Nothing Special   »   [go: up one dir, main page]

WO2017010286A1 - 画素回路ならびに表示装置およびその駆動方法 - Google Patents

画素回路ならびに表示装置およびその駆動方法 Download PDF

Info

Publication number
WO2017010286A1
WO2017010286A1 PCT/JP2016/069234 JP2016069234W WO2017010286A1 WO 2017010286 A1 WO2017010286 A1 WO 2017010286A1 JP 2016069234 W JP2016069234 W JP 2016069234W WO 2017010286 A1 WO2017010286 A1 WO 2017010286A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
line
circuit
transistor
data
Prior art date
Application number
PCT/JP2016/069234
Other languages
English (en)
French (fr)
Inventor
将紀 小原
内田 秀樹
菊池 克浩
井上 智
優人 塚本
英士 小池
和雄 滝沢
野口 登
宣孝 岸
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US15/579,989 priority Critical patent/US10311791B2/en
Priority to KR1020177035504A priority patent/KR20180002851A/ko
Priority to JP2017528370A priority patent/JPWO2017010286A1/ja
Priority to CN201680036131.2A priority patent/CN107710318A/zh
Publication of WO2017010286A1 publication Critical patent/WO2017010286A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • G09G3/3241Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element the current through the light-emitting element being set using a data current provided by the data driver, e.g. by using a two-transistor current mirror
    • G09G3/325Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element the current through the light-emitting element being set using a data current provided by the data driver, e.g. by using a two-transistor current mirror the data current flowing through the driving transistor during a setting phase, e.g. by using a switch for connecting the driving transistor to the data driver
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3266Details of drivers for scan electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/127Active-matrix OLED [AMOLED] displays comprising two substrates, e.g. display comprising OLED array and TFT driving circuitry on different substrates
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2230/00Details of flat display driving waveforms
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0819Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0828Several active elements per pixel in active matrix panels forming a digital to analog [D/A] conversion circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0278Details of driving circuits arranged to drive both scan and data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0286Details of a shift registers arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0289Details of voltage level shifters arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0294Details of sampling or holding circuits arranged for use in a driver for data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0297Special arrangements with multiplexing or demultiplexing of display data in the drivers for data electrodes, in a pre-processing circuitry delivering display data to said drivers or in the matrix panel, e.g. multiplexing plural data signals to one D/A converter or demultiplexing the D/A converter output to multiple columns
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0219Reducing feedthrough effects in active matrix panels, i.e. voltage changes on the scan electrode influencing the pixel voltage due to capacitive coupling
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0271Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
    • G09G2320/0276Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping for the purpose of adaptation to the characteristics of a display device, i.e. gamma correction
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/029Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel
    • G09G2320/0295Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel by monitoring each display pixel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/12Test circuits or failure detection circuits included in a display system, as permanent part thereof
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/16Calculation or use of calculated indices related to luminance levels in display data

