacillales, Neisseriales, 및 RF32 목 세균 바이오마커로 진단모형을 개발하였을 때, 방광암에 대한 진단적 성능이 유의하게 나타났다 (표 3 및 도 3 참조).
대조군 | 방광암 | t-test | Training Set | Test Set | ||||||||
Taxon | Mean | SD | Mean | SD | p-value | Ratio | AUC | sensitivity | specificity | AUC | sensitivity | specificity |
o__Rubrobacterales | 0.0009 | 0.0026 | 0.0000 | 0.0000 | 0.0001 | 0.05 | 0.65 | 0.90 | 0.27 | 0.52 | 0.84 | 0.09 |
o__Erysipelotrichales | 0.0100 | 0.0162 | 0.0013 | 0.0013 | 0.0000 | 0.13 | 0.78 | 0.92 | 0.39 | 0.74 | 0.80 | 0.28 |
o__Burkholderiales | 0.0304 | 0.0333 | 0.0066 | 0.0066 | 0.0000 | 0.22 | 0.81 | 0.79 | 0.56 | 0.84 | 0.86 | 0.66 |
o__Enterobacteriales | 0.0924 | 0.0763 | 0.0377 | 0.0377 | 0.0000 | 0.41 | 0.76 | 0.83 | 0.44 | 0.76 | 0.76 | 0.59 |
o__Lactobacillales | 0.0892 | 0.0469 | 0.1895 | 0.1895 | 0.0000 | 2.12 | 0.71 | 0.97 | 0.42 | 0.65 | 1.00 | 0.19 |
o__Neisseriales | 0.0150 | 0.0439 | 0.0446 | 0.0446 | 0.0000 | 2.97 | 0.75 | 0.96 | 0.07 | 0.79 | 0.98 | 0.13 |
o__RF32 | 0.0002 | 0.0009 | 0.0026 | 0.0026 | 0.0007 | 11.82 | 0.72 | 0.97 | 0.22 | 0.69 | 0.98 | 0.31 |
혈액 내 세균유래 소포를 과(family) 수준에서 분석한 결과, Oxalobacteraceae, Rikenellaceae, Erysipelotrichaceae, Bacillaceae, Rhizobiaceae, Fusobacteriaceae, Pseudomonadaceae, Comamonadaceae, Planococcaceae, Enterobacteriaceae, Lachnospiraceae, Corynebacteriaceae, Deinococcaceae, Porphyromonadaceae, Neisseriaceae, Enterococcaceae, Lactobacillaceae, Tissierellaceae, 및 Peptococcaceae 과 세균 바이오마커로 진단모형을 개발하였을 때, 방광암에 대한 진단적 성능이 유의하게 나타났다 (표 4 및 도 4 참조).
대조군 | 방광암 | t-test | Training Set | Test Set | ||||||||
Taxon | Mean | SD | Mean | SD | p-value | Ratio | AUC | sensitivity | specificity | AUC | sensitivity | specificity |
f__Oxalobacteraceae | 0.0134 | 0.0231 | 0.0009 | 0.0009 | 0.0000 | 0.06 | 0.80 | 0.74 | 0.68 | 0.85 | 0.86 | 0.50 |
f__Rikenellaceae | 0.0025 | 0.0058 | 0.0002 | 0.0002 | 0.0000 | 0.09 | 0.70 | 0.99 | 0.02 | 0.63 | 1.00 | 0.00 |
f__Erysipelotrichaceae | 0.0100 | 0.0162 | 0.0013 | 0.0013 | 0.0000 | 0.13 | 0.78 | 0.92 | 0.39 | 0.74 | 0.80 | 0.28 |
f__Bacillaceae | 0.0077 | 0.0134 | 0.0015 | 0.0015 | 0.0000 | 0.19 | 0.76 | 0.94 | 0.24 | 0.69 | 0.92 | 0.06 |
f__Rhizobiaceae | 0.0057 | 0.0099 | 0.0011 | 0.0011 | 0.0000 | 0.19 | 0.73 | 0.98 | 0.03 | 0.74 | 1.00 | 0.03 |
f__Fusobacteriaceae | 0.0025 | 0.0045 | 0.0005 | 0.0005 | 0.0000 | 0.21 | 0.70 | 0.98 | 0.03 | 0.59 | 1.00 | 0.00 |
f__Pseudomonadaceae | 0.0804 | 0.0860 | 0.0214 | 0.0214 | 0.0000 | 0.27 | 0.81 | 0.81 | 0.49 | 0.77 | 0.84 | 0.50 |
f__Comamonadaceae | 0.0129 | 0.0253 | 0.0048 | 0.0048 | 0.0001 | 0.38 | 0.65 | 0.96 | 0.14 | 0.55 | 0.90 | 0.00 |
f__Planococcaceae | 0.0047 | 0.0117 | 0.0019 | 0.0019 | 0.0032 | 0.41 | 0.64 | 0.99 | 0.00 | 0.59 | 1.00 | 0.00 |
f__Enterobacteriaceae | 0.0924 | 0.0763 | 0.0377 | 0.0377 | 0.0000 | 0.41 | 0.76 | 0.83 | 0.44 | 0.76 | 0.76 | 0.59 |
f__Lachnospiraceae | 0.0584 | 0.0641 | 0.0288 | 0.0288 | 0.0000 | 0.49 | 0.68 | 0.94 | 0.17 | 0.62 | 0.88 | 0.06 |
