Nothing Special   »   [go: up one dir, main page]

WO2017082357A1 - 超解像顕微鏡 - Google Patents

超解像顕微鏡 Download PDF

Info

Publication number
WO2017082357A1
WO2017082357A1 PCT/JP2016/083399 JP2016083399W WO2017082357A1 WO 2017082357 A1 WO2017082357 A1 WO 2017082357A1 JP 2016083399 W JP2016083399 W JP 2016083399W WO 2017082357 A1 WO2017082357 A1 WO 2017082357A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
super
scanning
sample
array disk
Prior art date
Application number
PCT/JP2016/083399
Other languages
English (en)
French (fr)
Inventor
池滝 慶記
熊谷 寛
大助 岡田
Original Assignee
オリンパス株式会社
学校法人北里研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社, 学校法人北里研究所 filed Critical オリンパス株式会社
Priority to JP2017550394A priority Critical patent/JPWO2017082357A1/ja
Publication of WO2017082357A1 publication Critical patent/WO2017082357A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens

Definitions

  • the present invention relates to a super-resolution microscope.
  • Patent Documents 1 and 2 fluorescence capable of observing a sample including a molecule having at least two excited quantum states with a high spatial resolution exceeding the diffraction limit using a double resonance absorption process.
  • a microscope is disclosed.
  • the fluorescence microscopes disclosed in Patent Documents 1 and 2 are pump light for generating fluorescence by exciting a molecule in a sample from a stable state to a first quantum state, and further transitioning the molecule to another second quantum state.
  • the sample surface is spatially scanned with a fluorescent spot (excitation light spot) contracted below the diffraction limit using erase light for suppressing the generation of fluorescence.
  • a fluorescence image having a resolution exceeding the spatial resolution of the diffraction limit is obtained by two-dimensionally arranging the fluorescence signals at each measurement point on a computer and performing image processing.
  • Patent Document 3 discloses a STED (stimulated emission depletion :) microscope that uses excitation light for exciting a sample and suppression light for suppressing excitation of the sample by stimulated emission. Yes.
  • the STED microscope disclosed in Patent Document 3 is formed on a lens disk that holds a plurality of microlens arranged in an array, a pinhole disk that has a plurality of pinholes formed in the same pattern as the arrangement of microlenses, and a microlens.
  • a phase adjustment unit is formed on a lens disk that holds a plurality of microlens arranged in an array, a pinhole disk that has a plurality of pinholes formed in the same pattern as the arrangement of microlenses, and a microlens.
  • a suppression light transmission filter is formed in the phase adjustment unit of the microlens, and an excitation light transmission filter is formed in a region other than the phase adjustment unit of the microlens.
  • the suppression light transmission filter has a characteristic of transmitting the suppression light and not transmitting the excitation light.
  • the excitation light transmission filter has a characteristic of transmitting the excitation light and not transmitting the suppression light. Therefore, it is not easy to separately form the suppression light transmission filter and the excitation light transmission filter in the small-diameter microlens, and there is a concern that the cost may increase.
  • the transmission region within the aperture of the excitation light and the suppression light is divided and shielded, the intensity of the excitation light and the suppression light is extremely reduced.
  • the suppression light requires high intensity, a high-power laser light source is required.
  • each pupil region is shielded, it is difficult to obtain a sufficient super-resolution function by spreading or deforming the focused beam shape.
  • an object of the present invention made in view of such a viewpoint is to provide an improved super-resolution microscope capable of obtaining a good super-resolution microscope image in a short time.
  • the super-resolution microscope according to the present invention that achieves the above object is as follows.
  • Illumination light including first light that excites molecules in the sample from the stable state to the first quantum state and second light that suppresses excitation of the molecules is used as the illumination light of the first light and the second light.
  • An illumination optical system that irradiates the sample with at least a portion of the spatially superimposed;
  • the illumination optical system includes a scanning illumination light generation unit, a spatial modulation element, and a microscope objective lens,
  • the scanning illumination light generation unit generates a plurality of scanning illumination lights that are displaced from the incident illumination light in different trajectories,
  • the microscope objective lens condenses a plurality of the scanning illumination light from the scanning illumination light generation unit on the sample,
  • the spatial modulation element has optical transparency with respect to the first light and the second light, and each of the plurality of scanning illumination lights condensed by the microscope objective lens is converted into the first light.
  • the detection optical system includes a two-dimensional optical sensor that photoelectrically converts the response light from the sample by the plurality of scanning illumination lights, The sample is scanned with a plurality of scanning illumination lights, and the sample is observed based on the output of the two-dimensional sensor.
  • the spatial modulation element may modulate the polarization state or phase state of either the first light or the second light.
  • the scanning illumination light generator includes a rotatable pinhole array disk,
  • the pinhole array disk has a plurality of pinholes arranged in a plane perpendicular to the rotation axis, and transmits the illumination light from a plurality of the pinholes in a part of the plane, thereby a plurality of the scanning illumination lights Produces
  • the sample may be scanned with a plurality of scanning illumination lights while rotating the pinhole array disk.
  • the scanning illumination light generator includes a rotatable microlens array disk,
  • the microlens array disk has a plurality of microlenses arranged on a plane orthogonal to a rotation axis, and transmits the illumination light from a plurality of the microlenses that are part of the plane, thereby a plurality of illumination lights for scanning.
  • Produces The sample may be scanned with a plurality of scanning illumination lights while rotating the microlens array disk.
  • the spatial modulation element may be provided so as to be bonded to each microlens of the microlens array disk.
  • the illumination optical system further includes a spatial modulation element array disk that is disposed on the incident surface side or the exit surface side of the illumination light with respect to the microlens array disk and is rotatable integrally with the microlens array disk, A plurality of the spatial modulation element array discs are arranged on the optical axis of each of the plurality of microlenses in the same arrangement pattern as the arrangement pattern of the microlenses in the microlens array disc on a plane orthogonal to the rotation axis. You may have the said spatial modulation element arranged.
  • the scanning illumination light generation unit includes a microlens array disk and a pinhole array disk that can rotate together,
  • the microlens array disk has a plurality of microlenses arranged in a plane perpendicular to the rotation axis
  • the pinhole array disk has a plurality of pinholes arranged in the same arrangement pattern as the arrangement pattern of the microlens on a plane orthogonal to the rotation axis, and the pinhole is located at the image side focal position of the microlens.
  • the sample may be scanned with a plurality of scanning illumination lights while rotating the microlens array disk and the pinhole array disk.
  • the illumination optical system includes a deflection unit that deflects the illumination light and moves a scanning region of the sample, Based on the output of the two-dimensional sensor in the plurality of scanning regions, an image signal of the sample in which the plurality of scanning regions are combined may be generated.
  • the detection optical system includes: The response from the sample that is arranged in the optical path of the illumination light or the scanning illumination light incident on the microscope objective lens, transmits the illumination light or the scanning illumination light, and enters the microscope objective lens through the microscope objective lens A dichroic mirror that reflects light, An imaging lens for imaging the response light reflected by the dichroic mirror on the two-dimensional sensor; A spectral filter disposed in an optical path between the imaging lens and the two-dimensional sensor and transmitting the response light may be further included.
  • the illumination optical system may further include a beam shaping unit that shapes the shape of the illumination area by the illumination light incident on the scanning illumination light generation unit.
  • FIG. 6 is a partial bottom view of the microlens array disk of FIG. 5.
  • FIG. 6 is a partial cross-sectional view of the microlens array disk of FIG. 5. It is a schematic block diagram of the super-resolution microscope which concerns on 3rd Embodiment. It is a schematic block diagram of the super-resolution microscope which concerns on 4th Embodiment. It is a schematic block diagram of the super-resolution microscope which concerns on 5th Embodiment. It is a schematic block diagram of the super-resolution microscope which concerns on 6th Embodiment. It is a figure explaining the irradiation area
  • FIG. 1 is a schematic configuration diagram of a super-resolution microscope according to the first embodiment.
  • the super-resolution microscope according to the present embodiment observes the sample 10 stained with a fluorescent dye having at least two or more excited quantum states by super-resolution using a double resonance absorption process. Therefore, in the super-resolution microscope shown in FIG. 1, the first light (pump light) for exciting the fluorescent dye from the stable state to the first quantum state and the fluorescent dye are further transitioned to another second quantum state. Second light (erase light) for suppressing excitation of fluorescent molecules is used as illumination light.
  • the pump light and the erase light are coaxially synthesized from the light source unit 20 as a linearly polarized continuous wave or pulse wave, respectively, and emitted as illumination light.
  • the light source unit 20 includes, for example, a laser light source for pump light and a laser light source for erase light, and the pump light and the erase light emitted from these laser light sources directly or through a filter or the like are coaxially formed by a known beam combiner. Combined and emitted as illumination light.
  • the light source unit 20 may be configured to use a fundamental wave and a predetermined harmonic wave from a single laser light source as pump light and erase light.
  • the illumination light emitted from the light source unit 20 is guided to the microscope main body 22 through the single mode fiber 21.
  • the illumination light emitted from the light source unit 20 may be a continuous wave or a pulse wave of pump light and erase light. In the case of a pulse wave, both of the emission timings may be the same, or the erase light emission timing may be a maximum of the excitation lifetime of the fluorescent molecules of the sample 10 relative to the pump light emission timing (several nanoseconds to several microseconds). ) May be delayed.
  • the illumination light emitted from the single mode fiber 21 is condensed on the sample 10 by the microscope objective lens 28 through the collimator lens 23, the scanning illumination light generation unit 50, the dichroic mirror 25, and the spatial modulation element 27. Is done.
  • the collimator lens 23 converts the illumination light diffused and emitted from the exit end face of the single mode fiber 21 into parallel light, expands the illumination light, and causes the illumination light to enter the scanning illumination light generation unit 50.
  • the scanning illumination light generator 50 generates a plurality of scanning illumination lights that are displaced from the illumination light along different trajectories.
  • the scanning illumination light generation unit 50 includes a microlens array disk 24 and a pinhole array disk 26.
