WO2018196361A1 - 甲醇和/或二甲醚与甲苯制对二甲苯联产低碳烯烃的流化床装置及方法 - Google Patents
甲醇和/或二甲醚与甲苯制对二甲苯联产低碳烯烃的流化床装置及方法 Download PDFInfo
- Publication number
- WO2018196361A1 WO2018196361A1 PCT/CN2017/112811 CN2017112811W WO2018196361A1 WO 2018196361 A1 WO2018196361 A1 WO 2018196361A1 CN 2017112811 W CN2017112811 W CN 2017112811W WO 2018196361 A1 WO2018196361 A1 WO 2018196361A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reactor
- fluidized bed
- regenerator
- gas
- catalyst
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2/00—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
- C07C2/86—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon
- C07C2/88—Growth and elimination reactions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/0015—Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/005—Separating solid material from the gas/liquid stream
- B01J8/0055—Separating solid material from the gas/liquid stream using cyclones
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
- B01J8/1809—Controlling processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
- B01J8/1818—Feeding of the fluidising gas
- B01J8/1827—Feeding of the fluidising gas the fluidising gas being a reactant
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
- B01J8/1845—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with particles moving upwards while fluidised
- B01J8/1863—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with particles moving upwards while fluidised followed by a downward movement outside the reactor and subsequently re-entering it
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
- B01J8/1872—Details of the fluidised bed reactor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
- B01J8/24—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
- B01J8/26—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with two or more fluidised beds, e.g. reactor and regeneration installations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
- B01J8/24—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
- B01J8/34—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with stationary packing material in the fluidised bed, e.g. bricks, wire rings, baffles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
- B01J8/24—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
- B01J8/38—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C1/00—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
- C07C1/20—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C1/00—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
- C07C1/20—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
- C07C1/22—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by reduction
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C1/00—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
- C07C1/20—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
- C07C1/24—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by elimination of water
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C11/00—Aliphatic unsaturated hydrocarbons
- C07C11/02—Alkenes
- C07C11/04—Ethylene
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C11/00—Aliphatic unsaturated hydrocarbons
- C07C11/02—Alkenes
- C07C11/06—Propene
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C11/00—Aliphatic unsaturated hydrocarbons
- C07C11/02—Alkenes
- C07C11/08—Alkenes with four carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C15/00—Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
- C07C15/02—Monocyclic hydrocarbons
- C07C15/067—C8H10 hydrocarbons
- C07C15/08—Xylenes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2/00—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
- C07C2/86—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon
- C07C2/862—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms
- C07C2/864—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms the non-hydrocarbon is an alcohol
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2/00—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
- C07C2/86—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon
- C07C2/862—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms
- C07C2/865—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms the non-hydrocarbon is an ether
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C31/00—Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
- C07C31/02—Monohydroxylic acyclic alcohols
- C07C31/08—Ethanol
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00106—Controlling the temperature by indirect heat exchange
- B01J2208/00115—Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00106—Controlling the temperature by indirect heat exchange
- B01J2208/00168—Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00743—Feeding or discharging of solids
- B01J2208/00769—Details of feeding or discharging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00796—Details of the reactor or of the particulate material
- B01J2208/00884—Means for supporting the bed of particles, e.g. grids, bars, perforated plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00796—Details of the reactor or of the particulate material
- B01J2208/00893—Feeding means for the reactants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00796—Details of the reactor or of the particulate material
- B01J2208/00893—Feeding means for the reactants
- B01J2208/0092—Perforated plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00796—Details of the reactor or of the particulate material
- B01J2208/00991—Disengagement zone in fluidised-bed reactors
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2529/00—Catalysts comprising molecular sieves
- C07C2529/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
- C07C2529/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- C07C2529/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/584—Recycling of catalysts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P30/00—Technologies relating to oil refining and petrochemical industry
- Y02P30/20—Technologies relating to oil refining and petrochemical industry using bio-feedstock
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P30/00—Technologies relating to oil refining and petrochemical industry
- Y02P30/40—Ethylene production
Definitions
- the present invention relates to a device for producing low-carbon olefins by co-production of para-xylene (PX) and a production method thereof, and is particularly suitable for fluidization of co-production of low-carbon olefins by alkylation of methanol and/or dimethyl ether with toluene to p-xylene.
- Bed device and production method belong to the field of chemistry and chemical industry.
- Paraxylene is one of the basic organic raw materials in the petrochemical industry. It has a wide range of applications in chemical fiber, synthetic resins, pesticides, pharmaceuticals, and polymer materials.
- p-xylene production mainly uses toluene, C 9 aromatic hydrocarbons and mixed xylene as raw materials, and is obtained by disproportionation, isomerization, adsorption separation or cryogenic separation. Since the p-xylene content in the product is controlled by thermodynamics, p-xylene only accounts for ⁇ 24% of the C 8 mixed aromatics, and the material circulation processing amount is large during the process, and the equipment is large and the operation cost is high.
- the three isomers in xylene have small differences in boiling points, and it is difficult to obtain high-purity para-xylene by conventional distillation techniques, and an expensive adsorption separation process must be employed.
- many patents at home and abroad have disclosed a new route for the production of para-xylene.
- the toluene-methanol alkylation technology is a new way to produce p-xylene with high selectivity, which has been highly valued and paid great attention by the industry.
- Low-carbon olefins namely ethylene and propylene
- Ethylene and propylene are mainly produced from naphtha, depending on the petroleum route.
- the non-oil route to produce ethylene and propylene has received more and more attention, especially the methanol conversion to low-carbon olefin (MTO) process route, which is to achieve oil substitution strategy, reduce and alleviate China's demand for oil and dependence. An important way.
- MTO low-carbon olefin
- a conventional toluene alkylation process involves mixing toluene and methanol upstream of the reactor and then feeding the mixture together into the reactor.
- the reactor type consists of a fixed bed and a fluidized bed.
- the phased injection of reactants has been employed in various fixed bed and fluidized bed processes.
- Methanol is both a raw material for the alkylation of toluene and methanol, and a raw material for the MTO reaction, but the MTO reaction rate is much higher than the methanol alkylation reaction rate of toluene.
- the reaction rate is much higher than that of the toluene methanol alkylation reaction.
- Another important feature is that after the catalyst is carbonized, the methanol conversion rate decreases and the low carbon olefin selectivity increases. Therefore, controlling the carbonation of the catalyst is an effective way to improve the selectivity of low-carbon olefins in the MTO reaction.
- a turbulent fluidized bed reactor for co-producing low-carbon olefins of methanol and/or dimethyl ether with toluene to p-xylene
- the turbulent fluidized bed reactor Or improve the competition between MTO reaction and alkylation reaction in the process of co-production of low-carbon olefin by methanol and/or dimethyl ether and toluene, and realize the synergistic effect of MTO reaction and alkylation reaction through control Mass transfer and reaction, coordination, optimization of competition between alkylation reaction and MTO reaction, synergistic effect, increase toluene conversion, p-xylene yield and low carbon olefin selectivity.
- a turbulent fluidized bed reactor for co-production of low carbon olefins with methanol and/or dimethyl ether and toluene to p-xylene, comprising a first reactor feed distributor and a plurality of second reactor feed distributors, The first reactor feed distributor and the plurality of second reactor feed distributors are arranged in sequence along the gas flow direction in the turbulent fluidized bed reactor.
- the second reactor feed distributor is from 2 to 10.
- the turbulent fluidized bed reactor comprises a first reactor gas-solid separator and a second reaction a gas-solids separator, the first reactor gas-solids separator being placed outside the dilute phase zone or the reactor shell, the second reactor gas-solids separator being placed in a dilute phase zone or outside the reactor shell ;
- the first reactor gas-solids separator is provided with a regenerated catalyst inlet, the catalyst outlet of the first reactor gas-solid separator is placed at the bottom of the reaction zone, and the gas outlet of the first reactor gas-solid separator is placed In the dilute phase zone;
- An inlet of the second reactor gas-solids separator is placed in the dilute phase zone, a catalyst outlet of the second reactor gas-solids separator is placed in the reaction zone, and the second reactor gas-solid separator a gas outlet connected to the gas outlet of the product of the turbulent fluidized bed reactor;
- the reaction zone is located in a lower portion of the turbulent fluidized bed reactor, the dilute phase zone being located in an upper portion of the turbulent fluidized bed reactor.
- the first reactor gas-solid separator and the second reactor gas-solid separator are cyclones.
- the turbulent fluidized bed reactor comprises a reactor heat takeer placed inside or outside the turbulent fluidized bed reactor housing.
- the reactor heat extractor is disposed between the plurality of reactor feed distributors.
- the turbulent fluidized bed reactor comprises a reactor stripper that passes through the reactor housing from the outside to the inside at the bottom of the turbulent fluidized bed reactor and is open to turbulence
- the bottom of the reactor stripper is provided with a reactor stripping gas inlet and a catalyst outlet to be produced.