Definitions

  • the present invention relates to a display device, and more particularly to a display device including a display element driven by a current, such as an organic EL display device, a driving method thereof, and a pixel circuit in such a display device.
  • an electro-optical element whose luminance is controlled by an applied voltage and an electro-optical element whose luminance is controlled by a flowing current.
  • a typical example of an electro-optical element whose luminance is controlled by an applied voltage is a liquid crystal display element.
  • an electro-optical element whose luminance is controlled by a flowing current is an organic EL (Electro-Luminescence) element.
  • the organic EL element is also called OLED (Organic Light-Emitting Light Diode).
  • Organic EL display devices that use organic EL elements, which are self-luminous electro-optic elements, can be easily reduced in thickness, power consumption, brightness, etc., compared to liquid crystal display devices that require backlights and color filters. Can be achieved. Therefore, in recent years, organic EL display devices have been actively developed.
  • an organic EL display device As a driving method of an organic EL display device, a passive matrix method (also referred to as “simple matrix method”) and an active matrix method are known.
  • An organic EL display device adopting a passive matrix system has a simple structure but is difficult to increase in size and definition.
  • an organic EL display device employing an active matrix method hereinafter referred to as an “active matrix organic EL display device” is larger and more precise than an organic EL display device employing a passive matrix method. Can be realized easily.
  • a pixel circuit of an active matrix organic EL display device typically includes an input transistor that selects a pixel and a drive transistor that controls the supply of current to the organic EL element.
  • the current flowing from the drive transistor to the organic EL element may be referred to as “drive current”.
  • a plurality of data lines also referred to as “source lines”
  • a plurality of scanning signal lines also referred to as “gate lines” intersecting the plurality of data lines
  • a plurality of pixel circuits arranged in a matrix along the plurality of scanning signal lines are formed in the display portion.
  • an SSD Source Shared Shared Driving
  • an SSD Source Shared Shared Driving
  • the SSD method means that a plurality of data lines in the display unit are grouped into a plurality of sets of data lines with a predetermined number of two or more data lines as one set, and time-divided into the predetermined number of data lines in each set.
  • an analog video signal is given.
  • an analog video signal is given to each data line via an analog switch in an on state, and then the level of the control signal of the analog switch is changed.
  • the analog switch is turned off, the voltage of the analog video signal is held in the data line.
  • the activated scanning signal line The voltage of the data line is written as pixel data to the pixel circuit connected to the.
  • an active matrix type organic EL display device adopting the SSD method is disclosed in, for example, Patent Document 1.
  • color display by RGB three primary colors is performed, and an R data line which is a data line to which a pixel circuit corresponding to a red pixel is connected and a data line to which a pixel circuit corresponding to a green pixel is connected.
  • a group of three data lines consisting of a certain G data line and a B data line which is a data line to which a pixel circuit corresponding to a blue pixel is connected is grouped into a plurality of data lines in the display panel.
  • One demultiplexer is provided for each set.
  • Each demultiplexer receives a data signal output from a data driver (data line driving circuit), and the data signal is time-divided into an R data line, a G data line, and a B data line connected to the demultiplexer. Is configured to give to.
  • an active matrix type organic EL display device adopting the SSD method, after an analog video signal is given to each data line via an analog switch in an on state, a control signal of the analog switch is transmitted. By changing the level and turning off the analog switch, the voltage of the analog video signal is held in the data line.
  • a phenomenon in which the voltage held on the data line drops or rises lower than the original voltage of the analog video signal due to parasitic capacitance This phenomenon is called “field-through phenomenon”. This point will be described below with reference to FIGS. 41 and 42.
  • FIG. 2 is a circuit diagram showing a configuration of “unit sample hold circuit”.
  • This unit sample hold circuit includes an N-channel field effect transistor (hereinafter abbreviated as “Nch transistor”) SWk as an analog switch, and one conduction terminal connected to the gate terminal of the Nch transistor SWk and the data line SLk. And a parasitic capacitance Cgd formed between the two.
  • Nch transistor N-channel field effect transistor
  • An analog video signal Sv1 is supplied to the other conduction terminal of the Nch transistor SWk, and a control signal Sck for controlling on / off of the Nch transistor SWk is supplied to the gate terminal of the Nch transistor SWk.
  • the Nch transistor SWk (including the parasitic capacitance Cgd) forms a sampling circuit for the analog video signal Sv1, and the capacitance of the sampling circuit and the data line SLk (total capacitance formed by the data line SLk and other electrodes).
  • the unit sample hold circuit is configured by Csl.
  • an on-voltage (a high-level voltage (hereinafter referred to as “H-level voltage” when the analog switch is formed of an Nch transistor)) is used as the control signal Sck of the Nch transistor SWk.
  • H-level voltage when the analog switch is formed of an Nch transistor
  • the off voltage when the analog switch is composed of Nch transistors, a low level voltage (hereinafter referred to as “L level voltage”) is used as the control signal Sck. This is applied to the gate terminal of the transistor SWk.
  • the voltage change (VCH ⁇ VCL) at the gate terminal of the Nch transistor SWk affects the data line voltage Vsl via the parasitic capacitance Cgd, and the data line voltage Vsl is changed to the analog video signal Sv1 according to the voltage change.
  • a phenomenon of lowering from the voltage Vv1, that is, a field through phenomenon occurs.
  • the amount of decrease in the voltage Vv1 of the analog video signal Sv1 due to this field-through phenomenon that is, the field-through voltage ⁇ Vsl, assumes that the voltage change at the gate terminal occurs instantaneously (the Nch transistor SWk instantaneously transitions to the OFF state) Then, it is expressed by the following formula.
  • ⁇ Vsl ⁇ Cgd / (Csl + Cgd) ⁇ (VCH ⁇ VCL)
  • the data line voltage Vsl fluctuates (decreases or increases) due to a field-through phenomenon. Therefore, an image represented by an input signal given from the outside cannot be displayed sufficiently satisfactorily.
  • a configuration in which the voltage of the data signal is adjusted to be high in advance so as to compensate for the voltage decrease can be considered. However, this configuration causes an increase in power consumption.
  • the present invention is an active matrix type display device having a display element driven by current, and suppresses fluctuations in the data line voltage due to a field-through phenomenon that occurs when an analog voltage signal is sampled and held in the data line. It is an object to provide a display device that can be used.
  • a plurality of data lines for transmitting a plurality of analog voltage signals representing an image to be displayed, a plurality of write control lines intersecting with the plurality of data lines, and the plurality of the plurality of data lines
  • a display device including a plurality of display elements arranged in a matrix along the data lines and the plurality of write control lines and driven by current, and having a function of measuring a drive current to be applied to each display element;
  • a pixel circuit corresponding to any one of a plurality of data lines and corresponding to any one of the plurality of write control lines,
  • An electro-optic element which is one of the plurality of display elements and whose luminance is controlled by a current;
  • a voltage holding capacitor for holding a data voltage for controlling a driving current of the electro-optic element;
  • An input transistor as a switching element having a control terminal connected to a corresponding write control line and controlling voltage supply from the corresponding data line to the voltage holding capacitor;
  • a driving transistor for supplying a driving current corresponding to
  • a plurality of data lines for transmitting a plurality of analog voltage signals representing an image to be displayed, a plurality of write control lines intersecting the plurality of data lines, and the plurality of the plurality of data lines
  • a display device including a plurality of display elements arranged in a matrix along the data lines and the plurality of write control lines and driven by current, and having a function of measuring a drive current to be applied to each display element.
  • a plurality of pixel circuits according to the first aspect of the present invention, arranged in a matrix; A plurality of monitor control lines disposed along the plurality of write control lines to respectively correspond to the plurality of write control lines; A plurality of voltage fluctuation compensation lines disposed along the plurality of write control lines to respectively correspond to the plurality of write control lines; A plurality of connection control transistors respectively corresponding to the plurality of data lines, each for receiving a first conduction terminal connected to the corresponding data line and an analog voltage signal to be applied to the corresponding data line; A plurality of connection control transistors having a second conduction terminal and a control terminal for receiving a connection control signal for controlling on / off; A data line driving circuit for supplying the analog voltage signal to the second conduction terminal of each of the plurality of connection control transistors; A write control line driving circuit for selectively driving the plurality of write control lines; A monitor control line driving circuit for selectively driving the plurality of monitor control lines; A voltage fluctuation compensation line driving circuit for selectively driving the plurality of voltage fluctuation
  • Each output terminal is connected to a second conduction terminal of a predetermined number of connection control transistors corresponding to a predetermined number of data lines of the corresponding set;
  • the drive control unit generates a predetermined number of connection control signals respectively corresponding to a predetermined number of data lines of each set, and the predetermined number of connection control signals corresponding to the predetermined number of data lines of each set
  • the predetermined number of connection control transistors of each set are sequentially supplied for a predetermined period in a first selection period in which any one of the plurality of write control lines is in a selected state.
  • the voltage fluctuation compensation line driving circuit supplies the voltage fluctuation compensation line corresponding to the write control line in the selected state after the plurality of connection control transistors change from the on state to the off state.
  • the power voltage By changing the power voltage from the first voltage to the second voltage, it is opposite to the change in voltage applied to the control terminals of the plurality of connection control transistors to change the plurality of connection control transistors from the on state to the off state.
  • the voltage of the corresponding voltage fluctuation compensation line is changed in the direction of.
  • the voltage fluctuation compensation line drive circuit is configured to change the write control line in the selected state in the first selection period in the period in which the plurality of write control lines are in the non-selected state after the first selection period.
  • the voltage of the corresponding voltage fluctuation compensation line is returned from the second voltage to the first voltage.
  • the voltage fluctuation compensation line drive circuit first changes from an on state to an off state in a period in which a write control line selected next to a write control line that is in a selected state in the first selection period is in a selected state. Before the changing connection control transistor starts changing to the OFF state, the voltage of the voltage variation compensation line corresponding to the write control line that is in the selected state in the first selection period is changed from the second voltage. The voltage is returned to the first voltage.
  • a voltage source configured to supply the first and second voltages to the voltage fluctuation compensation line driving circuit so that a difference between the first voltage and the second voltage can be changed.
  • Voltage fluctuations in the plurality of data lines caused by the plurality of connection control transistors changing from an on state to an off state in the first selection period are changed from the first voltage of the voltage of the corresponding voltage fluctuation compensation line to the first voltage.
  • the first and second voltages are set so as to be offset by a change to the second voltage.
  • the drive control unit When measuring the drive current to be applied to the display element in the pixel circuit corresponding to any one of the plurality of write control lines, The drive control unit Corresponding to the one write control line in the non-selection period immediately after the second selection period in which the one write control line is selected and the plurality of write control lines are in the non-selected state.
  • the current measurement circuit is configured to detect a current flowing through a drive transistor in a pixel circuit corresponding to the one write control line, the monitor control transistor, the voltage variation compensation transistor, and the predetermined number of connection control transistors in each group. It is characterized by measuring through an on-state transistor.
  • the transistor included in each pixel circuit and the plurality of connection control transistors are thin film transistors in which a channel layer is formed using an oxide semiconductor.
  • an analog voltage signal indicating pixel data to be written to the pixel circuit is transmitted from the data side driving circuit to the data line corresponding to the pixel circuit as a switching element.
  • the connection control transistor is turned off after being applied through the connection control transistor, the voltage held in the data line varies from the voltage of the analog voltage signal due to the parasitic capacitance of the connection control transistor. (When the connection control transistor is an N-channel type, the voltage of the data line decreases, and when the connection control transistor is a P-channel type, the voltage of the data line increases).
  • the analog voltage signal is corrected in advance so as to compensate for this, the voltage of the analog voltage signal is reduced. Becomes higher than the original voltage, resulting in an increase in power consumption. According to the first aspect of the present invention, such an increase in power consumption can be suppressed.
  • this pixel when measuring a current flowing through the driving transistor (driving current to be applied to the display element) in order to compensate for variations in characteristics of the driving transistor in the pixel circuit, this pixel is used.
  • the monitor control line and the voltage fluctuation compensation line arranged along the write control line corresponding to the circuit are both selected (active), and the current measurement circuit provided in the display device has a current flowing through the drive transistor. Is measured through the monitor control transistor, the voltage fluctuation compensation transistor, and the data line in the pixel circuit.
  • both the monitor control line and the voltage fluctuation compensation line arranged along the write control line corresponding to this pixel circuit are not.
  • the monitor control transistor and the voltage fluctuation compensation transistor that are selected (inactive) and are connected in series to each other in this pixel circuit are both turned off. For this reason, according to the first aspect of the present invention, in the pixel circuit other than the pixel circuit to be measured by the current measurement circuit, leakage current flowing into or out of the data line is reliably suppressed, and measurement is performed.
  • the current of the drive transistor of the target pixel circuit can be measured with high accuracy.
  • connection control transistors of each set are sequentially turned on for a predetermined period in a first selection period in which any one of the plurality of write control lines is in a selected state.
  • first selection period an analog voltage signal from each output terminal of the data line driving circuit is applied to the data line corresponding to the connection control transistor in the on state, and the connection control transistor changes to the off state.
  • the analog voltage signal is held on the data line as a pixel data voltage.
  • the connection control transistor due to the parasitic capacitance of the connection control transistor, the voltage held in the data line varies from the voltage of the analog voltage signal (if the connection control transistor is an N-channel type, the voltage of the data line) (In the case of the P channel type, the voltage of the data line increases.)
  • the voltage of the voltage variation compensation line corresponding to the write control line in the selected state is In order to change the plurality of connection control transistors from the on state to the off state, the connection control transistor changes in a direction opposite to the change in voltage applied to the control terminals (changes from the first voltage to the second voltage).
  • the voltage change of the voltage fluctuation compensation line works in a direction to cancel the voltage fluctuation of the data line via the voltage fluctuation compensation capacitor in the pixel circuit corresponding to the data line. This compensates for voltage fluctuations in the data line that occur when the connection control transistor changes to the off state. Therefore, it is not necessary to correct the analog data signal voltage in advance in order to compensate for such data line voltage fluctuations.
  • the connection control transistor is an N-channel type
  • the voltage of the data line decreases when the connection control transistor changes to the OFF state. Therefore, if the analog voltage signal is corrected in advance to compensate for this, the voltage of the analog voltage signal is reduced. Becomes higher than the original voltage, leading to an increase in power consumption. According to the second aspect of the present invention, such an increase in power consumption can be suppressed.
  • the voltage to which the second voltage is applied in the first selection period Since the voltage of the fluctuation compensation line is returned to the first voltage, the change from the second voltage to the first voltage does not affect the data voltage held in each pixel circuit.
  • the voltage of the voltage fluctuation compensation line corresponding to the selection timing of each write control line is switched between the first voltage and the second voltage.
  • a dedicated control signal for returning the voltage of the fluctuation compensation line to the first voltage is not required, the configuration of the voltage fluctuation compensation line driving circuit can be simplified, and power consumption can be reduced accordingly.
  • the difference between the first voltage and the second voltage can be changed in the power source that supplies the first and second voltages to be supplied to each voltage fluctuation compensation line to the voltage fluctuation compensation line driving circuit. It is configured. Therefore, by adjusting the difference between the first voltage and the second voltage according to the magnitude of the voltage fluctuation of the data line caused by the parasitic capacitance when the connection control transistor changes to the OFF state, the voltage fluctuation is reduced. It can be fully compensated. In addition to compensation for voltage fluctuation of the data line due to such parasitic capacitance, the voltage of the analog voltage signal applied to the data line, the voltage held in the data line, and the voltage written as pixel data in the pixel circuit are also included. In the case of shortage, the shortage can be compensated by adjusting the difference between the first voltage and the second voltage.
  • the first and second voltages to be applied to the plurality of voltage fluctuation compensation lines change the plurality of connection control transistors from the on state to the off state in the first selection period.
  • the voltage fluctuations in the plurality of data lines caused by this are set so as to be offset by the change in the voltage of the voltage fluctuation compensation line corresponding to the write control line that is selected in the first selection period. . This eliminates the need for correction of the analog voltage signal for compensating for voltage fluctuations in the plurality of data lines, and more reliably solves problems such as increased power consumption due to the correction.
  • the seventh aspect of the present invention when the drive current to be applied to the display element in the pixel circuit corresponding to any one of the plurality of write control lines is measured, Monitor in the pixel circuit corresponding to the one write control line in the non-selection period immediately after the second selection period in which the write control line is selected and in which all the write control lines are in the non-selection state
  • the control transistor and the voltage variation compensation transistor are turned on, and a predetermined number of connection control transistors in each set are sequentially turned on for a predetermined period.
  • the current flowing through the drive transistor of the pixel circuit corresponding to the one write control line is the monitor control transistor, the voltage variation compensation transistor, and a predetermined number of connection controls in each group.
  • the transistor included in each pixel circuit and the plurality of connection control transistors are thin film transistors in which a channel layer is formed of an oxide semiconductor, other types of thin film transistors are used.
  • the effect similar to the said 2nd aspect of this invention is acquired, reducing power consumption rather than the case.
  • FIG. 1 is a block diagram illustrating an overall configuration of an organic EL display device according to a first embodiment of the present invention. It is a block for demonstrating the structure of the display part in the said 1st Embodiment. 3 is a timing chart for explaining driving of a write control line and a monitor control line in the first embodiment. It is a partial circuit diagram which shows the structure of the principal part in the said 1st Embodiment. 3 is a circuit diagram showing a configuration of a data side unit circuit in the data side drive circuit in the first embodiment. FIG. It is a block diagram which shows the structure of the drive control part in the display control circuit in the said 1st Embodiment.
  • FIG. 3 is a block diagram showing a configuration of a write control line drive circuit in the first embodiment.
  • FIG. 3 is a circuit diagram showing a configuration of a shift register unit circuit (configuration of one stage of the shift register) that constitutes the write control line drive circuit in the first embodiment.
  • FIG. 6 is a timing chart for explaining the basic operation of the unit circuit of the shift register constituting the write control line drive circuit in the first embodiment.
  • FIG. 3 is a block diagram showing a configuration of a monitor control line drive circuit in the first embodiment.
  • FIG. 6 is a signal waveform diagram of a clock signal CLK3 and a clock signal CLK4 during a normal operation period in the first embodiment.
  • FIG. 2 is a circuit diagram showing a configuration of a unit circuit of a shift register that constitutes a monitor control line drive circuit in the first embodiment. It is a figure for demonstrating how the monitor enable signal is given to the transistor T49 in the unit circuit of the shift register which comprises the monitor control line drive circuit in the said 1st Embodiment.
  • FIG. 6 is a signal waveform diagram of a clock signal CLK5 and a clock signal CLK6 during a normal operation period in the first embodiment.
  • FIG. 3 is a circuit diagram showing a configuration of a unit circuit of a shift register that constitutes the voltage fluctuation compensation line drive circuit in the first embodiment. 3 is a timing chart for explaining the operation of the write control line drive circuit in the first embodiment. 4 is a timing chart for explaining the operation of the monitor control line driving circuit in the first embodiment. 6 is a timing chart for explaining the operation of the voltage fluctuation compensation line driving circuit in the first embodiment.
  • FIG. 3 is a circuit diagram illustrating a configuration in a current measurement period of a data side unit circuit in the data side drive circuit in the first embodiment.
  • 4 is a timing chart for explaining an operation for measuring a current in the pixel circuit in the first embodiment.
  • 4 is a flowchart showing a control procedure for a characteristic detection process (a series of processes for detecting the characteristics of a drive transistor) in the first embodiment.
  • 6 is a flowchart for explaining a procedure of compensation processing (a series of processing for compensating variation in characteristics of a driving transistor) when attention is paid to one pixel (a pixel in i row and j column) in the first embodiment. is there. It is a figure which shows the gradation-current characteristic in the said 1st Embodiment.
  • FIG. 6 is a signal waveform diagram of a clock signal CLK5 and a clock signal CLK6 during a normal operation period in the second embodiment.
  • FIG. 10 is a timing chart for explaining a basic operation of a unit circuit of a shift register constituting the voltage compensation line driving circuit in the second embodiment. 10 is a timing chart for explaining the operation of the voltage fluctuation compensation line driving circuit in the second embodiment.
  • the gate terminal corresponds to a control terminal
  • one of the drain terminal and the source terminal corresponds to a first conduction terminal
  • the other corresponds to a second conduction terminal.
  • the drain terminal and the source terminal of the transistor change according to the switching of the direction of the current according to a normal definition, but for convenience, one of the two conduction terminals of the transistor is fixed as a drain terminal. The other is fixed as a source terminal.
  • FIG. 1 is a block diagram showing the overall configuration of an active matrix organic EL display device 1 according to the first embodiment of the present invention.
  • the organic EL display device 1 includes a display control circuit 100, a data side drive circuit 200, a write control line drive circuit 300, a voltage fluctuation compensation line drive circuit 350, a monitor control line drive circuit 400, a demultiplex circuit 250, and a display. Part 500 is provided.
  • the data side driving circuit 200 includes a portion that functions as the data line driving circuit 210 and a portion that functions as the current measurement circuit 220.
  • the write control line drive circuit 300, the voltage fluctuation compensation line drive circuit 350, the monitor control line drive circuit 400, and the demultiplex circuit 250 are integrated with the display unit 500.
  • the organic EL display device 1 includes logic power sources 610, 620, and 630, an organic EL high level power source 650, and an organic EL low level as components for supplying various power supply voltages to the organic EL panel 6.
  • a level power supply 640 is provided.
  • the organic EL panel 6 is supplied with the high level power supply voltage VDD and the low level power supply voltage VSS required for the operation of the write control line drive circuit 300 from the logic power supply 610, and is required for the operation of the monitor control line drive circuit 400.
  • the high level power supply voltage VDD and the low level power supply voltage VSS are supplied from the logic power supply 620, and the high level power supply voltage VDD, the low level power supply voltage VSS, and the voltage required for the operation of the voltage fluctuation compensation line driving circuit 350 are supplied.
  • a fluctuation compensation voltage (hereinafter referred to as “counter voltage”) VCNT is supplied from the logic power source 630.
  • the organic EL panel 6 is supplied with a high level power supply voltage ELVDD from the organic EL high level power supply 650 and supplied with a low level power supply voltage ELVSS from the organic EL low level power supply 640.
  • the high level power supply voltage VDD, the low level power supply voltage VSS, the counter voltage VCNT, the organic EL high level power supply voltage ELVDD, and the organic EL low level power supply voltage ELVSS are all constant voltages (DC voltages).
  • the power lines for supplying the high level power supply voltage VDD, the low level power supply voltage VSS, the high level power supply voltage ELVDD, and the low level power supply voltage ELVSS are also denoted by the symbols “ELVDD”, “ELVSS”, “VDD”, “ It is indicated by VSS ”respectively.
  • FIG. 2 is a block diagram for explaining the configuration of the display unit 500 in the present embodiment.
  • the description will be made assuming that the organic EL panel 6 is a full high-definition panel, but the present invention is not limited to this.
  • a pixel circuit 50r for a red pixel is provided corresponding to each intersection of the write control lines G1_WL (0) to G1_WL (1079) and the data lines SLr0 to SLrM, and the write control lines G1_WL (0) to G1_WL ( 1079) and data lines SLg0 to SLgM are provided with pixel circuits 50g for green pixels corresponding to the respective intersections, and write control lines G1_WL (0) to G1_WL (1079) and data lines SLb0 to SLbM
  • a pixel circuit 50b for a blue pixel is provided corresponding to the intersection.
  • the display unit 500 includes three pixel circuits 50r, 50g, and 50b corresponding to red (R), green (G), and blue (B) (hereinafter referred to as “red pixel circuit 50r” and “green pixel circuit, respectively”).
  • red pixel circuit 50r red pixel circuit 50r” and “green pixel circuit, respectively”.
  • M + 1) ⁇ 1080 1920 ⁇ 1080 sets of pixel circuits, each of which is a write control line G1_WL (0) to G1_WL (1079) and data lines SLr0, SLg0. , SLb0 to SLrM, SLgM, and SLbM are arranged in a matrix.
  • a plurality of (1920 columns) red pixel circuit columns each including 1080 red pixel circuits 50r arranged in the direction in which the data lines extend, and one column of 1080 green pixel circuits 50g arranged in the direction in which the data lines extend.
  • a pixel matrix having a plurality of (1080 rows) pixel circuit rows each including 1920 sets (5760 pixels) of pixel circuits 50r, 50g, and 50b arranged in the extending direction is formed.
  • the first line is referred to as “0th line”. That is, the 1080th rows are referred to as “0th to 1079th rows”, respectively. Similarly, the columns 5760 are referred to as “0th to 5759th columns”, respectively.
  • one frame period in this embodiment and other embodiments described later is an effective scanning period in which pixel data is sequentially written to the pixel circuit in the order from the first row to the last row, and the pixel data. Is composed of a vertical blanking period which is a period provided for returning the writing from the last line to the first line (see FIG. 23 and the like described later).
  • the display unit 500 is provided with 1080 monitor control lines G2_Mon (0) to G2_Mon (1079) so as to correspond to the 1080 write control lines G1_WL (0) to G1_WL (1079) on a one-to-one basis. It is installed. Further, 1080 voltage fluctuation compensation lines G3_Cnt (0) to G3_Cnt (1079) are arranged so as to correspond to the 1080 write control lines G1_WL (0) to G1_WL (1079) on a one-to-one basis. Yes. As shown in FIG.
  • the display unit 500 is provided with a high level power line ELVDD and a low level power line ELVSS. The detailed configuration of the pixel circuits 50r, 50g, and 50b will be described later.
  • the write control lines are simply denoted by reference numeral “G1_WL”.
  • the monitor control line, the voltage fluctuation compensation line, and the data line may be simply represented by a symbol “G2_Mon”, a symbol “G3_Cnt”, and a symbol “SL”, respectively.
  • the pixel circuit is simply denoted by reference numeral “50”.
  • the display control circuit 100 includes a drive control unit 110, a correction data calculation / storage unit 120, and a gradation correction unit 130, and an RGB video data signal Din as image information and timing control.
  • An input signal Sin including an external clock signal CLKin as information is received from the outside of the display device 1.
  • the drive control unit 110 Based on this input signal Sin, the drive control unit 110 writes a write control signal WCTL for controlling the operation of the write control line drive circuit 300, and a monitor control signal for controlling the operation of the monitor control line drive circuit 400.
  • the write control signal WCTL includes a start pulse signal GSP, a clock signal CLK1, and a clock signal CLK2, which will be described later.
  • the monitor control signal MCTL includes a start pulse signal MSP, a clock signal CLK3, and a clock signal CLK4 which will be described later.
  • the voltage fluctuation compensation control signal CCTL includes a start pulse signal CSP, a clock signal CLK5, a clock signal CLK6, and a pull-down signal CPD, which will be described later.
  • the source control signal SCTL includes a start pulse signal SSP, a clock signal SCK, a latch strobe signal LS, and an input / output control signal DWT, which will be described later.
  • the monitor enable signal Mon_EN is a signal for controlling whether or not the drive current can be measured.
  • the correction data calculation / storage unit 120 holds correction data used for correcting the data signal DA.
  • the correction data includes an offset value and a gain value.
  • the correction data calculation / storage unit 120 receives the gradation position instruction signal PS and the monitor voltage Vmo that is the result of current measurement in the data side driving circuit 200, and updates the correction data.
  • the gradation correction unit 130 corrects the data signal DA output from the drive control unit 110 using the correction data DH held in the correction data calculation / storage unit 120, and the data obtained by the correction is obtained. Output as a digital video signal DV.
  • the operation of measuring the drive current output to SLr0, SLg0, SLb0 to SLrM, SLgM, SLbM, that is, the operation as the current measurement circuit 220 is selectively performed.
  • the correction data calculation / storage unit 120 holds an offset value and a gain value as correction data.
  • the data side drive circuit 200 measures the drive current based on two types of gradations (first gradation P1 and second gradation P2: P2> P1).
  • 3 (M + 1) 5760 data signals Dr0, Dg0, Db0 to DrM, DgM, and DbM are applied to the data lines SLr0, SLg0, SLb0 to SLrM, SLgM, and SLbM, respectively.
  • three (M + 1) data lines SL are grouped into M + 1 data line groups with three data lines SLri, SLgi, SLbi adjacent in the display unit 500 as one set, and 3 in each set.
  • the demultiplexing circuit 250 includes M + 1 demultiplexers 252 respectively corresponding to the analog video signals D0 to DM.
  • the SSD control signal Cssd for switching the data line SL to be supplied with each analog video signal Di as the data signal Dri, Dgi, or Dbi according to the SSD method is the display control circuit 100. Is generated by the drive control unit 110 in FIG.
  • the write control line drive circuit 300 drives 1080 write control lines G1_WL (0) to G1_WL (1079) based on the write control signal WCTL from the display control circuit 100.
  • the monitor control line drive circuit 400 drives 1080 monitor control lines G2_Mon (0) to G2_Mon (1079) based on the monitor control signal MCTL and the monitor enable signal Mon_EN from the display control circuit 100.
  • the write control line G1_WL and the monitor control line G2_Mon are driven as shown in FIG.
  • the period before time t2 and the period after time t5 are normal operation periods
  • the period from time t2 to time t5 is a characteristic detection processing period.
  • the characteristic detection processing period includes a pre-compensation data writing period in which pre-compensation data (data for driving current measurement) is written, a current measurement period in which driving current is measured, and post-compensation data (image Data for display) is written, and a post-compensation data writing period is performed.
  • the write control line G1_WL (n) of the compensation target row is selected.
  • the monitor control line G2_Mon (n) in the compensation target row is selected during the current measurement period. How the above driving is realized in this embodiment will be described later.
  • the voltage fluctuation compensation line drive circuit 350 is supplied with a voltage from the display control circuit 100 in order to compensate for a voltage drop (more generally voltage fluctuation) ⁇ Vsl of each data line SL due to a field through phenomenon generated in the demultiplexing circuit 250. Based on the fluctuation compensation control signal CCTL, the 1080 voltage fluctuation compensation lines G3_Cnt (0) to G3_Cnt (1079) are driven. That is, the voltage fluctuation compensation line drive circuit 350 has a red pixel connection control signal Rssd, which will be described later, constituting the SSD control signal Cssd input to the demultiplexing circuit 250 within the selection period of each write control line G1_WL (i).
  • the voltage fluctuation compensation line G3_Cnt (i) corresponding to the write control line G1_WL (i) is set to the low level.
  • the power supply voltage VSS is changed to the counter voltage VCNT (high level voltage) (details will be described later with reference to FIG. 24 and the like).
  • the voltage of each voltage fluctuation compensation line G3_Cnt (i) is changed from the voltage from the display control circuit 100 after changing to the counter voltage VCNT (high level) as described above.
  • the pull-down signal CPD included in the fluctuation compensation control signal CCTL is returned to the low level power supply voltage VSS in the vertical blanking period (also referred to as “vertical synchronization period”).
  • the vertical blanking period all the write control lines G1_WL are in a non-selected state, and therefore any pixel circuit 50 holds the change from the high level to the low level of each voltage fluctuation compensation line G3_Cnt (i). This also does not affect the data voltage as the pixel data.
  • the time when the voltage of each voltage fluctuation compensation line G3_Cnt (i) is returned from the high level to the low level may be within a period in which all the write control lines G1_WL are in the non-selected state, and within the vertical blanking period. It is not limited.
  • the “on voltage” is a voltage applied to the gate terminal as the control terminal in order to turn on the transistor as the switching element
  • the “off voltage” is the transistor off as the switching element.
  • This is a voltage applied to the gate terminal as the control terminal for setting the state.
  • an N-channel field effect transistor specifically, a thin film transistor (TFT)
  • TFT thin film transistor
  • the “off voltage” is a high level voltage and the “on voltage” is a low level voltage.
  • the field through phenomenon increases the voltage Vsl held in the data line SL.
  • the voltage fluctuation compensation line drive circuit 350 stops operating and the output signal of the voltage fluctuation compensation line drive circuit 350 is output.
  • the monitor enable signal Mon_EN supplied to the monitor control line drive circuit 400 is at a high level, and each voltage fluctuation compensation line G3_Cnt (i) is associated with the monitor control line G2_Mon (i) corresponding thereto. (See FIG. 2). Therefore, as shown in FIG. 3, according to the monitor control line G2_Mon (i) of the measurement target row that is in the selected state (high level) during the current measurement period, the corresponding voltage fluctuation compensation line G3_Cnt (n) is also selected. It becomes a state.
  • each component operates to operate the data lines SLr0, SLg0, SLb0 to SLrM, SLgM, SLbM, the write control lines G1_WL (0) to G1_WL (1079), the monitor control lines G2_Mon (0) to G2_Mon (1079). ) And voltage fluctuation compensation lines G3_Cnt (0) to G3_Cnt (1079) are driven, and an image is displayed on the display unit 500.
  • the data signal DA is corrected based on the measurement result of the drive current, the variation in the characteristics of the drive transistor is compensated.
  • the data side driving circuit 200 has M + 1 terminals Td0 to TdM connected to the M + 1 demultiplexers 252 in the demultiplexing circuit 250, and functions as the data line driving circuit 210. Sometimes, the following operations are performed using these terminals Td0 to TdM as output terminals.
  • the data side driving circuit 200 receives the source control signal SCTL from the display control circuit 100, outputs M + 1 analog video signals D0 to DM in parallel from the M + 1 terminals Td0 to TdM, and gives them to the demultiplexing circuit 250. .
  • the data side driving circuit 200 corresponds to the M + 1 analog video signals D0 to DM to be supplied to the demultiplexing circuit 250 at the timing when the pulse of the clock signal SCK is generated using the start pulse signal SSP as a trigger.
  • the digital video signal DV is held sequentially.
  • the digital video signal DV (M + 1 digital signals obtained by sampling and latching the digital video signal DV) held in sequence is M + 1 analogs as analog voltages.
  • Video signals D0 to DM are converted and output to the demultiplexing circuit 250 all at once.
  • FIG. 4 shows a portion of the display unit 500, the demultiplexing circuit 250, and the data side driving circuit 200 according to the present embodiment that corresponds to driving of a set of data lines including three data lines SLrj, SLgj, and SLbj. It is a circuit diagram which shows a structure.
  • FIG. 4 shows a pixel circuit 50r in the i-th row and 3j column, a pixel circuit 50g in the i-th row 3j + 1 column, and a pixel circuit 50b in the i-th row 3j + 2 column to which the three data lines SLrj, SLgj, and SLbj are connected.
  • a certain data side unit circuit 211 is shown.
  • Each pixel circuit 50 includes one organic EL element (electro-optical element) OLED, four Nch transistors (N-channel type transistors) T1 to T4, and two capacitors Cst and Ccnt.
  • the transistor T1 functions as an input transistor for selecting a pixel
  • the transistor T2 functions as a driving transistor that controls the supply of current to the organic EL element OLED
  • the transistor T3 performs current measurement for detecting the characteristics of the driving transistor.
  • the transistor T4 cancels the voltage drop ⁇ Vsl of the data line SL due to the field-through phenomenon that occurs when the Nch transistor in the demultiplexer 252 changes from the on state to the off state. It functions as a voltage fluctuation compensation transistor for compensation.
  • the capacitor Cst functions as a voltage holding capacitor for holding a data voltage indicating pixel data
  • the capacitor Ccnt functions as a voltage fluctuation compensation capacitor for adjusting the compensation for the voltage drop ⁇ Vsl of the data line SL.
  • the transistor T1 is provided between the data line SL and the gate terminal of the transistor T2.
  • the gate terminal and the source terminal of the transistor T1 are connected to the write control line G1_WL (i) and the data line SL, respectively.
  • the transistor T2 is provided in series with the organic EL element OLED.
  • the gate terminal, the drain terminal, and the source terminal of the transistor T2 are respectively connected to the drain terminal of the transistor T1, the high-level power supply line ELVDD, and the anode terminal of the organic EL element OLED.
  • the gate terminal and the drain terminal of the transistor T3 are connected to the monitor control line G2_Mon (i) and the anode terminal of the organic EL element OLED, respectively.
  • the transistor T4 is provided in series with the transistor T3, and the gate terminal as its control terminal, the source terminal as its first conduction terminal, and the drain terminal as its second conduction terminal are connected to the voltage fluctuation compensation line G3_Cnt (j ), The data line SL, and the source terminal of the transistor T3.
  • One terminal of the capacitor Cst is connected to the gate terminal of the transistor T2, and the other terminal is connected to the drain terminal of the transistor T2.
  • One terminal of the capacitor Ccnt is connected to the gate terminal of the transistor T4, and the other terminal is connected to the data line SL.
  • the cathode terminal of the organic EL element OLED is connected to the low level power line ELVSS.
  • the transistors T1 to T4 in the pixel circuit 50 are all N-channel type. These transistors T1 to T4 employ TFTs whose channel layers are formed of an oxide semiconductor (for example, InGaZnO (indium gallium zinc oxide)). The same applies to the transistors in the demultiplex circuit 250, the write control line drive circuit 300, the monitor control line drive circuit 400, and the voltage fluctuation compensation line drive circuit 350. Note that the present invention can also be applied to a structure using a transistor whose channel layer is formed of amorphous silicon, polysilicon, microcrystalline silicon, continuous grain boundary crystalline silicon (CG silicon), or the like.
  • oxide semiconductor for example, InGaZnO (indium gallium zinc oxide)
  • the demultiplexer 252 has a first transistor SWr as a switching element in which one conduction terminal (first conduction terminal) is connected to the data line SLrj for red pixels, and one conduction terminal (first conduction terminal) is green.
  • a second transistor SWg as a switching element connected to the pixel data line SLgj
  • a third transistor as a switching element in which one conduction terminal (first conduction terminal) is connected to the data line SLbj for blue pixels.
  • a transistor SWb The other conduction terminals (second conduction terminals) of these three transistors SWr, SWg, SWb are connected to each other and to the input terminal of the demultiplexer 252.
  • the j-th analog video signal Dj is supplied from the data side unit circuit 211 to this input terminal.
  • a red pixel connection control signal Rssd, a green pixel connection control signal Gssd, and a blue pixel connection constituting the SSD control signal Cssd from the display control circuit 100 are connected to gate terminals as control terminals of the three transistors SWr, SWg, SWb.
  • a control signal Bssd is provided.
  • the data-side unit circuit 211 that outputs the j-th analog video signal Di corresponds to the demultiplexer 252 to which the data lines SLrj, SLgj, and SLbj constituting the j-th set are connected.
  • the jth analog video signal Dj is supplied to 252.
  • the data side unit circuit 211 includes a data voltage output unit circuit 211d, a current measurement unit circuit 211m, and a changeover switch SW, and is changed over by an input / output control signal DWT included in the source control signal SCTL from the display control circuit 100.
  • a circuit connected to the demultiplexer 252 (input terminal thereof) is switched between the data voltage output unit circuit 211d and the current measurement unit circuit 211m. That is, in a period other than the current measurement period described above, the input / output control signal DWT is at a high level, and the data voltage output unit circuit 211d is connected to the demultiplexer 252 with the terminal Tdj as an output terminal.
  • the input / output control signal DWT is at a low level, and the current measurement unit circuit 211m is connected to the demultiplexer 252 with the terminal Tdj as an input terminal. That is, when the data side drive circuit 200 functions as the data line drive circuit 210, the data voltage output unit circuit 211d is connected to the demultiplexer 252, and when the data side drive circuit 200 functions as the current measurement circuit 220, the current measurement unit.
  • the circuit 211m is connected to the demultiplexer 252.
  • FIG. 5 is a circuit diagram showing a configuration example of the data-side unit circuit 211 in the data-side driving circuit 200.
  • a data side unit circuit 211 shown in FIG. 5 includes a DA converter 21, an operational amplifier 22, a resistance element R 1, a first switch 24, a second switch 25, and an AD converter 23.
  • a digital video signal DV (more precisely, a digital signal dvj obtained by sampling and latching) is given to an input terminal of the DA converter 21, and a source control signal SCTL is supplied to the first switch 24 and the second switch 25.
  • the included input / output control signal DWT is given as a control signal.
  • the input / output control signal DWT is at a low level during the current measurement period and is at a high level during periods other than the current measurement period.
  • the second switch is a changeover switch having two input terminals. One input terminal is connected to the output terminal of the DA converter 21, the other input terminal is connected to the low-level power line ELVSS, and the output terminal. Is connected to the non-inverting input terminal of the operational amplifier 22.
  • an analog signal corresponding to the digital video signal DV (more precisely, the digital signal dvj) is given to the non-inverting input terminal of the operational amplifier 22 when the input / output control signal DWT is at a high level.
  • a low level power supply voltage ELVSS is applied when the input / output control signal DWT is at a low level.
  • the DA converter 21 converts the digital video signal DV into an analog data voltage.
  • the output terminal of the DA converter 21 is connected to the non-inverting input terminal of the operational amplifier 22.
  • the inverting input terminal of the operational amplifier 22 is connected to the input terminal of the demultiplexer 252.
  • the first switch 24 is provided between the inverting input terminal and the output terminal of the operational amplifier 22.
  • the resistance element R ⁇ b> 1 is provided between the inverting input terminal and the output terminal of the operational amplifier 22 in parallel with the first switch 24.
  • the output terminal of the operational amplifier 22 is connected to the input terminal of the AD converter 23.
  • the first and second switches 24 and 25 correspond to the selector switch SW in the data side unit circuit 211 shown in FIG. 4, and when the input / output control signal DWT is at the high level, the first switch 24 is turned on, and the second switch outputs an analog signal corresponding to the digital video signal DV as a data voltage.
  • the inverting input terminal and the output terminal of the operational amplifier 22 are short-circuited, and a data voltage corresponding to the digital video signal DV is applied to the non-inverting input terminal of the operational amplifier 22.
  • the operational amplifier 22 functions as a buffer amplifier, and the non-inverting input terminal of the operational amplifier 22 is connected to the demultiplexer 252 (demultiplexer 252 to which the data lines SLrj, SLgj, SLbj are connected) corresponding to the data side unit circuit 211. Is input as an analog video signal Dj.
  • the first switch 24 is turned off and the second switch 25 outputs the low level power supply voltage ELVSS.
  • the inverting input terminal and the output terminal of the operational amplifier 22 are connected via the resistance element R1, and the low-level power supply voltage ELVSS is applied to the non-inverting input terminal of the operational amplifier 22.
  • the data line selected by the corresponding demultiplexer 252 (the data line connected to the on-state transistor of the transistors SWr, SWg, and SWb)
  • a voltage corresponding to the drive current output to the selected data line SLsj from the pixel circuit 50s connected to SLsj (referred to as “line”) is output from the operational amplifier 22 (s is any of r, g, and b).
  • the output voltage of the operational amplifier 22 is converted into a digital value by the AD converter 23 and output as a monitor voltage vmoj.
  • the monitor voltage vmoj output from each data unit circuit 211 is sent to the correction data calculation / storage unit 120 in the display control circuit 100 as the current measurement result Vmo in the current measurement circuit 220.
  • the data-side unit circuit 211 functions as the current measurement unit circuit 211m when the input / output control signal DWT becomes low level during the current measurement period, and the input / output control signal during the period other than the current measurement period. DWT becomes high level and functions as the data voltage output unit circuit 211d. Therefore, the data side drive circuit 200 functions as the current measurement circuit 220 during the current measurement period, and functions as the data line drive circuit 210 during periods other than the current measurement period.
  • FIG. 6 is a block diagram illustrating a detailed configuration of the drive control unit 110 in the display control circuit 100.
  • the drive control unit 110 includes a write line counter 111, a compensation target line address storage memory 112, a matching circuit 113, a matching counter 114, a status machine 115, an image data / source control signal generation circuit 116, A gate control signal generation circuit 117 is included.
  • the external clock signal CLKin is supplied to the status machine 115
  • the RGB video data signal Din is supplied to the image data / source control signal generation circuit 116.
  • the status machine 115 is a sequential circuit in which the output signal and the next internal state are determined by the input signal and the current internal state, and specifically operates as follows. That is, the status machine 115 outputs the control signal S1, the control signal S2, and the monitor enable signal Mon_EN based on the external clock signal CLKin and the matching signal MS. The status machine 115 outputs a clear signal CLR for initializing the write line counter 111 and a clear signal CLR2 for initializing the matching counter 114. Further, the status machine 115 outputs a rewrite signal WE for updating the compensation target line address Addr stored in the compensation target line address storage memory 112.
  • FIG. 7 is a block diagram showing the configuration of the write line counter 111.
  • the write line counter 111 outputs a first counter 1111 that counts the number of clock pulses of the clock signal CLK1 output from the gate control signal generation circuit 117 and a gate control signal generation circuit 117.
  • a second counter 1112 that counts the number of clock pulses of the clock signal CLK2, and an adder that outputs a value indicating the sum of the output value of the first counter 1111 and the output value of the second counter 1112 as a write count value CntWL 1113.
  • the clock signals CLK1 and CLK2 are the same as the clock signals CLK1 and CLK2 included in the write control signal WCTL, and change as shown in FIG.
  • the write line counter 111 is configured such that the write count value CntWL becomes 0 when the clock signal CLK1 first rises after the generation of the pulse of the start pulse signal GSP. After the first clock signal CLK1 rises, the write count value CntWL increases by 1 each time either the clock signal CLK1 or the clock signal CLK2 rises.
  • the write count value CntWL output from the write line counter 111 is initialized to 0 by the clear signal CLR from the status machine 115.
  • an address (hereinafter referred to as “compensation target line address”) indicating a row (compensation target row) on which drive current is to be measured next.
  • Addr is stored.
  • the compensation target line address Addr stored in the compensation target line address storage memory 112 is rewritten by the rewrite signal WE output from the status machine 115.
  • a numerical value indicating the number of the compensation target line is determined as the compensation target line address Addr. For example, if the fifth line is a compensation target line, the compensation target line address is “5”.
  • the matching circuit 113 determines whether or not the write count value CntWL output from the write line counter 111 matches the compensation target line address Addr stored in the compensation target line address storage memory 112. A matching signal MS indicating the determination result is output.
  • the write count value CntWL and the compensation target line address Addr are expressed by the same number of bits.
  • the matching signal MS is at a high level if the write count value CntWL and the compensation target line address Addr match, and the matching signal MS is at a low level if they do not match.
  • the matching signal MS output from the matching circuit 113 is given to the status machine 115 and the matching counter 114.
  • FIG. 9 is a logic circuit diagram showing a configuration of the matching circuit 113 in the present embodiment.
  • the matching circuit 113 includes four EXOR circuits (exclusive OR circuits) 71 (1) to 71 (4), four inverters (logic negation circuits) 72 (1) to 72 (4), and one And an AND circuit (logical product circuit) 73.
  • the EXOR circuits 71 (1) to 71 (4) and the inverters 72 (1) to 72 (4) have a one-to-one correspondence.
  • 1-bit data out of 4-bit data indicating the compensation target line address Addr stored in the compensation target line address storage memory 112 is the first input data IN (a ).
  • each EXOR circuit 71 The other input terminal of each EXOR circuit 71 is supplied with 1-bit data of the 4-bit data (write count value CntWL) output from the write line counter 111 as the second input data IN (b). It is done.
  • Each EXOR circuit 71 outputs a value indicating an exclusive OR of the logical value of the first input data IN (a) and the logical value of the second input data IN (b) as the first output data OUT (c). .
  • the first output data OUT (c) output from the corresponding EXOR circuit 71 is applied to the input terminal of each inverter 72.
  • Each inverter 72 outputs a value obtained by inverting the logical value of the first output data OUT (c) (that is, a value indicating the logical negation of the logical value of the first output data OUT (c)) as the second output data OUT (d ).
  • the AND circuit 73 outputs a value indicating a logical product of the four second output data OUT (d) output from the inverters 72 (1) to 72 (4) as the matching signal MS.
  • 4-bit data is compared, but actually, for example, 10 EXOR circuits 71 and 10 inverters 72 are provided to compare 10-bit data.
  • the matching circuit 113 is not limited to the configuration shown in FIG. 9.
  • NOR circuit negative logical sum
  • a circuit may be used instead of the inverters 72 (1) to 72 (4) and the AND circuit 73 in the present embodiment.
  • the write control line G1_WL is sequentially selected based on the clock signals CLK1 and CLK2.
  • the write count value CntWL output from the write line counter 111 increases by 1 based on the clock signals CLK1 and CLK2. Therefore, write count value CntWL represents the value of the row of write control line G1_WL to be selected. For example, if the clock signal CLK1 rises at a certain time tx and the write count value CntWL becomes “50”, the write control line G1_WL (50) in the 50th row is selected for one horizontal period from the time tx. It becomes.
  • the compensation target line address Addr indicating the compensation target row is stored in the compensation target line address storage memory 112, the time when the write count value CntWL and the compensation target line address Addr coincide with each other in the characteristic detection processing period. It is the start time.
  • the matching counter 114 outputs a matching count value CntM.
  • the matching count value CntM is incremented by 1 each time the matching signal MS changes from low level to high level after being initialized (after being set to “0”).
  • the matching counter 114 also determines the gradation position for identifying whether the driving current is measured based on the first gradation P1 or whether the driving current is measured based on the second gradation P2.
  • An instruction signal PS is output.
  • the matching counter 114 is initialized by a clear signal CLR2 output from the status machine.
  • the image data / source control signal generation circuit 116 controls the source control signal SCTL, the data signal DA, and the SSD based on the RGB video data signal Din included in the external input signal Sin and the control signal S1 given from the status machine 115.
  • the signal Cssd is output.
  • the control signal S1 includes, for example, a signal for instructing the start of compensation processing (a series of processing for compensating for variations in characteristics of the drive transistors).
  • the gate control signal generation circuit 117 outputs a write control signal WCTL, a monitor control signal MCTL, and a voltage variation compensation control signal CCTL based on the control signal S2 given from the status machine 115.
  • the control signal S2 instructs the output of a signal based on the external clock signal CLKin included in the input signal Sin, for example, a signal for controlling the clock operation of the clock signals CLK1 to CLK4 and the pulses of the start pulse signals GSP and MSP.
  • the signal is included.
  • the gradation correction unit 130 included in the display control circuit 100 reads out the correction data DH (offset value and gain value) held in the correction data calculation / storage unit 120, and drives the drive control unit.
  • the data signal DA output from 110 is corrected.
  • the gradation correction unit 130 outputs the gradation voltage obtained by the correction as a digital video signal DV.
  • the digital video signal DV is sent to the data side driving circuit 200.
  • FIG. 10 is a block diagram illustrating a configuration of the correction data calculation / storage unit 120 in the display control circuit 100.
  • the correction data calculation / storage unit 120 includes an AD converter 121, a correction arithmetic circuit 122, a nonvolatile memory 123, and a buffer memory 124.
  • the AD converter 121 converts the monitor voltage Vmo (analog voltage) output from the data side driving circuit 200 into a digital signal Dmo.
  • the correction arithmetic circuit 122 obtains correction data (offset value and gain value) to be used for correction in the gradation correction unit 130 based on the digital signal Dmo.
  • the gradation position instruction signal PS is referred to.
  • the correction data DH obtained by the correction arithmetic circuit 122 is held in the nonvolatile memory 123.
  • the non-volatile memory 123 holds an offset value and a gain value for each pixel circuit 50.
  • FIG. 11 is a block diagram showing a configuration of the write control line drive circuit 300 in the present embodiment.
  • the write control line drive circuit 300 is realized using the shift register 3.
  • Each stage of the shift register 3 is provided so as to correspond to each write control line G1_WL in the display portion 500 on a one-to-one basis. That is, in this embodiment, the write control line drive circuit 300 includes the shift register 3 having 1080 stages.
  • FIG. 11 shows only unit circuits 30 (i ⁇ 1) to 30 (i + 1) constituting the (i ⁇ 1) th stage to the (i + 1) th stage among the 1080th stage. For convenience of explanation, it is assumed that i is an even number (the same applies to FIGS. 14 and 18).
  • Each stage (unit circuit) of the shift register 3 has an input terminal for receiving the clock signal VCLK, an input terminal for receiving the set signal S, an input terminal for receiving the reset signal R, An output terminal for outputting a status signal Q indicating an internal state is provided.
  • signals given to the input terminals of each stage (unit circuit) of the shift register 3 are as follows.
  • the clock signal CLK1 is given as the clock signal VCLK
  • the clock signal CLK2 is given as the clock signal VCLK.
  • the state signal Q output from the previous stage is given as the set signal S
  • the state signal Q outputted from the next stage is given as the reset signal R.
  • the start pulse signal GSP is given as the set signal S.
  • the low-level power supply voltage VSS (not shown in FIG. 11) is commonly applied to all the unit circuits 30.
  • a status signal Q is output from each stage of the shift register 3.
  • the status signal Q output from each stage is output to the corresponding write control line G1_WL, is given to the previous stage as a reset signal R, and is given to the next stage as a set signal S.
  • FIG. 12 is a circuit diagram showing the configuration of the unit circuit 30 of the shift register 3 constituting the write control line drive circuit 300 (configuration of one stage of the shift register 3).
  • the unit circuit 30 includes four transistors T31 to T34.
  • the unit circuit 30 has three input terminals 31 to 33 and one output terminal 38 in addition to the input terminal for the low-level power supply voltage VSS.
  • the input terminal that receives the set signal S is denoted by “31”
  • the input terminal that receives the reset signal R is denoted by “32”
  • the input terminal that receives the clock signal VCLK is denoted by “33”. Is attached.
  • the output terminal for outputting the status signal Q is denoted by reference numeral “38”.
  • a parasitic capacitance Cgd is formed between the gate terminal and the drain terminal of the transistor T32, and a parasitic capacitance Cgs is formed between the gate terminal and the source terminal of the transistor T32.
  • the source terminal of the transistor T31, the gate terminal of the transistor T32, and the drain terminal of the transistor T34 are connected to each other.
  • a region (wiring) in which these are connected to each other is hereinafter referred to as a “first node”.
  • the first node is denoted by the symbol “N1”.
  • the transistor T31 has a gate terminal and a drain terminal connected to the input terminal 31 (that is, a diode connection), and a source terminal connected to the first node N1.
  • the transistor T32 has a gate terminal connected to the first node N1, a drain terminal connected to the input terminal 33, and a source terminal connected to the output terminal 38.
  • the transistor T33 has a gate terminal connected to the input terminal 32, a drain terminal connected to the output terminal 38, and a source terminal connected to the input terminal for the low-level power supply voltage VSS.
  • the transistor T34 has a gate terminal connected to the input terminal 32, a drain terminal connected to the first node N1, and a source terminal connected to the input terminal for the low-level power supply voltage VSS.
  • the transistor T31 changes the potential of the first node N1 toward high level.
  • the transistor T32 applies the potential of the clock signal VCLK to the output terminal 38 when the potential of the first node N1 becomes high level.
  • the transistor T33 changes the potential of the output terminal 38 toward the potential of the low level power supply voltage VSS.
  • the transistor T34 changes the potential of the first node N1 toward the potential of the low level power supply voltage VSS.
  • the waveforms of the clock signals CLK1 and CLK2 given to the unit circuit 30 as the clock signal VCLK are as shown in FIG. 8 (except for the characteristic detection processing period).
  • the potential of the first node N1 and the potential of the state signal Q are at a low level.
  • the input terminal 33 is supplied with a clock signal VCLK that becomes high level at predetermined intervals. Note that with respect to FIG. 13, some delay occurs in the actual waveform, but an ideal waveform is shown here.
  • a pulse of the set signal S is given to the input terminal 31. Since the transistor T31 is diode-connected as shown in FIG. 12, the pulse of the set signal S turns on the transistor T31. As a result, the potential of the first node N1 rises.
  • the clock signal VCLK changes from the low level to the high level.
  • the transistor T34 since the reset signal R is at a low level, the transistor T34 is in an off state. Therefore, the first node N1 is in a floating state.
  • the parasitic capacitance Cgd is formed between the gate terminal and the drain terminal of the transistor T32, and the parasitic capacitance Cgs is formed between the gate terminal and the source terminal of the transistor T32. For this reason, the potential of the first node N1 greatly increases due to the bootstrap effect. As a result, a large voltage is applied to the gate terminal of the transistor T32.
  • the potential of the state signal Q rises to the high level potential of the clock signal VCLK.
  • the reset signal R is at a low level during the period from the time point t21 to the time point t22. For this reason, since the transistor T33 is maintained in the off state, the potential of the state signal Q does not decrease during this period.
  • the clock signal VCLK changes from the high level to the low level.
  • the potential of the state signal Q decreases as the potential of the input terminal 33 decreases, and the potential of the first node N1 also decreases via the parasitic capacitances Cgd and Cgs.
  • a pulse of the reset signal R is given to the input terminal 32.
  • the transistor T33 and the transistor T34 are turned on.
  • the transistor T33 is turned on, the potential of the state signal Q is lowered to a low level, and when the transistor T34 is turned on, the potential of the first node N1 is lowered to a low level.
  • the write control lines G1_WL are sequentially selected one by one in accordance with the shift pulse transfer.
  • the write control lines G1_WL are sequentially selected one by one.
  • the configuration of the unit circuit 30 is not limited to the configuration shown in FIG. 12 (a configuration including four transistors T31 to T34). Generally, the unit circuit 30 includes more than four transistors in order to improve driving performance and reliability. Even in such a case, the present invention can be applied.
  • FIG. 14 is a block diagram showing a configuration of the monitor control line drive circuit 400 in the present embodiment.
  • the monitor control line drive circuit 400 is realized using the shift register 4.
  • Each stage of the shift register 4 is provided so as to correspond to each monitor control line G2_Mon in the display unit 500 on a one-to-one basis. That is, in the present embodiment, the monitor control line driving circuit 400 includes the shift register 4 having 1080 stages.
  • FIG. 14 shows only unit circuits 40 (i ⁇ 1) to 40 (i + 1) constituting the (i ⁇ 1) th stage to the (i + 1) th stage among the 1080th stage.
  • Each stage (unit circuit) of the shift register 4 has an input terminal for receiving the clock signal VCLK, an input terminal for receiving the set signal S, an input terminal for receiving the reset signal R, and a status signal Q Are provided, and an output terminal for outputting the output signal Q2 is provided.
  • signals given to input terminals of each stage (each unit circuit) of the shift register 4 are as follows.
  • the clock signal CLK3 is given as the clock signal VCLK
  • the clock signal CLK4 is given as the clock signal VCLK.
  • the state signal Q output from the previous stage is given as the set signal S
  • the state signal Q outputted from the next stage is given as the reset signal R.
  • the start pulse signal MSP is given as the set signal S.
  • the low-level power supply voltage VSS (not shown in FIG. 14) is commonly applied to all the unit circuits 40.
  • a monitor enable signal Mon_EN (not shown in FIG.
  • a status signal Q and an output signal Q2 are output from each stage of the shift register 4.
  • the state signal Q output from each stage is given to the previous stage as a reset signal R, and is given to the next stage as a set signal S.
  • the output signal Q2 output from each stage is output to the corresponding monitor control line G2_Mon.
  • the clock signal CLK3 and the clock signal CLK4 change as shown in FIG.
  • FIG. 16 is a circuit diagram showing the configuration of the unit circuit 40 of the shift register 4 that constitutes the monitor control line drive circuit 400 (configuration of one stage of the shift register 4).
  • the unit circuit 40 includes five transistors T41 to T44, T49.
  • the unit circuit 40 has four input terminals 41 to 44 and two output terminals 48 and 49 in addition to the input terminal for the low-level power supply voltage VSS.
  • Transistors T41 to T44, input terminals 41 to 43, and output terminal 48 in FIG. 16 correspond to transistors T31 to T34, input terminals 31 to 33, and output terminal 38 in FIG. 12, respectively. That is, the unit circuit 40 has the same configuration as the unit circuit 30 except for the following points.
