WO2018168232A1 - ピラノキナゾリン誘導体及びナフトピラン誘導体 - Google Patents
ピラノキナゾリン誘導体及びナフトピラン誘導体 Download PDFInfo
- Publication number
- WO2018168232A1 WO2018168232A1 PCT/JP2018/003141 JP2018003141W WO2018168232A1 WO 2018168232 A1 WO2018168232 A1 WO 2018168232A1 JP 2018003141 W JP2018003141 W JP 2018003141W WO 2018168232 A1 WO2018168232 A1 WO 2018168232A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- compound
- mmol
- ring
- ultraviolet light
- Prior art date
Links
- 0 *c1nc(O*)c(c(C=C2)c(cc3)OC2(c2ccccc2)c2ccccc2)c3n1 Chemical compound *c1nc(O*)c(c(C=C2)c(cc3)OC2(c2ccccc2)c2ccccc2)c3n1 0.000 description 3
- NCAJWMLWJOGRHG-UHFFFAOYSA-N COCC1C2OCCOC2CCC1 Chemical compound COCC1C2OCCOC2CCC1 NCAJWMLWJOGRHG-UHFFFAOYSA-N 0.000 description 1
- QHKULYFYWVHACL-UHFFFAOYSA-N COCc1cccc2c1OCCO2 Chemical compound COCc1cccc2c1OCCO2 QHKULYFYWVHACL-UHFFFAOYSA-N 0.000 description 1
- VWNHIAHLPUHRHE-UHFFFAOYSA-N COc(c1c2C=C3)nc(Cl)nc1ccc2OC3(c1ccccc1)c(cc1)ccc1N1CCCCC1 Chemical compound COc(c1c2C=C3)nc(Cl)nc1ccc2OC3(c1ccccc1)c(cc1)ccc1N1CCCCC1 VWNHIAHLPUHRHE-UHFFFAOYSA-N 0.000 description 1
- OARBGXPBJJPNLE-UHFFFAOYSA-N COc1c(c(C=C2)c(cc3)OC2(c2ccccc2)c(cc2)ccc2N2CCCCC2)c3nc(-c2ccccc2)n1 Chemical compound COc1c(c(C=C2)c(cc3)OC2(c2ccccc2)c(cc2)ccc2N2CCCCC2)c3nc(-c2ccccc2)n1 OARBGXPBJJPNLE-UHFFFAOYSA-N 0.000 description 1
- HZCMNXDIPFJNIP-UHFFFAOYSA-N CSc(c1c2C=C3)nc(Cl)nc1ccc2OC3(c1ccccc1)c(cc1)ccc1N1CCCCC1 Chemical compound CSc(c1c2C=C3)nc(Cl)nc1ccc2OC3(c1ccccc1)c(cc1)ccc1N1CCCCC1 HZCMNXDIPFJNIP-UHFFFAOYSA-N 0.000 description 1
- UCOVHMARRBFYDI-UHFFFAOYSA-N Clc(c1c2C=C3)nc(Cl)nc1ccc2OC3(c1ccccc1)c(cc1)ccc1N1CCCCC1 Chemical compound Clc(c1c2C=C3)nc(Cl)nc1ccc2OC3(c1ccccc1)c(cc1)ccc1N1CCCCC1 UCOVHMARRBFYDI-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
- C08F220/16—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
- C08F220/18—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
- C08F220/1804—C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D309/00—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings
- C07D309/16—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
- C07D309/20—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hydrogen atoms and substituted hydrocarbon radicals directly attached to ring carbon atoms
- C07D309/22—Radicals substituted by oxygen atoms
- C07D309/24—Methylol radicals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D311/00—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
- C07D311/02—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
- C07D311/78—Ring systems having three or more relevant rings
- C07D311/92—Naphthopyrans; Hydrogenated naphthopyrans
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/02—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
- C07D405/10—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D491/00—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
- C07D491/02—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
- C07D491/04—Ortho-condensed systems
- C07D491/044—Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
- C07D491/052—Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being six-membered
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D493/00—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
- C07D493/02—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
- C07D493/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D519/00—Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/30—Introducing nitrogen atoms or nitrogen-containing groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/0008—Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
- C08K5/0041—Optical brightening agents, organic pigments
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/15—Heterocyclic compounds having oxygen in the ring
- C08K5/151—Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
- C08K5/1545—Six-membered rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3442—Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
- C08K5/3462—Six-membered rings
- C08K5/3465—Six-membered rings condensed with carbocyclic rings
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D133/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
- C09D133/04—Homopolymers or copolymers of esters
- C09D133/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
- C09D133/08—Homopolymers or copolymers of acrylic acid esters
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K9/00—Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
- C09K9/02—Organic tenebrescent materials
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/202—Filters comprising a gas or vapour
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/22—Absorbing filters
- G02B5/23—Photochromic filters
Definitions
- the present invention relates to position 1 of a pyranoquinazoline (8H-pyrano [3,2-f] quinazoline) skeleton and naphthopyran (3H-naphtho [2,1-b] pyran having both high-speed decoloring properties and high durability.
- Photochromism is a phenomenon in which a single chemical species reversibly generates two isomers of different colors without changing the molecular weight by the action of light.
- the bonding mode or the electronic state is changed and converted to the other isomer having a different molecular structure.
- the color is changed by changing the absorption spectrum.
- the other isomer produced by light irradiation is returned to the isomer of the original molecular structure by irradiating light of another wavelength, or the color is restored.
- a compound having this property is called a photochromic compound, and this phenomenon is used to apply to various fields such as light control materials, rewritable optical memory materials, hologram materials and optical elements, security ink materials, and decorative articles. Has been studied.
- the color density when irradiated with ultraviolet rays is high, and the time from the start of ultraviolet irradiation until the color density reaches saturation is high.
- characteristics such as shortness, short time from the end of UV irradiation to the return to the original colorless state, and good repeated durability.
- Photochromic lenses made of plastic, such as intraocular lenses and contact lenses, used indoors and outdoors are manufactured by incorporating a photochromic compound exhibiting photochromism into a polymer.
- a naphthopyran derivative is used as a light control material for a plastic light control lens because it is relatively easy to adjust the thermal decoloration speed and color tone, and has high repetition durability (Patent Document 1). ⁇ 7).
- colorless naphthopyran When irradiated with light, colorless naphthopyran produces the following two isomeric transoid-cis (TC) and transoid-trans (TT) isomers as color formers.
- TC transoid-cis
- TT transoid-trans
- h ⁇ ⁇ means that the compound of the present invention undergoes photoisomerization to a metastable TC form or TT form by absorption of energy such as ultraviolet light
- ⁇ ⁇ It means that the TC body or the TT body absorbs heat energy and reversibly transfers to naphthopyran, which is an energetically stable original decoloring body.
- colorless pyranoquinazoline also produces the following two isomers TC and TT as color formers when irradiated with light.
- the TC form which is an energetically unstable chromogen, quickly returns to its original decolored form by a thermal reaction, while the TC form, which is another color form produced by the photochemical reaction of the TC form, is thermally stable. Since it remains for a long time, the decoloring reaction takes at least several minutes to several seconds.
- Conventional naphthopyran derivatives have a problem that a TT body is generated in a large proportion by light irradiation, and there is a problem that coloring remains for a long time when used as a light control material, and switching when used as an optical switch material. It had the problem of taking time.
- Patent Document 1 Japanese Patent Application Laid-Open No. 06-135967
- Patent Document 2 Japanese Patent Application Laid-Open No. 08-295690
- Patent Document 3 Japanese Patent Application Laid-Open No. 2004-210657
- Patent Document 4 Japanese Patent Application Publication No. 2007-525462
- Patent Document 5 JP-T-2012-501326
- Patent Document 6 JP-A-2015-137259
- Patent Document 7 International Publication 2009-136668
- an object of the present invention is to provide an industrially usable photochromic compound that solves the above problems and has both high-speed decoloring characteristics and high durability.
- the inventors of the present invention have made extensive studies to solve the above-mentioned problems, and have made the 1st position of the 8H-pyrano [3,2-f] quinazoline skeleton and the 10th position of the 3H-naphtho [2,1-b] pyran skeleton.
- the TC form is stabilized by the effect of intramolecular hydrogen bonding, and the generation of the TT form is greatly suppressed, resulting in a fast color-decoloration reaction and high durability.
- the present invention has been completed.
- the substituents R 1 , R 6 and R 8 are an alkyl group or an alkoxy group, an alkyl group or an alkoxy group having a substituent X, an aromatic ring group or a heterocyclic group or an aromatic ring group having a substituent X or A heterocyclic group, wherein the substituents X are the same or different independently of each other, and are a hydrogen atom, a halogen atom, a nitro group, a cyano group, a trifluoromethyl group, a hydroxyl group, a thiol group, an amino group, and a carbazole group, And a linear or branched alkyl group, alkylamino group, alkoxy group and cycloether ring having 1 to 20 carbon atoms, and —Y 1 —SiZ 1 Z 2 Z 3 group, —Y 1 —SiY 2 Z 1 Z 2 group,
- R i1 represents an alkyl group having 1 to 20 carbon atoms, an alkylene group or an alkoxylene group
- R i2 represents hydrogen or an alkyl group having 1 to 3 carbon atoms
- R ii represents an alkyl group having 1 to 20 carbon atoms, an alkylene group or an alkoxylene group
- R i4 represents a cyclic olefin having a total of carbon and silicon number of 5 to 10, and x is , 0 or 1
- R iii represents an alkyl group having 1 to 20 carbon atoms, an alkylene group or an alkoxylene group
- R i6 represents an ethylene group or an acetylene group, and is selected from the group consisting of substituents represented by 1 or 2 or more substituents, and the substituent X does not form or form an aromatic ring, a heterocyclic
- R 2 is a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, which does not have or has a substituent having the same meaning as the substituent of the aryl group on the ring.
- [2] A compound obtained by copolymerizing the compound according to [1]. [3] A solvent comprising the compound according to [1] and [2]. [4] A resin comprising the compound according to [1] and [2]. [5] A photochromic material comprising the compound according to [1] and [2]. [6] A photochromic light control lens comprising the compound according to [1] and [2]. [7] An optical switch material comprising the compound according to [1] and [2].