- the turbulent fluidized bed reactor comprises a perforated plate located between a first reactor feed distributor and at least one second reactor feed distributor, the perforated plate opening The rate is ⁇ 50%.
- the turbulent fluidized bed reactor comprises a multiwell plate located in a first reactor feed distributor and a second reactor feed distributor closest to the first reactor feed distributor
- the open porosity of the porous plate is between 5% and 50%.
- the reactor stripper has a level of opening in the interior of the reactor housing that is higher than the first reactor feed distributor and higher than the perforated plate.
- the lower olefin includes at least one of ethylene, propylene, and butene.
- methanol and/or dimethyl ether means that the methanol in the feed may be replaced in whole or in part by dimethyl ether, including three cases: only methanol; or only dimethyl ether; or methanol and two. Methyl ether has it.
- methanol and/or dimethyl ether and toluene includes three cases: methanol and toluene; or dimethyl ether and toluene; or methanol, dimethyl ether and toluene.
- the methanol in the present application may be replaced in whole or in part by dimethyl ether.
- the amount of methanol involved can also be calculated by converting dimethyl ether into methanol having the same number of carbon atoms.
- an apparatus for co-producing a lower olefin of methanol and/or dimethyl ether with toluene to p-xylene solving or improving methanol and/or dimethyl ether
- the competition between the reaction and the MTO reaction synergizes to increase the conversion of toluene, the yield of p-xylene, and the selectivity to lower olefins.
- the apparatus comprises at least one of the turbulent fluidized bed reactors of any of the above and a fluidized bed regenerator for regenerating the catalyst.
- the fluidized bed regenerator is a turbulent fluidized bed regenerator comprising a regenerator housing, a regenerator gas solids separator, a regenerator heat extractor, and a regenerator stripper
- the lower part of the fluidized bed regenerator is the regeneration zone
- the upper part of the fluidized bed regenerator is the regenerator dilute phase zone
- the regenerator feed distributor is placed at the bottom of the regeneration zone
- the regenerator heat extractor is placed in the regeneration zone for regeneration.
- the gas-solid separator is placed outside the dilute phase zone or the regenerator housing;
- the inlet of the regenerator gas-solids separator is placed in a regenerator dilute phase zone, the catalyst outlet of the regenerator gas-solids separator is placed in a regeneration zone, and the regenerator stripper is open at the bottom of the regenerator housing.
- the fluidized bed regenerator comprises a regenerator housing, a regenerator feed distributor, a regenerator gas-solid separator, a regenerator heat extractor, a flue gas outlet, and a regenerator stripper;
- the lower part of the fluidized bed regenerator is a regeneration zone, and the upper part of the fluidized bed regenerator is a dilute phase zone;
- the regenerator feed distributor is placed at the bottom of the regeneration zone, the regenerator heat extractor is placed in the regeneration zone, and the regenerator gas-solids separator is placed outside the dilute phase zone or the regenerator housing, and the inlet of the regenerator gas-solids separator is placed In the dilute phase region, the catalyst outlet of the regenerator gas-solid separator is placed in the regeneration zone, the gas outlet of the regenerator gas-solid separator is connected to the flue gas outlet, and the regenerator stripper is open at the bottom of the regenerator housing;
- the outlet of the catalyst to be produced in the reactor stripper is connected to the inlet of the inclined tube to be produced, and the slip tube to be produced is provided with a slide valve to be produced, and the outlet of the inclined tube is connected to the inlet of the riser tube to be raised.
- the bottom of the tube is provided with a rising gas inlet, and the outlet of the rising riser is connected to the dilute phase region of the fluidized bed regenerator;
- the bottom of the regenerator stripper is provided with a regenerator stripping gas inlet, the bottom of the regenerator stripper is connected to the inlet of the regenerative inclined tube, and the regenerative inclined tube is provided with a regenerative sliding valve, and the outlet of the regenerative inclined tube is connected to
- the inlet of the regeneration riser is provided with a regeneration lift gas inlet at the bottom of the regeneration riser, and the outlet of the regeneration riser is connected to the regeneration catalyst inlet of the first reactor gas-solid separator, the first reactor gas-solid separator is placed The dilute phase zone of the fluidized bed reactor or the exterior of the reactor housing.
- a process for the co-production of a lower olefin with methanol and/or dimethyl ether and toluene to p-xylene which method solves or improves methanol and/or dimethyl ether
- the competition between the reaction and the MTO reaction synergizes to increase the conversion of toluene, the yield of p-xylene, and the selectivity to lower olefins.
- the method for co-producing a lower olefin with methanol and/or dimethyl ether and toluene to p-xylene employs at least one of the turbulent fluidized bed reactors according to any one of the above.
- the feedstock A containing methanol and/or dimethyl ether and toluene is fed from the first reactor feed distributor to the reaction zone of the turbulent fluidized bed reactor to feed the feedstock containing methanol and/or dimethyl ether.
- B is fed to the reaction zone of the turbulent fluidized bed reactor by a plurality of second reactor feed distributors, respectively, in contact with the catalyst to form stream C and the spent catalyst comprising para-xylene and low-carbon olefin products.
- the stream C is separated to obtain para-xylene, lower olefins, C 5+ chain hydrocarbons, aromatic by-products, and unconverted methanol, dimethyl ether and toluene;
- the unconverted methanol and dimethyl ether are fed to the reaction zone of the turbulent fluidized bed reactor by a plurality of second reactor feed distributors, and the aromatics by-product and unconverted toluene are distributed by the first reactor feed.
- the reaction zone fed to the turbulent fluidized bed reactor is contacted with a catalyst.
- the spent catalyst is regenerated by a fluidized bed regenerator and then enters the bottom of the reaction zone in the turbulent fluidized bed reactor.
- the method comprises the following steps:
- Stream A containing methanol and/or dimethyl ether and toluene is fed into the reaction zone of the turbulent fluidized bed reactor from the first reactor feed distributor below the turbulent fluidized bed reactor to contact the catalyst ;
- Stream B containing methanol and/or dimethyl ether is fed from 2 to 10 second reactor feed distributors to the reaction zone of the turbulent fluidized bed reactor to contact the catalyst to form paraxylene. And a stream C of the low carbon olefin product and the catalyst to be produced; the 2 to 10 second reactor feed distributors are arranged in sequence above the first reactor feed distributor;
- step (3) taking step (2) to obtain stream C, separating unconverted methanol and dimethyl ether stream C-1, aromatic hydrocarbon by-products and unconverted toluene stream C-2; and stream C-1 from 2 to 10, respectively.
- a second reactor feed distributor is fed to the reaction zone of the turbulent fluidized bed reactor in contact with the catalyst; the reaction of stream C-2 from the first reactor feed distributor to the turbulent fluidized bed reactor The zone is in contact with the catalyst;
- the aromatic by-product comprises benzene, o-xylene, m-xylene, ethylbenzene and C 9+ arene;
- Step (2) to obtain the catalyst to be produced by the fluidized bed regenerator the regenerated catalyst is passed through the first reactor gas-solid separator, after gas-solid separation, into the reaction zone of the turbulent fluidized bed reactor. bottom of.
- the first reactor feed distributor is fed to the mixture of the turbulent fluidized bed reactor, the ratio of the molecular moles of aromatic hydrocarbons to the carbon moles of methanol and/or dimethyl ether being greater than 0.5.
- the first reactor feed distributor is fed to the mixture of the turbulent fluidized bed reactor, the ratio of the molecular moles of the aromatic hydrocarbon to the carbon moles of methanol and/or dimethyl ether being from 0.5 to 5.
- the number of moles of molecules refers to the number of moles of molecules in the substance
- the number of moles of carbon refers to the number of moles of carbon atoms in the substance.
- the molar ratio of all oxygenates in the mixture entering the turbulent fluidized bed reactor from the plurality of second reactor feed distributors to methanol entering the first reactor feed distributor is greater than one.
- the molar ratio of all oxygenates entering from the plurality of second reactor feed distributors to methanol entering from the first reactor feed distributor is from 1 to 20.
- the catalyst to be produced passes through the reactor stripper, the inclined tube to be produced, the standby slide valve and the standby riser into the dilute phase region of the fluidized bed regenerator;
- the regeneration medium is passed into the regeneration zone of the fluidized bed regenerator, and the charcoal reacts with the catalyst to be generated to generate flue gas containing CO and CO 2 and a regenerated catalyst, and the flue gas is discharged after being removed by the regenerator gas-solid separator;
- the regenerated catalyst enters the inlet of the first reactor gas-solid separator through the regenerator stripper, the regeneration inclined pipe, the regeneration slide valve and the regeneration riser. After the gas-solid separation, the regenerated catalyst enters the reaction zone of the turbulent fluidized bed reactor. bottom;
- the reactor stripping gas enters the reactor stripper from the reactor stripping gas inlet and is in countercurrent contact with the catalyst to be produced, and then enters the turbulent fluidized bed reactor; the rising gas to be produced enters the waiting riser from the inlet of the rising gas to be produced Passing in contact with the catalyst to be produced, and then entering the dilute phase region of the fluidized bed regenerator;
- the regenerator stripping gas enters the regenerator stripper and the regenerated catalyst in countercurrent contact with the regenerator stripping gas inlet, and then enters the fluidized bed regenerator; the regenerative lifting gas enters the regenerative riser and the regenerated catalyst in downstream flow from the regenerative lift gas inlet And then entering the inlet of the first reactor gas-solids separator, the first reactor gas-solids separator being placed in the dilute phase zone of the fluidized bed reactor or outside the reactor housing.