  • the unit circuit 40 is provided with an output terminal 49 different from the output terminal 48. Further, the unit circuit 40 is provided with a transistor T49 configured such that the drain terminal is connected to the output terminal 48, the source terminal is connected to the output terminal 49, and the monitor enable signal Mon_EN is supplied to the gate terminal. . Note that the unit circuit 40 is not limited to the configuration shown in FIG. 16 as is the case with the unit circuit 30 of the shift register 3 that constitutes the write control line drive circuit 300.
  • the unit circuit 40 has the same configuration as that of the unit circuit 30 except that the output terminal 49 and the transistor T49 are provided.
  • the shift register 4 is supplied with clock signals CLK3 and CLK4 having the waveforms shown in FIG. As described above, based on the clock signals CLK3 and CLK4, the state signal Q output from each stage of the shift register 4 sequentially becomes a high level.
  • the monitor enable signal Mon_EN is at a low level
  • the transistor T49 is turned off. At this time, even if the status signal Q is at a high level, the output signal Q2 can be maintained at a low level. For this reason, the monitor control line G2_Mon corresponding to the unit circuit 40 is not selected.
  • the monitor enable signal Mon_EN is at a high level
  • the transistor T49 is turned on.
  • the output signal Q2 is also at a high level.
  • the monitor control line G2_Mon corresponding to the unit circuit 40 is selected.
  • the monitor enable signal Mon_EN is given to the transistor T49 in the unit circuit 40.
  • the monitor enable signal Mon_EN given to the transistor T49 is outputted from the delay circuit 1151.
  • the delay circuit 1151 is provided in the status machine 115 in the drive control unit 110 of the display control circuit 100.
  • the matching signal MS changes from the low level to the high level.
  • the delay circuit 1151 delays the waveform of the matching signal MS by one horizontal period. The signal thus obtained is output from the delay circuit 1151 as the monitor enable signal Mon_EN.
  • the monitor enable signal Mon_EN given to the transistor T49 becomes high level one horizontal period after the matching signal MS changes from low level to high level.
  • FIG. 18 is a block diagram showing a configuration of the voltage fluctuation compensation line driving circuit 350 in the present embodiment.
  • the voltage fluctuation compensation line driving circuit 350 is realized by using a shift register 35sr. Each stage of the shift register 35sr is provided so as to correspond to each voltage fluctuation compensation line G3_Cnt in the display unit 500 on a one-to-one basis. That is, in the present embodiment, the voltage fluctuation compensation line drive circuit 350 includes a shift register 35sr having 1080 stages.
  • FIG. 18 shows only unit circuits 35 (i ⁇ 1) to 35 (i + 1) constituting the (i ⁇ 1) th stage to the (i + 1) th stage among the 1080th stage.
  • Each stage (unit circuit) of the shift register 35sr has an input terminal for receiving the clock signal VCLK, an input terminal for receiving the set signal S, an input terminal for receiving the reset signal R, and an output signal.
  • An input terminal for receiving a clear signal CLR for resetting, an output terminal for outputting a status signal Q, and an output terminal for outputting an output signal Q2 are provided.
  • the signals given to the input terminals of the respective stages (unit circuits) of the shift register 35sr are as follows.
  • the clock signal CLK5 is provided as the clock signal VCLK
  • the clock signal CLK6 is provided as the clock signal VCLK.
  • the state signal Q output from the previous stage is given as the set signal S
  • the state signal Q outputted from the next stage is given as the reset signal R.
  • the start pulse signal CSP is given as the set signal S.
  • the low-level power supply voltage VSS and the counter voltage VCNT (not shown in FIG. 18) are commonly applied to all the unit circuits 35.
  • the pull-down signal CPD is commonly supplied to all the unit circuits 35 as the clear signal CLR.
  • a status signal Q and an output signal Q2 are output from each stage of the shift register 35sr, and the output signal Q2 is output to the corresponding voltage fluctuation compensation line G3_Cnt.
  • the clock signal CLK5 and the clock signal CLK6 change as shown in FIG.
  • FIG. 20 is a circuit diagram showing the configuration of the unit circuit 35 of the shift register 35 sr (the configuration of one stage of the shift register 35 sr) that constitutes the voltage fluctuation compensation line drive circuit 350.
  • the unit circuit 35 includes six transistors T351 to T356.
  • the unit circuit 35 has five input terminals 351 to 354 and 357 and two output terminals 355 and 356 in addition to the input terminal for the low-level power supply voltage VSS.
  • Transistors T351 to T354, input terminals 351 to 353, and output terminal 355 in FIG. 20 correspond to transistors T31 to T34, input terminals 31 to 33, and output terminal 38 in FIG. That is, the unit circuit 35 has the same configuration as the unit circuit 30 except for the following points.
  • the unit circuit 35 is provided with an output terminal 356 different from the output terminal 355.
  • the unit circuit 35 is provided with a transistor T355 configured such that the gate terminal is connected to the output terminal 355, the source terminal is connected to the output terminal 356, and the counter voltage VCNT is applied to the drain terminal.
  • the unit circuit 35 is provided with a transistor T356 having a drain terminal connected to the source terminal of the transistor T355, a low level power supply voltage VSS applied to the source terminal, and a pull-down signal CPD applied to the gate terminal. It has been. Note that the unit circuit 35 is not limited to the configuration shown in FIG. 20 as is the case with the unit circuit 30 of the shift register 3 that constitutes the write control line drive circuit 300.
  • the unit circuit 35 has the same configuration as the unit circuit 30 except that the input terminals 354 and 357, the output terminal 356, the transistor T355, and the transistor T356 are provided. Further, clock signals CLK5 and CLK6 having a waveform shown in FIG. 19 are applied to the shift register 35sr. As described above, based on the clock signals CLK5 and CLK6, the state signal Q output from each stage of the shift register 35sr sequentially becomes a high level. The relationship between the pull-down signal CPD input as the clear signal CLR and the status signal Q and the output signal Q2 will be described later.
  • the write count value CntWL increases based on the clock signals CLK1 and CLK2.
  • a frame period during which characteristic compensation (current measurement) of the drive transistor T2 in the pixel circuit 50 is performed (a frame period in which an appropriate value is set as the compensation target line address in the compensation target line address storage memory 112 shown in FIG. 6). )
  • the voltage fluctuation compensation line drive circuit 350 stops operating, and all the output signals of the voltage fluctuation compensation line drive circuit 350 are in a low impedance and high impedance state. Therefore, in such a frame period, the display control circuit 100 maintains the clock signals CLK5 and CLK6 and the pull-down signal CPD at a low level (inactive).
  • the control operation of the voltage fluctuation compensation line driving circuit 350 by the display control circuit 100 in the frame period in which the characteristic compensation (current measurement) of the driving transistor T2 is not performed will be described later.
  • the matching circuit 113 determines whether or not the write count value CntWL output from the write line counter 111 matches the compensation target line address Addr stored in the compensation target line address storage memory 112. Determine.
  • the matching signal MS applied to the status machine 115 changes from low level to high level.
  • the status machine 115 performs the following control. Note that the time when the write count value CntWL and the compensation target line address Addr coincide with each other is the start time of the characteristic detection processing period.
  • (C) Control for the monitor enable signal Mon_EN The monitor enable signal Mon_EN is set to the high level one horizontal period after the write count value CntWL and the compensation target line address Addr coincide. Thereafter, the monitor enable signal Mon_EN is maintained at a high level throughout the current measurement period. After the end of the current measurement period, the monitor enable signal Mon_EN is set to the low level.
  • the following control process is performed by the drive control unit 110 in the display control circuit 100.
  • the drive control unit 110 changes only the potential of the clock signal applied to the unit circuit 30 corresponding to the compensation target row of the two clock signals CLK1 and CLK2 at the start time and end time of the current measurement period, and
  • the clock signals CLK1 and CLK2 are controlled so that the clock operation by the clock signals CLK1 and CLK2 is stopped throughout the current measurement period.
  • the drive control unit 110 changes the clock signals CLK3 and CLK4 so that the clock operation by the clock signals CLK3 and CLK4 is stopped during the current measurement period after the potentials of the clock signals CLK3 and CLK4 change at the start of the current measurement period. Control.
  • the drive control unit 110 activates the monitor enable signal Mon_EN only during the current measurement period.
  • FIG. 21 is a timing chart for explaining the operation of the write control line driving circuit 300. It is assumed that the nth row is determined as a compensation target row.
  • the write control line G1_WL (n-1) of the (n-1) th row is selected.
  • normal data writing is performed on the (n ⁇ 1) th row.
  • the write control line G1_WL (n ⁇ 1) in the (n ⁇ 1) th row is selected, the first node N1 ( n) The potential increases. Note that the compensation target line address Addr and the write count value CntWL do not match up to a time point just before the time point t2.
  • the clock signal CLK1 rises.
  • the potential of the first node N1 (n) further increases.
  • the nth write control line G1_WL (n) is selected.
  • the pre-compensation data is written in each pixel circuit 50 in the nth row.
  • the write control line G1_WL (n) in the n-th row is selected, so that the first node N1 in the (n + 1) -th unit circuit 30 (n + 1) in the shift register 3 is selected.
  • the potential of (n + 1) increases.
  • the display control circuit 100 causes the clock signal CLK1 to fall at time t3 one horizontal period after time t2, and then performs the clock operation with the clock signals CLK1 and CLK2 until the end of the current measurement period (time t4). Stop. That is, during the period from the time point t3 to the time point t4, the clock signal CLK1 and the clock signal CLK2 are maintained at the low level.
  • the potential of the first node N1 (n) in the n-th unit circuit 30 (n) decreases.
  • the clock signal CLK2 since the clock signal CLK2 does not rise, the write control line G1_WL (n + 1) in the (n + 1) th row is not selected. For this reason, the high-level reset signal R is not input to the nth stage unit circuit 30 (n). Therefore, the potential of the first node N1 (n) in the n-th unit circuit 30 (n) at the time immediately after the time t3 is substantially equal to the potential at the time immediately before the time t2.
  • the drive current is measured to detect the characteristics of the drive transistor.
  • the clock operation by the clock signals CLK1 and CLK2 is stopped. Therefore, during the current measurement period, the potential of the first node N1 (n) in the nth unit circuit 30 (n) is maintained.
  • the display control circuit 100 restarts the clock operation using the clock signals CLK1 and CLK2.
  • the signal (clock signal CLK1 in the example shown in FIG. 21) that is lowered at the start time (time point t3) of the current measurement period is raised between the clock signal CLK1 and the clock signal CLK2.
  • the clock signal CLK1 rises at the time point t4
  • the n-th unit circuit 30 (n) the potential of the first node N1 (n) rises.
  • the nth write control line G1_WL (n) is selected.
  • the compensated data is written in each pixel circuit 50 in the nth row.
  • the clock signal CLK1 falls and the clock signal CLK2 rises.
  • the write control line G1_WL is selected row by row. Thereby, normal data writing is performed line by line.
  • FIG. 22 is a timing chart for explaining the operation of the monitor control line driving circuit 400.
  • the nth row is determined as the compensation target row.
  • the state signal Q output from each unit circuit 40 in the shift register 4 sequentially becomes high level for each horizontal period. For example, during the period from the time point t1 to the time point t2, the state signal Q (n-2) output from the unit circuit 40 (n-2) at the (n-2) -th stage becomes a high level, and the time point t2 to the time point t3 During this period, the state signal Q (n ⁇ 1) output from the unit circuit 40 (n ⁇ 1) at the (n ⁇ 1) th stage is at the high level.
  • the monitor enable signal Mon_EN is at the low level in the period before the time point just before the time point t3, the monitor control lines G2_Mon (n-2) and (n-1) rows of the (n-2) th row are used.
  • the monitor control line G2_Mon (n ⁇ 1) for the eye is not selected.
  • the compensation target line address Addr and the write count value CntWL match.
  • the display control circuit 100 changes the monitor enable signal Mon_EN from the low level to the high level at time t3 one horizontal period after time t2.
  • the transistors T49 in all the unit circuits 40 are turned on.
  • the state signal Q (n) output from the n-th unit circuit 40 (n) becomes high level.
  • the output signal Q2 (n) output from the nth stage unit circuit 40 (n) is at the high level, and the monitor control line G2_Mon (n) in the nth row is selected.
  • the display control circuit 100 changes the values of the clock signal CLK3 and the clock signal CLK4 at time t3, and then stops the clock operation by the clock signals CLK3 and CLK4 throughout the current measurement period (period from time t3 to time t4).
  • the clock signal CLK3 changes from the low level to the high level and the clock signal CLK4 changes from the high level to the low level at the time point t3.
  • CLK3 is maintained at a high level
  • the clock signal CLK4 is maintained at a low level. Since the clock operation by the clock signals CLK3 and CLK4 is stopped in this way, the monitor control line G2_Mon (n) in the nth row is maintained in the selected state throughout the current measurement period.
  • the display control circuit 100 changes the monitor enable signal Mon_EN from the high level to the low level and restarts the clock operation by the clock signals CLK3 and CLK4.
  • the state signal Q (n + 1) output from the unit circuit 40 (n + 1) at the (n + 1) -th stage is high level, but the monitor enable signal Mon_EN is low level.
  • the monitor control line G2_Mon (n + 1) in the (n + 1) th row is not selected.
  • none of the monitor control lines G2_Mon is in a selected state in a period after time t5.
  • FIG. 23 is a timing chart for explaining the operation of the voltage fluctuation compensation line driving circuit 350 in this case.
  • the pulse of the start pulse signal CSP instructing the operation start of the voltage fluctuation compensation line driving circuit 350 is slightly shorter than one horizontal period from the rising time t1 of the pulse of the start pulse signal GSP of the write control line driving circuit 300. Is output at time t2.
  • the state signal Q (1) output from the second stage unit circuit 35 (1) becomes high level.
  • the state signal Q of each stage of the shift register 35sr in the voltage fluctuation compensation line driving circuit 350 is sequentially set to the high level by one horizontal period.
  • the output signal Q2 is obtained when the state signal Q is at a high level.
  • the counter voltage VCNT is high, and when the state signal Q is low, the high impedance state is obtained.
  • the voltage fluctuation compensation lines G3_Cnt (0), G3_Cnt (1), G3_Cnt (2),..., G3_Cnt (1079) are sequentially selected (voltage fluctuation) at intervals of one horizontal period as shown in FIG.
  • the monitor enable signal Mon_EN is maintained at a low level, so that the state signal Q of each unit circuit 40 in each monitor control line drive circuit 400 is maintained.
  • the monitor control lines G2_Mon (0) to G2_Mon (1079) are all maintained in a non-selected state (the voltage of the monitor control line G2_Mon is at a low level) (see FIGS. 14, 16, and 23).
  • FIG. 24 is a signal waveform diagram for explaining an operation for writing pixel data to the pixel circuit 50. This operation is performed in a frame period in which the voltage fluctuation compensation line driving circuit 350 operates (a frame period in which the characteristic compensation of the driving transistor T2 of the pixel circuit 50 is not performed).
  • the input / output control signal DWT from the display control circuit 100 is at a high level, and the data voltage output unit circuit 211d is connected to the input terminal of each demultiplexer 252 in the data side driving circuit 200 ( 4 and 5), the data side driving circuit 200 functions as the data line driving circuit 210.
  • the write control line G1_WL and the voltage fluctuation compensation line G3_Cnt are driven as shown in FIG.
  • FIG. 24 shows changes in various signals for pixel data writing in one horizontal period in this frame period, that is, a period in which the write control line G1_WL (i) in the i-th row is in a selected state.
  • FIGS an operation for writing pixel data to the pixel circuit 50 in the horizontal period will be described with reference to FIGS.
  • the red pixel connection control signal Rssd, the green pixel connection control signal Gssd, and the blue pixel connection control signal Bssd constituting the SSD control signal Cssd given from the display control circuit 100 to each demultiplexer 252 are three pieces of data constituting each set.
  • each line has a high level (active) for a predetermined period.
  • these connection control signals Rssd, Gssd, and Bssd are 1/3 of the length of one horizontal period in the horizontal period in which the write control line G1_WL (i) in the i-th row is selected. Sequentially, it becomes high level in a little shorter period.
  • each analog video signal Dj is handled as a red pixel data signal Drj from the data line driving circuit 210 (the jth data voltage output unit circuit 211d).
  • Is supplied to the red pixel data line SLrj through the first transistor SWr in the on state in the demultiplexer 252 (j 0 to M).
  • Each red pixel data line SLrj has a capacitance (hereinafter referred to as “data line capacitance”) formed between other electrodes (electrodes constituting the write control line G1_WL, the monitor control line G2_Mon, the voltage fluctuation compensation line, etc.).
  • the transistors in the pixel circuits 50r, 50g, 50b (hereinafter referred to as “selected pixel circuit 50”) connected to the write control line G1_WL (i) T1 is turned on.
  • the analog video signal Dj given to the data line SLrj as the red pixel data signal Drj is given to the gate terminal of the driving transistor T2 via the transistor T1, and charges the capacitor Cst as a voltage holding capacitor.
  • the voltage Vgr (hereinafter referred to as “selected red pixel gate voltage”) Vgr of the drive transistor T2 in the red pixel circuit (hereinafter referred to as “selected red pixel circuit”) 50r of the selected pixel circuit 50 is the analog video. It becomes equal to the voltage VRdata of the signal Dj.
  • the red pixel connection control signal Rssd becomes low level (inactive)
  • the first transistor SWr in each demultiplexer 252 is turned off, and the supply of each analog video signal Drj to the red pixel data line SLrj is cut off.
  • the voltage change from the high level to the low level of the red pixel connection control signal Rssd at this time is formed between the gate terminal and the drain terminal (conduction terminal connected to the red pixel data line SLrj) in the first transistor SWr.
  • the data line voltage Vr held in the red pixel data line SLrj is affected through the parasitic capacitance Cssdr (see FIG. 4).
  • the data line voltage Vsl Vr decreases due to a field through phenomenon that occurs when the first transistor SWr connected to each red pixel data line SLrj changes from the on state to the off state (hereinafter, the voltage at this time).
  • the amount of decrease is referred to as “first field-through voltage during red pixel writing” or simply “first field-through voltage” and is represented by the symbol “ ⁇ Vr1”).
  • the selected red pixel gate voltage Vgr also decreases by the first field through voltage ⁇ Vr1.
  • each green pixel data line SLgj holds the voltage VGdata of the green pixel data signal Dgj.
  • the gate terminal of the drive transistor T2 in the pixel circuit 50 connected to the write control line G1_WL (i) in the selected state that is, the green pixel circuit (hereinafter referred to as “selected green pixel circuit”) 50g of the selected pixel circuit 50.
  • Vgg hereinafter referred to as “selected green pixel gate voltage” is equal to the voltage VGdata of the analog video signal Dj.
  • the green pixel connection control signal Gssd becomes low level (inactive)
  • the selected green pixel gate voltage Vgg also decreases by the first field through voltage ⁇ Vg1.
  • each blue pixel data line SLbj holds the voltage VBdata of the blue pixel data signal Dbj.
  • the voltage Vgb of the gate terminal of the drive transistor T2 (hereinafter referred to as “selected blue pixel gate voltage”) Vgb in the blue pixel circuit (hereinafter referred to as “selected blue pixel circuit”) 50b of the selected pixel circuit 50 is the analog video. It becomes equal to the voltage VBdata of the signal Dj.
  • the blue pixel connection control signal BGssd becomes low level (inactive)
  • the parasitic capacitance formed between the gate terminal and the drain terminal conduction terminal connected to the blue pixel data line SLbj) in the third transistor SWb.
  • the selected blue pixel gate voltage Vgb also decreases by the first field through voltage ⁇ Vb1.
  • the voltage fluctuation compensation lines G3_Cnt (0) to G3_Cnt (1079) are all in a non-selected state (the voltage of the voltage fluctuation compensation line G3_Cnt is low) because the pull-down signal CPD becomes high level in the vertical blanking period immediately before the current frame period. Level) (see FIGS. 18 and 20).
  • the voltage fluctuation compensation line G3_Cnt (0) has a predetermined time from the time (t5) when the corresponding write control line G1_WL (0) is in the non-selected state after being in the selected state.
  • connection control signals Rssd, Gssd, and Bssd sequentially become high level, at time te after the time td when all become low level, voltage fluctuation compensation
  • the line G3_Cnt (i) is selected.
  • the write control line G1_WL (i) is in a non-selected state at a subsequent time point tf.
  • the voltage of the voltage fluctuation compensation line G3_Cnt (i) is changed from the ON state to the first, second, and third transistors SWr, SWg, SWb. It changes in the direction opposite to the voltage change of the connection control signals Rssd, Gssd, and Bssd for changing to the off state. That is, the voltage of the voltage variation compensation line G3_Cnt (i) changes from the low level to the high level (counter voltage VCNT).
  • the voltage change (voltage rise) of the voltage fluctuation compensation line G3_Cnt (i) is transmitted to the data line via the capacitor Ccnt as a voltage fluctuation compensation capacitor. It works to increase the voltages Vr, Vg, Vb. For this reason, voltage values of the data lines SLrj, SLgj, and SLbj are reduced by appropriately setting the capacitance value of the capacitor Ccnt in each of the selected pixel circuits 50r, 50g, and 50b and the value of the counter voltage VCNT from the logic power supply 630. Can be offset or fully compensated.
  • the period during which the connection control signals Rssd, Gssd, Bss are at a high level within one horizontal period is longer.
  • the drive control unit 110 of the display control circuit 100 changes the selection state / non-selection state of the write control line G1_WL (i) and the voltage fluctuation compensation line G3_Cnt (i) and the levels of the connection control signals Rssd, Gssd, and Bssd.
  • a source control signal SCTL, a voltage fluctuation compensation control signal CCTL, and connection control signals Rssd, Gssd, and Bssd are generated so as to make the change in the above timing shown in FIG. 24 (FIGS. 1 and 6). FIG. 23).
  • the voltage of the write control line G1_WL (i) changes from the high level to the low level. This voltage change affects the voltage at the gate terminal of the drive transistor via the parasitic capacitance Cgd2 formed between the gate terminal and the drain terminal of the input transistor T1 in each of the selected pixel circuits 50r, 50g, and 50b. give.
  • the selected red pixel gate voltage Vgr, the selected green pixel is caused by a field through phenomenon that occurs when the input transistor T1 in the selected red pixel circuit 50r, the selected green pixel circuit 50g, and the selected blue pixel circuit 50b changes from the on state to the off state.
  • the gate voltage Vgg and the selected blue pixel gate voltage Vgb are decreased by voltages ⁇ Vr2, ⁇ Vg2, and ⁇ Vb2, respectively (hereinafter, the voltage decrease amount at this time is referred to as “second field through voltage”).
  • the selected red pixel gate voltage Vgr, the selected green pixel gate voltage Vgg, and the selected blue pixel voltage are reduced by the capacitor Cst as a voltage holding capacitor in the selected red pixel circuit 50r, the selected green pixel circuit 50g, and the selected blue pixel circuit 50b.
  • the pixel gate voltage Vgb is maintained.
  • currents IoelR and IoelG according to the voltage held in the capacitor Cst in the pixel circuits 50r, 50g, and 50b based on the selected red pixel gate voltage Vgr, the selected green pixel gate voltage Vgg, and the selected blue pixel gate voltage Vgb.
  • IoelB flows through the organic EL element OLED, and the organic EL element OLED emits light with a luminance corresponding to the currents IoelR, IoelG, and IoelB.
  • FIG. 25 is a circuit diagram showing the basic configuration of the present embodiment, that is, the pixel circuits 50r, 50g, 50b and the demultiplexer when the voltage fluctuation compensation line G3_Cnt and the transistor T4 to which the voltage fluctuation compensation line G3_Cnt is connected are not provided.
  • B) drops (first field through voltage ⁇ Vx1 and second field through voltage ⁇ Vx2), which are not compensated.
  • FIG. 27 shows state changes (selected state / non-selected state) of the write control line G1_WL, the monitor control line G2_Mon, and the voltage fluctuation compensation line G3_Cnt in the frame period in which the characteristic compensation (current measurement) of the drive transistor in the pixel circuit 50 is performed.
  • FIG. FIG. 28 is a partial circuit diagram for explaining an operation for current measurement in the pixel circuit 50. Three of the display unit 500, the demultiplexing circuit 250, and the data side driving circuit 200 in this embodiment are shown. The configuration of a portion corresponding to driving of a set of data lines composed of the data lines SLrj, SLgj, and SLbj is shown.
  • FIG. 28 shows a connection configuration when the input / output control signal DWT is changed from a high level to a low level in the circuit shown in FIG. 4 (parasitic capacitances Cgd2, Cssdr, etc. are omitted).
  • a current measurement unit circuit 211 m is connected to the demultiplexer 252.
  • the data side unit circuit 211 in the circuit shown in FIG. 28 can be configured as shown in FIG. 29, for example.
  • FIG. 29 shows a connection configuration when the input / output control signal DWT is changed from the high level to the low level in the data side unit circuit 211 shown in FIG. In the data side unit circuit 211 shown in FIG.
  • the inverting input terminal and the output terminal of the operational amplifier 22 are connected via the resistance element R1. Further, the low-level power supply voltage ELVSS is output from the second switch 25 and applied to the non-inverting input terminal of the operational amplifier 22.
  • the write control lines G1_WL (0) to G1_WL (4) are set to 1 by the operations of the write control line drive circuit 300 and the monitor control line drive circuit 400 described above (FIGS. 21 and 22).
  • the horizontal period is sequentially selected, and the compensation target line address Addr and the write count value CntWL coincide with each other at time t2, so that the current measurement period is from time t3 to time t4.
  • all the write control lines G1_WL are in the non-selected state, and the monitor enable signal Mon_EN is at the high level.
  • the monitor control line G2_Mon (n) is selected (see FIG. 16), and the voltage fluctuation compensation line G3_Cnt (n) is connected to the monitor control line G2_Mon (n) (see FIG. 2).
  • the compensation line G3_Cnt (n) is also selected.
  • each pixel circuit in the compensation target row n (hereinafter referred to as “target pixel circuit”) 50
  • the input transistor T1 is turned on.
  • the analog video signal Dj pre-compensation data
  • the analog video signal Dj indicating the gradation voltage which is pre-compensation data, is compensated according to the SSD method based on the red pixel connection control signal Rssd, the green pixel connection control signal Gssd, and the blue pixel connection control signal Bssd.
  • the pixel data is sequentially written into the n red pixel circuit 50r, the green pixel circuit 50g, and the blue pixel circuit 50b (see FIG. 4).
  • the write control line G1_WL (n) is in a non-selected state, and the current measurement period starts.
  • the input transistor T1 of the target pixel circuit 50 is turned off, and the data voltage corresponding to the pre-compensation pixel data is held in the capacitor Cst of the target pixel circuit.
  • the input / output control signal DWT goes low, and the current measurement unit circuit 211m in each data-side unit circuit 211 is connected to the demultiplexer 252.
  • the monitor enable signal Mon_EN becomes a high level and the monitor control line G2_Mon (n) and the voltage fluctuation compensation line G3_Cnt (n) are in a selected state (high level), the transistors T3 and T4 of the target pixel circuit 50 are turned on. It becomes.
  • FIG. 30 is a timing chart for explaining the measurement of the drive current of the target pixel circuit 50 in the current measurement period t3 to t4.
  • the write control line G1_WL (n) and the voltage fluctuation compensation line G3_Cnt (n) corresponding to the compensation target row n are maintained at a high level and are supplied from the display control circuit 100 to each demultiplexer 252.
  • the red pixel connection control signal Rssd, the green pixel connection control signal Gssd, and the blue pixel connection control signal Bssd constituting the SSD control signal Cssd become high level (active) for each predetermined period in the current measurement period t3 to t4.
  • the red pixel connection control signal Rssd becomes a high level only for the first period Tmr, and then the green pixel connection control is performed for the second period Tmg.
  • the signal Gssd becomes high level, and finally the blue pixel connection control signal Bssd becomes high level only during the third period Tmb.
  • the first, second, and third transistors SWr, SWg, SWb in each demultiplexer 252 are turned on in the first, second, and third periods Tmr, Tmg, Tmb, respectively. Become.
  • the drive current of each red pixel circuit 50r in the compensation target row n causes the transistors T3 and T4 of the red pixel circuit 50r and the corresponding first transistor SWr of the demultiplexer 252 to flow.
  • the driving current of each green pixel circuit 50g in the compensation target row n is changed through the transistors T3 and T4 of the green pixel circuit 50g and the second transistor SWg of the corresponding demultiplexer 252. This is given to the measurement unit circuit 211m.
  • each blue pixel circuit 50b in the compensation target row n is changed to current through the transistors T3 and T4 of the blue pixel circuit 50b and the corresponding third transistor SWb of the demultiplexer 252.
  • Each current measurement unit circuit 211m measures the drive currents of the red, green, and blue pixel circuits 50r, 50g, and 50b sequentially applied in this way, and sequentially outputs a monitor voltage vmoj indicating the measurement result (FIG. 29). reference).
  • each of the red pixel data lines SLrj is low during the first period Tmr by the current measurement unit circuit 211m configured as shown in FIG. 29 (the data side unit circuit 211 when the input / output control signal DWT is low). Since the level power supply voltage ELVSS is maintained, the source terminal of the drive transistor T2 in the red pixel circuit 50r is also maintained at the low level power supply voltage ELVSS (see FIG. 28). In the second period Tmg, each green pixel data line SLgj is maintained at the low level power supply voltage ELVSS. Therefore, the source terminal of the drive transistor T2 in the green pixel circuit 50g is also maintained at the low level power supply voltage ELVSS.
  • the monitor voltage vmoj sequentially output from each current measurement unit circuit 211m is sent to the correction data calculation / storage unit 120 in the display control circuit 100 as the current measurement result Vmo in the current measurement circuit 220 (see FIG. 1).
  • the correction data calculation / storage unit 120 holds correction data (offset value and gain value), and has two types of gradations (first gradation P1 and first gradation P1) for each target pixel circuit 50.
  • new correction data offset value and gain value
  • the transistors T3 and T4 of each target pixel circuit 50 are turned on. Turns off. As shown in FIG. 27, the clock signal CLK1 rises at time t4, and the write control line G1_WL (n) is selected (becomes high level) in response thereto. At this time, the input / output control signal DWT becomes a high level, and the data voltage output unit circuit 211d in each data side unit circuit 211 is connected to the demultiplexer 252. Thus, the analog video signal Dj (compensation) is output from the demultiplexer 252.
  • Post-data is written into the target pixel circuit 50 as pixel data. More specifically, the analog video signal Dj indicating the corrected gradation voltage, which is the post-compensation data, is in accordance with the SSD method based on the red pixel connection control signal Rssd, the green pixel connection control signal Gssd, and the blue pixel connection control signal Bssd.
  • the pixel data is sequentially written into the red pixel circuit 50r, the green pixel circuit 50g, and the blue pixel circuit 50b in the compensation target row n (see FIG. 4).
  • a predetermined gradation voltage (default gradation voltage) is written as pixel data in the pixel circuit 50 in which the current measurement of only one of the first and second gradations P1 and P2 has been completed.
  • FIG. 31 is a flowchart showing a control procedure for this characteristic detection process. It is assumed that the write line counter 111 and the matching counter 114 are initialized in advance, and the value of the compensation target line address Addr stored in the compensation target line address storage memory 112 is a value indicating the compensation target row. To do.
  • step S100 After the start of the characteristic detection process, each time the clock pulse of the clock signal CLK1 or the clock signal CLK2 is generated, one write control line G1_WL is selected as a scanning target (step S100). Then, it is determined whether the compensation target line address Addr stored in the compensation target line address storage memory 112 matches the write count value CntWL output from the write line counter 111 (step S110). ). As a result, if both match, the process proceeds to step S120, and if both do not match, the process proceeds to step S112. In step S112, it is determined whether or not the scanning target is the write control line of the last row. As a result, if the scan target is the last row write control line, the process proceeds to step S150. If the scan target is not the last row write control line, the process returns to step S100. When the process proceeds to step S112, normal data writing is performed.
  • step S120 1 is added to the matching count value CntM. Thereafter, it is determined whether the matching count value CntM is 1 or 2 (step S130). As a result, if the matching count value CntM is 1, the process proceeds to step S132, and if the matching count value CntM is 2, the process proceeds to step S134. In step S132, the drive current is measured based on the first gradation P1. In step S134, the drive current is measured based on the second gradation P2.
  • step S140 it is determined whether or not the scanning target is the write control line of the last row (step S140). As a result, if the scan target is the last row write control line, the process proceeds to step S150. If the scan target is not the last row write control line, the process returns to step S100.
  • step S150 the write count value CntWL is initialized. Thereafter, it is determined whether or not the condition “matching count value CntM is 1 and the value of the compensation target line address Addr is equal to or less than the value WL_Max indicating the last row” is satisfied (step S160). . As a result, if the condition is satisfied, the process proceeds to step S162. If the condition is not satisfied, the process proceeds to step S164.
  • step S162 the same value is assigned to the compensation target line address Addr in the compensation target line address storage memory 112. Note that step S162 is not necessarily provided.
  • step S164 it is determined whether or not a condition that “the matching count value CntM is 2 and the value of the compensation target line address Addr is equal to or less than a value WL_Max indicating the last row” is satisfied. As a result, if the condition is satisfied, the process proceeds to step S166. If the condition is not satisfied, the process proceeds to step S170. In step S166, 1 is added to the compensation target line address Addr. In step S168, the matching count value CntM is initialized.
  • step S170 it is determined whether or not the condition “the value of the compensation target line address Addr is equal to the value obtained by adding 1 to the value WL_Max indicating the last row” is satisfied. As a result, if the condition is satisfied, the process proceeds to step S180. If the condition is not satisfied, the process returns to step S100. In step S180, the compensation target line address Addr is initialized. As described above, one characteristic detection process for all the drive transistors in the display unit 500 is completed.
  • FIG. 32 is a flowchart for explaining the procedure of compensation processing when attention is paid to one pixel (pixel in i row and j column).
  • the drive current is measured during the characteristic detection processing period (step S200).
  • the drive current is measured based on two types of gradations (first gradation P1 and second gradation P2: P2> P1).
  • first gradation P1 and second gradation P2 P2> P1.
  • the driving current is measured based on the first gradation P1 in the first frame
  • the driving current is measured based on the second gradation P2 in the second frame. More specifically, in the first frame, the drive current obtained by writing the first measurement gradation voltage Vmp1 calculated by the following equation (1) as pixel data to the pixel circuit 50 is measured.
  • the drive current obtained by writing the second measurement gradation voltage Vmp2 calculated by the following equation (2) to the pixel circuit 50 as pixel data is measured.
  • Vmp1 Vcw * Vn (P1) * B (i, j) + Vth (i, j) (1)
  • Vmp2 Vcw * Vn (P2) * B (i, j) + Vth (i, j) (2)
  • Vcw is the difference between the gradation voltage corresponding to the minimum gradation and the gradation voltage corresponding to the maximum gradation (that is, the gradation voltage range).
  • Vn (P1) is a value obtained by normalizing the first gradation P1 to a value in the range of 0 to 1
  • Vn (P2) is a value obtained by normalizing the second gradation P2 to a value in the range of 0 to 1. Value.
  • B (i, j) is a normalization coefficient for the pixel of i rows and j columns calculated by the following equation (3).
  • Vth (i, j) is an offset value for the pixel in i row and j column (this offset value corresponds to the threshold voltage of the driving transistor).
  • B ⁇ ( ⁇ 0 / ⁇ ) (3)
  • ⁇ 0 is the average value of the gain values of all the pixels
  • is the gain value for the pixels in i rows and j columns.
  • step S210 After the drive current is measured based on the two types of gradations, the offset value Vth and the gain value ⁇ are calculated based on the measured values (step S210).
  • the process of step S210 is performed by the correction calculation circuit 122 (see FIG. 10) in the correction data calculation / storage unit 120.
  • the offset value Vth and the gain value ⁇ the following equation (4) indicating the relationship between the drain-source current (drive current) Ids of the transistor and the gate-source voltage Vgs is used.
  • Ids ⁇ ⁇ (Vgs ⁇ Vth) 2 (4) Specifically, from the simultaneous equations of the equation obtained by substituting the measurement result based on the first gradation P1 into the above equation (4) and the equation obtained by substituting the measurement result based on the second gradation P2 into the above equation (4), An offset value Vth shown in the following equation (5) and a gain value ⁇ shown in the following equation (6) are obtained.
  • Vth ⁇ Vgsp2 ⁇ (IOp1) ⁇ Vgsp1 ⁇ (IOp2) ⁇ / ⁇ (IOp1) ⁇ (IOp2) ⁇ (5)
  • IOp1 is a drive current as a measurement result based on the first gradation P1
  • IOp2 is a drive current as a measurement result based on the second gradation P2.
  • Vgsp1 is a gate-source voltage based on the first gradation P1
  • Vgsp2 is a gate-source voltage based on the second gradation P2.
  • the source terminal of the drive transistor T2 in the pixel circuit 50 whose drive current is measured is maintained at the low level power supply voltage ELVSS (see FIGS. 28 and 29).
  • the low level power supply voltage ELVSS will be described as “0”.
  • Vgsp1 Vmp1 (7)
  • Vgsp2 Vmp2 (8)
  • the correction data held in the nonvolatile memory 123 (see FIG. 10) in the correction data calculation / storage unit 120 is updated.
  • the measurement value data obtained in step S200 is temporarily stored in a memory capable of high-speed access such as SRAM (Static Random Access Memory) or DRAM (Dynamic Random Access Memory) so that the process of Step S210 is performed at high speed.
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Vp Vcw ⁇ Vn (P) ⁇ ⁇ ( ⁇ 0 / ⁇ ) + Vth + Vf (9)
  • Vn (P) is a value obtained by normalizing the display gradation in the pixel in i row and j column to a value in the range of 0 to 1.
  • Vf is a forward voltage of the organic EL element OLED, and is a known fixed value in the present embodiment.
  • step S230 the gradation voltage Vp calculated in step S220 is written as pixel data in the pixel circuit 50 in i row and j column (step S230).
  • the compensation process as described above is performed on all the pixels, so that the variation in the characteristics of the drive transistor is compensated.
  • FIG. 33 is a diagram showing gradation-current characteristics.
  • the drive current IOp1 obtained when the pixel data is written based on the first gradation P1 does not coincide with the target current corresponding to the first gradation P1.
  • the drive current IOp2 obtained when the pixel data is written based on the second gradation P2 does not match the target current corresponding to the second gradation P2.
  • the offset value Vth and the gain value ⁇ are calculated by the method described above based on the drive currents IOp1 and IOp2.
  • each gradation voltage indicated by the data signal DA based on the external RGB video data signal Din is corrected using the offset value Vth and gain value ⁇ calculated for the pixel circuit 50 to which the gradation voltage is to be written.
  • the later gradation voltage is written into the pixel circuit 50 as pixel data.
  • a driving current substantially equal to the target current flows for an arbitrary gradation voltage indicated by the data signal DA as a gradation voltage to be written to the pixel circuit 50.
  • the occurrence of uneven brightness in the display screen is suppressed, and high-quality display is performed.
  • the red pixel circuit 50r connected to the write control line G1_WL (i) in the selected state, that is, the selected red pixel circuit At 50r, the input transistor T1 is in an on state, and the first transistor SWr of the demultiplexer 252 is in an on state when the red pixel connection control signal Rssd is at a high level.
  • the analog video signal Dj from the data side driving circuit 200 is given as the red pixel data signal Drj to the gate terminal of the driving transistor T2 via the first transistor SWr, the red pixel data line SLrj, and the input transistor T1, and the capacitor Cst is charged.
  • the value of the parasitic capacitance between the gate and the drain in the first transistor SWr of the demultiplexer 252 is also indicated by “Cssdr”, and the amplitude of the red pixel connection control signal Rssd (difference between the on voltage and the off voltage) is expressed as “Vssd”.
  • the first field through voltage ⁇ Vr1 that is the amount of decrease in the selected red pixel gate voltage Vgr is represented by the following equation.
  • Ctot1 is the sum of the capacitances parasitic on the drain side of the first transistor SWr, and is equal to the data line capacitance Csl which is the sum of the capacitances parasitic on the red pixel data line SLrj.
  • the voltage fluctuation compensation line G3_Cnt (i) changes to the selected state.
  • the voltage change of the voltage fluctuation compensation line G3_Cnt (i) that is, the change from the low level to the counter voltage VCNT which is the high level, is transmitted to the data line voltage Vr1 and the selected red via the capacitor Ccnt as the voltage fluctuation compensation capacity. It works in the direction of increasing the pixel gate voltage Vgr.
  • the write control line G1_WL (i) connected to the selected red pixel circuit 50r changes to a non-selected state.
  • the voltage change of the write control line G1_WL (i) from the high level to the low level affects the selected red pixel gate voltage Vgr via the parasitic capacitance Cgd2 between the gate and the drain in the input transistor T1.
  • the selected red pixel gate voltage Vgr decreases.
  • Cgd2 is a parasitic capacitance between the gate and the drain in the input transistor T1
  • Ctot2 is a total of capacitances parasitic on a node including the gate terminal of the driving transistor T2 of the selected red pixel circuit 50r.
  • Vgr VRdata ⁇ Vssd ⁇ Cssdr / Ctot1 + VCNT ⁇ Ccnt / Ctot1 -VG1 ⁇ Cgd2 / Ctot2 (15) It becomes.
  • each pixel circuit 50 has a configuration as shown in FIG.
  • the reduction in the selected red pixel gate voltage Vgr caused by the parasitic capacitance Cssdr in the circuit for the SSD method can be reduced. it can.
  • a field-through compensation function is not only for writing pixel data to the red pixel circuit 50r but also for writing pixel data to the green pixel circuit 50g and the blue pixel circuit 50b. can get. Therefore, according to the present embodiment, an image represented by the input signal Sin (in the RGB video data signal Din) given from the outside can be displayed sufficiently satisfactorily.
  • the output signal of the data line driving circuit 210 that is, an analog video signal is compensated for. It is conceivable to adjust the voltage of the signal Dj to a high value in advance. On the other hand, according to the present embodiment, the adjustment is not required or the amount of adjustment can be reduced, and thus it can be said that the power consumption can be reduced compared to the conventional case.
  • the resolution of the display panel is WVGA (800 ⁇ 480 ⁇ RGB).
  • the values of the gate-drain parasitic capacitance Cgd2 and the gate-source parasitic capacitance Cgs2 of the input transistor T1 in the pixel circuit 50 are both 10 [a. u. ].
  • the unit [a. u. ] Is an arbitrary unit (unit for indicating a physical quantity as a relative value with respect to a predetermined reference value). The same applies to the following.
  • the value of the parasitic capacitance Cssdr of the first transistor SWr in the demultiplexer 252 is 20 [a. u. ].
  • the above equation (16) represents the selected red pixel gate voltage Vgr that determines the drive current IoelR in the selected red pixel circuit 50r in this embodiment (see FIG. 4), and the above equation (17) represents the conventional selected red pixel.
  • a selected red pixel gate voltage Vgr that determines the drive current IoelR in the circuit 50r is shown (see FIG. 25).
  • the values of the compensation voltage ⁇ Vr3 as the voltage increase and the first field-through voltage ⁇ Vr1 as the voltage decrease are as follows from (a) to (d). That is, the total of the parasitic capacitances on the drain side of the first transistor SWr, that is, the total of the parasitic capacitances on the red pixel data line SLrj (hereinafter also referred to as “red pixel data line total capacitance”) Ctot1 It can be approximately expressed as follows using the gate-source capacitance Cgs2 and the voltage fluctuation compensation capacitance Ccnt in the input transistor T1 of the pixel circuit 50r.
  • the drive current in each pixel circuit 50 is measured in order to compensate the characteristics (offset value Vth and gain value ⁇ ) of the drive transistor T2 of each pixel circuit 50 in order to suppress luminance unevenness. (See FIGS. 28 to 30 etc.). Since the drive current per pixel circuit is very small (on the order of ⁇ A to pA), the pixel circuit connected to the non-selected monitor control line G2_Mon (k) (k ⁇ i) (hereinafter referred to as “non-selected pixel”). The leakage current in the circuit 50 (referred to as “circuit”) can be a hindrance in current measurement for highly accurate characteristic compensation.
  • each pixel circuit 50 in the present embodiment a transistor T3 having a gate terminal connected to the monitor control line G2_Mon for current measurement and a transistor T4 having a gate terminal connected to the voltage fluctuation compensation line G3_Cnt are connected in series. (FIG. 28).
  • a source terminal of the drive transistor T2 (a connection point between the transistor T2 and the organic EL element OLED) is connected to the data line SL via these transistors T3 and T4.
  • the transistor T4 is connected in series with the transistor T3, so that a leak current due to a short-circuit failure or failure of the transistor T3 does not flow into the data line SL. Therefore, the transistor T4 functions as a so-called “backup transistor” of the transistor T3.
  • the double gate configuration using the transistors T3 and T4 also reduces the leakage current when the transistor T3 is normal in the non-selected pixel circuit 50, which contributes to highly accurate current measurement.
  • a channel layer is formed of polysilicon or amorphous silicon (not only when a TFT formed of an oxide semiconductor such as InGaZnO is used). This is effective when a TFT formed of a-Si) and having a relatively large off-leakage current is used.
  • Second Embodiment> an active matrix organic EL display device according to a second embodiment of the present invention will be described.
  • the configuration of the voltage fluctuation compensation line driving circuit is different from that of the first embodiment, and the pull-down signal CPD used in the first embodiment is not used as the control signal of the voltage fluctuation compensation line driving circuit.
  • other configurations are the same as those in the first embodiment.
  • the same reference numerals are assigned to the same or corresponding parts of the configuration of the present embodiment as those of the configuration of the first embodiment, and detailed description thereof is omitted. Since the operation of the present embodiment in the frame period including the current measurement period is the same as that of the first embodiment, the present embodiment will be described below on the premise of the operation in the frame period not including the current measurement period. To do.
  • the voltage fluctuation compensation control signal CCTL generated by the gate control signal generation circuit 117 (FIGS. 1 and 6) in the drive control unit 110 in the display control circuit 100 includes the pull-down signal CPD.
  • the voltage fluctuation compensation control signal CCTL does not include the pull-down signal CPD.
  • the configuration of the display control circuit 100 in the present embodiment is the same as that of the display control circuit 100 in the first embodiment except that the pull-down signal CPD is not generated.
  • FIG. 34 is a block diagram showing a configuration of the voltage fluctuation compensation line driving circuit 350 in the present embodiment.
  • the voltage fluctuation compensation line driving circuit 350 is realized by using a shift register 36sr.
  • Each stage of the shift register 36sr is provided so as to correspond to each voltage fluctuation compensation line G3_Cnt in the display unit 500 on a one-to-one basis.
  • the shift register 36sr is composed of 1080 stages.
  • the unit circuit 36 (i ⁇ 1) constituting the (i ⁇ 1) stage to the (i + 1) stage of the 1080 stages is shown in FIG. Only .about.36 (i + 1) are shown.
  • Each stage (unit circuit) of the shift register 36sr has an input terminal for receiving the clock signal VCLK, an input terminal for receiving the set signal S, an input terminal for receiving the reset signal R, and a status signal Q. Is provided, but unlike the shift register 35sr (FIG. 18) in the first embodiment, an input terminal and an output signal Q2 for outputting the clear signal CLR are received. None of the output terminals are provided.
  • signals given to the input terminals of the respective stages (unit circuits) of the shift register 36sr are as follows.
  • the clock signal CLK5 is given as the clock signal VCLK
  • the clock signal CLK6 is given as the clock signal VCLK (see FIG. 34).
  • the state signal Q output from the previous stage is given as the set signal S
  • the state signal Q outputted from the next stage is given as the reset signal R.
  • the start pulse signal CSP is given as the set signal S.
  • the low-level power supply voltage VSS and the counter voltage VCNT (not shown in FIG. 34) are commonly applied to all the unit circuits 36.
  • the state signal Q output from each stage of the shift register 36sr is output to the corresponding voltage fluctuation compensation line G3_Cnt.
  • the voltage of the voltage fluctuation compensation line G3_Cnt is set to a high level at a timing described later.
  • the falling timing differs from the clock signals CLK5 and CLK6 (FIG. 19) in the first embodiment, and the duty ratio (the ratio of the high level period in the clock cycle) is 1/6.
  • the value is slightly smaller than 1/6.
  • the high level of the clock signals CLK5 and CLK6 in the present embodiment is the counter voltage VCNT.
  • all output signals of the voltage fluctuation compensation line driving circuit 350 are in a low impedance state and a high impedance state.
  • the clock signals CLK5 and CLK6 are maintained at a low level unlike the waveform shown in FIG.
  • FIG. 36 is a circuit diagram showing the configuration of the unit circuit 36 of the shift register 36sr (configuration of one stage of the shift register 36sr) that constitutes the voltage fluctuation compensation line drive circuit 350 in the present embodiment.
  • the unit circuit 36 includes transistors T355, T356, input terminals 354, 357, and Although the output terminal 355 is not provided, the other configuration is the same as that of the unit circuit 35 (FIG. 20), and the same or corresponding parts are denoted by the same reference numerals.
  • FIGS. 34 and 36 As can be seen from a comparison of FIGS. 34 and 36 with FIGS.
  • this shift register 36sr and its unit circuit 36 are identical to the unit circuit 30 of the shift register 3 constituting the write control line drive circuit 300. It has the same configuration. Therefore, the voltage fluctuation compensation line drive circuit 350 in this embodiment basically operates in the same manner as the write control line drive circuit 300. However, since the timing and voltage level of the input clock signal are different from each other (see FIGS. 8 and 35), the timing and voltage level of the output signal are also different from each other accordingly. That is, in the present embodiment, the clock signals CLK5 and CLK6 having the waveforms as shown in FIG. 35 are supplied to the shift register 36sr, so that the unit circuit 36 has the unit circuit 30 of the shift register 3 in the first embodiment. Unlike the operation (FIG.
  • the pulse of the state signal Q output from the output terminal 355 of the unit circuit 36 is approximately 1/3 of one horizontal period, more specifically 1/3 or slightly shorter than that (see FIG. 37).
  • the voltage fluctuation compensation line drive circuit 350 is configured as shown in FIGS. 34 and 36, and the unit circuit 36 operates as shown in FIG. 37 based on the clock signals CLK5 and CLK6 shown in FIG. Therefore, the voltage fluctuation compensation lines G3_Cnt (0) to G3_Cnt (1079) are sequentially set to the high level (hereinafter referred to as “substantially 1/3 horizontal period”) by a period of about 1/3 of one horizontal period. 1080 output signals having a voltage VCNT) are provided. As a result, the voltage fluctuation compensation lines G3_Cnt (0) to G3_Cnt (1079) are sequentially selected by approximately 1/3 horizontal period at the timing shown in FIG.
  • the write control line G1_WL (i) of the i-th row is selected and maintained in the selected state (high level) for one horizontal period and becomes the non-selected state (low level).
  • the write control line G1_WL (0) of the 0th row becomes a selected state (high level) at time t3 and becomes a non-selected state (low level) at time t5.
  • the voltage of the fluctuation compensation line G3_Cnt (0) changes from the low level to the high level (VCNT) at a time point t4 slightly before the time point t5, and reaches the low level at a time point t6 approximately 1/3 horizontal period from that time point.
  • the voltage of each voltage fluctuation compensation line G3_Cnt (i) returns to the low level after approximately 1/3 horizontal period after changing from the low level to the high level.
  • the pull-down signal CPD (FIG. 23) used in FIG.
  • FIG. 38 shows an operation in a frame period (a frame period not including a current measurement period) in which the characteristic compensation of the drive transistor T2 in the pixel circuit 50 is not performed, and this embodiment also includes a current measurement period.
  • the voltage fluctuation compensation line drive circuit 350 stops operating, and all the output signals of the voltage fluctuation compensation line drive circuit 350 are at a low level and in a high impedance state.
  • FIG. 39 is a signal waveform diagram for explaining an operation for writing pixel data to the pixel circuit 50. This operation is performed in a frame period (a frame period not including a current measurement period) in which the voltage fluctuation compensation line driving circuit 350 operates.
  • the pixel data writing operation in this embodiment does not require the pull-down signal CPD, and the voltage variation compensation line G3_Cnt ( This is different from the pixel data writing operation in the first embodiment in that i) returns to the low level after about 1/3 horizontal period after the high level (voltage VCNT). More specifically, as shown in FIG.
  • the write control line that is next selected.
  • the first transistor SWr of the demultiplexer 252 that is first turned on in the selection period of G1_WL (i + 1) starts to change to the off state (the red pixel connection control signal Rssd changes from the high level to the low level) Time) Time before th.
  • the first transistor SWr first changes from the on state to the off state among the transistors SWr, SWg, and SWb in each demultiplexer 252 during the selection period of the write control line G1_WL (i + 1).
  • the analog video signal Dj is supplied from the data line driving circuit 210 (the data voltage output unit circuit 211d thereof) to the data line SLrj through the first transistor SWr in the on state (see FIG. 4). Therefore, the voltage of the data line SLrj is not affected by the change of the voltage of the voltage fluctuation compensation line G3_Cnt (i) from the high level to the low level.
  • the pixel data writing operation in the present embodiment is the same as the pixel data writing operation in the first embodiment except that the voltage fluctuation compensation line G3_Cnt (i) corresponding to the row to be written changes as described above.
  • the selected red pixel gate voltage Vgr, the selected green pixel gate voltage Vgg, and the selected blue pixel respectively indicate the pixel data written in the selected red pixel circuit 50r, the selected green pixel circuit 50g, and the selected blue pixel circuit 50b.
  • the waveform of the gate voltage Vgb is the same.
  • the pull-down signal CPD is not required, and the configuration of the voltage fluctuation compensation line driving circuit 350 is simplified (see FIGS. 34 and 36), thereby reducing power consumption.
  • the transistors T355 and T356 used in the unit circuit 35 in the first embodiment are not necessary ( (See FIGS. 36 and 20) Power consumption is reduced.
  • the first embodiment once the voltage of each voltage fluctuation compensation line G3_Cnt (i) changes to a high level, it remains at a high level until the pull-down signal CPD becomes active (high level) in the vertical blanking period. Since this is maintained (see FIG.
  • the present embodiment is particularly effective when the pixel circuit 50 uses a transistor having a large positive voltage side shift of the threshold Vt, such as a TFT whose channel layer is formed of amorphous silicon. It is valid.
  • the configuration and operation for the characteristic compensation processing of the driving transistor T2 of the pixel circuit 50 and the current measurement therefor in the present embodiment are the same as those in the first embodiment. Therefore, also in this embodiment, the same effect as the effect relating to the measurement of the drive current of the pixel circuit in the first embodiment can be obtained (see FIGS. 28 to 33).
  • the counter voltage VCNT can be changed, and the counter voltage VCNT can take a value different from the power supply voltage VDD.
  • the organic EL display device according to the present embodiment has the same configuration as that of the first embodiment. For this reason, the same reference numerals are assigned to the same or corresponding parts of the configuration of the present embodiment as those of the configuration of the first embodiment, and detailed description thereof is omitted.
  • FIG. 40 is a block diagram showing the overall configuration of the organic EL display device according to this embodiment.
  • a variable voltage source 635 is provided as a voltage source for supplying a power supply voltage to the voltage fluctuation compensation line drive circuit 350.
  • the variable voltage source 635 is supplied with the counter voltage VCNT and the low level power supply voltage VSS as the high level power supply voltage to the voltage fluctuation compensation line drive circuit 350.
  • the voltage fluctuation compensation line drive circuit 350 is supplied with these power supply voltages VCNT and VSS.
  • the variable voltage source 635 is configured such that the value of the counter voltage VCNT can be changed by a control signal from the outside of the organic EL display device 1 (for example, a control signal included in the input signal Sin) or an operation to an adjustment operation unit (not shown). ing.
  • the display control circuit 100 includes the start pulse signal CSP and the clock that constitute the voltage variation compensation control signal CCTL to be supplied to the voltage variation compensation line drive circuit 350.
  • a level shifter 140 for converting voltage levels of signals such as signal CLK5, clock signal CLK6, and pull-down signal CPD is included.
  • the level shifter 140 converts the voltage level of the voltage fluctuation compensation control signal CCTL generated by the gate control signal generation circuit 117 (FIG. 6) in the drive control unit 110, sets the low level power supply voltage VSS to low level, and the counter voltage VCNT. Is generated to generate a voltage fluctuation compensation control signal CCTLh.
  • the generated voltage fluctuation compensation control signal CCTLh is input to the voltage fluctuation compensation line driving circuit 350.
  • the present embodiment configured as described above operates functionally in the same way as the first embodiment, but the counter voltage VCNT is the power supply voltage VDD used in the other drive circuits 200, 300, and 400. Since it can be set to different values, the following specific actions and effects can be achieved.
  • the pixel data writing operation to each pixel circuit 50 is the same as in the first embodiment. That is, as shown in FIG. 24, the red pixel connection control signal Rssd, the green pixel connection control signal Gssd, and the blue pixel connection control signal Bssd given to each demultiplexer 252 are sequentially activated (high level) in one horizontal period.
  • the analog video signal Dj is written as the red pixel data voltage VRdata, the green pixel data voltage VGdata, and the blue pixel data voltage VBdata to the selected red pixel circuit 50r, the selected green pixel circuit 50g, and the selected blue pixel circuit 50b, respectively.
  • FIG. 24 the red pixel connection control signal Rssd, the green pixel connection control signal Gssd, and the blue pixel connection control signal Bssd given to each demultiplexer 252 are sequentially activated (high level) in one horizontal period.
  • the analog video signal Dj is written as the red pixel data voltage VRdata, the green pixel data voltage VGdata, and the
  • Vssd is the voltage amplitude of the red pixel connection control signal Rssd (difference between the on voltage and the off voltage).
  • the selected red pixel gate voltage Vgr is expressed by the following equation as the voltage of the write control line G1_WL (i) connected to the selected red pixel circuit 50r changes from the high level to the low level. 2 The field through voltage is reduced by ⁇ Vr2.
  • Vssd VG1 ⁇ Cgd2 / Ctot2 (23)
  • VG1 is the voltage amplitude of the write control line G1_WL (i).
  • Vssd VG1
  • VCNT ⁇ Vpp.
  • each pixel circuit 50 has a configuration as shown in FIG.
  • Vgr VRdata ⁇ Vpp (Cssdr / Ctot1 + Cgd2 / Ctot2) (25) It becomes.
  • the voltage drop due to the parasitic capacitance Cssdr of the first transistor of the demultiplexer 252 and the parasitic capacitance Cgd2 of the input transistor T1 of the pixel circuit 50 is large.
  • the resolution of the display panel is WVGA (800 ⁇ 480 ⁇ RGB).
  • the values of the gate-drain parasitic capacitance Cgd2 and the gate-source parasitic capacitance Cgs2 of the input transistor T1 in the pixel circuit 50 are both 10 [a. u. ].
  • the unit [a. u. ] Is an arbitrary unit (the same applies below).
  • the value of the parasitic capacitance Cssdr of the first transistor SWr in the demultiplexer 252 is 20 [a. u. ].
  • connection control signal amplitude Vssd for SSD and the voltage amplitude VG1 of the write control line G1_WL (i) are both 12 [a. u.
  • E The voltage amplitude of the voltage fluctuation compensation line G3_Cnt (i), that is, the counter voltage VCNT is 24 [a. u. ].
  • the numerical conditions are the same as the numerical conditions (a) to (c) described above for explaining the effects of the first embodiment except for the above (d) and (e).
  • the above equation (24) represents the selected red pixel gate voltage Vgr that determines the drive current IoelR in the selected red pixel circuit 50r in this embodiment (see FIG. 4), and the above equation (25) represents the conventional selected red pixel.
  • a selected red pixel gate voltage Vgr that determines the drive current IoelR in the circuit 50r is shown (see FIG. 25).
  • the compensation voltage ⁇ Vr3 VCNT ⁇ (Ccnt / Ctot1) included in the above equation (24) represents the voltage increase due to the voltage fluctuation compensation line G3_Cnt (i), and is included in the above equations (24) and (25).
  • the values of the compensation voltage ⁇ Vr3 as the voltage increase and the first field through voltage ⁇ Vr1 as the voltage decrease are as follows from (a) to (e). That is, the total of the parasitic capacitances on the drain side of the first transistor SWr, that is, the red pixel data line total capacitance Ctot1, is the gate-source capacitance Cgs2 and voltage fluctuation compensation capacitance Ccnt in the input transistor T1 of each red pixel circuit 50r.
  • Etc. can be approximately expressed as follows.
  • the data line driving circuit 210 in addition to the effect of the field-through compensation action based on the counter voltage VCNT, the data line driving circuit 210 (see FIGS. 1 and 4) outputs the output voltage (the voltage of the analog video signal Dj). Can be compensated by setting the counter voltage VCNT.
  • this embodiment is a modification of the first embodiment so as to have a configuration for changing the counter voltage VCNT.
  • a display is provided in the second embodiment.
  • the counter voltage VCNT can be varied. It may be.
  • the counter voltage VCNT may be set to a fixed value that can sufficiently cancel the first field-through voltage ⁇ Vr1 and the like. That is, a power source 630 that supplies a fixed voltage is used in place of the variable voltage source 635, and the counter voltage VCNT is different from the power source voltage VDD used in the other driving circuits 200, 300, and 400, and the compensation is performed.
  • the first field through voltage Vr1 (or both the first and second field through voltages ⁇ Vr1 and ⁇ Vr2) may be set to a fixed value that sufficiently cancels with the voltage ⁇ Vr3.
  • the present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the present invention.
  • the organic EL display device has been described as an example.
  • the present invention is applicable to display devices other than the organic EL display device as long as the display device includes a display element driven by current. Can be applied.
  • the characteristic detection processing period including the current measurement period is provided during the effective scanning period for displaying an image of one frame (FIG. 27).
  • the present invention is not limited to this.
  • a configuration may be adopted in which characteristic detection processing including current measurement is performed for each predetermined number of lines in the vertical blanking period (Patent Document 2 (International Publication No. 2014/021201)). (See pamphlet), the contents of which are incorporated herein by reference).
  • the pixel circuit 50 is not limited to the configuration shown in FIG. 4, and a monitor control transistor T3 for current measurement is provided between the connection point between the organic EL element OLED and the drive transistor T2 and the data line SL. Any configuration can be used.
  • the transistors used in the pixel circuit 50 and the demultiplexer 252 are all N-channel transistors, but may be configured to use P-channel transistors instead. .
  • the voltage Vgx decreases, when a P-channel transistor is used, the holding voltage Vsl of the data line SLjx and the gate voltage Vgx of the driving transistor T2 in the pixel circuit 50 increase due to the field through phenomenon.
  • the voltage fluctuation compensation line drive circuit 350 cancels the voltage drop due to the field-through phenomenon, as shown in FIG. 24, the voltage fluctuation compensation line driving circuit 350 at the time tf, the voltage fluctuation compensation line G3_Cnt (i). Is changed from a low level to a high level (counter voltage VCNT).
  • a voltage fluctuation is performed to cancel the voltage increase due to the field-through phenomenon.
  • the compensation line drive circuit 350 is configured such that the voltage of the voltage fluctuation compensation line G3_Cnt (i) changes from a high level to a low level at a time corresponding to the time te.
  • the voltage of the voltage fluctuation compensation line G3_Cnt (i) changes in the opposite direction to the voltage change of the connection control signals Rssd, Gssd, and Bssd for changing the transistor in the demultiplexer 252 from the on state to the off state. This is the same as when N-channel transistors are used.
  • the present invention can be applied to a display device including a display element driven by current, a driving method thereof, and a pixel circuit in such a display device, and in particular, an active matrix organic EL display employing an SSD method. Suitable for devices etc.
  • DESCRIPTION OF SYMBOLS 220 ... Current measuring circuit 252 ... Demultiplexer 300 ... Write control line drive circuit 350 ... Voltage fluctuation compensation line drive circuit 400 ... Monitor control line drive circuit 500 ... Display part 635 ... Variable voltage source T1 ...
  • Cssdr, Cssdg, Cssdb ... parasitic capacitance of the transistor SL, SLrj, SLgj, SLbj ... data line (j 0 to M) G1_WL, G1_WL (0) to G1_WL (1079)...
  • Clock signal Mon_EN ...
  • Connection control signal VCNT Counter voltage (second voltage)
  • VSS Low level power supply voltage (first voltage)