  • the microlens array disk 24 and the pinhole array disk 26 are configured in the same manner as the microlens array disk and the pinhole array disk in a Nipo type confocal microscope, for example, and are integrally formed coaxially by a disk drive unit 29 having a motor or the like. Driven by rotation. That is, the microlens array disk 24 includes a plurality of microlenses 24a arranged in a plane orthogonal to the rotation axis with different rotation trajectories.
  • the pinhole array disk 26 includes a plurality of pinholes 26a arranged in the same arrangement pattern as the arrangement pattern of the microlenses 24a on a plane orthogonal to the rotation axis.
  • the pinhole array disk 26 is arranged so that each pinhole 26a is positioned at the focal point of the corresponding microlens 24a of the microlens array disk 24, and the pinhole 24a functions as a confocal pinhole.
  • FIG. 1 for the sake of clarity, four corresponding microlenses 24a and four pinholes 26a are shown.
  • Illumination light emitted from the collimator lens 23 as parallel light is parallel to the rotation axis of the microlens array disk 24 in the scanning illumination light generation unit 50 and is planar on the plane of the microlens array disk 24 at a predetermined distance from the rotation axis. A part is irradiated. Thereby, the illumination light is simultaneously incident on the plurality of microlenses 24 a located in the irradiation region of the microlens array disk 24. As shown in the partial cross-sectional view of FIG. 1, the illumination light incident on the microlens array disk 24 is condensed by a plurality of microlenses 24a, and corresponding pinholes 26a as a plurality of scanning illumination lights. Transparent.
  • the dichroic mirror 25 is disposed in the optical path of the scanning illumination light between the microlens array disk 24 and the pinhole array disk 26.
  • the dichroic mirror 25 is configured to transmit scanning illumination light and reflect fluorescence (response light) from the sample 10 described later.
  • the plurality of scanning illumination lights transmitted through the plurality of pinholes 26a are enlarged to the aperture size of the microscope objective lens 28 by the action of the corresponding microlenses 24a and are condensed at different positions of the sample 10 by the microscope objective lens 28. .
  • the spatial modulation element 27 is disposed in the optical path of the scanning illumination light between the pinhole array disk 26 and the microscope objective lens 28.
  • the spatial modulation element 27 has optical transparency with respect to pump light and erase light.
  • the spatial modulation element 27 pumps the pump light so that the pump light has the maximum value of the light intensity and the erase light has the minimum value of the light intensity for each of the scanning illumination lights condensed by the microscope objective lens 28. And at least a part of either one of the erase lights.
  • the spatial modulation element 27 condenses the pump light by the microscope objective lens 28 without beam shaping as a normal Gaussian beam. Further, the erase light is modulated so as to be condensed after being shaped into a hollow shape having a minimum intensity at the focal point of the microscope objective lens 28. Thereby, a plurality of fluorescent spots exceeding the diffraction limit in which the fluorescence emission around the irradiation region of the pump light is suppressed are formed on the sample 10.
  • the spatial modulation element 27 uses, for example, (1) an optical multilayer film, (2) etching, (3) a wave plate, (4) a photonic material, or the like, and a polarization state of one of pump light and erase light. Or it is configured to modulate the phase state.
  • the spatial modulation element 27 is configured, for example, as shown in FIGS. 3A and 3B (see, for example, JP 2010-15026 A).
  • 3A is a plan view showing a schematic configuration of the spatial modulation element 27, and
  • FIG. 3B is a diagram for explaining optical characteristics of the spatial modulation element 27.
  • FIG. The spatial modulation element 27 uses the entire region of the incident light beam on the glass substrate 27a as a modulation region, and has a plurality of regions divided around the optical axis in this modulation region, in this case, eight regions, in which eight regions are erased. with respect to the wavelength lambda 2 of the optical phase by lambda 2/8 are differently multilayer film 27b is formed.
  • the multilayer film 27b increases in phase in a stepwise manner so that it becomes a Laguerre Gaussian beam. It is designed to go around 2 ⁇ .
  • the multilayer film 27b is designed such that a phase change of an integer multiple of 2 ⁇ occurs with respect to the wavelength ⁇ 1 of the pump light in each region due to wavelength dispersion.
  • the spatial modulation element 27 is configured so that, for example, a single layer film is independently coated on each region instead of the multilayer film 27b of FIG. 3A, and a phase difference (optical path difference) is given to the pump light and the erase light.
  • a phase difference optical path difference
  • the spatial modulation element 27 divides the glass substrate into a radial pattern, for example, and adjusts the etching depth of each region to give independent phase differences to the pump light and the erase light. Configured as follows.
  • the spatial modulation element 27 is configured, for example, as shown in FIGS. 4A and 4B (see, for example, Opt. Lett. Vol. 40, Issue 6, pp. 1057-1060 (2015)).
  • . 4A is a plan view showing a schematic configuration of the spatial modulation element 27, and
  • FIG. 4B is a diagram for explaining optical characteristics of the spatial modulation element 27.
  • the spatial modulation element 27 includes a cylindrical substrate 27c and an annular substrate 27d that are joined concentrically.
  • the cylindrical substrate 27c and the annular substrate 27d are made of, for example, a quartz substrate having a fast axis (indicated by a solid line arrow) and a slow axis (indicated by a broken line arrow) that are orthogonal to each other. It joins so that the fast axis of the board
  • substrate 27d may orthogonally cross.
  • the cylindrical substrate 27c and the annular substrate 27d are adjusted in thickness so that they are half-wave plates for erase light and single-wave plates for pump light, and the polarization states of the pump light and erase light are adjusted. Modulate.
  • the pump light is transmitted in the same phase, and the erase light is transmitted with the phase inverted, as shown in FIG. 4B.
  • the pump light transmitted through the spatial modulation element 27 is collected by the microscope objective lens 28, the pump light is collected in a form close to a normal Gaussian beam.
  • the erase light transmitted through the spatial modulation element 27 is condensed by the microscope objective lens 28, the electric field cancels out only by the focal point due to interference, so that it is condensed as a three-dimensional hollow beam. Therefore, in this case, since the fluorescent spot can be contracted also in the optical axis direction, a three-dimensional super-resolution effect can be obtained.
  • the spatial modulation element 27 is configured by arranging minute holes or pit patterns of diffraction limit on a crystal substrate made of a photonic crystal material.
  • the refractive index for a specific wavelength can be adjusted by adjusting the size and / or interval of the hole or pit pattern.
  • the pump light and the erase light transmitted through the spatial modulation element 27 are similarly caused to have the maximum value of the light intensity by the microscope objective lens 28, and the erase light has the minimum value of the light intensity.
  • the sample 10 can be condensed.
  • the fluorescence emitted from the sample 10 by the irradiation of the plurality of scanning illumination lights follows the optical path opposite to the optical path of the corresponding scanning illumination light, and the microscope objective lens 28, the spatial modulation element 27, and the corresponding pins.
  • the light enters the dichroic mirror 25 through the hole 26a. Fluorescence incident on the dichroic mirror 25 is reflected by the dichroic mirror 25, then forms an image on the image sensor 32 through the imaging lens 30 and the spectral filter 31, and is output as a photoelectric conversion signal from the image sensor 32. Is done.
  • the photoelectric conversion signal output from the image sensor 32 is input to the image processing unit 33.
  • the image processing unit 33 processes the input photoelectric conversion signal and outputs a fluorescence image signal of the sample 10.
  • the spectral filter 31 converts the wavelength component of the fluorescence emitted from the sample 10 from the wavelength component of the light reflected by the dichroic mirror 25. It is configured to transmit light. The spectral filter 31 may be omitted when the dichroic mirror 25 has a characteristic of reflecting only fluorescence of a desired wavelength component and transmitting other wavelength components.
  • the image sensor 32 is configured by a two-dimensional sensor including a solid-state imaging device such as a CCD (Charge-Coupled Device), a BBD (Bucket-Brigade Device), and a CMOS (Complementary Metal-Oxide Semiconductor).
  • the illumination optical system includes a collimator lens 23, a microlens array disk 24, a dichroic mirror 25, a pinhole array disk 26, a spatial modulation element 27, and a microscope objective lens 28.
  • the detection optical system includes a microscope objective lens 28, a spatial modulation element 27, a pinhole array disk 26, a dichroic mirror 25, an imaging lens 30, a spectral filter 31, and an image sensor 32.
  • the light source unit 20, the disk drive unit 29, and the image processing unit 33 described above are controlled by the control unit 35.
  • the control unit 35 may be realized by software using a computer or the like, or may be configured by a dedicated processor such as a DSP (digital signal processor).
  • the image processing unit 33 may be built in the control unit 35.
  • the microlens array disk 24 and the pinhole array disk 26 are coaxially connected by the disk drive unit 29 while driving the light source unit 20 to emit illumination light having pump light and erase light from the single mode fiber 21. Rotate together at a predetermined rotational speed.
  • the microlens array disk 24 rotates, the plurality of microlenses 24a move along the irradiation locus of the illumination light irradiated on the microlens array disk 24 with different rotation trajectories.
  • the sample 10 is raster-scanned by, for example, a plurality of fluorescent spots that exceed the diffraction limit due to the plurality of scanning illumination lights displaced along different trajectories, and images of the plurality of fluorescent spots are formed on the image sensor 32.
  • the image processing unit 33 converts the photoelectric conversion signal read from the pixel position of the image sensor 32 to the rotational speed of the microlens array disk 24 and the irradiation area of the illumination light irradiated to the microlens array disk 24. Processing is performed based on the position information, and a fluorescent image signal of the sample 10 is output. This fluorescent image signal can be input to a monitor to display a fluorescent image, or can be input to a recording unit to be recorded on a recording medium.
  • the sample 10 is scanned with a plurality of fluorescent spots exceeding the diffraction limit, the sample is not reduced without narrowing the observation area of the sample 10 or shortening the integration time of the fluorescence signal at each observation point. Ten three-dimensional observations are possible. Therefore, the observation area is not reduced and the S / N reduction of the microscope image is not caused. Further, since the spatial modulation element 27 is light transmissive with respect to the pump light and the erase light, it can be easily configured without increasing the cost. As described above, according to the present embodiment, it is possible to realize an improved super-resolution microscope that can obtain a good super-resolution microscope image in a short time.
  • the scanning illumination light generation unit 50 includes the microlens array disk 24, the illumination light from the light source unit 20 can be effectively used by the plurality of microlenses 24a. Therefore, the light source unit 10 can be easily configured using a relatively low power laser light source.
  • FIG. 5 is a schematic configuration diagram of a super-resolution microscope according to the second embodiment.
  • the pinhole array disk 26 and the spatial modulation element 27 are omitted from the configuration shown in FIG.
  • the scanning illumination light generation unit 50 includes a microlens array disk 24, and a spatial modulation element 37 is bonded to each microlens 24 a of the microlens array disk 24.