- the regenerated catalyst has a carbon content of ⁇ 0.5 wt%.
- the regeneration medium is at least one of air, oxygen-depleted air or water vapor;
- the reactor stripping gas, the regenerator stripping gas, the spent lift gas, and the regeneration lift gas are water vapor and/or nitrogen.
- the reaction conditions of the reaction zone of the turbulent fluidized bed reactor are: an apparent linear velocity of gas of 0.1 m/s to 2.0 m/s, a reaction temperature of 350 ° C to 600 ° C, and a reaction pressure of 0.1 MPa to 1.0.
- MPa bed density is from 200 kg/m 3 to 1200 kg/m 3 .
- the reaction condition of the fluidized bed regenerator regeneration zone is: a gas apparent line velocity of 0.1 m/s to 2 m/s, a regeneration temperature of 500 ° C to 750 ° C, a regeneration pressure of 0.1 MPa to 1.0 MPa, and a bed.
- the layer density is from 200 kg/m 3 to 1200 kg/m 3 .
- the catalyst in the turbulent fluidized bed reactor, has a lower dense phase region and an upper rare phase region in a fluidized state.
- the dense phase zone is the reaction zone of the turbulent fluidized bed reactor.
- the present application provides a turbulent fluidized bed reactor for co-production of low carbon olefins from methanol and/or dimethyl ether with toluene, the turbulent fluidized bed reactor comprising: a reactor housing 2. n reactor feed distributors (3-1 to 3-n), reactor gas-solid separator 4, reactor gas-solid separator 5, reactor heat extractor (6), product gas outlet 7 and Reactor stripper 8, wherein the lower part of the turbulent fluidized bed reactor 1 is a reaction zone, the upper part of the turbulent fluidized bed reactor 1 is a dilute phase zone, and n reactor feed distributors (3-1 ⁇ ) 3-n) placed in the reaction zone from bottom to top, the reactor heat extractor (6) is placed outside the reaction zone or reactor housing 2, and the reactor gas-solids separator 4 and the reactor gas-solid separator 5 are placed Outside the dilute phase zone or reactor housing 2, the reactor gas-solids separator 4 is provided with a regenerated catalyst inlet, the catalyst outlet of the reactor gas-solids separator 4 is placed at the bottom of the reaction zone,
- the gas outlet of the separator 5 is connected to the product gas outlet 7, and the reactor stripper 8 is passed from the outside to the inside of the reactor housing at the bottom of the turbulent fluidized bed reactor and is open to the turbulent fluidized bed reactor 1
- the bottom of the reactor stripper 8 is provided with a reactor stripping gas inlet 9, and the bottom of the reactor stripper is provided with a catalyst outlet to be produced.
- the n reactor feed distributors (3-1 to 3-n) of the turbulent fluidized bed reactor 1 are placed in the reaction zone from bottom to top, 3 ⁇ n ⁇ 11, and n is a reaction.
- the level of the opening of the reactor stripper 8 inside the reactor housing 2 is higher than the first reactor feed distributor to avoid direct entry of fresh catalyst into the reactor stripper.
- the reactor gas-solids separator 4 and the reactor gas-solids separator 5 are cyclones.
- the present application further provides an apparatus for co-production of a low-carbon olefin with methanol and/or dimethyl ether and toluene to produce para-xylene, the apparatus comprising the above-described turbulent fluidized bed reactor 1 and a catalyst for regenerating the catalyst.
- Fluidized bed regenerator 14 Fluidized bed regenerator 14.
- the fluidized bed regenerator 14 is a turbulent fluidized bed regenerator.
- the fluidized bed regenerator 14 includes a regenerator housing 15, a regenerator feed distributor 16, a regenerator gas solids separator 17, a regenerator heat extractor 18, a flue gas outlet 19, and a regenerator.
- the stripper 20 wherein the lower portion of the fluidized bed regenerator 14 is a regeneration zone, the upper portion of the fluidized bed regenerator 14 is a dilute phase zone, and the regenerator feed distributor 16 is placed at the bottom of the regeneration zone, the regenerator heats up 18 is placed in the regeneration zone, the regenerator gas-solids separator 17 is placed outside the dilute phase zone or the regenerator housing 15, the inlet of the regenerator gas-solids separator 17 is placed in the dilute phase zone, and the catalyst of the regenerator gas-solids separator 17 The outlet is placed in the regeneration zone, the gas outlet of the regenerator gas-solid separator 17 is connected to the flue gas outlet 19, and the inlet of the regenerator stripper 20 is connected to the bottom of the regenerator housing 15;
- the catalyst outlet of the reactor stripper 8 is connected to the inlet of the inclined tube 10, and the inlet inclined tube 10 is provided with a slide valve 11 to be produced, and the outlet of the inclined tube 10 is connected to the inlet of the riser tube 12 to be produced.
- the bottom of the standby riser 12 is provided with a riser gas inlet 13 to be connected, the outlet of the riser riser 12 is connected to the dilute phase zone of the fluidized bed regenerator 14; and the bottom of the regenerator stripper 20 is provided with a regenerator vapor
- the gas extraction inlet 21, the bottom of the regenerator stripper 20 is connected to the inlet of the regeneration inclined tube 22, and the regeneration inclined tube 22 is provided with a regeneration spool 23, and the outlet of the regeneration inclined tube 22 is connected to the inlet of the regeneration riser 24 to be regenerated.
- the bottom of the riser 24 is provided with a regeneration lift gas inlet 25, and the outlet of the regeneration riser 24 is connected to the inlet of the reactor gas-solid separator 4.
- the present application provides a method for co-production of a light olefin with methanol and/or dimethyl ether and toluene to produce para-xylene, comprising:
- the raw material containing toluene and methanol is sent to the reaction zone of the turbulent fluidized bed reactor 1 from the lowermost reactor feed distributor 3-1 of the turbulent fluidized bed reactor 1, and the methanol is moved from the turbulent fluidized bed.
- the reactor feed distributors 3-2 to 3-n in the reactor 1 are fed to the reaction zone of the turbulent fluidized bed reactor 1 to be contacted with the catalyst to produce a stream containing p-xylene and a low-carbon olefin product and Carbon-based catalyst;
- the stream containing para-xylene and low-carbon olefin products flowing out of the turbulent fluidized bed reactor 1 is sent to a product separation system, and separated to obtain para-xylene, ethylene, propylene, butene, C 5+ chain hydrocarbons, and aromatic hydrocarbons.
- Products and unconverted methanol, dimethyl ether and toluene, aromatic by-products comprising benzene, o-xylene, m-xylene, ethylbenzene and C 9+ aromatics, unconverted methanol and dimethyl ether from the reactor feed distributor 3-2 to 3-n are fed to the reaction zone of the turbulent fluidized bed reactor 1, and the aromatic by-products and unconverted toluene are fed from the reactor feed distributor 3-1 to the turbulent fluidized bed reactor 1 a reaction zone, in contact with a catalyst, converted to a product;
- the catalyst to be produced is regenerated by the fluidized bed regenerator 14, and the regenerated catalyst is separated into the bottom of the reaction zone in the turbulent fluidized bed reactor 1 after gas-solid separation of the reactor gas-solids separator 4.
- the process described herein is carried out using the apparatus described above for the production of p-xylene co-production of lower olefins using methanol and/or dimethyl ether and toluene.
- the catalyst to be produced passes through the reactor stripper 8 and the inclined tube 10.
- the standby slide valve 11 and the standby riser 12 enter the dilute phase region of the fluidized bed regenerator 14;
- the regeneration medium passes from the regenerator feed distributor 16 to the regeneration zone of the fluidized bed regenerator 14 and reacts with the catalyst to be activated to generate flue gas containing CO, CO 2 and regenerated catalyst, and the flue gas passes through the regenerator gas.