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)

Abstract

本発明は、電流駆動の表示素子を備える表示装置においてアナログ電圧信号をサンプリングしてデータ線に保持する際に生じるデータ線電圧の変動を抑制することを目的とする。書込制御線SW_LR(i)の選択期間において各デマルチプレクサ252のトランジスタSWr,SWG,SWbが所定期間ずつ順次オン状態となる。トランジスタSWrがオン状態の期間にはデータ電圧出力単位回路211dからアナログ映像信号Djがデータ線SLrjおよび画素回路50rに与えられる。その後、トランジスタSWrがオフ状態になると、データ線SLjに保持される電圧が寄生容量Cssdrに起因してアナログ映像信号Djの電圧よりも低下する。しかし、当該選択期間内に電圧変動補償線G3_Cnt(i)の電圧がローレベルからハイレベルに変化し、これがコンデンサCcntを介してデータ線SLrjの電圧を上昇させ上記電圧低下を補償する。

Description

画素回路ならびに表示装置およびその駆動方法
 本発明は、表示装置に関し、より詳しくは、有機EL表示装置などの電流で駆動される表示素子を備えた表示装置およびその駆動方法ならびにそのような表示装置における画素回路に関する。
 従来より、表示装置が備える表示素子としては、印加される電圧によって輝度が制御される電気光学素子と流れる電流によって輝度が制御される電気光学素子とがある。印加される電圧によって輝度が制御される電気光学素子の代表例としては液晶表示素子が挙げられる。一方、流れる電流によって輝度が制御される電気光学素子の代表例としては有機EL(Electro Luminescence)素子が挙げられる。有機EL素子は、OLED(Organic Light-Emitting Diode)とも呼ばれている。自発光型の電気光学素子である有機EL素子を使用した有機EL表示装置は、バックライトおよびカラーフィルタなどを要する液晶表示装置に比べて、容易に薄型化・低消費電力化・高輝度化などを図ることができる。したがって、近年、積極的に有機EL表示装置の開発が進められている。
 有機EL表示装置の駆動方式として、パッシブマトリクス方式(「単純マトリクス方式」とも呼ばれる)とアクティブマトリクス方式とが知られている。パッシブマトリクス方式を採用した有機EL表示装置は、構造は単純であるものの、大型化および高精細化が困難である。これに対して、アクティブマトリクス方式を採用した有機EL表示装置(以下「アクティブマトリクス型の有機EL表示装置」という)は、パッシブマトリクス方式を採用した有機EL表示装置に比べて大型化および高精細化を容易に実現できる。
 アクティブマトリクス型の有機EL表示装置には、複数の画素回路がマトリクス状に形成されている。アクティブマトリクス型の有機EL表示装置の画素回路は、典型的には、画素を選択する入力トランジスタと、有機EL素子への電流の供給を制御する駆動トランジスタとを含んでいる。なお、以下においては、駆動トランジスタから有機EL素子に流れる電流のことを「駆動電流」という場合がある。
 アクティブマトリクス型の表示装置では、複数のデータ線(「ソースライン」とも呼ばれる)と、当該複数のデータ線に交差する複数の走査信号線(「ゲートライン」とも呼ばれる)と、当該複数のデータ線および当該複数の走査信号線に沿ってマトリクス状に配置された複数の画素回路とが表示部に形成されている。このようなアクティブマトリクス型表示装置において、表示画像の高精細化に対応するために、駆動回路の増大を抑えつつより多くのデータ線を駆動すべくSSD(Source Shared Driving)方式が採用されているものがある。ここで、SSD方式とは、表示部における複数のデータ線を2以上の所定数のデータ線を1組として複数組のデータ線群にグループ化し、各組の当該所定数のデータ線に時分割的にアナログビデオ信号を与える方式である。
 アクティブマトリクス型表示装置においてSSD方式が採用されている場合には、各データ線にはオン状態のアナログスイッチを介してアナログビデオ信号が与えられ、その後、アナログスイッチの制御信号のレベルを変化させて当該アナログスイッチがオフ状態とされることで、アナログビデオ信号の電圧が当該データ線に保持される。このようにしてアナログビデオ信号の電圧が各データ線に保持された状態で、上記複数の走査信号線のいずれかが活性化される(選択される)ことにより、当該活性化された走査信号線に接続される画素回路に当該データ線の電圧が画素データとして書き込まれる。
 なお、SSD方式を採用したアクティブマトリクス型の有機EL表示装置は、例えば特許文献1に開示されている。この有機EL表示装置では、RGB3原色によるカラー表示が行われ、赤画素に対応する画素回路が接続されたデータ線であるRデータ線と、緑画素に対応する画素回路が接続されたデータ線であるGデータ線と、青画素に対応する画素回路が接続されたデータ線であるBデータ線とからなる3本のデータ線を1組として表示パネルにおけるデータ線を複数組にグループ化されており、各組につき1つのデマルチプレクサが設けられている。各デマルチプレクサは、データドライバ(データ線駆動回路)から出力されるデータ信号を受け取り、そのデータ信号を当該デマルチプレクサに接続されたRデータ線、Gデータ線、および、Bデータ線に時分割的に与えるように構成されている。
日本国特許第4637070号公報 国際公開第2014/021201号パンフレット
 既述のように、SSD方式が採用されたアクティブマトリクス型の有機EL表示装置では、各データ線にはオン状態のアナログスイッチを介してアナログビデオ信号が与えられた後、アナログスイッチの制御信号のレベルを変化させて当該アナログスイッチがオフ状態とされることで、アナログビデオ信号の電圧が当該データ線に保持される。このようにアナログスイッチによりアナログ電圧信号のサンプリングとホールドが行われる表示装置では、寄生容量に起因して、データ線に保持される電圧がアナログビデオ信号の本来の電圧よりも低下または上昇するという現象が生じる(この現象は「フィールドスルー現象」と呼ばれる)。以下、この点につき図41および図42を参照して説明する。
 図41は、このような表示装置においてアナログビデオ信号の電圧をサンプリングして各データ線SLi(i=1~N)に保持させるためのサンプルホールド回路のうち1つのデータ線SLkに対応する部分(以下「単位サンプルホールド回路」という)の構成を示す回路図である。この単位サンプルホールド回路は、アナログスイッチとしてのNチャネル形の電界効果トランジスタ(以下「Nchトランジスタ」と略記する)SWkと、このNchトランジスタSWkのゲート端子とデータ線SLkに接続される一方の導通端子との間に形成された寄生容量Cgdとを含んでいる。NchトランジスタSWkの他方の導通端子には、アナログビデオ信号Sv1が与えられ、NchトランジスタSWkのゲート端子には、そのNchトランジスタSWkのオン/オフを制御する制御信号Sckが与えられる。このようなNchトランジスタSWk(寄生容量Cgdを含む)によってアナログビデオ信号Sv1のサンプリング回路が構成され、このサンプリング回路とデータ線SLkの容量(データ線SLkと他の電極とで形成される総容量)Cslとによって上記単位サンプルホールド回路が構成される。
 上記サンプリング回路において、アナログスイッチをオンさせるときには、制御信号Sckとしてオン電圧(アナログスイッチがNchトランジスタで構成される場合にはハイレベルの電圧(以下「Hレベル電圧」という))がNchトランジスタSWkのゲート端子に与えられ、このアナログスイッチをオフさせるときには、制御信号Sckとしてオフ電圧(アナログスイッチがNchトランジスタで構成される場合には、ローレベルの電圧(以下「Lレベル電圧」という))がNchトランジスタSWkのゲート端子に与えられる。
 図42に示すように、制御信号SckとしてHレベル電圧VCHがNchトランジスタSWkのゲート端子に与えられると、このNchトランジスタSWkはオン状態となり、このNchトランジスタSWkを介してアナログビデオ信号Sv1がデータ線SLkに与えられる。その結果、データ線SLkの電圧(以下「データ線電圧」という)Vslは、アナログビデオ信号Sv1の電圧Vv1に等しくなる。その後、制御信号SckとしてNchトランジスタSWkのゲート端子に与えられている電圧がHレベル電圧VCHからLレベル電圧VCLに変化すると、NchトランジスタSWkはオフ状態となる。このとき、NchトランジスタSWkのゲート端子における電圧変化(VCH→VCL)が寄生容量Cgdを介してデータ線電圧Vslに影響を与え、データ線電圧Vslがその電圧変化に応じて上記アナログビデオ信号Sv1の電圧Vv1から低下するという現象、すなわちフィールドスルー現象が生じる。このフィールドスルー現象による上記アナログビデオ信号Sv1の電圧Vv1の低下量、すなわちフィールドスルー電圧ΔVslは、上記ゲート端子における電圧変化が瞬時に生じるとすると(NchトランジスタSWkが瞬時にオフ状態に遷移するものとすると)、次式で表される。
  ΔVsl={Cgd/(Csl+Cgd)}(VCH-VCL)
 なお、上記の例ではアナログスイッチとしてNchトランジスタが使用されているので、フィールドスルー現象によりデータ線電圧Vslが本来の電圧Vv1から低下するが、アナログスイッチとしてPチャネル形の電化効果トランジスタ(以下「Pchトランジスタ」という)が使用されている場合には、フィールドスルー現象によりデータ線電圧Vslが本来の電圧Vv1から上昇する。
 上記のように、アナログスイッチによりアナログ電圧信号のサンプリングとホールドが行われる表示装置(例えばSSD方式のアクティブマトリクス型有機EL表示装置)では、フィールドスルー現象によりデータ線電圧Vslが変動(低下または上昇)するので、外部から与えられる入力信号の表す画像を十分に良好に表示することができない。一方、このようなフィールドスルー現象によりにデータ線電圧Vslが低下する場合に、この電圧低下が補償されるように予めデータ信号の電圧を高めに調整するという構成が考えられる。しかし、この構成は消費電力の増大を招くことになる。
 そこで本発明は、電流で駆動される表示素子を備えるアクティブマトリクス型の表示装置であって、アナログ電圧信号をサンプリングしてデータ線に保持する際に生じるフィールドスルー現象によるデータ線電圧の変動を抑制できる表示装置を提供することを目的とする。
 本発明の第1の局面は、表示すべき画像を表す複数のアナログ電圧信号を伝達するための複数のデータ線と、前記複数のデータ線と交差する複数の書込制御線と、前記複数のデータ線および前記複数の書込制御線に沿ってマトリクス状に配置され電流で駆動される複数の表示素子とを含み、各表示素子に与えるべき駆動電流を測定する機能を有する表示装置において、前記複数のデータ線のいずれか1つに対応すると共に前記複数の書込制御線のいずれか1つに対応するように設けられた画素回路であって、
 前記複数の表示素子の1つであって電流によって輝度が制御される電気光学素子と、
 前記電気光学素子の駆動電流を制御するデータ電圧を保持するための電圧保持容量と、
 対応する書込制御線に接続された制御端子を有し、対応するデータ線から前記電圧保持容量への電圧供給を制御するスイッチング素子としての入力トランジスタと、
 前記データ電圧に応じた駆動電流を前記電気光学素子に与えるための駆動トランジスタと、
 前記対応する書込制御線に沿って配設された所定のモニタ制御線に接続された制御端子を有し、前記駆動トランジスタに流れる電流が通過可能なように前記駆動トランジスタと前記対応するデータ線との間に配置されたモニタ制御トランジスタと、
 前記対応する書込制御線に沿って配設された所定の電圧変動補償線に接続された制御端子、および、前記対応するデータ線に接続された第1導通端子を有し、前記モニタ制御トランジスタに直列に接続された電圧変動補償トランジスタと、
 前記電圧変動補償トランジスタにおける前記第1導通端子と前記電圧変動補償トランジスタにおける前記制御端子との間に形成された電圧変動補償容量とを備えることを特徴とする。
 本発明の第2の局面は、表示すべき画像を表す複数のアナログ電圧信号を伝達するための複数のデータ線と、前記複数のデータ線に交差する複数の書込制御線と、前記複数のデータ線および前記複数の書込制御線に沿ってマトリクス状に配置され電流で駆動される複数の表示素子とを含み、各表示素子に与えるべき駆動電流を測定する機能を有する表示装置であって、
 それぞれが前記複数のデータ線のいずれか1つに対応すると共に前記複数の書込制御線のいずれか1つに対応するように、前記複数のデータ線および前記複数の書込制御線に沿ってマトリクス状に配置された、本発明の第1の局面に係る複数の画素回路と、
 前記複数の書込制御線にそれぞれ対応するように前記複数の書込制御線に沿って配設された複数のモニタ制御線と、
 前記複数の書込制御線にそれぞれ対応するように前記複数の書込制御線に沿って配設された複数の電圧変動補償線と、
 前記複数のデータ線にそれぞれ対応する複数の接続制御トランジスタであって、それぞれが、対応するデータ線に接続された第1導通端子と、前記対応するデータ線に与えるべきアナログ電圧信号を受け取るための第2導通端子と、オン/オフを制御する接続制御信号を受け取るための制御端子とを有する複数の接続制御トランジスタと、
 前記複数の接続制御トランジスタのそれぞれの前記第2導通端子に前記アナログ電圧信号を与えるデータ線駆動回路と、
 前記複数の書込制御線を選択的に駆動する書込制御線駆動回路と、
 前記複数のモニタ制御線を選択的に駆動するモニタ制御線駆動回路と、
 前記複数の電圧変動補償線を選択的に駆動する電圧変動補償線駆動回路と、
 各画素回路において表示素子に与えるべき駆動電流を前記複数のデータ線および前記複数の接続制御トランジスタを介して測定するための電流測定回路と、
 前記複数の接続制御トランジスタ、前記書込制御線駆動回路、前記モニタ制御線駆動回路、および、前記電圧変動補償線駆動回路を制御する駆動制御部とを備え、
 前記データ線駆動回路は、2以上の所定数のデータ線を1組として前記複数のデータ線をグループ化することにより得られる複数組のデータ線群にそれぞれ対応する所定数の出力端子を有し、各出力端子は、対応する組の所定数のデータ線に対応する所定数の接続制御トランジスタの第2導通端子に接続されており、
 前記駆動制御部は、各組の所定数のデータ線にそれぞれ対応する所定数の接続制御信号を生成し、当該所定数の接続制御信号を各組の所定数のデータ線に対応する前記所定数の接続制御トランジスタの制御端子にそれぞれ与えることにより、前記複数の書込制御線のいずれか1つが選択状態である第1の選択期間において各組の前記所定数の接続制御トランジスタを所定期間ずつ順次オン状態とし、
 前記電圧変動補償線駆動回路は、前記第1の選択期間において、前記複数の接続制御トランジスタがオン状態からオフ状態に変化した後に、選択状態の書込制御線に対応する電圧変動補償線に与えるべき電圧を第1電圧から第2電圧に変化させることにより、前記複数の接続制御トランジスタをオン状態からオフ状態に変化させるために前記複数の接続制御トランジスタの制御端子に与えられる電圧の変化と反対の方向に当該対応する電圧変動補償線の電圧を変化させることを特徴とする。
 本発明の第3の局面は、本発明の第2の局面において、
 前記電圧変動補償線駆動回路は、前記第1の選択期間後で前記複数の書込制御線が非選択状態である期間において、前記第1の選択期間で選択状態である前記書込制御線に対応する前記電圧変動補償線の電圧を前記第2電圧から前記第1電圧に戻すことを特徴とする。
 本発明の第4の局面は、本発明の第2の局面において、
 前記電圧変動補償線駆動回路は、前記第1の選択期間で選択状態である書込制御線の次に選択される書込制御線が選択状態である期間において、最初にオン状態からオフ状態に変化する接続制御トランジスタが当該オフ状態への変化を開始する前に、前記第1の選択期間で選択状態である前記書込制御線に対応する前記電圧変動補償線の電圧を前記第2電圧から前記第1電圧に戻すことを特徴とする。
 本発明の第5の局面は、本発明の第2の局面において、
 前記電圧変動補償線駆動回路に前記第1および第2電圧を供給し前記第1電圧と前記第2電圧の差が変更可能に構成された電圧源を更に備えることを特徴とする。
 本発明の第6の局面は、本発明の第2から第5の局面のいずれかにおいて、
 前記第1の選択期間において前記複数の接続制御トランジスタがオン状態からオフ状態に変化することによって生じる前記複数のデータ線における電圧変動が前記対応する電圧変動補償線の電圧の前記第1電圧から前記第2電圧への変化によって相殺されるように、前記第1および第2電圧が設定されていることを特徴とする。
 本発明の第7の局面は、本発明の第2から第6の局面において、
 前記複数の書込制御線のいずれか1つの書込制御線に対応する画素回路において表示素子に与えるべき駆動電流を測定する場合には、
 前記駆動制御部は、
  前記1つの書込制御線が選択されている第2の選択期間の直後であって前記複数の書込制御線が非選択状態である非選択期間において、前記1つの書込制御線に対応する画素回路におけるモニタ制御トランジスタおよび電圧変動補償トランジスタがオン状態となるように、前記モニタ制御線駆動回路および前記電圧変動補償線駆動回路を制御し、
  前記所定数の接続制御信号を各組の所定数のデータ線に対応する所定数の接続制御トランジスタの制御端子にそれぞれ与えることにより、前記非選択期間において各組の前記所定数の接続制御トランジスタを所定期間ずつ順次オン状態とし、
 前記電流測定回路は、前記1つの書込制御線に対応する画素回路における駆動トランジスタに流れる電流を、前記モニタ制御トランジスタ、前記電圧変動補償トランジスタ、および、各組の前記所定数の接続制御トランジスタのうちのオン状態のトランジスタを介して測定することを特徴とする。
 本発明の第8の局面は、本発明の第2から第7の局面において、
 各画素回路に含まれるトランジスタおよび前記複数の接続制御トランジスタは、酸化物半導体によりチャネル層が形成された薄膜トランジスタであることを特徴とする。
 本発明の他の局面は、本発明の上記第1から第8の局面および後述の各実施形態に関する説明から明らかであるので、その説明を省略する。
 本発明の第1の局面に係る画素回路を備える表示装置では、この画素回路に書き込むべき画素データを示すアナログ電圧信号が、この画素回路に対応するデータ線にデータ側駆動回路からスイッチング素子としての接続制御トランジスタを介して与えられた後に当該接続制御トランジスタがオフされると、当該接続制御トランジスタの寄生容量に起因して、そのデータ線に保持される電圧がそのアナログ電圧信号の電圧から変動する(当該接続制御トランジスタがNチャネル形の場合にはデータ線の電圧が低下し、Pチャネル形の場合にはデータ線の電圧が上昇する)。しかし、この画素回路に対応する書込制御線に沿って配設された電圧変動補償線に対し、当該接続制御トランジスタをオン状態からオフ状態に変化させるためにその制御端子に与えられる電圧の変化と反対の方向の電圧変化を与えると、この電圧変化は、この画素回路内の電圧変動補償容量を介してそのデータ線の電圧変動を相殺する方向に働く。これにより、接続制御トランジスタのオフ状態への変化時に生じたデータ線の電圧変動が補償される。このため、このようなデータ線の電圧変動を補償するために予め上記アナログデータ信号電圧を補正しておく必要はない。接続制御トランジスタがNチャネル形の場合、接続制御トランジスタのオフ状態への変化時にデータ線の電圧が低下するので、これが補償されるように上記アナログ電圧信号を予め補正すると、そのアナログ電圧信号の電圧が本来の電圧よりも高くなり消費電力の増加を招く。本発明の第1の局面によれば、このような消費電力の増加を抑えることができる。
 また、この画素回路を備える表示装置において、この画素回路内の駆動トランジスタの特性のばらつきを補償するために駆動トランジスタに流れる電流(表示素子に与えるべき駆動電流)を測定する場合には、この画素回路に対応する書込制御線に沿って配設されたモニター制御線および電圧変動補償線が共に選択状態(アクティブ)とされ、当該表示装置に設けられる電流測定回路は、その駆動トランジスタに流れる電流を、この画素回路内のモニタ制御トランジスタ、電圧変動補償トランジスタ、および上記データ線を介して測定する。一方、このような電流測定において、この画素回路が測定対象外である場合には、この画素回路に対応する書込制御線に沿って配設されたモニター制御線および電圧変動補償線が共に非選択状態(非アクティブ)とされ、この画素回路内において互いに直列に接続されたモニタ制御トランジスタおよび電圧変動補償トランジスタは共にオフ状態となる。このため、本発明の第1の局面によれば、上記電流測定回路が測定対象とする画素回路以外の画素回路においてデータ線に流出または当該データ線から流入するリーク電流を確実に抑制し、測定対象の画素回路の駆動トランジスタの電流を高精度で測定することができる。
 本発明の第2の局面によれば、上記複数の書込制御線のいずれか1つが選択状態である第1の選択期間において各組の所定数の接続制御トランジスタが所定期間ずつ順次オン状態とされ、この第1の選択期間において、データ線駆動回路の各出力端子からのアナログ電圧信号が、オン状態の接続制御トランジスタに対応するデータ線に与えられ、当該接続制御トランジスがオフ状態に変化すると、そのアナログ電圧信号が画素データ電圧としてそのデータ線に保持される。このとき、当該接続制御トランジスタの寄生容量に起因して、そのデータ線に保持される電圧がそのアナログ電圧信号の電圧から変動する(当該接続制御トランジスタがNチャネル形の場合にはデータ線の電圧が低下し、Pチャネル形の場合にはデータ線の電圧が上昇する)。この第1の選択期間において、当該接続制御トランジスタを含む上記複数の接続制御トランジスタがオン状態からオフ状態に変化した後に、選択状態の書込制御線に対応する電圧変動補償線の電圧が、上記複数の接続制御トランジスタをオン状態からオフ状態に変化させるためにそれらの制御端子に与えられる電圧の変化と反対の方向に変化する(第1電圧から第2電圧に変化する)。この電圧変動補償線の電圧変化は、上記データ線に対応する画素回路内の電圧変動補償容量を介して上記データ線の電圧変動を相殺する方向に働く。これにより、当該接続制御トランジスタのオフ状態への変化時に生じたデータ線の電圧変動が補償される。このため、このようなデータ線の電圧変動を補償するために予め上記アナログデータ信号電圧を補正しておく必要はない。接続制御トランジスタがNチャネル形の場合、接続制御トランジスタのオフ状態への変化時にデータ線の電圧が低下するので、これが補償されるように上記アナログ電圧信号を予め補正すると、上記アナログ電圧信号の電圧が本来の電圧よりも高くなり、消費電力の増加を招く。本発明の第2の局面によれば、このような消費電力の増加を抑えることができる。
 本発明の第3の局面によれば、上記第1の選択期間後で全ての書込制御線が非選択状態である期間において、上記第1の選択期間で第2電圧が与えられていた電圧変動補償線の電圧が第1電圧に戻されるので、この第2電圧から第1電圧への変化は、各画素回路に保持されているデータ電圧に影響を与えない。
 本発明の第4の局面によれば、上記第1の選択期間で選択状態である書込制御線の次に選択される書込制御線が選択状態である期間(次選択期間)において、最初にオン状態からオフ状態に変化する接続制御トランジスタが当該オフ状態への変化を開始する前に、上記第1の選択期間で第2電圧が与えられていた電圧変動補償線の電圧が第1電圧に戻される。このため、この第2電圧から第1電圧への変化は、上記次選択期間で選択状態である書込制御線に対応する画素回路に書き込んで保持させるべきデータ電圧に影響せず、それらの画素回路以外の画素回路に保持されているデータ電圧にも影響しない。また、本発明の第4の局面によれば、各書込制御線の選択タイミングに応じて、それに対応する電圧変動補償線の電圧が第1電圧と第2電圧の間で切り替わるので、各電圧変動補償線の電圧を第1電圧に戻すための専用の制御信号を必要とせず、電圧変動補償線駆動回路の構成を簡略化することができ、それに応じて消費電力も低減することができる。
 本発明の第5の局面によれば、各電圧変動補償線に与えるべき第1および第2電圧を電圧変動補償線駆動回路に供給する電源は、第1電圧と第2電圧の差が変更可能に構成されている。このため、接続制御トランジスタのオフ状態への変化時に寄生容量に起因して生じるデータ線の電圧変動の大きさに応じて第1電圧と第2電圧の差を調整することにより、当該電圧変動を十分に補償することができる。また、このような寄生容量に起因するデータ線の電圧変動の補償の他、データ線に与えられるアナログ電圧信号の電圧や、データ線に保持される電圧、画素回路に画素データとして書き込まれる電圧が不足する場合に、第1電圧と第2電圧の差の調整によってその不足を補うことができる。
 本発明の第6の局面によれば、上記複数の電圧変動補償線に与えるべき第1および第2電圧は、上記第1の選択期間において上記複数の接続制御トランジスタがオン状態からオフ状態に変化することによって生じる上記複数のデータ線における電圧変動が、上記第1の選択期間で選択状態である書込制御線に対応する電圧変動補償線の電圧の変化によって相殺されるように設定されている。これにより、上記複数のデータ線における電圧変動を補償するためのアナログ電圧信号の補正を不要とし、当該補正による消費電力増大等の問題をより確実に解消することができる。
 本発明の第7の局面によれば、上記複数の書込制御線のいずれか1つの書込制御線に対応する画素回路において表示素子に与えるべき駆動電流を測定する場合には、当該1つの書込制御線が選択されている第2の選択期間の直後であって全ての書込制御線が非選択状態である非選択期間において、当該1つの書込制御線に対応する画素回路におけるモニタ制御トランジスタおよび電圧変動補償トランジスタがオン状態とされ、また、各組の所定数の接続制御トランジスタが所定期間ずつ順次オン状態とされる。この非選択期間において、当該1つの書込制御線に対応する画素回路の駆動トランジスタに流れる電流は、その画素回路内のモニタ制御トランジスタ、電圧変動補償トランジスタ、および、各組の所定数の接続制御トランジスタのうちオン状態のトランジスタを介して測定される。このような電流測定において、当該1つの書込制御線に対応する画素回路以外で電流測定の対象外の画素回路では、互いに直列に接続されたモニタ制御トランジスタおよび電圧変動補償トランジスタは共にオフ状態となる。このため、電流測定の対象外の画素回路においてデータ線に流出または当該データ線から流入するリーク電流を確実に抑制し、測定対象の画素回路の駆動トランジスタの電流を高精度で測定することができる。
 本発明の第8の局面によれば、各画素回路に含まれるトランジスタおよび上記複数の接続制御トランジスタは、酸化物半導体によりチャネル層が形成された薄膜トランジスタであるので、他の種類の薄膜トランジスタを使用する場合よりも消費電力を低減しつつ、本発明の上記第2の局面と同様の効果が得られる。
 本発明の他の局面の効果については、本発明の上記第1~第8の局面の効果および下記実施形態についての説明から明らかであるので、説明を省略する。
本発明の第1の実施形態に係る有機EL表示装置の全体構成を示すブロック図である。 上記第1の実施形態における表示部の構成を説明するためのブロックである。 上記第1の実施形態における書込制御線およびモニタ制御線の駆動を説明するためのタイミングチャートである。 上記第1の実施形態における要部の構成を示す部分回路図である。 上記第1の実施形態におけるデータ側駆動回路内のデータ側単位回路の構成を示す回路図である。 上記第1の実施形態における表示制御回路内の駆動制御部の構成を示すブロック図である。 上記第1の実施形態における書込ラインカウンタの構成を示すブロック図である。 上記実施形態における通常動作期間中のクロック信号CLK1およびクロック信号CLK2の信号波形図である。 上記第1の実施形態におけるマッチング回路の構成を示す回路図である。 上記第1の実施形態における表示制御回路内の補正データ算出/記憶部の構成を示すブロック図である。 上記第1の実施形態における書込制御線駆動回路の構成を示すブロック図である。 上記第1の実施形態における書込制御線駆動回路を構成するシフトレジスタの単位回路の構成(シフトレジスタの1段分の構成)を示す回路図である。 上記第1の実施形態における書込制御線駆動回路を構成するシフトレジスタの単位回路の基本的な動作を説明するためのタイミングチャートである。 上記第1の実施形態におけるモニタ制御線駆動回路の構成を示すブロック図である。 上記第1の実施形態における通常動作期間中のクロック信号CLK3およびクロック信号CLK4の信号波形図である。 上記第1の実施形態におけるモニタ制御線駆動回路を構成するシフトレジスタの単位回路の構成を示す回路図である。 上記第1の実施形態におけるモニタ制御線駆動回路を構成するシフトレジスタの単位回路内のトランジスタT49へのモニタイネーブル信号の与えられ方を説明するための図である。 上記第1の実施形態における電圧変動補償線駆動回路の構成を示すブロック図である。 上記第1の実施形態における通常動作期間中のクロック信号CLK5およびクロック信号CLK6の信号波形図である。 上記第1の実施形態における電圧変動補償線駆動回路を構成するシフトレジスタの単位回路の構成を示す回路図である。 上記第1の実施形態における書込制御線駆動回路の動作を説明するためのタイミングチャートである。 上記第1の実施形態におけるモニタ制御線駆動回路の動作を説明するためのタイミングチャートである。 上記第1の実施形態における電圧変動補償線駆動回路の動作を説明するためのタイミングチャートである。 上記第1の実施形態における画素回路に画素データを書き込むための動作を説明するための信号波形図である。 上記第1の実施形態の基礎となる基本構成表示装置における問題を説明するための回路図である。 上記基本構成表示装置における画素回路への画素データの書き込み動作を示す信号波形図である。 上記第1の実施形態における画素回路内の電流を測定するフレーム期間における書込制御線、モニタ制御線、および電圧変動補償線の状態変化を示すタイミングチャートである。 上記第1の実施形態における画素回路内の電流を測定するための動作を説明するための部分回路図である。 上記第1の実施形態におけるデータ側駆動回路内のデータ側単位回路の電流測定期間における構成を示す回路図である。 上記第1の実施形態における画素回路内の電流を測定するための動作を説明するためのタイミングチャートである。 上記第1の実施形態における特性検出処理(駆動トランジスタの特性を検出するための一連の処理)のための制御手順を示すフローチャートである。 上記第1の実施形態において1つの画素(i行j列の画素)に着目したときの補償処理(駆動トランジスタの特性のばらつきを補償するための一連の処理)の手順を説明するためのフローチャートである。 上記第1の実施形態における階調-電流特性を示す図である。 本発明の第2の実施形態に係る有機EL表示装置における電圧変動補償線駆動回路の構成を示すブロック図である。 上記第2の実施形態における通常動作期間中のクロック信号CLK5およびクロック信号CLK6の信号波形図である。 上記第2の実施形態における電圧変動補償線駆動回路を構成するシフトレジスタの単位回路の構成を示す回路図である 上記第2の実施形態における電圧補償線駆動回路を構成するシフトレジスタの単位回路の基本的な動作を説明するためのタイミングチャートである。 上記第2の実施形態における電圧変動補償線駆動回路の動作を説明するためのタイミングチャートである。 上記第2の実施形態における画素回路への画素データの書き込み動作を説明するための信号波形図である。 本発明の第3の実施形態に係る有機EL表示装置の全体構成を示すブロック図である。 従来の単位サンプルホール回路の構成を示す回路図である。 従来の単位サンプルホール回路の動作を示す信号波形図である。
 以下、添付図面を参照しつつ、本発明の各実施形態について説明する。なお、以下で言及する各トランジスタにおいて、ゲート端子は制御端子に相当し、ドレイン端子およびソース端子の一方は第1導通端子に相当し、他方は第2導通端子に相当する。また、トランジスタのドレイン端子とソース端子は、通常の定義によれば電流の方向の切り替わりに応じて変わることになるが、便宜上、トランジスタの2つの導通端子のいずれか一方を固定的にドレイン端子とし他方を固定的にソース端子とする。
<1.第1の実施形態>
<1.1 全体構成および動作概要>
 図1は、本発明の第1の実施形態に係るアクティブマトリクス型の有機EL表示装置1の全体構成を示すブロック図である。この有機EL表示装置1は、表示制御回路100、データ側駆動回路200、書込制御線駆動回路300、電圧変動補償線駆動回路350、モニタ制御線駆動回路400、デマルチプレクス回路250、および表示部500を備えている。データ側駆動回路200には、データ線駆動回路210として機能する部分と電流測定回路220として機能する部分とが含まれている。なお、本実施形態では、有機ELパネル6内において、書込制御線駆動回路300、電圧変動補償線駆動回路350、モニタ制御線駆動回路400、およびデマルチプレクス回路250は表示部500と一体的に形成されているが、本発明はそのような構成に限定されない。また、この有機EL表示装置1には、有機ELパネル6に各種電源電圧を供給するための構成要素として、ロジック電源610、620、630と、有機EL用ハイレベル電源650と、有機EL用ローレベル電源640が設けられている。
 有機ELパネル6には、書込制御線駆動回路300の動作に必要とされるハイレベル電源電圧VDDおよびローレベル電源電圧VSSがロジック電源610から供給され、モニタ制御線駆動回路400の動作に必要とされるハイレベル電源電圧VDDおよびローレベル電源電圧VSSがロジック電源620から供給され、電圧変動補償線駆動回路350の動作に必要とされるハイレベル電源電圧VDD、ローレベル電源電圧VSS、および電圧変動補償用電圧(以下「カウンタ電圧」という)VCNTがロジック電源630から供給される。また、有機ELパネル6には、有機EL用ハイレベル電源650からハイレベル電源電圧ELVDDが供給され、有機EL用ローレベル電源640からローレベル電源電圧ELVSSが供給される。なお、ハイレベル電源電圧VDD、ローレベル電源電圧VSS、カウンタ電圧VCNT、有機EL用ハイレベル電源電圧ELVDD、および、有機EL用ローレベル電源電圧ELVSSはいずれも定電圧(直流電圧)である。以下では、ハイレベル電源電圧VDD,ローレベル電源電圧VSS,ハイレベル電源電圧ELVDD,ローレベル電源電圧ELVSSをそれぞれ供給するための電源ラインも、符号“ELVDD”,“ELVSS”,“VDD”,“VSS”でそれぞれ示すものとする。
 図2は、本実施形態における表示部500の構成を説明するためのブロック図である。なお、本明細書では、有機ELパネル6がフルハイビジョン用のパネルであると仮定して説明するが、本発明はこれに限定されない。図2に示すように、表示部500には、1080本の書込制御線G1_WL(0)~G1_WL(1079)と5760本のデータ線SLr0,SLg0,SLb0~SLrM,SLgM,SLbMとが互いに交差するように配設されている(ここで、M=5760/3-1=1919である)。データ線SLri、SLgi,SLbiは、それぞれ、赤画素用のデータ線、緑画素用のデータ線、青画素用のデータ線である(i=0~M)。書込制御線G1_WL(0)~G1_WL(1079)とデータ線SLr0~SLrMとの各交差点に対応して赤画素のための画素回路50rが設けられ、書込制御線G1_WL(0)~G1_WL(1079)とデータ線SLg0~SLgMとの各交差点に対応して緑画素のための画素回路50gが設けられ、書込制御線G1_WL(0)~G1_WL(1079)とデータ線SLb0~SLbMとの各交差点に対応して青画素のための画素回路50bが設けられている。すなわち、表示部500には、赤(R)、緑(G)、青(B)に対応する3個の画素回路50r,50g,50b(以下、それぞれ「赤画素回路50r」、「緑画素回路50g」、「青画素回路50b」ともいう)を1組とする(M+1)×1080=1920×1080組の画素回路が書込制御線G1_WL(0)~G1_WL(1079)およびデータ線SLr0,SLg0,SLb0~SLrM,SLgM,SLbMに沿ってマトリクス状に配置されている。これにより、データ線の延びる方向に並ぶ1080個の赤画素回路50rを1列とする複数(1920列)の赤画素回路列、データ線の延びる方向に並ぶ1080個の緑画素回路50gを1列とする複数(1920列)の緑画素回路列、および、データ線の延びる方向に並ぶ1080個の青画素回路50bを1列とする複数(1920列)の青画素回路列と、書込制御線の延びる方向に並ぶ1920組(5760個)の画素回路50r,50g,50bを1行とする複数(1080行)の画素回路行とを有する画素マトリクスが形成される。上述したように、本明細書においては先頭の行のことを「0行目」という。すなわち、1080の行のことをそれぞれ「0行目~1079行目」という。同様に、5760の列のことをそれぞれ「0列目~5759列目」という。なお、本実施形態および後述の他の実施形態における1フレーム期間は、先頭行から最終行への順番で順次に画素回路への画素データの書き込みが行われる期間である有効走査期間と、画素データの書き込みを最終行から先頭行に戻すために設けられている期間である垂直帰線期間とからなる(後述の図23等参照)。
 表示部500には、上記1080本の書込制御線G1_WL(0)~G1_WL(1079)と1対1で対応するように、1080本のモニタ制御線G2_Mon(0)~G2_Mon(1079)が配設されている。また、上記1080本の書込制御線G1_WL(0)~G1_WL(1079)と1対1で対応するように、1080本の電圧変動補償線G3_Cnt(0)~G3_Cnt(1079)が配設されている。図2に示すように、各電圧変動補償線G3_Cnt(i)は、モニタ制御線駆動回路400内に設けられたトランジスタT50を介して、対応するモニタ制御線G2_Mon(i)に接続されており(i=0~1079)、各トランジスタT50のゲート端子には、表示制御回路100の駆動制御部110から出力されるモニタイネーブル信号Mon_ENが与えられる。さらに、表示部500には、ハイレベル電源線ELVDDおよびローレベル電源線ELVSSが配設されている。画素回路50r,50g,50bの詳しい構成については後述する。
 なお、以下においては、1080本の書込制御線G1_WL(0)~G1_WL(1079)を互いに区別する必要がない場合には書込制御線を単に符号“G1_WL”で表す。同様に、モニタ制御線、電圧変動補償線、およびデータ線をそれぞれ単に符号“G2_Mon”、符号“G3_Cnt”、および符号“SL”で表す場合がある。また、赤画素回路50r、緑画素回路50g、青画素回路50bを互いに区別する必要がない場合には画素回路を単に符号“50”で表す。
 図1に示すように、表示制御回路100は、駆動制御部110と補正データ算出/記憶部120と階調補正部130とを有しており、画像情報としてのRGB映像データ信号Dinとタイミング制御情報としての外部クロック信号CLKinとを含む入力信号Sinを本表示装置1の外部から受け取る。駆動制御部110は、この入力信号Sinに基づき、書込制御線駆動回路300の動作を制御するための書込制御信号WCTLと、モニタ制御線駆動回路400の動作を制御するためのモニタ制御信号MCTLおよびモニタイネーブル信号Mon_ENと、電圧変動補償線駆動回路350の動作を制御するための電圧変動補償制御信号CCTLと、データ側駆動回路200の動作を制御するためのソース制御信号SCTLと、デマルチプレクス回路250の動作を制御するためのSSD制御信号Cssdとを出力するとともに、表示制御回路100の内部で、上記RGB映像データ信号Dinに基づくデータ信号DAと後述する階調ポジション指示信号PSとを出力する。書込制御信号WCTLには、後述するスタートパルス信号GSP,クロック信号CLK1,およびクロック信号CLK2が含まれている。モニタ制御信号MCTLには、後述するスタートパルス信号MSP,クロック信号CLK3,およびクロック信号CLK4が含まれている。電圧変動補償制御信号CCTLには、後述するスタートパルス信号CSP,クロック信号CLK5,クロック信号CLK6,およびプルダウン信号CPDが含まれている。ソース制御信号SCTLには、後述するスタートパルス信号SSP,クロック信号SCK,ラッチストローブ信号LS,および入出力制御信号DWTが含まれている。なお、モニタイネーブル信号Mon_ENは、駆動電流の測定を可能にするか否かを制御するための信号である。補正データ算出/記憶部120には、データ信号DAの補正に使用される補正データが保持されている。その補正データは、オフセット値とゲイン値によって構成されている。補正データ算出/記憶部120は、階調ポジション指示信号PSとデータ側駆動回路200での電流測定の結果であるモニタ電圧Vmoとを受け取り、補正データの更新を行う。階調補正部130は、駆動制御部110から出力されたデータ信号DAに対して補正データ算出/記憶部120に保持されている補正データDHを用いて補正を施し、補正によって得られたデータをデジタル映像信号DVとして出力する。表示制御回路100内の構成要素についての更に詳しい説明は後述する。
 データ側駆動回路200は、データ線SLr0,SLg0,SLb0~SLrM,SLgM,SLbM(M=1919)を駆動する動作すなわちデータ線駆動回路210としての動作と、画素回路50r,50g,50bからデータ線SLr0,SLg0,SLb0~SLrM,SLgM,SLbMに出力された駆動電流を測定する動作すなわち電流測定回路220としての動作とを選択的に行う。なお、上述したように、補正データ算出/記憶部120には補正データとしてオフセット値およびゲイン値が保持される。これらの補正データを更新するために、データ側駆動回路200では、2種類の階調(第1階調P1および第2階調P2:P2>P1)に基づいて駆動電流の測定が行われる。
 デマルチプレクス回路250は、データ側駆動回路200から上記デジタル映像信号DVに基づくアナログ電圧信号であるアナログ映像信号D0~DMを受け取り(M=1919)、これらM+1個のアナログ映像信号D1~DMを時分割方式により3(M+1)=5760個のデータ信号Dr0,Dg0,Db0~DrM,DgM,DbMとしてデータ線SLr0,SLg0,SLb0~SLrM,SLgM,SLbMにそれぞれ与える。すなわち本実施形態では、表示部500において隣接する3本のデータ線SLri,SLgi,SLbiを1組として3(M+1)本のデータ線SLをM+1組のデータ線群にグループ化し、各組における3本のデータ線SLri,SLgi,SLbiに時分割的にアナログ映像信号Diを与えるSSD方式が採用されている(i=0~M)。デマルチプレクス回路250は、図2に示すように、上記アナログ映像信号D0~DMにそれぞれ対応するM+1個のデマルチプレクサ252を含む。各デマルチプレクサ252において、SSD方式にしたがって各アナログ映像信号Diをデータ信号Dri、Dgi、またはDbiとして与えるべきデータ線SLを切り替えるためのSSD制御信号Cssdは、既述のように、表示制御回路100における駆動制御部110で生成される。
 書込制御線駆動回路300は、表示制御回路100からの書込制御信号WCTLに基づいて、1080本の書込制御線G1_WL(0)~G1_WL(1079)を駆動する。モニタ制御線駆動回路400は、表示制御回路100からのモニタ制御信号MCTL,モニタイネーブル信号Mon_ENに基づいて、1080本のモニタ制御線G2_Mon(0)~G2_Mon(1079)を駆動する。n行目が補償対象行(測定対象行)に定められているフレーム期間では、書込制御線G1_WLおよびモニタ制御線G2_Monは、図3に示すように駆動される。図3において、時点t2以前の期間および時点t5以降の期間は通常動作期間であって、時点t2~時点t5の期間は特性検出処理期間である。(これについては、図22、図27においても同様である。)通常動作期間には、書込制御線G1_WLが1水平期間(1H期間)ずつ順次に選択状態となる。また、通常動作期間には、全てのモニタ制御線G2_Monが非選択状態で維持される。特性検出処理期間は、補償前データ(駆動電流の測定のためのデータ)の書込が行われる補償前データ書込期間と、駆動電流の測定が行われる電流測定期間と、補償後データ(画像表示のためのデータ)の書込が行われる補償後データ書込期間とによって構成されている。補償前データ書込期間および補償後データ書込期間に、補償対象行の書込制御線G1_WL(n)が選択状態となる。また、電流測定期間に、補償対象行のモニタ制御線G2_Mon(n)が選択状態となる。以上のような駆動を本実施形態においてどのように実現しているかについては、後述する。