  • the spatial modulation element 37 is directly on the image side surface of each microlens 24a, for example, an optical multilayer film or a single layer film. It is constructed by joining.
  • a plurality of scanning illumination light in which one of the pump light and the erase light is spatially modulated by the plurality of microlenses 24 a to which the illumination light from the collimator lens 23 is incident and the corresponding plurality of spatial modulation elements 37.
  • the plurality of scanning illumination lights are beam-formed by the microscope objective lens 28 and condensed on the sample 10. Other configurations are the same as those in FIG.
  • the fluorescent spot condensed by the microscope objective lens 28 through each microlens 24a contracts in the optical axis direction as in the case of using the spatial modulation element 27 shown in FIGS. 4A and 4B. It has a 3D super-resolution function. Therefore, since three-dimensional super-resolution observation can be performed without using the pinhole array disk 26 as shown in FIG. 1, the same effect can be obtained with a simpler configuration than in the case of FIG. Is possible.
  • FIG. 7 is a schematic configuration diagram of a super-resolution microscope according to the third embodiment.
  • the super-resolution microscope according to the present embodiment is rotated between the collimator lens 23 and the microlens array disk 24 in the configuration shown in FIG. 5 instead of providing the spatial modulation element 37 bonded to the microlens 24a.
  • a spatial modulation element array disk 38 is provided as possible.
  • the spatial modulation element array disk 38 includes a plurality of spatial modulation elements 37 arranged in the same arrangement pattern as the arrangement pattern of the microlenses 24a on a plane orthogonal to the rotation axis.
  • the spatial modulation element array disk 38 is arranged so that the spatial modulation element 28 is positioned on the optical axis of each microlens 24 a, and is rotationally driven integrally with the microlens array disk 24 by the disk drive unit 29.
  • Other configurations are the same as those in FIG.
  • the spatial modulation element array disk 38 since the spatial modulation element array disk 38 is used, the spatial modulation element array is changed with respect to the change of the wavelengths of the illumination light of the pump light and the erase light as compared with the case of the second embodiment. It is possible to respond immediately by exchanging the disk 38.
  • FIG. 8 is a schematic configuration diagram of a super-resolution microscope according to the fourth embodiment.
  • the microlens array disk 24 is omitted and the scanning illumination light generation unit 50 is configured by the pinhole array disk 26.
  • the illumination light emitted as collimated light from the collimator lens 23 is transmitted through the dichroic mirror 25 and is parallel to the rotation axis of the pinhole array disk 26 and at a predetermined distance from the rotation axis. A part of the plane of the array disk 26 is irradiated. As a result, the illumination light is simultaneously transmitted through the plurality of pinholes 26a located in the illumination light irradiation region, and a plurality of scanning illumination lights are generated.
  • the scanning illumination light generated through each of the plurality of pinholes 26a is enlarged to the aperture size of the microscope objective lens 28, condensed through the spatial modulator 27, and condensed at different positions on the sample 10 by the microscope objective lens 28. Is done.
  • Other configurations are the same as those in FIG.
  • the sample 10 can be scanned with a plurality of fluorescent spots exceeding the diffraction limit by rotating the pinhole array disk 26 without using a microlens array disk. Therefore, it is possible to obtain a good super-resolution microscope image in a short time with a simpler configuration than in the case of FIG.
  • FIG. 9 is a schematic configuration diagram of a super-resolution microscope according to the fifth embodiment.
  • the super-resolution microscope according to the present embodiment has the configuration shown in FIG. 1 and a deflection that deflects the incident position of the illumination light to the microlens array disk 24 between the collimator lens 23 and the microlens array disk 24. A portion 40 is provided.
  • the deflecting unit 40 includes, for example, a galvano mirror 41 and a pupil projection lens 42, deflects illumination light from the collimator lens 23 in a two-dimensional direction by the galvano mirror 41, passes through the pupil projection lens 42, and passes through the microlens array disk. 24 is irradiated.
  • the galvanometer mirror 41 is driven by the control unit 35 via the mirror driving unit 43. When the illumination light is deflected by the galvanometer mirror 41, the incident position of the illumination light on the microlens array disk 24 is displaced, and the scanning region of the sample 10 by the plurality of scanning illumination lights is moved.
  • the driving of the galvanometer mirror 41 by the mirror driving unit 43 is controlled by the control unit 35 to move the scanning area of the sample 10, and the microlens array disk 24 and the pinhole array are each in the plurality of scanning areas.
  • the sample 10 is scanned with a plurality of fluorescent spots exceeding the diffraction limit.
  • the galvanometer mirror 41 preferably deflects the illumination light so that a plurality of scanning regions in the sample 10 are continuous.
  • the image processing unit 33 combines the fluorescence image signals obtained in the respective scanning regions based on the illumination light deflection information by the galvano mirror 41, that is, the movement information of the scanning region of the sample 10. Thus, a fluorescence image signal of the sample 10 obtained by combining a plurality of scanning regions is generated.
  • Other configurations are the same as those in FIG.
  • the scanning region of the sample 10 is moved by the deflecting unit 40, the sample 10 is scanned with a plurality of fluorescent spots exceeding the diffraction limit in each scanning region, and the plurality of scanning regions are combined. An image signal is obtained. Therefore, it is possible to observe a super-resolution microscope image over a wide range of the sample 10 in a short time without causing a decrease in S / N.
  • FIG. 10 is a schematic configuration diagram of a super-resolution microscope according to the sixth embodiment.
  • a beam shaping unit 60 is provided between the pupil projection lens 42 and the microlens array disk 24 in the configuration shown in FIG.
  • the beam shaping unit 60 includes, for example, a cylindrical lens 61 and a telescope 62.
  • the cylindrical lens 61 condenses the cross-sectional illumination light from the pupil projection lens 42 in a cross-section band shape.
  • the telescope 62 converts the illumination light collected in a cross-sectional band shape by the cylindrical lens 61 into parallel light.
  • the beam shaping unit 60 shapes the illumination light having a circular cross section from the pupil projection lens 42 into illumination light having a cross section and irradiates the microlens array disk 24.
  • Other configurations are the same as those in FIG.
  • FIG. 11 is a diagram for explaining an irradiation region of the microlens array disk 24 by illumination light from the beam shaping unit 60.
  • FIG. The microlens array disk 24 shown in FIG. 11 has a plurality of spiral arrangement patterns 63 in which a plurality of microlenses 24a are arranged in a spiral like the microlens array disk in the Nipo type confocal microscope.
  • the illumination light that is beam-shaped by the beam shaping unit 60 in a cross-sectional band shape is selected on the inner peripheral side and the outer peripheral side of the microlens array disk 24. The scanning region of the sample 10 is moved.
  • the illumination light is incident on the plurality of microlenses 24 a located on the inner peripheral side of each spiral arrangement pattern 63 in synchronization with the rotation of the microlens array disk 24 in the belt-shaped irradiation region 64 a on the inner peripheral side.
  • the sample 10 is scanned.
  • the illumination light is incident on the plurality of microlenses 24a positioned on the outer peripheral side of each spiral arrangement pattern 63, and the sample is irradiated. 10 is scanned.
  • the sample 10 is scanned with a plurality of fluorescent spots exceeding the diffraction limit in the band-shaped scanning regions respectively corresponding to the irradiation regions 64a and 64b, and a fluorescent image signal in which the plurality of scanning regions are combined is obtained.
  • the spatial resolution of a super-resolution fluorescence microscope using a double resonance absorption process depends on how quickly a fluorescent molecule transitions from the first quantum state to the second quantum state. That is, the size of the fluorescent spot is determined depending on how many fluorescent molecules have transitioned from the first quantum state to the second quantum state by irradiation with the erase light. In general, the higher the intensity of the erase light, the more the transition from the first quantum state to the second quantum state proceeds, the fluorescent spot size becomes smaller, and the spatial resolution is improved.
  • the intensity of erase light be as high as possible. Therefore, as in this embodiment, if the illumination light is beam shaped by the beam shaping unit 60 and the selected area of the microlens array disk 24 is intensively illuminated, the intensity of the erase light can be increased. The resolution can be further improved.
  • FIG. 12 is a schematic configuration diagram of a super-resolution microscope according to the seventh embodiment.
  • the pinhole array disk 26 is omitted, and the spatial modulation element 27 includes the cylindrical substrate 27c and the wheel shown in FIGS. 4A and 4B.
  • a belt substrate 27d is provided.
  • Other configurations are the same as those in FIG.
  • an extremely simple super-resolution microscope can be configured. That is, in FIG. 1, a pinhole array disk 26 that functions as a confocal pinhole is provided so that a three-dimensional stereoscopic image can be acquired with improved vertical resolution.
  • the spatial modulation element 27 shown in FIGS. 4A and 4B is used, vertical spatial resolution can be improved. Therefore, an extremely simple super-resolution microscope with improved vertical spatial resolution can be obtained by omitting the pinhole array disk 26 and using the annular spatial modulator 27 shown in FIGS. 4A and 4B. Can be configured.
  • the present invention is not limited to the above embodiment, and many variations or modifications are possible.
  • the spatial modulation element array disk 38 is disposed on the incident surface side of the microlens array disk 24, but the spatial modulation element array disk 38 is disposed on the emission surface side of the microlens array disk 24. May be.
  • the deflection unit 40 in the fifth embodiment may be applied to the second to fourth and seventh embodiments.
  • a pinhole array disk may be provided as in the first embodiment. In this case, the pinhole array disk may be displaceable in the rotation axis direction according to the observation depth position of the sample 10.
  • the scanning illumination light generation unit 50 may be configured using, for example, a digital micromirror device (DMD).
  • DMD digital micromirror device
  • the beam shaping unit 60 shown in the sixth embodiment can be applied to the second to fourth and seventh embodiments.
  • the beam shaping unit 60 is not limited to the configuration using the cylindrical lens 61 and the telescope 62, and may be configured using a liquid crystal type phase space element, for example. If a liquid crystal type phase space element is used, an arbitrary focused beam pattern can be generated by controlling the phase distribution on the beam surface. For example, a spiral pattern that matches the lens arrangement pattern of the microlens array disk 24 is also used. It can be formed easily.
  • the present invention is not limited to a super-resolution microscope using a double resonance absorption process, but also to known super-resolution microscopes such as a STED microscope, a RESOLFT (reversible / saturable / optical / fluorescence / transitions) microscope, and a GSD (ground / state depletion) microscope. It can be applied effectively. That is, the super-resolution microscope according to the present invention can be applied to a spectroscopic process involving a change in the amount of fluorescence or the fluorescence wavelength by a photochemical reaction involving a quantum state of two or more levels, for example, a triplet state or a photoisomerization state. it can.