- the etheric oxygen atom in the present invention is an oxygen atom that forms an ether bond.
- the etheric oxygen atom of the methoxy group forms a hydrogen bond with the methylene hydrogen atom bonded to the carbon-carbon double bond to form the TC form.
- the cis-trans photoisomerization reaction involving the carbon-carbon double bond of olefins is the cis-body in the electronic ground state absorbs light energy and is excited to a high-energy electronically excited state, resulting in a carbon-carbon double bond. As a result of the loosening, the rotation occurs along the carbon-carbon bond axis.
- TC isomers of pyranoquinazoline and naphthopyran absorb light energy, are excited to an electronically excited state, and rotate along the bond axis of a carbon-carbon double bond, thereby remaining thermally stable and remaining for a long time. Is isomerized to the body.
- Methylene hydrogen atom bonded to the carbon-carbon double bond of the TC form of pyranoquinazoline or naphthopyran is bonded to the etheric oxygen atom of the methoxy group introduced at the 1-position of pyranoquinazoline or 10-position of naphthopyran with an intramolecular hydrogen bond.
- the most stable structure of the TC body is obtained for (a) to (d) represented by the following structural formulas, and the interatomic distance (R 1 ) between the etheric oxygen atom (O 1 ) and the methylene hydrogen atom (H 1 ) O1-H1), the charge q of methylene hydrogen atoms (H 1), and, interatomic distances methylene carbon atoms involved in the photoisomerization (C 1) and methylene hydrogen atoms (H 1) a (R C1-H1) Determined and predicted for hydrogen bond formation.
- R O1-H1 of (b) and (d) having a methoxy group are 2.046 ( ⁇ ) and 2.055 ( ⁇ ), respectively, and 1.52 (the van der Waals radius of the oxygen atom)
- etheric oxygen is present at the carbon atom at the 1-position of the 8H-pyrano [3,2-f] quinazoline skeleton and the 10-position of the 3H-naphtho [2,1-b] pyran skeleton.
- the TC form which is one of the chromophores generated by light irradiation by introducing atoms
- the methylene hydrogen atoms bonded to the etheric oxygen atoms and carbon-carbon double bonds form intramolecular hydrogen bonds. It was predicted that the rotation along the bond axis of the carbon-carbon double bond was structurally suppressed, and the efficiency of the photoisomerization reaction from the TC form to the TT form was significantly reduced.
- an etheric oxygen atom is bonded to the carbon atom at the 1-position of the 8H-pyrano [3,2-f] quinazoline skeleton and the 10-position of the 3H-naphtho [2,1-b] pyran skeleton. It is characterized by that.
- the present inventors have found that when the compound of the present invention is irradiated with light, a TC body, which is a color former, is generated with high efficiency, while the generation of a TT body remaining for a long time is suppressed. As a result, the present inventors have found an industrially usable photochromic having both high-speed decoloring characteristics and high durability as compared with conventional photochromic compounds. Therefore, the compound of the present invention can be expected to be applied to a wide range of fields such as a light control lens material, a hologram material, a security ink material, and an optical switch material.
- Ultraviolet-visible / near-infrared absorption spectra of benzene solutions of compounds 1 to 5 and CR173 color formers The time change of the absorbance at the maximum absorption wavelength of the color former when the benzene solution of the compounds 1 to 5 and CR173 was irradiated with ultraviolet light and stopped.
- the time change of the absorbance at the maximum absorption wavelength when the toluene solution of compound 1 was irradiated with ultraviolet light and stopped.
- the time change of the absorbance at the maximum absorption wavelength when the toluene solution of compound 4 was irradiated with ultraviolet light and stopped.
- the time change of the absorbance at the maximum absorption wavelength when the polymer thin film doped with Compound 5 was irradiated with ultraviolet light and stopped.
- the time change of the light absorbency in the maximum absorption wavelength of the color development body after repeatedly irradiating a polymer thin film doped with the compound 5 with white light The time change of the light absorbency in the maximum absorption wavelength of the color development body after repeatedly irradiating white light to the polymer thin film which doped compound CR173.
- Dependence of the light absorption time in the light steady state when the polymer thin film doped with compounds 4 and 5 and CR173 is irradiated with ultraviolet light on the white light irradiation time, when the polymer thin film not irradiated with white light is irradiated with ultraviolet light The graph normalized with the light absorbency in the light steady state of.
- Spectrum measurement interval 0.6 seconds
- the time change of the light absorbency in the maximum absorption wavelength of the color development body when ultraviolet light is irradiated to the toluene solution of the compound 10 for 5 seconds, 10 seconds, and 20 seconds.
- the ultraviolet and visible absorption spectrum of the toluene solution of the decolored body of Compound 11 UV-visible / near-infrared absorption spectra of a toluene solution of Compound 11 before ultraviolet light irradiation, during ultraviolet light irradiation, and 30 seconds after ultraviolet light irradiation was stopped.
- the ultraviolet-visible absorption spectrum of the toluene solution of the decolored body of Compound 21 UV-visible / near-infrared absorption spectra of a toluene solution of Compound 21 before ultraviolet light irradiation, during ultraviolet light irradiation, and 120 seconds after ultraviolet light irradiation is stopped.
- the ultraviolet-visible absorption spectrum of the toluene solution of the decolored body of Compound 22 The ultraviolet-visible absorption spectrum of the toluene solution of the decolored body of Compound 22.
- the compound of the present invention is represented by the general formula (1), (2) or (3).
- the substituents R 1, R 6 and R 8 are alkyl or alkoxy group having an alkyl or alkoxy group or a substituent X as well as aromatic ring group or heteroaromatic, An aromatic ring group or a heterocyclic group having a ring group or a substituent X, and the like, from the viewpoint of decoloring speed, R 2 and R 6 , and R 2 and R 8 are bonded to form a 5- to 7-membered ring; Alternatively, it is preferable to form a 5- to 7-membered ring having a substituent X, and from the viewpoint of color development properties such as color density and color development rate, the substituents R 1 , R 6 and R 8 are alkyl groups, alkoxy groups or substituents.
- An alkyl group or an alkoxy group having X, and an aromatic ring group or a heterocyclic group or an aromatic ring group or a heterocyclic group having a substituent X are preferable.
- the aromatic ring or heterocyclic ring constituting the aromatic ring group or heterocyclic group may be monocyclic or polycyclic, for example, benzene ring, naphthalene ring, anthracene ring, pyrene ring, fluorene ring, phenanthrene ring Thiophene ring, thienothiophene ring, dithienothiophene ring, pyrrole ring, pyridine ring, pyrimidine ring, quinoline ring, isoquinoline ring, quinoxaline ring, furan ring, furofuran ring and the like.
- the substituents X are the same or different independently of each other, and are a hydrogen atom, a halogen atom, a nitro group, a cyano group, a trifluoromethyl group, a hydroxyl group, a thiol group, an amino group, and a carbazole group, and a straight chain having 1 to 20 carbon atoms.
- R i1 represents an alkyl group having 1 to 20 carbon atoms, an alkylene group or an alkoxylene group
- R i2 represents hydrogen or an alkyl group having 1 to 3 carbon atoms
- a branched or cyclic alkyl group, an aromatic ring group, or a heterocyclic group, and a linear or branched alkyl group or aryl group having 1 to 20 carbon atoms is preferable from the viewpoint of suppressing the formation of a TT form
- a straight-chain alkyl group, a phenylalkyl group or a phenyl group having a number of 1 to 10 is more preferable, and a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group or a phenyl group is more preferable.
- substituents R 3 , R 4 , R 5 and R 7 may be the same or different independently from each other, and may be a hydrogen atom, a halogen atom, a nitro group, a cyano group, or a trifluoromethyl group.
- a heterocyclic ring such as an aromatic ring, a pyridine ring, a pyrrole ring, a furan ring and a thiophene ring, and an alicyclic ring such as a cyclopentane ring and a cyclohexane ring. You may substitute using these substituents 1 type (s) or 2 or more types.
- R 2 and R 6 , and R 2 and R 8 may combine to form a 5- to 7-membered ring or a 5- to 7-membered ring having a substituent X.
- R 2 and R 6 are combined to form 1,3-dioxole, 2,3-dihydrofuran, 1,4-dioxin, 2,3-dihydro-1,4-dioxin, 3,4-dihydro-2H
- Examples include an embodiment of forming a cyclic ether such as -pyran, 6,7-dihydro-5H-1,4-dioxepin, and 2,3,4,5-tetrahydrooxepin.
- R 5 , 2 or more R 6 , 1 or more R 5 and R 6 , 1 or more R 5 and R 7 , 1 or more R 7 and R 8 are bonded to each other to form unsaturated 5
- An unsaturated 6-membered ring or aromatic ring having a 6-membered ring or aromatic ring or a substituent X may be formed, and further, one or more R 5 and R 6 , one or more R 5 and R 7 An unsaturated 5- to 6-membered ring or aromatic ring formed by bonding one or more R 7 and R 8 to each other; A 5- to 6-membered ring or an aromatic ring may be formed.
- the naphthopyran skeleton, two R 5, 5-position of R 5 and 6-position and R 5 and the two either by embodiments which form a 5- to 6-membered ring or benzene ring unsaturated R 6, further two R 5, the 5-position of R 5 and 6-position of R 5 and two 5 to 6-membered ring or benzene ring unsaturated formed by any of R 6, to form a 5- to 6-membered ring or benzene ring unsaturated embodiments, aspects of forming a benzene ring by R 6 in the 6-position of R 5 and 7-position, and a mode with 8-position of the anthracene skeleton to form a benzene ring with R 6 in R 6 and 9-position.
- the molecular structure is optimized depending on the use of the compound of the present invention by introducing a substituent into the aryl moiety of the compound. Design allows for more precise control of photochromic properties such as color development speed, color tone and density and decolorization speed.
- R 3, R 4 , R 5 and R 7 are preferably a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, an amino group, an aliphatic group, from the viewpoint of controlling the color tone and decoloring speed. It is selected from a heterocyclic ring, and more preferably selected from a hydrogen atom, a methyl group, a methoxy group, biperidine and the like. You may substitute using these substituents 1 type (s) or 2 or more types.