 電圧変動補償線駆動回路350は、デマルチプレクス回路250で生じるフィールドスルー現象による各データ線SLの電圧低下(より一般的には電圧変動)ΔVslを補償するために、表示制御回路100からの電圧変動補償制御信号CCTLに基づいて、1080本の電圧変動補償線G3_Cnt(0)~G3_Cnt(1079)を駆動する。すなわち、電圧変動補償線駆動回路350は、各書込制御線G1_WL(i)の選択期間内において、デマルチプレクス回路250に入力されるSSD制御信号Cssdを構成する後述の赤画素接続制御信号Rssd、緑画素接続制御信号Gssd、青画素接続制御信号Bssdがいずれもオン電圧からオフ電圧に変化した後に、その書込制御線G1_WL(i)に対応する電圧変動補償線G3_Cnt(i)をローレベル電源電圧VSSからカウンタ電圧VCNT(ハイレベルの電圧)へと変化させる(詳細は図24等を参照して後述する)。後述の図23に示すように本実施形態では、各電圧変動補償線G3_Cnt(i)の電圧は、上記のようにしてカウンタ電圧VCNT(ハイレベル)に変化した後、表示制御回路100からの電圧変動補償制御信号CCTLに含まれるプルダウン信号CPDにより、垂直帰線期間(「垂直同期期間」とも呼ばれる)でローレベル電源電圧VSSに戻される。垂直帰線期間では、全ての書込制御線G1_WLは非選択状態であるので、各電圧変動補償線G3_Cnt(i)の電圧のハイレベルからローレベルへの変化は、いずれの画素回路50に保持された画素データとしてのデータ電圧にも影響を与えない。なお、各電圧変動補償線G3_Cnt(i)の電圧をハイレベルからローレベルに戻す時点は、全ての書込制御線G1_WLが非選択状態である期間内であればよく、垂直帰線期間内に限定されない。
 ここで、「オン電圧」とは、スイッチング素子としてのトランジスタをオン状態とするためにその制御端子としてのゲート端子に与えられる電圧であり、「オフ電圧」とは、スイッチング素子としてのトランジスタをオフ状態とするためにその制御端子としてのゲート端子に与えられる電圧である。本実施形態では、スイッチング素子としてNチャネル形の電界効果トランジスタ(具体的には薄膜トランジスタ(TFT))が使用されるので、「オフ電圧」はローレベルの電圧であり、「オン電圧」はハイレベルの電圧であり、上記フィールドスルー現象は、データ線SLに保持された電圧Vslを低下させる。一方、スイッチング素子としてPャネル形の電界効果トランジスタ(具体的には薄膜トランジスタ(TFT))が使用される場合には、「オフ電圧」はハイレベルの電圧であり、「オン電圧」はローレベルの電圧であり、上記フィールドスルー現象は、データ線SLに保持された電圧Vslを上昇させる。
 なお後述のように、画素回路50内の駆動トランジスタの特性補償(電流測定)が行われるフレーム期間では、電圧変動補償線駆動回路350は動作を停止し、電圧変動補償線駆動回路350の出力信号は全てローレベルで高インピーダンス状態となる。このようなフレーム期間における電流測定期間では、モニタ制御線駆動回路400に与えられるモニタイネーブル信号Mon_ENがハイレベルとなり、各電圧変動補償線G3_Cnt(i)は、それに対応するモニタ制御線G2_Mon(i)に接続される(図2参照)。このため、図3に示すように、その電流測定期間において選択状態(ハイレベル)となる測定対象行のモニタ制御線G2_Mon(i)にしたがって、それに対応する電圧変動補償線G3_Cnt(n)も選択状態となる。
 以上のように各構成要素が動作してデータ線SLr0,SLg0,SLb0~SLrM,SLgM,SLbM、書込制御線G1_WL(0)~G1_WL(1079)、モニタ制御線G2_Mon(0)~G2_Mon(1079)、および電圧変動補償線G3_Cnt(0)~G3_Cnt(1079)が駆動されることにより、表示部500に画像が表示される。その際、駆動電流の測定結果に基づいてデータ信号DAに補正が施されるので、駆動トランジスタの特性のばらつきが補償される。
<1.2 画素回路、デマルチプレクス回路、およびデータ側駆動回路>
 データ側駆動回路200は、図2に示すようにデマルチプレクス回路250内のM+1個のデマルチプレクサ252とそれぞれ接続されるM+1個の端子Td0~TdMを有し、データ線駆動回路210として機能するときには、これらの端子Td0~TdMを出力端子として次のような動作を行う。データ側駆動回路200は、表示制御回路100からソース制御信号SCTLを受け取り、上記M+1個の端子Td0~TdMからM+1個のアナログ映像信号D0~DMを並列に出力してデマルチプレクス回路250に与える。このとき、データ側駆動回路200では、スタートパルス信号SSPのパルスをトリガーとして、クロック信号SCKのパルスが発生するタイミングで、デマルチプレクス回路250に与えるべきM+1のアナログ映像信号D0~DMに対応するデジタル映像信号DVが順次に保持される。そして、ラッチストローブ信号LSのパルスが発生するタイミングで、上記順次保持されたデジタル映像信号DV(デジタル映像信号DVのサンプリングおよびラッチにより得られるM+1個のデジタル信号)がアナログ電圧としてのM+1個のアナログ映像信号D0~DMに変換され、デマルチプレクス回路250に一斉に出力される。
 図4は、本実施形態における表示部500、デマルチプレクス回路250およびデータ側駆動回路200のうち3本のデータ線SLrj,SLgj,SLbjからなる1組のデータ線群の駆動に対応する部分の構成を示す回路図である。図4には、上記3本のデータ線SLrj,SLgj,SLbjがそれぞれ接続されるi行3j列目の画素回路50r,i行3j+1列目の画素回路50g,i行3j+2列目の画素回路50bと、デマルチプレクス回路250におけるM+1個のデマルチプレクサ252のうちj番目のアナログ映像信号Djが与えられるデマルチプレクサ252と、データ側駆動回路200のうちj番目のアナログ映像信号Djに対応する部分であるデータ側単位回路211とが示されている。
 各画素回路50は、1個の有機EL素子(電気光学素子)OLED,4個のNchトランジスタ(Nチャネル形トランジスタ)T1~T4,および2個のコンデンサCst,Ccntを備えている。トランジスタT1は画素を選択する入力トランジスタとして機能し、トランジスタT2は有機EL素子OLEDへの電流の供給を制御する駆動トランジスタとして機能し、トランジスタT3は駆動トランジスタの特性を検出するための電流測定を行うか否かを制御するモニタ制御トランジスタとして機能し、トランジスタT4は、デマルチプレクサ252内のNchトランジスタがオン状態からオフ状態に変化するときに生じるフィールドスルー現象によるデータ線SLの電圧低下ΔVslを相殺または補償するための電圧変動補償トランジスタとして機能する。また、コンデンサCstは、画素データを示すデータ電圧を保持するための電圧保持容量として機能し、コンデンサCcntは、データ線SLの上記電圧低下ΔVslの補償作用を調整するための電圧変動補償容量として機能する。なお、各画素回路50における上記トランジスタT1~T4のうちトランジスタT2以外のトランジスタは、いずれもスイッチング素子として動作する。
 トランジスタT1は、データ線SLとトランジスタT2のゲート端子との間に設けられている。このトランジスタT1のゲート端子およびソース端子は、書込制御線G1_WL(i)およびデータ線SLにそれぞれ接続されている。トランジスタT2は、有機EL素子OLEDと直列に設けられている。このトランジスタT2のゲート端子、ドレイン端子、およびソース端子は、トランジスタT1のドレイン端子、ハイレベル電源線ELVDD、および有機EL素子OLEDのアノード端子にそれぞれ接続されている。トランジスタT3のゲート端子およびドレイン端子は、モニタ制御線G2_Mon(i)および有機EL素子OLEDのアノード端子にそれぞれ接続されている。トランジスタT4は、トランジスタT3と直列に設けられ、その制御端子としてのゲート端子、その第1導通端子としてのソース端子、および、その第2導通端子としてのドレイン端子は、電圧変動補償線G3_Cnt(j)、データ線SL、およびトランジスタT3のソース端子にそれぞれ接続されている。コンデンサCstの一方の端子は、トランジスタT2のゲート端子に接続され、他方の端子はトランジスタT2のドレイン端子に接続されている。コンデンサCcntの一方の端子は、トランジスタT4のゲート端子に接続され、他方の端子はデータ線SLに接続されている。有機EL素子OLEDのカソード端子は、ローレベル電源線ELVSSに接続されている。
 本実施形態においては、画素回路50内のトランジスタT1~T4はすべてNチャネル型である。これらのトランジスタT1~T4には、チャネル層が酸化物半導体(例えばInGaZnO(酸化インジウムガリウム亜鉛))で形成されたTFTが採用されている。デマルチプレクス回路250、書込制御線駆動回路300、モニタ制御線駆動回路400、および電圧変動補償線駆動回路350内のトランジスタについても同様である。なお、チャネル層がアモルファスシリコン、ポリシリコン、微結晶シリコン、または、連続粒界結晶シリコン(CGシリコン)等で形成されたトランジスタを用いた構成にも本発明を適用することができる。
 デマルチプレクサ252は、一方の導通端子(第1導通端子)が赤画素用のデータ線SLrjに接続されたスイッチング素子としての第1のトランジスタSWrと、一方の導通端子(第1導通端子)が緑画素用のデータ線SLgjに接続されたスイッチング素子としての第2のトランジスタSWgと、一方の導通端子(第1導通端子)が青画素用のデータ線SLbjに接続されたスイッチング素子としての第3のトランジスタSWbとを含んでいる。これら3個のトランジスタSWr,SWg,SWbの他方の導通端子(第2導通端子)は、互いに接続されて、そのデマルチプレクサ252の入力端子に接続されている。この入力端子には、データ側単位回路211からj番目のアナログ映像信号Djが与えられる。上記3個のトランジスタSWr,SWg,SWbの制御端子としてのゲート端子には、表示制御回路100からのSSD制御信号Cssdを構成する赤画素接続制御信号Rssd、緑画素接続制御信号Gssd、青画素接続制御信号Bssdがそれぞれ与えられる。このように、j番目のアナログ映像信号Diを出力するデータ側単位回路211は、j番目の組を構成するデータ線SLrj,SLgj,SLbjが接続されたデマルチプレクサ252に対応し、対応するデマルチプレクサ252にそのj番目のアナログ映像信号Djを与える。
 データ側単位回路211は、データ電圧出力単位回路211dと、電流測定単位回路211mと、切替スイッチSWとを含み、表示制御回路100からのソース制御信号SCTLに含まれる入出力制御信号DWTにより切替スイッチSWが制御されることにより、デマルチプレクサ252(の入力端子)に接続される回路がデータ電圧出力単位回路211dと電流測定単位回路211mの間で切り替えられるように構成されている。すなわち、既述の電流測定期間以外の期間では、入出力制御信号DWTがハイレベルとなって、データ電圧出力単位回路211dが端子Tdjを出力端子としてデマルチプレクサ252に接続され、一方、既述の電流測定期間では、入出力制御信号DWTがローレベルとなって、電流測定単位回路211mが端子Tdjを入力端子としてデマルチプレクサ252に接続される。すなわち、データ側駆動回路200がデータ線駆動回路210として機能するときには、データ電圧出力単位回路211dがデマルチプレクサ252に接続され、データ側駆動回路200が電流測定回路220として機能するときには、電流測定単位回路211mがデマルチプレクサ252に接続される。
 図5は、データ側駆動回路200におけるデータ側単位回路211の構成例を示す回路図である。図5に示すデータ側単位回路211は、DA変換器21,オペアンプ22,抵抗素子R1,第1スイッチ24,第2スイッチ25,およびAD変換器23を含んでいる。DA変換器21の入力端子には、デジタル映像信号DV(より正確にはサンプリングおよびラッチにより得られるデジタル信号dvj)が与えられ、第1スイッチ24および第2スイッチ25には、ソース制御信号SCTLに含まれる入出力制御信号DWTが制御信号として与えられる。既述のように、この入出力制御信号DWTは、電流測定期間にはローレベルとなり、電流測定期間以外の期間にはハイレベルとなる。第2スイッチは、2つの入力端子を有する切替スイッチであり、一方の入力端子にはDA変換器21の出力端子が接続され、他方の入力端子にはローレベル電源線ELVSSが接続され、出力端子はオペアンプ22の非反転入力端子に接続されている。この第2スイッチ25により、オペアンプ22の非反転入力端子には、入出力制御信号DWTがハイレベルのときにデジタル映像信号DV(より正確にはデジタル信号dvj)に相当するアナログ信号が与えられ、入出力制御信号DWTがローレベルのときにローレベル電源電圧ELVSSが与えられる。DA変換器21は、このデジタル映像信号DVをアナログのデータ電圧に変換する。DA変換器21の出力端子は、オペアンプ22の非反転入力端子に接続されている。オペアンプ22の反転入力端子は、デマルチプレクサ252の入力端子に接続されている。第1スイッチ24は、オペアンプ22の反転入力端子と出力端子との間に設けられている。抵抗素子R1は、第1スイッチ24と並列に、オペアンプ22の反転入力端子と出力端子との間に設けられている。オペアンプ22の出力端子は、AD変換器23の入力端子に接続されている。
 以上のような構成において、第1および第2スイッチ24,25は、図4に示したデータ側単位回路211における切替スイッチSWに相当し、入出力制御信号DWTがハイレベルのときには、第1スイッチ24はオン状態となり、第2スイッチはデジタル映像信号DVに相当するアナログ信号をデータ電圧として出力する。これにより、オペアンプ22の反転入力端子-出力端子間は短絡状態となり、オペアンプ22の非反転入力端子には、デジタル映像信号DVに相当するデータ電圧が与えられる。このため、オペアンプ22はバッファアンプとして機能し、このデータ側単位回路211に対応するデマルチプレクサ252(データ線SLrj,SLgj,SLbjが接続されたデマルチプレクサ252)には、オペアンプ22の非反転入力端子に与えられるデータ電圧がアナログ映像信号Djとして入力される。
 一方、入出力制御信号DWTがローレベルのときには、第1スイッチ24はオフ状態になり、第2スイッチ25はローレベル電源電圧ELVSSを出力する。これにより、オペアンプ22の反転入力端子と出力端子とは抵抗素子R1を介して接続され、オペアンプ22の非反転入力端子にはローレベル電源電圧ELVSSが与えられる。その結果、上記データ線SLrj,SLgj,SLbjのうち対応するデマルチプレクサ252で選択されたデータ線(トランジスタSWr,SWg,SWbのうちオン状態のトランジスタに接続されたデータ線であり、以下「選択データ線」という)SLsjに接続された画素回路50sから当該選択データ線SLsjに出力された駆動電流に応じた電圧がオペアンプ22から出力される(sはr,g,bのいずれか)。このオペアンプ22の出力電圧は、AD変換器23でデジタル値に変換され、モニタ電圧vmojとして出力される。各データ側単位回路211から出力されるモニタ電圧vmojは、電流測定回路220での電流測定結果Vmoとして表示制御回路100における補正データ算出/記憶部120に送られる。
 以上のようにして、データ側単位回路211は、電流測定期間には入出力制御信号DWTがローレベルとなって電流測定単位回路211mとして機能し、電流測定期間以外の期間には入出力制御信号DWTがハイレベルとなってデータ電圧出力単位回路211dとして機能する。したがって、データ側駆動回路200は、電流測定期間には電流測定回路220として機能し、電流測定期間以外の期間にはデータ線駆動回路210として機能する。
<1.3 表示制御回路>
 次に、本実施形態における表示制御回路100の詳しい構成および動作について説明する。
<1.3.1 駆動制御部>
 図6は、表示制御回路100内の駆動制御部110の詳細な構成を示すブロック図である。図6に示すように、駆動制御部110には、書込ラインカウンタ111と補償対象ラインアドレス格納メモリ112とマッチング回路113とマッチングカウンタ114とステータスマシーン115と画像データ/ソース制御信号生成回路116とゲート制御信号生成回路117とが含まれている。外部からの入力信号Sinのうち外部クロック信号CLKinはステータスマシーン115に与えられ、RGB映像データ信号Dinは画像データ/ソース制御信号生成回路116に与えられる。
 ステータスマシーン115は、入力信号と現在の内部状態によって出力信号と次の内部状態が決まる順序回路であり、具体的には下記のように動作する。すなわち、ステータスマシーン115は、外部クロック信号CLKinおよびマッチング信号MSに基づいて、制御信号S1,制御信号S2,およびモニタイネーブル信号Mon_ENを出力する。また、ステータスマシーン115は、書込ラインカウンタ111を初期化するためのクリア信号CLRやマッチングカウンタ114を初期化するためのクリア信号CLR2を出力する。さらに、ステータスマシーン115は、補償対象ラインアドレス格納メモリ112に格納されている補償対象ラインアドレスAddrを更新するための書き換え信号WEを出力する。
 図7は、書込ラインカウンタ111の構成を示すブロック図である。書込ラインカウンタ111は、図7に示すように、ゲート制御信号生成回路117から出力されるクロック信号CLK1のクロックパルスの数をカウントする第1カウンタ1111と、ゲート制御信号生成回路117から出力されるクロック信号CLK2のクロックパルスの数をカウントする第2カウンタ1112と、第1カウンタ1111の出力値と第2カウンタ1112の出力値との和を示す値を書込カウント値CntWLとして出力する加算器1113とによって構成されている。ここで、クロック信号CLK1,CLK2は、書込制御信号WCTLに含まれるクロック信号CLK1,CLK2と同じものであり、通常動作期間中、図8に示すように変化し、クロック信号CLK1とクロック信号CLK2とは位相が180度ずれている。この書込ラインカウンタ111は、スタートパルス信号GSPのパルスの発生後、最初にクロック信号CLK1が立ち上がった時点には、書込カウント値CntWLが0となるように構成されている。最初のクロック信号CLK1が立ち上がった後、クロック信号CLK1またはクロック信号CLK2のいずれかが立ち上がる毎に、書込カウント値CntWLは1ずつ増加する。なお、書込ラインカウンタ111から出力される書込カウント値CntWLは、ステータスマシーン115からのクリア信号CLRにより0に初期化される。
 図6に示した駆動制御部110における補償対象ラインアドレス格納メモリ112には、次に駆動電流の測定が行われるべき行(補償対象行)を示すアドレス(以下、「補償対象ラインアドレス」という)Addrが格納されている。補償対象ラインアドレス格納メモリ112に格納されている補償対象ラインアドレスAddrは、ステータスマシーン115から出力される書き換え信号WEによって書き換えられる。なお、本明細書においては、補償対象行が何行目であるかを表す数値が補償対象ラインアドレスAddrに定められるものとして説明する。例えば、5行目が補償対象行であれば補償対象ラインアドレスは“5”となる。
 マッチング回路113は、書込ラインカウンタ111から出力される書込カウント値CntWLと補償対象ラインアドレス格納メモリ112に格納されている補償対象ラインアドレスAddrとが一致しているか否かを判定し、その判定結果を示すマッチング信号MSを出力する。なお、書込カウント値CntWLと補償対象ラインアドレスAddrとは同じビット数で表される。本実施形態においては、書込カウント値CntWLと補償対象ラインアドレスAddrとが一致していればマッチング信号MSはハイレベルとされ、両者が一致していなければマッチング信号MSはローレベルとされる。マッチング回路113から出力されたマッチング信号MSは、ステータスマシーン115とマッチングカウンタ114とに与えられる。
 図9は、本実施形態におけるマッチング回路113の構成を示す論理回路図である。このマッチング回路113は、4個のEXOR回路(排他的論理和回路)71(1)~71(4)と4個のインバータ(論理否定回路)72(1)~72(4)と1個のAND回路(論理積回路)73とによって構成されている。EXOR回路71(1)~71(4)とインバータ72(1)~72(4)とは1対1で対応している。各EXOR回路71の一方の入力端子には、補償対象ラインアドレス格納メモリ112に格納されている補償対象ラインアドレスAddrを示す4ビットのデータのうちの1ビットのデータが第1入力データIN(a)として与えられる。各EXOR回路71の他方の入力端子には、書込ラインカウンタ111から出力される4ビットのデータ(書込カウント値CntWL)のうちの1ビットのデータが第2入力データIN(b)として与えられる。各EXOR回路71は、第1入力データIN(a)の論理値と第2入力データIN(b)の論理値との排他的論理和を示す値を第1出力データOUT(c)として出力する。各インバータ72の入力端子には、対応するEXOR回路71から出力された第1出力データOUT(c)が与えられる。各インバータ72は、第1出力データOUT(c)の論理値を反転させた値(すなわち、第1出力データOUT(c)の論理値の論理否定を示す値)を第2出力データOUT(d)として出力する。AND回路73は、インバータ72(1)~72(4)から出力される4つの第2出力データOUT(d)の論理積を示す値をマッチング信号MSとして出力する。なお、ここでは4ビットのデータを比較する例を挙げているが、実際には例えば10ビットのデータを比較するためにEXOR回路71およびインバータ72は10個ずつ設けられる。すなわち、書込制御線G1_WLの本数が多くなるにつれて、EXOR回路71およびインバータ72の数を多くすれば良い。なお、マッチング回路113は、図9に示す構成に限定されるものではなく、例えば、本実施形態におけるインバータ72(1)~72(4)およびAND回路73に代えて、NOR回路(否定論理和回路)を使用する構成としてもよい。
 ところで、本実施形態においては、スタートパルス信号GSPのパルスの発生後、クロック信号CLK1,CLK2に基づいて、書込制御線G1_WLが順次に選択状態となる。また、書込ラインカウンタ111から出力される書込カウント値CntWLは、クロック信号CLK1,CLK2に基づいて1ずつ増加する。したがって、書込カウント値CntWLは、選択状態とされるべき書込制御線G1_WLの行の値を表すことになる。例えば、或る時点txにクロック信号CLK1が立ち上がって書込カウント値CntWLが“50”になったとすると、当該時点txから1水平期間、50行目の書込制御線G1_WL(50)が選択状態となる。また、補償対象行を示す補償対象ラインアドレスAddrが補償対象ラインアドレス格納メモリ112に格納されているので、書込カウント値CntWLと補償対象ラインアドレスAddrとが一致した時点が、特性検出処理期間の開始時点となる。
 図6に示した駆動制御部110において、マッチングカウンタ114は、マッチングカウント値CntMを出力する。このマッチングカウント値CntMは、初期化された後(“0”にされた後)、マッチング信号MSがローレベルからハイレベルに変化する毎に1ずつ加算される。また、マッチングカウンタ114からは、第1階調P1に基づいて駆動電流の測定が行われたのか第2階調P2に基づいて駆動電流の測定が行われたのかを識別するための階調ポジション指示信号PSが出力される。なお、マッチングカウンタ114は、ステータスマシーンから出力されるクリア信号CLR2により初期化される。
 画像データ/ソース制御信号生成回路116は、外部からの入力信号Sinに含まれるRGB映像データ信号Dinおよびステータスマシーン115から与えられる制御信号S1に基づいて、ソース制御信号SCTLとデータ信号DAとSSD制御信号Cssdとを出力する。なお、制御信号S1には、例えば、補償処理(駆動トランジスタの特性のばらつきを補償するための一連の処理)の開始を指示する信号が含まれている。ゲート制御信号生成回路117は、ステータスマシーン115から与えられる制御信号S2に基づいて、書込制御信号WCTLとモニタ制御信号MCTLと電圧変動補償制御信号CCTLとを出力する。なお、制御信号S2には、入力信号Sinに含まれる外部クロック信号CLKinに基づく信号、例えば、クロック信号CLK1~CLK4のクロック動作を制御する信号やスタートパルス信号GSP,MSPのパルスの出力を指示する信号が含まれている。
<1.3.2 階調補正部>
 図1に示した構成において表示制御回路100に含まれる階調補正部130は、補正データ算出/記憶部120に保持されている補正データDH(オフセット値およびゲイン値)を読み出して、駆動制御部110から出力されたデータ信号DAの補正を行う。そして、階調補正部130は、補正によって得られた階調電圧をデジタル映像信号DVとして出力する。このデジタル映像信号DVは、データ側駆動回路200に送られる。
<1.3.3 補正データ算出/記憶部>
 図10は、表示制御回路100内の補正データ算出/記憶部120の構成を示すブロック図である。図10に示すように、補正データ算出/記憶部120には、AD変換器121と補正演算回路122と不揮発性メモリ123とバッファメモリ124とが含まれている。AD変換器121は、データ側駆動回路200から出力されたモニタ電圧Vmo(アナログ電圧)をデジタル信号Dmoに変換する。補正演算回路122は、デジタル信号Dmoに基づいて、階調補正部130での補正に用いるための補正データ(オフセット値およびゲイン値)を求める。その際、AD変換器121から出力されるデジタル信号Dmoが第1階調P1に基づくデータであるのか第2階調P2に基づくデータであるのかを判断するために、マッチングカウンタ114から出力される階調ポジション指示信号PSが参照される。補正演算回路122で求められた補正データDHは、不揮発性メモリ123に保持される。詳しくは、不揮発性メモリ123には、各画素回路50についてのオフセット値とゲイン値とが保持される。階調補正部130でデータ信号DAの補正が行われる際、不揮発性メモリ123から一時的にバッファメモリ124に読み出された補正データDHが使用される。
<1.4 書込制御線駆動回路の構成>
 図11は、本実施形態における書込制御線駆動回路300の構成を示すブロック図である。この書込制御線駆動回路300は、シフトレジスタ3を用いて実現されている。表示部500内の各書込制御線G1_WLと1対1で対応するように、シフトレジスタ3の各段が設けられている。すなわち、本実施形態においては、書込制御線駆動回路300には、1080段からなるシフトレジスタ3が含まれている。なお、図11は、1080段のうちの(i-1)段目から(i+1)段目までを構成する単位回路30(i-1)~30(i+1)のみを示している。説明の便宜上、iは偶数であると仮定する(図14、図18においても同様)。シフトレジスタ3の各段(各単位回路)には、クロック信号VCLKを受け取るための入力端子と、セット信号Sを受け取るための入力端子と、リセット信号Rを受け取るための入力端子と、各段の内部状態を示す状態信号Qを出力するための出力端子とが設けられている。
 図11に示すように、シフトレジスタ3の各段(各単位回路)の入力端子に与えられる信号は次のようになっている。奇数段目については、クロック信号CLK1がクロック信号VCLKとして与えられ、偶数段目については、クロック信号CLK2がクロック信号VCLKとして与えられる。また、任意の段について、前段から出力される状態信号Qがセット信号Sとして与えられ、次段から出力される状態信号Qがリセット信号Rとして与えられる。但し、1段目(図11は不図示)については、スタートパルス信号GSPがセット信号Sとして与えられる。なお、ローレベル電源電圧VSS(図11では不図示)については、全ての単位回路30に共通的に与えられる。シフトレジスタ3の各段からは状態信号Qが出力される。各段から出力される状態信号Qは、対応する書込制御線G1_WLに出力されるとともに、リセット信号Rとして前段に与えられ、セット信号Sとして次段に与えられる。
 図12は、書込制御線駆動回路300を構成するシフトレジスタ3の単位回路30の構成(シフトレジスタ3の1段分の構成)を示す回路図である。図12に示すように、単位回路30は、4個のトランジスタT31~T34を備えている。また、単位回路30は、ローレベル電源電圧VSS用の入力端子のほか、3個の入力端子31~33および1個の出力端子38を有している。ここで、セット信号Sを受け取る入力端子には符号“31”を付し、リセット信号Rを受け取る入力端子には符号“32”を付し、クロック信号VCLKを受け取る入力端子には符号“33”を付している。また、状態信号Qを出力する出力端子には符号“38”を付している。トランジスタT32のゲート端子-ドレイン端子間には寄生容量Cgdが形成され、トランジスタT32のゲート端子-ソース端子間には寄生容量Cgsが形成されている。トランジスタT31のソース端子,トランジスタT32のゲート端子,およびトランジスタT34のドレイン端子は互いに接続されている。なお、これらが互いに接続されている領域(配線)のことを以下「第1ノード」という。第1ノードには符号“N1”を付す。
 トランジスタT31は、ゲート端子およびドレイン端子が入力端子31に接続され(すなわち、ダイオード接続となっている)、ソース端子が第1ノードN1に接続されている。トランジスタT32は、ゲート端子が第1ノードN1に接続され、ドレイン端子が入力端子33に接続され、ソース端子が出力端子38に接続されている。トランジスタT33は、ゲート端子が入力端子32に接続され、ドレイン端子が出力端子38に接続され、ソース端子がローレベル電源電圧VSS用の入力端子に接続されている。トランジスタT34は、ゲート端子が入力端子32に接続され、ドレイン端子が第1ノードN1に接続され、ソース端子がローレベル電源電圧VSS用の入力端子に接続されている。
 次に、この単位回路30における機能について説明する。トランジスタT31は、セット信号Sがハイレベルになると、第1ノードN1の電位をハイレベルに向けて変化させる。トランジスタT32は、第1ノードN1の電位がハイレベルになると、クロック信号VCLKの電位を出力端子38に与える。トランジスタT33は、リセット信号Rがハイレベルになると、出力端子38の電位をローレベル電源電圧VSSの電位に向けて変化させる。トランジスタT34は、リセット信号Rがハイレベルになると、第1ノードN1の電位をローレベル電源電圧VSSの電位に向けて変化させる。
 図12および図13およびを参照しつつ、単位回路30の基本的な動作について説明する。単位回路30にクロック信号VCLKとして与えられるクロック信号CLK1,CLK2の波形は図8に示したとおりである(但し、特性検出処理期間を除く)。図13に示すように、時点t20以前の期間には、第1ノードN1の電位および状態信号Qの電位(出力端子38の電位)はローレベルとなっている。また、入力端子33には、所定期間おきにハイレベルとなるクロック信号VCLKが与えられている。なお、図13に関し、実際の波形にはいくらかの遅延が生じるが、ここでは理想的な波形を示している。
 時点t20になると、入力端子31にセット信号Sのパルスが与えられる。トランジスタT31は図12に示すようにダイオード接続となっているので、このセット信号SのパルスによってトランジスタT31はオン状態となる。これにより、第1ノードN1の電位が上昇する。
 時点t21になると、クロック信号VCLKがローレベルからハイレベルに変化する。このとき、リセット信号Rはローレベルとなっているので、トランジスタT34はオフ状態となっている。したがって、第1ノードN1はフローティング状態となる。上述したように、トランジスタT32のゲート端子-ドレイン端子間には寄生容量Cgdが形成され、トランジスタT32のゲート端子-ソース端子間には寄生容量Cgsが形成されている。このため、ブートストラップ効果によって、第1ノードN1の電位は大きく上昇する。その結果、トランジスタT32のゲート端子には大きな電圧が印加される。これにより、状態信号Qの電位(出力端子38の電位)はクロック信号VCLKのハイレベルの電位にまで上昇する。なお、時点t21~時点t22の期間中、リセット信号Rはローレベルとなっている。このため、トランジスタT33はオフ状態で維持されるので、この期間中に状態信号Qの電位が低下することはない。
 時点t22になると、クロック信号VCLKがハイレベルからローレベルに変化する。これにより、入力端子33の電位の低下とともに状態信号Qの電位は低下し、更に寄生容量Cgd,Cgsを介して第1ノードN1の電位も低下する。また、時点t22には、入力端子32にリセット信号Rのパルスが与えられる。これにより、トランジスタT33およびトランジスタT34はオン状態となる。トランジスタT33がオン状態になることによって状態信号Qの電位がローレベルにまで低下し、トランジスタT34がオン状態になることによって第1ノードN1の電位がローレベルにまで低下する。
 上述のような単位回路30の動作および図11に示したシフトレジスタ3の構成を考慮すると、通常動作期間には次のような動作が行われることが把握される。シフトレジスタ3の1段目にセット信号Sとしてのスタートパルス信号GSPのパルスが与えられると、クロック信号CLK1,CLK2に基づいて、各段から出力される状態信号Qに含まれるシフトパルスが0段目から後続の段へと順次に転送される。また、各段から出力される状態信号Qは対応する書込制御線G1_WLに出力される。したがって、シフトパルスの転送に応じて、書込制御線G1_WLが1本ずつ順次に選択状態となる。このようにして、通常動作期間には、書込制御線G1_WLが1本ずつ順次に選択状態となる。
 なお、単位回路30の構成は、図12に示した構成(4個のトランジスタT31~T34を含む構成)には限定されない。一般的には、駆動性能の向上や信頼性の向上を図るため、単位回路30には4個よりも多い数のトランジスタが含まれている。そのような場合にも、本発明を適用することができる。
<1.5 モニタ制御線駆動回路の構成>
 図14は、本実施形態におけるモニタ制御線駆動回路400の構成を示すブロック図である。このモニタ制御線駆動回路400は、シフトレジスタ4を用いて実現されている。表示部500内の各モニタ制御線G2_Monと1対1で対応するように、シフトレジスタ4の各段が設けられている。すなわち、本実施形態においては、モニタ制御線駆動回路400には、1080段からなるシフトレジスタ4が含まれている。なお、図14には、1080段のうちの(i-1)段目から(i+1)段目までを構成する単位回路40(i-1)~40(i+1)のみを示している。シフトレジスタ4の各段(各単位回路)には、クロック信号VCLKを受け取るための入力端子と、セット信号Sを受け取るための入力端子と、リセット信号Rを受け取るための入力端子と、状態信号Qを出力するための出力端子と、出力信号Q2を出力するための出力端子とが設けられている。
 図14に示すように、シフトレジスタ4の各段(各単位回路)の入力端子に与えられる信号は次のようになっている。奇数段目については、クロック信号CLK3がクロック信号VCLKとして与えられ、偶数段目については、クロック信号CLK4がクロック信号VCLKとして与えられる。また、任意の段について、前段から出力される状態信号Qがセット信号Sとして与えられ、次段から出力される状態信号Qがリセット信号Rとして与えられる。但し、1段目(図14では不図示)については、スタートパルス信号MSPがセット信号Sとして与えられる。なお、ローレベル電源電圧VSS(図14では不図示)については、全ての単位回路40に共通的に与えられる。また、全ての単位回路40に共通的にモニタイネーブル信号Mon_EN(図14では不図示)が与えられる。シフトレジスタ4の各段からは状態信号Qおよび出力信号Q2が出力される。各段から出力される状態信号Qは、リセット信号Rとして前段に与えられるとともに、セット信号Sとして次段に与えられる。各段から出力される出力信号Q2は、対応するモニタ制御線G2_Monに出力される。なお、通常動作期間中、クロック信号CLK3およびクロック信号CLK4は図15に示すように変化する。
 図16は、モニタ制御線駆動回路400を構成するシフトレジスタ4の単位回路40の構成(シフトレジスタ4の1段分の構成)を示す回路図である。 図16に示すように、単位回路40は、5個のトランジスタT41~T44,T49を備えている。また、単位回路40は、ローレベル電源電圧VSS用の入力端子のほか、4個の入力端子41~44および2個の出力端子48,49を有している。図16におけるトランジスタT41~T44,入力端子41~43,および出力端子48は、それぞれ、図12におけるトランジスタT31~T34,入力端子31~33,および出力端子38に相当する。すなわち、単位回路40は、次の点を除いて単位回路30と同様の構成となっている。単位回路40には、出力端子48とは別の出力端子49が設けられている。また、単位回路40には、ドレイン端子が出力端子48に接続され、ソース端子が出力端子49に接続され、ゲート端子にモニタイネーブル信号Mon_ENが与えられるように構成されたトランジスタT49が設けられている。なお、書込制御線駆動回路300を構成するシフトレジスタ3の単位回路30と同様、この単位回路40についても図16に示す構成には限定されない。
 上述のように、出力端子49およびトランジスタT49が設けられている点を除いては、単位回路40は、単位回路30と同様の構成となっている。また、シフトレジスタ4には、図15に示す波形のクロック信号CLK3,CLK4が与えられる。以上より、クロック信号CLK3,CLK4に基づいて、シフトレジスタ4の各段から出力される状態信号Qが順次にハイレベルとなる。ここで、任意の単位回路40に着目したとき、モニタイネーブル信号Mon_ENがローレベルになっていれば、トランジスタT49はオフ状態となる。このとき、状態信号Qがハイレベルになっていても、出力信号Q2はローレベルで維持することができる。このため、この単位回路40に対応するモニタ制御線G2_Monは選択状態とはならない。これに対して、モニタイネーブル信号Mon_ENがハイレベルになっていれば、トランジスタT49はオン状態となる。このとき、状態信号Qがハイレベルになっていれば、出力信号Q2もハイレベルとなる。これにより、この単位回路40に対応するモニタ制御線G2_Monが選択状態となる。
 ここで、単位回路40内のトランジスタT49へのモニタイネーブル信号Mon_ENの与えられ方について、図17を参照しつつ説明する。図17示すように、トランジスタT49に与えられるモニタイネーブル信号Mon_ENは、遅延回路1151から出力される。この遅延回路1151は、表示制御回路100の駆動制御部110内のステータスマシーン115に設けられている。書込ラインカウンタ111から出力される書込カウント値CntWLと補償対象ラインアドレス格納メモリ112に格納されている補償対象ラインアドレスAddrとが一致すると、マッチング信号MSがローレベルからハイレベルに変化する。遅延回路1151は、マッチング信号MSの波形を1水平期間だけ遅延させる。これにより得られた信号がモニタイネーブル信号Mon_ENとして遅延回路1151から出力される。以上のようにして、マッチング信号MSがローレベルからハイレベルに変化した時点から1水平期間後に、トランジスタT49に与えられるモニタイネーブル信号Mon_ENがハイレベルとなる。
<1.6 電圧変動補償線駆動回路の構成>
 図18は、本実施形態における電圧変動補償線駆動回路350の構成を示すブロック図である。この電圧変動補償線駆動回路350は、シフトレジスタ35srを用いて実現されている。表示部500内の各電圧変動補償線G3_Cntと1対1で対応するように、シフトレジスタ35srの各段が設けられている。すなわち、本実施形態においては、電圧変動補償線駆動回路350には、1080段からなるシフトレジスタ35srが含まれている。なお、図18には、1080段のうちの(i-1)段目から(i+1)段目までを構成する単位回路35(i-1)~35(i+1)のみを示している。シフトレジスタ35srの各段(各単位回路)には、クロック信号VCLKを受け取るための入力端子と、セット信号Sを受け取るための入力端子と、リセット信号Rを受け取るための入力端子と、出力信号をリセットするためのクリア信号CLRを受け取るために入力端子と、状態信号Qを出力するための出力端子と、出力信号Q2を出力するための出力端子とが設けられている。
 図18に示すように、シフトレジスタ35srの各段(各単位回路)の入力端子に与えられる信号は次のようになっている。奇数段目については、クロック信号CLK5がクロック信号VCLKとして与えられ、偶数段目については、クロック信号CLK6がクロック信号VCLKとして与えられる。また、任意の段について、前段から出力される状態信号Qがセット信号Sとして与えられ、次段から出力される状態信号Qがリセット信号Rとして与えられる。但し、1段目(図18では不図示)については、スタートパルス信号CSPがセット信号Sとして与えられる。なお、ローレベル電源電圧VSSおよびカウンタ電圧VCNT(図18では不図示)については、全ての単位回路35に共通的に与えられる。また、全ての単位回路35に共通的にプルダウン信号CPDがクリア信号CLRとして与えられる。シフトレジスタ35srの各段からは状態信号Qおよび出力信号Q2が出力され、このうち出力信号Q2は、対応する電圧変動補償線G3_Cntへ出力される。なお、通常動作期間中、クロック信号CLK5およびクロック信号CLK6は図19に示すように変化する。
 図20は、電圧変動補償線駆動回路350を構成するシフトレジスタ35srの単位回路35の構成(シフトレジスタ35srの1段分の構成)を示す回路図である。 図20に示すように、単位回路35は、6個のトランジスタT351~T356を備えている。また、単位回路35は、ローレベル電源電圧VSS用の入力端子のほか、5個の入力端子351~354,357および2個の出力端子355,356を有している。図20におけるトランジスタT351~T354,入力端子351~353,および出力端子355は、それぞれ、図12におけるトランジスタT31~T34,入力端子31~33,および出力端子38に相当する。すなわち、単位回路35は、次の点を除いて単位回路30と同様の構成となっている。単位回路35には、出力端子355とは別の出力端子356が設けられている。また、単位回路35には、ゲート端子が出力端子355に接続され、ソース端子が出力端子356に接続され、ドレイン端子にカウンタ電圧VCNTが与えられるように構成されたトランジスタT355が設けられている。さらに、単位回路35には、ドレイン端子がトランジスタT355のソース端子に接続され、ソース端子にローレベル電源電圧VSSが与えられ、ゲート端子にプルダウン信号CPDが与えられるように構成されたトランジスタT356が設けられている。なお、書込制御線駆動回路300を構成するシフトレジスタ3の単位回路30と同様、この単位回路35についても図20に示す構成には限定されない。
 上述のように、入力端子354,357、出力端子356、トランジスタT355,およびトランジスタT356が設けられている点を除いては、単位回路35は、単位回路30と同様の構成となっている。また、シフトレジスタ35srには、図19に示す波形のクロック信号CLK5,CLK6が与えられる。以上より、クロック信号CLK5,CLK6に基づいて、シフトレジスタ35srの各段から出力される状態信号Qが順次にハイレベルとなる。なお、クリア信号CLRとして入力されるプルダウン信号CPDおよび状態信号Qと出力信号Q2の関係については後述する。
