WO2017126170A1 - 微小粒子測定装置、情報処理装置及び情報処理方法 - Google Patents
微小粒子測定装置、情報処理装置及び情報処理方法 Download PDFInfo
- Publication number
- WO2017126170A1 WO2017126170A1 PCT/JP2016/080653 JP2016080653W WO2017126170A1 WO 2017126170 A1 WO2017126170 A1 WO 2017126170A1 JP 2016080653 W JP2016080653 W JP 2016080653W WO 2017126170 A1 WO2017126170 A1 WO 2017126170A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- output pulse
- information processing
- detection unit
- control signal
- height
- Prior art date
Links
- 230000010365 information processing Effects 0.000 title claims abstract description 94
- 239000011859 microparticle Substances 0.000 title claims abstract description 72
- 238000005259 measurement Methods 0.000 title claims abstract description 55
- 238000003672 processing method Methods 0.000 title claims description 22
- 238000001514 detection method Methods 0.000 claims abstract description 101
- 239000002245 particle Substances 0.000 claims abstract description 37
- 206010036618 Premenstrual syndrome Diseases 0.000 claims description 44
- 239000010419 fine particle Substances 0.000 claims description 23
- 238000005516 engineering process Methods 0.000 abstract description 50
- 230000001419 dependent effect Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 33
- 230000035945 sensitivity Effects 0.000 description 24
- 238000012886 linear function Methods 0.000 description 16
- 210000004027 cell Anatomy 0.000 description 14
- 238000004458 analytical method Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 11
- 239000011324 bead Substances 0.000 description 10
- 238000001228 spectrum Methods 0.000 description 9
- 239000007850 fluorescent dye Substances 0.000 description 8
- 238000011425 standardization method Methods 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 6
- 238000000684 flow cytometry Methods 0.000 description 5
- 238000012888 cubic function Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 101100408676 Caenorhabditis elegans pmt-1 gene Proteins 0.000 description 3
- 238000002189 fluorescence spectrum Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 239000002861 polymer material Substances 0.000 description 3
- 238000003908 quality control method Methods 0.000 description 3
- 101100408682 Caenorhabditis elegans pmt-2 gene Proteins 0.000 description 2
- 108010004729 Phycoerythrin Proteins 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 2
- 238000005194 fractionation Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- CPBQJMYROZQQJC-UHFFFAOYSA-N helium neon Chemical compound [He].[Ne] CPBQJMYROZQQJC-UHFFFAOYSA-N 0.000 description 2
- 229920000592 inorganic polymer Polymers 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 210000003463 organelle Anatomy 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- XJMOSONTPMZWPB-UHFFFAOYSA-M propidium iodide Chemical compound [I-].[I-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CCC[N+](C)(CC)CC)=C1C1=CC=CC=C1 XJMOSONTPMZWPB-UHFFFAOYSA-M 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- MPLHNVLQVRSVEE-UHFFFAOYSA-N texas red Chemical compound [O-]S(=O)(=O)C1=CC(S(Cl)(=O)=O)=CC=C1C(C1=CC=2CCCN3CCCC(C=23)=C1O1)=C2C1=C(CCC1)C3=[N+]1CCCC3=C2 MPLHNVLQVRSVEE-UHFFFAOYSA-N 0.000 description 2
- CHRJZRDFSQHIFI-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;styrene Chemical compound C=CC1=CC=CC=C1.C=CC1=CC=CC=C1C=C CHRJZRDFSQHIFI-UHFFFAOYSA-N 0.000 description 1
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 108091005461 Nucleic proteins Proteins 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 241000723873 Tobacco mosaic virus Species 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- UYRDHEJRPVSJFM-VSWVFQEASA-N [(1s,3r)-3-hydroxy-4-[(3e,5e,7e,9e,11z)-11-[4-[(e)-2-[(1r,3s,6s)-3-hydroxy-1,5,5-trimethyl-7-oxabicyclo[4.1.0]heptan-6-yl]ethenyl]-5-oxofuran-2-ylidene]-3,10-dimethylundeca-1,3,5,7,9-pentaenylidene]-3,5,5-trimethylcyclohexyl] acetate Chemical compound C[C@@]1(O)C[C@@H](OC(=O)C)CC(C)(C)C1=C=C\C(C)=C\C=C\C=C\C=C(/C)\C=C/1C=C(\C=C\[C@]23[C@@](O2)(C)C[C@@H](O)CC3(C)C)C(=O)O\1 UYRDHEJRPVSJFM-VSWVFQEASA-N 0.000 description 1
- 108010004469 allophycocyanin Proteins 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Substances [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- -1 argon ion Chemical class 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229930002875 chlorophyll Natural products 0.000 description 1
- 235000019804 chlorophyll Nutrition 0.000 description 1
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000001917 fluorescence detection Methods 0.000 description 1
- 238000002866 fluorescence resonance energy transfer Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000007863 gel particle Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011325 microbead Substances 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- VYNDHICBIRRPFP-UHFFFAOYSA-N pacific blue Chemical compound FC1=C(O)C(F)=C2OC(=O)C(C(=O)O)=CC2=C1 VYNDHICBIRRPFP-UHFFFAOYSA-N 0.000 description 1
- UTIQDNPUHSAVDN-UHFFFAOYSA-N peridinin Natural products CC(=O)OC1CC(C)(C)C(=C=CC(=CC=CC=CC=C2/OC(=O)C(=C2)C=CC34OC3(C)CC(O)CC4(C)C)C)C(C)(O)C1 UTIQDNPUHSAVDN-UHFFFAOYSA-N 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/1012—Calibrating particle analysers; References therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M1/00—Apparatus for enzymology or microbiology
- C12M1/34—Measuring or testing with condition measuring or sensing means, e.g. colony counters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1429—Signal processing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1456—Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
- G01N15/1459—Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N2015/1006—Investigating individual particles for cytology
Definitions
- This technology relates to a microparticle measuring apparatus that optically measures the characteristics of microparticles. More specifically, the present invention relates to a microparticle measuring apparatus, an information processing apparatus, and an information processing method for optically measuring characteristics of microparticles such as cells.
- microparticles such as cells and microorganisms
- microparticles such as microbeads
- Techniques for analyzing or sorting the measured fine particles are being developed.
- Flow cytometry is a method of detecting fluorescence and scattered light emitted from each microparticle by pouring the microparticles to be analyzed in a state of being aligned in the fluid and irradiating the microparticles with laser light, etc. This is an analysis method for analyzing and sorting microparticles.
- cells labeled with a fluorescent dye are irradiated with excitation light having an appropriate wavelength and intensity such as laser light. Then, the fluorescent light emitted from the fluorescent dye is collected by a lens or the like, light of an appropriate wavelength range is selected using a wavelength selection element such as a filter or a dichroic mirror, and the selected light is converted into PMT (photoelectron multiplier: photo Detection is performed using a light-receiving element such as a multiplier (tube). At this time, it is also possible to simultaneously detect and analyze fluorescence from a plurality of fluorescent dyes labeled on cells by combining a plurality of wavelength selection elements and light receiving elements. Furthermore, the number of fluorescent dyes that can be analyzed can be increased by combining excitation light having a plurality of wavelengths.
- spectral flow cytometry capable of measuring a fluorescence spectrum
- the fluorescence emitted from fine particles is dispersed using a spectroscopic element such as a prism or a grating. Then, the dispersed fluorescence is detected using a light receiving element array in which a plurality of light receiving elements having different detection wavelength ranges are arranged.