- the solid separator 17 is discharged after dust removal;
- the regenerated catalyst enters the inlet of the reactor gas-solid separator 4 through the regenerator stripper 20, the regeneration inclined tube 22, the regeneration slide valve 23 and the regeneration riser 24, and after the gas-solid separation, the regenerated catalyst enters the turbulent fluidized bed reactor 1 The bottom of the middle reaction zone;
- the reactor stripping gas enters the reactor stripper 8 from the reactor stripping gas inlet 9 and is in countercurrent contact with the catalyst to be produced, and then enters the turbulent fluidized bed reactor 1; the rising gas to be produced enters the rising gas inlet 13
- the standby riser 12 and the catalyst to be produced are in downstream contact, and then enter the dilute phase region of the fluidized bed regenerator 14;
- regenerator stripping gas is fed from the regenerator stripping gas inlet 21 into the regenerator stripper 20 in countercurrent contact with the regenerated catalyst, and then into the fluidized bed regenerator 14; the regenerating propellant gas is passed from the regenerating ascending gas inlet 25 into the regeneration riser 24 and The regenerated catalyst is contacted in a downstream flow and then enters the inlet of the reactor gas-solids separator 4.
- the method for co-production of low-carbon olefins for the production of para-xylene by methanol and/or dimethyl ether and toluene as described herein is carried out by the reactor feed distributor 3-1 at the bottom of the turbulent fluidized bed reactor.
- the mass ratio of the aromatic hydrocarbon to the methanol is more than 0.5, further preferably, more than 1.
- the oxygenates introduced by the reactor feed distributors 3-2 to 3-n and The reactor feed distributor 3-1 enters a mass ratio of methanol of greater than 1, more preferably greater than 5.
- the catalyst comprises a HZSM-5 molecular sieve having both the function of alkylation of methanol and/or dimethyl ether with toluene, methanol to olefination and methanol aromatization.
- the catalyst comprises a HZSM-11 molecular sieve having both the function of alkylation of methanol and/or dimethyl ether with toluene, methanol to olefins and methanol aromatization.
- the regenerated catalyst has a carbon content of ⁇ 0.5 wt.%, and more preferably, the regenerated catalyst has a carbon content of ⁇ 0.1 wt.%.
- the reaction conditions of the reaction zone of the turbulent fluidized bed reactor are: an apparent linear velocity of gas of 0.1 m/s to 2.0 m/s, a reaction temperature of 350 to 600 ° C, and a reaction pressure of 0.1 MPa to 1.0 MPa, and the bed density is 200 kg/m 3 to 1200 kg/m 3 .
- the reaction conditions of the fluidized bed regenerator regeneration zone are: the apparent apparent linear velocity of the gas is 0.1 m/s to 2 m/s, the regeneration temperature is 500 ° C to 750 ° C, and the regeneration pressure is 0.1 MPa. 1.0 MPa, the bed density is 200 kg/m 3 to 1200 kg/m 3 .
- the regeneration medium is any one or a mixture of any one of air, oxygen-depleted air or water vapor; the reactor stripping gas, the regenerator stripping gas, and the rising gas to be produced.
- the regeneration lift gas is water vapor or nitrogen.
- the method for producing low-carbon olefins for producing co-xylene by using methanol and/or dimethyl ether and toluene as described in the present application the toluene conversion rate is higher than 50%, the methanol conversion rate is higher than 70%, and the para-xylene selectivity is Above 90%, the yield of para-xylene based on aromatics is higher than 48%, and the selectivity of low-carbon olefins (ethylene + propylene + butene) in chain hydrocarbons is more than 70%, and good technical results are obtained.
- the main feature of the turbulent fluidized bed reactor in the present application is that the aromatic hydrocarbon feedstock is introduced from the lowermost reactor feed distributor, and the oxygenates are separately introduced by the n reactor feed distributors, and the highly active regenerated catalyst is directly Enter the bottom of the reaction zone.
- the aromatic feedstock comprises fresh toluene, unconverted toluene, and aromatic by-products, the oxygenate comprising fresh methanol, unconverted methanol, and dimethyl ether.
- the catalyst activity is high, which is favorable for the alkylation reaction of toluene and the isomerization reaction of aromatic hydrocarbon by-products, methyl transfer reaction, etc.;
- the method of multi-stage feeding of oxygenates Only a small portion of the oxygenates are fed from the bottom of the reactor.
- the low concentration of oxygen in the bottom region and the high concentration of aromatics impair the adsorption competition of oxygenates with fast diffusion rate in the molecular sieve pores.
- the advantage is that most of the aromatic hydrocarbons are adsorbed in the catalyst in the bottom region; thirdly, most of the oxygenates are fed from the middle to the upper part, and the oxygenate conversion reaction mainly occurs in the upper middle part of the reaction zone, avoiding the bottom zone
- the highly active regenerated catalyst rapidly reduces the activity due to carbon formation during the MTO reaction; fourth, the higher carbon content of the catalyst in the upper middle region of the reaction zone is beneficial to improve the selectivity of the low carbon olefin in the MTO reaction; Fifth, the multi-stage feed of oxygenates, the concentration distribution of oxygenates in the reaction zone is relatively uniform, providing sufficient alkyl groups. The reaction was adsorbed after contacting alkylation catalyst occurs quickly and aromatics alkylation reaction was improved toluene conversion and p-xylene yield.
- the turbulent fluidized bed reactor in the present application can coordinate and optimize the competition between methanol and/or dimethyl ether and the alkylation reaction of toluene and MTO reaction, so as to synergistically and increase the conversion of toluene. , p-xylene yield and low carbon olefin yield.
- the present application coordinates and optimizes the competition between the alkylation reaction and the MTO reaction by controlling the concentration of methanol and/or dimethyl ether relative to toluene from the viewpoint of reactor design and process configuration, and improves the yield of p-xylene.
- Low-carbon olefin selectivity to ensure that neither the MTO reaction rapidly consumes most of the methanol and/or dimethyl ether to inhibit the alkylation reaction, nor does it occur due to the high levels of methanol and/or dimethyl ether.
- MTO reaction occurs in a large amount, and the amount of toluene adsorbed in the catalyst per unit time is low, which is disadvantageous for the alkylation reaction.
- the fluidized bed reactor and apparatus provided by the present application in a common feed system with a large difference in raw material reaction rates, distributes feeds in different regions through different raw material streams, thereby realizing mass transfer control, thereby coordinating and optimizing
- the cofeed system increases the reaction yield.
- FIG. 1 is a schematic diagram of an apparatus for co-production of low carbon olefins from methanol and/or dimethyl ether to toluene to produce p-xylene according to an embodiment of the present application.
- FIG. 1 a schematic diagram of an apparatus for co-production of low-carbon olefins by using methanol and/or dimethyl ether and toluene to produce para-xylene is shown in FIG. 1 , and the apparatus comprises: a turbulent fluidized bed reactor 1 , which comprises a reactor housing 2, n reactor feed distributors 3-1 to 3-n (the distributor between 3-1 and 3-n in Fig.
- a reactor a gas-solid separator 4, a reactor gas-solid separator 5, a reactor heat extractor 6, a product gas outlet 7, a reactor stripper 8, and a perforated plate 26, wherein the lower portion of the turbulent fluidized bed reactor 1 is a reaction
- the upper part of the turbulent fluidized bed reactor 1 is a dilute phase zone
- the n reactor feed distributors 3-1 to 3-n are arranged in the reaction zone from bottom to top, 2 ⁇ n ⁇ 11, perforated plate 26
- the reactor heat extractor 6 is placed outside the reaction zone or reactor housing 2
- the gas-solid separator 5 is placed outside the dilute phase zone or the reactor shell 2, and the reactor gas-solid
- the inlet of the separator 4 is connected to the regeneration riser 24, the catalyst outlet of the reactor gas-solid separator 4 is placed at the bottom of the reaction zone, and the gas outlet of the reactor gas-solid separator 4 is placed in the dilute phase
- the apparatus comprises: a fluidized bed regenerator 14 comprising a regenerator housing 15, a regenerator feed distributor 16, a regenerator gas-solid separator 17, a regenerator heat extractor 18, and a flue gas.
- the regenerator heat extractor 18 is placed in the regeneration zone, the regenerator gas-solid separator 17 is placed outside the dilute phase zone or the regenerator housing 15, and the inlet of the regenerator gas-solids separator 17 is placed in the dilute phase zone, and the regenerator gas is solidified.
- the catalyst outlet of the separator 17 is placed in the regeneration zone, the gas outlet of the regenerator gas-solid separator 17 is connected to the flue gas outlet 19, and the inlet of the regenerator stripper 20 is connected to the bottom of the regenerator housing 15.
- the bottom of the reactor stripper 8 is provided with a reactor stripping gas inlet 9, and the bottom of the reactor stripper 8 is connected to the inlet of the inclined tube 10 to be produced.
- the slide valve 11 is connected to the inlet of the riser pipe 12, and the bottom of the riser pipe 12 is provided with a lift gas inlet 13 to be produced.