f__Corynebacteriaceae | 0.0310 | 0.0396 | 0.0655 | 0.0655 | 0.0000 | 2.11 | 0.68 | 0.94 | 0.22 | 0.74 | 0.94 | 0.19 |
f__Deinococcaceae | 0.0014 | 0.0042 | 0.0036 | 0.0036 | 0.0033 | 2.51 | 0.61 | 0.98 | 0.03 | 0.60 | 1.00 | 0.03 |
f__Porphyromonadaceae | 0.0060 | 0.0064 | 0.0160 | 0.0160 | 0.0001 | 2.68 | 0.62 | 0.98 | 0.20 | 0.67 | 1.00 | 0.25 |
f__Neisseriaceae | 0.0150 | 0.0439 | 0.0446 | 0.0446 | 0.0000 | 2.97 | 0.75 | 0.96 | 0.07 | 0.79 | 0.98 | 0.13 |
f__Enterococcaceae | 0.0065 | 0.0097 | 0.0207 | 0.0207 | 0.0000 | 3.17 | 0.67 | 0.98 | 0.34 | 0.44 | 0.96 | 0.16 |
f__Lactobacillaceae | 0.0349 | 0.0331 | 0.1276 | 0.1276 | 0.0000 | 3.66 | 0.77 | 0.99 | 0.37 | 0.77 | 0.98 | 0.38 |
f__[Tissierellaceae] | 0.0068 | 0.0137 | 0.0254 | 0.0254 | 0.0000 | 3.76 | 0.76 | 0.98 | 0.34 | 0.78 | 0.92 | 0.41 |
f__Peptococcaceae | 0.0011 | 0.0043 | 0.0052 | 0.0052 | 0.0000 | 4.95 | 0.80 | 0.96 | 0.27 | 0.72 | 0.98 | 0.31 |
혈액 내 세균유래 소포를 속(genus) 수준에서 분석한 결과, Cupriavidus, Eubacterium, Blautia, Catenibacterium, Collinsella, Geobacillus, Roseburia, Coprococcus, Faecalibacterium, Pseudomonas, Corynebacterium, Mucispirillum, Deinococcus, Anaerococcus, Dorea, Enterococcus, Adlercreutzia, Parabacteroides, Lactobacillus, rc4-4, Peptoniphilus, 및 Finegoldia 속 세균 바이오마커로 진단모형을 개발하였을 때, 방광암에 대한 진단적 성능이 유의하게 나타났다 (표 5 및 도 5 참조).
대조군 | 방광암 | t-test | Training Set | Test Set | ||||||||
Taxon | Mean | SD | Mean | SD | p-value | Ratio | AUC | sensitivity | specificity | AUC | sensitivity | specificity |
g__Cupriavidus | 0.008 | 0.020 | 0.000 | 0.000 | 0.000 | 0.02 | 0.76 | 0.98 | 0.12 | 0.87 | 0.96 | 0.25 |
g__[Eubacterium] | 0.002 | 0.004 | 0.000 | 0.000 | 0.000 | 0.03 | 0.77 | 0.91 | 0.25 | 0.70 | 0.88 | 0.06 |
g__Blautia | 0.013 | 0.021 | 0.001 | 0.001 | 0.000 | 0.04 | 0.82 | 0.71 | 0.71 | 0.77 | 0.73 | 0.69 |
g__Catenibacterium | 0.006 | 0.014 | 0.000 | 0.000 | 0.000 | 0.04 | 0.77 | 0.91 | 0.25 | 0.67 | 0.82 | 0.19 |
g__Collinsella | 0.006 | 0.012 | 0.000 | 0.000 | 0.000 | 0.07 | 0.80 | 0.82 | 0.54 | 0.68 | 0.71 | 0.47 |
g__Geobacillus | 0.003 | 0.008 | 0.000 | 0.000 | 0.000 | 0.11 | 0.65 | 0.94 | 0.22 | 0.50 | 0.86 | 0.06 |
g__Roseburia | 0.002 | 0.003 | 0.000 | 0.000 | 0.000 | 0.17 | 0.68 | 0.92 | 0.24 | 0.60 | 0.80 | 0.06 |
g__Coprococcus | 0.007 | 0.008 | 0.001 | 0.001 | 0.000 | 0.20 | 0.80 | 0.79 | 0.53 | 0.67 | 0.76 | 0.38 |
g__Faecalibacterium | 0.021 | 0.024 | 0.005 | 0.005 | 0.000 | 0.23 | 0.74 | 0.97 | 0.24 | 0.77 | 0.86 | 0.19 |
g__Pseudomonas | 0.076 | 0.083 | 0.019 | 0.019 | 0.000 | 0.26 | 0.81 | 0.83 | 0.54 | 0.78 | 0.84 | 0.50 |
g__Corynebacterium | 0.031 | 0.040 | 0.066 | 0.066 | 0.000 | 2.11 | 0.68 | 0.94 | 0.22 | 0.74 | 0.94 | 0.19 |
g__Mucispirillum | 0.002 | 0.006 | 0.004 | 0.004 | 0.021 | 2.43 | 0.65 | 0.98 | 0.03 | 0.52 | 1.00 | 0.03 |
g__Deinococcus | 0.001 | 0.004 | 0.004 | 0.004 | 0.003 | 2.52 | 0.61 | 0.98 | 0.03 | 0.60 | 1.00 | 0.03 |