- the light receiving element array includes a plurality of independent detection channels such as a PMT array or a photodiode array in which light receiving elements such as a PMT and a photodiode are arranged one-dimensionally, or a two-dimensional light receiving element such as a CCD or a CMOS. It is used.
- microparticles such as flow cytometry
- many optical methods are used to detect the fluorescence and scattered light emitted from the microparticles by irradiating the microparticles to be analyzed with light such as a laser. . Then, based on the detected optical information, a histogram is extracted by an analysis computer and software, and analysis is performed.
- quality control In the optical analysis of microparticles, quality control (QC: Quality Control) is required to verify the accuracy, check the operation of the equipment, and standardize before optical measurement of the actual microparticles to be tested. May do.
- QC Quality Control
- a plurality of beads labeled with fluorescent dyes having different fluorescence intensities for example, 3 peak beads, 6 peak beads, 8 peak beads, etc.
- one kind of beads that can obtain a wide spectrum For example, alignment check beads (Align Check Beads, Ultra Rainbow fluorescent particles) are used.
- Patent Document 1 relates to a fluorescence-labeled test cell from a two-dimensional correlation diagram of the fluorescence-labeled test cell obtained by a flow cytometer.
- a program that calculates the centroid value of a fluorescent population and corrects the fluorescence value using the fluorescence value of a fluorescently labeled test cell corresponding to the centroid value and a predetermined determinant.
- a photodetector such as a PMT has a sensitivity difference for each individual, and a sensitivity difference occurs over time even for the same individual.
- One cause of this difference in sensitivity is the variation in sensitivity of the photodetector. Even if the sensitivity variation is set to the same voltage value, it may differ by several tens of times or more depending on individual differences or with time, and this appears to be dominant in the difference in the output level of the device as it is. Therefore, even if the setting is the same as that of the previous measurement between apparatuses or in the apparatus, a difference occurs in the output level.
- the main purpose of this technique is to provide a technique for accurately correcting the difference in output level in the measurement of fine particles that optically measures the characteristics of the fine particles.
- the inventor of the present application has determined the output level by specifying the relationship between the applied voltage coefficient corresponding to the feature amount of the predetermined output pulse and the control signal of the detection unit. We succeeded in correcting the difference between the two with high accuracy, and completed this technology.
- a detection unit that detects light from a fluorescent reference particle that emits fluorescence of a predetermined wavelength range, a feature amount of the output pulse detected by the detection unit, and a feature amount of the output pulse
- An information processing unit that identifies a relationship between an applied voltage coefficient corresponding to a feature amount of a predetermined output pulse and the control signal of the detection unit based on the control signal of the detection unit when detected
- the feature quantity of the output pulse is a value that depends on the control signal of the detection unit.
- the detection unit may be composed of a plurality of PMTs. In this case, it is possible to have an output difference between the plurality of PMTs.
- the feature quantity of the output pulse can be the height of the output pulse or the area of the output pulse, and in particular, the height of the output pulse.
- the information processing unit may correct the control signal based on the applied voltage coefficient. In this case, the target fine particles can be measured by the detection unit to which the corrected control signal is input.
- the feature amount of the output pulse detected by the detection unit that detects light from the fluorescence reference particle that emits fluorescence of a predetermined wavelength range, and the feature amount of the output pulse are detected.
- An information processing unit for identifying a relationship between an applied voltage coefficient corresponding to a feature value of a predetermined output pulse and a control signal of the detection unit based on a control signal of the detection unit, and a feature value of the output pulse Provides an information processing device that is a value that depends on the control signal of the detection unit.
- the feature quantity of the output pulse can be the height of the output pulse or the area of the output pulse, and in particular, the height of the output pulse.
- the information processing unit may correct the control signal based on the applied voltage coefficient.
- the information processing apparatus according to the present technology may further include a storage unit that stores the applied voltage coefficient.
- the feature amount of the output pulse detected by the detection unit that detects light from the fluorescence reference particle that emits fluorescence of a predetermined wavelength range, and the feature amount of the output pulse are detected.
- an information processing step for specifying the relationship between the applied voltage coefficient corresponding to the feature amount of the predetermined output pulse and the control signal of the detection unit is performed, and the feature amount of the output pulse Provides an information processing method which is a value depending on the control signal of the detection unit.
- the feature quantity of the output pulse can be the height of the output pulse or the area of the output pulse, and in particular, the height of the output pulse.
- the control signal may be corrected based on the applied voltage coefficient.
- microparticles widely include living body-related microparticles such as cells, microorganisms, and liposomes, or synthetic particles such as latex particles, gel particles, and industrial particles.
- Biologically relevant microparticles include chromosomes, liposomes, mitochondria, organelles (organelles) that constitute various cells.
- the cells include animal cells (for example, blood cells) and plant cells.
- Microorganisms include bacteria such as Escherichia coli, viruses such as tobacco mosaic virus, and fungi such as yeast.
- biologically relevant microparticles can include biologically relevant polymers such as nucleic acids, proteins, and complexes thereof.
- the industrial particles may be, for example, an organic or inorganic polymer material, a metal, or the like.
- Organic polymer materials include polystyrene, styrene / divinylbenzene, polymethyl methacrylate, and the like.
- Inorganic polymer materials include glass, silica, magnetic materials, and the like.
- Metals include gold colloid, aluminum and the like.
- the shape of these fine particles is generally spherical, but in the present technology, it may be non-spherical, and the size, mass and the like are not particularly limited.
- the difference in output level can be corrected with high accuracy in the microparticle measurement for optically measuring the characteristics of the microparticles.
- the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
- Fine particle measuring device 1 (1) Detection unit 11 (2) Information processing unit 12 [Sensitivity standardization method for PMT between devices] [Means of accuracy improvement] [Sensitivity standardization method for multiple PMTs] (3) Light irradiation unit 13 (4) Sorting unit 14 (5) Storage unit 15 (6) Flow path P (7) Display unit 16 (8) User interface 17 2.
- Information processing apparatus 10 (1) Information processing unit 12 (2) Storage unit 15 (3) Others Information processing method
- FIG. 1 is a schematic conceptual view schematically showing a first embodiment of a microparticle measuring apparatus 1 according to the present technology
- FIG. 2 is a schematic diagram showing a second embodiment of the microparticle measuring apparatus 1 according to the present technology.
- the microparticle measurement apparatus 1 according to the present technology is an apparatus that optically measures the characteristics of microparticles, and includes at least a detection unit 11 and an information processing unit 12. Moreover, you may provide the light irradiation part 13, the fractionation part 14, the memory
- each part will be described in detail.
- the detector 11 detects light from the fluorescence reference particles that emit fluorescence having a predetermined wavelength range. Moreover, the detection of the light from a microparticle can also be performed.
- the type of the detection unit 11 that can be used in the present technology is not particularly limited as long as it can detect light from the fluorescence reference particles, and a known photodetector can be freely selected and employed.
- fluorescence measuring device scattered light measuring device, transmitted light measuring device, reflected light measuring device, diffracted light measuring device, ultraviolet spectroscopic measuring device, infrared spectroscopic measuring device, Raman spectroscopic measuring device, FRET measuring device, FISH measuring device
- various types of spectrum measuring devices so-called multi-channel photodetectors in which a plurality of photodetectors are arranged in an array, etc. can be used alone or in combination of two or more.
- an area imaging device such as a CCD or a CMOS device, a PMT, a photodiode, or the like can be provided as the detection unit 11.
- a PMT is preferably provided as the detection unit 11.