- the outlet of the riser pipe 12 is connected to the fluidized bed regeneration. a thin phase region of the device 14;
- the bottom of the regenerator stripper 20 is provided with a regenerator stripping gas inlet 21, and the bottom of the regenerator stripper 20 is connected to the inlet of the regenerative inclined tube 22, and the regenerative inclined tube 22 is provided with regenerative sliding
- the valve 23 the outlet of the regeneration ramp 22 is connected to the inlet of the regeneration riser 24, the bottom of the regeneration riser 24 is provided with a regeneration lift gas inlet 25, and the outlet of the regeneration riser 24 is connected to the inlet of the reactor gas-solid separator 4.
- the fluidized bed regenerator 14 may be a turbulent fluidized bed regenerator; the reactor gas solids separator 4, the reactor gas-solid separator 5, and the regenerator gas-solid separator 17 may be a cyclone separator. .
- the method for co-producing a lower olefin of methanol and/or dimethyl ether with toluene to produce para-xylene includes:
- the regenerated catalyst passes through the regenerator stripper 20, the regeneration inclined tube 22, the regeneration slide valve 23 and the regeneration riser 24 to enter the inlet of the reactor gas-solid separator 4, and after the gas-solid separation, the regenerated catalyst enters the turbulent fluidized bed reaction.
- the reactor stripping gas is fed from the reactor stripping gas inlet 9 into the reactor stripper 8 in countercurrent contact with the catalyst to be produced, and then enters the turbulent fluidized bed reactor 1; the rising gas is raised by the rising gas inlet 13 entering the standby riser 12 and the catalyst to be produced in downstream contact, and then entering the dilute phase region of the fluidized bed regenerator 14;
- regenerator stripping gas is fed from the regenerator stripping gas inlet 21 into the regenerator stripper 20 in countercurrent contact with the regenerated catalyst and then into the fluidized bed regenerator 14; the regenerative ascending gas is passed from the regenerating ascending gas inlet 25 to the regenerative riser 24 is in downstream contact with the regenerated catalyst and then enters the inlet of the reactor gas-solids separator 4.
- the apparatus shown in Fig. 1 is employed, but the reactor fluid-bed reactor 1 does not include the reactor gas-solid separator 4 and the perforated plate 26, and the regeneration riser 24 is directly connected to the dilute phase of the turbulent fluidized bed reactor 1. Area.
- the turbulent fluidized bed reactor 1 contains one reactor feed distributor 3-1.
- the reaction conditions of the reaction zone of the fluidized bed reactor 1 are: the apparent linear velocity of the gas is about 1.0 m/s, the reaction temperature is about 500 ° C, the reaction pressure is about 0.15 MPa, and the bed density is about 350 kg/m 3 .
- the reaction conditions of the regeneration zone of the fluidized bed regenerator 14 are: the apparent apparent linear velocity of the gas is about 1.0 m/s, the regeneration temperature is about 650 ° C, the regeneration pressure is about 0.15 MPa, and the bed density is about 350 kg/m 3 .
- the catalyst contains HZSM-5 molecular sieve, and the regenerated catalyst has a carbon content of about 0.1 wt.%.
- the regeneration medium is air; the reactor stripping gas, the regenerator stripping gas, the waiting lift gas and the regeneration lift gas are water vapor.
- the molar ratio of aromatic hydrocarbon to methanol was 0.5.
- the turbulent fluidized bed reactor 1 contains three reactor feed distributors 3-1 to 3-3, and the open cell ratio of the perforated plate 26 is 10%.
- the reactor gas-solid separator 4 is placed inside the reactor housing 2.
- the reaction conditions of the reaction zone of the fluidized bed reactor 1 are: the apparent linear velocity of the gas is about 1.0 m/s, the reaction temperature is about 500 ° C, the reaction pressure is about 0.15 MPa, and the bed density is about 350 kg/m 3 .
- the reaction conditions of the regeneration zone of the fluidized bed regenerator 14 are: the apparent apparent linear velocity of the gas is about 1.0 m/s, the regeneration temperature is about 650 ° C, the regeneration pressure is about 0.15 MPa, and the bed density is about 350 kg/m 3 .
- the catalyst contains HZSM-5 molecular sieve, and the regenerated catalyst has a carbon content of about 0.1 wt.%.
- the regeneration medium is air; the reactor stripping gas, the regenerator stripping gas, the waiting lift gas and the regeneration lift gas are water vapor.
- the mass ratio of aromatic hydrocarbon to methanol was 2 by the reactor inlet distributor 3-1 at the bottom of the fluidized bed reactor.
- the molar ratio of the oxygenate entering from the reactor feed distributors 3-2 to 3-3 to the methanol entering from the reactor feed distributor 3-1 was three.
- the regenerated catalyst enters the bottom of the turbulent fluidized bed reactor, while the regenerated catalyst of Example 1 enters the dilute phase zone of the turbulent fluidized bed reactor;
- Example 3 contained a porous plate, and Example 1 contained no porous plate.
- Example 1 Comparing the present example with Example 1, it is known that the catalyst is first exposed to a high concentration of aromatic hydrocarbon raw material, and the toluene conversion, the p-xylene yield, and the low-carbon olefin selectivity are greatly improved.
- the turbulent fluidized bed reactor 1 contains six reactor feed distributors 3-2 to 3-6, the open cell ratio of the perforated plate is 5%, and the reactor gas-solid separator 4 Placed inside the reactor housing 2.
- the reaction conditions of the reaction zone of the fluidized bed reactor 1 are: the apparent linear velocity of the gas is about 0.8 m/s, the reaction temperature is about 560 ° C, the reaction pressure is about 0.6 MPa, and the bed density is about 460 kg/m 3 .
- the reaction conditions of the regeneration zone of the fluidized bed regenerator 14 are: the apparent apparent linear velocity of the gas is about 1.7 m/s, the regeneration temperature is about 600 ° C, the regeneration pressure is about 0.6 MPa, and the bed density is about 220 kg/m 3 .
- the catalyst contains HZSM-11 molecular sieve, and the regenerated catalyst has a carbon content of about 0.15 wt.%.
- the regeneration medium is air; the reactor stripping gas, the regenerator stripping gas, the waiting lift gas and the regeneration lift gas are water vapor.
- the mass ratio of aromatic hydrocarbon to methanol was 4 by the reactor inlet distributor 3-1 at the bottom of the fluidized bed reactor.
- the molar ratio of the oxygenate entering from the reactor feed distributors 3-2 to 3-6 to the methanol entering from the reactor feed distributor 3-1 was 20.
- the experimental results were: conversion of toluene of 54%, conversion of methanol of 76%, selectivity of para-xylene of 93%, yield of para-xylene based on aromatics of 58%, (ethylene + propylene + butene) in the chain
- the selectivity in the hydrocarbon is 75%.
- the turbulent fluidized bed reactor 1 contains four reactor feed distributors 3-1 to 3-4, without the perforated plate 26, and the reactor gas-solid separator 4 is placed in the reactor.
- the reaction conditions of the reaction zone of the fluidized bed reactor 1 are: the apparent linear velocity of the gas is about 1.5 m/s, the reaction temperature is about 440 ° C, the reaction pressure is about 0.2 MPa, and the bed density is about 280 kg/m 3 .
- the reaction conditions of the regeneration zone of the fluidized bed regenerator 14 are: the apparent apparent linear velocity of the gas is about 1.2 m/s, the regeneration temperature is about 700 ° C, the regeneration pressure is about 0.2 MPa, and the bed density is about 330 kg/m 3 .
- the catalyst contains HZSM-5 molecular sieve, and the regenerated catalyst has a carbon content of about 0.15 wt.%.
- the regeneration medium is water vapor; the reactor stripping gas, the regenerator stripping gas, the waiting lift gas, and the regeneration lift gas are nitrogen.
- the mass ratio of aromatic hydrocarbon to methanol was 3 by the reactor feed distributor 3-1 entering the lowermost portion of the fluidized bed reactor.
- the molar ratio of the oxygenate entering from the reactor feed distributors 3-1 to 3-4 to the methanol entering from the reactor feed distributor 3-1 was 10.