<1.7 表示制御回路における制御処理>
 次に、書込制御線駆動回路300およびモニタ制御線駆動回路400に所望の動作をさせるために表示制御回路100で行われる制御処理について説明する。各フレーム期間において、モニタイネーブル信号Mon_ENがローレベルにされ、かつ、補償対象ラインアドレス格納メモリ112に補償対象行を示す補償対象ラインアドレスAddrが設定され、かつ、書込ラインカウンタ111が初期化され状態で、書込制御線駆動回路300の動作開始を指示するスタートパルス信号GSPのパルスが出力される。また、スタートパルス信号GSPのパルスが出力されてから1水平期間後に、モニタ制御線駆動回路400の動作開始を指示するスタートパルス信号MSPのパルスが出力される。スタートパルス信号GSPのパルスの出力後、クロック信号CLK1,CLK2に基づいて、書込カウント値CntWLが増加する。なお、画素回路50内の駆動トランジスタT2の特性補償(電流測定)が行われるフレーム期間(図6に示す補償対象ラインアドレス格納メモリ112に補償対象ラインアドレスとして適切な値が設定されているフレーム期間)では、電圧変動補償線駆動回路350は動作を停止し、電圧変動補償線駆動回路350の出力信号は全てローレベルで高インピーダンス状態となる。このために、このようなフレーム期間では、表示制御回路100は、クロック信号CLK5,CLK6およびプルダウン信号CPDをローレベル(非アクティブ)に維持する。上記駆動トランジスタT2の特性補償(電流測定)が行われないフレーム期間での表示制御回路100による電圧変動補償線駆動回路350の制御動作については後述する。
 上述したように、マッチング回路113は、書込ラインカウンタ111から出力される書込カウント値CntWLと補償対象ラインアドレス格納メモリ112に格納されている補償対象ラインアドレスAddrとが一致しているか否かを判定する。そして、書込カウント値CntWLと補償対象ラインアドレスAddrとが一致したとき、ステータスマシーン115に与えられるマッチング信号MSがローレベルからハイレベルに変化する。このとき、ステータスマシーン115によって以下のような制御が行われる。なお、書込カウント値CntWLと補償対象ラインアドレスAddrとが一致した時点は、特性検出処理期間の開始時点となる。
(a)クロック信号CLK1,CLK2に対する制御
 書込カウント値CntWLと補償対象ラインアドレスAddrとが一致した時点の1水平期間後に、クロック信号CLK1およびクロック信号CLK2の双方がローレベルにされる。その後、電流測定期間を通じて、クロック信号CLK1,CLK2によるクロック動作が停止状態にされる。電流測定期間の終了後、クロック信号CLK1,CLK2の状態が、電流測定期間開始直前の状態に戻される。
(b)クロック信号CLK3,CLK4に対する制御
 書込カウント値CntWLと補償対象ラインアドレスAddrとが一致した時点の1水平期間後に、クロック信号CLK3およびクロック信号CLK4の双方が通常と同様に変化させられる。その後、電流測定期間を通じて、クロック信号CLK3,CLK4によるクロック動作が停止状態にされる。電流測定期間の終了後、クロック信号CLK3,CLK4によるクロック動作が再開される。
(c)モニタイネーブル信号Mon_ENに対する制御
 書込カウント値CntWLと補償対象ラインアドレスAddrとが一致した時点の1水平期間後に、モニタイネーブル信号Mon_ENがハイレベルにされる。その後、電流測定期間を通じて、モニタイネーブル信号Mon_ENがハイレベルで維持される。電流測定期間の終了後、モニタイネーブル信号Mon_ENがローレベルにされる。
 換言すれば、表示制御回路100内の駆動制御部110によって、次のような制御処理が行われる。駆動制御部110は、電流測定期間の開始時点および終了時点には2つのクロック信号CLK1,CLK2のうち補償対象行に対応する単位回路30に与えられるクロック信号の電位のみが変化するよう、かつ、電流測定期間を通じてクロック信号CLK1,CLK2によるクロック動作が停止するよう、クロック信号CLK1,CLK2を制御する。また、駆動制御部110は、電流測定期間の開始時点にクロック信号CLK3,CLK4の電位が変化した後、電流測定期間を通じてクロック信号CLK3,CLK4によるクロック動作が停止するよう、クロック信号CLK3,CLK4を制御する。さらに、駆動制御部110は、電流測定期間にのみモニタイネーブル信号Mon_ENをアクティブにする。
<1.8 書込制御線駆動回路の動作>
 表示制御回路100での上述した制御処理の内容を踏まえつつ、特性検出処理期間近傍における書込制御線駆動回路300の動作について説明する。図21は、書込制御線駆動回路300の動作を説明するためのタイミングチャートである。なお、n行目が補償対象行に定められているものと仮定する。
 時点t1になると、(n-1)行目の書込制御線G1_WL(n-1)が選択状態となる。これにより、(n-1)行目において、通常のデータ書込が行われる。また、(n-1)行目の書込制御線G1_WL(n-1)が選択状態となることによって、シフトレジスタ3内のn段目の単位回路30(n)において、第1ノードN1(n)の電位が上昇する。なお、時点t2の直前の時点までは、補償対象ラインアドレスAddrと書込カウント値CntWLとは一致していない。
 時点t2になると、クロック信号CLK1が立ち上がる。これにより、n段目の単位回路30(n)において、第1ノードN1(n)の電位が更に上昇する。その結果、n行目の書込制御線G1_WL(n)が選択状態となる。この選択状態において、n行目の各画素回路50には、補償前データが書き込まれる。また、時点t2には、n行目の書込制御線G1_WL(n)が選択状態となることによって、シフトレジスタ3内の(n+1)段目の単位回路30(n+1)において、第1ノードN1(n+1)の電位が上昇する。
 ところで、時点t2には、クロック信号CLK1が立ち上がることによって、補償対象ラインアドレスAddrと書込カウント値CntWLとが一致する。これにより、表示制御回路100は、時点t2から1水平期間後の時点t3にクロック信号CLK1を立ち下げ、その後、電流測定期間の終了時点(時点t4)まで、クロック信号CLK1,CLK2によるクロック動作を停止させる。すなわち、時点t3~時点t4の期間中、クロック信号CLK1およびクロック信号CLK2はローレベルで維持される。
 なお、時点t3には、クロック信号CLK1が立ち下がることに起因して、n段目の単位回路30(n)において、第1ノードN1(n)の電位が低下する。また、時点t3には、クロック信号CLK2が立ち上がらないので、(n+1)行目の書込制御線G1_WL(n+1)は選択状態とはならない。このため、n段目の単位回路30(n)にはハイレベルのリセット信号Rは入力されない。したがって、時点t3の直後の時点におけるn段目の単位回路30(n)内の第1ノードN1(n)の電位は、時点t2の直前の時点における電位にほぼ等しくなる。
 時点t3~時点t4の期間(電流測定期間)には、駆動トランジスタの特性を検出するための駆動電流の測定が行われる。この電流測定期間には、クロック信号CLK1,CLK2によるクロック動作は停止している。したがって、電流測定期間中、n段目の単位回路30(n)内の第1ノードN1(n)の電位は維持される。
 電流測定期間の終了時点である時点t4になると、表示制御回路100は、クロック信号CLK1,CLK2によるクロック動作を再開させる。その際、クロック信号CLK1およびクロック信号CLK2のうち電流測定期間の開始時点(時点t3)に立ち下げた方の信号(図21に示す例ではクロック信号CLK1)を立ち上げる。このようにして時点t4にはクロック信号CLK1が立ち上がるので、n段目の単位回路30(n)において、第1ノードN1(n)の電位が上昇する。その結果、n行目の書込制御線G1_WL(n)が選択状態となる。このとき、n行目の各画素回路50には、補償後データが書き込まれる。
 時点t5になると、クロック信号CLK1が立ち下がり、クロック信号CLK2が立ち上がる。この時点t5以降の期間には、書込制御線G1_WLが1行ずつ選択状態となる。これにより、1行ずつ、通常のデータ書込が行われる。
<1.9 モニタ制御線駆動回路の動作>
 表示制御回路100での上述した制御処理の内容を踏まえつつ、特性検出処理期間近傍におけるモニタ制御線駆動回路400の動作について説明する。図22は、モニタ制御線駆動回路400の動作を説明するためのタイミングチャートである。なお、ここでもn行目が補償対象行に定められているものと仮定する。
 モニタ制御線駆動回路400では、クロック信号CLK3およびクロック信号CLK4に基づいて、シフトレジスタ4内の各単位回路40から出力される状態信号Qが1水平期間ずつ順次にハイレベルとなる。例えば、時点t1~時点t2の期間には、(n-2)段目の単位回路40(n-2)から出力される状態信号Q(n-2)がハイレベルとなり、時点t2~時点t3の期間には、(n-1)段目の単位回路40(n-1)から出力される状態信号Q(n-1)がハイレベルとなる。しかしながら、時点t3の直前の時点以前の期間にはモニタイネーブル信号Mon_ENがローレベルとなっているので、(n-2)行目のモニタ制御線G2_Mon(n-2)や(n-1)行目のモニタ制御線G2_Mon(n-1)は選択状態とはならない。
 時点t2になると、補償対象ラインアドレスAddrと書込カウント値CntWLとが一致する。これにより、表示制御回路100は、時点t2から1水平期間後の時点t3に、モニタイネーブル信号Mon_ENをローレベルからハイレベルに変化させる。その結果、時点t3には、全ての単位回路40内のトランジスタT49がオン状態となる。また、時点t3には、n段目の単位回路40(n)から出力される状態信号Q(n)がハイレベルとなる。以上より、n段目の単位回路40(n)から出力される出力信号Q2(n)がハイレベルとなり、n行目のモニタ制御線G2_Mon(n)が選択状態となる。
 また、表示制御回路100は、時点t3にクロック信号CLK3およびクロック信号CLK4の値を変化させた後、電流測定期間(時点t3~時点t4の期間)を通じて、クロック信号CLK3,CLK4によるクロック動作を停止させる。図22に示す例では、時点t3には、クロック信号CLK3はローレベルからハイレベルへと変化し、クロック信号CLK4はハイレベルからローレベルへと変化しているので、電流測定期間中、クロック信号CLK3はハイレベルで維持され、クロック信号CLK4はローレベルで維持される。このようにしてクロック信号CLK3,CLK4によるクロック動作が停止するので、電流測定期間を通じて、n行目のモニタ制御線G2_Mon(n)は選択状態で維持される。
 電流測定期間の終了時点である時点t4になると、表示制御回路100は、モニタイネーブル信号Mon_ENをハイレベルからローレベルに変化させるとともに、クロック信号CLK3,CLK4によるクロック動作を再開させる。時点t4~時点t5の期間には(n+1)段目の単位回路40(n+1)から出力される状態信号Q(n+1)がハイレベルとなるが、モニタイネーブル信号Mon_ENがローレベルとなっているので、(n+1)行目のモニタ制御線G2_Mon(n+1)は選択状態とはならない。同様に、時点t5以降の期間には、いずれのモニタ制御線G2_Monも選択状態とはならない。
<1.10 電圧変動補償線駆動回路の動作>
 既述のように、画素回路50内の駆動トランジスタの特性補償(電流測定)が行われるフレーム期間では、電圧変動補償線駆動回路350は動作を停止する。以下では、画素回路50内の駆動トランジスタT2の特性補償が行われないフレーム期間における電圧変動補償線駆動回路350の動作を説明する。図23は、この場合の電圧変動補償線駆動回路350の動作を説明するためのタイミングチャートである。
 書込制御線駆動回路300では、スタートパルス信号GSPのパルスの発生後、最初にクロック信号CLK1が立ち上がる時点t3で1段目の単位回路30(0)から出力される状態信号Q(0)がハイレベルとなり、次にクロック信号CLK1が立ち下がる時点t5でローレベルとなる。このクロック信号CLK1の立ち下がり時点t5でクロック信号CLK2が立ち上がり、これにより2段目の単位回路30(1)から出力される状態信号Q(1)がハイレベルとなる。このようにして書込制御線駆動回路300内のシフトレジスタ3の各段の状態信号Qが1水平期間ずつ順次にハイレベルとなる。これに応じて図23に示すように、書込制御線G1_WL(0),G1_WL(1),G1_WL(2),…,G1_WL(1079)が1水平期間ずつ順次に選択状態(書込制御線G1_WLの電圧がハイレベル)となる。
 電圧変動補償線駆動回路350の動作開始を指示するスタートパルス信号CSPのパルスは、書込制御線駆動回路300のスタートパルス信号GSPのパルスの立ち上がり時点t1から1水平期間よりも若干短い時間が経過した時点t2で出力される。電圧変動補償線駆動回路350では、このスタートパルス信号CSPのパルスの発生後、最初にクロック信号CLK5が立ち上がる時点t4で1段目の単位回路35(0)から出力される状態信号Q(0)がハイレベルとなり、次にクロック信号CLK5が立ち下がる時点t6でローレベルとなる。このクロック信号CLK5の立ち下がり時点t6でクロック信号CLK6が立ち上がり、これにより2段目の単位回路35(1)から出力される状態信号Q(1)がハイレベルとなる。このようにして電圧変動補償線駆動回路350内のシフトレジスタ35srの各段の状態信号Qが1水平期間ずつ順次にハイレベルとなる。ここで、プルダウン信号CPDが垂直帰線期間以外ではローレベルであることを考慮すると、図20に示すように構成された各単位回路35において、出力信号Q2は、状態信号Qがハイレベルのときにはハイレベルとしてのカウンタ電圧VCNTとなり、状態信号Qがローレベルのときには高インピーダンス状態となる。このため、各単位回路35では、出力信号Q2は、一旦ハイレベル(カウンタ電圧VCNT)となると、状態信号Qがローレベルとなっても、出力端子356に接続される電圧変動補償線G3_Cntの容量によってそのハイレベル(カウンタ電圧VCNT)を維持し、その後、垂直帰線期間においてプルダウン信号CPDがハイレベルになると、ローレベルとなる。これに応じて、電圧変動補償線G3_Cnt(0),G3_Cnt(1),G3_Cnt(2),…,G3_Cnt(1079)は、図23に示すように1水平期間間隔で順次に選択状態(電圧変動補償線G3_Cntの電圧がカウンタ電圧VCNT)となり、その後、垂直帰線期間においてプルダウン信号CPDがハイレベルになると、非選択状態(電圧変動補償線G3_Cntの電圧がローレベル)となる。
 なお、電圧変動補償線駆動回路350が上記のように動作するフレーム期間では、モニタイネーブル信号Mon_ENがローレベルに維持されるので、各モニタ制御線駆動回路400内の各単位回路40の状態信号Qに関わらず、モニタ制御線G2_Mon(0)~G2_Mon(1079)は全て非選択状態(モニタ制御線G2_Monの電圧がローレベル)に維持される(図14、図16、図23参照)。
<1.11 画素回路に画素データを書き込むための動作>
 図24は、画素回路50に画素データを書き込むための動作を説明するための信号波形図である。この動作は、電圧変動補償線駆動回路350が動作するフレーム期間(画素回路50の駆動トランジスタT2の特性補償が行われないフレーム期間)で行われる。
 このフレーム期間では、表示制御回路100からの入出力制御信号DWTはハイレベルであり、データ側駆動回路200における各デマルチプレクサ252の入力端子にはデータ電圧出力単位回路211dが接続されることにより(図4、図5)、データ側駆動回路200はデータ線駆動回路210として機能する。このデータ線駆動回路210と電圧変動補償線駆動回路350により、書込制御線G1_WLおよび電圧変動補償線G3_Cntは既述の図23に示すように駆動される。図24は、このフレーム期間内の1水平期間すなわちi行目の書込制御線G1_WL(i)が選択状態となる期間における画素データ書込のための各種信号の変化を示している。以下、図4および図24を参照して、この水平期間での画素回路50へ画素データの書き込みのための動作を説明する。
 表示制御回路100から各デマルチプレクサ252に与えられるSSD制御信号Cssdを構成する赤画素接続制御信号Rssd、緑画素接続制御信号Gssd、青画素接続制御信号Bssdは、各組を構成する3本のデータ線SLri,SLgi,SLbiを時分割的に駆動するために、各水平期間において所定期間ずつハイレベル(アクティブ)となる。例えば図24に示すように、これらの接続制御信号Rssd,Gssd,Bssdは、i行目の書込制御線G1_WL(i)が選択状態となる水平期間において、1水平期間の1/3の長さよりも若干短い期間ずつ順次にハイレベルとなる。
 赤画素接続制御信号Rssdがハイレベルとなる期間(ta~tb)では、各アナログ映像信号Djが赤画素データ信号Drjとしてデータ線駆動回路210(のj番目のデータ電圧出力単位回路211d)から対応するデマルチプレクサ252におけるオン状態の第1のトランジスタSWrを介して赤画素データ線SLrjに与えられる(j=0~M)。各赤画素データ線SLrjは、他の電極(書込制御線G1_WLや、モニタ制御線G2_Mon、電圧変動補償線等を構成する電極)との間に形成された容量(以下「データ線容量」という)Cslを有しているので(各緑画素データ線SLgjおよび各青画素データ線SLbjも同様にデータ線容量Cslをそれぞれ有している)、その赤画素データ信号Drjで充電され、その赤画素データ信号Drjの電圧VRdataを画素データとして保持する。
 i行目の書込制御線G1_WL(i)が選択状態となると、その書込制御線G1_WL(i)に接続された画素回路50r,50g,50b(以下「選択画素回路50」という)においてトランジスタT1がオン状態となる。これにより、赤画素データ信号Drjとしてデータ線SLrjに与えられたアナログ映像信号Djは、トランジスタT1を介して駆動トランジスタT2のゲート端子に与えられ、電圧保持容量としてのコンデンサCstを充電する。その結果、選択画素回路50のうちの赤画素回路(以下「選択赤画素回路」という)50rにおける駆動トランジスタT2のゲート端子の電圧(以下「選択赤画素ゲート電圧」という)Vgrが、そのアナログ映像信号Djの電圧VRdataに等しくなる。
 その後、赤画素接続制御信号Rssdがローレベル(非アクティブ)になると、各デマルチプレクサ252における第1のトランジスタSWrがオフ状態となり、各アナログ映像信号Drjの赤画素データ線SLrjへの供給が遮断される。このときの赤画素接続制御信号Rssdのハイレベルからローレベルへの電圧変化は、第1のトランジスタSWrにおけるゲート端子とドレイン端子(赤画素データ線SLrjに接続される導通端子)の間に形成された寄生容量Cssdrを介して、赤画素データ線SLrjに保持されるデータ線電圧Vrに影響を与える(図4参照)。すなわち、各赤画素データ線SLrjに接続される第1のトランジスタSWrがオン状態からオフ状態に変化するときに生じるフィールドスルー現象により、データ線電圧Vsl=Vrが低下する(以下、このときの電圧低下量を「赤画素書込時の第1フィールドスルー電圧」または単に「第1フィールドスルー電圧」と呼び、記号“ΔVr1”で表す)。これに応じて、図24に示すように選択赤画素ゲート電圧Vgrも第1フィールドスルー電圧ΔVr1だけ低下する。
 緑画素接続制御信号Gssdがハイレベルとなる期間(tb~tc)では、各デマルチプレクサ252において第2のトランジスタSWgがオン状態となるので、各アナログ映像信号Djが緑画素データ信号Dgjとして緑画素データ線SLgjに与えられ(j=0~M)、各緑画素データ線SLgjは、その緑画素データ信号Dgjの電圧VGdataを保持する。その結果、選択状態の書込制御線G1_WL(i)に接続された画素回路50すなわち選択画素回路50のうちの緑画素回路(以下「選択緑画素回路」という)50gにおける駆動トランジスタT2のゲート端子の電圧(以下「選択緑画素ゲート電圧」という)Vggが、そのアナログ映像信号Djの電圧VGdataに等しくなる。
 その後、緑画素接続制御信号Gssdがローレベル(非アクティブ)になると、第2のトランジスタSWgにおけるゲート端子とドレイン端子(緑画素データ線SLgjに接続される導通端子)の間に形成された寄生容量Cssdgに起因するフィールドスルー現象により(図4参照)、データ線電圧Vsl=Vgが低下する(以下、このときの電圧低下量を「緑画素書込時の第1フィールドスルー電圧」または単に「第1フィールドスルー電圧」と呼び、記号“ΔVg1”で表す)。これに応じて、図24に示すように選択緑画素ゲート電圧Vggも第1フィールドスルー電圧ΔVg1だけ低下する。
 青画素接続制御信号Bssdがハイレベルとなる期間(tc~td)では、各デマルチプレクサ252において第3のトランジスタSWbがオン状態となるので、各アナログ映像信号Djが青画素データ信号Dbjとして青画素データ線SLbjに与えられ(j=0~M)、各青画素データ線SLbjは、その青画素データ信号Dbjの電圧VBdataを保持する。その結果、選択画素回路50のうちの青画素回路(以下「選択青画素回路」という)50bにおける駆動トランジスタT2のゲート端子の電圧(以下「選択青画素ゲート電圧」という)Vgbが、そのアナログ映像信号Djの電圧VBdataに等しくなる。
 その後、青画素接続制御信号BGssdがローレベル(非アクティブ)になると、第3のトランジスタSWbにおけるゲート端子とドレイン端子(青画素データ線SLbjに接続される導通端子)の間に形成された寄生容量Cssdbに起因するフィールドスルー現象により(図4参照)、データ線電圧Vsl=Vbが低下する(以下、このときの電圧低下量を「青画素書込時の第1フィールドスルー電圧」または単に「第1フィールドスルー電圧」と呼び、記号“ΔVb1”で表す)。これに応じて、図24に示すように選択青画素ゲート電圧Vgbも第1フィールドスルー電圧ΔVb1だけ低下する。
 電圧変動補償線G3_Cnt(0)~G3_Cnt(1079)は、現フレーム期間の直前の垂直帰線期間にプルダウン信号CPDがハイレベルとなることにより全て非選択状態(電圧変動補償線G3_Cntの電圧がローレベル)となる(図18、図20参照)。その後、図23に示すように、電圧変動補償線G3_Cnt(0)は、対応する書込制御線G1_WL(0)が選択状態となった後で非選択状態となる時点(t5)よりも所定時間Tcntだけ前の時点(t4)に選択状態に変化する(電圧変動補償線G3_Cnt(i)の電圧がハイレベルとしてのカウンタ電圧VCNTに変化する)。図24に示す信号波形図では、書込制御線G1_WL(0)が非選択状態になる時点(t5)は時点tfに相当し、電圧変動補償線G3_Cnt(0)が選択状態となる時点(t4)は時点teに相当する。図24に示すように、各水平期間内において、接続制御信号Rssd,Gssd,Bssdが順次ハイレベルになった後であって全てがローベルとなる時点tdよりも後の時点teで、電圧変動補償線G3_Cnt(i)が選択状態となる。書込制御線G1_WL(i)は、その後の時点tfで非選択状態となる。
 電圧変動補償線G3_Cnt(i)が選択状態となる上記時点teで、電圧変動補償線G3_Cnt(i)の電圧は、第1、第2、および第3のトランジスタSWr,SWg,SWbをオン状態からオフ状態へと変化させるための接続制御信号Rssd,Gssd,Bssdの電圧変化と反対の方向に変化する。すなわち、電圧変動補償線G3_Cnt(i)の電圧は、ローレベルからハイレベル(カウンタ電圧VCNT)へと変化する。図4に示す画素回路50r,50g,50bの構成からわかるように、この電圧変動補償線G3_Cnt(i)の電圧変化(電圧上昇)は、電圧変動補償容量としてのコンデンサCcntを介して、データ線電圧Vr,Vg,Vbを上昇させる方向に働く。このため、各選択画素回路50r,50g,50b内のコンデンサCcntの容量値およびロジック電源630からのカウンタ電圧VCNTの値を適切に設定しておくことより、データ線SLrj,SLgj,SLbjの電圧低下を相殺または十分に補償することができる。すなわち、データ線SLrj,SLgj,SLbjの電圧にそれぞれ等しい選択赤画素ゲート電圧Vgr,選択緑画素ゲート電圧Vgg,選択青画素ゲート電圧Vgbの低下量である第1フィールドスルー電圧ΔVr1,ΔVg1,ΔVb1を相殺または十分に補償することができる(詳細は後述)。なお、アナログ映像信号Diによる各データ線SLr,SLg,SLbの容量Cslの充電の観点から、1水平期間内で各接続制御信号Rssd,Gssd,Bssdがハイレベルとなる期間は長いほど好ましい。このため、上記所定時間Tcnt=t5-t4=tf-teは、電圧変動補償線G3_Cnt(i)の電圧変化(電圧上昇)により第1フィールドスルー電圧ΔVr1,ΔVg1,ΔVb1を確実に補償できる範囲で、十分に短くなるように設定される。
 表示制御回路100の駆動制御部110は、書込制御線G1_WL(i)および電圧変動補償線G3_Cnt(i)の選択状態/非選択状態の変化、ならびに、接続制御信号Rssd,Gssd,Bssdのレベルの変化を図24に示す上記タイミングとするようなソース制御信号SCTL、電圧変動補償制御信号CCTL、および、接続制御信号Rssd,Gssd,Bssdを生成するように構成されている(図1、図6、図23参照)。
 図24に示すように、i行目の書込制御線G1_WL(i)が非選択状態に変化する上記時点tfにおいて、この書込制御線G1_WL(i)の電圧がハイレベルからローレベルへと変化し、この電圧変化は、各選択画素回路50r,50g,50bにおいて、入力トランジスタT1のゲート端子とドレイン端子の間に形成された寄生容量Cgd2を介して駆動トランジスタのゲート端子の電圧に影響を与える。すなわち、選択赤画素回路50r,選択緑画素回路50g,選択青画素回路50bにおける入力トランジスタT1がオン状態からオフ状態に変化するときに生じるフィールドスルー現象により、選択赤画素ゲート電圧Vgr,選択緑画素ゲート電圧Vgg,選択青画素ゲート電圧Vgbが、それぞれ、電圧ΔVr2,ΔVg2,ΔVb2だけ低下する(以下、このときの電圧低下量を「第2フィールドスルー電圧」という)。
 以降、それら選択赤画素回路50r,選択緑画素回路50g,選択青画素回路50bにおいて電圧保持容量としてのコンデンサCstにより、その低下後の選択赤画素ゲート電圧Vgr,選択緑画素ゲート電圧Vgg,選択青画素ゲート電圧Vgbがそれぞれ維持される。これにより、これら選択赤画素ゲート電圧Vgr,選択緑画素ゲート電圧Vgg,選択青画素ゲート電圧Vgbに基づき画素回路50r,50g,50bにおいて、コンデンサCstに保持されている電圧に応じた電流IoelR,IoelG,IoelBが有機EL素子OLEDにそれぞれ流れ、それらの電流IoelR,IoelG,IoelBに応じた輝度で有機EL素子OLEDがそれぞれ発光する。
 その後、次にi行目の書込制御線G1_WL(i)が再び選択状態となったときに、データ線駆動回路210から各デマルチプレクサ252を介して新たに赤画素データ信号Drj,緑画素データ信号Dgj,青画素データ信号Dbjとして与えられるアナログ映像信号Djにより、それらの選択赤画素ゲート電圧Vgr,選択緑画素ゲート電圧Vgg,選択青画素ゲート電圧Vgbが書き換えられる。
 なお、図25は、本実施形態の基本となる構成を示す回路図、すなわち電圧変動補償線G3_Cntおよびそれが接続されるトランジスタT4を設けられていない場合の画素回路50r,50g,50bおよびデマルチプレクサ252を示す回路図である。このような構成の場合、画素回路への画素データの書き込み動作を示す信号波形は図26に示すような波形となり、フィールドスルー現象によりデータ線電圧Vslおよび選択画素ゲート電圧Vgx(x=r,g,b)の低下(第1フィールドスルー電圧ΔVx1および第2フィールドスルー電圧ΔVx2)が生じ、これらの低下は補償されない。
<1.12 画素回路における駆動電流を測定するための動作>
 図27は、画素回路50内の駆動トランジスタの特性補償(電流測定)が行われるフレーム期間における書込制御線G1_WL,モニタ制御線G2_Mon,電圧変動補償線G3_Cntの状態変化(選択状態/非選択状態の変化)を示すタイミングチャートである。図28は、画素回路50内の電流測定のための動作を説明するための部分回路図であり、本実施形態における表示部500、デマルチプレクス回路250、およびデータ側駆動回路200のうち3本のデータ線SLrj,SLgj,SLbjからなる1組のデータ線群の駆動に対応する部分の構成を示している。
 図28は、図4に示す回路において入出力制御信号DWTをハイレベルからローレベルに変更したときの接続構成を示しており(寄生容量Cgd2やCssdr等は省略)、図28に示す回路では、電流測定単位回路211mがデマルチプレクサ252に接続されている。図28に示す回路におけるデータ側単位回路211は、例えば図29に示す構成とすることができる。図29は、図5に示すデータ側単位回路211において入出力制御信号DWTをハイレベルからローレベルに変更したときの接続構成を示している。図29に示すデータ側単位回路211では、第1スイッチ24はオフ状態となるので、オペアンプ22の反転入力端子と出力端子とは抵抗素子R1を介して接続される。また、第2スイッチ25からローレベル電源電圧ELVSSが出力され、オペアンプ22の非反転入力端子に与えられる。
 図27に示す例では、既述の書込制御線駆動回路300およびモニタ制御線駆動回路400の動作により(図21、図22)、書込制御線G1_WL(0)~G1_WL(4)が1水平期間ずつ順次選択され、時点t2で補償対象ラインアドレスAddrと書込カウント値CntWLとが一致することにより、時点t3から時点t4までが電流測定期間となる。図21および図22における補償対象行nは、図27に示す例では第4行である(n=4)。既述のように、この電流測定期間t3~t4では、いずれの書込制御線G1_WLも非選択状態であり、モニタイネーブル信号Mon_ENがハイレベルとなる。これにより、モニタ制御線G2_Mon(n)が選択状態になると共に(図16参照)、電圧変動補償線G3_Cnt(n)がそのモニタ制御線G2_Mon(n)に接続され(図2参照)、電圧変動補償線G3_Cnt(n)も選択状態となる。
 この電流測定期間t3~t4の直前で書込制御線G1_WL(n)が選択状態である間(期間t2~t3)において、補償対象行nにおける各画素回路(以下「対象画素回路」という)50の入力トランジスタT1がオン状態となる。このとき、入出力制御信号DWTはローレベルであるので、各データ側単位回路211におけるデータ電圧出力単位回路211dからアナログ映像信号Dj(補償前データ)が対象画素回路50に画素データとして書き込まれる。より詳しくは、補償前データである階調電圧を示すアナログ映像信号Djが、赤画素接続制御信号Rssd、緑画素接続制御信号Gssd、青画素接続制御信号Bssdに基づくSSD方式にしたがって、補償対象行nの赤画素回路50r、緑画素回路50g、青画素回路50bに画素データとして順次書き込まれる(図4参照)。
 時点t3において、書込制御線G1_WL(n)は非選択状態となり、電流測定期間が開始する。この電流測定期間t3~t4では、対象画素回路50の入力トランジスタT1はオフ状態となり、補償前画素データに相当するデータ電圧が対象画素回路のコンデンサCstに保持される。また、時点t3において、入出力制御信号DWTはローレベルとなり、各データ側単位回路211における電流測定単位回路211mがデマルチプレクサ252に接続される。さらに、モニタイネーブル信号Mon_ENがハイレベルとなり、モニタ制御線G2_Mon(n)および電圧変動補償線G3_Cnt(n)が選択状態(ハイレベル)となるので、対象画素回路50のトランジスタT3およびT4がオン状態となる。
 図30は、電流測定期間t3~t4における対象画素回路50の駆動電流の測定を説明するためのタイミングチャートである。電流測定期間t3~t4では、補償対象行nに対応する書込制御線G1_WL(n)および電圧変動補償線G3_Cnt(n)がハイレベルに維持され、表示制御回路100から各デマルチプレクサ252に与えられるSSD制御信号Cssdを構成する赤画素接続制御信号Rssd、緑画素接続制御信号Gssd、青画素接続制御信号Bssdは、この電流測定期間t3~t4において所定期間ずつハイレベル(アクティブ)となる。
 本実施形態では図30に示すように、この電流測定期間t3~t4において、まず第1の期間Tmrだけ赤画素接続制御信号Rssdがハイレベルとなり、次に第2の期間Tmgだけ緑画素接続制御信号Gssdがハイレベルとなり、最後に第3の期間Tmbだけ青画素接続制御信号Bssdがハイレベルとなる。このため、各デマルチプレクサ252における第1、第2、および第3のトランジスタSWr,SWg,SWbは、それぞれ、第1、第2、および第3の期間Tmr,Tmg,Tmbの期間でオン状態となる。これにより、第1の期間Tmrでは、補償対象行nにおける各赤画素回路50rの駆動電流が、その赤画素回路50rのトランジスタT3、T4、および、対応するデマルチプレクサ252の第1のトランジスタSWrを介して電流測定単位回路211mに与えられる(図28参照)。第2の期間Tmgでは、補償対象行nにおける各緑画素回路50gの駆動電流が、その緑画素回路50gのトランジスタT3、T4、および、対応するデマルチプレクサ252の第2のトランジスタSWgを介して電流測定単位回路211mに与えられる。第3の期間Tmbでは、補償対象行nにおける各青画素回路50bの駆動電流が、その青画素回路50bのトランジスタT3、T4、および、対応するデマルチプレクサ252の第3のトランジスタSWbを介して電流測定単位回路211mに与えられる。各電流測定単位回路211mは、このようにして順次与えられる赤、緑、および青画素回路50r,50g,50bの駆動電流を測定し、その測定結果を示すモニタ電圧vmojを順次出力する(図29参照)。
 なお、図29に示すような構成の電流測定単位回路211m(入出力制御信号DWTがローレベルのときのデータ側単位回路211)により、第1の期間Tmrでは、各赤画素データ線SLrjがローレベル電源電圧ELVSSに維持されるので、上記赤画素回路50rにおける駆動トランジスタT2のソース端子もローレベル電源電圧ELVSSに維持される(図28参照)。また第2の期間Tmgでは、各緑画素データ線SLgjがローレベル電源電圧ELVSSに維持されるので、上記緑画素回路50gにおける駆動トランジスタT2のソース端子もローレベル電源電圧ELVSSに維持され、第3の期間Tmbでは、各青画素データ線SLbjがローレベル電源電圧ELVSSに維持されるので、上記青画素回路50bにおける駆動トランジスタT2のソース端子もローレベル電源電圧ELVSSに維持される。このため、駆動電流が測定されている上記画素回路50r,50g,50bでは、有機EL素子OLEDには電流が流れない。
 各電流測定単位回路211mから順次出力されるモニタ電圧vmojは、電流測定回路220での電流測定結果Vmoとして表示制御回路100における補正データ算出/記憶部120に送られる(図1参照)。既述のように、この補正データ算出/記憶部120は、補正データ(オフセット値とゲイン値)を保持しており、各対象画素回路50につき2種類の階調(第1階調P1および第2階調P2:P2>P1)に対応する2つの電流測定結果が得られた時点で、新たな補正データ(オフセット値とゲイン値)を算出し、それにより、保持されている補正データを更新する。
 上記電流測定の後、時点t4で、補償対象行nに対応するモニタ制御線G2_Mon(n)および電圧変動補償線G3_Cnt(n)がローレベルになると、各対象画素回路50のトランジスタT3およびT4がオフ状態となる。また図27に示すように、時点t4においてクロック信号CLK1が立ち上がり、これに応じて書込制御線G1_WL(n)が選択される(ハイレベルとなる)。このとき、入出力制御信号DWTがハイレベルとなって、各データ側単位回路211におけるデータ電圧出力単位回路211dがデマルチプレクサ252に接続され、これにより、そのデマルチプレクサ252からアナログ映像信号Dj(補償後データ)が対象画素回路50に画素データとして書き込まれる。より詳しくは、補償後データである補正後の階調電圧を示すアナログ映像信号Djが、赤画素接続制御信号Rssd、緑画素接続制御信号Gssd、青画素接続制御信号Bssdに基づくSSD方式にしたがって、補償対象行nの赤画素回路50r、緑画素回路50g、青画素回路50bに画素データとして順次書き込まれる(図4参照)。ただし、上記第1および第2階調P1,P2の一方のみの電流測定が完了している画素回路50には、既定値の階調電圧(デフォルト階調電圧)が画素データとして書き込まれる。
<1.13 特性検出処理>
 次に、図31を参照して、上記電流検出に基づき画素回路50の駆動トランジスタT2の特性を検出するために本実施形態で実行される一連の処理(以下「特性検出処理」という)を説明する。図31は、この特性検出処理のための制御手順を示すフローチャートである。なお、書込ラインカウンタ111およびマッチングカウンタ114は予め初期化され、補償対象ラインアドレス格納メモリ112に格納されている補償対象ラインアドレスAddrの値は補償対象行を示す値になっているものと仮定する。
 特性検出処理の開始後、クロック信号CLK1またはクロック信号CLK2のクロックパルスが発生する毎に、1本の書込制御線G1_WLが走査対象として選択される(ステップS100)。そして、補償対象ラインアドレス格納メモリ112に格納されている補償対象ラインアドレスAddrと書込ラインカウンタ111から出力される書込カウント値CntWLとが一致しているか否かの判定が行われる(ステップS110)。その結果、両者が一致していれば、処理はステップS120に進み、両者が一致していなければ、処理はステップS112に進む。ステップS112では、走査対象が最終行の書込制御線であるか否かの判定が行われる。その結果、走査対象が最終行の書込制御線であれば、処理はステップS150に進み、走査対象が最終行の書込制御線でなければ、処理はステップS100に戻る。なお、処理がステップS112に進んだ際には、通常のデータ書込が行われる。
 ステップS120では、マッチングカウント値CntMに1が加算される。その後、マッチングカウント値CntMが1であるか2であるかの判定が行われる(ステップS130)。その結果、マッチングカウント値CntMが1であれば、処理はステップS132に進み、マッチングカウント値CntMが2であれば、処理はステップS134に進む。ステップS132では、第1階調P1に基づく駆動電流の測定が行われる。ステップS134では、第2階調P2に基づく駆動電流の測定が行われる。
 ステップS132またはステップS134の終了後、走査対象が最終行の書込制御線であるか否かの判定が行われる(ステップS140)。その結果、走査対象が最終行の書込制御線であれば、処理はステップS150に進み、走査対象が最終行の書込制御線でなければ、処理はステップS100に戻る。
 ステップS150では、書込カウント値CntWLが初期化される。その後、「マッチングカウント値CntMが1であって、かつ、補償対象ラインアドレスAddrの値が最終行を示す値WL_Max以下である」という条件を満たしているか否かの判定が行われる(ステップS160)。その結果、当該条件を満たしていれば、処理はステップS162に進み、当該条件を満たしていなければ、処理はステップS164に進む。
 ステップS162では、補償対象ラインアドレス格納メモリ112内の補償対象ラインアドレスAddrに同じ値が代入される。なお、このステップS162は必ずしも設けられる必要はない。ステップS164では、「マッチングカウント値CntMが2であって、かつ、補償対象ラインアドレスAddrの値が最終行を示す値WL_Max以下である」という条件を満たしているか否かの判定が行われる。その結果、当該条件を満たしていれば、処理はステップS166に進み、当該条件を満たしていなければ、処理はステップS170に進む。ステップS166では、補償対象ラインアドレスAddrに1が加算される。ステップS168では、マッチングカウント値CntMが初期化される。
 ステップS170では、「補償対象ラインアドレスAddrの値が、最終行を示す値WL_Maxに1を加算することによって得られる値に等しい」という条件を満たしているか否かの判定が行われる。その結果、当該条件を満たしていれば、処理はステップS180に進み、当該条件を満たしていなければ、処理はステップS100に戻る。ステップS180では、補償対象ラインアドレスAddrが初期化される。以上のようにして、表示部500内の全ての駆動トランジスタに対する1回の特性検出処理が終了する。
<1.14 補償処理>
 次に、図32を参照して、画素回路50の駆動トランジスタT2の特性のばらつきを補償するために本実施形態において実行される一連の処理(以下「補償処理」という)を説明する。図32は、1つの画素(i行j列の画素)に着目したときの補償処理の手順を説明するためのフローチャートである。
 まず、上述したように、特性検出処理期間に駆動電流の測定が行われる(ステップS200)。駆動電流の測定は、2種類の階調(第1階調P1および第2階調P2:P2>P1)に基づいて行われる。本実施形態では、連続する2フレームにおいて、1フレーム目に第1階調P1に基づく駆動電流の測定が行われ、2フレーム目に第2階調P2に基づく駆動電流の測定が行われる。より詳しくは、1フレーム目には、次式(1)で算出される第1測定用階調電圧Vmp1を画素回路50に画素データとして書き込んだことによって得られる駆動電流の測定が行われ、2フレーム目には、次式(2)で算出される第2測定用階調電圧Vmp2を画素回路50に画素データとして書き込んだことによって得られる駆動電流の測定が行われる。
  Vmp1=Vcw×Vn(P1)×B(i,j)+Vth(i,j)  …(1)
  Vmp2=Vcw×Vn(P2)×B(i,j)+Vth(i,j)  …(2)
ここで、Vcwは、最小階調に対応する階調電圧と最大階調に対応する階調電圧との差(すなわち、階調電圧の範囲)である。Vn(P1)は、第1階調P1を0~1の範囲の値に正規化した値であり、Vn(P2)は、第2階調P2を0~1の範囲の値に正規化した値である。B(i,j)は、次式(3)で算出されるi行j列の画素についての正規化係数である。Vth(i,j)は、i行j列の画素についてのオフセット値(このオフセット値は、駆動トランジスタの閾値電圧に相当する)である。
  B=√(β0/β) …(3)
ここで、β0は全画素のゲイン値の平均値であり、βはi行j列の画素についてのゲイン値である。
 2種類の階調に基づく駆動電流の測定が行われた後、測定値に基づいて、オフセット値Vthおよびゲイン値βの算出が行われる(ステップS210)。このステップS210の処理は、補正データ算出/記憶部120内の補正演算回路122(図10参照)で行われる。オフセット値Vthおよびゲイン値βの算出の際、トランジスタのドレイン-ソース間電流(駆動電流)Idsとゲート-ソース間電圧Vgsとの関係を示す次式(4)が用いられる。
  Ids=β×(Vgs-Vth)2 …(4)
具体的には、第1階調P1に基づく測定結果を上記式(4)に代入した式と第2階調P2に基づく測定結果を上記式(4)に代入した式との連立方程式から、次式(5)に示すオフセット値Vthと、次式(6)に示すゲイン値βとが得られる。
  Vth={Vgsp2√(IOp1)-Vgsp1√(IOp2)}/{√(IOp1)-√(IOp2)} …(5)
  β={√(IOp1)-√(IOp2)}2/(Vgsp1-Vgsp2)2 …(6)