- the photochromic properties are appropriately adjusted according to the use of the compound of the present invention, depending on the number and type of substituents on the aryl group of the compound of the present invention, the structure of the aromatic ring formed by the substituent, etc. Is also possible.
- the compound of the present invention comprises 2 or 1 polymerizable substituents selected from the substituent X and 2 or 1 polymerizable groups contained in the polymer main chain or side chain of the polymer compound.
- a chain or network polymer compound can also be obtained by radical polymerization of each other.
- the polymerizable substituent X in this case is preferably a hydroxyl group, an amino group, a carboxyl group, an isocyanate group, a halogen group, an azide group, a vinyl group, an ethynyl group, and the following partial structural formula (iv) Substituents selected from acrylic acid or methacrylic acid esters such as butyl methacrylate, butyl acrylate, and propoxy methacrylate, and the like, more preferably selected from hydroxyl, butyl methacrylate, and the like The substituent which can be mentioned is mentioned. You may substitute using these substituents 1 type (s) or 2 or more types.
- the substituent includes a carbon atom to which the substituent is bonded, a carbon atom to which the other substituent and the other substituent are bonded, and a benzene ring, a naphthalene ring, an anthracene ring, etc.
- a pyridine ring, a pyrrole ring, a furan ring, a thiophene ring or the like, or an alicyclic ring such as a cyclopentane ring or a cyclohexane ring, and other aryl groups described above may be formed on the ring. You may have a substituent which has the same meaning as the substituent which it has.
- Specific examples of the compound represented by the general formula (1) include 1-methoxy-3,8-diphenyl-8- (4- (piperidin-1-yl) phenyl) -8H-pyrano [3,2- f] Quinazoline (compound 1), 3- (dithieno [3,2-b: 2 ′, 3′-d] -1-methoxy-8-phenyl-8- (4- (piperidin-1-yl) phenyl) -8H-pyrano [3,2-f] quinazoline (compound 4), 3- (3a, 8a-dihydropyren-1-yl) -1-methoxy-8-phenyl-8- (4- (piperidine-1- Yl) phenyl) -8H-pyrano [3,2-f] quinazoline (compound 5), 1-phenoxy-3,8-diphenyl-8- (4- (piperidin-1-yl) phenyl) -8H-pyrano [ 3,2-f] quinazoline (compound 6) and
- the polymer compound of the present invention has the following partial structural formula (v) on the main chain and / or side chain. And / or the following partial structural formula (vi): It is a high molecular compound which has a repeating structural unit represented by these.
- B is one or more linking groups selected from the group consisting of carbon, nitrogen and oxygen atoms
- F is a derivative of the compound of the present invention
- FB is It represents a bond between the linking group and one or two substituents selected from the substituents R C to R F of the derivative of the compound
- ⁇ , ⁇ , ⁇ , ⁇ and ⁇ are each independently 1
- the repeating structural unit represented by the above integer is exemplified.
- a polymerizable substituent such as one or two hydroxyl groups selected from the substituent X of the compound of the present invention, and one or two carboxyl groups contained in the polymer main chain or side chain of the polymer compound It is possible to introduce the compound of the present invention into a polymer compound as a functional site by condensation polymerization with a polymerizable linking group such as.
- the compound of the present invention since the compound of the present invention has high-speed decoloring characteristics and high durability even in a solvent, it may be mixed with a predetermined solvent.
- the solvent to be mixed preferably includes toluene, benzene, chloroform, methylene chloride, ethyl acetate, acetonitrile, etc. Among them, toluene and benzene are more preferable from the viewpoint of the stability of the color former. Two or more of these solvents may be mixed.
- the compound of the present invention since the compound of the present invention has high-speed decoloring characteristics and high durability even in a solid phase such as a resin such as a plastic material or glass, it may be mixed with a solid such as a predetermined resin or glass. Alternatively, it may be chemically bonded as a functional site to the main chain of the resin.
- the resin to be mixed preferably include polymethyl methacrylate, polybutyl methacrylate, acrylic block copolymer, polystyrene, polyimide, Teflon (registered trademark), polycarbonate, polyurethane, and the like. From the viewpoint of properties, polymethyl methacrylate, polybutyl methacrylate, polymethyl methacrylate-polynormal butyl acrylate block copolymer, and polyurethane are more preferable.
- the photochromic material containing the compound, the solvent and the resin examples include a light control lens material, a hologram material, a security ink material, an optical switch material, and a decorative article.
- the compound of the present invention is a photochromic compound characterized by a particularly high-speed decoloring characteristic, and can also realize a photochromic characteristic that is visually decolored simultaneously with the stop of light irradiation.
- the decolorization rate of the compound of the present invention is, for example, measured by a transient absorption spectrum measurement method described later using a toluene as a solvent, and the half-life of the color former is preferably 1 to 3000 ms, more preferably. Is 1 to 2000 ms, more preferably 1 to 1000 ms.
- Butane-1,4-diol (2 mL, 22.6 mmol), 3,4-dihydro-2H-pyran (2.1 mL, 23.0 mmol) and paratoluenesulfonic acid (440 mg, 2.31 mmol) were added to dehydrated dichloromethane (10 mL). ) And stirred at 0 ° C. for 6 hours. Dichloromethane was added to the reaction solution, which was washed with a saturated aqueous sodium hydrogen carbonate solution and water.
- Butan-1-ol (9 mg, 0.013 mmol), parahydroquinone (1 mg, 0.009 mmol), triethylamine (0.015 mL, 0.11 mmol) were dissolved in dehydrated dichloromethane (0.3 mL) and cooled to 0 ° C. did. Thereto was added methacryloyl chloride (0.1 mL, 1.1 mmol), and the mixture was stirred at room temperature for 12 hours.
- reaction solution was added to water, the aqueous layer was extracted with dichloromethane, and the combined organic layers were washed with water and brine.
- Butyl methacrylate (1.6 mg, 0.002 mmol), butyl methacrylate (0.11 mL, 0.69 mmol) and 2,2′-azobis (isobutylnitrile) (5 mg, 0.030 mmol) were dissolved in 0.1 mL of tetrahydrofuran. The sample was placed in a freezing ampoule, and after 15 times of freezing and deaeration, it was sealed. The solution was warmed to 60 ° C.
- 2,3-Dimethoxybenzaldehyde (1515 mg, 9.1 mmol) was dissolved in dehydrated methanol (6 mL), sodium borohydride (201 mg, 35.3 mmol) was added little by little, and the mixture was stirred at room temperature for 1 hour. The solvent was removed under reduced pressure, water was added, extracted with dichloromethane, and the organic layer was washed with water. The organic layer was dried and the solvent was distilled off under reduced pressure to obtain 1442 mg of a pale yellow liquid with a yield of 94%.
- 2,3-Dimethoxybenzyl alcohol (1430 mg, 8.5 mmol) was dissolved in chloroform (10 mL), pyridine (6 mL) and thionyl chloride (1.22 mL, 17 mmol) were added little by little, and the mixture was stirred at room temperature for 1 hour. Water was added to the reaction solution, extracted with dichloromethane, and the organic layer was washed with aqueous sodium hydrogen carbonate solution. The organic layer was dried and the solvent was distilled off under reduced pressure to obtain 1371 mg of a pale yellow liquid in a yield of 86%.
- 2-hydroxyanthraquinone (503 mg, mg 2.24 mmol), p-toluenesulfonic acid (31 mg, 0.16 mmol) and dihydropyran (1 mL, 10.9 mmol) were dissolved in dehydrated tetrahydrofuran (14 mL) and stirred at room temperature for 4.5 hours. did. Dihydropyran (1 mL, 10.9 mmol) was further added thereto, and the mixture was stirred at room temperature for 12.5 hours. To the reaction solution was added 1M aqueous sodium hydroxide solution, extracted with dichloromethane, and then washed with water and brine.
- a saturated aqueous ammonium chloride solution was added to the reaction solution, and the mixture was extracted with ethyl acetate. The organic layer was washed with water and dried, and the solvent was distilled off under reduced pressure to obtain a crude product.
- This crude product and pyridinium paratoluenesulfonate (33 mg, 0.13 mmol) were dissolved in ethanol (19 mL) and stirred at 60 ° C. for 3 hours. Ethyl acetate was added to the reaction solution and washed with water.
- 9,10-dimethoxyanthracen-2-ol 28 mg, 0.11 mmol
- paratoluenesulfonic acid 7 mg, 0.04 mmol
- 1-phenyl-1- [4- (1-piperidinyl) -2-propyne-1 -Ol 68 mg, 0.23 mmol
- dichloromethane 4 mL
- 2-phenylquinazolin-6-ol (21 mg, 0.094 mmol), 1-phenyl-1- [4- (1-piperidinyl) phenyl] -2-propyn-1-ol (53 mg, 0.18 mmol), 2, 4,6-Triphenylboroxine (33 mg, 0.11 mmol) was dissolved in 1,2-dichloroethane (3.6 mL) and stirred at 80 ° C. for 21.5 hours. After allowing to cool to room temperature, saturated aqueous sodium hydrogen carbonate solution was added to the reaction solution, extracted with ethyl acetate, and the combined organic layer was washed with brine.
- 2,4-dichloroquinazolin-6-ol (344 mg, 1.60 mmol), 1-phenyl-1- [4- (1-piperidinyl) phenyl] -2-propyn-1-ol (891 mg, 3.06 mmol), 2,4,6-Triphenylboroxine (506 mg, 1.62 mmol) was dissolved in toluene (28 mL) and stirred at 100 º C for 3 days. After allowing to cool to room temperature, diethyl ether was added to the reaction solution, the resulting precipitate was removed by celite filtration, and the filtrate was washed with a saturated aqueous sodium hydrogen carbonate solution and water.
- 2,4-Dichloroquinazolin-6-ol 32 mg, 0.15 mmol
- 2-thiopheneboronic acid 52 mg, 0.41 mmol
- the soot mixture was degassed with nitrogen gas.