g__Anaerococcus | 0.003 | 0.009 | 0.009 | 0.009 | 0.001 | 2.59 | 0.68 | 0.98 | 0.12 | 0.64 | 0.94 | 0.16 |
g__Dorea | 0.003 | 0.004 | 0.008 | 0.008 | 0.002 | 2.66 | 0.67 | 0.94 | 0.25 | 0.57 | 0.88 | 0.22 |
g__Enterococcus | 0.006 | 0.009 | 0.018 | 0.018 | 0.000 | 3.01 | 0.67 | 0.98 | 0.36 | 0.44 | 0.96 | 0.16 |
g__Adlercreutzia | 0.002 | 0.004 | 0.006 | 0.006 | 0.000 | 3.07 | 0.67 | 0.94 | 0.10 | 0.68 | 1.00 | 0.13 |
g__Parabacteroides | 0.004 | 0.006 | 0.016 | 0.016 | 0.000 | 3.55 | 0.68 | 0.95 | 0.27 | 0.69 | 0.96 | 0.31 |
g__Lactobacillus | 0.034 | 0.033 | 0.127 | 0.127 | 0.000 | 3.70 | 0.77 | 0.99 | 0.37 | 0.77 | 0.98 | 0.38 |
g__rc4-4 | 0.001 | 0.004 | 0.005 | 0.005 | 0.000 | 5.30 | 0.80 | 0.96 | 0.27 | 0.73 | 0.98 | 0.31 |
g__Peptoniphilus | 0.001 | 0.004 | 0.006 | 0.006 | 0.000 | 5.33 | 0.73 | 0.97 | 0.25 | 0.70 | 0.90 | 0.28 |
g__Finegoldia | 0.002 | 0.008 | 0.010 | 0.010 | 0.000 | 5.70 | 0.75 | 0.98 | 0.32 | 0.76 | 0.98 | 0.28 |
실시예
5. 소변에서 분리한
세균유래
소포
메타게놈
분석 기반 방광암 진단모형
상기 실시예 3의 방법으로, 방광암환자 42명과 나이와 성별을 매칭한 정상인 107명의 소변에서 소포를 분리한 후 메타게놈 시퀀싱을 수행하였다. 진단모형 개발은 먼저 t-test에서 두 군 사이의 p값이 0.05 이하이고, 두 군 사이에 2배 이상 차이가 나는 균주를 선정하고 난 후, logistic regression analysis 방법으로 진단적 성능 지표인 AUC(area under curve), 민감도, 및 특이도를 산출하였다.
소변 내 세균유래 소포를 문(phylum) 수준에서 분석한 결과, Cyanobacteria, Gemmatimonadetes, Planctomycetes, Acidobacteria, 및 Euryarchaeota 문 세균 바이오마커로 진단모형을 개발하였을 때, 방광암에 대한 진단적 성능이 유의하게 나타났다 (표 6 및 도 6 참조).
대조군 | 방광암 | t-test | |||||||
Taxon | Mean | SD | Mean | SD | p-value | Ratio | AUC | sensitivity | specificity |
p__Cyanobacteria | 0.0240 | 0.0331 | 0.0047 | 0.0053 | 0.0000 | 0.19 | 0.77 | 0.92 | 0.29 |
p__Gemmatimonadetes | 0.0003 | 0.0010 | 0.0013 | 0.0017 | 0.0008 | 4.35 | 0.68 | 0.95 | 0.26 |
p__Planctomycetes | 0.0003 | 0.0012 | 0.0014 | 0.0022 | 0.0027 | 4.80 | 0.70 | 0.96 | 0.19 |
p__Acidobacteria | 0.0008 | 0.0022 | 0.0047 | 0.0077 | 0.0024 | 6.17 | 0.70 | 0.97 | 0.31 |
p__Euryarchaeota | 0.0004 | 0.0011 | 0.0028 | 0.0030 | 0.0000 | 6.91 | 0.74 | 0.95 | 0.43 |
소변 내 세균유래 소포를 강(class) 수준에서 분석한 결과, Chloroplast, Methanobacteria, Planctomycetia, Acidobacteriia, 및 Pedosphaerae 강 세균 바이오마커로 진단모형을 개발하였을 때, 방광암에 대한 진단적 성능이 유의하게 나타났다 (표 7 및 도 7 참조).
대조군 | 방광암 | t-test | |||||||
Taxon | Mean | SD | Mean | SD | p-value | Ratio | AUC | sensitivity | specificity |
c__Chloroplast | 0.0236 | 0.0329 | 0.0041 | 0.0050 | 0.0000 | 0.17 | 0.78 | 0.92 | 0.33 |
c__Methanobacteria | 0.0004 | 0.0011 | 0.0028 | 0.0030 | 0.0000 | 6.98 | 0.73 | 0.95 | 0.43 |
c__Planctomycetia | 0.0001 | 0.0005 | 0.0012 | 0.0021 | 0.0033 | 9.39 | 0.73 | 0.96 | 0.24 |
c__Acidobacteriia | 0.0001 | 0.0004 | 0.0016 | 0.0029 | 0.0014 | 22.66 | 0.69 | 0.99 | 0.29 |
c__[Pedosphaerae] | 0.0000 | 0.0000 | 0.0008 | 0.0020 | 0.0001 | 0.63 | 1.00 | 0.24 |
소변 내 세균유래 소포를 목(order) 수준에서 분석한 결과, Stramenopiles, Streptophyta, Pseudomonadales, Turicibacterales, Methanobacteriales, Gemmatales, Acidobacteriales, 및 Ellin329 목 세균 바이오마커로 진단모형을 개발하였을 때, 방광암에 대한 진단적 성능이 유의하게 나타났다 (표 8 및 도 8 참조).