- the detection unit 11 includes a plurality of light receiving elements having different detection wavelength ranges.
- the intensity of light in the continuous wavelength range can be measured as a fluorescence spectrum.
- a plurality of independent detection channels such as a PMT array or a photodiode array in which light receiving elements are arranged one-dimensionally, or a two-dimensional light receiving element such as a CCD or a CMOS are arranged.
- the detection unit 11 is configured from a plurality of PMTs
- the output of each PMT can be set to a desired level in one apparatus, the convenience of the user at the time of measurement is improved.
- the installation location of the detection unit 11 in the microparticle measurement apparatus 1 is not particularly limited as long as it can detect light from the fluorescence reference particles, and can be freely designed.
- positioning the detection part 11 on the opposite side to the light irradiation part 13 on both sides of the flow path P the detection part 11 and the light irradiation part 13 can be arrange
- the detection unit 11 may be arranged on the same side as the light irradiation unit 13 or on the 90 ° side surface with respect to the flow path P. I do not care.
- Information processing unit 12 In the information processing unit 12, information processing and control of the detection unit 11, a light irradiation unit 13, a sorting unit 14, a storage unit 15, a display unit 16, a user interface 17, and the like which will be described later are performed. As information processing, based on the feature quantity of the output pulse detected by the detection section 11 and the control signal of the detection section 11 when the feature quantity of the output pulse is detected, the feature quantity of the predetermined output pulse is obtained. The relationship between the corresponding applied voltage coefficient and the control signal of the detection unit 11 is specified. In the present technology, the feature amount is a value depending on a control signal of the detection unit 11.
- the control signal of the detection unit 11 is standardized by adopting the above-described configuration as the configuration of the information processing unit 12, the anode sensitivity (set to a certain voltage) generated in the device between devices and over time. Variation in sensitivity such as output from a detector such as PMT at the time. Therefore, even if the absolute output of the apparatus changes due to individual differences of detectors or with time, it is possible to measure at the same output level.
- the feature amount of the output pulse is not particularly limited as long as it is a value depending on the control signal of the detection unit 11. However, in the present technology, it is preferable to set the height of the output pulse or the area of the output pulse. More preferably, the height of Thereby, the difference in output level can be corrected with higher accuracy. In this technology, the median or average of these values can be used, but the median such as Height Median (median of output pulse height), Area Median (median of output pulse area), etc. Is preferably used.
- Fluorescent reference particles that can be used in the present technology are particles that emit fluorescence having a predetermined wavelength range.
- the fluorescent reference particles particles that emit fluorescence having a wavelength band according to the type of the microparticle measuring device 1 and the detection unit 11, the type of microparticles to be measured, the measurement purpose, and the like can be freely selected. .
- fluorescent reference particles include alignment check beads, Ultra Rainbow fluorescent particles, and the like.
- the conditions that can be used as the fluorescence reference particles include that the fluorescence intensity can be sufficiently obtained in the wavelength band width of the sensitivity of the PMT to be corrected. Further, for example, particles such as beads labeled with a fluorescent dye can be used.
- fluorescent dyes examples include Cascade Blue, Pacific Blue, Fluorescein isothiocyanate (FITC), Phycoerythrin (PE), Propidiumiodide (PI), Texas red (TR), Peridinin chlorophyll protein (PerCP), Allophycocyanin ( APC), 4 ′, 6-Diamidino-2-phenylindole (DAPI), Cy3, Cy5, Cy7 and the like can be used singly or in combination of two or more.
- FITC Fluorescein isothiocyanate
- PE Phycoerythrin
- PI Propidiumiodide
- TR Texas red
- APC Allophycocyanin
- 4 ′ 6-Diamidino-2-phenylindole
- Cy3, Cy5, Cy7 and the like can be used singly or in combination of two or more.
- the wavelength range of the fluorescence emitted from the fluorescence reference particles covers at least a part of each of the detection wavelength ranges of the plurality of light receiving elements. Preferably, it is more preferable to cover the whole. For example, in the case of a general flow cytometer, it is preferable to select particles that emit fluorescence having a wavelength range of 400 to 800 nm.
- the types of the microparticle measurement device 1 and the detection unit 11 and the types of microparticles to be measured can be specified by a free method.
- a method of calculating an applied voltage coefficient based on HV (High Voltage; voltage) and Height Median (median value of the height of an output pulse) obtained from fluorescent reference particles can be used.
- HV High Voltage; voltage
- Height Median median value of the height of an output pulse
- a1 for example, a predetermined value specified at the time of the previous measurement
- an initial value of HV2 of Height adjustment target value (hereinafter referred to as “Target”) 2 is obtained based on Equation (1) below. HV adjustment starts from there. And HV2 and Height Median2 are acquired.
- HV3 and Height Median3 and HV4 and Height Median4 are obtained in the same way.
- Hst3 is a Height Median value when St is 3.0.
- a and b are further obtained from St1 to 4 and HV1 to 4 obtained as described above.
- the corresponding HV value is set using the recorded correspondence relationship between St and HV.
- HV can be determined in light of the recorded linear function based on the St value set by the user. Thereby, as described below, even when the sensitivity is different between PMT_1 and PMT_2, HV can be set so that the same experimental result can be obtained.
- the corresponding HV value is set using the recorded correspondence relationship between St and HV.
- HV can be determined in light of the recorded linear function based on the St value set by the user.
- the HVs of a plurality of PMTs can be controlled with one HV.
- the applied voltage coefficient (St) is calculated using Height Median, but in this technology, Area Median (the median value of the area of the output pulse) is used instead of Height Median. Is also possible. Further, the applied voltage coefficient is not particularly limited as long as it corresponds to a feature amount of a predetermined output pulse, and can be calculated with an arbitrary setting. Furthermore, in the above two specific examples, when the straight line is obtained, the plot is made with 4 points. However, the present technology is not limited to this, and the plot may be made with 2 or more points.
- the correspondence relationship between St and HV may be a method of storing a correspondence table as well as a method of obtaining and storing a primary straight line for measurement.
- the setting of the St value at the time of measurement is not limited to that by the user, but the St value can also be set by the information processing unit 12 based on the measurement sample and conditions.
- the microparticle measurement apparatus 1 can further include a light irradiation unit 13 that performs light irradiation on the fluorescence reference particles and the microparticles.
- a light irradiation unit 13 that performs light irradiation on the fluorescence reference particles and the microparticles.
- the kind of light irradiated from the light irradiation part 13 is not specifically limited, In order to generate
- the type is not particularly limited, but an argon ion (Ar) laser, helium-neon (He-Ne) laser, die laser, krypton (Cr) laser, semiconductor laser, or semiconductor laser and wavelength.
- Ar argon ion
- He-Ne helium-neon
- Cr krypton
- semiconductor laser semiconductor laser
- One or more solid lasers combined with conversion optical elements can be used in any combination.
- the microparticle measurement apparatus 1 can further include a sorting unit 14 that sorts microparticles.
- the sorting unit 14 sorts microparticles based on spectrum data generated by correcting the value detected by the detection unit 11 by the information processing unit 12.
- the sorting unit 14 can sort the microparticles downstream of the flow path P based on the analysis result of the size, shape, internal structure, and the like of the microparticles analyzed from the spectrum data.
- the vibration element 14a to be used is not particularly limited, and a known element can be freely selected and used.
- a piezoelectric vibration element or the like can be given.
- the size of the liquid droplet is adjusted to generate a liquid droplet containing a certain amount of fine particles. Can do.