ここで、IOp1は、第1階調P1に基づく測定結果としての駆動電流であり、IOp2は、第2階調P2に基づく測定結果としての駆動電流である。また、Vgsp1は第1階調P1に基づくゲート-ソース間電圧であり、Vgsp2は第2階調P2に基づくゲート-ソース間電圧である。既述のように本実施形態では、駆動電流が測定されている画素回路50における駆動トランジスタT2のソース端子は、ローレベル電源電圧ELVSSに維持される(図28、図29参照)。以下では、このローレベル電源電圧ELVSSを“0”として説明する。この場合、Vgsp1は次式(7)により与えられ、Vgsp2は次式(8)により与えられる。
  Vgsp1=Vmp1 …(7)
  Vgsp2=Vmp2 …(8)
 以上のようにして算出されたオフセット値Vthおよびゲイン値βを用いて、補正データ算出/記憶部120内の不揮発性メモリ123(図10参照)に保持されている補正データが更新される。なお、ステップS210の処理が高速で行われるよう、ステップS200で得られた測定値のデータはSRAM(スタティックランダムアクセスメモリ)やDRAM(ダイナミックランダムアクセスメモリ)などの高速アクセスが可能なメモリに一時的に格納される。
 次に、i行j列の画素回路50に画素データを書き込む際に、オフセット値Vthおよびゲイン値βを用いて次式(9)によって階調電圧Vpが算出される(ステップS220)。このステップS220の処理は、階調補正部130(図1参照)で行われる。
  Vp=Vcw×Vn(P)×√(β0/β)+Vth+Vf …(9)
ここで、Vn(P)は、i行j列の画素における表示階調を0~1の範囲の値に正規化した値である。Vfは、有機EL素子OLEDの順方向電圧であり、本実施形態では既知の固定値とする。
 その後、ステップS220で算出された階調電圧Vpが、i行j列の画素回路50に画素データとして書き込まれる(ステップS230)。以上のような補償処理が全ての画素に対して行われることにより、駆動トランジスタの特性のばらつきが補償される。
 図33は、階調-電流特性を示す図である。図33には、目標特性として、γ=2.2の特性が示されている。駆動トランジスタに劣化が生じているとき、第1階調P1に基づく画素データの書込が行われた際に得られる駆動電流IOp1は、第1階調P1に対応する目標電流とは一致せず、第2階調P2に基づく画素データの書込が行われた際に得られる駆動電流IOp2は、第2階調P2に対応する目標電流とは一致しない。しかしながら、本実施形態においては、各画素回路50につき、上記駆動電流IOp1,IOp2に基づいて上述した方法でオフセット値Vthおよびゲイン値βが算出される。そして、外部からのRGB映像データ信号Dinに基づくデータ信号DAが示す各階調電圧が、その階調電圧を書き込むべき画素回路50につき算出されたオフセット値Vthおよびゲイン値βを用いて補正され、補正後の階調電圧がその画素回路50に画素データとして書き込まれる。これにより、いずれの画素回路50においても、その画素回路50に書き込むべき階調電圧としてデータ信号DAが示す任意の階調電圧に対し、目標電流にほぼ等しい駆動電流が流れる。その結果、表示画面内の輝度むらの発生が抑制され、高画質表示が行われる。
<1.15 作用および効果>
<1.15.1 画素データの書き込みにおける作用および効果>
 上記のように本実施形態によれば、各画素回路50x(x=r,g,b)への画素データの書き込み動作において、SSD方式のためのデマルチプレクサ252におけるトランジスタSWxのオン状態からオフ状態への変化により生じるフィールドスルー電圧ΔVx1(およびそれによる選択画素ゲート電圧Vgxの低下)が、当該画素回路50xに接続される電圧変動補償線G3_Cnt(i)の電位変化によって相殺または補償される(以下、この作用を「フィールドスルー補償作用」という)(図24参照)。以下、図4および図24を参照しつつ、本実施形態におけるフィールドスルー補償作用につき、赤画素回路50rへの画素データの書き込みに着目して詳しく説明する。
(1)期間ta~tbの動作
 図24に示す時点taから時点tbまでの期間ta~tbでは、選択状態の書込制御線G1_WL(i)に接続された赤画素回路50rすなわち選択赤画素回路50rにおいて、入力トランジスタT1はオン状態であり、赤画素接続制御信号Rssdがハイレベルであることによりデマルチプレクサ252の第1のトランジスタSWrはオン状態である。このため、データ側駆動回路200からのアナログ映像信号Djが赤画素データ信号Drjとして第1のトランジスタSWr、赤画素データ線SLrj、入力トランジスタT1を介して駆動トランジスタT2のゲート端子に与えられ、コンデンサCstが充電される。
(2)期間tb~teの動作
 時点tbにおいて、赤画素接続制御信号Rssdがローレベルに変化してデマルチプレクサ252の第1のトランジスタSWrがオフ状態に変化する。このとき、赤画素接続制御信号Rssdの電圧変化(ハイレベル→ローレベル)が第1のトランジスタSWrにおけるゲート-ドレイン間の寄生容量Cssdrを介して赤画素データ線SLrjの電圧Vr1に影響を与え(フィールドスルー現象)、その電圧Vr1がΔVr1だけ低下する。選択赤画素回路50rの入力トランジスタT1は、書込制御線G1_WL(i)が選択状態の間、オン状態であるので、このフィールドスルー現象により、選択赤画素回路50rの駆動トランジスタT2のゲート端子の電圧(選択赤画素ゲート電圧)VgrもΔVr1だけ低下する。すなわち、選択赤画素ゲート電圧Vgrは、期間ta~tbにおいてデータ側駆動回路200(のデータ電圧出力単位回路211d)からデマルチプレクサ252に与えられるアナログ映像信号Djの電圧(以下「赤画素データ電圧」という)VRdataから低下し、
  Vgr=VRdata-ΔVr1 …(10)
となる。ここで、デマルチプレクサ252の第1のトランジスタSWrにおけるゲート-ドレイン間の寄生容量の値も“Cssdr”で示し、赤画素接続制御信号Rssdの振幅(オン電圧とオフ電圧との差)を“Vssd”で示すものとすると、選択赤画素ゲート電圧Vgrの低下量である第1フィールドスルー電圧ΔVr1は次式で表される。
  ΔVr1=Vssd×Cssdr/Ctot1 …(11)
ここで、Ctot1は、第1のトランジスタSWrのドレイン側に寄生している容量の総和であり、赤画素データ線SLrjに寄生している容量の総和であるデータ線容量Cslに等しい。
(3)期間te~tfの動作
 時点teにおいて、電圧変動補償線G3_Cnt(i)が選択状態に変化する。このときの電圧変動補償線G3_Cnt(i)の電圧変化、すなわちローレベルからハイレベルであるカウンタ電圧VCNTへの変化は、電圧変動補償容量としてのコンデンサCcntを介して、データ線電圧Vr1および選択赤画素ゲート電圧Vgrを上昇させる方向に働く。このときの電圧変動補償線G3_Cnt(i)の電圧変化量を“VCNT”で示すものとすると、すなわち電圧変動補償線G3_Cnt(i)の電圧振幅を“VCNT”としローレベルを“0”とすると、時点teにおける選択赤画素ゲート電圧Vgrの上昇量(以下「補償電圧」という)ΔVr3は、
  ΔVr3=VCNT×Ccnt/Ctot1 …(12)
である。
(4)時点tf以降の動作
 時点tfにおいて、選択赤画素回路50rに接続される書込制御線G1_WL(i)が非選択状態に変化する。このとき、この書込制御線G1_WL(i)のハイレベルからローレベルへの電圧変化が入力トランジスタT1におけるゲート-ドレイン間の寄生容量Cgd2を介して選択赤画素ゲート電圧Vgrに影響を与え、この選択赤画素ゲート電圧Vgrが低下する。このときの選択赤画素ゲート電圧Vgrの低下量である第2フィールドスルー電圧を“ΔVr2”で示すものとすると、時点tfにおける選択赤画素ゲート電圧Vgrは、
  Vgr=VRdata-ΔVr1+ΔVr3-ΔVr2 …(13)
となる。上記式に含まれる第2フィールドスルー電圧ΔVr2は、書込制御線G1_WL(i)の電圧振幅(非選択状態を示すローレベルの電圧と選択状態を示すハイレベルの電圧との差)を“VG1”で示すものとすると、
  ΔVr2=VG1×Cgd2/Ctot2 …(14)
となる。ここで、Cgd2は、入力トランジスタT1におけるゲート-ドレイン間の寄生容量であり、Ctot2は、選択赤画素回路50rの駆動トランジスタT2のゲート端子を含むノードに寄生している容量の総和である。
 上記式(13)に上記(11),(12),(14)を代入すると、選択赤画素ゲート電圧Vgrは、
  Vgr=VRdata-Vssd×Cssdr/Ctot1+VCNT×Ccnt/Ctot1
         -VG1×Cgd2/Ctot2 …(15)
となる。
 ここで、接続制御信号Rssdの振幅Vssd、書込制御線G1_WL(i)の電圧振幅VG1、および、電圧変動補償線G3_Cnt(i)の電圧振幅VCNTは互いに等しく“Vpp”で示されるものとすると、選択赤画素ゲート電圧Vgrは、
  Vgr=VRdata-Vpp{(Cssdr-Ccnt)/Ctot1+Cgd2/Ctot2} …(16)
となる。一方、もし各画素回路50に電圧変動補償用のトランジスタT4が設けられていないものとすると、各画素回路50は図25に示すような構成となり(Ccnt=0)、その選択赤画素ゲート電圧Vgrは、
  Vgr=VRdata-Vpp(Cssdr/Ctot1+Cgd2/Ctot2) …(17)
となる。この場合、SSD方式のためのデマルチプレクサ252の第1のトランジスタSWrの寄生容量Cssdrおよび画素回路50の入力トランジスタT1の寄生容量Cgd2に起因する電圧低下が大きい。
 上記式(16)と(17)の比較からわかるように、本実施形態によれば、SSD方式のための回路内の寄生容量Cssdrに起因する選択赤画素ゲート電圧Vgrの低下を小さくすることができる。上記説明から明らかなように、このようなフィールドスルー補償作用は、赤画素回路50rへの画素データの書き込みのみならず、緑画素回路50gおよび青画素回路50bへの画素データの書き込みにおいても同様に得られる。したがって、本実施形態によれば、外部から与えられる入力信号Sin(におけるRGB映像データ信号Din)の表す画像を十分に良好に表示することができる。また、フィールドスルー現象による各画素回路50における画素データの電圧(選択赤画素ゲート電圧Vgr等)が低下する場合において、この電圧低下が補償されるようにデータ線駆動回路210の出力信号すなわちアナログ映像信号Djの電圧を予め高めに調整することが考えられる。これに対し本実施形態によれば、その調整を不要にし又はその調整量を低減することができるので、この点では従来に比べ消費電力を低減できると言える。
 次に、本実施形態の上記効果すなわち画素データの書き込みにおける効果を具体的な数値を用いて説明する。ただし、以下で言及する数値や表示パネルとしての有機ELパネルの仕様は一例に過ぎず、本発明はこれらに限定されない。
 以下では、下記の数値条件を前提とする。
(a)表示パネルの解像度は、WVGA(800×480×RGB)とする。
(b)画素回路50における入力トランジスタT1のゲート-ドレイン間の寄生容量Cgd2およびゲート-ソース間の寄生容量Cgs2の値は、いずれも、10[a.u.]である。ここで、単位[a.u.]は、任意単位(物理量を所定の基準値に対する相対値として示すための単位)である。以下においても同様である。
(c)デマルチプレクサ252における第1のトランジスタSWrの寄生容量Cssdrの値は、20[a.u.]である。すなわち、SSDのためのトランジスタSWrのサイズ(より正確にはチャネル幅)は、画素回路50内のトランジスタT1,T2のサイズ(チャネル幅)の2倍であると仮定する。
(d)SSDのための接続制御信号の振幅Vssd、書込制御線G1_WL(i)の電圧振幅VG1、および、電圧変動補償線G3_Cnt(i)の電圧振幅VCNTは、いずれも、12[a.u.]である(Vpp=Vssd=VG1=VCNT=12[a.u.])。
 上記式(16)は、本実施形態における選択赤画素回路50r内の駆動電流IoelRを決定する選択赤画素ゲート電圧Vgrを示し(図4参照)、上記式(17)は、従来の選択赤画素回路50r内の駆動電流IoelRを決定する選択赤画素ゲート電圧Vgrを示す(図25参照)。これらのうち上記式(16)に含まれる補償電圧ΔVr3=Vpp×(Ccnt/Ctot1)=VCNT×(Ccnt/Ctot1)は、電圧変動補償線G3_Cnt(i)による電圧上昇分を表し、上記式(16)および(17)に含まれる第1フィールドスルー電圧ΔVr1=Vpp×Cssdr/Ctot1=Vssd×Cssdr/Ctot1は、SSD方式のための回路内の寄生容量Cssdrに起因する電圧低下分を表している。これら電圧上昇分としての補償電圧ΔVr3と電圧低下分としての第1フィールドスルー電圧ΔVr1の値は、上記(a)~(d)より下記のようになる。すなわち、第1のトランジスタSWrのドレイン側に寄生している容量の総和すなわち赤画素データ線SLrjに寄生している容量の総和(以下「赤画素データ線総容量」ともいう)Ctot1は、各赤画素回路50rの入力トランジスタT1におけるゲート-ソース間容量Cgs2や電圧変動補償容量Ccnt等を用いて近似的に下記のように表すことができる。
  Ctot1=(Cgs2+Ccnt)×800(縦画素数)+Cssdr
       =(10+10)×800+20
       =16020[a.u.] …(18)
したがって、電圧上昇分としての補償電圧ΔVr3は、
  ΔVr3=VCNT×(Ccnt/Ctot1)
      =12×(10/16020)
      =0.007[a.u.] …(19)
となり、電圧低下分としての第1フィールドスルー電圧ΔVr1は、
  ΔVr1=Vssd×Cssdr/Ctot1
      =12×20/16020
      =0.015 [a.u.] …(20)
となる。よって、上記(a)~(d)の数値条件に基づく例では、SSDのための回路内のフィールドスルー現象による画素データの電圧低下分(上記式(20))の略50%が、電圧変動補償線G3_Ccnt(i)の電圧変化に基づくフィールドスルー補償作用により相殺される。
<1.15.2 画素回路の駆動電流の測定における作用および効果>
 既述のように本実施形態では、輝度むらを抑制すべく各画素回路50の駆動トランジスタT2の特性(オフセット値Vthおよびゲイン値β)を補償するために各画素回路50における駆動電流が測定される(図28~図30等参照)。1個の画素回路当たりの駆動電流は微少(μA~pAのオーダ)であるので、非選択状態のモニタ制御線G2_Mon(k)(k≠i)に接続された画素回路(以下「非選択画素回路」という)50内のリーク電流は、高精度な特性補償のための電流測定において障害となり得る。
 これに対し、本実施形態における各画素回路50では、電流測定のためのモニタ制御線G2_Monにゲート端子が接続されたトランジスタT3に、電圧変動補償線G3_Cntにゲート端子が接続されたトランジスタT4が直列に設けられている(図28)。駆動トランジスタT2のソース端子(トランジスタT2と有機EL素子OLEDとの接続点)は、これらのトランジスタT3およびT4を介してデータ線SLに接続されている。このようなトランジスタT3およびT4によるダブルゲート構成によれば、いずれかの非選択画素回路50においてトランジスタT3に短絡故障が発生している場合であっても、また、トランジスタT3の不良によって従来の構成では無視できないリーク電流が生じる場合であっても、そのトランジスタT3に直列にトランジスタT4が接続されているので、そのトランジスタT3の短絡故障または不良によるリーク電流がデータ線SLに流入することはない。したがって、トランジスタT4は、トランジスタT3の所謂「バックアップトランジスタ」として機能する。また、トランジスタT3およびT4によるダブルゲート構成は、非選択画素回路50においてトランジスタT3が正常である場合のリーク電流も低減するので、高精度の電流測定に寄与する。
 このような本実施形態によれば、電流測定期間において非選択画素回路50からデータ線SLへのリーク電流の流入が阻止され、高精度の電流測定が可能になるので、輝度むらを十分に抑制することができる。なお、このようなトランジスタT3およびT4によるダブルゲート構成を有する画素回路は、チャネル層がInGaZnO等の酸化物半導体で形成されたTFTが使用される場合はもとより、チャネル層がポリシリコンまたはアモルファスシリコン(a-Si)で形成されオフリーク電流の比較的多いTFTが使用される場合に有効である。
<2.第2の実施形態>
 次に、本発明の第2の実施形態に係るアクティブマトリクス型の有機EL表示装置について説明する。本実施形態では、電圧変動補償線駆動回路の構成が上記第1の実施形態と異なり、電圧変動補償線駆動回路の制御信号として上記第1の実施形態において使用されていたプルダウン信号CPDが使用されないが、その他の構成は上記第1の実施形態と同様である。このため、本実施形態における構成のうち上記第1の実施形態の構成と同一または対応する部分に同一の参照符号を付して詳しい説明を省略する。なお、電流測定期間を含むフレーム期間における本実施形態の動作は上記第1の実施形態と同様であるので、以下では、電流測定期間を含まないフレーム期間での動作を前提として本実施形態を説明する。
 上記第1の実施形態では、表示制御回路100内の駆動制御部110におけるゲート制御信号生成回路117(図1、図6)で生成される電圧変動補償制御信号CCTLにはプルダウン信号CPDが含まれていたが(図20)、本実施形態では、電圧変動補償制御信号CCTLにはプルダウン信号CPDは含まれていない。本実施形態における表示制御回路100の構成は、このプルダウン信号CPDを生成しない点を除けば上記第1の実施形態における表示制御回路100と同様である。
 図34は、本実施形態における電圧変動補償線駆動回路350の構成を示すブロック図である。この電圧変動補償線駆動回路350は、シフトレジスタ36srを用いて実現されている。表示部500内の各電圧変動補償線G3_Cntと1対1で対応するように、シフトレジスタ36srの各段が設けられている。本実施形態においてもシフトレジスタ36srは1080段からなるが、図34には、1080段のうちの(i-1)段目から(i+1)段目までを構成する単位回路36(i-1)~36(i+1)のみを示している。シフトレジスタ36srの各段(各単位回路)には、クロック信号VCLKを受け取るための入力端子と、セット信号Sを受け取るための入力端子と、リセット信号Rを受け取るための入力端子と、状態信号Qを出力するための出力端子とが設けられているが、第1の実施形態におけるシフトレジスタ35sr(図18)とは異なり、クリア信号CLRを受け取るために入力端子と出力信号Q2を出力するための出力端子は、いずれも設けられていない。
 図34に示すように、シフトレジスタ36srの各段(各単位回路)の入力端子に与えられる信号は次のようになっている。奇数段目については、クロック信号CLK5がクロック信号VCLKとして与えられ、偶数段目については、クロック信号CLK6がクロック信号VCLKとして与えられる(図34参照)。また、任意の段について、前段から出力される状態信号Qがセット信号Sとして与えられ、次段から出力される状態信号Qがリセット信号Rとして与えられる。但し、1段目(図34では不図示)については、スタートパルス信号CSPがセット信号Sとして与えられる。なお、ローレベル電源電圧VSSおよびカウンタ電圧VCNT(図34では不図示)については、全ての単位回路36に共通的に与えられる。シフトレジスタ36srの各段から出力される状態信号Qは、対応する電圧変動補償線G3_Cntへ出力される。
 図35に示すように、本実施形態において電圧変動補償線駆動回路350を構成するシフトレジスタ36srに供給される上記クロック信号CLK5,CLK6では、電圧変動補償線G3_Cntの電圧を後述のタイミングでハイレベルからローレベルに変化させるために、上記第1の実施形態におけるクロック信号CLK5,CLK6(図19)とは立ち下がりのタイミングが異なり、デューティ比(クロック周期におけるハイレベル期間の割合)が1/6または1/6よりも若干小さい値となっている。また、図35に示すように、本実施形態におけるクロック信号CLK5,CLK6のハイレベルはカウンタ電圧VCNTである。なお、本実施形態においても、上記第1の実施形態と同様、電流測定期間を含むフレーム期間では、電圧変動補償線駆動回路350の出力信号は全てローレベルで高インピーダンス状態となり、このために当該フレーム期間では、クロック信号CLK5,CLK6は図35に示す波形とは異なり、ローレベルに維持される。
 図36は、本実施形態における電圧変動補償線駆動回路350を構成するシフトレジスタ36srの単位回路36の構成(シフトレジスタ36srの1段分の構成)を示す回路図である。 この単位回路36は、上記第1の実施形態における電圧変動補償線駆動回路350を構成するシフトレジスタ35srの単位回路35(図20)に比べると、トランジスタT355,T356、入力端子354,357、および出力端子355を有していないが、その他の構成は当該単位回路35(図20)と同一であり、同一または対応する部分には同一の参照符号を付されている。また、図34および図36を図11および図12と比較すればわかるように、このシフトレジスタ36srおよびその単位回路36は、書込制御線駆動回路300を構成するシフトレジスタ3の単位回路30と同様の構成となっている。したがって、本実施形態における電圧変動補償線駆動回路350は、基本的には書込制御線駆動回路300と同様に動作する。しかし、入力されるクロック信号のタイミングおよび電圧レベルが両者で相違するので(図8、図35参照)、それらに応じて出力信号のタイミングおよび電圧レベルも両者で相違する。すなわち、本実施形態では、図35に示すような波形のクロック信号CLK5,CLK6がシフトレジスタ36srに与えられることから、単位回路36は、上記第1の実施形態におけるシフトレジスタ3の単位回路30の動作(図13)とは異なり、図37の信号波形図に示すように動作する。上記のように本実施形態におけるクロック信号CLK5,CLK6のデューティ比は、1/6または1/6よりも若干小さい値であるので、単位回路36の出力端子355から出力される状態信号Qのパルス幅は、1水平期間の略1/3の長さ、より詳しくは1/3またはそれよりも若干短い長さとなる(図37参照)。
 本実施形態では、電圧変動補償線駆動回路350は、図34および図36に示すように構成されていて、図35に示すクロック信号CLK5,CLK6に基づき単位回路36が図37に示すように動作することから、電圧変動補償線G3_Cnt(0)~G3_Cnt(1079)に、1水平期間の略1/3の長さの期間(以下「略1/3水平期間」という)ずつ順次にハイレベル(電圧VCNT)となる1080個の出力信号をそれぞれ与える。これにより、電圧変動補償線G3_Cnt(0)~G3_Cnt(1079)は、図38に示すようなタイミングで略1/3水平期間ずつ順次選択される。すなわち、i行目の書込制御線G1_WL(i)が選択されて1水平期間選択状態(ハイレベル)を維持してから非選択状態(ローレベル)となる時点よりも若干前の時点で、対応する電圧変動補償線G3_Cnt(i)がローレベルからハイレベル(電圧VCNT)へと変化し、その時点から略1/3水平期間後にローレベルに戻る(i=0~1079)。図38に示す例では、例えば0行目の書込制御線G1_WL(0)は時点t3で選択状態(ハイレベル)となって時点t5で非選択状態(ローレベル)となり、これに対応する電圧変動補償線G3_Cnt(0)の電圧は、その時点t5よりも若干前の時点t4でローレベルからハイレベル(VCNT)に変化し、その時点から略1/3水平期間後の時点t6でローレベルに戻る。このように本実施形態では、各電圧変動補償線G3_Cnt(i)の電圧は、ローレベルからハイレベルに変化してから略1/3水平期間後にローレベルに戻るので、上記第1の実施形態において使用されたプルダウン信号CPD(図23)は不要となる。
 なお、図38は、画素回路50における駆動トランジスタT2の特性補償が行われないフレーム期間(電流測定期間を含まないフレーム期間)における動作を示しており、本実施形態においても、電流測定期間を含むフレーム期間では、電圧変動補償線駆動回路350は動作を停止し、電圧変動補償線駆動回路350の出力信号は全てローレベルで高インピーダンス状態となる。
 図39は、画素回路50に画素データを書き込むための動作を説明するための信号波形図である。この動作は、電圧変動補償線駆動回路350が動作するフレーム期間(電流測定期間を含まないフレーム期間)で行われる。この図39を図24と比較すればわかるように、本実施形態における画素データの書込動作は、プルダウン信号CPDを必要とすることなく、書込対象の行に対応する電圧変動補償線G3_Cnt(i)がハイレベル(電圧VCNT)になってから略1/3水平期間後にローレベルに戻る点が上記第1の実施形態における画素データの書込動作と相違する。より詳しくは図39に示すように、書込対象の行に対応する電圧変動補償線G3_Cnt(i)の電圧がハイレベルからローレベルに戻る時点tgは、次に選択状態となる書込制御線G1_WL(i+1)の選択期間で最初にオン状態となるデマルチプレクサ252の第1のトランジスタSWrがオフ状態への変化を開始する時点(赤画素接続制御信号Rssdがハイレベルからローレベルへに変化する時点)thよりも前の時点である。この第1のトランジスタSWrは、書込制御線G1_WL(i+1)の選択期間において各デマルチプレクサ252内のトランジスタSWr,SWg,SWbのうちで最初にオン状態からオフ状態に変化し、時点tgでは、データ線駆動回路210(のデータ電圧出力単位回路211d)からオン状態の第1のトランジスタSWrを介してデータ線SLrjにアナログ映像信号Djが供給されている(図4参照)。このため、そのデータ線SLrjの電圧は、電圧変動補償線G3_Cnt(i)の電圧のハイレベルからローレベルへの変化には影響されない。
 本実施形態における画素データの書込動作は、書込対象の行に対応する電圧変動補償線G3_Cnt(i)が上記のように変化する点以外は、上記第1の実施形態における画素データの書込動作と同様であり、選択赤画素回路50r、選択緑画素回路50g、選択青画素回路50bに書き込まれた画素データをそれぞれ示す選択赤画素ゲート電圧Vgr、選択緑画素ゲート電圧Vgg、選択青画素ゲート電圧Vgbの波形も同様となる。したがって本実施形態においても、各画素回路50x(x=r,g,b)への画素データの書き込み動作では、SSD方式のためのデマルチプレクサ252におけるトランジスタSWxのオン状態からオフ状態への変化により生じるフィールドスルー電圧ΔVx1(駆動トランジスタT2のゲート電圧Vgxの低下)が、当該画素回路50xに接続される電圧変動補償線G3_Cnt(i)の電位変化によって相殺または補償される。すなわち、本実施形態においてもフィールドスルー補償作用が得られる。
 これに加えて本実施形態では、プルダウン信号CPDを必要とせず、電圧変動補償線駆動回路350の構成が簡略化され(図34および図36参照)、これにより消費電力が低減される。具体的には、電圧変動補償線駆動回路350を構成するシフトレジスタ36srの単位回路36では、上記第1の実施形態における単位回路35で使用されていたトランジスタT355,T356が不要となることで(図36および図20参照)消費電力が低減される。また、上記第1の実施形態では、各電圧変動補償線G3_Cnt(i)の電圧は、一旦ハイレベルに変化すると、垂直帰線期間でプルダウン信号CPDがアクティブ(ハイレベル)になるまでハイレベルに維持されるので(図23参照)、各画素回路50のトランジスタT4としてのTFTのゲート端子にハイレベルの電圧が長時間印加されることになる。このため、トランジスタT4の閾値のシフトによって信頼性が低下するおそれがある。しかし本実施形態によれば、トランジスタT4のゲート端子にハイレベル電圧が印加される時間が短くなるので、すなわち、トランジスタT4のゲート端子に印加される電圧のデューティ比(ハイレベルとなる時間の比率)が下がるので、トランジスタT4の閾値シフトを抑制することができる。この点から、本実施形態は、画素回路50のトランジスタとして、例えばチャネル層がアモルファスシリコンで形成されたTFT等、閾値Vtの正電圧側シフトの大きいトランジスタが画素回路50で使用される場合に特に有効である。
 なお、本実施形態における画素回路50の駆動トランジスタT2の特性補償処理やそのための電流測定のための構成や動作は、上記第1の実施形態と同様である。したがって本実施形態においても、上記第1の実施形態における画素回路の駆動電流の測定に関する効果と同様の効果が得られる(図28~図33参照)。
<3.第3の実施形態>
 次に、本発明の第3の実施形態に係るアクティブマトリクス型の有機EL表示装置について説明する。上記第1および第2の実施形態に係る有機EL表示装置は、各画素回路50x(x=r,g,b)への画素データの書き込み動作においてSSD方式のためのデマルチプレクサ252におけるトランジスタSWxのオン状態からオフ状態への変化により生じるフィールドスルー電圧ΔVx1を補償するように構成されている。上記第1および第2の実施形態については、このフィールドスルー電圧ΔVx1を補償するために使用されるカウンタ電圧VCNTは、他の駆動回路200,300,400で使用される電源電圧VDDと同一の固定値であり、電圧変動補償線G3_Cntの電圧振幅は書込制御線G1_WL等の電圧振幅Vppと同一である場合についてのみ説明されている。これに対し本実施形態では、カウンタ電圧VCNTを変更できるように構成されており、カウンタ電圧VCNTは電源電圧VDDとは異なる値を取り得る。このようなカウンタ電圧可変のための構成以外については、本実施形態に係る有機EL表示装置は、上記第1の実施形態と同様の構成を有している。このため、本実施形態における構成のうち上記第1の実施形態の構成と同一または対応する部分に同一の参照符号を付して詳しい説明を省略する。
 図40は、本実施形態に係る有機EL表示装置の全体構成を示すブロック図である。この有機EL表示装置では、上記第1の実施形態(図1)とは異なり、電圧変動補償線駆動回路350に電源電圧を供給する電圧源として可変電圧源635が設けられている。この可変電圧源635から電圧変動補償線駆動回路350に、ハイレベル電源電圧としてのカウンタ電圧VCNTおよびローレベル電源電圧VSSが供給され、電圧変動補償線駆動回路350は、これらの電源電圧VCNT,VSSに基づき動作する。この可変電圧源635は、有機EL表示装置1の外部からの制御信号(例えば入力信号Sinに含まれる制御信号)または図示しない調整操作部への操作によってカウンタ電圧VCNTの値が変更可能に構成されている。
 また、上記構成に対応して、図40に示すように本実施形態における表示制御回路100は、電圧変動補償線駆動回路350に与えるべき電圧変動補償制御信号CCTLを構成するスタートパルス信号CSP,クロック信号CLK5,クロック信号CLK6,およびプルダウン信号CPD等の信号の電圧レベルを変換するレベルシフタ140を含んでいる。このレベルシフタ140は、駆動制御部110内のゲート制御信号生成回路117(図6)で生成される電圧変動補償制御信号CCTLの電圧レベルを変換し、ローレベル電源電圧VSSをローレベルとしカウンタ電圧VCNTをハイレベルとする電圧変動補償制御信号CCTLhを生成する。生成された電圧変動補償制御信号CCTLhは、電圧変動補償線駆動回路350に入力される。
 上記のような構成の本実施形態は、機能的には上記第1の実施形態と同様に動作するが、カウンタ電圧VCNTを他の駆動回路200,300,400で使用される電源電圧VDDとは異なる値に設定可能であることから、下記のような特有の作用・効果を奏する。
 本実施形態においても、各画素回路50への画素データの書き込みの動作は上記第1の実施形態と同様である。すなわち、図24に示すように、各デマルチプレクサ252に与えられる赤画素接続制御信号Rssd,緑画素接続制御信号Gssd,青画素接続制御信号Bssdが1水平期間において順次アクティブ(ハイレベル)となることにより、選択赤画素回路50r,選択緑画素回路50g,選択青画素回路50bにアナログ映像信号Djが赤画素データ電圧VRdata、緑画素データ電圧VGdata、青画素データ電圧VBdataとしてそれぞれ書き込まれる。ここで、赤画素回路50rへの画素データの書き込みに着目すると、図24に示すように上記第1の実施形態と同様、時点tbにおいて、デマルチプレクサ252に与えられる赤画素接続制御信号Rssdのオン電圧(ハイレベル)からオフ電圧(ローレベル)への変化により、選択赤画素ゲート電圧Vgrが、赤画素データ電圧VRdataから次式で示される第1フィールドスルー電圧ΔVr1だけ低下する。
  ΔVr1=Vssd×Cssdr/Ctot1 …(21)
ここで、Vssdは、赤画素接続制御信号Rssdの電圧振幅(オン電圧とオフ電圧との差)である。一方、時点teでは、電圧変動補償線G3_Cnt(i)の電圧のローレベル(VSS)からハイレベル(VCNT)への変化により、選択赤画素ゲート電圧Vgrが、次式で示される補償電圧ΔVr3だけ上昇する(ただしVSS=0とする)。
  ΔVr3=VCNT×Ccnt/Ctot1 …(22)
また、時点tfでは、選択赤画素回路50rに接続される書込制御線G1_WL(i)の電圧のハイレベルからローレベルへの変化により、選択赤画素ゲート電圧Vgrが、次式で示される第2フィールドスルー電圧ΔVr2だけ低下する。
  ΔVr2=VG1×Cgd2/Ctot2 …(23)
ここで、VG1は、書込制御線G1_WL(i)の電圧振幅である。上記第1の実施形態と同様、Vssd=VG1であるが、Vpp=Vssd=VG1とおくと、本実施形態では、VCNT≠Vppである。
 したがって、書込制御線G1_WL(i)が選択状態から非選択状態に変化する時点fでの選択赤画素ゲート電圧Vgrは、次式のようになる。
  Vgr=VRdata-ΔVr1+ΔVr3-ΔVr2
    =VRdata-Vpp(Cssdr/Ctot1+Cgd2/Ctot2)
         +VCNT×Ccnt/Ctot1 …(24)
一方、もし各画素回路50に電圧変動補償用のトランジスタT4が設けられていないものとすると、各画素回路50は図25に示すような構成となり(Ccnt=0)、選択赤画素ゲート電圧Vgrは、
  Vgr=VRdata-Vpp(Cssdr/Ctot1+Cgd2/Ctot2) …(25)
となる。この場合、SSD方式のためのデマルチプレクサ252の第1のトランジスタの寄生容量Cssdrおよび画素回路50の入力トランジスタT1の寄生容量Cgd2に起因する電圧低下が大きい。
 上記式(24)と(25)の比較からわかるように、本実施形態によれば、SSD方式のための回路内の寄生容量Cssdrに起因する選択赤画素ゲート電圧Vgrの低下を抑制することができ、カウンタ電圧VCNTを上記Vppよりも大きい値に変更することにより、この抑制効果を上記第1の実施形態よりも大きくすることができる。この点は、赤画素回路50rへの画素データの書き込みのみならず、緑画素回路50gおよび青画素回路50bへの画素データの書き込みにおいても同様である。
 次に、本実施形態の上記効果を具体的な数値を用いて説明する。ただし、以下で言及する数値や表示パネルとしての有機ELパネルの仕様を示す数値は一例に過ぎず、本発明はこれらに限定されない。
 以下では、下記の数値条件を前提とする。
(a)表示パネルの解像度は、WVGA(800×480×RGB)とする。
(b)画素回路50における入力トランジスタT1のゲート-ドレイン間の寄生容量Cgd2およびゲート-ソース間の寄生容量Cgs2の値は、いずれも、10[a.u.]である。ここで、単位[a.u.]は任意単位である(以下においても同様)。
(c)デマルチプレクサ252における第1のトランジスタSWrの寄生容量Cssdrの値は、20[a.u.]である。
(d)SSDのための接続制御信号の振幅Vssdと書込制御線G1_WL(i)の電圧振幅VG1は、いずれも12[a.u.]である(Vpp=Vssd=VG1=12[a.u.])。
(e)電圧変動補償線G3_Cnt(i)の電圧振幅すなわちカウンタ電圧VCNTは、24[a.u.]である。
 上記数値条件は、上記(d)(e)を除き、上記第1の実施形態の効果を説明するための既述の数値条件(a)~(c)と同一である。
 上記式(24)は、本実施形態における選択赤画素回路50r内の駆動電流IoelRを決定する選択赤画素ゲート電圧Vgrを示し(図4参照)、上記式(25)は、従来の選択赤画素回路50r内の駆動電流IoelRを決定する選択赤画素ゲート電圧Vgrを示す(図25参照)。これらのうち上記式(24)に含まれる補償電圧ΔVr3=VCNT×(Ccnt/Ctot1)は、電圧変動補償線G3_Cnt(i)による電圧上昇分を表し、上記式(24)および(25)に含まれる第1フィールドスルー電圧ΔVr1=Vpp×Cssdr/Ctot1=Vssd×Cssdr/Ctot1は、SSD方式のための回路内の寄生容量Cssdrに起因する電圧低下分を表している。これら電圧上昇分としての補償電圧ΔVr3と電圧低下分としての第1フィールドスルー電圧ΔVr1の値は、上記(a)~(e)より下記のようになる。すなわち、第1のトランジスタSWrのドレイン側に寄生している容量の総和すなわち赤画素データ線総容量Ctot1は、各赤画素回路50rの入力トランジスタT1におけるゲート-ソース間容量Cgs2や電圧変動補償容量Ccnt等を用いて近似的に下記のように表すことができる。
  Ctot1=(Cgs2+Ccnt)×800(縦画素数)+Cssdr
       =(10+10)×800+20
       =16020[a.u.] …(26)
したがって、電圧上昇分としての補償電圧ΔVr3は、
  ΔVr3=VCNT×(Ccnt/Ctot1)
      =24×(10/16020)
      =0.015[a.u.] …(27)
となり、電圧低下分としての第1フィールドスルー電圧ΔVr1は、
  ΔVr1=Vssd×Cssdr/Ctot1
      =12×20/16020
      =0.015 [a.u.] …(28)
となる。よって、上記(a)~(e)の数値条件に基づく例では、SSDのための回路内のフィールドスルー現象による画素データの電圧低下分(上記式(28))の100%が、電圧変動補償線G3_Ccnt(i)の電圧変化に基づくフィールドスルー補償作用により相殺される。
 本実施形態によれば、カウンタ電圧VCNTに基づきこのようなフィールドスルー補償作用による効果が得られる他、データ線駆動回路210(図1、図4参照)が出力電圧(アナログ映像信号Djの電圧)が不足する場合にこのカウンタ電圧VCNTの設定によって補うこともできる。
 既述のように本実施形態は、カウンタ電圧VCNT可変のための構成を有するように上記第1の実施形態を修正したものであるが、これに代えて、上記第2の実施形態において、表示制御回路100内にレベルシフタ140を追加し、電圧変動補償線駆動回路350のための電源630を可変電圧源635に変更することにより(図40参照)、カウンタ電圧VCNT可変のための構成を有するようにしてもよい。
 なお、上記実施形態において、カウンタ電圧VCNT可変のための構成に代えて、カウンタ電圧VCNTを、第1フィールドスルー電圧ΔVr1等を十分に相殺できるような固定値に設定した構成としてもよい。すなわち、上記可変電圧源635に代えて固定電圧を供給する電源630を使用し、カウンタ電圧VCNTを、他の駆動回路200,300,400で使用される電源電圧VDDと異なる値であって上記補償電圧ΔVr3によって第1フィールドスルー電圧Vr1(または第1および第2フィールドスルー電圧ΔVr1,ΔVr2の双方)を十分に相殺するような固定値に設定してもよい。
<4.変形例>
 本発明は、上記各実施形態に限定されるものではなく、本発明の範囲を逸脱しない限りにおいて種々の変形を施すことができる。例えば、上記各実施形態においては有機EL表示装置を例に挙げて説明したが、電流で駆動される表示素子を備えた表示装置であれば、有機EL表示装置以外の表示装置にも本発明を適用することができる。
 また、上記各実施形態では、電流測定期間を含む特性検出処理期間が1つのフレームの画像を表示するための有効走査期間中に設けられているが(図27)、本発明は、これに限定されるものではなく、例えばこれに代えて、垂直帰線期間において所定数のライン分ずつ電流測定を含む特性検出処理を行う構成であってもよい(特許文献2(国際公開第2014/021201号パンフレット)参照。この特許文献2の内容は引用することによってこの中に含まれる。)。また、画素回路50は、図4に示す構成に限定されるものではなく、電流測定のためのモニタ制御トランジスタT3が有機EL素子OLEDと駆動トランジスタT2の接続点とデータ線SLとの間に設けられる構成であればよい。
 また、上記各実施形態では、画素回路50およびデマルチプレクサ252で使用されるトランジスタはいずれもNチャネル形のトランジスタであるが、これに代えてPチャネル形のトランジスタを使用する構成であってもよい。上記各実施形態のようにNチャネル形のトランジスタが使用される場合には、フィールドスルー現象によりデータ線SLxj(x=r,g,b)の保持電圧Vslや画素回路50における駆動トランジスタT2のゲート電圧Vgxが低下するが、Pチャネル形のトランジスタが使用される場合には、フィールドスルー現象によりデータ線SLjxの保持電圧Vslや画素回路50における駆動トランジスタT2のゲート電圧Vgxが上昇する。Nチャネル形のトランジスタが使用される場合には、フィールドスルー現象による電圧低下を相殺すべく、電圧変動補償線駆動回路350は、図24に示すように時点tfで電圧変動補償線G3_Cnt(i)の電圧がローレベルからハイレベル(カウンタ電圧VCNT)に変化するように構成されているが、Pチャネル形のトランジスタが使用される場合には、フィールドスルー現象による電圧上昇を相殺すべく、電圧変動補償線駆動回路350は、上記時点teに相当する時点で電圧変動補償線G3_Cnt(i)の電圧がハイレベルからローレベルに変化するように構成される。なお、このとき電圧変動補償線G3_Cnt(i)の電圧は、デマルチプレクサ252におけるトランジスタをオン状態からオフ状態へと変化させるための接続制御信号Rssd,Gssd,Bssdの電圧変化と反対の方向に変化することになり、この点はNチャネル形のトランジスタが使用される場合と同様である。
 本発明は、電流で駆動される表示素子を備えた表示装置およびその駆動方法ならびにそのような表示装置における画素回路に適用することができ、特に、SSD方式を採用したアクティブマトリクス型の有機EL表示装置等に適している。
 1 …有機EL表示装置
 6 …有機ELパネル
 3,4,35sr,36sr …シフトレジスタ
 30,35,36,40   …(シフトレジスタ内の)単位回路
 50,50r,50g,50b…画素回路
 100…表示制御回路
 110…駆動制御部
 116…画像データ/ソース制御信号生成回路
 117…ゲート制御信号生成回路
 120…補正データ算出/記憶部
 130…階調補正部
 210…データ線駆動回路
 211…データ側単位回路
 220…電流測定回路
 252…デマルチプレクサ
 300…書込制御線駆動回路
 350…電圧変動補償線駆動回路
 400…モニタ制御線駆動回路
 500…表示部
 635…可変電圧源
 T1 …入力トランジスタ
 T2 …駆動トランジスタ
 T3 …モニタ制御トランジスタ
 T4 …電圧変動補償トランジスタ
 SWr,SWg,SWb …SSDのためのトランジスタ(接続制御トランジスタ)
 Cst  …コンデンサ(電圧保持容量)
 Ccnt …コンデンサ(電圧変動補償容量)
 Cssdr,Cssdg,Cssdb …トランジスタの寄生容量
 SL,SLrj,SLgj,SLbj …データ線(j=0~M)
 G1_WL,G1_WL(0)~G1_WL(1079)…書込制御線
 G2_Mon,G2_Mon(0)~G2_Mon(1079)…モニタ制御線
 G3_Cnt,G3_Cnt(0)~G3_Cnt(1079)…電圧変動補償線
 CLK1~CLK6…クロック信号
 Mon_EN…モニタイネーブル信号
 Rssd,Gssd,Bssd …接続制御信号
 VCNT …カウンタ電圧(第2電圧)
 VSS  …ローレベル電源電圧(第1電圧)