대조군 | 방광암 | t-test | |||||||
Taxon | Mean | SD | Mean | SD | p-value | Ratio | AUC | sensitivity | specificity |
o__Stramenopiles | 0.0047 | 0.0074 | 0.0000 | 0.0000 | 0.0001 | 0.00 | 0.87 | 0.87 | 0.57 |
o__Streptophyta | 0.0189 | 0.0321 | 0.0041 | 0.0050 | 0.0000 | 0.22 | 0.70 | 0.98 | 0.05 |
o__Pseudomonadales | 0.1456 | 0.1521 | 0.0641 | 0.0372 | 0.0000 | 0.44 | 0.70 | 0.97 | 0.10 |
o__Turicibacterales | 0.0014 | 0.0022 | 0.0037 | 0.0040 | 0.0010 | 2.66 | 0.70 | 0.92 | 0.19 |
o__Methanobacteriales | 0.0004 | 0.0011 | 0.0028 | 0.0030 | 0.0000 | 6.98 | 0.73 | 0.95 | 0.43 |
o__Gemmatales | 0.0000 | 0.0003 | 0.0010 | 0.0021 | 0.0066 | 19.91 | 0.71 | 0.97 | 0.24 |
o__Acidobacteriales | 0.0001 | 0.0004 | 0.0016 | 0.0029 | 0.0014 | 22.66 | 0.69 | 0.99 | 0.29 |
o__Ellin329 | 0.0000 | 0.0000 | 0.0006 | 0.0013 | 0.0096 | 126.84 | 0.65 | 0.99 | 0.26 |
소변 내 세균유래 소포를 과(family) 수준에서 분석한 결과, Stramenopiles, Streptophyta, Pseudomonadales, Turicibacterales, Methanobacteriales, Gemmatales, Acidobacteriales, 및 Ellin329 과 세균 바이오마커로 진단모형을 개발하였을 때, 방광암에 대한 진단적 성능이 유의하게 나타났다 (표 9 및 도 9 참조).
대조군 | 방광암 | t-test | |||||||
Taxon | Mean | SD | Mean | SD | p-value | Ratio | AUC | sensitivity | specificity |
f__Flavobacteriaceae | 0.0028 | 0.0038 | 0.0004 | 0.0009 | 0.0000 | 0.15 | 0.72 | 1.00 | 0.02 |
f__Lactobacillaceae | 0.0507 | 0.0497 | 0.0216 | 0.0115 | 0.0000 | 0.43 | 0.68 | 0.95 | 0.07 |
f__Pseudomonadaceae | 0.0765 | 0.0775 | 0.0348 | 0.0237 | 0.0000 | 0.45 | 0.74 | 0.92 | 0.12 |
f__Ruminococcaceae | 0.0567 | 0.0706 | 0.1340 | 0.0720 | 0.0000 | 2.36 | 0.84 | 0.92 | 0.33 |
f__Comamonadaceae | 0.0054 | 0.0095 | 0.0135 | 0.0100 | 0.0000 | 2.48 | 0.80 | 0.94 | 0.24 |
f__Turicibacteraceae | 0.0014 | 0.0022 | 0.0037 | 0.0040 | 0.0010 | 2.66 | 0.70 | 0.92 | 0.19 |
f__Clostridiaceae | 0.0077 | 0.0105 | 0.0208 | 0.0180 | 0.0001 | 2.69 | 0.77 | 0.87 | 0.31 |
f__Gordoniaceae | 0.0001 | 0.0005 | 0.0008 | 0.0013 | 0.0020 | 5.73 | 0.69 | 0.96 | 0.24 |
f__Rikenellaceae | 0.0011 | 0.0029 | 0.0064 | 0.0064 | 0.0000 | 5.87 | 0.84 | 0.95 | 0.48 |
f__Prevotellaceae | 0.0102 | 0.0121 | 0.0609 | 0.0785 | 0.0002 | 5.95 | 0.93 | 0.94 | 0.74 |
f__Methanobacteriaceae | 0.0004 | 0.0011 | 0.0028 | 0.0030 | 0.0000 | 6.98 | 0.73 | 0.95 | 0.43 |
f__[Barnesiellaceae] | 0.0002 | 0.0008 | 0.0018 | 0.0038 | 0.0096 | 9.42 | 0.71 | 0.97 | 0.36 |
f__Peptostreptococcaceae | 0.0010 | 0.0020 | 0.0097 | 0.0085 | 0.0000 | 9.64 | 0.87 | 0.95 | 0.62 |
f__Koribacteraceae | 0.0001 | 0.0004 | 0.0015 | 0.0026 | 0.0009 | 21.66 | 0.69 | 0.99 | 0.29 |
소변 내 세균유래 소포를 속(genus) 수준에서 분석한 결과, Rhizobium, Proteus, Pseudomonas, Lactobacillus, Turicibacter, Ruminococcus, Klebsiella, Faecalibacterium, Brevundimonas, Clostridium, Jeotgalicoccus, Megasphaera, Gordonia, Prevotella, Actinobacillus, Thermoanaerobacterium, 및 Methanobrevibacter 속 세균 바이오마커로 진단모형을 개발하였을 때, 방광암에 대한 진단적 성능이 유의하게 나타났다 (표 10 및 도 10 참조).