- ⁇ ⁇ ⁇ Tetrakis (triphenylphosphine) palladium (0) 35 mg, 0.03 mmol
- 2,4-di (thiophen-2-yl) quinazolin-6-ol (30 mg, 0.097 mmol), 1-phenyl-1- [4- (1-piperidinyl) phenyl] -2-propyn-1-ol ( 46 mg, 0.16 mmol) and 2,4,6-triphenylboroxine (17 mg, 0.054 mmol) were dissolved in 1,2-dichloroethane (4 mL) and stirred at 80 ° C. for 12.5 hours. The reaction solution was allowed to cool to room temperature, extracted with diethyl ether, and the organic layer was washed with a saturated aqueous sodium hydrogen carbonate solution and water.
- Photochromic properties of benzene solutions of compounds 1-5 and CR173 Compounds 1-5 and benzene solutions of compound CR173 (Corning, Inc.) shown below (compound 1: concentration 1.2 ⁇ 10 ⁇ 4 M, compound) 2: Concentration 8.2 ⁇ 10 ⁇ 5 M, Compound 3: Concentration 6.7 ⁇ 10 ⁇ 5 M, Compound 4: Concentration 8.9 ⁇ 10 ⁇ 5 M, Compound 5: Concentration 8.1 ⁇ 10 ⁇ 5 M , CR173: concentration of 9.0 ⁇ 10 ⁇ 5 M) and a transient absorption spectrum measured using ultraviolet light having a wavelength of 365 nm as excitation light are shown in FIGS. 23 and 24, respectively.
- FIG. 25 shows the time change of absorbance at the maximum absorption wavelength of the color former when the benzene solution of each compound was irradiated with ultraviolet light and stopped.
- the half-life of the chromophore is 29 seconds and the coloring remains for a long time, whereas for compounds 1 to 5 in which an etheric oxygen atom is bonded to the 1st carbon atom of the pyranoquinazoline skeleton, The half-life of the chromophore was 0.6 to 0.8 seconds, confirming that the decoloring reaction was significantly accelerated.
- FIG. 26 shows the ultraviolet and visible absorption spectra of ⁇ 10 ⁇ 5 M, Compound 5: concentration 5.6 ⁇ 10 ⁇ 5 M, CR173: concentration 5.5 ⁇ 10 ⁇ 5 M). It was confirmed that compounds 4 and 5 strongly absorb ultraviolet light in the UVA region (wavelength 315 to 400 nm) and have high sensitivity to sunlight even in toluene as compared with compound CR173.
- ultraviolet light with a wavelength of 365nm at various intensity in a toluene solution of the above concentration of each compound shows the time change of absorbance at the maximum absorption wavelength of the color former when irradiated and stopped.
- FIG. 31 shows the relationship between the absorbance in the light steady state when irradiated with 440 mW / cm 2 ) and the irradiation ultraviolet light intensity.
- the irradiation ultraviolet light intensity was stronger than about 200 mW / cm 2 , it was confirmed that compounds 4 and 5 were colored at a higher concentration than CR173.
- LA2330 manufactured by Kuraray Co., Ltd.
- Polymer thin film doped with compound 4 (1% by mass, film thickness 4.5 ⁇ m, maximum absorption wavelength 574 nm of colored body), polymer thin film doped with compound 5 (1% by weight, film thickness 4.5 ⁇ m, maximum absorption of colored body)
- Various intensities (7 mW / cm 2 , 10 mW / cm 2 , 20 mW / cm 2 ) for the polymer thin film doped with CR173 (wavelength 567 nm) and CR173 (1% by mass, film thickness 4.5 ⁇ m, maximum absorption wavelength 560 nm of the color former) 40mW / cm 2, 70mW / cm 2, 150mW / cm 2, 220mW / cm 2, 270mW / cm 2) temporal change in absorbance at the maximum absorption wavelength of the coloring material when irradiated and stop ultraviolet light having a wavelength of 365nm in are shown in FIGS.
- FIG. 35 shows the relationship between the absorbance in the steady state of light and the intensity of irradiated ultraviolet light.
- the irradiation ultraviolet light intensity was higher than about 13 mW / cm 2 , it was confirmed that the polymer thin film doped with compounds 4 and 5 developed a higher color than the polymer thin film doped with CR173.
- Photochromic characteristics of a toluene solution of compound 1 A transient absorption spectrum of a toluene solution of compound 1 (concentration 1.1 ⁇ 10 ⁇ 4 M) was measured using ultraviolet light having a wavelength of 365 nm as excitation light.
- FIG. 40 shows a transient absorption spectrum for 40 seconds before ultraviolet irradiation, at the time of ultraviolet irradiation, and after ultraviolet irradiation is stopped.
- a color former having a maximum absorption wavelength at a wavelength of 553 nm was reversibly produced.
- Photochromic characteristics of a toluene solution of compound 6 An ultraviolet / visible absorption spectrum of a toluene solution of compound 6 (concentration 5.6 ⁇ 10 ⁇ 5 M) is shown in FIG. The transient absorption spectrum of the above toluene solution of Compound 6 was measured using ultraviolet light having a wavelength of 365 nm as excitation light.
- FIG. 43 shows transient absorption spectra for 40 seconds before ultraviolet irradiation, at the time of ultraviolet irradiation, and after ultraviolet irradiation is stopped.
- a color former having a maximum absorption wavelength at a wavelength of 557 nm was reversibly produced.
- Photochromic characteristics of the toluene solution of compound 7 The ultraviolet / visible absorption spectrum of the toluene solution of compound 7 (concentration 5.4 ⁇ 10 ⁇ 5 M) is shown in FIG.
- the transient absorption spectrum of the toluene solution of Compound 7 was measured using ultraviolet light having a wavelength of 365 nm as excitation light.
- FIG. 46 shows transient absorption spectra before irradiation with ultraviolet light, during irradiation with ultraviolet light, and after 40 seconds after stopping irradiation with ultraviolet light.
- a color former having a maximum absorption wavelength at a wavelength of 472 nm was reversibly produced.
- Photochromic characteristics of a toluene solution of compound 8 An ultraviolet / visible absorption spectrum of a toluene solution of compound 8 (concentration 5.5 ⁇ 10 ⁇ 5 M) is shown in FIG. A transient absorption spectrum of the toluene solution of Compound 8 was measured using ultraviolet light having a wavelength of 365 nm as excitation light.
- FIG. 49 shows the transient absorption spectra before ultraviolet irradiation, during ultraviolet irradiation, and after 40 seconds from the termination of ultraviolet irradiation.
- a color former having a maximum absorption wavelength at a wavelength of 564 nm was reversibly generated.
- Photochromic characteristics of a toluene solution of compound 10 An ultraviolet / visible absorption spectrum of a toluene solution of compound 10 (concentration 5.6 ⁇ 10 ⁇ 5 M) is shown in FIG. A transient absorption spectrum of the toluene solution of Compound 10 was measured using ultraviolet light having a wavelength of 365 nm as excitation light.
- FIG. 55 shows transient absorption spectra before ultraviolet irradiation, during ultraviolet irradiation, and 120 seconds after ultraviolet irradiation is stopped.
- a color former having a maximum absorption wavelength at a wavelength of 423 nm was reversibly produced.
- Photochromic characteristics of toluene solution of compound 11 The ultraviolet / visible absorption spectrum of the toluene solution of compound 11 (concentration 5.5 ⁇ 10 ⁇ 5 M) is shown in FIG.
- the transient absorption spectrum of the toluene solution of Compound 11 was measured using ultraviolet light having a wavelength of 365 nm as excitation light.
- FIG. 58 shows transient absorption spectra before ultraviolet irradiation, during ultraviolet irradiation, and 30 seconds after ultraviolet irradiation is stopped.
- a color former having a maximum absorption wavelength at a wavelength of 488 nm was reversibly produced.
- Photochromic properties ⁇ br/> toluene solution of Compound 12 of a toluene solution of Compound 12 UV-visible absorption spectra of (a concentration 5.5 ⁇ 10 -5 M) shown in FIG. 60.
- a transient absorption spectrum of the toluene solution of Compound 12 was measured using ultraviolet light having a wavelength of 365 nm as excitation light.
- FIG. 61 shows transient absorption spectra before ultraviolet irradiation, during ultraviolet irradiation, and 20 seconds after ultraviolet irradiation is stopped.
- a color former having a maximum absorption wavelength at a wavelength of 548 nm was reversibly generated.
- Photochromic characteristics of a toluene solution of compound 13 An ultraviolet / visible absorption spectrum of a toluene solution of compound 13 (concentration 5.5 ⁇ 10 ⁇ 5 M) is shown in FIG. A transient absorption spectrum of the toluene solution of Compound 13 was measured using ultraviolet light having a wavelength of 365 nm as excitation light.
- FIG. 64 shows transient absorption spectra 80 seconds before ultraviolet irradiation, during ultraviolet irradiation, and after ultraviolet irradiation stopped.
- a color former having a maximum absorption wavelength at a wavelength of 479 nm was reversibly produced.
- the chromophore shows changes with time in absorbance at the maximum absorption wavelength after irradiation with ultraviolet light for 5, 10, 20, and 30 seconds. It was confirmed that at 25 ° C., after the ultraviolet light irradiation was stopped, the chromophore rapidly decayed with a half-life of 8.0 s. At this time, it was confirmed that the generation ratio of the TT body remained at about 14%.
- Photochromic characteristics of the toluene solution of compound 14 The ultraviolet / visible absorption spectrum of the toluene solution of compound 14 (concentration 5.5 ⁇ 10 ⁇ 5 M) is shown in FIG.
- a transient absorption spectrum of the toluene solution of Compound 14 was measured using ultraviolet light having a wavelength of 365 nm as excitation light.
- FIG. 67 shows transient absorption spectra for 100 seconds before ultraviolet irradiation, during ultraviolet irradiation, and after ultraviolet irradiation stopped.
- a color former having a maximum absorption wavelength at a wavelength of 518 nm was reversibly produced.