- a positive or negative charge is charged based on the analysis result of the size, form, internal structure, etc. of the microparticles analyzed based on the spectrum data corrected and generated by the information processing unit 12 (FIG. 2 (see reference numeral 14b). Then, the charged droplets are sorted by changing the path in a desired direction by the counter electrode 14c to which a voltage is applied.
- the fine particle measurement apparatus 1 can further include a storage unit 15 that stores a relationship (for example, a linear function, a correspondence table, etc.) between the HV and the applied voltage coefficient.
- a storage unit 15 that stores a relationship (for example, a linear function, a correspondence table, etc.) between the HV and the applied voltage coefficient.
- the storage unit 15 includes the value detected by the detection unit 11, the spectrum data generated by the information processing unit 12, the reference spectrum of each channel, and specified by the previous measurement. It is also possible to memorize all matters related to measurement, such as the relationship between the measured HV and the applied voltage coefficient.
- the storage unit 15 is not essential, and an external storage device may be connected.
- an external storage device may be connected.
- a hard disk or the like can be used as the storage unit 15.
- the microparticle measurement apparatus 1 according to the present technology can further include a flow path P.
- the flow path P may be provided in the microparticle measurement apparatus 1 in advance, but a commercially available flow path P or a disposable chip or the like provided with the flow path P is installed in the microparticle measurement apparatus 1 for analysis or sorting. It is also possible to perform.
- the form of the flow path P is not particularly limited, and can be freely designed.
- it is not limited to the flow path P formed in a two-dimensional or three-dimensional plastic or glass substrate T as shown in FIG. 1, but is used in a conventional flow cytometer as shown in FIG.
- a simple flow path P can also be used in the microparticle measurement apparatus 1 according to the present technology.
- the channel width, the channel depth, and the channel cross-sectional shape of the channel P are not particularly limited as long as they can form a laminar flow, and can be freely designed.
- a micro flow channel having a flow channel width of 1 mm or less can also be used in the microparticle measurement apparatus 1.
- a microchannel having a channel width of about 10 ⁇ m or more and 1 mm or less can be suitably used for the microparticle measurement apparatus 1 according to the present technology.
- the microparticle measurement apparatus 1 can further include a display unit 16.
- the display unit 16 displays all items related to measurement, such as the value detected by the detection unit 11, the spectrum data generated by the information processing unit 12, the calculated applied voltage coefficient, the reference spectrum of each channel, and the like. Can do.
- the display unit 16 is not essential, and an external display device may be connected.
- a display or a printer can be used as the display unit 16.
- the microparticle measurement apparatus 1 according to the present technology can further include a user interface 17 that is a part for a user to operate. The user can access the information processing unit 12 through the user interface 17 and control each unit of the microparticle measurement apparatus 1 according to the present technology.
- the user interface 17 is not essential, and an external operating device may be connected.
- an external operating device for example, a mouse or a keyboard can be used as the user interface 17.
- FIG. 8 is a schematic conceptual diagram schematically showing an example of a flow cytometer that can use the first embodiment of the information processing apparatus 10 according to the present technology
- FIG. 9 is an information processing device according to the present technology.
- It is a schematic conceptual diagram which shows typically an example of the flow cytometer which can use 10 2nd Embodiment.
- the information processing apparatus 10 according to the present technology includes at least an information processing unit 12. Moreover, you may provide the memory
- the display part 16 and the user interface 17 are the same as the detail of the display part 16 and the user interface 17 of the microparticle measurement apparatus 1 mentioned above, description is omitted here.
- Information processing unit 12 In the information processing unit 12, information processing and control of the storage unit 15, the display unit 16, the user interface 17, and the like are performed.
- the detection unit that detects light from the fluorescence reference particle that emits fluorescence of a predetermined wavelength range, the feature amount of the output pulse detected by the detection unit, and the detection when the feature amount of the output pulse is detected
- the relationship between the applied voltage coefficient corresponding to the feature quantity of the predetermined output pulse and the control signal of the detection unit is specified based on the control signal of the unit.
- the feature amount is a value depending on a control signal of the detection unit.
- the details of the information processing performed by the information processing unit 12 and the details of the fluorescence reference particles are the same as those of the information processing method performed by the information processing unit 12 and the fluorescence reference particles used in the microparticle measuring apparatus 1. I will omit the explanation.
- the information processing apparatus 10 may further include a storage unit 15 that stores an applied voltage coefficient.
- storage part 15 is the same as the detail of the memory
- the information processing apparatus 10 may include a display unit 16 and a user interface 17 as illustrated in FIGS. Moreover, as shown in FIG. 9, it is also possible to connect the information processing apparatus 10 and each part (detection part 11, light irradiation part 13, sorting part 14, etc.) of a flow cytometer via a network. Furthermore, although not shown, the storage unit 15, the display unit 16, and the user interface 17 are provided outside the information processing apparatus 10, and these can be connected via a network.
- the information processing method according to the present technology is a method of performing at least an information processing step.
- a specific information processing method performed in the information processing step is the same as the information processing method performed in the information processing unit 12 of the information processing apparatus 10 described above.
- FIGS. 10 and 11 an example of the flow of fine particle measurement using the information processing method according to the present technology will be described with reference to FIGS. 10 and 11 is performed by, for example, the detection unit 11 or the information processing unit 12 described above.
- FIG. 10 is a flowchart showing an example of an information processing method according to the present technology, and shows a flow related to specifying the relationship between the applied voltage coefficient (St) and the HV value for PMT sensitivity standardization.
- step S1 PMT is set to the initial value of HV1 (step S1).
- step S2 sample measurement is performed (step S2), and a measurement value of a sample indicating Singlet is extracted (step S3).
- Height Median1 is calculated (step S4). If it is determined in step S5 that the calculated value of Height Median1 is not Target1 ⁇ 10%, the HV1 value of the PMT is changed (step S6), and the process returns to step S2. Steps S2 to S6 are repeated until the calculated value of Height Median1 is included in Target1 ⁇ 10%. If it is determined that Target1 ⁇ 10%, the calculated value of Height Median1 and the HV1 value are recorded in association (step) S7).
- Step S10 After recording the calculated value of Height Median1 and HV1 value, set PMT to the initial value of HV2 (step S1), repeat steps S2 to S6 until the calculated value of Height Median2 reaches Target2 ⁇ 10%, and so on In Step S7, the calculated value of Height Median2 and the HV2 value are recorded.
- the above processing is performed on a numerical value range of N Heights that can be approximated to a linear function, and the calculated values of N Height Median and HV values are recorded (step S8).
- FIG. 11 is a flowchart showing an example of microparticle measurement using a linear function recorded by the information processing method according to the present technology, and shows a flow relating to sample measurement based on setting of an applied voltage coefficient (St). .
- the St value is set (Step S11).
- the HV value of the PMT is set based on the recorded linear function (step S12).
- sample measurement is performed (step S13), and the process is terminated.
- the present technology may have the following configurations.
- a detection unit for detecting light from fluorescent reference particles that emit fluorescence of a predetermined wavelength range An applied voltage coefficient corresponding to a feature value of a predetermined output pulse based on the feature value of the output pulse detected by the detection unit and the control signal of the detection unit when the feature value of the output pulse is detected
- an information processing unit for specifying a relationship between the control signal of the detection unit, With The fine particle measuring apparatus, wherein the feature amount of the output pulse is a value depending on a control signal of the detection unit.