대조군 | 방광암 | t-test | |||||||
Taxon | Mean | SD | Mean | SD | p-value | Ratio | AUC | sensitivity | specificity |
g__Rhizobium | 0.0044 | 0.0068 | 0.0001 | 0.0003 | 0.0000 | 0.01 | 0.87 | 0.89 | 0.57 |
g__Proteus | 0.0197 | 0.0287 | 0.0015 | 0.0027 | 0.0000 | 0.07 | 0.81 | 0.91 | 0.45 |
g__Pseudomonas | 0.0736 | 0.0770 | 0.0267 | 0.0203 | 0.0000 | 0.36 | 0.79 | 0.87 | 0.31 |
g__Lactobacillus | 0.0503 | 0.0497 | 0.0208 | 0.0114 | 0.0000 | 0.41 | 0.69 | 0.94 | 0.12 |
g__Turicibacter | 0.0014 | 0.0022 | 0.0037 | 0.0040 | 0.0010 | 2.66 | 0.70 | 0.92 | 0.19 |
g__Ruminococcus | 0.0071 | 0.0134 | 0.0188 | 0.0173 | 0.0002 | 2.67 | 0.77 | 0.95 | 0.24 |
g__Klebsiella | 0.0015 | 0.0038 | 0.0040 | 0.0038 | 0.0005 | 2.67 | 0.76 | 0.93 | 0.17 |
g__Faecalibacterium | 0.0181 | 0.0330 | 0.0488 | 0.0354 | 0.0000 | 2.70 | 0.80 | 0.92 | 0.24 |
g__Brevundimonas | 0.0004 | 0.0010 | 0.0010 | 0.0014 | 0.0073 | 2.85 | 0.68 | 0.95 | 0.12 |
g__Clostridium | 0.0016 | 0.0049 | 0.0073 | 0.0130 | 0.0088 | 4.62 | 0.72 | 0.97 | 0.14 |
g__Jeotgalicoccus | 0.0011 | 0.0023 | 0.0055 | 0.0078 | 0.0008 | 5.06 | 0.71 | 0.94 | 0.31 |
g__Megasphaera | 0.0003 | 0.0011 | 0.0013 | 0.0028 | 0.0251 | 5.15 | 0.63 | 0.99 | 0.14 |
g__Gordonia | 0.0001 | 0.0005 | 0.0008 | 0.0013 | 0.0020 | 5.73 | 0.69 | 0.96 | 0.24 |
g__Prevotella | 0.0102 | 0.0121 | 0.0609 | 0.0785 | 0.0002 | 5.95 | 0.93 | 0.94 | 0.74 |
g__Actinobacillus | 0.0002 | 0.0006 | 0.0010 | 0.0018 | 0.0037 | 6.64 | 0.66 | 0.97 | 0.21 |
g__Thermoanaerobacterium | 0.0002 | 0.0013 | 0.0013 | 0.0050 | 0.1583 | 6.91 | 0.61 | 0.98 | 0.05 |
g__Methanobrevibacter | 0.0002 | 0.0007 | 0.0018 | 0.0025 | 0.0003 | 9.15 | 0.74 | 0.97 | 0.26 |
상기 진술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
본 발명에 따른 인체 유래 샘플을 이용한 세균 유래 세포밖 소포의 메타게놈 분석을 통해 방광암 발병의 위험도를 미리 예측함으로써 방광암의 위험군을 조기에 진단 및 예측하여 적절한 관리를 통해 발병 시기를 늦추거나 발병을 예방할 수 있으며, 발병 후에도 조기진단 할 수 있어 방광암의 발병률을 낮추고 치료효과를 높일 수 있다. 또한, 방광암으로 진단받은 환자에서 메타게놈 분석을 통해 원인인자 노출을 피함으로써 암의 경과를 좋게 하거나, 재발을 막을 수 있다.
Claims (16)
- (a) 피검체 샘플에서 분리한 세포밖 소포로부터 DNA를 추출하는 단계;(b) 상기 추출한 DNA에 대하여 서열번호 1 및 서열번호 2의 프라이머 쌍을 이용하여 PCR을 수행하는 단계; 및(c) 상기 PCR 산물의 서열분석을 통하여 정상인 유래 샘플과 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계를 포함하는, 방광암 진단을 위한 정보제공방법.
- 제1항에 있어서,상기 (c) 단계에서 시아노박테리아(Cyanobacteria), 겜마티모나스균문(Gemmatimonadetes), 부유균문(Planctomycetes), 아키도박테리아(Acidobacteria), 및 유리고세균(Euryarchaeota)으로 이루어진 군으로부터 선택되는 1종 이상의 문(phylum) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것을 특징으로 하는, 정보제공방법.
- 제1항에 있어서,상기 (c) 단계에서 루브로박테리아(Rubrobacteria), 에리시펠로트릭스강(Erysipelotrichi), 클로로플라스트(Chloroplast), 메타노박테리아(Methanobacteria), 플랑크토미케스강(Planctomycetia), 아키도박테리움강(Acidobacteriia), 및 페도스파이라(Pedosphaerae)로 이루어진 군으로부터 선택되는 1종 이상의 강(class) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것을 특징으로 하는, 정보제공방법.
- 제1항에 있어서,상기 (c) 단계에서 루브로박테르목(Rubrobacterales), 에리시펠로트릭스목(Erysipelotrichales), 버크홀데리아레스(Burkholderiales), 엔테로박테리아레스(Enterobacteriales), 락토바실레아레스(Lactobacillales), 나이세리아레스(Neisseriales), RF32, 스트라메노필레스(Stramenopiles), 스트렙토피타(Streptophyta), 슈도모나달레스(Pseudomonadales), 투리시박테라레스(Turicibacterales), 메타노박테리아레스(Methanobacteriales), 겜마타레스(Gemmatales), 아키도박테리아레스(Acidobacteriales), 및 Ellin329로 이루어진 군으로부터 선택되는 1종 이상의 목(order) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것을 특징으로 하는, 정보제공방법.