- Photochromic characteristics of a toluene solution of compound 15 An ultraviolet / visible absorption spectrum of a toluene solution of compound 15 (concentration 5.5 ⁇ 10 ⁇ 5 M) is shown in FIG. A transient absorption spectrum of the toluene solution of Compound 15 was measured using ultraviolet light having a wavelength of 365 nm as excitation light.
- FIG. 70 shows a transient absorption spectrum for 90 seconds before ultraviolet irradiation, during ultraviolet irradiation, and after ultraviolet irradiation stops.
- a color former having a maximum absorption wavelength at a wavelength of 491 nm was reversibly generated.
- 71 shows the change in absorbance over time at the maximum absorption wavelength after irradiation with ultraviolet light for 5, 10, 20, and 30 seconds.
- the ultraviolet light irradiation was stopped, it was confirmed that the chromophore decayed relatively quickly with a half-life of 4.8 s.
- the generation ratio of the TT body remained at about 8%. From the results of the photochromic properties of Compound 15, it was confirmed that the production of TT bodies can be efficiently suppressed by suppressing the rotation of the corresponding etheric oxygen atoms.
- Photochromic properties of the toluene solution of compound 16 The ultraviolet / visible absorption spectrum of the toluene solution of compound 16 (concentration 5.5 ⁇ 10 ⁇ 5 M) is shown in FIG.
- a transient absorption spectrum of the toluene solution of Compound 16 was measured using ultraviolet light having a wavelength of 365 nm as excitation light.
- FIG. 73 shows a transient absorption spectrum before ultraviolet irradiation, at the time of ultraviolet irradiation, and 40 seconds after the ultraviolet irradiation is stopped.
- a color former having a maximum absorption wavelength at a wavelength of 561 nm was reversibly generated.
- Photochromic characteristics of toluene solution of compound 17 The ultraviolet / visible absorption spectrum of the toluene solution of compound 17 (concentration 5.6 ⁇ 10 ⁇ 5 M) is shown in FIG.
- a transient absorption spectrum of the toluene solution of Compound 17 was measured using ultraviolet light having a wavelength of 365 nm as excitation light.
- FIG. 76 shows a transient absorption spectrum before ultraviolet irradiation, at the time of ultraviolet irradiation, and 40 seconds after the ultraviolet irradiation is stopped.
- a color former having a maximum absorption wavelength at a wavelength of 535 nm was reversibly generated.
- Photochromic properties of the toluene solution of compound 18 The ultraviolet / visible absorption spectrum of the toluene solution of compound 18 (concentration 5.5 ⁇ 10 ⁇ 5 M) is shown in FIG.
- a transient absorption spectrum of the toluene solution of Compound 18 was measured using ultraviolet light having a wavelength of 365 nm as excitation light.
- FIG. 79 shows transient absorption spectra before ultraviolet irradiation, during ultraviolet irradiation, and 40 seconds after ultraviolet irradiation is stopped.
- a color former having a maximum absorption wavelength at a wavelength of 520 nm was reversibly produced.
- FIG. 81 shows an ultraviolet / visible absorption spectrum of a toluene solution of compound 19 (concentration: 5.7 ⁇ 10 ⁇ 5 M).
- a transient absorption spectrum of the toluene solution of Compound 19 was measured using ultraviolet light having a wavelength of 365 nm as excitation light.
- FIG. 82 shows a transient absorption spectrum before ultraviolet irradiation, during ultraviolet irradiation, and after 40 seconds from stopping ultraviolet irradiation.
- a color former having a maximum absorption wavelength at a wavelength of 565 nm was reversibly produced.
- Photochromic characteristics of a toluene solution of compound 20 An ultraviolet / visible absorption spectrum of a toluene solution of compound 20 (concentration 5.9 ⁇ 10 ⁇ 5 M) is shown in FIG. A transient absorption spectrum of the toluene solution of Compound 20 was measured using ultraviolet light having a wavelength of 365 nm as excitation light.
- FIG. 85 shows a transient absorption spectrum before irradiation with ultraviolet rays, during irradiation with ultraviolet rays, and 20 seconds after stopping irradiation with ultraviolet rays.
- FIG. 86 shows the time change of absorbance at the maximum absorption wavelength after irradiation with ultraviolet light for 5, 10, 20, and 30 seconds. It was confirmed that at 25 ° C., after the ultraviolet light irradiation was stopped, the color former rapidly decayed with a half-life of 0.10 s. It was confirmed that 39% of the TT form was generated in the compound 20 in which the thioether group was bonded to the carbon atom at the 1-position of the pyranoquinazoline skeleton.
- Photochromic characteristics of toluene solution of compound 21 The ultraviolet / visible absorption spectrum of the toluene solution of compound 21 (concentration 5.5 ⁇ 10 ⁇ 5 M) is shown in FIG.
- the transient absorption spectrum of the toluene solution of Compound 21 was measured using ultraviolet light having a wavelength of 365 nm as excitation light.
- 88 shows a transient absorption spectrum before ultraviolet irradiation, during ultraviolet irradiation, and 120 seconds after ultraviolet irradiation is stopped.
- a color former having a maximum absorption wavelength at a wavelength of 423 nm was reversibly generated.
- FIG. 90 shows the ultraviolet / visible absorption spectrum of the toluene solution of compound 22 (concentration 5.5 ⁇ 10 ⁇ 5 M).
- a transient absorption spectrum of the toluene solution of Compound 22 was measured using ultraviolet light having a wavelength of 365 nm as excitation light.
- FIG. 91 shows transient absorption spectra before ultraviolet irradiation, during ultraviolet irradiation, and 30 seconds after ultraviolet irradiation is stopped.
- a color former having a maximum absorption wavelength at a wavelength of 501 nm was reversibly generated.
- the pyranoquinazoline derivative and naphthopyran derivative of the present invention have a fast color-decoloring reaction and high durability as compared with conventional photochromic materials. Further, depending on the use of the compound of the present invention, the decoloration reaction rate and color density, depending on the number and type of substituents on the aryl group of the compound of the present invention, the structure of the aromatic ring formed by the substituent, etc. It is also possible to appropriately adjust the photochromic characteristics such as.