Landscapes

  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Optics & Photonics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Microscoopes, Condenser (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

ピンホールアレーディスク26を回転させながら複数のピンホール26aから、分子を励起させる第1の光と分子の励起を抑制する第2の光とを含む照明光を透過させて複数の走査用照明光を生成し、これら複数の走査用照明光を第1の光及び第2の光に対して光透過性を有する空間変調素子27及び顕微鏡対物レンズ28を経て回折限界を超える複数の蛍光スポットとして試料10に照射して、試料10を複数の蛍光スポットで走査する。

Description

超解像顕微鏡
 本発明は、超解像顕微鏡に関するものである。
 超解像顕微鏡として、例えば特許文献1、2には、少なくとも2以上の励起量子状態をもつ分子を含む試料を、2重共鳴吸収過程を用いて回折限界を超える高い空間分解能で観察可能な蛍光顕微鏡が開示されている。特許文献1、2に開示の蛍光顕微鏡は、試料中の分子を安定状態から第1量子状態に励起させて蛍光を発生させるためのポンプ光と、分子を更に他の第2量子状態に遷移させて蛍光の発生を抑制すためのイレース光とを用いて、回折限界以下に収縮した蛍光スポット(励起光スポット)により試料面を空間走査する。そして、各計測点の蛍光信号をコンピュータ上で2次元的に配列して画像処理することにより、回折限界の空間分解能を上回る解像度を有する蛍光画像を得ている。
 特許文献1、2に開示の蛍光顕微鏡は、優れた機能を有するものの、ポンプ光とイレース光とを一組とする1本の走査ビームで試料を走査するため、1画面を計測するのに時間がかかる。そのため、生きた生物試料を観察する場合は、レーザ光の集光点における生物試料の部位の形態や位置の変化により空間分解能が低下して、良好な超解像顕微鏡画像が得られない場合がある。
 なお、1本の走査ビームで短時間に画像を得る方法としては、例えば観測領域を狭くしたり、観測点毎の蛍光信号の積算時間を短くしたりすることが考えられる。しかし、前者の場合は試料全体の構造が把握しにくくなるといった不便が発生し、後者の場合は画像のS/N低下を招くことになる。
 一方、他の超解像顕微鏡として、例えば特許文献3には、試料を励起する励起光と誘導放出により試料の励起を抑制する抑制光とを用いるSTED(stimulated emission depletion:)顕微鏡が開示されている。特許文献3に開示のSTED顕微鏡は、複数のマイクロレンズを配列して保持するレンズディスクと、マイクロレンズの配列と同じパターンで形成された複数のピンホールを有するピンホールディスクと、マイクロレンズに形成された位相調整部とを有する。そして、レンズディスクとピンホールディスクとを一体的に回転させながら、同軸に重ね合わされた励起光と抑制光とを複数のマイクロレンズに同時に入射させて、対をなすピンホールを経て試料に照射している。
 特許文献3に開示のSTED顕微鏡によると、回折限界を超える複数の蛍光スポットにより試料を走査するので、高速走査が可能となり、短時間で超解像顕微鏡画像を得ることが可能となる。
特開2001-100102号公報 特開2010-15026号公報 特開2012-226145号公報
 しかしながら、特許文献3に開示のSTED顕微鏡においては、マイクロレンズの位相調整部に抑制光透過フィルタを形成し、マイクロレンズの位相調整部以外の領域に励起光透過フィルタを形成している。ここで、抑制光透過フィルタは、抑制光を透過させて励起光を透過させない特性を有する。また、励起光透過フィルタは、励起光を透過させて抑制光を透過させない特性を有する。そのため、小径のマイクロレンズに抑制光透過フィルタと励起光透過フィルタとを分離して形成するのが容易ではなく、コストアップを招くことが懸念される。また、励起光と抑制光との口径内の透過領域を分割して遮蔽しているため、励起光と抑制光との強度が極端に低下する。特に、抑制光は強い強度を要するため、高出力のレーザー光源を必要とする。更には、それぞれの瞳領域が遮蔽されているため、集光したビーム形状が広がったり、変形して十分な超解像機能が得られ難い。
 したがって、かかる観点に鑑みてなされた本発明の目的は、短時間で良好な超解像顕微鏡画像が得られる改善された超解像顕微鏡を提供することにある。
 上記目的を達成する本発明に係る超解像顕微鏡は、
 試料中の分子を安定状態から第1量子状態に励起させる第1の光と前記分子の励起を抑制する第2の光とを含む照明光を、前記第1の光及び前記第2の光の少なくとも一部を空間的に重ね合わせて前記試料に照射する照明光学系と、
 前記照明光の前記試料への照射による該試料からの応答光を検出する検出光学系と、を備え、
 前記照明光学系は、走査用照明光生成部と、空間変調素子と、顕微鏡対物レンズと、を有し、
  前記走査用照明光生成部は、入射される前記照明光から異なる軌跡で変位する複数の走査用照明光を生成し、
  前記顕微鏡対物レンズは、前記走査用照明光生成部からの複数の前記走査用照明光を前記試料に集光し、
  前記空間変調素子は、前記第1の光及び前記第2の光に対して光透過性を有し、前記顕微鏡対物レンズにより集光される複数の前記走査用照明光の各々を、前記第1の光が光強度の極大値を持ち、前記第2の光が光強度の極小値を持つように、前記第1の光及び前記第2の光のいずれか一方の少なくとも一部を空間変調し、
 前記検出光学系は、複数の前記走査用照明光による前記試料からの前記応答光を光電変換する二次元光センサを備え、
 前記試料を複数の前記走査用照明光で走査して、前記二次元センサの出力に基づいて前記試料を観察するものである。
 前記空間変調素子は、前記第1の光及び前記第2の光のいずれか一方の偏光状態又は位相状態を変調するとよい。
 前記走査用照明光生成部は、回転可能なピンホールアレーディスクを備え、
 前記ピンホールアレーディスクは、回転軸と直交する平面に複数配列されたピンホールを有し、前記照明光を前記平面の一部の複数の前記ピンホールから透過させて複数の前記走査用照明光を生成し、 
 前記ピンホールアレーディスクを回転させながら前記試料を複数の前記走査用照明光で走査してもよい。
 前記走査用照明光生成部は、回転可能なマイクロレンズアレーディスクを備え、
 前記マイクロレンズアレーディスクは、回転軸と直交する平面に複数配列されたマイクロレンズを有し、前記照明光を前記平面の一部の複数の前記マイクロレンズから透過させて複数の前記走査用照明光を生成し、
 前記マイクロレンズアレーディスクを回転させながら前記試料を複数の前記走査用照明光で走査してもよい。
 前記空間変調素子は、前記マイクロレンズアレーディスクの各々の前記マイクロレンズに接合して設けられてもよい。
 前記照明光学系は、前記マイクロレンズアレーディスクに対する前記照明光の入射面側又は射出面側に配置され、前記マイクロレンズアレーディスクと一体に回転可能な空間変調素子アレーディスクをさらに備え、
 前記空間変調素子アレーディスクは、回転軸と直交する平面に前記マイクロレンズアレーディスクにおける前記マイクロレンズの配列パターンと同じ配列パターンで、複数の前記マイクロレンズの各々の光軸上に位置するように複数配列された前記空間変調素子を有してもよい。
 前記走査用照明光生成部は、一体に回転可能なマイクロレンズアレーディスク及びピンホールアレーディスクを備え、
 前記マイクロレンズアレーディスクは、回転軸と直交する平面に複数配列されたマイクロレンズを有し、
 前記ピンホールアレーディスクは、前記回転軸と直交する平面に前記マイクロレンズの配列パターンと同じ配列パターンで複数配列されたピンホールを有し、前記ピンホールが前記マイクロレンズの像側焦点位置に位置するように配置され、
 前記照明光を複数の前記マイクロレンズ及び複数の前記ピンホールを透過させて複数の前記走査用照明光を生成し、
 前記マイクロレンズアレーディスク及び前記ピンホールアレーディスクを回転させながら前記試料を複数の前記走査用照明光で走査してもよい。
 前記照明光学系は、前記照明光を偏向して前記試料の走査領域を移動させる偏向部を備え、
 複数の前記走査領域における前記二次元センサの出力に基づいて、複数の前記走査領域を結合した前記試料の画像信号を生成してもよい。
 前記検出光学系は、
  前記顕微鏡対物レンズに入射する前記照明光又は前記走査用照明光の光路中に配置され、前記照明光又は前記走査用照明光を透過させ、前記顕微鏡対物レンズを経て入射する前記試料からの前記応答光を反射させるダイクロイックミラーと、
  前記ダイクロイックミラーで反射される前記応答光を前記二次元センサに結像させる結像レンズと、
  前記結像レンズと前記二次元センサとの間の光路中に配置され、前記応答光を透過する分光フィルタと、をさらに備えてもよい。
 前記照明光学系は、前記走査用照明光生成部に入射させる前記照明光による照明領域の形状を整形するビーム整形部をさらに備えてもよい。