- 제1항에 있어서,상기 (c) 단계에서 옥살로박테라시에(Oxalobacteraceae), 리케넬라시에(Rikenellaceae), 에리시펠로트릭스과(Erysipelotrichaceae), 바실라시에(Bacillaceae), 리조비아시에(Rhizobiaceae), 푸소박테리아시에(Fusobacteriaceae), 슈도모나다시에(Pseudomonadaceae), 코마모나다시에(Comamonadaceae), 플라노코카시에(Planococcaceae), 엔테로박테리아시에(Enterobacteriaceae), 라크노스피라시에(Lachnospiraceae), 코리네박테리아시에(Corynebacteriaceae), 데이노코카시에(Deinococcaceae), 포르피로모나아시에(Porphyromonadaceae), 나이세리아시에(Neisseriaceae), 엔테로코카시에(Enterococcaceae), 락토바실라시에(Lactobacillaceae), 티시에렐라시에(Tissierellaceae), 펩토코카시에(Peptococcaceae), 플라보박테리아시에(Flavobacteriaceae), 락토바실라시에(Lactobacillaceae), 슈도모나다시에(Pseudomonadaceae), 루미노코카시에(Ruminococcaceae), 코마모나다시에(Comamonadaceae), 투리시박테라시아(Turicibacteraceae), 클로스트리디아시에(Clostridiaceae), 고르도니아시에(Gordoniaceae), 리케넬라시에(Rikenellaceae), 프레보텔라시에(Prevotellaceae), 메타노박테리아시에(Methanobacteriaceae), 바르네시엘라시에(Barnesiellaceae), 펩토스트렙토코카시에(Peptostreptococcaceae), 및 코리박테라시에(Koribacteraceae)로 이루어진 군으로부터 선택되는 1종 이상의 과(family) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것을 특징으로 하는, 정보제공방법.
- 제1항에 있어서,상기 (c) 단계에서 쿠프리아비두스(Cupriavidus), 유박테리움(Eubacterium), 블라우티아(Blautia), 카테니박테리움(Catenibacterium), 콜린셀라(Collinsella), 지오바실러스(Geobacillus), 로즈뷰리아(Roseburia), 코프로코커스(Coprococcus), 패칼리박테리움(Faecalibacterium), 슈도모나스(Pseudomonas), 코리네박테리움(Corynebacterium), 무시스피릴리움(Mucispirillum), 데이노코커스(Deinococcus), 아내로코커스(Anaerococcus), 도레아(Dorea), 엔테로코커스(Enterococcus), 아들러크레우치아(Adlercreutzia), 파라박테로이데스(Parabacteroides), 락토바실러스(Lactobacillus), rc4-4, 펩토니펠러스(Peptoniphilus), 피네골디아(Finegoldia), 리조비움(Rhizobium), 프로테우스(Proteus), 슈도모나스(Pseudomonas), 락토바실러스(Lactobacillus), 투리시박터(Turicibacter), 루미나코커스(Ruminococcus), 클렙시엘라(Klebsiella), 패칼리박테리움(Faecalibacterium), Brevundimonas(브레분디모나스), 클로스트리듐(Clostridium), 요트갈리코커스(Jeotgalicoccus), 메가스페라(Megasphaera), 고르도니아(Gordonia), 프레보텔라(Prevotella), 악티노바실러스(Actinobacillus), 써모언에어로박테리움(Thermoanaerobacterium), 및 메타노브레비박터(Methanobrevibacter)로 이루어진 군으로부터 선택되는 1종 이상의 속(genus) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것을 특징으로 하는, 정보제공방법.
- 제1항에 있어서,상기 피검체 샘플은 혈액 또는 소변인 것을 특징으로 하는, 정보제공방법.
- 제7항에 있어서,상기 혈액은 전혈, 혈청, 혈장, 또는 혈액 단핵구인 것을 특징으로 하는, 정보제공방법.
- (a) 피검체 샘플에서 분리한 세포밖 소포로부터 DNA를 추출하는 단계;(b) 상기 추출한 DNA에 대하여 서열번호 1 및 서열번호 2의 프라이머 쌍을 이용하여 PCR을 수행하는 단계; 및(c) 상기 PCR 산물의 서열분석을 통하여 정상인 유래 샘플과 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계를 포함하는, 방광암 진단방법.
- 제9항에 있어서,상기 (c) 단계에서 시아노박테리아(Cyanobacteria), 겜마티모나스균문(Gemmatimonadetes), 부유균문(Planctomycetes), 아키도박테리아(Acidobacteria), 및 유리고세균(Euryarchaeota)으로 이루어진 군으로부터 선택되는 1종 이상의 문(phylum) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것을 특징으로 하는, 진단방법.
- 제9항에 있어서,상기 (c) 단계에서 루브로박테리아(Rubrobacteria), 에리시펠로트릭스강(Erysipelotrichi), 클로로플라스트(Chloroplast), 메타노박테리아(Methanobacteria), 플랑크토미케스강(Planctomycetia), 아키도박테리움강(Acidobacteriia), 및 페도스파이라(Pedosphaerae)로 이루어진 군으로부터 선택되는 1종 이상의 강(class) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것을 특징으로 하는, 진단방법.