- the first carbon atom of the pyranoquinazoline (8H-pyrano [3,2-f] quinazoline) skeleton of the present invention and the carbon atom at the 10th position of the naphthopyran (3H-naphtho [2,1-b] pyran) skeleton are etheric.
- a photochromic compound to which oxygen atoms are bonded has high industrial applicability as an excellent photochromic compound, particularly in the fields of light control material, hologram material, security ink material and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
- Optical Filters (AREA)
- Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
- Plural Heterocyclic Compounds (AREA)
- Pyrane Compounds (AREA)
Abstract
Description
特許文献1:特開平06-135967号公報
特許文献2:特開平08-295690号公報
特許文献3:特開2004-210657号公報
特許文献4:特表2007-525462号公報
特許文献5:特表2012-501326号公報
特許文献6:特開2015-137259号公報
特許文献7:国際公開2009-136668
[1] 下記一般式(1)、(2)または(3)
(ここで、Ri1は、炭素数1~20のアルキル基、アルキレン基またはアルコキシレン基を表し、Ri2は、水素または炭素数1~3のアルキル基を表す)で表される置換基、下記部分構造式(ii)
[2] [1]に記載の化合物が共重合されてなることを特徴とする化合物に関する。
[3] [1]および[2]に記載の化合物を含有することを特徴とする溶媒に関する。
[4] [1]および[2]に記載の化合物を含有することを特徴とする樹脂に関する。
[5] [1]および[2]に記載の化合物を含有することを特徴とするフォトクロミック材料に関する。
[6] [1]および[2]に記載の化合物を含有することを特徴とするフォトクロミック調光レンズに関する。
[7] [1]および[2]に記載の化合物を含有することを特徴とする光スイッチ材料に関する。
したがって、本発明の化合物は、調光レンズ材料、ホログラム材料、セキュリティインク材料、光スイッチ材料などの広い分野に応用が期待できるものである。
および/または、下記部分構造式(vi)、
本発明の化合物の置換基Xから選ばれる1個または2個のヒドロキシル基などの重合可能な置換基と、高分子化合物の高分子主鎖または側鎖に含まれる1個または2個のカルボキシル基などの重合可能な連結基との縮合重合などにより、本発明の化合物を機能性部位として高分子化合物中へ導入することが可能である。
本発明の化合物の消色速度は、例えば、溶媒としてトルエンを用いた溶液を、後述する過渡吸収スペクトル測定法により測定して、発色体の半減期が、好ましくは1~3000msであり、より好ましくは1~2000msであり、さらに好ましくは1~1000msの範囲である。
8-フェニル-8-(4-(ピペリジン-1-イル)フェニル)-3-(ピレン-1-イル)-1-(4-((テトラヒドロ-2H-ピラン-2-イル)オキシ)ブトキシ)-8H-ピラノ[3,2-f]キナゾリンの合成
この淡黄色液体と2-インダノン(808mg, 6.11mmol)を脱水テトラヒドロフラン(5mL)に溶解し、水素化ナトリウム(55%, 流動パラフィンに分散)(681mg, 15.6mmol)を注意深く加えた後、70℃で2時間攪拌した。室温まで放冷後、反応溶液に1N塩酸(10mL)を加え、酢酸エチルで抽出し、有機層を水で洗浄した。有機層を乾燥、溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー(酢酸エチル:ジクロロメタン=1:200)で精製し、黄色固体906mgを収率54%で得た。
化合物1~5及び以下に示す化合物CR173(Corning,Inc.)のベンゼン溶液(化合物1:濃度1.2×10-4M、化合物2:濃度8.2×10-5M、化合物3:濃度6.7×10-5M、化合物4:濃度8.9×10-5M、化合物5:濃度8.1×10-5M、CR173:濃度9.0×10-5M)の紫外・可視吸収スペクトル、および波長365nmの紫外光を励起光として測定した過渡吸収スペクトルをそれぞれ図23および図24に示す。化合物2~5は化合物CR173と比べて、UVA領域(波長315~400nm)の紫外光を強く吸収し、太陽光に対して高い感度を有することが確認された。紫外光照射により、化合物1は552nmに、化合物2は558nmに、化合物3は560nmに、化合物4は570nmに、化合物5は565nmに、化合物CR173は560nmに極大吸収波長を有する発色体が可逆的に生成した。図25に、各化合物の上記のベンゼン溶液に紫外光照射および停止した時の発色体の極大吸収波長における吸光度の時間変化を示す。CR173については、発色体の半減期が29秒であり、着色が長時間残存するのに対し、ピラノキナゾリン骨格の1位の炭素原子にエーテル性酸素原子が結合した化合物1~5については、発色体の半減期は0.6~0.8秒と消色反応が大幅に高速化することが確認された。
化合物1、4、5及びCR173のトルエン溶液(化合物1:濃度5.5×10-5M、化合物4:濃度5.5×10-5M、化合物5:濃度5.6×10-5M、CR173:濃度5.5×10-5M)の紫外・可視吸収スペクトルを図26に示す。化合物4と5はトルエン中でも化合物CR173と比べて、UVA領域(波長315~400nm)の紫外光を強く吸収し、太陽光に対して高い感度を有することが確認された。図27~30に、各化合物の上記の濃度のトルエン溶液にさまざまな強度で波長365nmの紫外光(11mW/cm2、21mW/cm2、32mW/cm2、100mW/cm2、230mW/cm2、360mW/cm2、440mW/cm2)を照射および停止した時の発色体の極大吸収波長における吸光度の時間変化を示す。
化合物4、5およびCR173を1質量%含むポリメチルメタクリレート-ポリノルマルブチルアクリレートブロック共重合体(クラレ社製LA2330)の20質量%トルエン溶液をそれぞれ調整し、ガラス基板上にスピンコート法でポリマー薄膜を作成した。化合物4をドープしたポリマー薄膜(1質量%、膜厚4.5μm、発色体の極大吸収波長574nm)、化合物5をドープしたポリマー薄膜(1質量%、膜厚4.5μm、発色体の極大吸収波長567nm)およびCR173をドープしたポリマー薄膜(1質量%、膜厚4.5μm、発色体の極大吸収波長560nm)それぞれについて、さまざまな強度(7mW/cm2、10mW/cm2、20mW/cm2、40mW/cm2、70mW/cm2、150mW/cm2、220mW/cm2、270mW/cm2)で波長365nmの紫外光を照射および停止した時の発色体の極大吸収波長における吸光度の時間変化を図32~34にそれぞれ示す。溶液の測定結果と同様にCR173については、紫外光照射停止後、発色体が長時間残存しているのに対し、化合物1、4、5については、高速に消色反応が進行することが確認された。
化合物4、5およびCR173について、実施例18と同様のポリマー薄膜を作成し、白色光(キセノンランプ 240 nm ~ 1000 nm、強度15.5mW/cm2)を連続照射(1時間、2時間、3時間)したポリマー薄膜に波長550nmの可視光を3分間照射して完全に無色にした後、2秒間紫外光照射した際の発色体の極大吸収波長における吸光度の時間変化を図36~38に示す。
波長365nmの紫外光を励起光として化合物1のトルエン溶液(濃度1.1×10-4M)の過渡吸収スペクトルを測定した。紫外照射前、紫外線照射時、紫外線照射停止後40秒の過渡吸収スペクトルを図40に示す。化合物1のトルエン溶液に紫外光を照射すると波長553nmに極大吸収波長を有する発色体が可逆的に生成した。紫外光を5、10、20、30秒間照射後の極大吸収波長における吸光度の時間変化を図41に示す。25℃において、紫外光照射停止後、発色体は半減期0.90sで速やかに減衰することが確認された。この時の、TT体の生成割合は4%程度に留まっていることが確認された。化合物1のフォトクロミック特性の結果からも、ピラノキナゾリン骨格の1位の炭素原子にエーテル性酸素原子が結合することで、TT体の生成が抑えられていることが確認された。
化合物6のトルエン溶液(濃度5.6×10-5M)の紫外・可視吸収スペクトルを図42に示す。波長365nmの紫外光を励起光として化合物6の上記トルエン溶液の過渡吸収スペクトルを測定した。紫外照射前、紫外線照射時、紫外線照射停止後40秒の過渡吸収スペクトルを図43に示す。化合物6のトルエン溶液に紫外光を照射すると、波長557nmに極大吸収波長を有する発色体が可逆的に生成した。紫外光を5、10、20、30秒間照射後の極大吸収波長における吸光度の時間変化を図44に示す。25℃において、紫外光照射停止後、発色体は半減期0.47sで速やかに減衰することが確認された。この時の、TT体の生成割合は16%程度に留まっていることが確認された。化合物6のフォトクロミック特性の結果からも、ピラノキナゾリン骨格の1位の炭素原子にエーテル性酸素原子が結合することで、TT体の生成が抑えられていることが確認された。
化合物7のトルエン溶液(濃度5.4×10-5M)の紫外・可視吸収スペクトルを図45に示す。波長365nmの紫外光を励起光として化合物7の上記トルエン溶液の過渡吸収スペクトルを測定した。紫外照射前、紫外線照射時、紫外線照射停止後40秒の過渡吸収スペクトルを図46に示す。化合物7のトルエン溶液に紫外光を照射すると、波長472nmに極大吸収波長を有する発色体が可逆的に生成した。紫外光を5、10、20、30秒間照射後の極大吸収波長における吸光度の時間変化を図47に示す。25℃において、紫外光照射停止後、発色体は半減期1.8sで速やかに減衰することが確認された。この時の、TT体の生成割合は5%程度に留まっていることが確認された。化合物7のフォトクロミック特性の結果からも、ナフトピラン骨格の10位の炭素原子にエーテル性酸素原子が結合することで、TT体の生成が抑えられていることが確認された。
化合物8のトルエン溶液(濃度5.5×10-5M)の紫外・可視吸収スペクトルを図48に示す。波長365nmの紫外光を励起光として化合物8の上記トルエン溶液の過渡吸収スペクトルを測定した。紫外照射前、紫外線照射時、紫外線照射停止後40秒の過渡吸収スペクトルを図49に示す。化合物8のトルエン溶液に紫外光を照射すると、波長564nmに極大吸収波長を有する発色体が可逆的に生成した。紫外光を5、10、20、30秒間照射後の極大吸収波長における吸光度の時間変化を図50に示す。25℃において、紫外光照射停止後、発色体は半減期0.28sで速やかに減衰することが確認された。この時の、TT体の生成割合は3%程度に留まっていることが確認された。化合物8のフォトクロミック特性の結果からも、ピラノキナゾリン骨格の1位の炭素原子にエーテル性酸素原子が結合することで、TT体の生成が抑えられていることが確認された。
化合物8とブチルメタクリレートの共重合で得られたポリマー(化合物9)を1.646 mg測り取り、2 mLのトルエンに溶解した。このトルエン溶液の紫外・可視吸収スペクトルを図51に示す。時間分解分光法により得られたトルエン溶液の過渡吸収スペクトルを図52に示す。化合物9のトルエン溶液に紫外光を照射すると、波長511nmに極大吸収波長を有する発色体が可逆的に生成した。紫外光を10秒間照射後の極大吸収波長における吸光度の時間変化を図53に示す。25℃において、紫外光照射停止後、発色体は半減期1.62sで速やかに減衰することが確認された。この時の、TT体の生成割合は6%程度に留まっていることが確認された。化合物9のフォトクロミック特性の結果からも、モノマーと同様に、ポリマーにおいてもTT体の生成が効果的に抑制されていることが確認された。
化合物10のトルエン溶液(濃度5.6×10-5M)の紫外・可視吸収スペクトルを図54に示す。波長365nmの紫外光を励起光として化合物10の上記トルエン溶液の過渡吸収スペクトルを測定した。紫外照射前、紫外線照射時、紫外線照射停止後120秒の過渡吸収スペクトルを図55に示す。化合物10のトルエン溶液に紫外光を照射すると、波長423nmに極大吸収波長を有する発色体が可逆的に生成した。紫外光を5、10、20秒間照射後の極大吸収波長における吸光度の時間変化を図56に示す。25℃において、紫外光照射停止後、発色体は半減期5.7sで速やかに減衰することが確認された。この時の、TT体の生成割合は12%程度に留まっていることが確認された。
化合物11のトルエン溶液(濃度5.5×10-5M)の紫外・可視吸収スペクトルを図57に示す。波長365nmの紫外光を励起光として化合物11の上記トルエン溶液の過渡吸収スペクトルを測定した。紫外照射前、紫外線照射時、紫外線照射停止後30秒の過渡吸収スペクトルを図58に示す。化合物11のトルエン溶液に紫外光を照射すると、波長488nmに極大吸収波長を有する発色体が可逆的に生成した。紫外光を5、10、20秒間照射後の極大吸収波長における吸光度の時間変化を図59に示す。25℃において、紫外光照射停止後、発色体は半減期1.7sで速やかに減衰することが確認された。この時の、TT体の生成割合は14%程度に留まっていることが確認された。