 本発明によると、コストアップを招くことなく容易に構成でき、短時間で良好な超解像顕微鏡画像が得られる改善された超解像顕微鏡を実現することが可能となる。
第1実施の形態に係る超解像顕微鏡の概略構成図である。 図1の部分断面図である。 空間変調素子の一例の概略構成を示す平面図である。 図3Aの空間変調素子の光学特性を説明するための図である。 空間変調素子の他の例の概略構成を示す平面図である。 図4Aの空間変調素子の光学特性を説明するための図である。 第2実施の形態に係る超解像顕微鏡の概略構成図である。 図5のマイクロレンズアレーディスクの部分底面図である。 図5のマイクロレンズアレーディスクの部分断面図である。 第3実施の形態に係る超解像顕微鏡の概略構成図である。 第4実施の形態に係る超解像顕微鏡の概略構成図である。 第5実施の形態に係る超解像顕微鏡の概略構成図である。 第6実施の形態に係る超解像顕微鏡の概略構成図である。 図10のマイクロレンズアレーディスクに対する照明光による照射領域を説明する図である。 第7実施の形態に係る超解像顕微鏡の概略構成図である。
 以下、本発明の実施の形態について図面を参照して説明する。
 (第1実施の形態)
 図1は、第1実施の形態に係る超解像顕微鏡の概略構成図である。本実施の形態に係る超解像顕微鏡は、少なくとも2以上の励起量子状態をもつ蛍光色素で染色された試料10を、2重共鳴吸収過程を用いて超解像で観察する。そのため、図1に示す超解像顕微鏡は、蛍光色素を安定状態から第1量子状態に励起するための第1の光(ポンプ光)と蛍光色素を更に他の第2量子状態に遷移させて蛍光分子の励起を抑制するための第2の光(イレース光)とを照明光として用いる。
 ポンプ光及びイレース光は、それぞれ直線偏光の連続波又はパルス波として光源部20から同軸に合成されて照明光として射出される。光源部20は、例えばポンプ光用のレーザ光源及びイレース光用のレーザ光源を有し、これらレーザ光源から直接又はフィルタ等を介して射出されるポンプ光及びイレース光を公知のビームコンバイナで同軸に合成して照明光として射出する。なお、光源部20は、単一のレーザ光源からの基本波及び所定の高調波をポンプ光及びイレース光として用いるように構成してもよい。
 光源部20から射出される照明光は、シングルモードファイバ21を経て顕微鏡本体部22に導光される。光源部20から射出される照明光は、ポンプ光及びイレース光が連続波でもよいし、パルス波でもよい。パルス波の場合、両者の射出タイミングは同時でもよいし、イレース光の射出タイミングをポンプ光の射出タイミングに対して、最大で試料10の蛍光分子の励起寿命の時間(数ナノ秒から数マイクロ秒)遅らせてもよい。
 顕微鏡本体部22において、シングルモードファイバ21から射出される照明光は、コリメータレンズ23、走査用照明光生成部50、ダイクロイックミラー25及び空間変調素子27を経て顕微鏡対物レンズ28により試料10に集光される。
 コリメータレンズ23は、シングルモードファイバ21の射出端面から拡散して射出される照明光を平行光に変換して、照明光を拡大して走査用照明光生成部50に入射させる。
 走査用照明光生成部50は、照明光から異なる軌跡で変位する複数の走査用照明光を生成する。本実施の形態において、走査用照明光生成部50は、マイクロレンズアレーディスク24とピンホールアレーディスク26とを備える。マイクロレンズアレーディスク24及びピンホールアレーディスク26は、例えばニポウ式共焦点顕微鏡におけるマイクロレンズアレーディスク及びピンホールアレーディスクと同様に構成されて、モータ等を有するディスク駆動部29により同軸上で一体に回転駆動される。すなわち、マイクロレンズアレーディスク24は、回転軸と直交する平面に回転軌跡を異ならせて複数配列されたマイクロレンズ24aを有して構成される。
 同様に、ピンホールアレーディスク26は、回転軸と直交する平面にマイクロレンズ24aの配列パターンと同じ配列パターンで複数配列されたピンホール26aを有して構成される。ピンホールアレーディスク26は、各ピンホール26aがマイクロレンズアレーディスク24の対応するマイクロレンズ24aの焦点に位置するように配置されて、ピンホール24aが共焦点ピンホールとして機能する。なお、図1では、図面を明瞭とするために、対応する4つのマイクロレンズ24aと4つのピンホール26aとを示している。
 コリメータレンズ23から平行光で射出される照明光は、走査用照明光生成部50においてマイクロレンズアレーディスク24の回転軸と平行に、回転軸から所定距離の位置においてマイクロレンズアレーディスク24の平面の一部に照射される。これにより、照明光は、マイクロレンズアレーディスク24の照射領域内に位置する複数のマイクロレンズ24aに同時に入射される。マイクロレンズアレーディスク24に入射された照明光は、図2に図1の部分断面図を示すように、複数のマイクロレンズ24aでそれぞれ集光されて複数の走査用照明光として対応するピンホール26aを透過する。
 ダイクロイックミラー25は、マイクロレンズアレーディスク24とピンホールアレーディスク26との間の走査用照明光の光路中に配置される。ダイクロイックミラー25は、走査用照明光を透過し、後述する試料10からの蛍光(応答光)を反射するように構成される。
 複数のピンホール26aを透過した複数の走査用照明光は、対応するマイクロレンズ24aの作用により顕微鏡対物レンズ28の口径サイズまで拡大されて顕微鏡対物レンズ28により試料10の異なる位置に集光される。
 空間変調素子27は、ピンホールアレーディスク26と顕微鏡対物レンズ28との間の走査用照明光の光路中に配置される。空間変調素子27は、ポンプ光及びイレース光に対して光透過性を有する。空間変調素子27は、顕微鏡対物レンズ28により集光される走査用照明光の各々に対し、ポンプ光が光強度の極大値を持ち、イレース光が光強度の極小値を持つように、ポンプ光及びイレース光のいずれか一方の少なくとも一部を空間変調するように構成される。
 例えば、空間変調素子27は、ポンプ光については顕微鏡対物レンズ28により通常のガウスビームとしてビーム整形されることなく集光させる。また、イレース光については顕微鏡対物レンズ28の焦点で強度が最小となる中空状にビーム整形されて集光されるように変調する。これにより、試料10には、ポンプ光の照射領域の周囲の蛍光発光が抑制された回折限界を超える複数の蛍光スポットが形成される。
 空間変調素子27は、例えば、(1)光学多層膜、(2)エッチング、(3)波長板、(4)フォトニック材料、等を用いて、ポンプ光及びイレース光のいずれか一方の偏光状態又は位相状態を変調するように構成される。
 上記(1)の場合、空間変調素子27は、例えば図3A及び図3Bに示すように構成される(例えば、特開2010-15026号公報参照)。図3Aは空間変調素子27の概略構成を示す平面図であり、図3Bは空間変調素子27の光学特性を説明するための図である。この空間変調素子27は、ガラス基板27a上の入射光束の全領域を変調領域とし、この変調領域に光軸の周りに分割された複数領域、ここでは8領域を有し、その8領域にイレース光の波長λに対して、λ/8ずつ位相が異なるように多層膜27bが形成されている。
 ここで、多層膜27bは、図3Bにポンプ光及びイレース光の位相分布を模式的に示すように、イレース光に対してはラゲール・ガウシアンビームとなるように段階的に位相が増加し、全体で2π周回する様に設計される。一方、ポンプ光に対しては、多層膜27bは、波長分散性により各領域でポンプ光の波長λに対して2πの整数倍の位相変化が発生するように設計される。
 また、空間変調素子27は、例えば図3Aの多層膜27bに代えて、各領域に独立に単層膜をコートして、ポンプ光とイレース光とに位相差(光路差)を与えるように構成してもよい(例えば、特開2014-182239号公報参照)。
 上記(2)の場合、空間変調素子27は、例えばガラス基板を放射線状に分割し、各領域のエッチングの深さを調整して、ポンプ光とイレース光とに対して独立の位相差を与えるように構成される。
 上記(3)の場合、空間変調素子27は、例えば図4A及び図4Bに示すように構成される(例えば、Opt. Lett. Vol. 40, Issue 6, pp. 1057-1060 (2015)参照)。図4Aは空間変調素子27の概略構成を示す平面図であり、図4Bは空間変調素子27の光学特性を説明するための図である。この空間変調素子27は、同心円状に接合された円柱基板27c及び輪帯基板27dを有する。
 円柱基板27c及び輪帯基板27dは、それぞれ直交する進相軸(実線矢印で示す)及び遅相軸(破線矢印で示す)を有する例えば水晶基板からなり、円柱基板27cの進相軸と輪帯基板27dの進相軸とが直交するよう接合される。円柱基板27c及び輪帯基板27dは、イレース光に対しては半波長板、ポンプ光に対しては1波長板となるように、それぞれの厚みが調整されて、ポンプ光及びイレース光の偏光状態を変調する。