- the experimental results are: toluene conversion rate of 50%, methanol conversion rate of 81%, para-xylene selection The selectivity was 92%, the paraxylene per pass yield based on aromatics was 52%, and the selectivity of lower olefins (ethylene + propylene + butene) in the chain hydrocarbons was 72%.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
Claims (26)
- 一种用于甲醇和/或二甲醚与甲苯制对二甲苯联产低碳烯烃的湍动流化床反应器,其特征在于,所述湍动流化床反应器包含第一反应器进料分布器和多个第二反应器进料分布器,所述第一反应器进料分布器和多个第二反应器进料分布器沿所述湍动流化床反应器中气体流向依次布置。所述第一反应器进料分布器的进料中包括甲苯与部分甲醇和/或二甲醚;所述第二反应器进料分布器的进料中包括甲醇和/或二甲醚。
- 根据权利要求1所述的湍动流化床反应器,其特征在于,所述第二反应器进料分布器为2至10个。
- 根据权利要求1所述的湍动流化床反应器,其特征在于,所述湍动流化床反应器包括第一反应器气固分离器和第二反应器气固分离器,所述第一反应器气固分离器置于稀相区或反应器壳体外部,所述第二反应器气固分离器置于稀相区或反应器壳体外部;所述第一反应器气固分离器设有再生催化剂入口,所述第一反应器气固分离器的催化剂出口置于反应区的底部,所述第一反应器气固分离器的气体出口置于所述稀相区;所述第二反应器气固分离器的入口置于所述稀相区,所述第二反应器气固分离器的催化剂出口置于所述反应区,所述第二反应器气固分离器的气体出口连接于湍动流化床反应器产品气出口;所述反应区位于所述湍动流化床反应器的下部,所述稀相区位于所述湍动流化床反应器的上部。
- 根据权利要求3所述的湍动流化床反应器,其特征在于,所述第一反应器气固分离器和第二反应器气固分离器是旋风分离器。
- 根据权利要求1所述的湍动流化床反应器,其特征在于,所述湍动流化床反应器包括反应器取热器,反应器取热器置于所述湍动流化床反应器壳体内部或外部。
- 根据权利要求5所述的湍动流化床反应器,其特征在于,所述反应器取热器设置于所述多个反应器进料分布器之间。
- 根据权利要求1所述的湍动流化床反应器,其特征在于,所述湍动流化床反应器包括反应器汽提器,所述反应器汽提器在湍动流化床反应器的底部由外向内穿过反应器壳体并且开口于湍动流化床反应器的反应区内,所述反应器汽提器的底部设有反应器汽提气入口和待生催化剂出 口。
- 根据权利要求1所述的湍动流化床反应器,其特征在于,所述湍动流化床反应器包含多孔板,所述多孔板位于第一反应器进料分布器和至少一个第二反应器进料分布器之间,所述多孔板的开孔率≤50%;或者,所述湍动流化床反应器包含多孔板,所述多孔板位于第一反应器进料分布器和与第一反应器进料分布器最近的一个第二反应器进料分布器之间,所述多孔板的开孔率为5%~50%。
- 根据权利要求8所述的湍动流化床反应器,其特征在于,所述反应器汽提器在反应器壳体内部的开口的水平高度高于第一反应器进料分布器且高于所述多孔板。
- 一种用于甲醇和/或二甲醚与甲苯制对二甲苯联产低碳烯烃的装置,其特征在于,所述装置包含权利要求1至9任一项所述的湍动流化床反应器中的至少一种和用于再生催化剂的流化床再生器。
- 根据权利要求10所述的装置,其特征在于,所述流化床再生器是湍动流化床再生器,所述流化床再生器包含再生器壳体、再生器气固分离器、再生器取热器和再生器汽提器;流化床再生器的下部是再生区,流化床再生器的上部是再生器稀相区,再生器进料分布器置于再生区的底部,再生器取热器置于再生区,再生器气固分离器置于稀相区或再生器壳体外部;所述再生器气固分离器的入口置于再生器稀相区,所述再生器气固分离器的催化剂出口置于再生区,再生器汽提器开口于再生器壳体的底部。
- 根据权利要求10所述的装置,其特征在于,所述流化床再生器包含再生器壳体、再生器进料分布器、再生器气固分离器、再生器取热器、烟气出口和再生器汽提器;所述流化床再生器的下部是再生区,流化床再生器的上部是稀相区;再生器进料分布器置于再生区的底部,再生器取热器置于再生区,再生器气固分离器置于稀相区或再生器壳体外部,再生器气固分离器的入口置于稀相区,再生器气固分离器的催化剂出口置于再生区,再生器气固分离器的气体出口连接于烟气出口,再生器汽提器开口于再生器壳体的底部;所述反应器汽提器的待生催化剂出口连接于待生斜管的入口,待生斜管中设有待生滑阀,待生斜管的出口连接于待生提升管的入口,待生提升管的底部设有待生提升气入口,待生提升管的出口连接于流化床再生器的稀相区;所述再生器汽提器的底部设有再生器汽提气入口,再生器汽提器的底 部连接于再生斜管的入口,再生斜管中设有再生滑阀,再生斜管的出口连接于再生提升管的入口,再生提升管的底部设有再生提升气入口,再生提升管的出口连接于第一反应器气固分离器的再生催化剂入口,所述第一反应器气固分离器置于流化床反应器的稀相区或反应器壳体外部。
- 一种甲醇和/或二甲醚与甲苯制对二甲苯联产低碳烯烃的方法,其特征在于,采用权利要求1至9任一项所述湍动流化床反应器中的至少一种。
- 根据权利要求13所述的方法,其特征在于,将含有甲醇和/或二甲醚与甲苯的原料A由第一反应器进料分布器送入湍动流化床反应器的反应区,将含有甲醇和/或二甲醚的原料B分别由多个第二反应器进料分布器送入湍动流化床反应器的反应区与催化剂接触,生成含有对二甲苯和低碳烯烃产品的物流C和待生催化剂。
- 根据权利要求14所述的方法,其特征在于,将所述物流C分离获得对二甲苯、低碳烯烃、C5+链烃、芳烃副产物以及未转化的甲醇、二甲醚和甲苯;其中,未转化的甲醇和二甲醚由多个第二反应器进料分布器送入湍动流化床反应器的反应区,芳烃副产物和未转化的甲苯由第一反应器进料分布器送入湍动流化床反应器的反应区与催化剂接触。
- 根据权利要求14所述的方法,其特征在于,所述待生催化剂经流化床再生器再生后,进入湍动流化床反应器中反应区的底部。
- 根据权利要求13所述的方法,其特征在于,包括如下步骤:(1)将含有甲醇和/或二甲醚与甲苯的物流A由湍动流化床反应器下方的第一反应器进料分布器送入湍动流化床反应器的反应区与催化剂接触;(2)将含有甲醇和/或二甲醚的物流B分别由2至10个第二反应器进料分布器送入湍动流化床反应器的反应区与催化剂接触,生成含有对二甲苯和低碳烯烃产品的物流C和待生催化剂;所述2至10个第二反应器进料分布器依次布置在第一反应器进料分布器的上方;(3)将步骤(2)得到物流C经分离出未转化的甲醇和二甲醚物流C-1、芳烃副产物和未转化的甲苯物流C-2;将物流C-1分别由2至10个第二反应器进料分布器送入湍动流化床反应器的反应区与催化剂接触;将物流C-2由第一反应器进料分布器送入湍动流化床反应器的反应区与催化剂接触;所述芳烃副产物包含苯、邻二甲苯、间二甲苯、乙苯和C9+芳烃;(4)将步骤(2)得到待生催化剂经流化床再生器再生,再生催化剂 经第一反应器气固分离器,气固分离后,进入湍动流化床反应器中反应区的底部。
- 根据权利要求13所述的方法,其特征在于,由第一反应器进料分布器送入湍动流化床反应器的混合物中,芳烃的分子摩尔数与甲醇和/或二甲醚的碳摩尔数之比大于0.5。
- 根据权利要求13所述的方法,其特征在于,由多个第二反应器进料分布器进入湍动流化床反应器的混合物中的全部含氧化合物和由第一反应器进料分布器进入的甲醇的摩尔比大于1。
- 根据权利要求13所述的方法,其特征在于,催化剂再生采用权利要求11至13任一项所述的装置中的至少一种。
- 根据权利要求20所述的方法,其特征在于,待生催化剂经过反应器汽提器、待生斜管、待生滑阀和待生提升管进入流化床再生器的稀相区。
- 根据权利要求20所述的方法,其特征在于,再生介质通入流化床再生器的再生区,和待生催化剂发生烧炭反应,生成含有CO、CO2的烟气和再生催化剂,烟气经过再生器气固分离器除尘后排放;再生催化剂经过再生器汽提器、再生斜管、再生滑阀和再生提升管进入第一反应器气固分离器入口,气固分离后,再生催化剂进入湍动流化床反应器中反应区的底部;反应器汽提气由反应器汽提气入口进入反应器汽提器和待生催化剂逆流接触,然后进入湍动流化床反应器;待生提升气由待生提升气入口进入待生提升管和待生催化剂顺流接触,然后进入流化床再生器的稀相区;再生器汽提气由再生器汽提气入口进入再生器汽提器和再生催化剂逆流接触,然后进入流化床再生器;再生提升气由再生提升气入口进入再生提升管和再生催化剂顺流接触,然后进入第一反应器气固分离器的入口,所述第一反应器气固分离器置于流化床反应器的稀相区或反应器壳体外部。
- 根据权利要求22所述的方法,其特征在于,所述再生催化剂碳含量≤0.5wt.%。
- 根据权利要求22所述的方法,其特征在于,所述再生介质为空气、贫氧空气或水蒸气中的至少一种;和/或,所述反应器汽提气、再生器汽提气、待生提升气和再生提升气为水蒸气和/或氮气。
- 根据权利要求18至24任一项所述的方法,其特征在于,所述湍动流化床反应器反应区的反应条件为:气体表观线速度为0.1m/s~2.0m/s,反应温度为350℃~600℃,反应压力为0.1MPa~1.0MPa,床层密度为 200kg/m3~1200kg/m3。
- 根据权利要求18至24任一项所述的方法,其特征在于,所述流化床再生器再生区反应条件为:气体表观线速度为0.1m/s~2.0m/s,再生温度为500℃~750℃,再生压力为0.1MPa~1.0MPa,床层密度为200kg/m3~1200kg/m3。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17907538.7A EP3617178A4 (en) | 2017-04-27 | 2017-11-24 | Fluidized bed device and process for the manufacture of paraxylene-coproduced low-carbon olefin from methanol and / or dimethyl ether and toluene |
US16/608,427 US11180431B2 (en) | 2017-04-27 | 2017-11-24 | Fluidized bed device and method for preparing para-xylene and co-producing light olefins from methanol and/or dimethyl ether and toluene |
RU2019133964A RU2743989C1 (ru) | 2017-04-27 | 2017-11-24 | Устройство с кипящим слоем и способ получения пара-ксилола и совместного получения низших олефинов из метанола и/или диметилового эфира и толуола |
KR1020197034518A KR102309238B1 (ko) | 2017-04-27 | 2017-11-24 | 메탄올 및/또는 디메틸에테르 및 톨루엔에 의한 파라자일렌의 제조 및 저탄소 올레핀의 동시 제조를 위한 유동상 장치 및 방법 |
JP2019554818A JP6850905B2 (ja) | 2017-04-27 | 2017-11-24 | メタノール及び/又はジメチルエーテル並びにトルエンからパラキシレンを生産し低級オレフィンを併産する流動床装置及び方法 |
SG11201909976R SG11201909976RA (en) | 2017-04-27 | 2017-11-24 | Fluidized bed device and method for preparing para-xylene and co-producing light olefins from methanol and/or dimethyl ether and toluene |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710288546.5A CN108794291B (zh) | 2017-04-27 | 2017-04-27 | 甲醇和/或二甲醚与甲苯制对二甲苯联产低碳烯烃的流化床装置及方法 |