化合物12のトルエン溶液(濃度5.5×10-5M)の紫外・可視吸収スペクトルを図60に示す。波長365nmの紫外光を励起光として化合物12の上記トルエン溶液の過渡吸収スペクトルを測定した。紫外照射前、紫外線照射時、紫外線照射停止後20秒の過渡吸収スペクトルを図61に示す。化合物12のトルエン溶液に紫外光を照射すると、波長548nmに極大吸収波長を有する発色体が可逆的に生成した。紫外光を5、10秒間照射後の極大吸収波長における吸光度の時間変化を図62に示す。25℃において、紫外光照射停止後、発色体は半減期0.2sで速やかに減衰することが確認された。この時の、TT体の生成割合は14%程度に留まっていることが確認された。
化合物13のトルエン溶液(濃度5.5×10-5M)の紫外・可視吸収スペクトルを図63に示す。波長365nmの紫外光を励起光として化合物13の上記トルエン溶液の過渡吸収スペクトルを測定した。紫外照射前、紫外線照射時、紫外線照射停止後80秒の過渡吸収スペクトルを図64に示す。化合物6のトルエン溶液に紫外光を照射すると、波長479nmに極大吸収波長を有する発色体が可逆的に生成した。紫外光を5、10、20、30秒間照射後の極大吸収波長における吸光度の時間変化を図65に示す。25℃において、紫外光照射停止後、発色体は半減期8.0sで速やかに減衰することが確認された。この時の、TT体の生成割合は14%程度に留まっていることが確認された。
化合物14のトルエン溶液(濃度5.5×10-5M)の紫外・可視吸収スペクトルを図66に示す。波長365nmの紫外光を励起光として化合物14の上記トルエン溶液の過渡吸収スペクトルを測定した。紫外照射前、紫外線照射時、紫外線照射停止後100秒の過渡吸収スペクトルを図67に示す。化合物14のトルエン溶液に紫外光を照射すると、波長518nmに極大吸収波長を有する発色体が可逆的に生成した。紫外光を5、10、20、30秒間照射後の極大吸収波長における吸光度の時間変化を図68に示す。25℃において、紫外光照射停止後、発色体は半減期7.6sで比較的速やかに減衰することが確認された。この時の、TT体の生成割合は12%程度に留まっていることが確認された。
化合物15のトルエン溶液(濃度5.5×10-5M)の紫外・可視吸収スペクトルを図69に示す。波長365nmの紫外光を励起光として化合物15の上記トルエン溶液の過渡吸収スペクトルを測定した。紫外照射前、紫外線照射時、紫外線照射停止後90秒の過渡吸収スペクトルを図70に示す。化合物15のトルエン溶液に紫外光を照射すると、波長491nmに極大吸収波長を有する発色体が可逆的に生成した。紫外光を5、10、20、30秒間照射後の極大吸収波長における吸光度の時間変化を図71に示す。25℃において、紫外光照射停止後、発色体は半減期4.8sで比較的速やかに減衰することが確認された。この時の、TT体の生成割合は8%程度に留まっていることが確認された。化合物15のフォトクロミック特性の結果から、該当するエーテル性酸素原子の回転を抑えることにより、効率的にTT体の生成を抑えることができることが確認された。
化合物16のトルエン溶液(濃度5.5×10-5M)の紫外・可視吸収スペクトルを図72に示す。波長365nmの紫外光を励起光として化合物16の上記トルエン溶液の過渡吸収スペクトルを測定した。紫外照射前、紫外線照射時、紫外線照射停止後40秒の過渡吸収スペクトルを図73に示す。化合物16のトルエン溶液に紫外光を照射すると、波長561nmに極大吸収波長を有する発色体が可逆的に生成した。紫外光を5、10、20、30秒間照射後の極大吸収波長における吸光度の時間変化を図74に示す。25℃において、紫外光照射停止後、発色体は半減期0.57sで速やかに減衰することが確認された。ピラノキナゾリン骨格の1位の炭素原子に水素原子が結合している化合物16では44%ものTT体が生成していることが確認された。
化合物17のトルエン溶液(濃度5.6×10-5M)の紫外・可視吸収スペクトルを図75に示す。波長365nmの紫外光を励起光として化合物17の上記トルエン溶液の過渡吸収スペクトルを測定した。紫外照射前、紫外線照射時、紫外線照射停止後40秒の過渡吸収スペクトルを図76に示す。化合物17のトルエン溶液に紫外光を照射すると、波長535nmに極大吸収波長を有する発色体が可逆的に生成した。紫外光を5、10、20、30秒間照射後の極大吸収波長における吸光度の時間変化を図77に示す。25℃において、紫外光照射停止後、発色体は半減期0.31sで速やかに減衰することが確認された。ピラノキナゾリン骨格の1位の炭素原子にメチル基が結合している化合物17では24%ものTT体が生成していることが確認された。
化合物18のトルエン溶液(濃度5.5×10-5M)の紫外・可視吸収スペクトルを図78に示す。波長365nmの紫外光を励起光として化合物18の上記トルエン溶液の過渡吸収スペクトルを測定した。紫外照射前、紫外線照射時、紫外線照射停止後40秒の過渡吸収スペクトルを図79に示す。化合物18のトルエン溶液に紫外光を照射すると、波長520nmに極大吸収波長を有する発色体が可逆的に生成した。紫外光を5、10、20、30秒間照射後の極大吸収波長における吸光度の時間変化を図80に示す。25℃において、紫外光照射停止後、発色体は半減期2.9sでゆっくり減衰することが確認された。ピラノキナゾリン骨格の1位の炭素原子にtert―ブチル基が結合している化合物18では29%ものTT体が生成していることが確認された。
化合物19のトルエン溶液(濃度5.7×10-5M)の紫外・可視吸収スペクトルを図81に示す。波長365nmの紫外光を励起光として化合物19の上記トルエン溶液の過渡吸収スペクトルを測定した。紫外照射前、紫外線照射時、紫外線照射停止後40秒の過渡吸収スペクトルを図82に示す。化合物19のトルエン溶液に紫外光を照射すると、波長565nmに極大吸収波長を有する発色体が可逆的に生成した。紫外光を5、10、20、30秒間照射後の極大吸収波長における吸光度の時間変化を図83に示す。25℃において、紫外光照射停止後、発色体は半減期0.17sで速やかに減衰することが確認された。ピラノキナゾリン骨格の1位の炭素原子にチエニル基が結合している化合物19では86%ものTT体が生成していることが確認された。
化合物20のトルエン溶液(濃度5.9×10-5M)の紫外・可視吸収スペクトルを図84に示す。波長365nmの紫外光を励起光として化合物20の上記トルエン溶液の過渡吸収スペクトルを測定した。紫外照射前、紫外線照射時、紫外線照射停止後20秒の過渡吸収スペクトルを図85に示す。化合物20のトルエン溶液に紫外光を照射すると、波長552nmに極大吸収波長を有する発色体が可逆的に生成した。紫外光を5、10、20、30秒間照射後の極大吸収波長における吸光度の時間変化を図86に示す。25℃において、紫外光照射停止後、発色体は半減期0.10sで速やかに減衰することが確認された。ピラノキナゾリン骨格の1位の炭素原子にチオエーテル基が結合している化合物20では39%ものTT体が生成していることが確認された。
化合物21のトルエン溶液(濃度5.5×10-5M)の紫外・可視吸収スペクトルを図87に示す。波長365nmの紫外光を励起光として化合物21の上記トルエン溶液の過渡吸収スペクトルを測定した。紫外照射前、紫外線照射時、紫外線照射停止後120秒の過渡吸収スペクトルを図88に示す。化合物21のトルエン溶液に紫外光を照射すると、波長423nmに極大吸収波長を有する発色体が可逆的に生成した。紫外光を5、10、20秒間照射後の極大吸収波長における吸光度の時間変化を図89に示す。25℃において、紫外光照射停止後、発色体は半減期12sで速やかに減衰することが確認された。この時の、TT体の生成割合は15%程度であることが確認された。
化合物22のトルエン溶液(濃度5.5×10-5M)の紫外・可視吸収スペクトルを図90に示す。波長365nmの紫外光を励起光として化合物22の上記トルエン溶液の過渡吸収スペクトルを測定した。紫外照射前、紫外線照射時、紫外線照射停止後30秒の過渡吸収スペクトルを図91に示す。化合物22のトルエン溶液に紫外光を照射すると、波長501nmに極大吸収波長を有する発色体が可逆的に生成した。紫外光を5、10、20秒間照射後の極大吸収波長における吸光度の時間変化を図92に示す。25℃において、紫外光照射停止後、発色体は半減期3.3sで比較的速やかに減衰することが確認された。この時の、TT体の生成割合は21%程度であることが確認された。
Claims (7)
- 下記一般式(1)、(2)または(3)
- 請求項1に記載の化合物が共重合されてなることを特徴とする化合物。
- 請求項1および2に記載の化合物を含有することを特徴とする溶媒。
- 請求項1および2に記載の化合物を含有することを特徴とする樹脂。
- 請求項1および2に記載の化合物を含有することを特徴とするフォトクロミック材料。
- 請求項1および2に記載の化合物を含有することを特徴とする調光レンズ。
- 請求項1および2に記載の化合物を含有することを特徴とする光スイッチ。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019505754A JPWO2018168232A1 (ja) | 2017-03-14 | 2018-01-31 | ピラノキナゾリン誘導体及びナフトピラン誘導体 |
EP18767626.7A EP3597652A4 (en) | 2017-03-14 | 2018-01-31 | PYRANOCHINAZOLINE DERIVATIVE AND NAPHTHOPYRANIVATE |
KR1020197029990A KR20190129922A (ko) | 2017-03-14 | 2018-01-31 | 피라노퀴나졸린 유도체 및 나프토피란 유도체 |
US16/494,290 US11485812B2 (en) | 2017-03-14 | 2018-01-31 | Pyranoquinazoline derivatives and naphthopyran derivatives |
CN201880017798.7A CN110896637A (zh) | 2017-03-14 | 2018-01-31 | 吡喃并喹唑啉衍生物及萘并吡喃衍生物 |
JP2023031141A JP2023076438A (ja) | 2017-03-14 | 2023-03-01 | ピラノキナゾリン誘導体及びナフトピラン誘導体 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-049113 | 2017-03-14 | ||
JP2017049113 | 2017-03-14 | ||
JP2017-167925 | 2017-08-31 | ||
JP2017167925 | 2017-08-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018168232A1 true WO2018168232A1 (ja) | 2018-09-20 |
Family
ID=63523535
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/003141 WO2018168232A1 (ja) | 2017-03-14 | 2018-01-31 | ピラノキナゾリン誘導体及びナフトピラン誘導体 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11485812B2 (ja) |
EP (1) | EP3597652A4 (ja) |
JP (2) | JPWO2018168232A1 (ja) |
KR (1) | KR20190129922A (ja) |
CN (1) | CN110896637A (ja) |
WO (1) | WO2018168232A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116239561A (zh) * | 2022-12-08 | 2023-06-09 | 上海甘田光学材料有限公司 | 一种苯并芴光致变色化合物及其应用 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06135967A (ja) | 1992-03-19 | 1994-05-17 | Essilor Internatl (Cie Gen Opt) | 新規複素環化合物及びその眼科光学分野における使用方法 |
JPH08176139A (ja) * | 1994-12-20 | 1996-07-09 | Tokuyama Corp | クロメン化合物 |
JPH08295690A (ja) | 1995-04-26 | 1996-11-12 | Tokuyama Corp | クロメン化合物 |
JP2000229973A (ja) * | 1999-02-04 | 2000-08-22 | Tokuyama Corp | クロメン化合物 |
JP2004210657A (ja) | 2002-12-27 | 2004-07-29 | Tokuyama Corp | ピラン化合物 |
JP2007525462A (ja) | 2003-05-05 | 2007-09-06 | コーニング インコーポレイテッド | フォトクロミック特性を有する、アリールアミン基で置換されたベンゾ−、ナフト−およびフェナントロクロメン |
WO2009136668A1 (ja) | 2008-05-09 | 2009-11-12 | 株式会社トクヤマ | クロメン化合物 |
JP2012501326A (ja) | 2008-08-27 | 2012-01-19 | コーニング インコーポレイテッド | C5−c6で環化されたフォトクロミック2h−クロメンおよびその調製方法 |
JP2015127371A (ja) * | 2013-12-27 | 2015-07-09 | 二朗 阿部 | ナフトピラン化合物の消色速度調節法 |
JP2015137259A (ja) | 2014-01-23 | 2015-07-30 | 二朗 阿部 | ベンゾクロメン化合物、フォトクロミック剤及びフォトクロミック光学材料 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3355028B2 (ja) | 1994-06-17 | 2002-12-09 | 川崎製鉄株式会社 | スラグコーティングを制御する転炉操業方法 |