 図4Aの空間変調素子27は、図4Bに示すように、ポンプ光は同相で透過し、イレース光は位相が反転されて透過する。この空間変調素子27を透過したポンプ光は、顕微鏡対物レンズ28で集光されると、通常のガウスビームに近い形で集光される。これに対し、空間変調素子27を透過したイレース光は、顕微鏡対物レンズ28で集光されると、干渉により焦点のみで電場相殺されるので、3次元的な中空ビームとして集光される。したがって、この場合は、光軸方向にも蛍光スポットを収縮できるので、3次元的な超解像効果が得られる。
 上記(4)の場合、空間変調素子27は、フォトニック結晶材料からなる結晶基板に回折限界の微小なホール又はピットパターンを配列して構成される。ホール又はピットパターンは、そのサイズ及び/又は間隔を調整することで、特定の波長に対する屈折率を調整することができる。
 例えば、ホール又はピットパターンを、結晶基板の平面内で直交する方向に対して、異なるサイズ及び/又は間隔で配列すると、直交方向で異なる屈折率を与えることができる。この特性を利用することで、ポンプ光及びイレース光に対して独立に異なる屈折率を与えることができる。これにより、空間変調素子27を透過したポンプ光及びイレース光を、顕微鏡対物レンズ28により、同様に、ポンプ光は光強度の極大値を持ち、イレース光は光強度の極小値を持つように、試料10に集光させることができる。
 一方、複数の走査用照明光の照射により試料10からそれぞれ発光する蛍光は、対応する走査用照明光の光路とは逆の光路を辿って、顕微鏡対物レンズ28、空間変調素子27及び対応するピンホール26aを経てダイクロイックミラー25に入射される。ダイクロイックミラー25に入射された蛍光は、該ダイクロイックミラー25で反射された後、結像レンズ30及び分光フィルタ31を経て画像センサ32上に結像されて、該画像センサ32から光電変換信号として出力される。画像センサ32から出力される光電変換信号は、画像処理部33に入力される。画像処理部33は、入力される光電変換信号を処理して、試料10の蛍光画像信号を出力する。
 分光フィルタ31は、画像処理部33から出力される蛍光画像信号のS/Nを向上させるために、ダイクロイックミラー25で反射される光の波長成分から、試料10で発光された蛍光の波長成分の光を透過させるように構成される。なお、分光フィルタ31は、ダイクロイックミラー25が所望の波長成分の蛍光のみを反射し、他の波長成分は透過する特性を有する場合は省略してもよい。画像センサ32は、例えばCCD(Charge Coupled Device)、BBD(Bucket Brigade Device)、CMOS(Complementary Metal Oxide Semiconductor)等の固体撮像素子からなる二次元センサで構成される。
 本実施の形態において、照明光学系は、コリメータレンズ23、マイクロレンズアレーディスク24、ダイクロイックミラー25、ピンホールアレーディスク26、空間変調素子27及び顕微鏡対物レンズ28を含んで構成される。また、検出光学系は、顕微鏡対物レンズ28、空間変調素子27、ピンホールアレーディスク26、ダイクロイックミラー25、結像レンズ30、分光フィルタ31及び画像センサ32を含んで構成される。
 上述した光源部20、ディスク駆動部29及び画像処理部33は、制御部35により制御される。制御部35は、コンピュータ等を使用してソフトウエアで実現してもよいし、例えばDSP(デジタルシグナルプロセッサ)等の専用のプロセッサによって構成してもよい。なお、画像処理部33は、制御部35に内蔵されていてもよい。
 本実施の形態では、光源部20を駆動してシングルモードファイバ21からポンプ光及びイレース光を有する照明光を射出させながら、ディスク駆動部29によりマイクロレンズアレーディスク24及びピンホールアレーディスク26を同軸上で一体に所定の回転速度で回転させる。マイクロレンズアレーディスク24が回転すると、マイクロレンズアレーディスク24上に照射される照明光の照射領域を複数のマイクロレンズ24aが異なる回転軌跡で移動する。これにより、試料10は、異なる軌跡で変位する複数の走査用照明光による回折限界を超える複数の蛍光スポットによって例えばラスタ走査され、その複数の蛍光スポットによる画像が画像センサ32に結像される。
 画像処理部33は、画像センサ32の画素位置から読み出される光電変換信号を、マイクロレンズアレーディスク24の回転速度、マイクロレンズアレーディスク24に照射される照明光の照射領域を通過するマイクロレンズ24aの位置情報に基づいて処理して、試料10の蛍光画像信号を出力する。この蛍光画像信号は、例えばモニタに入力して蛍光画像を表示したり、記録部に入力して記録媒体に記録したりすることができる。
 本実施の形態によると、回折限界を超える複数の蛍光スポットにより試料10を走査するので、試料10の観測領域を狭くしたり、観測点毎の蛍光信号の積算時間を短くしたりすることなく試料10の3次元的な観測が可能となる。したがって、観測領域の縮小化や顕微鏡画像のS/N低下を招くこともない。また、空間変調素子27は、ポンプ光及びイレース光に対して光透過性を有するので、コストアップを招くことなく容易に構成できる。以上により、本実施の形態によると、短時間で良好な超解像顕微鏡画像が得られる改善された超解像顕微鏡を実現することが可能となる。また、本実施の形態では、走査用照明光生成部50がマイクロレンズアレーディスク24を有するので、光源部20からの照明光を複数のマイクロレンズ24aにより有効利用することができる。したがって、光源部10を比較的低パワーのレーザ光源を用いて簡単に構成することが可能となる。
 (第2実施の形態)
 図5は、第2実施の形態に係る超解像顕微鏡の概略構成図である。本実施の形態に係る超解像顕微鏡は、図1に示した構成において、ピンホールアレーディスク26及び空間変調素子27を省略している。また、走査用照明光生成部50は、マイクロレンズアレーディスク24により構成され、マイクロレンズアレーディスク24の各マイクロレンズ24aに空間変調素子37が接合して設けてある。
 空間変調素子37は、例えば図6A及び図6Bにマイクロレンズアレーディスク24の部分底面図及び部分断面図を示すように、各マイクロレンズ24aの像側表面に直接、例えば光学多層膜又は単層膜を接合して構成される。これにより、コリメータレンズ23からの照明光が入射する複数のマイクロレンズ24a及び対応する複数の空間変調素子37によって、ポンプ光及びイレース光のいずれか一方が空間変調された複数の走査用照明光が生成される。これら複数の走査用照明光は、顕微鏡対物レンズ28によりビーム成形されて試料10に集光される。その他の構成は、図1と同様であるので説明を省略する。
 本実施の形態によると、各マイクロレンズ24aを経て顕微鏡対物レンズ28で集光される蛍光スポットは、図4A及び図4Bに示した空間変調素子27を用いる場合と同様に光軸方向にも収縮できる3次元的な超解像機能を有する。したがって、図1に示したようなピンホールアレーディスク26を用いることなく、3次元的な超解像観測が可能となるので、図1の場合よりも簡単な構成で、同様の効果を得ることが可能となる。
 (第3実施の形態)
 図7は、第3実施の形態に係る超解像顕微鏡の概略構成図である。本実施の形態に係る超解像顕微鏡は、図5に示した構成において、空間変調素子37をマイクロレンズ24aに接合して設ける代わりに、コリメータレンズ23とマイクロレンズアレーディスク24との間に回転可能に空間変調素子アレーディスク38を設けたものである。
 空間変調素子アレーディスク38は、回転軸と直交する平面にマイクロレンズ24aの配列パターンと同じ配列パターンで複数配列された空間変調素子37を有して構成される。空間変調素子アレーディスク38は、各マイクロレンズ24aの光軸上に空間変調素子28が位置するように配置されて、ディスク駆動部29によりマイクロレンズアレーディスク24と一体に回転駆動される。その他の構成は、図1と同様であるので説明を省略する。
 したがって、本実施の形態においても第2実施の形態と同様に3次元的な超解像観測が可能となる。また、本実施の形態によると、空間変調素子アレーディスク38を用いるので、第2実施の形態の場合と比較して、ポンプ光及びイレース光の照明光の波長の変更に対して空間変調素子アレーディスク38の交換で即時に対応することが可能となる。
 (第4実施の形態)
 図8は、第4実施の形態に係る超解像顕微鏡の概略構成図である。本実施の形態に係る超解像顕微鏡は、図1に示した構成において、マイクロレンズアレーディスク24を省略して、走査用照明光生成部50をピンホールアレーディスク26により構成したものである。
 本実施の形態において、コリメータレンズ23から平行光で射出される照明光は、ダイクロイックミラー25を透過して、ピンホールアレーディスク26の回転軸と平行に、回転軸から所定距離の位置においてピンホールアレーディスク26の平面の一部に照射される。これにより、照明光の照射領域内に位置する複数のピンホール26aを照明光が同時に透過して複数の走査用照明光が生成される。
 複数のピンホール26aをそれぞれ透過して生成された走査用照明光は、それぞれ顕微鏡対物レンズ28の口径サイズまで拡大されて空間変調素子27を経て顕微鏡対物レンズ28により試料10の異なる位置に集光される。その他の構成は、図1と同様であるので説明を省略する。