- 제9항에 있어서,상기 (c) 단계에서 루브로박테르목(Rubrobacterales), 에리시펠로트릭스목(Erysipelotrichales), 버크홀데리아레스(Burkholderiales), 엔테로박테리아레스(Enterobacteriales), 락토바실레아레스(Lactobacillales), 나이세리아레스(Neisseriales), RF32, 스트라메노필레스(Stramenopiles), 스트렙토피타(Streptophyta), 슈도모나달레스(Pseudomonadales), 투리시박테라레스(Turicibacterales), 메타노박테리아레스(Methanobacteriales), 겜마타레스(Gemmatales), 아키도박테리아레스(Acidobacteriales), 및 Ellin329로 이루어진 군으로부터 선택되는 1종 이상의 목(order) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것을 특징으로 하는, 진단방법.
- 제9항에 있어서,상기 (c) 단계에서 옥살로박테라시에(Oxalobacteraceae), 리케넬라시에(Rikenellaceae), 에리시펠로트릭스과(Erysipelotrichaceae), 바실라시에(Bacillaceae), 리조비아시에(Rhizobiaceae), 푸소박테리아시에(Fusobacteriaceae), 슈도모나다시에(Pseudomonadaceae), 코마모나다시에(Comamonadaceae), 플라노코카시에(Planococcaceae), 엔테로박테리아시에(Enterobacteriaceae), 라크노스피라시에(Lachnospiraceae), 코리네박테리아시에(Corynebacteriaceae), 데이노코카시에(Deinococcaceae), 포르피로모나아시에(Porphyromonadaceae), 나이세리아시에(Neisseriaceae), 엔테로코카시에(Enterococcaceae), 락토바실라시에(Lactobacillaceae), 티시에렐라시에(Tissierellaceae), 펩토코카시에(Peptococcaceae), 플라보박테리아시에(Flavobacteriaceae), 락토바실라시에(Lactobacillaceae), 슈도모나다시에(Pseudomonadaceae), 루미노코카시에(Ruminococcaceae), 코마모나다시에(Comamonadaceae), 투리시박테라시아(Turicibacteraceae), 클로스트리디아시에(Clostridiaceae), 고르도니아시에(Gordoniaceae), 리케넬라시에(Rikenellaceae), 프레보텔라시에(Prevotellaceae), 메타노박테리아시에(Methanobacteriaceae), 바르네시엘라시에(Barnesiellaceae), 펩토스트렙토코카시에(Peptostreptococcaceae), 및 코리박테라시에(Koribacteraceae)로 이루어진 군으로부터 선택되는 1종 이상의 과(family) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것을 특징으로 하는, 진단방법.
- 제9항에 있어서,상기 (c) 단계에서 쿠프리아비두스(Cupriavidus), 유박테리움(Eubacterium), 블라우티아(Blautia), 카테니박테리움(Catenibacterium), 콜린셀라(Collinsella), 지오바실러스(Geobacillus), 로즈뷰리아(Roseburia), 코프로코커스(Coprococcus), 패칼리박테리움(Faecalibacterium), 슈도모나스(Pseudomonas), 코리네박테리움(Corynebacterium), 무시스피릴리움(Mucispirillum), 데이노코커스(Deinococcus), 아내로코커스(Anaerococcus), 도레아(Dorea), 엔테로코커스(Enterococcus), 아들러크레우치아(Adlercreutzia), 파라박테로이데스(Parabacteroides), 락토바실러스(Lactobacillus), rc4-4, 펩토니펠러스(Peptoniphilus), 피네골디아(Finegoldia), 리조비움(Rhizobium), 프로테우스(Proteus), 슈도모나스(Pseudomonas), 락토바실러스(Lactobacillus), 투리시박터(Turicibacter), 루미나코커스(Ruminococcus), 클렙시엘라(Klebsiella), 패칼리박테리움(Faecalibacterium), 브레분디모나스(Brevundimonas), 클로스트리듐(Clostridium), 요트갈리코커스(Jeotgalicoccus), 메가스페라(Megasphaera), 고르도니아(Gordonia), 프레보텔라(Prevotella), 악티노바실러스(Actinobacillus), 써모언에어로박테리움(Thermoanaerobacterium), 및 메타노브레비박터(Methanobrevibacter)로 이루어진 군으로부터 선택되는 1종 이상의 속(genus) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것을 특징으로 하는, 진단방법.
- 제9항에 있어서,상기 피검체 샘플은 혈액 또는 소변인 것을 특징으로 하는, 진단방법.