- a detection unit that detects light from a fluorescent reference particle that emits fluorescence of a predetermined wavelength range, a feature amount of the output pulse detected by the detection unit, and a control signal of the detection unit when the feature amount of the output pulse is detected; Based on the information processing unit for specifying the relationship between the applied voltage coefficient corresponding to the characteristic amount of the predetermined output pulse and the control signal of the detection unit, With The information processing apparatus, wherein the feature amount of the output pulse is a value depending on a control signal of the detection unit. (9) The information amount according to (8), wherein the feature amount of the output pulse is the height of the output pulse or the area of the output pulse.
- the characteristic amount of the output pulse is the information processing apparatus according to (8) or (9), wherein the output pulse has a height.
- a detection unit that detects light from a fluorescent reference particle that emits fluorescence of a predetermined wavelength range, a feature amount of the output pulse detected by the detection unit, and a control signal of the detection unit when the feature amount of the output pulse is detected; Based on the information processing step for specifying the relationship between the applied voltage coefficient corresponding to the feature quantity of the predetermined output pulse and the control signal of the detection unit, And The information processing method, wherein the feature amount of the output pulse is a value depending on a control signal of the detection unit. (14) The information processing method according to (13), wherein the feature amount of the output pulse is a height of the output pulse or an area of the output pulse.
- the feature amount of the output pulse is the information processing method according to (13) or (14), which is a height of the output pulse.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Dispersion Chemistry (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biomedical Technology (AREA)
- Medicinal Chemistry (AREA)
- Microbiology (AREA)
- Sustainable Development (AREA)
- General Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Signal Processing (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Optics & Photonics (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
Description
前記検出部は、複数のPMTからなるものであってもよい。この場合、前記複数のPMT間で出力差を有するものとすることができる。
前記出力パルスの特徴量は、出力パルスの高さ、又は出力パルスの面積とすることができ、特に、出力パルスの高さとすることができる。
前記情報処理部は、前記加電圧係数を基にして、前記制御信号を補正してもよい。この場合、補正された前記制御信号が入力された前記検出部により、対象の微小粒子を測定するものとすることができる。
前記出力パルスの特徴量は、出力パルスの高さ、又は出力パルスの面積とすることができ、特に、出力パルスの高さとすることができる。
前記情報処理部は、前記加電圧係数を基にして、前記制御信号を補正するものであってもよい。
本技術に係る情報処理装置は、前記加電圧係数を記憶する記憶部、を更に備えていてもよい。
前記出力パルスの特徴量は、出力パルスの高さ、又は出力パルスの面積とすることができ、特に、出力パルスの高さとすることができる。
前記情報処理工程では、前記加電圧係数を基にして、前記制御信号を補正してもよい。
1.微小粒子測定装置1
(1)検出部11
(2)情報処理部12
[装置間のPMTに対する感度標準化方法]
[精度向上の手段]
[複数のPMTに対する感度標準化方法]
(3)光照射部13
(4)分取部14
(5)記憶部15
(6)流路P
(7)表示部16
(8)ユーザーインターフェース17
2.情報処理装置10
(1)情報処理部12
(2)記憶部15
(3)その他
3.情報処理方法
図1は、本技術に係る微小粒子測定装置1の第1実施形態を模式的に示す模式概念図であり、図2は、本技術に係る微小粒子測定装置1の第2実施形態を模式的に示す模式概念図である。本技術に係る微小粒子測定装置1は、微小粒子の特性を光学的に測定する装置であって、検出部11と、情報処理部12と、を少なくとも有する。また、必要に応じて、光照射部13、分取部14、記憶部15、流路P、表示部16、及びユーザーインターフェース17等を備えていてもよい。以下、各部について詳細に説明する。
検出部11では、所定の波長域幅の蛍光を発する蛍光基準粒子からの光を検出する。また、微小粒子からの光の検出も行うことができる。本技術に用いることができる検出部11は、蛍光基準粒子からの光の検出ができれば、その種類は特に限定されず、公知の光検出器を自由に選択して採用することができる。例えば、蛍光測定器、散乱光測定器、透過光測定器、反射光測定器、回折光測定器、紫外分光測定器、赤外分光測定器、ラマン分光測定器、FRET測定器、FISH測定器、その他各種スペクトラム測定器、複数の光検出器をアレイ状に並べた、所謂マルチチャンネル光検出器などを1種又は2種以上自由に組み合わせて採用することができる。
情報処理部12では、情報処理、並びに、検出部11や後述する光照射部13、分取部14、記憶部15、表示部16、及びユーザーインターフェース17等の制御が行われる。情報処理としては、検出部11により検出された出力パルスの特徴量と前記出力パルスの特徴量が検出された際の検出部11の制御信号とを基にして、所定の出力パルスの特徴量に対応する加電圧係数と検出部11の制御信号との関係を特定する。本技術では、前記特徴量は、検出部11の制御信号に依存する値である。
また、本技術では、これらの値の中央値又は平均値を用いることができるが、Height Median(出力パルスの高さの中央値)、Area Median(出力パルスの面積の中央値)等の中央値を用いることが好ましい。
※「感度標準化のための加電圧係数・HV値の関係特定」
(a)PMTをHV初期値に調整し蛍光基準粒子の測定を行い、得られたForward Scatter/Side Scatter(以下、「FSC/SSC」)の2次元プロット図において、図3に示すように、Singlet(粒子が1個のみ通流した場合のデータ)を示す部分をゲーティングする。
(b)ゲーティングした細部集団において、PMTの出力パルスの高さ(Height)から中央値(Median)(以下、「Height Median」)を算出する。
(c)Height Medianが所定の数値範囲(例えば、Height Median=60,000の±10%の調整範囲)になるまでHVを調整し、対応するHVを特定する。
具体的には、例えば、4点の数値範囲(Height Median=600, 6000, 60000, 600000の±10%の調整範囲)で、HVを取得する。
具体的には、例えば、Height Medianが10,000(Log Height Medianが4)の時、Stを3と定義する。更に、Height Medianが10倍増加すると、Stが1.0増えるように設定する。Stをx、Log HVをyとすると、図4に示すように、PMT_1では、a=0.0898、b=4.1556となり、図5に示すように、PMT_1より低感度であるPMT_2では、a=0.0929、b=4.2911となる。