 本実施の形態によると、マイクロレンズアレーディスクを用いることなく、ピンホールアレーディスク26を回転させることにより、回折限界を超える複数の蛍光スポットにより試料10を走査することができる。したがって、図1の場合よりも簡単な構成で、短時間で良好な超解像顕微鏡画像を得ることが可能となる。
 (第5実施の形態)
 図9は、第5実施の形態に係る超解像顕微鏡の概略構成図である。本実施の形態に係る超解像顕微鏡は、図1に示した構成において、コリメータレンズ23とマイクロレンズアレーディスク24との間に、マイクロレンズアレーディスク24への照明光の入射位置を偏向する偏向部40を設けたものである。
 偏向部40は、例えばガルバノミラー41及び瞳投影レンズ42を有して構成され、コリメータレンズ23からの照明光をガルバノミラー41で二次元方向に偏向して瞳投影レンズ42を経てマイクロレンズアレーディスク24に照射する。ガルバノミラー41は、制御部35によりミラー駆動部43を経て駆動される。ガルバノミラー41により照明光が偏向されると、マイクロレンズアレーディスク24への照明光の入射位置が変位して、複数の走査用照明光による試料10の走査領域が移動する。
 本実施の形態では、ミラー駆動部43によるガルバノミラー41の駆動を制御部35により制御して試料10の走査領域を移動させ、その複数の走査領域の各々においてマイクロレンズアレーディスク24及びピンホールアレーディスク26の回転により、回折限界を超える複数の蛍光スポットで試料10を走査する。なお、ガルバノミラー41は、試料10における複数の走査領域が連続するように照明光を偏向するのが好ましい。
 画像処理部33は、制御部35による制御のもとに、各走査領域において得られる蛍光画像信号を、ガルバノミラー41による照明光の偏向情報すなわち試料10の走査領域の移動情報に基づいて結合して、複数の走査領域を結合した試料10の蛍光画像信号を生成する。その他の構成は、図1と同様であるので説明を省略する。
 本実施の形態によると、偏向部40により試料10の走査領域を移動させ、各々の走査領域において回折限界を超える複数の蛍光スポットで試料10を走査して、複数の走査領域が結合された蛍光画像信号を得る。したがって、試料10の広範囲に亘る超解像顕微鏡画像をS/N低下を招くことなく、短時間で観測することが可能となる。
 (第6実施の形態)
 図10は、第6実施の形態に係る超解像顕微鏡の概略構成図である。本実施の形態に係る超解像顕微鏡は、図9に示した構成において、瞳投影レンズ42とマイクロレンズアレーディスク24との間に、ビーム整形部60を設けたものである。ビーム整形部60は、例えばシリンドリカルレンズ61と、テレスコープ62とを備える。
 シリンドリカルレンズ61は、瞳投影レンズ42からの断面円形状の照明光を、断面帯状に集光させる。テレスコープ62は、シリンドリカルレンズ61により断面帯状に集光される照明光を平行光に変換する。これにより、ビーム整形部60は、瞳投影レンズ42からの断面円形状の照明光を断面帯状の照明光にビーム整形してマイクロレンズアレーディスク24に照射する。その他の構成は、図9と同様であるので説明を省略する。
 図11は、マイクロレンズアレーディスク24に対するビーム整形部60からの照明光による照射領域を説明する図である。図11に示すマイクロレンズアレーディスク24は、ニポウ式共焦点顕微鏡におけるマイクロレンズアレーディスクと同様に、複数のマイクロレンズ24aが螺旋状に配列された螺旋状配列パターン63を複数有する。本実施の形態では、偏向部40による照明光の偏向に応じて、例えばマイクロレンズアレーディスク24の内周側と外周側とに、ビーム整形部60により断面帯状にビーム整形される照明光を選択的に照射して、試料10の走査領域を移動させる。
 これにより、内周側の帯状の照射領域64aにおいて、マイクロレンズアレーディスク24の回転に同期して、各螺旋状配列パターン63の内周側に位置する複数のマイクロレンズ24aに照明光を入射させて試料10を走査する。同様に、外周側の帯状の照射領域64bにおいて、マイクロレンズアレーディスク24の回転に同期して、各螺旋状配列パターン63の外周側に位置する複数のマイクロレンズ24aに照明光を入射させて試料10を走査する。このようにして、照射領域64a及び64bにそれぞれ対応する帯状の走査領域において、回折限界を超える複数の蛍光スポットで試料10を走査して、複数の走査領域が結合された蛍光画像信号を得る。
 本実施の形態によると、マイクロレンズアレーディスク24の選択した領域をビーム整形部60により集中的に照明するので、強い蛍光抑制効果を効率的に誘導できる。その結果、空間分解能をより向上させることが可能となる。すなわち、2重共鳴吸収過程を用いる超解像蛍光顕微鏡の空間分解能は、蛍光分子を第1量子状態から第2量子状態にいかに速やかに遷移させるかに係っている。つまり、イレース光の照射により、どれだけの蛍光分子が第1量子状態から第2量子状態に遷移したかによって、蛍光スポットのサイズが決定される。一般には、イレース光の強度が高いほど、第1量子状態から第2量子状態の遷移が進行し、蛍光スポットサイズが小さくなり、空間分解能向上する。特に、断面積の小さい蛍光分子を扱う場合は、できるだけイレース光の強度が高い方が望ましい。したがって、本実施の形態におけるように、照明光をビーム整形部60によりビーム整形して、マイクロレンズアレーディスク24の選択した領域を集中的に照明すれば、イレース光の強度を高くできるので、空間分解能をより向上することが可能となる。
 (第7実施の形態)
 図12は、第7実施の形態に係る超解像顕微鏡の概略構成図である。本実施の形態に係る超解像顕微鏡は、図1に示した構成において、ピンホールアレーディスク26が省略されているとともに、空間変調素子27が図4A及び図4Bに示した円柱基板27c及び輪帯基板27dを有して構成されている。その他の構成は、図1と同様であるので説明を省略する。
 本実施の形態によると、極めてシンプルな超解像顕微鏡を構成することができる。すなわち、図1において、共焦点ピンホールとして機能するピンホールアレーディスク26は、縦分解能を向上させて3次元立体像を取得可能に設けられる。しかし、図4A及び図4Bに示した空間変調素子27を用いれば、縦方向の空間分解も向上できる。したがって、ピンホールアレーディスク26を省略して、図4A及び図4Bに示した輪帯形状の空間変調素子27を用いることで、縦方向の空間分解も向上させた極めてシンプルな超解像顕微鏡を構成することができる。
 なお、本発明は、上記実施の形態にのみ限定されるものではなく、幾多の変形または変更が可能である。例えば、第3実施の形態においては、空間変調素子アレーディスク38をマイクロレンズアレーディスク24の入射面側に配置したが、空間変調素子アレーディスク38はマイクロレンズアレーディスク24の射出面側に配置してもよい。また、第5実施の形態における偏向部40は、第2~4、7実施の形態に適用してもよい。また、第2実施の形態及び第3実施の形態においては、第1実施の形態と同様に、ピンホールアレーディスクを設けてもよい。この場合、ピンホールアレーディスクは、試料10の観察深さ位置に応じて回転軸方向に変位可能としてもよい。また、上記各実施の形態において、走査用照明光生成部50は、例えばデジタル・マイクロミラー・デバイス(DMD)を用いて構成してもよい。
 また、第6実施の形態に示したビーム整形部60は、第2~4、7実施の形態に適用することができる。また、ビーム整形部60は、シリンドリカルレンズ61及びテレスコープ62を用いる構成に限らず、例えば液晶型の位相空間素子を用いて構成してもよい。液晶型の位相空間素子を用いれば、ビーム面の位相分布を制御することで任意の集光ビームパターンを生成できるので、マイクロレンズアレーディスク24のレンズ配列パターンと一致した、例えば螺旋状のパターンも容易に形成することができる。
 また、本発明は2重共鳴吸収過程を用いる超解像顕微鏡に限らず、STED顕微鏡、RESOLFT(reversible saturable optical fluorescence transitions)顕微鏡、GSD(ground state depletion)顕微鏡等の公知の超解像顕微鏡にも有効に適用することができる。すなわち、本発明に係る超解像顕微鏡は、2準位以上の量子状態、例えば3重項状態や光異性化状態が関わる光化学反応により、蛍光量や蛍光波長の変化を伴う分光過程にも適用できる。
 10 試料
 20 光源部
 21 シングルモードファイバ
 22 顕微鏡本体部
 23 コリメータレンズ
 24 マイクロレンズアレーディスク
 24a マイクロレンズ
 25 ダイクロイックミラー
 26 ピンホールアレーディスク
 26a ピンホール
 27 空間変調素子
 28 顕微鏡対物レンズ
 29 ディスク駆動部
 30 結像レンズ
 31 分光フィルタ
 32 画像センサ
 33 画像処理部
 35 制御部
 37 空間変調素子
 38 空間変調素子アレーディスク
 40 偏向部
 41 ガルバノミラー
 42 瞳投影レンズ
 43 ミラー駆動部
 50 走査用照明光生成部
 60 ビーム整形部
 