CN201710288546.5 | 2017-04-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018196361A1 true WO2018196361A1 (zh) | 2018-11-01 |
Family
ID=63919379
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/112811 WO2018196361A1 (zh) | 2017-04-27 | 2017-11-24 | 甲醇和/或二甲醚与甲苯制对二甲苯联产低碳烯烃的流化床装置及方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US11180431B2 (zh) |
EP (1) | EP3617178A4 (zh) |
JP (1) | JP6850905B2 (zh) |
KR (1) | KR102309238B1 (zh) |
CN (1) | CN108794291B (zh) |
RU (1) | RU2743989C1 (zh) |
SG (1) | SG11201909976RA (zh) |
WO (1) | WO2018196361A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3616784A4 (en) * | 2017-04-27 | 2020-04-01 | Dalian Institute Of Chemical Physics, Chinese Academy of Sciences | DEVICE AND METHOD FOR PRODUCING PARAXYLOL IN THE CO PRODUCTION OF LOW CARBON OLEFINS FROM METHANOL AND / OR DIMETHYL ETHER AND BENZOL |
US11078133B2 (en) | 2019-12-06 | 2021-08-03 | Uop Llc | Aromatic alkylation process |
US11439712B2 (en) | 2014-04-08 | 2022-09-13 | North Carolina State University | Methods and compositions for RNA-directed repression of transcription using CRISPR-associated genes |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111233609B (zh) * | 2018-11-29 | 2022-08-19 | 中国科学院大连化学物理研究所 | 一种含有石脑油的原料转化装置 |
CN111229135A (zh) * | 2018-11-29 | 2020-06-05 | 中国科学院大连化学物理研究所 | 一种含有石脑油的原料转化装置 |
WO2024108507A1 (zh) * | 2022-11-24 | 2024-05-30 | 中国科学院大连化学物理研究所 | 循环流化床反应再生装置及应用方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002025201A1 (en) * | 2000-09-22 | 2002-03-28 | Klarex Beheer B.V. | Apparatus for carrying out a physical and/or chemical process, such as an evaporator |
TW200424136A (en) * | 2003-05-12 | 2004-11-16 | Earthrive Technologies Inc | Fluidized-bed process drain treatment system |
CN103028449A (zh) * | 2011-09-30 | 2013-04-10 | 中国石油化工股份有限公司 | 催化转化催化剂再生器 |
WO2015094697A1 (en) * | 2013-12-20 | 2015-06-25 | Exxonmobil Chemical Patents Inc. | Conversion of methanol to olefins and para-xylene |
CN106588527A (zh) * | 2015-10-15 | 2017-04-26 | 中国石油化工股份有限公司 | 生产芳烃和低碳烯烃的再生反应系统及反应方法 |
Family Cites Families (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2953517A (en) * | 1953-11-12 | 1960-09-20 | Exxon Research Engineering Co | Fluid coking process |
US2893849A (en) * | 1956-05-01 | 1959-07-07 | Standard Oil Co | Fluidized solids contacting apparatus |
IL48991A (en) * | 1975-03-18 | 1978-04-30 | Sun Ventures Inc | Ammoxidation process |
US4197418A (en) | 1979-03-01 | 1980-04-08 | Mobil Oil Corporation | Heat disposed in lower alcohols and derivatives conversion to gasoline hydrocarbons in a crystaline zeolite fluidized bed |
US4337120A (en) * | 1980-04-30 | 1982-06-29 | Chevron Research Company | Baffle system for staged turbulent bed |
US4456504A (en) * | 1980-04-30 | 1984-06-26 | Chevron Research Company | Reactor vessel and process for thermally treating a granular solid |
US4691031A (en) * | 1984-06-20 | 1987-09-01 | Suciu George D | Process for preventing backmixing in a fluidized bed vessel |
US5489732A (en) | 1994-10-14 | 1996-02-06 | Uop | Fluidized solid bed motor fuel alkylation process |
US5939597A (en) * | 1994-11-10 | 1999-08-17 | Mobil Oil Corporation | Fluid bed process for para-xylene production |
EP0878464A4 (en) * | 1996-01-05 | 2003-04-23 | Asahi Chemical Ind | METHOD FOR PRODUCING ALPHA.BETA-UNSATURATED NITRILE |
US6642426B1 (en) * | 1998-10-05 | 2003-11-04 | David L. Johnson | Fluid-bed aromatics alkylation with staged injection of alkylating agents |
US6977064B1 (en) * | 2000-05-05 | 2005-12-20 | Saudi Basic Industries Corporation | Apparatus for the controlled optimized addition of reactants in continuous flow reaction systems |
US8252321B2 (en) | 2004-09-13 | 2012-08-28 | Chrono Therapeutics, Inc. | Biosynchronous transdermal drug delivery for longevity, anti-aging, fatigue management, obesity, weight loss, weight management, delivery of nutraceuticals, and the treatment of hyperglycemia, alzheimer's disease, sleep disorders, parkinson's disease, aids, epilepsy, attention deficit disorder, nicotine addiction, cancer, headache and pain control, asthma, angina, hypertension, depression, cold, flu and the like |
DE102006049546A1 (de) * | 2006-10-20 | 2008-04-30 | Vinnolit Gmbh & Co.Kg Profitcenter Vintec | Vorrichtung und Verfahren zur Oxichlorierung |
CN101239868B (zh) | 2007-02-07 | 2011-05-18 | 中国石油化工股份有限公司 | 提高乙烯、丙烯收率的方法 |
CN101239870B (zh) | 2007-02-07 | 2011-08-17 | 中国石油化工股份有限公司 | 甲醇和乙醇转化制低碳烯烃的方法 |
CN101348404B (zh) * | 2007-07-18 | 2011-11-30 | 中国石油化工股份有限公司 | 甲醇或二甲醚转化过程中提高乙烯、丙烯收率的方法 |
CN101260013B (zh) * | 2008-04-24 | 2011-07-20 | 中国石油化工股份有限公司 | 含氧化合物制备低碳烯烃的方法 |
US8399727B2 (en) | 2009-10-21 | 2013-03-19 | Exxonmobil Chemical Patents Inc. | Production of para-xylene by the methylation of benzene and/or toluene |
CN102190550B (zh) * | 2010-03-03 | 2016-02-10 | 中国石油化工股份有限公司 | 低碳烯烃的生产方法 |
CN102372569B (zh) | 2010-08-23 | 2014-03-26 | 中国石油化工股份有限公司 | 甲醇制备低碳烯烃的方法 |
CN102372585B (zh) * | 2010-08-23 | 2015-12-09 | 中国石油化工股份有限公司 | 芳烃烷基化制对二甲苯的流化床方法 |
CN102464557B (zh) | 2010-11-17 | 2014-03-26 | 中国石油化工股份有限公司 | 由含氧化合物和甲苯制备二甲苯的方法 |
CN102463086B (zh) | 2010-11-17 | 2014-01-22 | 中国石油化工股份有限公司 | 联产低碳烯烃和对二甲苯的反应装置 |
CN102463084B (zh) | 2010-11-17 | 2015-02-11 | 中国石油化工股份有限公司 | 甲醇或二甲醚和甲苯制备二甲苯的反应装置 |