次に、a1(例えば、前回の測定時に特定された所定の値)を使用し、下記数式(1)に基づき、Heightの調整目標値(以下、「Target」)2のHV2初期値を求め、そこからHVの調整を開始する。そして、HV2とHeight Median2を取得する。
測定時は、加電圧係数Stを基に、記録されたStとHVとの対応関係を用いて、対応するHV値を設定する。具体的には、例えば、ユーザーが設定したSt値に基づき、記録された一次関数に照らしてHVを決定することができる。これにより、以下の通り、PMT_1、PMT_2で感度が異なる場合でも、同様の実験結果が得られるようにHVを設定することができる。
先の内容では、加電圧係数とLog HVの関係に対して一次関数による近似を適用したが、更なる精度の向上は、近似関数の次数を上げることにより達成することができる。実際、HVの設定範囲やPMT自身の特性により、加電圧係数とLog HVは直線特性より僅かに逸脱している場合がある。この時、一次関数適用時では誤差があるが、三次関数適用時には精度が向上する。具体的には、例えば、図6に示すように、一次関数を適用した場合においては、左から二点目が直線性から逸脱しており、特に二点目付近での精度が下がっている。一方で、図7に示すように、三次関数を適用した場合においては、四点は近似曲線上にあり、精度が向上していることが分かる。
※「感度標準化のための加電圧係数・HV値の関係特定」
1台のフローサイトメーターに複数のPMTが備えられている場合、感度の比率を固定値で設定し、装置内の各PMTを標準化して、一つのHVで複数のPMTのHVを制御することも可能である。
(b)前述した[装置間のPMTに対する感度標準化方法]における(a)~(d)を参考に、各PMTで4点、Height MedianとHVのデータを取得する。
測定時は、加電圧係数Stを基に、記録されたStとHVとの対応関係を用いて、対応するHV値を設定する。具体的には、例えば、ユーザーが設定したSt値に基づき、記録された一次関数に照らしてHVを決定することができる。これにより、装置内の各PMTで感度が異なる場合でも、一つのHVで複数のPMTのHVを制御することができる。
本技術に係る微小粒子測定装置1は、蛍光基準粒子や微小粒子への光の照射を行う光照射部13を更に備えることができる。光照射部13から照射される光の種類は特に限定されないが、粒子から蛍光や散乱光を確実に発生させるためには、光方向、波長、光強度が一定の光が好ましい。具体的には、例えば、レーザー、LED等を挙げることができる。レーザーを用いる場合、その種類も特に限定されないが、アルゴンイオン(Ar)レーザー、ヘリウム-ネオン(He-Ne)レーザー、ダイ(dye)レーザー、クリプトン(Cr)レーザー、半導体レーザー、又は半導体レーザーと波長変換光学素子を組み合わせた固体レーザー等を1種又は2種以上自由に組み合わせて用いることができる。
本技術に係る微小粒子測定装置1は、微小粒子の分取を行う分取部14を更に備えることができる。例えば、分取部14では、検出部11により検出された値を情報処理部12で補正して生成されたスペクトルデータに基づいて、微小粒子の分取が行われる。分取部14では、該スペクトルデータから解析された微小粒子の大きさ、形態、内部構造等の解析結果に基づいて、流路Pの下流において、微小粒子の分取を行うことができる。
本技術に係る微小粒子測定装置1では、HVと加電圧係数との関係(例えば、一次関数、対応表等)を記憶する記憶部15を更に備えることができる。記憶部15には、HVと加電圧係数との関係以外にも、検出部11で検出された値、情報処理部12にて生成されたスペクトルデータ、各チャンネルの基準スペクトル、前回の測定で特定されたHVと加電圧係数との関係等の、測定に関わるあらゆる事項を記憶することも可能である。
本技術に係る微小粒子測定装置1では、流路Pを更に備えることができる。本技術に係る微小粒子測定装置1では、フローセル(流路P)中で一列に整列させた微小粒子から得られる光学的情報を検出することにより、微小粒子の解析や分取を行うことができる。
本技術に係る微小粒子測定装置1では、表示部16を更に備えることができる。表示部16では、検出部11で検出された値、情報処理部12にて生成されたスペクトルデータ、算出された加電圧係数、各チャンネルの基準スペクトル等の、測定に関わるあらゆる事項を表示することができる。
本技術に係る微小粒子測定装置1では、ユーザーが操作するための部位であるユーザーインターフェース17を更に備えることができる。ユーザーは、ユーザーインターフェース17を通じて、情報処理部12にアクセスし、本技術に係る微小粒子測定装置1の各部を制御することができる。
図8は、本技術に係る情報処理装置10の第1実施形態を用いることが可能なフローサイトメーターの一例を模式的に示す模式概念図であり、図9は、本技術に係る情報処理装置10の第2実施形態を用いることが可能なフローサイトメーターの一例を模式的に示す模式概念図である。本技術に係る情報処理装置10は、情報処理部12を少なくとも有する。また、必要に応じて、記憶部15、表示部16、及びユーザーインターフェース17等を備えていてもよい。以下、各部について、詳細に説明する。なお、表示部16、及びユーザーインターフェース17は、前述した微小粒子測定装置1の表示部16、及びユーザーインターフェース17の詳細と同一であるため、ここでは説明を割愛する。
情報処理部12では、情報処理、並びに、記憶部15、表示部16、及びユーザーインターフェース17等の制御が行われる。情報処理としては、所定の波長域幅の蛍光を発する蛍光基準粒子からの光を検出する検出部、で検出された出力パルスの特徴量と前記出力パルスの特徴量が検出された際の前記検出部の制御信号とを基にして、所定の出力パルスの特徴量に対応する加電圧係数と前記検出部の制御信号との関係を特定する。本技術では、前記特徴量は、前記検出部の制御信号に依存する値である。
本技術では、図8及び9に示すように、情報処理装置10内に加電圧係数を記憶する記憶部15を更に備えることができる。なお、記憶部15は、前述した微小粒子測定装置1の記憶部15の詳細と同一であるため、ここでは説明を割愛する。
本技術に係る情報処理装置10は、図8及び9に示すように、表示部16、及びユーザーインターフェース17を備えていてもよい。また、図9に示すように、情報処理装置10と、フローサイトメーターの各部(検出部11、光照射部13、分取部14等)とをネットワークを介して接続することも可能である。更に、図示しないが、情報処理装置10の外部に、記憶部15、表示部16、及びユーザーインターフェース17を備え、これらを、それぞれ、ネットワークを介して接続することも可能である。
本技術に係る情報処理方法は、情報処理工程を少なくとも行う方法である。情報処理工程で行う具体的な情報処理方法は、前述した情報処理装置10の情報処理部12で行われる情報処理方法と同一である。以下、本技術に係る情報処理方法を用いた微小粒子測定の流れの一例について、図10及び11を参照しながら説明する。なお、図10及び11に示すフローチャートの各ステップの処理は、例えば、前述した検出部11、或いは情報処理部12等によって行われる。
(1)
所定の波長域幅の蛍光を発する蛍光基準粒子からの光を検出する検出部と、
前記検出部により検出された出力パルスの特徴量と前記出力パルスの特徴量が検出された際の前記検出部の制御信号とを基にして、所定の出力パルスの特徴量に対応する加電圧係数と前記検出部の制御信号との関係を特定する情報処理部と、
を備え、
前記出力パルスの特徴量は、前記検出部の制御信号に依存する値である、微小粒子測定装置。
(2)
前記検出部は、複数のPMTからなる、(1)に記載の微小粒子測定装置。
(3)
前記複数のPMT間で出力差を有する、(2)に記載の微小粒子測定装置。
(4)
前記出力パルスの特徴量は、出力パルスの高さ、又は出力パルスの面積である、(1)~(3)のいずれかに記載の微小粒子測定装置。
(5)
前記出力パルスの特徴量は、出力パルスの高さである、(1)~(4)のいずれかに記載の微小粒子測定装置。
(6)
前記情報処理部は、前記加電圧係数を基にして、前記制御信号を補正する、(1)~(5)のいずれかに記載の微小粒子測定装置。
(7)
補正された前記制御信号が入力された前記検出部により、対象の微小粒子を測定する、(6)に記載の微小粒子測定装置。
(8)
所定の波長域幅の蛍光を発する蛍光基準粒子からの光を検出する検出部、で検出された出力パルスの特徴量と前記出力パルスの特徴量が検出された際の前記検出部の制御信号とを基にして、所定の出力パルスの特徴量に対応する加電圧係数と前記検出部の制御信号との関係を特定する情報処理部、
を備え、
前記出力パルスの特徴量は、前記検出部の制御信号に依存する値である、情報処理装置。
(9)
前記出力パルスの特徴量は、出力パルスの高さ、又は出力パルスの面積である、(8)に記載の情報処理装置。
(10)
前記出力パルスの特徴量は、出力パルスの高さである、(8)又は(9)に記載の情報処理装置。
(11)
前記情報処理部は、前記加電圧係数を基にして、前記制御信号を補正する、(8)~(10)のいずれかに記載の情報処理装置。
(12)
前記加電圧係数を記憶する記憶部、を更に備える、(8)~(11)のいずれかに記載の情報処理装置。
(13)
所定の波長域幅の蛍光を発する蛍光基準粒子からの光を検出する検出部、で検出された出力パルスの特徴量と前記出力パルスの特徴量が検出された際の前記検出部の制御信号とを基にして、所定の出力パルスの特徴量に対応する加電圧係数と前記検出部の制御信号との関係を特定する情報処理工程、
を行い、
前記出力パルスの特徴量は、前記検出部の制御信号に依存する値である、情報処理方法。
(14)
前記出力パルスの特徴量は、出力パルスの高さ、又は出力パルスの面積である、(13)に記載の情報処理方法。
(15)
前記出力パルスの特徴量は、出力パルスの高さである、(13)又は(14)に記載の情報処理方法。
(16)
前記情報処理工程では、前記加電圧係数を基にして、前記制御信号を補正する、(13)~(15)のいずれかに記載の情報処理方法。
(17)
N個のHeight Medianの算出値とHV値とを記録し(ステップS8)、その記録されたN個の値群から三次関数y=ax^3+bx^2+cx+dを算出し、PMTのHV値を設定する(ステップS12)。