Claims (10)

  1.  表示すべき画像を表す複数のアナログ電圧信号を伝達するための複数のデータ線と、前記複数のデータ線と交差する複数の書込制御線と、前記複数のデータ線および前記複数の書込制御線に沿ってマトリクス状に配置され電流で駆動される複数の表示素子とを含み、各表示素子に与えるべき駆動電流を測定する機能を有する表示装置において、前記複数のデータ線のいずれか1つに対応すると共に前記複数の書込制御線のいずれか1つに対応するように設けられた画素回路であって、
     前記複数の表示素子の1つであって電流によって輝度が制御される電気光学素子と、
     前記電気光学素子の駆動電流を制御するデータ電圧を保持するための電圧保持容量と、
     対応する書込制御線に接続された制御端子を有し、対応するデータ線から前記電圧保持容量への電圧供給を制御するスイッチング素子としての入力トランジスタと、
     前記データ電圧に応じた駆動電流を前記電気光学素子に与えるための駆動トランジスタと、
     前記対応する書込制御線に沿って配設された所定のモニタ制御線に接続された制御端子を有し、前記駆動トランジスタに流れる電流が通過可能なように前記駆動トランジスタと前記対応するデータ線との間に配置されたモニタ制御トランジスタと、
     前記対応する書込制御線に沿って配設された所定の電圧変動補償線に接続された制御端子、および、前記対応するデータ線に接続された第1導通端子を有し、前記モニタ制御トランジスタに直列に接続された電圧変動補償トランジスタと、
     前記電圧変動補償トランジスタにおける前記第1導通端子と前記電圧変動補償トランジスタにおける前記制御端子との間に形成された電圧変動補償容量と
    を備えることを特徴とする、画素回路。
  2.  表示すべき画像を表す複数のアナログ電圧信号を伝達するための複数のデータ線と、前記複数のデータ線に交差する複数の書込制御線と、前記複数のデータ線および前記複数の書込制御線に沿ってマトリクス状に配置され電流で駆動される複数の表示素子とを含み、各表示素子に与えるべき駆動電流を測定する機能を有する表示装置であって、
     それぞれが前記複数のデータ線のいずれか1つに対応すると共に前記複数の書込制御線のいずれか1つに対応するように、前記複数のデータ線および前記複数の書込制御線に沿ってマトリクス状に配置された、請求項1に記載の複数の画素回路と、
     前記複数の書込制御線にそれぞれ対応するように前記複数の書込制御線に沿って配設された複数のモニタ制御線と、
     前記複数の書込制御線にそれぞれ対応するように前記複数の書込制御線に沿って配設された複数の電圧変動補償線と、
     前記複数のデータ線にそれぞれ対応する複数の接続制御トランジスタであって、それぞれが、対応するデータ線に接続された第1導通端子と、前記対応するデータ線に与えるべきアナログ電圧信号を受け取るための第2導通端子と、オン/オフを制御する接続制御信号を受け取るための制御端子とを有する複数の接続制御トランジスタと、
     前記複数の接続制御トランジスタのそれぞれの前記第2導通端子に前記アナログ電圧信号を与えるデータ線駆動回路と、
     前記複数の書込制御線を選択的に駆動する書込制御線駆動回路と、
     前記複数のモニタ制御線を選択的に駆動するモニタ制御線駆動回路と、
     前記複数の電圧変動補償線を選択的に駆動する電圧変動補償線駆動回路と、
     各画素回路において表示素子に与えるべき駆動電流を前記複数のデータ線および前記複数の接続制御トランジスタを介して測定するための電流測定回路と、
     前記複数の接続制御トランジスタ、前記書込制御線駆動回路、前記モニタ制御線駆動回路、および、前記電圧変動補償線駆動回路を制御する駆動制御部とを備え、
     前記データ線駆動回路は、2以上の所定数のデータ線を1組として前記複数のデータ線をグループ化することにより得られる複数組のデータ線群にそれぞれ対応する所定数の出力端子を有し、各出力端子は、対応する組の所定数のデータ線に対応する所定数の接続制御トランジスタの第2導通端子に接続されており、
     前記駆動制御部は、各組の所定数のデータ線にそれぞれ対応する所定数の接続制御信号を生成し、当該所定数の接続制御信号を各組の所定数のデータ線に対応する前記所定数の接続制御トランジスタの制御端子にそれぞれ与えることにより、前記複数の書込制御線のいずれか1つが選択状態である第1の選択期間において各組の前記所定数の接続制御トランジスタを所定期間ずつ順次オン状態とし、
     前記電圧変動補償線駆動回路は、前記第1の選択期間において、前記複数の接続制御トランジスタがオン状態からオフ状態に変化した後に、選択状態の書込制御線に対応する電圧変動補償線に与えるべき電圧を第1電圧から第2電圧に変化させることにより、前記複数の接続制御トランジスタをオン状態からオフ状態に変化させるために前記複数の接続制御トランジスタの制御端子に与えられる電圧の変化と反対の方向に当該対応する電圧変動補償線の電圧を変化させることを特徴とする、表示装置。
  3.  前記電圧変動補償線駆動回路は、前記第1の選択期間後で前記複数の書込制御線が非選択状態である期間において、前記第1の選択期間で選択状態である前記書込制御線に対応する前記電圧変動補償線の電圧を前記第2電圧から前記第1電圧に戻すことを特徴とする、請求項2に記載の表示装置。
  4.  前記電圧変動補償線駆動回路は、前記第1の選択期間で選択状態である書込制御線の次に選択される書込制御線が選択状態である期間において、最初にオン状態からオフ状態に変化する接続制御トランジスタが当該オフ状態への変化を開始する前に、前記第1の選択期間で選択状態である前記書込制御線に対応する前記電圧変動補償線の電圧を前記第2電圧から前記第1電圧に戻すことを特徴とする、請求項2に記載の表示装置。
  5.  前記電圧変動補償線駆動回路に前記第1および第2電圧を供給し前記第1電圧と前記第2電圧の差が変更可能に構成された電圧源を更に備えることを特徴とする、請求項2に記載の表示装置。
  6.  前記第1の選択期間において前記複数の接続制御トランジスタがオン状態からオフ状態に変化することによって生じる前記複数のデータ線における電圧変動が、前記第1の選択期間で選択状態である前記書込制御線に対応する前記電圧変動補償線の電圧の前記第1電圧から前記第2電圧への変化によって相殺されるように、前記第1および第2電圧が設定されていることを特徴とする、請求項2から5のいずれか1項に記載の表示装置。
  7.  前記複数の書込制御線のいずれか1つの書込制御線に対応する画素回路において表示素子に与えるべき駆動電流を測定する場合には、
     前記駆動制御部は、
      前記1つの書込制御線が選択されている第2の選択期間の直後であって前記複数の書込制御線が非選択状態である非選択期間において、前記1つの書込制御線に対応する画素回路におけるモニタ制御トランジスタおよび電圧変動補償トランジスタがオン状態となるように、前記モニタ制御線駆動回路および前記電圧変動補償線駆動回路を制御し、
      前記所定数の接続制御信号を各組の所定数のデータ線に対応する前記所定数の接続制御トランジスタの制御端子にそれぞれ与えることにより、前記非選択期間において各組の前記所定数の接続制御トランジスタを所定期間ずつ順次オン状態とし、
     前記電流測定回路は、前記1つの書込制御線に対応する画素回路における駆動トランジスタに流れる電流を、前記モニタ制御トランジスタ、前記電圧変動補償トランジスタ、および、各組の前記所定数の接続制御トランジスタのうちのオン状態のトランジスタを介して測定することを特徴とする、請求項2から6のいずれか1項に記載の表示装置。
  8.  各画素回路に含まれるトランジスタおよび前記複数の接続制御トランジスタは、酸化物半導体によりチャネル層が形成された薄膜トランジスタであることを特徴とする、請求項2から7のいずれか1項に記載の表示装置。
  9.  表示すべき画像を表す複数のアナログ電圧信号を伝達するための複数のデータ線と、前記複数のデータ線と交差する複数の書込制御線と、前記複数のデータ線および前記複数の書込制御線に沿ってマトリクス状に配置され電流で駆動される複数の表示素子と、前記複数のデータ線にそれぞれに対応して設けられ、それぞれが、対応するデータ線に接続された第1導通端子、前記対応するデータ線に与えるべきアナログ電圧信号を受け取るための第2導通端子、および、オン/オフを制御する接続制御信号を受け取るための制御端子を有する複数の接続制御トランジスタとを含み、各表示素子に与えるべき駆動電流を測定する機能を有する表示装置の駆動方法であって、
     前記複数の接続制御トランジスタのオン/オフを制御する接続制御ステップと、
     前記複数の接続制御トランジスタのそれぞれの前記第2導通端子に前記アナログ電圧信号を与えるデータ線駆動ステップと、
     前記複数の書込制御線を選択的に駆動する書込制御線駆動ステップと、
     前記複数の書込制御線にそれぞれ対応して配設された複数のモニタ制御線を選択的に駆動するモニタ制御線駆動ステップと、
     前記複数の書込制御線にそれぞれ対応して配設された複数の電圧変動補償線を選択的に駆動する電圧変動補償線駆動ステップと
    を備え、
     前記表示装置は、前記複数のデータ線および前記複数の書込制御線に沿ってマトリクス状に配置された複数の画素回路を備え、各画素回路は、前記複数のデータ線のいずれか1つと対応すると共に前記複数の書込制御線のいずれか1つと対応し、
     各画素回路は、
      電流によって輝度が制御される表示素子としての電気光学素子と、
      前記電気光学素子の駆動電流を制御するデータ電圧を保持するための電圧保持容量と、
      対応する書込制御線に接続された制御端子を有し、対応するデータ線から前記電圧保持容量への電圧供給を制御するスイッチング素子としての入力トランジスタと、
      前記データ電圧に応じた駆動電流を前記電気光学素子に与えるための駆動トランジスタと、
     前記対応する書込制御線に対応するモニタ制御線に接続された制御端子を有し、前記駆動トランジスタに流れる電流が通過可能なように前記駆動トランジスタと前記対応するデータ線との間に配置されたモニタ制御トランジスタと、
     前記対応する書込制御線に対応する電圧変動補償線に接続された制御端子、および、前記対応するデータ線に接続された第1導通端子を有し、前記モニタ制御トランジスタに直列に接続された電圧変動補償トランジスタと、
      前記電圧変動補償トランジスタにおける前記第1導通端子と前記電圧変動補償トランジスタにおける前記制御端子との間に形成された電圧変動補償容量とを含み、
     前記データ線駆動ステップでは、2以上の所定数のデータ線を1組として前記複数のデータ線をグループ化することにより得られる複数組のデータ線群にそれぞれ対応する所定数の出力端子を有するデータ線駆動回路の各出力端子から前記アナログ電圧信号が出力され、各出力端子は、対応する組の所定数のデータ線に対応する所定数の接続制御トランジスタの第2導通端子に接続されており、
     前記接続制御ステップでは、各組の所定数のデータ線にそれぞれ対応する所定数の接続制御信号が生成され、当該所定数の接続制御信号が各組の所定数のデータ線に対応する前記所定数の接続制御トランジスタの制御端子にそれぞれ与えられることにより、前記複数の書込制御線のいずれか1つが選択状態である第1の選択期間において各組の前記所定数の接続制御トランジスタが所定期間ずつ順次オン状態となり、
     前記電圧変動補償線駆動ステップでは、前記第1の選択期間において、前記複数の接続制御トランジスタがオン状態からオフ状態に変化した後に、選択状態の書込制御線に対応する電圧変動補償線に与えるべき電圧が第1電圧から第2電圧に変化することにより、前記複数の接続制御トランジスタをオン状態からオフ状態に変化させるために前記複数の接続制御トランジスタの制御端子に与えられる電圧の変化と反対の方向に当該対応する電圧変動補償線の電圧が変化することを特徴とする、駆動方法。
  10.  各画素回路において駆動トランジスタに流れる電流を前記複数のデータ線および前記複数の接続制御トランジスタを介して測定するための電流測定ステップを更に備え、
     前記複数の書込制御線のいずれか1つの書込制御線に対応する画素回路において表示素子に与えるべき駆動電流を測定する場合には、
     前記モニタ制御線駆動ステップでは、前記1つの書込制御線が選択されている第2の選択期間の直後であって前記複数の書込制御線が非選択状態である非選択期間において、前記1つの書込制御線に対応する画素回路におけるモニタ制御トランジスタがオン状態となるように、前記複数のモニタ制御線が駆動され、
     前記電圧変動補償線駆動ステップでは、前記非選択期間において、前記1つの書込制御線に対応する画素回路における電圧変動補償トランジスタがオン状態となるように、前記複数の電圧変動補償線が駆動され、
     前記接続制御ステップでは、前記所定数の接続制御信号を各組の所定数のデータ線に対応する前記所定数の接続制御トランジスタの制御端子にそれぞれ与えることにより、前記非選択期間において各組の前記所定数の接続制御トランジスタが所定期間ずつ順次オン状態とされ、
     前記電流測定ステップでは、前記1つの書込制御線に対応する画素回路における駆動トランジスタに流れる電流が、前記モニタ制御トランジスタ、前記電圧変動補償トランジスタ、および各組の前記所定数の接続制御トランジスタのうちのオン状態のトランジスタを介して測定されることを特徴とする、請求項9に記載の駆動方法。
PCT/JP2016/069234 2015-07-10 2016-06-29 画素回路ならびに表示装置およびその駆動方法 WO2017010286A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/579,989 US10311791B2 (en) 2015-07-10 2016-06-29 Pixel circuit, display device, and method for driving same
KR1020177035504A KR20180002851A (ko) 2015-07-10 2016-06-29 화소 회로 및 표시 장치 및 그 구동 방법
JP2017528370A JPWO2017010286A1 (ja) 2015-07-10 2016-06-29 画素回路ならびに表示装置およびその駆動方法
CN201680036131.2A CN107710318A (zh) 2015-07-10 2016-06-29 像素电路以及显示装置及其驱动方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015139253 2015-07-10
JP2015-139253 2015-07-10

Publications (1)

Publication Number Publication Date
WO2017010286A1 true WO2017010286A1 (ja) 2017-01-19

Family

ID=57757798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069234 WO2017010286A1 (ja) 2015-07-10 2016-06-29 画素回路ならびに表示装置およびその駆動方法

Country Status (5)

Country Link
US (1) US10311791B2 (ja)
JP (1) JPWO2017010286A1 (ja)
KR (1) KR20180002851A (ja)
CN (1) CN107710318A (ja)
WO (1) WO2017010286A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107609518A (zh) * 2017-09-14 2018-01-19 京东方科技集团股份有限公司 一种像素检测电路的驱动方法及驱动装置
WO2021079423A1 (ja) * 2019-10-23 2021-04-29 シャープ株式会社 表示装置およびその駆動方法

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017151197A (ja) * 2016-02-23 2017-08-31 ソニー株式会社 ソースドライバ、表示装置、及び、電子機器
CN109427292B (zh) * 2018-02-02 2021-04-02 京东方科技集团股份有限公司 一种信号控制装置及方法、显示控制装置及方法、显示装置
US11250787B2 (en) * 2018-02-02 2022-02-15 Chengdu Boe Optoelectronics Technology Co., Ltd. Signal control apparatus and method, display control apparatus and method, and display apparatus
CN108717838B (zh) * 2018-04-17 2021-05-25 昀光微电子(上海)有限公司 一种硅基微型显示器及其驱动电路
CN112005289B (zh) * 2018-04-26 2023-07-18 株式会社半导体能源研究所 显示装置及电子设备
CN108492774B (zh) * 2018-05-03 2020-01-21 南京中电熊猫平板显示科技有限公司 有机发光显示器的驱动电路
CN108877683A (zh) * 2018-07-25 2018-11-23 京东方科技集团股份有限公司 栅极驱动电路及驱动方法、显示装置、阵列基板制造方法
CN108986747B (zh) * 2018-07-25 2020-07-28 京东方科技集团股份有限公司 一种阵列基板、有机电致发光显示面板及显示装置
CN108877659B (zh) * 2018-08-03 2021-01-22 京东方科技集团股份有限公司 栅极驱动电路、显示装置及其驱动方法
KR102537301B1 (ko) * 2018-08-20 2023-05-30 삼성디스플레이 주식회사 표시 장치 및 이의 구동 방법
KR102577240B1 (ko) * 2018-11-21 2023-09-12 삼성디스플레이 주식회사 타일드 표시 장치
KR102668648B1 (ko) * 2018-12-14 2024-05-24 삼성디스플레이 주식회사 표시 장치
CN109634010B (zh) * 2019-01-02 2022-01-18 南京京东方显示技术有限公司 一种显示装置
CN109754753B (zh) * 2019-01-25 2020-09-22 上海天马有机发光显示技术有限公司 一种显示面板及显示装置
CN109448631B (zh) * 2019-01-25 2019-04-19 南京中电熊猫平板显示科技有限公司 一种显示装置
JP7189804B2 (ja) * 2019-02-26 2022-12-14 ローム株式会社 発光素子駆動装置、発光素子駆動システム及び発光システム
US11183094B2 (en) * 2019-04-15 2021-11-23 Innolux Corporation Electronic device
CN112133355B (zh) * 2019-06-25 2023-08-04 京东方科技集团股份有限公司 移位寄存器单元、栅极驱动电路、显示装置和控制方法
KR102687610B1 (ko) 2019-12-30 2024-07-24 엘지디스플레이 주식회사 표시 장치 및 보상 방법
CN110956929A (zh) * 2020-01-02 2020-04-03 京东方科技集团股份有限公司 像素驱动电路、其驱动方法、阵列基板及显示装置
CN114930543A (zh) 2020-10-27 2022-08-19 京东方科技集团股份有限公司 阵列基板、显示装置
KR20220063006A (ko) * 2020-11-09 2022-05-17 엘지디스플레이 주식회사 발광표시패널 및 이를 이용한 발광표시장치
CN112530354B (zh) * 2020-12-29 2023-07-25 武汉天马微电子有限公司 一种显示面板、显示装置和显示面板的驱动方法
CN114003543B (zh) * 2021-10-29 2023-07-07 西安微电子技术研究所 一种高速串行总线时钟补偿方法及系统
CN114299859B (zh) * 2021-12-30 2023-05-30 湖北长江新型显示产业创新中心有限公司 一种阵列基板及其驱动方法、显示面板和显示装置
CN114299861B (zh) * 2021-12-30 2023-06-16 上海中航光电子有限公司 一种线路面板及其相关方法和装置
WO2023178570A1 (zh) * 2022-03-23 2023-09-28 京东方科技集团股份有限公司 显示基板及其驱动方法、显示装置
CN114677964B (zh) * 2022-04-12 2024-04-05 Tcl华星光电技术有限公司 移位寄存器、栅极驱动电路和显示面板
CN117496873A (zh) * 2023-02-03 2024-02-02 武汉华星光电技术有限公司 显示面板和电子终端

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005195854A (ja) * 2004-01-07 2005-07-21 Mitsubishi Electric Corp 画像表示装置およびその検査方法
JP2009526248A (ja) * 2006-02-10 2009-07-16 イグニス・イノベイション・インコーポレーテッド 発光デバイス表示器のための方法及びシステム
JP2013122535A (ja) * 2011-12-12 2013-06-20 Panasonic Liquid Crystal Display Co Ltd 表示装置
WO2015093097A1 (ja) * 2013-12-20 2015-06-25 シャープ株式会社 表示装置およびその駆動方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3571993B2 (ja) * 2000-04-06 2004-09-29 キヤノン株式会社 液晶表示素子の駆動方法
JP2006106141A (ja) * 2004-09-30 2006-04-20 Sanyo Electric Co Ltd 有機el画素回路
TWI319175B (en) * 2005-09-09 2010-01-01 Au Optronics Corp Active tft circuit structure with current scaling function
KR100666640B1 (ko) 2005-09-15 2007-01-09 삼성에스디아이 주식회사 유기 전계발광 표시장치
KR100769448B1 (ko) * 2006-01-20 2007-10-22 삼성에스디아이 주식회사 디지털-아날로그 변환기 및 이를 채용한 데이터 구동회로와평판 디스플레이 장치
CA2541347A1 (en) * 2006-02-10 2007-08-10 G. Reza Chaji A method for driving and calibrating of amoled displays
EP3293726B1 (en) * 2011-05-27 2019-08-14 Ignis Innovation Inc. Systems and methods for aging compensation in amoled displays
EP2945147B1 (en) * 2011-05-28 2018-08-01 Ignis Innovation Inc. Method for fast compensation programming of pixels in a display
US9236011B2 (en) * 2011-08-30 2016-01-12 Lg Display Co., Ltd. Organic light emitting diode display device for pixel current sensing in the sensing mode and pixel current sensing method thereof
US9747834B2 (en) * 2012-05-11 2017-08-29 Ignis Innovation Inc. Pixel circuits including feedback capacitors and reset capacitors, and display systems therefore
JP5908084B2 (ja) 2012-08-02 2016-04-26 シャープ株式会社 表示装置およびその駆動方法
KR20140140968A (ko) * 2013-05-30 2014-12-10 삼성디스플레이 주식회사 화소, 화소의 구동 방법, 및 화소를 포함하는 표시 장치
CN103941439B (zh) * 2013-06-28 2016-09-28 上海中航光电子有限公司 一种补偿馈通电压驱动电路及阵列基板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005195854A (ja) * 2004-01-07 2005-07-21 Mitsubishi Electric Corp 画像表示装置およびその検査方法
JP2009526248A (ja) * 2006-02-10 2009-07-16 イグニス・イノベイション・インコーポレーテッド 発光デバイス表示器のための方法及びシステム
JP2013122535A (ja) * 2011-12-12 2013-06-20 Panasonic Liquid Crystal Display Co Ltd 表示装置
WO2015093097A1 (ja) * 2013-12-20 2015-06-25 シャープ株式会社 表示装置およびその駆動方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107609518A (zh) * 2017-09-14 2018-01-19 京东方科技集团股份有限公司 一种像素检测电路的驱动方法及驱动装置
WO2021079423A1 (ja) * 2019-10-23 2021-04-29 シャープ株式会社 表示装置およびその駆動方法

Also Published As

Publication number Publication date
JPWO2017010286A1 (ja) 2018-03-15
US10311791B2 (en) 2019-06-04
US20180174507A1 (en) 2018-06-21
KR20180002851A (ko) 2018-01-08
CN107710318A (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
WO2017010286A1 (ja) 画素回路ならびに表示装置およびその駆動方法
WO2017115713A1 (ja) 画素回路ならびに表示装置およびその駆動方法
JP6116706B2 (ja) 表示装置およびその駆動方法
JP5282146B2 (ja) 表示装置及びその制御方法
KR101341797B1 (ko) 유기 발광 다이오드 표시장치 및 그 구동 방법
CN112086046A (zh) 显示装置及其驱动方法
EP2093748A1 (en) Display device and its driving method
KR101481676B1 (ko) 발광표시장치
CN107533825B (zh) 显示装置
KR101756665B1 (ko) 유기발광다이오드 표시장치 및 그 구동방법
EP2595140A1 (en) Display device and method for driving same
JP5627694B2 (ja) 表示装置
KR20140131637A (ko) 유기 발광 다이오드 표시장치 및 그 구동 방법
JP5284492B2 (ja) 表示装置及びその制御方法
US9318052B2 (en) Compensating organic light emitting diode display device and method for driving the same using two adjacent gate lines per pixel
US9466239B2 (en) Current drive type display device and drive method thereof
WO2019053769A1 (ja) 表示装置およびその駆動方法
US10388217B2 (en) Display device and method of driving same
US8810488B2 (en) Display device and method for driving the same
KR20150064544A (ko) 유기 발광 다이오드 표시장치 및 그 구동 방법
US20200202761A1 (en) Scan driver and display device including the same
KR102089325B1 (ko) 유기 발광 다이오드 표시장치와 그 구동방법
KR101980770B1 (ko) Oled 표시 장치
KR101947577B1 (ko) 화소 회로와 그 구동 방법 및 이를 이용한 유기 발광 표시 장치
US20230215381A1 (en) Gate driver circuit, display panel and display device including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16824266

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017528370

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15579989

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177035504

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16824266

Country of ref document: EP

Kind code of ref document: A1