US5759450A (en) * | 1994-07-28 | 1998-06-02 | Vision-Ease Lens, Inc. | Photochromic naphthopyran compounds |
JP2908358B2 (ja) | 1996-10-17 | 1999-06-21 | 株式会社カイジョー | 津波計 |
JP2017132736A (ja) * | 2016-01-29 | 2017-08-03 | 二朗 阿部 | クロメン化合物、フォトクロミック剤及びフォトクロミック光学材料 |
-
2018
- 2018-01-31 EP EP18767626.7A patent/EP3597652A4/en not_active Withdrawn
- 2018-01-31 KR KR1020197029990A patent/KR20190129922A/ko not_active Application Discontinuation
- 2018-01-31 JP JP2019505754A patent/JPWO2018168232A1/ja active Pending
- 2018-01-31 WO PCT/JP2018/003141 patent/WO2018168232A1/ja unknown
- 2018-01-31 CN CN201880017798.7A patent/CN110896637A/zh active Pending
- 2018-01-31 US US16/494,290 patent/US11485812B2/en active Active
-
2023
- 2023-03-01 JP JP2023031141A patent/JP2023076438A/ja active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06135967A (ja) | 1992-03-19 | 1994-05-17 | Essilor Internatl (Cie Gen Opt) | 新規複素環化合物及びその眼科光学分野における使用方法 |
JPH08176139A (ja) * | 1994-12-20 | 1996-07-09 | Tokuyama Corp | クロメン化合物 |
JPH08295690A (ja) | 1995-04-26 | 1996-11-12 | Tokuyama Corp | クロメン化合物 |
JP2000229973A (ja) * | 1999-02-04 | 2000-08-22 | Tokuyama Corp | クロメン化合物 |
JP2004210657A (ja) | 2002-12-27 | 2004-07-29 | Tokuyama Corp | ピラン化合物 |
JP2007525462A (ja) | 2003-05-05 | 2007-09-06 | コーニング インコーポレイテッド | フォトクロミック特性を有する、アリールアミン基で置換されたベンゾ−、ナフト−およびフェナントロクロメン |
WO2009136668A1 (ja) | 2008-05-09 | 2009-11-12 | 株式会社トクヤマ | クロメン化合物 |
JP2012501326A (ja) | 2008-08-27 | 2012-01-19 | コーニング インコーポレイテッド | C5−c6で環化されたフォトクロミック2h−クロメンおよびその調製方法 |
JP2015127371A (ja) * | 2013-12-27 | 2015-07-09 | 二朗 阿部 | ナフトピラン化合物の消色速度調節法 |
JP2015137259A (ja) | 2014-01-23 | 2015-07-30 | 二朗 阿部 | ベンゾクロメン化合物、フォトクロミック剤及びフォトクロミック光学材料 |
Non-Patent Citations (11)
Title |
---|
ARAI, K. ET AL.: "Rational molecular designs for drastic acceleration of the color-fading speed of photochromic naphthopyrans", CHEMICAL COMMUNICATIONS, vol. 51, no. 15, 2015, pages 3057 - 3060, XP055544377, ISSN: 1359-7345 * |
CHAMONTIN, K. ET AL.: "Synthesis and reactivity of formyl-substituted photochromic 3,3-Diphenyl-[3H]- naphtho[2,1-b]pyrans", TETRAHEDRON, vol. 55, no. 18, 30 April 1999 (1999-04-30), pages 5821 - 5830, XP004163608, ISSN: 0040-4020 * |
CRANO, J. C. ET AL.: "Photochromic compounds: chemistry and application in ophthalmic lenses", PURE & APPLIED CHEMISTRY, vol. 68, no. 7, January 1996 (1996-01-01), pages 1395 - 1398, XP055544375, ISSN: 0033-4545 * |
F. D. LEWISB. A. YOONT . ARAIT. IWASAKIK. TOKUMARU, J. AM. CHEM. SOC., vol. 117, no. 11, 1995, pages 3029 - 3036 |
HOBZA, Z ., HAVLAS, CHEM. REV., vol. 100, no. 11, 2000, pages 4253 - 4264 |
INAGAKI, Y. ET AL.: "A simple and versatile strategy for rapid color fading and intense coloration of photochromic naphthopyran families", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 139, no. 38, 13 September 2017 (2017-09-13), pages 13429 - 13441, XP055544381, ISSN: 0002-7863 * |
J. MOL. JOSEPHE. D. JEMIS, J. AM. CHEM. SOC., vol. 129, no. 15, 2007, pages 4620 - 4632 |
K. ARAIY. KOBAYASHIJ. ABE, CHEM. COMMUN., vol. 51, 2015, pages 3057 - 3060 |
OLIVEIRA, M. M. ET AL.: "Remarkable thermally stable open forms of photochromic new N- substituted benzopyranocarbazoles", JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A: CHEMISTRY, vol. 198, no. 2-3, 15 August 2008 (2008-08-15), pages 242 - 249, XP022710250, ISSN: 1010-6030 * |
Y.M. NORIKANEN., NAKAYAMAN., TAMAOKIT., ARAIU . NAGASHIMA, J. PHYS. CHEM. A, vol. 107, no. 41, 2003, pages 8659 - 8664 |
Y.M. SHINOHARAT. ARAI, BULL. CHEM. SOC. JPN., vol. 81, no. 11, 2008, pages 1500 - 1504 |
Also Published As
Publication number | Publication date |
---|---|
CN110896637A (zh) | 2020-03-20 |
EP3597652A4 (en) | 2020-12-02 |
KR20190129922A (ko) | 2019-11-20 |
JP2023076438A (ja) | 2023-06-01 |
US11485812B2 (en) | 2022-11-01 |
US20200131193A1 (en) | 2020-04-30 |
JPWO2018168232A1 (ja) | 2020-06-11 |
EP3597652A1 (en) | 2020-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Van Gemert | Benzo and naphthopyrans (chromenes) | |
JP3982770B2 (ja) | クロメン化合物 | |
JP4157227B2 (ja) | クロメン化合物 | |
Zheng et al. | Synthesis and the effect of alkyl chain length on optoelectronic properties of diarylethene derivatives | |
JP2005289807A (ja) | クロメン化合物 | |
Pu et al. | Photochromism of new unsymmetrical diarylethene derivatives bearing both benzofuran and thiophene moieties | |
JP2000327676A (ja) | クロメン化合物 | |
JPH11286484A (ja) | クロメン化合物 | |
Tian et al. | Investigations and facile synthesis of a series of novel multi-functional two-photon absorption materials | |
CA2359046C (en) | Heterocyclically anellated indenochromene derivatives | |
Graça et al. | Exploring fast fading photochromic lactone-fused naphthopyrans | |
JP2023076438A (ja) | ピラノキナゾリン誘導体及びナフトピラン誘導体 | |
CN111440193B (zh) | 茚稠萘并螺噁嗪类光致变色化合物及其制备方法 | |
JP5803025B2 (ja) | フォトクロミック分子 | |
JPWO2015111647A1 (ja) | ホスホール化合物及びそれを含有する蛍光色素 | |
Zhang et al. | Two-photon absorption and mechanofluorochromic properties of 1, 4-diketo-2, 5-dibutyl-3, 6-bis (4-(carbazol-N-yl) phenyl) pyrrolo [3, 4-c] pyrrole | |
CN108623543B (zh) | 含呋喃衍生物三芳基乙烯类光致变色材料及其合成方法和应用 | |
Zhang et al. | An Optic/Proton Dual‐Controlled Fluorescence Switch based on Novel Photochromic Bithienylethene Derivatives | |
Wang et al. | Substituent effects on the properties of photochromic hybrid diarylethenes with a naphthalene moiety | |
Cheng et al. | Synthesis and characterization of indeno-fused naphthopyrans containing methacryloyl and urethane groups for photochromic contact lenses applications | |
Jin et al. | Efficient One‐step Synthesis and Properties of Photochromic Diarylethenes Having an Indene Bridging Unit | |
JP3248768B2 (ja) | スピロピラン化合物及びフォトクロミック材 | |
Yan et al. | Synthesis, structures, and properties of two new two-photon photopolymerization initiators | |
US9834723B2 (en) | Pentaarylbiimidazole compound and production method for said compound | |
Yan et al. | Two new asymmetrical two-photon photopolymerization initiators: Synthesis, characterization and nonlinear optical properties |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18767626 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20197029990 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2018767626 Country of ref document: EP Effective date: 20191014 |
|
ENP | Entry into the national phase |
Ref document number: 2019505754 Country of ref document: JP Kind code of ref document: A |