Claims (10)

  1.  試料中の分子を励起させる第1の光と前記分子の励起を抑制する第2の光とを含む照明光を、前記第1の光及び前記第2の光の少なくとも一部を空間的に重ね合わせて前記試料に照射する照明光学系と、
     前記照明光の前記試料への照射による該試料からの応答光を検出する検出光学系と、を備え、
     前記照明光学系は、走査用照明光生成部と、空間変調素子と、顕微鏡対物レンズと、を有し、
      前記走査用照明光生成部は、入射される前記照明光から異なる軌跡で変位する複数の走査用照明光を生成し、
      前記顕微鏡対物レンズは、前記走査用照明光生成部からの複数の前記走査用照明光を前記試料に集光し、
      前記空間変調素子は、前記第1の光及び前記第2の光に対して光透過性を有し、前記顕微鏡対物レンズにより集光される複数の前記走査用照明光の各々を、前記第1の光が光強度の極大値を持ち、前記第2の光が光強度の極小値を持つように、前記第1の光及び前記第2の光のいずれか一方の少なくとも一部を空間変調し、
     前記検出光学系は、複数の前記走査用照明光による前記試料からの前記応答光を光電変換する二次元光センサを備え、
     前記試料を複数の前記走査用照明光で走査して、前記二次元センサの出力に基づいて前記試料を観察する、超解像顕微鏡。
  2.  請求項1に記載の超解像顕微鏡において、
     前記空間変調素子は、前記第1の光及び前記第2の光のいずれか一方の偏光状態又は位相状態を変調する、超解像顕微鏡。
  3.  請求項1又は2に記載の超解像顕微鏡において、
     前記走査用照明光生成部は、回転可能なピンホールアレーディスクを備え、
     前記ピンホールアレーディスクは、回転軸と直交する平面に複数配列されたピンホールを有し、前記照明光を前記平面の一部の複数の前記ピンホールから透過させて複数の前記走査用照明光を生成し、
     前記ピンホールアレーディスクを回転させながら前記試料を複数の前記走査用照明光で走査する、超解像顕微鏡。
  4.  請求項1又は2に記載の超解像顕微鏡において、
     前記走査用照明光生成部は、回転可能なマイクロレンズアレーディスクを備え、
     前記マイクロレンズアレーディスクは、回転軸と直交する平面に複数配列されたマイクロレンズを有し、前記照明光を前記平面の一部の複数の前記マイクロレンズから透過させて複数の前記走査用照明光を生成し、
     前記マイクロレンズアレーディスクを回転させながら前記試料を複数の前記走査用照明光で走査する、超解像顕微鏡。
  5.  請求項4に記載の超解像顕微鏡において、
     前記空間変調素子は、前記マイクロレンズアレーディスクの各々の前記マイクロレンズに接合して設けられている、超解像顕微鏡。
  6.  請求項4に記載の超解像顕微鏡において、
     前記照明光学系は、前記マイクロレンズアレーディスクに対する前記照明光の入射面側又は射出面側に配置され、前記マイクロレンズアレーディスクと一体に回転可能な空間変調素子アレーディスクをさらに備え、
     前記空間変調素子アレーディスクは、回転軸と直交する平面に前記マイクロレンズアレーディスクにおける前記マイクロレンズの配列パターンと同じ配列パターンで、複数の前記マイクロレンズの各々の光軸上に位置するように複数配列された前記空間変調素子を有する、超解像顕微鏡。
  7.  請求項1又は2に記載の超解像顕微鏡において、
     前記走査用照明光生成部は、一体に回転可能なマイクロレンズアレーディスク及びピンホールアレーディスクを備え、
     前記マイクロレンズアレーディスクは、回転軸と直交する平面に複数配列されたマイクロレンズを有し、
     前記ピンホールアレーディスクは、前記回転軸と直交する平面に前記マイクロレンズの配列パターンと同じ配列パターンで複数配列されたピンホールを有し、前記ピンホールが前記マイクロレンズの像側焦点位置に位置するように配置され、
     前記照明光を複数の前記マイクロレンズ及び複数の前記ピンホールを透過させて複数の前記走査用照明光を生成し、
     前記マイクロレンズアレーディスク及び前記ピンホールアレーディスクを回転させながら前記試料を複数の前記走査用照明光で走査する、超解像顕微鏡。
  8.  請求項1乃至7のいずれか一項に記載の超解像顕微鏡において、
     前記照明光学系は、前記照明光を偏向して前記試料の走査領域を移動させる偏向部を備え、
     複数の前記走査領域における前記二次元センサの出力に基づいて、複数の前記走査領域を結合した前記試料の画像信号を生成する、超解像顕微鏡。
  9.  請求項1乃至8のいずれか一項に記載の超解像顕微鏡において、
     前記検出光学系は、
      前記顕微鏡対物レンズに入射する前記照明光又は前記走査用照明光の光路中に配置され、前記照明光又は前記走査用照明光を透過させ、前記顕微鏡対物レンズを経て入射する前記試料からの前記応答光を反射させるダイクロイックミラーと、
      前記ダイクロイックミラーで反射される前記応答光を前記二次元センサに結像させる結像レンズと、
      前記結像レンズと前記二次元センサとの間の光路中に配置され、前記応答光を透過する分光フィルタと、をさらに備える超解像顕微鏡。
  10.  請求項1乃至9のいずれか一項に記載の超解像顕微鏡において、
     前記照明光学系は、前記走査用照明光生成部に入射させる前記照明光による照射領域の形状を整形するビーム整形部をさらに備える、超解像顕微鏡。
     
PCT/JP2016/083399 2015-11-12 2016-11-10 超解像顕微鏡 WO2017082357A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017550394A JPWO2017082357A1 (ja) 2015-11-12 2016-11-10 超解像顕微鏡

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-221995 2015-11-12
JP2015221995 2015-11-12

Publications (1)

Publication Number Publication Date
WO2017082357A1 true WO2017082357A1 (ja) 2017-05-18

Family

ID=58696142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083399 WO2017082357A1 (ja) 2015-11-12 2016-11-10 超解像顕微鏡

Country Status (2)

Country Link
JP (1) JPWO2017082357A1 (ja)
WO (1) WO2017082357A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019027893A (ja) * 2017-07-28 2019-02-21 株式会社ニューフレアテクノロジー 検査装置
WO2024108954A1 (zh) * 2022-11-24 2024-05-30 深圳大学 一种单波长激发的荧光调制多色超分辨显微成像方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011196873A (ja) * 2010-03-19 2011-10-06 Olympus Corp 蛍光検出方法および蛍光検出装置
JP2012226145A (ja) * 2011-04-20 2012-11-15 Yokogawa Electric Corp 顕微鏡装置
JP2013011728A (ja) * 2011-06-29 2013-01-17 Yokogawa Electric Corp 顕微鏡装置
JP2013045014A (ja) * 2011-08-25 2013-03-04 Yokogawa Electric Corp 顕微鏡装置
JP2013130853A (ja) * 2011-11-22 2013-07-04 Yokogawa Electric Corp 顕微鏡装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011196873A (ja) * 2010-03-19 2011-10-06 Olympus Corp 蛍光検出方法および蛍光検出装置
JP2012226145A (ja) * 2011-04-20 2012-11-15 Yokogawa Electric Corp 顕微鏡装置
JP2013011728A (ja) * 2011-06-29 2013-01-17 Yokogawa Electric Corp 顕微鏡装置
JP2013045014A (ja) * 2011-08-25 2013-03-04 Yokogawa Electric Corp 顕微鏡装置
JP2013130853A (ja) * 2011-11-22 2013-07-04 Yokogawa Electric Corp 顕微鏡装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019027893A (ja) * 2017-07-28 2019-02-21 株式会社ニューフレアテクノロジー 検査装置
WO2024108954A1 (zh) * 2022-11-24 2024-05-30 深圳大学 一种单波长激发的荧光调制多色超分辨显微成像方法

Also Published As

Publication number Publication date
JPWO2017082357A1 (ja) 2018-08-30

Similar Documents

Publication Publication Date Title
JP6039760B2 (ja) 試料の構造を空間的に高分解能で結像するための装置および方法
JP5554965B2 (ja) 位相変調型空間光変調器を用いたレーザ顕微鏡
CN106133580B (zh) 受激发射损耗显微镜装置
JP4723806B2 (ja) 共焦点顕微鏡
CN107941763B (zh) 一种共轴三维受激辐射损耗超分辨显微成像方法和装置
JP5484879B2 (ja) 超解像顕微鏡
US9086536B2 (en) Talbot imaging devices and systems
JP5485352B2 (ja) 解像度を高めたルミネセンス顕微鏡検査
JP6234105B2 (ja) 超解像顕微鏡
US7095556B2 (en) Microscope with wavelength compensation
US20130120563A1 (en) Image generation device
JP2008058003A (ja) 顕微鏡
JP2010262176A (ja) レーザ走査型顕微鏡
JP2006235420A (ja) 共焦点顕微鏡
JP2007233370A (ja) 試料を高い空間分解能で検査するための方法および顕微鏡
JP2006313356A5 (ja)
WO2020087998A1 (zh) 晶格光片显微镜和在晶格光片显微镜中平铺晶格光片的方法
JP6570427B2 (ja) 画像取得装置、画像取得方法、及び空間光変調ユニット
JP2010015026A (ja) 超解像顕微鏡およびこれに用いる空間変調光学素子
JP2005508489A (ja) 試料の多光子励起の方法と装置
WO2017082357A1 (ja) 超解像顕微鏡
JP4920918B2 (ja) 位相フィルタ、光学装置及びラスタ顕微鏡
JP2006058477A (ja) 超解像顕微鏡
CN107941777B (zh) 一种抗漂白单分子定位三维超分辨显微系统
JP5086765B2 (ja) 顕微鏡

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16864318

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017550394

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16864318

Country of ref document: EP

Kind code of ref document: A1