- 제15항에 있어서,상기 혈액은 전혈, 혈청, 혈장, 또는 혈액 단핵구인 것을 특징으로 하는, 진단방법.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2016-0179240 | 2016-12-26 | ||
KR20160179240 | 2016-12-26 | ||
KR1020170175822A KR101936006B1 (ko) | 2016-12-26 | 2017-12-20 | 미생물 메타게놈 분석을 통한 방광암 진단방법 |
KR10-2017-0175822 | 2017-12-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018124619A1 true WO2018124619A1 (ko) | 2018-07-05 |
Family
ID=62709502
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/015177 WO2018124619A1 (ko) | 2016-12-26 | 2017-12-21 | 미생물 메타게놈 분석을 통한 방광암 진단방법 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018124619A1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113286897A (zh) * | 2019-01-09 | 2021-08-20 | Md保健株式会社 | 来源于红球菌属细菌的纳米囊泡及其用途 |
CN114686607A (zh) * | 2020-12-31 | 2022-07-01 | 深圳华大生命科学研究院 | 棒状杆菌作为尿液微生物标志物在制备用于检测膀胱癌的相关检测产品中的应用 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110025603A (ko) * | 2009-09-04 | 2011-03-10 | 주식회사이언메딕스 | 그람 양성 세균유래 세포밖 소포체 및 이의 용도 |
WO2016099076A1 (ko) * | 2014-12-16 | 2016-06-23 | 이화여자대학교 산학협력단 | 세균 유래의 나노소포체를 이용한 세균성 감염질환 원인균 동정방법 |
-
2017
- 2017-12-21 WO PCT/KR2017/015177 patent/WO2018124619A1/ko active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110025603A (ko) * | 2009-09-04 | 2011-03-10 | 주식회사이언메딕스 | 그람 양성 세균유래 세포밖 소포체 및 이의 용도 |
WO2016099076A1 (ko) * | 2014-12-16 | 2016-06-23 | 이화여자대학교 산학협력단 | 세균 유래의 나노소포체를 이용한 세균성 감염질환 원인균 동정방법 |
Non-Patent Citations (3)
Title |
---|
ALFANO, MASSIMO: "The interplay of extracellular matrix and microbiome in urothelial bladder cancer", NATURE REVIEWS UROLOGY, vol. 13, no. 2, February 2016 (2016-02-01), pages 77 - 90, XP055607301 * |
BAO, YIGE: "MP88-19) Urinary microbiome patterns appears to be correlative to intravesical recurrence of non-muscle invasive bladder cancer", THE JOURNAL OF UROLOGY, vol. 195, no. 4S, 10 May 2016 (2016-05-10), pages e1136, XP029477065 * |
XU, WEISHENG: "Mini-review: perspective of the microbiome in the pathogenesis of urothelial carcinoma", AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY, vol. 2, no. 1, 2014, pages 57 - 61, XP055607298 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113286897A (zh) * | 2019-01-09 | 2021-08-20 | Md保健株式会社 | 来源于红球菌属细菌的纳米囊泡及其用途 |
CN114686607A (zh) * | 2020-12-31 | 2022-07-01 | 深圳华大生命科学研究院 | 棒状杆菌作为尿液微生物标志物在制备用于检测膀胱癌的相关检测产品中的应用 |
CN114686607B (zh) * | 2020-12-31 | 2023-09-26 | 深圳华大生命科学研究院 | 棒状杆菌作为尿液微生物标志物在制备用于检测膀胱癌的相关检测产品中的应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018111040A1 (ko) | 세균 메타게놈 분석을 통한 위암 진단방법 | |
WO2018124617A1 (ko) | 세균 메타게놈 분석을 통한 폐암 진단 방법 | |
WO2018124606A1 (ko) | 미생물 메타게놈 분석을 통한 유방암 진단방법 | |
WO2018155961A1 (ko) | 세균 메타게놈 분석을 통한 파킨슨병 진단방법 | |
KR101940445B1 (ko) | 세균 메타게놈 분석을 통한 당뇨병 진단 방법 | |
KR101940426B1 (ko) | 세균 메타게놈 분석을 통한 대장종양 진단 방법 | |
WO2019160284A1 (ko) | 세균 메타게놈 분석을 통한 뇌졸중 진단방법 | |
WO2018155960A1 (ko) | 미생물 메타게놈 분석을 통한 난소암 진단방법 | |
KR102019646B1 (ko) | 미생물 메타게놈 분석을 통한 아토피피부염 진단방법 | |
WO2018155950A1 (ko) | 세균 메타게놈 분석을 통한 당뇨병 진단 방법 | |
US12084721B2 (en) | Inflammatory bowel disease diagnostic method by means of bacterial metagenomic analysis | |
WO2018124619A1 (ko) | 미생물 메타게놈 분석을 통한 방광암 진단방법 | |
WO2019147080A1 (ko) | 세균 메타게놈 분석을 통한 우울증 진단방법 | |
KR102019648B1 (ko) | 천식환자에서 세균 메타게놈 분석을 통한 폐암 진단방법 | |
WO2019156325A1 (ko) | 세균 메타게놈 분석을 통한 과민성 장증후군 진단방법 | |
WO2018155967A1 (ko) | 세균 메타게놈 분석을 통한 만성폐쇄성기도질환 진단 방법 | |
KR101936006B1 (ko) | 미생물 메타게놈 분석을 통한 방광암 진단방법 | |
WO2019146966A1 (ko) | 세균 메타게놈 분석을 통한 담관암 진단방법 | |
WO2018225945A1 (ko) | 미생물 메타게놈 분석을 통한 아토피피부염 진단방법 | |
WO2018124618A1 (ko) | 세균 메타게놈 분석을 통한 췌장암 진단방법 | |
KR101940424B1 (ko) | 세균 메타게놈 분석을 통한 신부전 진단방법 | |
WO2018216912A1 (ko) | 세균 메타게놈 분석을 통한 자폐증 진단방법 | |
WO2018124742A1 (ko) | 세균 메타게놈 분석을 통한 전립선질환 진단 방법 | |
KR102007786B1 (ko) | 세균 메타게놈 분석을 통한 두경부암 진단방법 | |
WO2018124726A1 (ko) | 세균 메타게놈 분석을 통한 신부전 진단방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17886489 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17886489 Country of ref document: EP Kind code of ref document: A1 |