CN102464550B (zh) | 2010-11-17 | 2014-03-05 | 中国石油化工股份有限公司 | 联产低碳烯烃和对二甲苯的方法 |
JP5654923B2 (ja) | 2011-03-29 | 2015-01-14 | 千代田化工建設株式会社 | 芳香族炭化水素の製造方法および芳香族炭化水素の製造プラント |
CN102814151B (zh) * | 2011-06-08 | 2014-02-26 | 富德(北京)能源化工有限公司 | 由含氧化合物制烯烃的流化床反应器和方法 |
FR2977809B1 (fr) * | 2011-07-12 | 2016-01-08 | Arkema France | Regeneration de catalyseur en continu dans un reacteur a lit fluidise |
CN102875317B (zh) * | 2011-07-12 | 2014-11-26 | 中国石油化工股份有限公司 | 生产对二甲苯的方法 |
TWI495511B (zh) | 2011-07-27 | 2015-08-11 | Exxonmobil Chem Patents Inc | 具有分階擋板的流體床反應器 |
CN202962437U (zh) | 2012-07-23 | 2013-06-05 | 李小燕 | 一种流化床反应再生装置 |
CN104107671B (zh) | 2013-04-18 | 2017-04-05 | 上海碧科清洁能源技术有限公司 | 流化床反应器及用该流化床反应器进行甲醇制烯烃反应的方法 |
CN104549074B (zh) | 2013-10-28 | 2017-01-04 | 中国石油化工股份有限公司 | 甲醇和/或二甲醚转化制乙烯、丙烯和芳烃的同轴式分段流化床反应装置及其反应方法 |
CN103588601B (zh) | 2013-11-13 | 2015-08-19 | 上海华谊(集团)公司 | 甲苯甲醇择型烷基化生产对二甲苯的流化床方法 |
CN104672045B (zh) * | 2013-12-03 | 2016-06-08 | 中国科学院大连化学物理研究所 | 一种用于甲醇和/或二甲醚制低碳烯烃的反应装置 |
EP3078414B1 (en) | 2013-12-03 | 2018-09-19 | Dalian Institute Of Chemical Physics Chinese Academy of Sciences | Reaction device for preparing light olefins from methanol and/or dimethyl ether |
CN104549073B (zh) | 2015-01-05 | 2017-01-04 | 中国石油大学(华东) | 一种烷烃脱氢制烯烃循环流化床反应装置 |
CN105985209B (zh) | 2015-01-28 | 2019-04-12 | 中国石化工程建设有限公司 | 一种有机氧化物催化转化制芳烃的方法 |
CN107961743B (zh) | 2016-10-19 | 2021-12-31 | 中国科学院大连化学物理研究所 | 一种由含氧化合物制备丙烯、c4烃类的快速流化床反应器、装置及方法 |
EP3530642B1 (en) | 2016-10-19 | 2024-01-24 | Dalian Institute Of Chemical Physics, Chinese Academy of Sciences | Method and device for manufacturing propene and c4 hydrocarbon |
CN107961745B (zh) * | 2016-10-19 | 2021-12-14 | 中国科学院大连化学物理研究所 | 一种由含氧化合物制备丙烯和c4烃类的湍动流化床反应器、装置及方法 |
KR102243318B1 (ko) * | 2016-10-19 | 2021-04-21 | 달리안 인스티튜트 오브 케미컬 피직스, 차이니즈 아카데미 오브 사이언시즈 | 프로필렌, c4탄화수소류의 제조 방법 및 그 장치 |
US10710940B2 (en) * | 2016-10-19 | 2020-07-14 | Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences | Turbulent fluidized-bed reactor, device, and method using oxygen-containing compound for manufacturing propene and C4 hydrocarbon |
WO2018072141A1 (zh) * | 2016-10-19 | 2018-04-26 | 中国科学院大连化学物理研究所 | 一种由含氧化合物制备丙烯、c4烃类的快速流化床反应器、装置及方法 |
CN108786672B (zh) * | 2017-04-27 | 2021-01-26 | 中国科学院大连化学物理研究所 | 甲醇和/或二甲醚与苯制对二甲苯联产低碳烯烃的方法 |
CN108786670B (zh) * | 2017-04-27 | 2021-01-26 | 中国科学院大连化学物理研究所 | 甲醇和/或二甲醚与甲苯制对二甲苯联产低碳烯烃的方法 |
-
2017
- 2017-04-27 CN CN201710288546.5A patent/CN108794291B/zh active Active
- 2017-11-24 US US16/608,427 patent/US11180431B2/en active Active
- 2017-11-24 SG SG11201909976R patent/SG11201909976RA/en unknown
- 2017-11-24 WO PCT/CN2017/112811 patent/WO2018196361A1/zh unknown
- 2017-11-24 EP EP17907538.7A patent/EP3617178A4/en active Pending
- 2017-11-24 KR KR1020197034518A patent/KR102309238B1/ko active IP Right Grant
- 2017-11-24 RU RU2019133964A patent/RU2743989C1/ru active
- 2017-11-24 JP JP2019554818A patent/JP6850905B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002025201A1 (en) * | 2000-09-22 | 2002-03-28 | Klarex Beheer B.V. | Apparatus for carrying out a physical and/or chemical process, such as an evaporator |
TW200424136A (en) * | 2003-05-12 | 2004-11-16 | Earthrive Technologies Inc | Fluidized-bed process drain treatment system |
CN103028449A (zh) * | 2011-09-30 | 2013-04-10 | 中国石油化工股份有限公司 | 催化转化催化剂再生器 |
WO2015094697A1 (en) * | 2013-12-20 | 2015-06-25 | Exxonmobil Chemical Patents Inc. | Conversion of methanol to olefins and para-xylene |
CN106588527A (zh) * | 2015-10-15 | 2017-04-26 | 中国石油化工股份有限公司 | 生产芳烃和低碳烯烃的再生反应系统及反应方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3617178A4 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11439712B2 (en) | 2014-04-08 | 2022-09-13 | North Carolina State University | Methods and compositions for RNA-directed repression of transcription using CRISPR-associated genes |
EP3616784A4 (en) * | 2017-04-27 | 2020-04-01 | Dalian Institute Of Chemical Physics, Chinese Academy of Sciences | DEVICE AND METHOD FOR PRODUCING PARAXYLOL IN THE CO PRODUCTION OF LOW CARBON OLEFINS FROM METHANOL AND / OR DIMETHYL ETHER AND BENZOL |
US11078133B2 (en) | 2019-12-06 | 2021-08-03 | Uop Llc | Aromatic alkylation process |
Also Published As
Publication number | Publication date |
---|---|
US20200140355A1 (en) | 2020-05-07 |
EP3617178A1 (en) | 2020-03-04 |
RU2743989C1 (ru) | 2021-03-01 |
JP6850905B2 (ja) | 2021-03-31 |
SG11201909976RA (en) | 2019-11-28 |
CN108794291A (zh) | 2018-11-13 |
KR102309238B1 (ko) | 2021-10-06 |
US11180431B2 (en) | 2021-11-23 |
CN108794291B (zh) | 2020-11-27 |
EP3617178A4 (en) | 2021-01-27 |
JP2020517589A (ja) | 2020-06-18 |
KR20190140467A (ko) | 2019-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018196360A1 (zh) | 甲醇和/或二甲醚与甲苯制对二甲苯联产低碳烯烃的装置及方法 | |
WO2018196361A1 (zh) | 甲醇和/或二甲醚与甲苯制对二甲苯联产低碳烯烃的流化床装置及方法 | |
WO2018196364A1 (zh) | 甲醇和/或二甲醚与苯制对二甲苯联产低碳烯烃的装置及方法 | |
JP6817427B2 (ja) | 酸素含有化合物からプロピレン、c4の炭化水素類を製造する高速流動床式反応器、装置及び方法 | |
CN107961744B (zh) | 一种制备丙烯、c4烃类的方法及其装置 | |
WO2018196363A1 (zh) | 甲醇和/或二甲醚与苯制对二甲苯联产低碳烯烃的流化床装置及方法 | |
WO2018072139A1 (zh) | 一种由含氧化合物制备丙烯和c4烃类的湍动流化床反应器、装置及方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17907538 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019554818 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20197034518 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2017907538 Country of ref document: EP Effective date: 20191127 |