11 検出部
12 情報処理部
13 光照射部
14 分取部
15 記憶部
P 流路
T 基板
16 表示部
17 ユーザーインターフェース
10 情報処理装置
Claims (16)
- 所定の波長域幅の蛍光を発する蛍光基準粒子からの光を検出する検出部と、
前記検出部により検出された出力パルスの特徴量と前記出力パルスの特徴量が検出された際の前記検出部の制御信号とを基にして、所定の出力パルスの特徴量に対応する加電圧係数と前記検出部の制御信号との関係を特定する情報処理部と、
を備え、
前記出力パルスの特徴量は、前記検出部の制御信号に依存する値である、微小粒子測定装置。 - 前記検出部は、複数のPMTからなる、請求項1に記載の微小粒子測定装置。
- 前記複数のPMT間で出力差を有する、請求項2に記載の微小粒子測定装置。
- 前記出力パルスの特徴量は、出力パルスの高さ、又は出力パルスの面積である、請求項1に記載の微小粒子測定装置。
- 前記出力パルスの特徴量は、出力パルスの高さである、請求項1に記載の微小粒子測定装置。
- 前記情報処理部は、前記加電圧係数を基にして、前記制御信号を補正する、請求項1に記載の微小粒子測定装置。
- 補正された前記制御信号が入力された前記検出部により、対象の微小粒子を測定する、請求項6に記載の微小粒子測定装置。
- 所定の波長域幅の蛍光を発する蛍光基準粒子からの光を検出する検出部、で検出された出力パルスの特徴量と前記出力パルスの特徴量が検出された際の前記検出部の制御信号とを基にして、所定の出力パルスの特徴量に対応する加電圧係数と前記検出部の制御信号との関係を特定する情報処理部、
を備え、
前記出力パルスの特徴量は、前記検出部の制御信号に依存する値である、情報処理装置。 - 前記出力パルスの特徴量は、出力パルスの高さ、又は出力パルスの面積である、請求項8に記載の情報処理装置。
- 前記出力パルスの特徴量は、出力パルスの高さである、請求項8に記載の情報処理装置。
- 前記情報処理部は、前記加電圧係数を基にして、前記制御信号を補正する、請求項8に記載の情報処理装置。
- 前記加電圧係数を記憶する記憶部、を更に備える、請求項8に記載の情報処理装置。
- 所定の波長域幅の蛍光を発する蛍光基準粒子からの光を検出する検出部、で検出された出力パルスの特徴量と前記出力パルスの特徴量が検出された際の前記検出部の制御信号とを基にして、所定の出力パルスの特徴量に対応する加電圧係数と前記検出部の制御信号との関係を特定する情報処理工程、
を行い、
前記出力パルスの特徴量は、前記検出部の制御信号に依存する値である、情報処理方法。 - 前記出力パルスの特徴量は、出力パルスの高さ、又は出力パルスの面積である、請求項13に記載の情報処理方法。
- 前記出力パルスの特徴量は、出力パルスの高さである、請求項13に記載の情報処理方法。
- 前記情報処理工程では、前記加電圧係数を基にして、前記制御信号を補正する、請求項13に記載の情報処理方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/067,403 US10942108B2 (en) | 2016-01-22 | 2016-10-17 | Fine particle measurement apparatus, information processing apparatus, and information processing method |
CN201680078961.1A CN108474730A (zh) | 2016-01-22 | 2016-10-17 | 微粒测量设备、信息处理设备、以及信息处理方法 |
JP2017562436A JP6708983B2 (ja) | 2016-01-22 | 2016-10-17 | 微小粒子測定装置、情報処理装置及び情報処理方法 |
EP16886410.6A EP3392645A4 (en) | 2016-01-22 | 2016-10-17 | Microparticle measurement device, information processing device, and information processing method |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-010506 | 2016-01-22 | ||
JP2016010506 | 2016-01-22 | ||
JP2016-161025 | 2016-08-19 | ||
JP2016161025 | 2016-08-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017126170A1 true WO2017126170A1 (ja) | 2017-07-27 |
Family
ID=59362605
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/080653 WO2017126170A1 (ja) | 2016-01-22 | 2016-10-17 | 微小粒子測定装置、情報処理装置及び情報処理方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10942108B2 (ja) |
EP (1) | EP3392645A4 (ja) |
JP (2) | JP6708983B2 (ja) |
CN (1) | CN108474730A (ja) |
WO (1) | WO2017126170A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019049442A1 (ja) * | 2017-09-08 | 2019-03-14 | ソニー株式会社 | 微小粒子測定装置、情報処理装置および情報処理方法 |
CN112513593A (zh) * | 2018-08-22 | 2021-03-16 | 株式会社日立高新技术 | 自动分析装置和光测量方法 |
WO2021070847A1 (en) | 2019-10-10 | 2021-04-15 | Sony Corporation | Particle detection apparatus, information processing apparatus, information processing method, and particle detection method |
US11852578B2 (en) | 2018-07-20 | 2023-12-26 | Sony Corporation | Microparticle measurement spectrometer, microparticle measurement device using the microparticle measurement spectrometer, and method for calibrating microparticle measurement photoelectric conversion system |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021143988A (ja) * | 2020-03-13 | 2021-09-24 | ソニーグループ株式会社 | 粒子解析システムおよび粒子解析方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10311789A (ja) * | 1997-05-13 | 1998-11-24 | Nikon Corp | 測光装置 |
JP2003083894A (ja) | 2001-09-14 | 2003-03-19 | Sumitomo Electric Ind Ltd | 蛍光値補正方法、蛍光値補正装置、蛍光値補正プログラム及び前記蛍光値補正プログラムを記録した記録媒体 |
JP2004205508A (ja) * | 2002-12-20 | 2004-07-22 | Becton Dickinson & Co | 蛍光分析装置及び蛍光分析方法 |
JP2007508526A (ja) * | 2003-08-13 | 2007-04-05 | ルミネックス・コーポレーション | フロー・サイトメータ・タイプ測定システムの1つまたは複数のパラメータを制御するための方法 |
JP2011085587A (ja) * | 2009-10-15 | 2011-04-28 | Becton Dickinson & Co | 蛍光分析装置のための機器セットアップシステム |
JP2015025824A (ja) * | 2014-11-07 | 2015-02-05 | ソニー株式会社 | 微小粒子測定装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60207014A (ja) * | 1984-03-31 | 1985-10-18 | Toshiba Corp | ホトマルチプライヤ制御回路 |
ATE252938T1 (de) * | 1994-08-01 | 2003-11-15 | Abbott Lab | Verfahren und vorrichtung zur vorbereitung einer flüssigkeit |
ES2564005T3 (es) * | 2003-03-28 | 2016-03-17 | Inguran, Llc | Método para proporcionar esperma animal clasificado por sexo |
JP2004347562A (ja) * | 2003-05-26 | 2004-12-09 | Olympus Corp | 測定装置 |
JP4887319B2 (ja) * | 2008-03-17 | 2012-02-29 | 株式会社日立ハイテクノロジーズ | 自動分析装置、及び光電子増倍管を用いた分析システム |
US8415161B2 (en) | 2008-11-13 | 2013-04-09 | Becton, Dickinson And Company | Instrument setup system for a fluorescence analyzer |
JP5124498B2 (ja) * | 2009-01-30 | 2013-01-23 | 株式会社日立ハイテクノロジーズ | 自動分析装置 |
US20100256943A1 (en) * | 2009-04-06 | 2010-10-07 | University Of Pittsburgh - Of The Commonwealth System Of Higher Education | Configuration of initial control parameters in photodetectors for multi-color flow cytometry |
JP6719203B2 (ja) * | 2015-12-25 | 2020-07-08 | リオン株式会社 | 生物粒子計数器の校正方法および生物粒子計数器の校正装置 |
-
2016
- 2016-10-17 JP JP2017562436A patent/JP6708983B2/ja active Active
- 2016-10-17 US US16/067,403 patent/US10942108B2/en active Active
- 2016-10-17 EP EP16886410.6A patent/EP3392645A4/en active Pending
- 2016-10-17 WO PCT/JP2016/080653 patent/WO2017126170A1/ja active Application Filing
- 2016-10-17 CN CN201680078961.1A patent/CN108474730A/zh active Pending
-
2020
- 2020-05-21 JP JP2020088997A patent/JP6954406B2/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10311789A (ja) * | 1997-05-13 | 1998-11-24 | Nikon Corp | 測光装置 |
JP2003083894A (ja) | 2001-09-14 | 2003-03-19 | Sumitomo Electric Ind Ltd | 蛍光値補正方法、蛍光値補正装置、蛍光値補正プログラム及び前記蛍光値補正プログラムを記録した記録媒体 |
JP2004205508A (ja) * | 2002-12-20 | 2004-07-22 | Becton Dickinson & Co | 蛍光分析装置及び蛍光分析方法 |
JP2007508526A (ja) * | 2003-08-13 | 2007-04-05 | ルミネックス・コーポレーション | フロー・サイトメータ・タイプ測定システムの1つまたは複数のパラメータを制御するための方法 |
JP2011085587A (ja) * | 2009-10-15 | 2011-04-28 | Becton Dickinson & Co | 蛍光分析装置のための機器セットアップシステム |
JP2015025824A (ja) * | 2014-11-07 | 2015-02-05 | ソニー株式会社 | 微小粒子測定装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3392645A4 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019049442A1 (ja) * | 2017-09-08 | 2019-03-14 | ソニー株式会社 | 微小粒子測定装置、情報処理装置および情報処理方法 |
JPWO2019049442A1 (ja) * | 2017-09-08 | 2020-08-20 | ソニー株式会社 | 微小粒子測定装置、情報処理装置および情報処理方法 |
US11480513B2 (en) | 2017-09-08 | 2022-10-25 | Sony Corporation | Fine particle measurement apparatus, information processing apparatus, and information processing method |
US11852578B2 (en) | 2018-07-20 | 2023-12-26 | Sony Corporation | Microparticle measurement spectrometer, microparticle measurement device using the microparticle measurement spectrometer, and method for calibrating microparticle measurement photoelectric conversion system |
CN112513593A (zh) * | 2018-08-22 | 2021-03-16 | 株式会社日立高新技术 | 自动分析装置和光测量方法 |
EP3842771A4 (en) * | 2018-08-22 | 2022-05-11 | Hitachi High-Tech Corporation | AUTOMATIC ANALYZER AND OPTICAL MEASUREMENT PROCEDURE |
US11493430B2 (en) | 2018-08-22 | 2022-11-08 | Hitachi High-Tech Corporation | Automatic analyzer and optical measurement method |
CN112513593B (zh) * | 2018-08-22 | 2023-10-10 | 株式会社日立高新技术 | 自动分析装置和光测量方法 |
WO2021070847A1 (en) | 2019-10-10 | 2021-04-15 | Sony Corporation | Particle detection apparatus, information processing apparatus, information processing method, and particle detection method |
JP2021063664A (ja) * | 2019-10-10 | 2021-04-22 | ソニー株式会社 | 情報処理装置、粒子測定装置、情報処理方法、粒子測定方法、及びコンピュータプログラム |
JP7451926B2 (ja) | 2019-10-10 | 2024-03-19 | ソニーグループ株式会社 | 情報処理装置、粒子測定装置、情報処理方法、粒子測定方法、及びコンピュータプログラム |
Also Published As
Publication number | Publication date |
---|---|
JP6708983B2 (ja) | 2020-06-10 |
CN108474730A (zh) | 2018-08-31 |
JP6954406B2 (ja) | 2021-10-27 |
EP3392645A1 (en) | 2018-10-24 |
JPWO2017126170A1 (ja) | 2018-11-15 |
JP2020122803A (ja) | 2020-08-13 |
US10942108B2 (en) | 2021-03-09 |
US20190011348A1 (en) | 2019-01-10 |
EP3392645A4 (en) | 2018-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6954406B2 (ja) | 粒子測定システム及び粒子測定方法 | |
US9400251B2 (en) | Fine particle measuring apparatus | |
WO2017018057A1 (ja) | 微小粒子測定装置、情報処理装置及び情報処理方法 | |
JP6860015B2 (ja) | 微小粒子測定装置及び微小粒子測定方法 | |
JP7451926B2 (ja) | 情報処理装置、粒子測定装置、情報処理方法、粒子測定方法、及びコンピュータプログラム | |
WO2019181205A1 (ja) | 情報処理装置、情報処理システム及び情報処理方法 | |
US11898952B2 (en) | Microparticle measuring apparatus and microparticle measuring method | |
CN112368565B (zh) | 微粒测量光谱仪、使用微粒测量光谱仪的微粒测量装置以及用于校正微粒测量光电转换系统的方法 | |
JP2021121803A (ja) | 微小粒子測定システム及び微小粒子測定方法 | |
WO2019207988A1 (ja) | 微小粒子分取装置及び微小粒子分取方法 | |
EP4083606B1 (en) | Information processing device, particle measurement system, and information processing method | |
JP6350626B2 (ja) | データ解析方法 | |
US12078586B2 (en) | Microparticle measurement device, microparticle sorting device, microparticle measurement system, and microparticle sorting system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16886410 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017562436 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016886410 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2016886410 Country of ref document: EP Effective date: 20180716 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |