Nothing Special   »   [go: up one dir, main page]

WO2016136640A1 - 二次電池用外装材及び二次電池 - Google Patents

二次電池用外装材及び二次電池 Download PDF

Info

Publication number
WO2016136640A1
WO2016136640A1 PCT/JP2016/054955 JP2016054955W WO2016136640A1 WO 2016136640 A1 WO2016136640 A1 WO 2016136640A1 JP 2016054955 W JP2016054955 W JP 2016054955W WO 2016136640 A1 WO2016136640 A1 WO 2016136640A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
base material
resin
metal foil
exterior material
Prior art date
Application number
PCT/JP2016/054955
Other languages
English (en)
French (fr)
Inventor
勇輝 室井
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to JP2017502336A priority Critical patent/JPWO2016136640A1/ja
Priority to EP16755386.6A priority patent/EP3264487A4/en
Priority to KR1020177022474A priority patent/KR20170118072A/ko
Publication of WO2016136640A1 publication Critical patent/WO2016136640A1/ja
Priority to US15/681,838 priority patent/US10418600B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/1245Primary casings; Jackets or wrappings characterised by the material having a layered structure characterised by the external coating on the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/045Cells or batteries with folded plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • H01M50/133Thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/14Primary casings; Jackets or wrappings for protecting against damage caused by external factors
    • H01M50/141Primary casings; Jackets or wrappings for protecting against damage caused by external factors for protecting against humidity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/14Primary casings; Jackets or wrappings for protecting against damage caused by external factors
    • H01M50/145Primary casings; Jackets or wrappings for protecting against damage caused by external factors for protecting against corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a packaging material for a secondary battery and a secondary battery.
  • a laminate exterior material composed of a multilayer film for example, a laminated structure such as a base material layer / first adhesive layer / metal foil layer / second adhesive layer / heat-sealing resin layer
  • the laminated outer packaging material made of a multilayer film is excellent in that it is lightweight, has high heat dissipation, and can be freely selected in shape, unlike a conventional metal can used as a battery element container.
  • a recess is formed in a part of the outer packaging material for the secondary battery of the multilayer film by cold molding, and the battery contents (a positive electrode, a separator, a negative electrode, an electrolytic solution, etc.) are accommodated in the recess.
  • the remaining portion in which the concave portion is not formed is folded, and the edge portion is manufactured by heat sealing with the electrode terminal extending from the positive electrode and the negative electrode interposed therebetween (hereinafter also referred to as “one-side molded battery”). ).
  • both sides in order to efficiently accommodate more contents and increase energy density.
  • molded battery Also referred to as “molded battery”).
  • molded battery In order to obtain a high energy density in such a secondary battery, formation of a deeper recess is required. However, if the concave portion is deepened, pinholes or breaks are likely to occur in the side or corner portion of the concave portion, which is a portion having a high stretch ratio, during molding with a mold.
  • Patent Document 1 In order to suppress pinholes or breakage when the recess is molded deeply (deep drawing), for example, in Patent Document 1, a film such as a stretched polyamide film or a stretched polyester film is used as a base material layer of a secondary battery exterior material. Use the metal foil is protected.
  • a film such as a stretched polyamide film or a stretched polyester film is used as a base material layer of a secondary battery exterior material. Use the metal foil is protected.
  • the present invention has been made in view of the above problems, and an exterior material for a secondary battery capable of suppressing a decrease in insulation while maintaining moldability and water vapor barrier properties and reducing warpage after molding, and the same It aims at providing the secondary battery using this.
  • the present invention is an exterior material for a secondary battery in which at least a metal foil layer, a second base material layer, and a heat fusion resin layer are laminated in this order on one surface of a first base material layer,
  • the second base material layer is laminated on the metal foil layer directly or via a corrosion prevention treatment layer, and the first base material layer is formed from a resin composition containing a thermosetting resin or a thermoplastic resin.
  • the second base material layer provides a secondary battery exterior material formed from a resin composition containing a thermosetting resin. According to the packaging material for a secondary battery, it is possible to suppress a decrease in insulating properties while maintaining moldability and water vapor barrier properties, and to reduce warpage after molding.
  • the metal foil layer is directly laminated on one surface of the first base material layer. Since the secondary battery exterior material has the above-described configuration, the amount of water vapor entering from the edge of the exterior material can be further reduced, and the entire exterior material can be made thinner, making the secondary battery thinner. And miniaturization.
  • the first base material layer has a thickness of 5 ⁇ m to 30 ⁇ m
  • the second base material layer has a thickness of 5 ⁇ m to 30 ⁇ m.
  • the difference in thickness between the first base material layer and the second base material layer is preferably 15 ⁇ m or less.
  • the first base material layer and the second base material layer are formed of the same kind of resin material.
  • the metal foil layer preferably has a thickness of 20 ⁇ m or more and 80 ⁇ m or less.
  • the thickness of the metal foil layer is within the above range, the moldability and energy density can be obtained in a more balanced manner.
  • a coating layer containing a lubricant composed of a fatty acid amide is formed on the other surface of the first base material layer or the heat fusion resin layer.
  • the present invention also provides a secondary battery comprising a battery element and the outer packaging material for a secondary battery.
  • the exterior material for secondary batteries and a secondary battery which can suppress the fall of insulation, maintaining the moldability and water vapor
  • FIG. 1 It is a schematic sectional drawing of the exterior material for secondary batteries which concerns on one Embodiment of this invention. It is a schematic sectional drawing of the exterior material for secondary batteries which concerns on another embodiment of this invention. It is a schematic sectional drawing of the exterior material for secondary batteries which concerns on another embodiment of this invention. It is a perspective view which shows the process of manufacturing a secondary battery using the exterior material for secondary batteries which concerns on one Embodiment of this invention, (a) shows the state which prepared the exterior material for secondary batteries, b) shows a state in which an exterior material for a secondary battery processed into an embossed type and a battery element are prepared, and (c) shows a state in which a part of the exterior material for a secondary battery is folded and the end is melted. (D) shows a state where both sides of the folded portion are folded upward.
  • the exterior material of the present invention includes a first base material layer, a metal foil layer, a second base material layer, and a heat-sealing resin layer as basic components, and specifically, on one surface of the first base material layer. And a structure in which at least a metal foil layer, a second base material layer, and a heat-sealing resin layer are laminated in this order.
  • the exterior material 10 includes a first base material layer 1, a first adhesive layer 2, a metal foil layer 4, a corrosion prevention treatment layer 5, a second base material layer 6, an adhesive resin layer 7, and It has a laminated structure in which the heat-sealing resin layers 8 are sequentially laminated in this order.
  • the exterior material 10 includes a corrosion prevention treatment layer 5 formed on one surface of a metal foil, and a first base material is bonded to the other surface of the metal foil via a first adhesive.
  • the second base material layer 6 is formed on the layer 5, and the heat fusion resin layer 8 is formed on the second base material layer 6 through an adhesive resin.
  • the 2nd base material layer 6 is formed from the resin composition containing the below-mentioned specific thermosetting resin which can provide a corrosion prevention function, even if the exterior material 10 is not provided with the corrosion prevention process layer 5. Good.
  • the first base material layer 1 imparts heat resistance to the exterior material in the pressure heat fusion process (step S3 described later) when manufacturing the battery, and suppresses the generation of pinholes that may occur during processing or distribution. To play a role. Moreover, the 1st base material layer 1 guarantees insulation by preventing the fracture
  • a first base material is bonded onto one surface of the metal foil via a first adhesive described later, and the first base material becomes the first base material layer 1.
  • the first adhesive becomes the first adhesive layer 2
  • the metal foil becomes the metal foil layer 4.
  • an aging treatment may be performed in the range of room temperature to 100 ° C. in order to promote adhesion.
  • the aging time is, for example, 3 to 10 days.
  • the first base material in the production of the exterior material 10 is a resin film containing a thermosetting resin or a thermoplastic resin.
  • the thermosetting resin or the thermoplastic resin contained in the resin film include a polyester resin, Examples include polyurethane resins, polyamide resins, polyimide resins, fluorine resins, polyvinylidene chloride resins, and acrylic resins.
  • the resin constituting the resin film one type may be used alone, or two or more types may be used in combination.
  • the polyimide resin examples include a polyimide resin, a polyamideimide resin, and a polyetherimide resin.
  • Fluorocarbon resins include polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, perfluoroalkoxy fluororesin, ethylene tetrafluoride / hexafluoropropylene copolymer, ethylene / tetrafluoroethylene copolymer Examples thereof include a polymer and an ethylene / chlorotrifluoroethylene copolymer.
  • the resin film may further contain a curing agent.
  • the curing agent include isocyanate resins, epoxy resins, and melamine resins.
  • the resin film is preferably a polyester resin film or a polyamide resin film from the viewpoint of moldability, heat resistance, puncture resistance, insulation, chemical resistance, and the like, and is a biaxially stretched polyester resin film or biaxial More preferably, it is a stretched polyamide resin film.
  • the first base material may be a single film made of one film, or a composite film in which two or more films are bonded together with a dry laminate adhesive.
  • additives such as a flame retardant, a lubricant, an antiblocking agent, an antioxidant, a light stabilizer, a tackifier, and an antistatic agent may be dispersed inside, and these additives (preferably May be formed on the surface of the resin film (that is, on the other surface of the first base material layer 1).
  • the lubricant include fatty acid amides such as oleic acid amide, erucic acid amide, stearic acid amide, behenic acid amide, ethylene bisoleic acid amide, and ethylene biserucic acid amide.
  • the moldability of the exterior material 10 tends to be improved.
  • the anti-blocking agent include various fillers such as silica.
  • An additive may be used individually by 1 type and may use 2 or more types together.
  • the thickness of the first base material layer 1 is substantially the same as that of the resin film as the first base material, and is preferably 5 ⁇ m or more and 30 ⁇ m or less from the viewpoint of puncture resistance, insulation, embossability, and the like. More preferably, it is 8 ⁇ m or more and 25 ⁇ m or less. If the thickness of the 1st base material layer 1 is 5 micrometers or more, there exists a tendency for a moldability, pinhole resistance, and insulation to improve. On the other hand, if the thickness of the 1st base material layer 1 is 30 micrometers or less, the increase in cost and an energy density fall will be suppressed and it will become easy to balance with the 2nd base material layer 6. FIG.
  • the first base material layer 1 can have irregularities on the surface for improving scratch resistance and slipperiness.
  • First adhesive layer 2 In the exterior material 10, the first adhesive layer 2 is formed between the first base material layer 1 and the metal foil layer 4. That is, in the exterior material 10, the first base material layer 1 is on the other surface of the metal foil layer 4 (the surface opposite to the side on which the corrosion prevention treatment layer 5 is formed) via the first adhesive layer 2. Formed.
  • the first adhesive layer 2 is a layer that bonds the first base material layer 1 and the metal foil layer 4, and from the viewpoint of protecting the metal foil layer 4 during emboss molding by the first base material layer 1. It is preferable to have followability.
  • the molar ratio [NCO / OH] of the NCO group of the curing agent to the OH group of the main agent is preferably 1 or more and 10 or less, and more preferably 2 or more and 5 or less. If [NCO / OH] is 1 or more, better adhesion can be obtained.
  • thermoplastic elastomer a thermoplastic elastomer, a tackifier, a filler, a pigment, a dye, and the like can be further added to the first adhesive.
  • the thickness of the first adhesive layer 2 is preferably 0.5 ⁇ m or more and 10 ⁇ m or less, and more preferably 1 ⁇ m or more and 5 ⁇ m or less from the viewpoint of adhesive strength, followability, workability, and the like.
  • the thickness of the 1st adhesive bond layer 2 is substantially the same as the dry thickness after apply
  • Metal foil layer 4 serves to prevent moisture from entering the battery (that is, has a water vapor barrier property).
  • the metal foil layer 4 is disposed between the first adhesive layer 2 and the second base material layer 6. Moreover, the metal foil layer 4 has spreadability in order to perform deep drawing.
  • various metal foils such as aluminum and stainless steel can be used as the metal foil to be the metal foil layer 4, and aluminum is used from the viewpoint of weight (specific gravity), moisture resistance, workability or cost. A foil is preferred.
  • the aluminum foil used as the metal foil layer 4 a known soft aluminum foil can be used, and an aluminum foil containing iron is preferable from the viewpoint of pinhole resistance and extensibility at the time of molding.
  • the content of iron in the aluminum foil (100% by mass) is preferably 0.1% by mass or more and 9.0% by mass or less, and more preferably 0.5% by mass or more and 2.0% by mass or less. preferable. If the iron content is equal to or higher than the lower limit, pinhole resistance and spreadability are further improved. If iron content is below the said upper limit, a softness
  • the thickness of the metal foil layer 4 is substantially the same as the thickness of the metal foil, preferably 20 ⁇ m or more and 80 ⁇ m or less, and more preferably 25 ⁇ m or more and 60 ⁇ m or less.
  • the thickness of the metal foil layer 4 is 20 ⁇ m or more, pinholes or breakage hardly occurs during molding.
  • the thickness of the metal foil layer 4 is 80 ⁇ m or less, it is easy to suppress an increase in cost or a decrease in energy density while maintaining various performances.
  • the corrosion prevention treatment layer 5 plays a role of suppressing corrosion of the surface of the metal foil layer 4 due to hydrofluoric acid generated by the reaction between the electrolytic solution and moisture. Further, the corrosion prevention treatment layer 5 has a function as an anchor layer for the metal foil layer 4 and the second base material layer 6.
  • the corrosion prevention treatment layer 5 is formed on one surface of the metal foil layer 4 by, for example, applying a corrosion prevention treatment agent on one surface of the metal foil layer 4 and drying.
  • the coating method of the corrosion inhibitor is not particularly limited, and various methods such as gravure coating, reverse coating, roll coating, and bar coating can be adopted.
  • the corrosion prevention treatment layer 5 includes, for example, chromate treatment using a corrosion prevention treatment agent comprising chromate, phosphate, fluoride, and various thermosetting resins, rare earth element oxide (for example, cerium oxide, etc.) and phosphoric acid. It is formed by ceriazole treatment using a corrosion prevention treatment agent composed of a salt and various thermosetting resins.
  • the corrosion prevention treatment layer 5 is not limited to the layer formed by the above treatment as long as it plays the above role, and may be formed by, for example, a phosphate treatment and a boehmite treatment. Further, the corrosion prevention treatment layer 5 may be a single layer or a plurality of layers.
  • the corrosion prevention treatment layer 5 may have a structure of two or more layers in which a resin formed as an overcoat agent (overcoat layer) is coated on a layer formed using the corrosion prevention treatment agent.
  • the thickness of the corrosion prevention treatment layer 5 is substantially the same as the dry thickness of the coating layer (and overcoat layer) of the corrosion prevention treatment agent, and is 5 nm or more and 1 ⁇ m or less from the viewpoint of the corrosion prevention function and the function as an anchor. Is preferably 10 nm or more and 200 nm or less.
  • the second base material layer 6 prevents the metal foil layer 4 from breaking or pinholes during emboss molding, and prevents the metal foil layer 4 from contacting the battery element or lead (metal terminal). It plays the role of making it easy to obtain electrical insulation. Furthermore, since the exterior material includes the first base material layer 1 and the second base material layer 6 on both sides of the metal foil layer 4, warpage during molding can be reduced.
  • the second base material layer 6 is laminated on the metal foil layer 4 through only the corrosion prevention treatment layer 5.
  • the second base material layer 6 is directly laminated on the metal foil layer 4. That is, the second base material layer 6 is formed on the metal foil layer 4 or the corrosion prevention treatment layer 5 without an adhesive layer. For this reason, the thickness of the entire exterior material can be reduced, and the number of steps and the manufacturing cost can be reduced as compared with the case where the second base material layer 6 is formed via the adhesive layer.
  • the second base material layer 6 is preferably formed by applying or coating the second base material on the metal foil layer 4 or the corrosion prevention treatment layer 5.
  • the second base material is a resin composition containing a thermosetting resin
  • the second base material layer 6 is a cured product of the second base material.
  • the thermosetting resin is preferably at least one resin selected from the group consisting of polyester resins, polyurethane resins, polyamide resins, polyimide resins, fluorine resins, polyvinylidene chloride resins, and acrylic resins.
  • the 2nd base material layer 6 is formed from the resin composition containing the said thermosetting resin, there exists a tendency which can give a corrosion prevention function and chemical resistance to the exterior material 10 further.
  • the 2nd base material layer 6 has chemical resistance, it becomes difficult to melt
  • the polyimide resin include polyimide resin, polyamideimide resin, and polyetherimide resin.
  • Fluorocarbon resins include polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, perfluoroalkoxy fluororesin, ethylene tetrafluoride / hexafluoropropylene copolymer, ethylene / tetrafluoroethylene copolymer Examples thereof include a polymer and an ethylene / chlorotrifluoroethylene copolymer.
  • the said resin material may be used individually by 1 type, and may use 2 or more types together.
  • the second base material preferably contains a curing agent together with the resin material.
  • the curing agent include isocyanate resins, epoxy resins, and melamine resins.
  • the curing of the second base material accompanying the crosslinking reaction including not only the curing agent but also the resin material further proceeds. It becomes easy to adjust characteristics such as the melting point.
  • the functional group capable of reacting with the curing agent include an amino group, a carboxy group, a hydroxyl group, and a carbonyl group.
  • the second base material is applied on the metal foil layer 4 or the corrosion prevention treatment layer 5 as a solution, for example, and becomes the second base material layer 6 by heating or drying.
  • the second base material contains a curing agent
  • the second base material layer 6 is cured by further aging.
  • the melting point of the second base material layer 6 is preferably 40 ° C. or higher and more preferably 70 ° C. or higher than the melting point of the heat-sealing resin layer 8.
  • the melting point of the second base material layer 6 is preferably 200 ° C. or higher, and more preferably 230 ° C. or higher. When the melting point of the second base material layer 6 is 200 ° C.
  • the second base material layer 6 does not become too thin at the time of heat-sealing, and the metal foil layer 4 and the battery element or lead (metal terminal) are brought into contact with each other. Insulating properties can be obtained more reliably.
  • the upper limit of the melting point of the second base material layer 6 is not particularly limited, and the second base material layer 6 may have a melting point of about 500 ° C., for example, or may not have a melting point.
  • the difference between the melting point of the second base material layer 6 and the melting point of the heat sealing resin layer 8 may be 100 ° C. or less. When the difference between the melting point of the second base material layer 6 and the melting point of the heat sealing resin layer 8 is small, the workability of the second base material layer 6 tends to be improved.
  • the melting point of the second base material layer 6 can be adjusted by controlling the number of cross-linking points, for example, by the amount of functional groups of the resin material and the amount of curing agent added. Therefore, the functional group amount of the resin material, the addition amount of the curing agent, and the like are appropriately selected so that the melting point is within the above range and considering other characteristics such as the protective effect of the metal foil layer 4 together. do it. Further, the second base material layer 6 is laminated on the metal foil layer 4 directly or only through the corrosion prevention treatment layer 5, thereby maintaining the moldability and the water vapor barrier property, and warping during molding. Can be suppressed, and further, insulation can be improved. In the present specification, the melting point indicates the temperature of the endothermic peak top accompanying the melting of the sample when the sample is heated at 5 ° C./min by DSC (differential scanning calorimeter).
  • the second base material forming the second base layer 6 is preferably a resin material of the same type as the first base material constituting the first base layer 1. That is, for example, when the first base material is a polyester resin film, the second base material is preferably a polyester resin. When the second base material is the same type of resin material as the first base material, it becomes easier to reduce the amount of warping after the molding process.
  • the thickness of the second base material layer 6 is substantially the same as the dry thickness of the coating layer of the second base material, and is preferably 5 ⁇ m or more and 30 ⁇ m or less from the viewpoint of moldability, insulating properties, water vapor barrier properties, and the like. It is more preferably 8 ⁇ m or more and 25 ⁇ m or less, further preferably 8 ⁇ m or more and 20 ⁇ m or less, and particularly preferably 8 ⁇ m or more and 15 ⁇ m or less. If the thickness of the 2nd base material layer 6 is 5 micrometers or more, there exists a tendency for a moldability, pinhole resistance, and insulation to improve.
  • the thickness of the 2nd base material layer 6 is 30 micrometers or less, there exists a tendency for the water vapor
  • the difference in thickness between the first base material layer 1 and the second base material layer 6 is preferably 15 ⁇ m or less, and more preferably 10 ⁇ m or less. If the difference in film thickness between the first base material layer 1 and the second base material layer 6 is 15 ⁇ m or less, it becomes easy to reduce warpage during molding.
  • the adhesive resin layer 7 is a layer that adheres the heat-sealing resin layer 8 and the second base material layer 6.
  • the configurations of the second base material layer 6, the adhesive resin layer 7 and the heat sealing resin layer 8 are broadly classified into a thermal laminate configuration and a dry laminate configuration together with the adhesive resin constituting the adhesive resin layer 7.
  • the adhesive resin is introduced onto the second base material layer 6 by extrusion lamination.
  • the adhesive resin in the thermal laminate configuration is preferably a thermoplastic resin.
  • examples of the adhesive resin in the thermal laminate configuration include polyolefin resins, elastomer resins, and acid-modified polyolefin resins obtained by acid-modifying polyolefin resins.
  • polystyrene resin examples include low density, medium density and high density polyethylene; ethylene- ⁇ olefin copolymer; polypropylene; and propylene- ⁇ olefin copolymer.
  • the polyolefin resin in the case of a copolymer may be a block copolymer or a random copolymer.
  • Examples of the acid-modified polyolefin resin include those obtained by modifying (acid-modifying) the above-mentioned polyolefin resin with an unsaturated carboxylic acid and a derivative thereof.
  • Examples of the unsaturated carboxylic acid include acrylic acid, methacrylic acid, maleic acid, fumaric acid, crotonic acid, and itaconic acid.
  • Examples of unsaturated carboxylic acid derivatives include anhydrides, mono- and diesters, amidated products, and imidized products of unsaturated carboxylic acids.
  • the unsaturated carboxylic acid and the derivative thereof are preferably acrylic acid, methacrylic acid, maleic acid, or maleic anhydride, and more preferably maleic anhydride.
  • the acid-modified polyolefin resin can be obtained by copolymerizing an unsaturated carboxylic acid, a derivative thereof, and other monomers.
  • the copolymerization may be any of block copolymerization, random copolymerization, and graft copolymerization. These unsaturated carboxylic acids and derivatives thereof may be used alone or in combination of two or more.
  • Polyolefin resins and acid-modified polyolefin resins are excellent in electrolytic solution resistance.
  • Elastomer resins include SEBS (styrene / ethylene / butylene / styrene) copolymer, SBS (styrene / butadiene / styrene) copolymer, SEPS (styrene / ethylene / propylene / styrene) copolymer, SEP (styrene / ethylene). / Propylene) copolymer, SIS (styrene / isoprene / styrene) copolymer, and the like.
  • the stretch whitening resistance due to cracks during cold molding is improved, the adhesion is improved by improving the wettability, and the anisotropy is reduced.
  • the film properties can be improved and characteristics such as heat-sealing strength can be improved.
  • an adhesive resin is introduced (for example, applied) onto the second base material layer 6.
  • the adhesive resin in the dry laminate configuration include an acid-modified polyolefin resin.
  • the acid-modified polyolefin resin include the acid-modified polyolefin resins exemplified in the thermal laminate configuration.
  • the thickness of the adhesive resin layer 7 is substantially the same as the dry thickness of the adhesive resin introduction layer.
  • the thickness of the adhesive resin layer 7 is preferably 8 ⁇ m or more and 30 ⁇ m or less, and more preferably 10 ⁇ m or more and 20 ⁇ m or less.
  • the thickness of the adhesive resin layer 7 is 8 ⁇ m or more, sufficient adhesive strength between the second base material layer 6 and the heat-sealing resin layer 8 is easily obtained.
  • the thickness of the adhesive resin layer 7 is 30 ⁇ m or less, it is easy to reduce the amount of moisture that permeates from the end face of the exterior material into the battery.
  • the thickness of the adhesive resin layer 7 is preferably 1 ⁇ m or more and 5 ⁇ m or less in the case of a dry laminate configuration.
  • the thickness of the adhesive resin layer 7 is 1 ⁇ m or more, the adhesion between the second base material layer 6 and the heat-sealing resin layer 8 is improved, and sufficient laminate strength is easily obtained.
  • the thickness of the adhesive resin layer 7 is 5 ⁇ m or less, the occurrence of film cracking can be easily suppressed.
  • the film thickness of the adhesive resin layer 7 in the dry laminate configuration is in the range of 1 ⁇ m or more and 5 ⁇ m or less, the heat-sealing resin layer 8 and the second base material layer 6 can be adhered more firmly.
  • the heat sealing resin layer 8 is formed on the second base material layer 6 via the adhesive resin layer 7.
  • the heat-sealing resin layer 8 may be laminated by dry lamination, sandwich lamination, or the like, or may be laminated together with the adhesive resin layer 7 by a coextrusion method.
  • the heat-sealing resin layer 8 is laminated on the adhesive resin layer 7, the heat-sealing resin layers 8 of the two exterior materials face each other, and the exterior material is above the melting temperature (melting point) of the heat-sealing resin layer 8.
  • the battery contents can be hermetically sealed in the two outer packaging materials by pressurizing and heat-sealing the end portions.
  • the heat sealing resin layer 8 is formed from a heat sealing resin.
  • the heat sealing resin examples include polyolefin resins.
  • the polyolefin resin include low density, medium density, and high density polyethylene, and polypropylene.
  • the polyolefin resin may be a copolymer, a block copolymer, or a random copolymer.
  • the polyolefin resin may be a copolymer obtained by copolymerizing polar monomers such as acrylic acid and methacrylic acid, or may be a resin obtained by dispersing or copolymerizing a polymer such as crosslinked polyolefin.
  • the said polyolefin resin may be used individually by 1 type, and may use 2 or more types together.
  • the heat sealing resin layer 8 may be formed from a heat sealing resin film.
  • the heat-sealing resin film forming the heat-sealing resin layer 8 may be a film in which the polyolefin resin is mixed, is preferably an unstretched polyolefin resin film, and more preferably is a non-stretched polypropylene film. .
  • fusion resin layer 8 may be a single layer film, and may be a multilayer film.
  • the heat-sealing resin layer 8 is formed from a heat-sealing resin composition containing various additives such as a lubricant, an antiblocking agent, an antistatic agent, a nucleating agent, a pigment, and a dye together with the above heat-sealing resin. Also good.
  • the said additive may be used individually by 1 type, and may use 2 or more types together.
  • the coating layer containing the said additive (preferably lubricant) may be formed on the heat sealing
  • the lubricant the lubricants mentioned in the first base material layer can be used.
  • the heat-sealing resin layer 8 is formed from a heat-sealing resin composition containing a lubricant, or a coating layer containing a lubricant is applied on the heat-sealing resin layer 8 to mold the exterior material 10. Tend to improve.
  • the thickness of the heat-sealing resin layer 8 is substantially the same as the thickness of the resin film forming the heat-sealing resin layer 8, and is preferably 20 ⁇ m or more and 90 ⁇ m or less. When the thickness of the heat-sealing resin layer 8 is 20 ⁇ m or more, it becomes easy to ensure a sufficient laminate strength. Moreover, if the thickness of the heat sealing
  • the exterior material 20 includes a first base material layer 1, a first adhesive layer 2, a corrosion prevention treatment layer 3, a metal foil layer 4, a corrosion prevention treatment layer 5, a second base material layer 6,
  • the adhesive resin layer 7 and the heat sealing resin layer 8 have a laminated structure in which the adhesive resin layer 7 and the heat sealing resin layer 8 are sequentially laminated in this order.
  • the exterior material 20 is different from the exterior material 10 in that a corrosion prevention treatment layer 3 is further provided between the first adhesive layer 2 and the metal foil layer 4.
  • the corrosion prevention treatment layer 3 can be formed by the same method using the same corrosion prevention treatment agent as the corrosion prevention treatment layer 5 described above in the exterior material 10.
  • the exterior material 30 includes a first base material layer 1, a metal foil layer 4, a corrosion prevention treatment layer 5, a second base material layer 6, an adhesive resin layer 7, and a heat fusion resin layer 8. It has a stacked structure in which layers are sequentially stacked in this order.
  • the exterior material 30 is different from the exterior material 10 in that the first adhesive layer 2 is not provided.
  • the metal foil layer 4 is directly laminated on one surface of the first base material layer 1.
  • the first base material layer 1 is formed on the surface of the metal foil layer 4 where the corrosion prevention treatment layer 5 is not formed without an adhesive layer. For this reason, the thickness of the entire exterior material can be reduced, the secondary battery can be made thinner and smaller, and the number of steps compared to the case where the first base material layer 1 is formed via the adhesive layer. In addition, the manufacturing cost can be reduced.
  • the first base material layer 1 is preferably formed by applying or coating the first base material on the metal foil layer 4.
  • the 2nd base material layer 6 is formed from the resin composition containing the above-mentioned specific thermosetting resin which can provide a corrosion prevention function, even if the exterior material 30 does not include the corrosion prevention treatment layer 5. Good.
  • the first base material is applied onto the metal foil layer 4 in the same manner as when the second base material is applied onto the corrosion prevention treatment layer 5 in the exterior material 10.
  • the first base material is a resin composition containing a thermosetting resin or a thermoplastic resin. It can be said that the 1st base material layer 1 is the hardened
  • the thermosetting resin or thermoplastic resin include polyester resin, polyurethane resin, polyamide resin, polyimide resin, fluororesin, polyvinylidene chloride resin, and acrylic resin. More specifically, as the first base material in the production of the packaging material 30, the materials mentioned as the second base material can be used.
  • the first base material may further contain a curing agent such as an isocyanate resin, a melamine resin, and an epoxy resin.
  • the resin material used for the first base material layer 1 is preferably the same as the resin material used for the second base material layer 6. By making the resin material used for the first base material layer 1 the same type as the resin material used for the second base material layer 6, it is easy to reduce the amount of warping after molding.
  • the secondary battery of this embodiment includes a battery element and the exterior material.
  • the secondary battery includes a battery element including an electrode, a lead (metal terminal) extending from the electrode, and a container that stores the battery element.
  • the container is thermally fused from the exterior material.
  • the resin layer 8 is formed on the inner side.
  • the container may be obtained by stacking two exterior materials with the heat-sealing resin layers 8 facing each other, and heat-sealing the peripheral edge of the overlapped exterior material, or one exterior material. May be obtained by folding and overlapping, and similarly heat-sealing the peripheral edge of the exterior material.
  • Examples of the secondary battery include a lithium ion battery, a nickel metal hydride battery, and a lead storage battery.
  • the lead 58 is sandwiched and sealed by the outer packaging material forming the container with the heat sealing resin layer 8 inside.
  • the lead 58 may be sandwiched by the exterior material via a tab sealant.
  • FIG. 4 is a view showing the embossed type exterior material 50.
  • 4 (a) to 4 (d) are perspective views showing the manufacturing process of the one-side molded battery using the exterior material.
  • the secondary battery 60 is a double-sided molded battery that is manufactured by bonding two exterior materials such as the embossed type exterior material 50 and bonding the exterior materials together while adjusting the alignment. Also good.
  • the secondary battery 60 that is a one-side molded battery can be manufactured, for example, by the following steps S1 to S5.
  • Step S1 A step of preparing an exterior material (for example, the exterior material 10, the exterior material 20 or the exterior material 30), a battery element 56 including an electrode, and a lead 58 extending from the electrode.
  • Process S2 The process of forming the recessed part 52 for arrange
  • Step S ⁇ b> 3 The battery element 56 is arranged in the molding processing area (recessed portion 52) of the embossed type exterior material 50, and the embossed type exterior material 50 is folded and overlapped so that the lid portion 54 covers the recessed portion 52.
  • a step of pressurizing and heat-bonding one side of the embossed type exterior member 50 so as to sandwich the lead 58 to be sandwiched see FIGS. 4B and 4C.
  • Step S4 Leave one side other than the side sandwiching the lead 58, press and heat the other side, and then inject the electrolyte from the remaining side and press and heat the other side left in a vacuum state Step (see FIG. 4C).
  • Step S5 A step of cutting the heat-fusing side end other than the side sandwiching the lead 58 and bending it to the side of the molding area (recess 52) (see FIG. 4D).
  • step S1 the exterior material, the battery element 56 including electrodes, and the leads 58 extending from the electrodes are prepared.
  • the said exterior material is prepared based on embodiment mentioned above.
  • a recess 52 for arranging the battery element 56 is formed on the heat-sealing resin layer 8 side of the exterior material.
  • a molding process using a mold deep drawing molding
  • a method of pushing the male mold into the female mold together with the exterior material Is mentioned By adjusting the pushing amount of the male mold, the depth (deep drawing amount) of the recess 52 can be adjusted to a desired amount.
  • an embossed type outer packaging material 50 is obtained.
  • step S 3 a battery element 56 composed of a positive electrode, a separator, a negative electrode, and the like is disposed in the molding area (recessed portion 52) of the embossed type exterior material 50.
  • leads 58 extending from the battery element 56 and joined to the positive electrode and the negative electrode, respectively, are drawn out from the molding area (recess 52).
  • the embossed type exterior member 50 is folded back at substantially the center in the longitudinal direction, and the heat fusion resin layers 8 are overlapped with each other so that one side sandwiching the lead 58 of the embossed type exterior member 50 is heated under pressure. Fused.
  • the pressure heat fusion is controlled by three conditions of temperature, pressure, and time, and is appropriately set.
  • the temperature of the pressure heat fusion is not less than the temperature (melting point) at which the heat fusion resin layer 8 is melted and lower than the temperature (melting point) at which the second substrate layer 6 is melted.
  • the thickness of the heat sealing resin layer 8 before heat sealing is preferably 40% or more and 80% or less with respect to the thickness of the lead 58.
  • the thickness of the heat-sealing resin layer 8 is not less than the above lower limit value, the heat-sealing resin tends to sufficiently fill the ends of the leads 58, and when the thickness is not more than the above upper limit value, The thickness of the end portion of the exterior material can be moderately suppressed, and the amount of moisture entering from the end portion of the exterior material 10, the exterior material 20, or the exterior material 30 can be reduced.
  • step S4 one side other than the side sandwiching the lead 58 is left and the other side is subjected to pressure heat fusion. Thereafter, an electrolytic solution is injected from the remaining side, and the remaining side is pressurized and heat-sealed in a vacuum state.
  • the conditions for the pressure heat fusion are the same as in step S3.
  • the first base material layer, the first adhesive layer, the metal foil layer, the corrosion prevention treatment layer, the second adhesive layer, the second base material layer, the adhesive resin layer, and the heat fusion resin of the exterior material according to the examples and comparative examples The materials used to form the layer are shown below.
  • First base material A-1 Polyamide resin film (thickness: 15 ⁇ m).
  • First base material A-2 A mixture of a polyamide resin having an amino group and an isocyanate curing agent.
  • First base material A-3 A mixture of a polyester resin having a hydroxyl group and an isocyanate curing agent.
  • First base material A-4 A mixture of a polyurethane resin having a hydroxyl group and an isocyanate curing agent.
  • First base material A-5 A mixture of a polyamideimide resin having a carboxy group and an epoxy curing agent.
  • Metal foil layer Metal foil C-1: An annealed soft aluminum foil 8079 material (thickness: 40 ⁇ m).
  • Treatment agent D-1 Coating type ceriazole treatment agent mainly composed of cerium oxide, phosphoric acid, and acrylic resin.
  • Second adhesive E-1 Two-component curable polyester urethane adhesive.
  • Second base material F-1 A mixture of a polyester resin having a hydroxyl group and an isocyanate curing agent (cured resin film (second base material layer) melting point: 230 ° C.).
  • Second base material F-2 a mixture of a polyurethane resin having a hydroxyl group and an isocyanate curing agent (resin melting point after curing: 250 ° C.).
  • Second base material F-3 Mixture of polyamideimide resin having a carboxy group and an epoxy curing agent (resin melting point after curing: 290 ° C.).
  • Second base material F-4 Mixture of polyester resin having a hydroxyl group and an isocyanate curing agent (resin melting point after curing: 200 ° C.)
  • Second base material F-5 Polypropylene resin film (thickness: 10 ⁇ m, melting point: 160 ° C.).
  • Second base material F-6 Polyester resin film (thickness: 25 ⁇ m, melting point: 240 ° C.).
  • Second base material F-7 Mixture of polyester resin having hydroxyl group and isocyanate curing agent (resin melting point after curing: 190 ° C.)
  • Adhesive resin G-1 Maleic anhydride-modified polypropylene resin (trade name: Admer, manufactured by Mitsui Chemicals).
  • Thermal fusion resin H-1 unstretched polypropylene film (thickness: 40 ⁇ m, melting point: 160 ° C.).
  • Example 1 The treating agent D-1 was applied on one surface of the metal foil C-1 and baked to form a corrosion prevention treatment layer having a dry thickness of 100 nm. Subsequently, the first adhesive B-1 was applied on the surface opposite to the surface of the metal foil C-1 on which the anticorrosion treatment layer was formed so as to have a dry thickness of 4 ⁇ m, and the first base material A- 1 was affixed at 40 ° C. by a dry laminating method. Thereafter, the resulting laminate was aged at 40 ° C. for 7 days. Next, the second base material F-1 was applied on the surface of the laminated body after aging on the side of the corrosion prevention treatment layer so as to have a dry thickness of 8 ⁇ m.
  • the curing agent in the second base material was crosslinked by aging at 40 ° C. for 7 days.
  • the adhesive resin G-1 is applied on the surface coated with the second base material F-1 so as to have a dry thickness of 3 ⁇ m, and the heat fusion resin H-1 is dry laminated at 100 ° C. Were bonded together to produce an exterior material.
  • Example 2 The treating agent D-1 was applied on one surface of the metal foil C-1 and baked to form a corrosion prevention treatment layer having a dry thickness of 100 nm. Subsequently, the first base material A-2 was applied to a dry thickness of 8 ⁇ m on the surface opposite to the surface on which the corrosion prevention treatment layer of the metal foil C-1 was formed. Next, the second base material F-1 was applied on the corrosion prevention treatment layer so as to have a dry thickness of 8 ⁇ m. Thereafter, the curing agent in the second base material was crosslinked by aging at 40 ° C. for 7 days. Next, the adhesive resin G-1 is applied on the surface coated with the second base material F-1 so as to have a dry thickness of 3 ⁇ m, and the heat fusion resin H-1 is dry laminated at 100 ° C. Were bonded together to produce an exterior material.
  • Example 3 An exterior material was produced in the same manner as in Example 2 except that the first base material A-3 was used instead of the first base material A-2.
  • Example 4 Example 2 except that the first base material A-4 was used instead of the first base material A-2, and the second base material F-2 was used instead of the second base material F-1.
  • the exterior material was produced similarly to.
  • Example 5 Example 2 except that the first base material A-5 was used instead of the first base material A-2, and the second base material F-3 was used instead of the second base material F-1.
  • the exterior material was produced similarly to.
  • Example 6 An exterior material was produced in the same manner as in Example 3 except that the second base material F-4 was used instead of the second base material F-1.
  • Example 7 An exterior material was produced in the same manner as in Example 3 except that the second base material F-7 was used instead of the second base material F-1.
  • the treating agent D-1 was applied on one surface of the metal foil C-1 and baked to form a corrosion prevention treatment layer having a dry thickness of 100 nm.
  • the first adhesive B-1 was applied on the surface opposite to the surface of the metal foil C-1 on which the anticorrosion treatment layer was formed so as to have a dry thickness of 4 ⁇ m, and the first base material A- 1 was affixed at 40 ° C. by a dry laminating method.
  • the second adhesive E-1 was applied on the corrosion prevention treatment layer so as to have a dry thickness of 4 ⁇ m, and the second base material F-5 was bonded at 40 ° C. by a dry laminating method. Thereafter, aging was performed at 40 ° C. for 7 days.
  • the adhesive resin G-1 is applied on the second base material F-5 so as to have a dry thickness of 3 ⁇ m, and the heat-sealing resin H-1 is bonded at 100 ° C. by a dry laminating method. An exterior material was produced.
  • the treating agent D-1 was applied on one surface of the metal foil C-1 and baked to form a corrosion prevention treatment layer having a dry thickness of 100 nm.
  • the first adhesive B-1 was applied on the surface opposite to the surface of the metal foil C-1 on which the anticorrosion treatment layer was formed so as to have a dry thickness of 4 ⁇ m, and the first base material A- 1 was affixed at 40 ° C. by a dry laminating method. Thereafter, the resulting laminate was aged at 40 ° C. for 7 days.
  • the adhesive resin G-1 is applied on the surface of the laminated body after the aging so as to have a dry thickness of 3 ⁇ m, and the heat fusion resin H-1 is dry laminated at 100 ° C. Bonding was performed by the method to prepare an exterior material.
  • the treating agent D-1 was applied on one surface of the metal foil C-1 and baked to form a corrosion prevention treatment layer having a dry thickness of 100 nm.
  • the second base material F-1 was applied on the corrosion prevention treatment layer so as to have a dry thickness of 8 ⁇ m.
  • curing agent of the 2nd base material layer was bridge
  • the adhesive resin G-1 is applied on the surface coated with the second base material F-1 so as to have a dry thickness of 3 ⁇ m, and the heat fusion resin H-1 is dry laminated at 100 ° C. The exterior material bonded together was produced.
  • Comparative Example 4 An exterior material was produced in the same manner as in Comparative Example 1 except that the second base material F-6 was used instead of the second base material F-5.
  • the exterior materials produced in the examples and comparative examples were cut into a shape of 150 mm ⁇ 190 mm and placed in a molding apparatus so that the heat-sealing resin layer faced upward.
  • the molding depth of the molding equipment is set to 1 to 10 mm per 1 mm, and the exterior material is cold-molded in an environment with a room temperature of 23 ° C and a dew point temperature of -35 ° C, and the moldability at each molding depth is evaluated according to the following criteria did.
  • the punch mold has a rectangular cross section of 100 mm ⁇ 150 mm, has a punch radius (RP) of 0.75 mm on the bottom surface, and a punch corner radius (RCP) of 1.5 mm on the side surface. It was used.
  • the exterior materials produced in Examples and Comparative Examples were cut into 120 mm ⁇ 260 mm blank shapes and placed in a molding apparatus so that the heat-sealing resin layer faced upward. Under the environment of room temperature 23 ° C. and dew point temperature ⁇ 35 ° C., the molding depth was set to 3 mm, and the exterior material was cold-molded.
  • the punch mold has a rectangular cross section of 70 mm ⁇ 80 mm, has a punch radius (RP) of 0.75 mm on the bottom surface, and a punch corner radius (RCP) of 1.5 mm on the side surface. It was used. Further, a die having a 0.75 mm diradius (RD) on the upper surface of the opening was used.
  • the clearance between the punch mold and the die mold was 0.20 mm.
  • the molding area is the approximate center of the half surface divided by the approximate center in the longitudinal direction of the trimmed exterior material, and the three sides of the molding area are 25 mm from the both ends of the trimmed exterior material in the short direction and one end in the longitudinal direction, respectively.
  • the molding area was arranged so as to be.
  • the molded exterior material is allowed to stand in an environment of room temperature 23 ° C. and dew point temperature ⁇ 35 ° C. for 60 minutes so that the heat-sealing resin layer faces downward, and the amount of warping of the short side of the unmolded area side ( The distance between the center of the short side and the stationary surface) was measured.
  • the warpage was evaluated according to the following criteria. Table 1 shows the evaluation results of warpage after molding. “Excellent”: warpage is less than 50 mm. “Good”: Warpage amount is 50 mm or more and less than 100 mm. “No”: The warping amount is 100 mm or more.
  • the evaluation of the water vapor barrier property was performed according to the following criteria.
  • the evaluation results of water vapor barrier properties are shown in Table 1. “Good”: the water content is less than 110% with respect to Example 1. “Not possible”: The water content is 110% or more with respect to Example 1.
  • Example 1 In Examples 1 to 6 and Comparative Examples 3 to 4, good heat resistance was obtained, whereas in Comparative Example 1, sufficient heat resistance was not obtained.
  • Comparative Example 1 since the second base material layer is not formed from a resin composition containing a thermosetting resin, it is considered that the shape has greatly changed due to thermal fusion.
  • Example 7 since the melting point of the second base material layer was low, the shape was slightly changed by heat fusion, but the degree was judged to be acceptable.
  • Comparative Examples 1 and 2 and Comparative Example 4 a sufficient molding depth was obtained, but in Comparative Example 3, sufficient moldability was not obtained. In Comparative Example 3, it is considered that the first base material layer was not provided and the metal foil layer could not be protected.
  • Comparative Examples 1 and 2 good insulation was obtained, but in Comparative Examples 1 and 2, sufficient insulation was not obtained.
  • the second base material layer was not formed from a resin composition containing a thermosetting resin, and the inner layer of the metal foil layer became thin at the time of heat fusion, so that the metal terminal and the metal foil layer It is thought that it was short-circuited between.
  • the second base material layer was not provided, and the inner layer of the metal foil layer became thinner at the time of heat-sealing. Therefore, it is considered that a short circuit occurred between the metal terminal and the metal foil layer.
  • Example 7 although the melting point of the second base material layer was low and the inner layer of the metal foil layer was slightly thin at the time of heat sealing, the resistance value was partially reduced, but the metal terminal and the metal It is considered that a short circuit with the foil layer was not reached.
  • Comparative Example 1 and Comparative Example 4 the warpage amount was suppressed, but in Comparative Examples 2 and 3, the warpage amount after molding was not sufficiently suppressed. In Comparative Examples 2 and 3, since the base material layer is laminated only on one side with respect to the metal foil layer of the exterior material, it is considered that warpage occurred after the molding process.
  • SYMBOLS 1 ... 1st base material layer, 2 ... 1st adhesive bond layer, 3, 5 ... Corrosion prevention process layer, 4 ... Metal foil layer, 6 ... 2nd base material layer, 7 ... Adhesive resin layer, 8 ... Thermal fusion Resin layer, 10, 20, 30 ... (for secondary battery) exterior material, 50 ... embossed type exterior material, 52 ... molding process area (recess), 54 ... lid part, 56 ... battery element, 58 ... lead (metal terminal) ), 60 ... secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

 本発明は、第1基材層の一方の面上に、少なくとも金属箔層、第2基材層及び熱融着樹脂層がこの順で積層された二次電池用外装材であって、上記第2基材層が上記金属箔層上に、直接又は腐食防止処理層のみを介して、積層されており、上記第1基材層は熱硬化性樹脂又は熱可塑性樹脂を含む樹脂組成物から形成され、上記第2基材層は熱硬化性樹脂を含む樹脂組成物から形成される、二次電池用外装材を提供する。

Description

二次電池用外装材及び二次電池
 本発明は、二次電池用外装材及び二次電池に関する。
 近年、パソコン、携帯電話等の携帯端末装置、ビデオカメラ、衛星、及び車両等に用いられる蓄電デバイスとして、超薄型化又は小型化の可能な二次電池が盛んに開発されている。このような電池に使用される外装材として、多層フィルムからなるラミネート外装材(例えば、基材層/第1接着層/金属箔層/第2接着層/熱融着樹脂層のような積層構成を有する外装材)が注目を集めている。多層フィルムからなるラミネート外装材は、電池要素の容器として用いられる従来の金属製の缶とは異なり、軽量で、放熱性が高く、形状を自由に選択できる点で、優れている。
 二次電池は、例えば、多層フィルムの二次電池用外装材の一部に冷間成型によって凹部を形成し、該凹部内に電池内容物(正極、セパレータ、負極及び電解液等)を収容し、凹部が形成されていない残りの部分を折り返し、縁部分を上記正極及び負極から延びる電極端子を挟んで熱融着して密封することにより製造される(以下、「片側成型加工電池」とも記す)。近年では、より多くの内容物を効率的に収容してエネルギー密度を高めるために、貼り合わせる二次電池用外装材の両側に凹部を形成した二次電池も製造されている(以下、「両側成型加工電池」とも記す)。このような二次電池において高いエネルギー密度を得るためには、より深い凹部の形成が求められる。しかし、凹部を深くすると、金型での成型加工時において、延伸率の高い部位である凹部の辺又は角の部分にピンホール又は破断が起こりやすくなる。
 凹部を深く成型(深絞り成型)した際のピンホール又は破断を抑制するために、例えば、特許文献1では、二次電池用外装材の基材層に延伸ポリアミドフィルム又は延伸ポリエステルフィルム等のフィルムを使用して金属箔が保護されている。
特許3567230号公報
 しかしながら、特許文献1に記載された技術では成型性は得ることができるが、電池製造時に金属箔層に対し内側になる未延伸フィルムが熱融着時に溶融して薄くなり、正極及び負極等の電池要素又は電極端子と金属箔層とが電気的に接続しやすくなることから、絶縁性が低下する問題が生じることがあった。また、特許文献1に記載された構成では、成型加工後に外装材が反ることがあった。成型加工後の反りは外装材の性能の低下又は加工性の低下の原因となる。
 一方、金属箔層に対して内側になる層が厚すぎると、電池内部に水分が浸入して電池内容物等と反応し、弗酸等の物質を発生して電池要素又は金属箔層を腐食することがあった。
 本発明は上記問題に鑑みてなされたものであり、成型性及び水蒸気バリア性を保ちつつ絶縁性の低下を抑え、成型後の反りを低減することが可能な、二次電池用外装材及びそれを用いた二次電池を提供することを目的とする。
 本発明は、第1基材層の一方の面上に、少なくとも金属箔層、第2基材層及び熱融着樹脂層がこの順で積層された二次電池用外装材であって、上記第2基材層が上記金属箔層上に、直接又は腐食防止処理層を介して、積層されており、上記第1基材層は熱硬化性樹脂又は熱可塑性樹脂を含む樹脂組成物から形成され、上記第2基材層は熱硬化性樹脂を含む樹脂組成物から形成される、二次電池用外装材を提供する。上記二次電池用外装材によれば、成型性及び水蒸気バリア性を保ちつつ絶縁性の低下を抑え、成型後の反りを低減することが可能である。
 上記二次電池用外装材において、上記金属箔層が上記第1基材層の一方の面上に直接積層されていることが好ましい。二次電池用外装材が上記構成を備えることにより、外装材端部からの水蒸気浸入量をより低減することができ、また、外装材全体をより薄くすることができ、二次電池をより薄型化及び小型化することができる。
 上記二次電池用外装材において、上記第1基材層の厚さが5μm以上30μm以下であり、上記第2基材層の厚さが5μm以上30μm以下であることが好ましい。また、上記第1基材層及び第2基材層の厚さの差が15μm以下であることが好ましい。
 上記二次電池用外装材において、上記第1基材層及び上記第2基材層が互いに同種の樹脂材料から形成されることが好ましい。二次電池用外装材が上記構成を備えることにより、成型加工後の反り量をより低減することができる。
 上記二次電池用外装材において、上記金属箔層の厚さが20μm以上80μm以下であることが好ましい。金属箔層の厚さが上記範囲内にあることにより、成型性及びエネルギー密度をよりバランスよく得ることができる。
 上記二次電池用外装材において、上記第1基材層の他方の面上又は上記熱融着樹脂層上に、脂肪酸アミドからなる滑剤を含む塗布層が形成されていることが好ましい。二次電池用外装材が上記構成を備えることにより、成型性をさらに向上させることができる。
 本発明はまた、電池要素と、上記二次電池用外装材とを備える、二次電池を提供する。
 本発明によれば、成型性及び水蒸気バリア性を保ちつつ絶縁性の低下を抑え、成型後の反りを低減することが可能な、二次電池用外装材及び二次電池を提供することができる。
本発明の一実施形態に係る二次電池用外装材の概略断面図である。 本発明の別の実施形態に係る二次電池用外装材の概略断面図である。 本発明の別の実施形態に係る二次電池用外装材の概略断面図である。 本発明の一実施形態に係る二次電池用外装材を用いて二次電池を製造する工程を示す斜視図であり、(a)は、二次電池用外装材を準備した状態を示し、(b)は、エンボスタイプに加工された二次電池用外装材と電池要素を準備した状態を示し、(c)は、二次電池用外装材の一部を折り返して端部を溶融した状態を示し、(d)は、折り返された部分の両側を上方に折り返した状態を示す。
 以下、本発明の実施形態について詳細に説明する。なお、本発明は以下の実施形態に限定されるものではない。
 本発明の外装材は、第1基材層、金属箔層、第2基材層、及び熱融着樹脂層を基本構成として備え、具体的には、第1基材層の一方の面上に、少なくとも金属箔層、第2基材層及び熱融着樹脂層がこの順で積層された構造を備える。
[二次電池用外装材10]
 まず、本発明の一実施形態に係る二次電池用外装材10(以下、単に「外装材10」とも記す。)について説明する。外装材10は、図1に示すように、第1基材層1、第1接着剤層2、金属箔層4、腐食防止処理層5、第2基材層6、接着樹脂層7、及び熱融着樹脂層8がこの順に順次積層されてなる積層構造を有する。外装材10は、例えば、金属箔の一方の面上に腐食防止処理層5を形成し、金属箔の他方の面に第1接着剤を介して第1基材材料を貼り合わせ、腐食防止処理層5上に第2基材層6を形成し、第2基材層6上に接着樹脂を介して熱融着樹脂層8を形成することにより製造される。なお、第2基材層6が腐食防止機能を付与可能な後述する特定の熱硬化性樹脂を含む樹脂組成物から形成される場合、外装材10は腐食防止処理層5を備えていなくてもよい。
(第1基材層1)
 第1基材層1は、電池を製造する際の加圧熱融着工程(後述の工程S3)における耐熱性を外装材に付与し、加工又は流通の際に起こり得るピンホールの発生を抑制する役割を果たす。また、第1基材層1は、エンボス成型工程(後述の工程S2)での金属箔層4の破断防止、又は金属箔層4と他の金属との接触を防止して絶縁性を担保する役割を果たす。
 外装材10の製造では、金属箔の一方の面上に後述の第1接着剤を介して第1基材材料が貼り合せられ、上記第1基材材料が第1基材層1となり、上記第1接着剤が第1接着剤層2となり、上記金属箔が金属箔層4となる。第1基材材料を貼り合せる際には、接着性の促進のため、室温~100℃の範囲でエージング(養生)処理を行ってもよい。エージング時間は、例えば、3~10日である。
 外装材10の製造における上記第1基材材料は熱硬化性樹脂又は熱可塑性樹脂を含む樹脂フィルムであり、上記樹脂フィルムに含まれる熱硬化性樹脂又は熱可塑性樹脂としては、例えば、ポリエステル樹脂、ポリウレタン樹脂、ポリアミド樹脂、ポリイミド系樹脂、フッ素系樹脂、ポリ塩化ビニリデン樹脂、及びアクリル樹脂が挙げられる。上記樹脂フィルムを構成する樹脂は、1種類を単独で使用してもよく、2種類以上を併用してもよい。
 ポリイミド系樹脂としては、ポリイミド樹脂、ポリアミドイミド樹脂、及びポリエーテルイミド樹脂等が挙げられる。フッ素系樹脂としては、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリフッ化ビニリデン、ポリフッ化ビニル、ペルフルオロアルコキシフッ素樹脂、四フッ化エチレン・六フッ化プロピレン共重合体、エチレン・四フッ化エチレン共重合体、及びエチレン・クロロトリフルオロエチレン共重合体等が挙げられる。第1基材材料が熱硬化性樹脂を含む場合、樹脂フィルムはさらに硬化剤を含んでいてもよい。硬化剤としては、イソシアネート樹脂、エポキシ樹脂及びメラミン樹脂等が挙げられる。第1基材材料が熱硬化性樹脂を含む場合、第1基材層1は第1基材材料の硬化物であるということができる。
 上記樹脂フィルムは、成型性、耐熱性、耐突き指し性、絶縁性、及び耐薬品性等の観点から、ポリエステル樹脂フィルム又はポリアミド樹脂フィルムであることが好ましく、二軸延伸ポリエステル樹脂フィルム又は二軸延伸ポリアミド樹脂フィルムであることがより好ましい。
 第1基材材料は、1枚のフィルムからなる単一フィルムであってもよく、2枚以上のフィルムをドライラミネート接着剤で貼り合わせた複合フィルムであってもよい。
 上記樹脂フィルムには、難燃剤、滑剤、アンチブロッキング剤、酸化防止剤、光安定剤、粘着付与剤及び帯電防止剤等の添加材が内部に分散されていてもよく、これらの添加剤(好ましくは、滑材)を含む塗布層が上記樹脂フィルムの表面上(すなわち、第1基材層1の他方の面上)に形成されてもよい。滑剤としては、例えば、オレイン酸アミド、エルカ酸アミド、ステアリン酸アミド、ベヘニン酸アミド、エチレンビスオレイン酸アミド、及びエチレンビスエルカ酸アミド等の脂肪酸アミドが挙げられる。滑剤が上記樹脂フィルムの内部に分散されている、又は、上記塗布層が上記樹脂フィルムの表面上に形成されていることにより、外装材10の成型性が向上する傾向がある。アンチブロッキング剤としては、シリカ等の各種フィラーが挙げられる。添加剤は、1種を単独で使用してもよく、2種以上を併用してもよい。
 第1基材層1の厚さは第1基材材料である樹脂フィルムと略同一であり、耐突き刺し性、絶縁性、及びエンボス加工性等の観点から、5μm以上30μm以下であることが好ましく、8μm以上25μm以下であることがより好ましい。第1基材層1の厚さが5μm以上であれば、成型性、耐ピンホール性、及び絶縁性が向上する傾向がある。一方、第1基材層1の厚さが30μm以下であれば、コストの増加及びエネルギー密度低下を抑制し、第2基材層6とのバランスがとり易くなる。
 第1基材層1は、耐擦傷性及び滑り性改善等のために、表面に凹凸を有することができる。
(第1接着剤層2)
 外装材10において、第1接着剤層2は、第1基材層1と金属箔層4との間に形成される。すなわち、外装材10において、第1基材層1は、第1接着剤層2を介して、金属箔層4の他方の面(腐食防止処理層5を形成した側と反対側の面)上に形成される。第1接着剤層2は、第1基材層1と金属箔層4とを接着する層であり、エンボス成型時の金属箔層4の破断を第1基材層1によって保護する観点から、追随性を有することが好ましい。
 第1接着剤層2を形成する材料である第1接着剤としては、ポリエステルポリオール、ポリエーテルポリオール又はアクリルポリオール等を主剤とし、芳香族系又は脂肪族系のイソシアネート等を硬化剤とした2液硬化型接着剤を使用することができる。上記第1接着剤は主剤のOH基に対する硬化剤のNCO基のモル比[NCO/OH]は、1以上10以下であることが好ましく、2以上5以下であることがより好ましい。[NCO/OH]が1以上ならばより優れた接着性が得られる。また、[NCO/OH]が10以下ならば過剰な架橋反応を抑制し、第1接着剤層2が脆く硬くなる、又は、伸び量を確保できず成型性が得られない等の不具合を防止できる傾向がある。
 第1接着剤には、熱可塑性エラストマー、粘着付与剤、フィラー、顔料及び染料等をさらに添加することができる。
 第1接着剤層2の厚さは、接着強度、追随性及び加工性等の点から、0.5μm以上10μm以下であることが好ましく、1μm以上5μm以下であることがより好ましい。なお、第1接着剤層2の厚さは、第1接着剤を塗布し乾燥した後の乾燥厚さと略同一である。
(金属箔層4)
 金属箔層4は、水分の電池内への浸入を防止する役割を果たす(すなわち、水蒸気バリア性を有する)。外装材10において、金属箔層4は、第1接着剤層2と第2基材層6との間に配置される。また、金属箔層4は、深絞り成型をするために延展性を有する。
 外装材の製造において、金属箔層4となる金属箔としては、アルミニウム及びステンレス鋼等の各種金属箔を使用することができ、重量(比重)、防湿性、加工性又はコストの観点から、アルミニウム箔が好ましい。
 金属箔層4となるアルミニウム箔としては、公知の軟質アルミニウム箔が使用でき、耐ピンホール性及び成型時の延展性の点から、鉄を含むアルミニウム箔が好ましい。アルミニウム箔(100質量%)中の鉄の含有量は、0.1質量%以上9.0質量%以下であることが好ましく、0.5質量%以上2.0質量%以下であることがより好ましい。鉄の含有量が上記下限値以上であれば耐ピンホール性及び延展性がより向上する。鉄の含有量が上記上限値以下であれば、柔軟性がより向上する。
 金属箔層4の厚さは上記金属箔の厚さと略同一であり、20μm以上80μm以下であることが好ましく、25μm以上60μm以下であることがより好ましい。金属箔層4の厚さが20μm以上の場合、成型時にピンホール又は破断が生じにくくなる。一方、金属箔層4の厚さが80μm以下の場合、各種性能を維持しつつコストの増加又はエネルギー密度低下を抑制しやすくなる。
(腐食防止処理層5)
 腐食防止処理層5は、例えばリチウムイオン二次電池の場合、電解液と水分の反応により発生する弗酸による金属箔層4表面の腐食を抑制する役割を果たす。また、腐食防止処理層5は、金属箔層4と第2基材層6に対するアンカー層としての機能を有する。腐食防止処理層5は、例えば、金属箔層4の一方の面上に腐食防止処理剤を塗布し、乾燥することにより、金属箔層4の一方の面上に形成される。腐食防止処理剤の塗布方法は特に限定されず、グラビアコート、リバースコート、ロールコート、又はバーコート等の各種方法を採用できる。
 腐食防止処理層5は、例えば、クロム酸塩と燐酸塩と弗化物と各種熱硬化性樹脂とからなる腐食防止処理剤を用いたクロメート処理、希土類元素酸化物(例えば、酸化セリウム等)と燐酸塩と各種熱硬化性樹脂とからなる腐食防止処理剤を用いたセリアゾール処理等により形成される。腐食防止処理層5は、上記役割を果たす層であれば上記処理で形成した層には限定されず、例えば、燐酸塩処理及びベーマイト処理等により形成されてもよい。また、腐食防止処理層5は、単層であってもよく、複数層であってもよい。例えば、腐食防止処理層5は、上記腐食防止処理剤を用いて形成された層上にオーバーコート剤として樹脂をコーティング(オーバーコート層)した2層以上の構造を有してもよい。
 腐食防止処理層5の厚さは腐食防止処理剤の塗布層(及びオーバーコート層)の乾燥厚さと略同一であり、腐食防止機能とアンカーとしての機能の観点から、5nm以上1μm以下であることが好ましく、10nm以上200nm以下であることがより好ましい。
(第2基材層6)
 第2基材層6は、エンボス成型時の金属箔層4の破断又はピンホールの発生を防止し、また、金属箔層4と電池要素又はリード(金属端子)との接触を防止して両者の電気的絶縁性を得やすくする役割を果たす。さらに、外装材が金属箔層4の両側にそれぞれ第1基材層1と第2基材層6とを備えることにより、成型加工時の反りを低減することができる。
 第2基材層6は金属箔層4上に腐食防止処理層5のみを介して積層されている。外装材10が腐食防止処理層5を備えていない場合には、第2基材層6は金属箔層4上に直接積層される。すなわち、第2基材層6は金属箔層4又は腐食防止処理層5上に接着剤層を介さず形成されている。このため、外装材全体の厚さを薄くすることができ、接着剤層を介して第2基材層6が形成される場合と比べて工程数及び製造コストを削減することができる。また、外装材10が接着剤層を備えないことにより、外装材端部からの水蒸気浸入量を低減することができる。この場合、第2基材層6は第2基材材料を金属箔層4又は腐食防止処理層5上に塗布又は塗工することにより形成されることが好ましい。
 第2基材材料は熱硬化性樹脂を含む樹脂組成物であり、第2基材層6は第2基材材料の硬化物であるということができる。上記熱硬化性樹脂は、ポリエステル樹脂、ポリウレタン樹脂、ポリアミド樹脂、ポリイミド系樹脂、フッ素系樹脂、ポリ塩化ビニリデン樹脂及びアクリル樹脂からなる群より選択される少なくとも1種の樹脂であることが好ましい。第2基材層6が上記熱硬化性樹脂を含む樹脂組成物から形成されることにより、熱融着時に第2基材層6が薄くなることを抑制することができる。その結果、金属箔層4と電池要素又はリード(金属端子)との接触を防ぎ、絶縁性を確保することができる。また、第2基材層6が上記熱硬化性樹脂を含む樹脂組成物から形成されることにより、外装材10にさらに腐食防止機能及び耐薬品性を付与できる傾向がある。第2基材層6が耐薬品性を有することにより、電解液等によって溶解しにくくなり、強度低下又は性能低下を抑制することができる。ポリイミド系樹脂としては、ポリイミド樹脂、ポリアミドイミド樹脂、及びポリエーテルイミド樹脂等が挙げられる。フッ素系樹脂としては、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリフッ化ビニリデン、ポリフッ化ビニル、ペルフルオロアルコキシフッ素樹脂、四フッ化エチレン・六フッ化プロピレン共重合体、エチレン・四フッ化エチレン共重合体、及びエチレン・クロロトリフルオロエチレン共重合体等が挙げられる。上記樹脂材料は、1種類を単独で使用してもよく、2種類以上を併用してもよい。
 第2基材材料(樹脂組成物)は上記樹脂材料とともに、硬化剤を含むことが好ましい。硬化剤としては、イソシアネート樹脂、エポキシ樹脂及びメラミン樹脂等が挙げられる。第2基材材料が硬化剤を含むことにより、硬化した第2基材層6と腐食防止処理層5及び接着樹脂層7との密着力を向上することができ、成型加工時の金属箔層4をより強く保護できることから、成型性をさらに向上することができる。さらに、上記樹脂組成物が硬化剤を含むことにより、腐食防止機能を一層向上できる傾向がある。また、上記樹脂材料は上記硬化剤と反応可能な官能基を有することが好ましい。上記樹脂材料が硬化剤と反応可能な官能基を有することによって、硬化剤のみならず樹脂材料を含めた架橋反応に伴う第2基材材料の硬化がさらに進行し、第2基材層6の融点等の特性を調整しやすくなる。硬化剤と反応可能な官能基としては、アミノ基、カルボキシ基、水酸基及びカルボニル基等が挙げられる。第2基材層6における架橋密度を高めることにより、より優れた電気絶縁性を得ることができる傾向がある。すなわち、上記樹脂組成物が樹脂材料と硬化剤とを含み、樹脂材料と硬化剤とを架橋させることにより、より優れた電気絶縁性を得ることができる傾向がある。
 第2基材材料は、例えば、溶液として金属箔層4又は腐食防止処理層5上に塗布され、加熱又は乾燥することにより第2基材層6となる。また、第2基材材料が硬化剤を含む場合、さらにエージングすることにより、硬化して第2基材層6となる。第2基材層6の融点は熱融着樹脂層8の融点よりも40℃以上高いことが好ましく、70℃以上高いことがより好ましい。上記範囲の融点を有する第2基材層6を用いて外装材を熱融着することにより、熱融着時に第2基材層6が薄くなることを一層抑制することができる。その結果、金属箔層4と電池要素又はリード(金属端子)との接触を防ぎ、より優れた絶縁性を確保することができる。第2基材層6の融点と熱融着樹脂層8の融点との間の差が大きい場合、融着の機能と絶縁性とを両立しやすくなり、広い温度範囲から熱融着温度を設定できる。第2基材層6の融点は200℃以上であることが好ましく、230℃以上であることがより好ましい。第2基材層6の融点が200℃以上であることにより、第2基材層6が熱融着時に薄くなりすぎず、金属箔層4と電池要素又はリード(金属端子)との接触を防ぎ、より確実に絶縁性を得ることができる。第2基材層6の融点の上限は特に制限されず、第2基材層6は、例えば、500℃程度の融点を有していてもよく、融点を有していなくてもよい。なお、第2基材層6の融点と熱融着樹脂層8の融点との間の差は100℃以下であってもよい。第2基材層6の融点と熱融着樹脂層8の融点との間の差が小さい場合、第2基材層6の加工性が向上する傾向がある。第2基材層6の融点は、例えば、上記樹脂材料の官能基量及び硬化剤の添加量等により、架橋点の数を制御することで調整することができる。したがって、樹脂材料の官能基量及び硬化剤の添加量等は、融点が上記範囲内となるように、また、金属箔層4の保護効果等の他の特性を併せて考慮して、適宜選択すればよい。また、上記第2基材層6が金属箔層4上に、直接又は腐食防止処理層5のみを介して、積層されることにより、成型性及び水蒸気バリア性を維持しつつ、成型時の反りを抑制し、さらに、絶縁性を向上することができる。なお、本明細書において、融点とは、DSC(示差走査熱量計)にて、試料を5℃/分で加熱したときの試料の融解に伴う吸熱ピークトップの温度を示す。
 第2基材層6を形成する第2基材材料は第1基材層1を構成する第1基材材料と同種の樹脂材料であることが好ましい。すなわち、例えば、第1基材材料がポリエステル樹脂フィルムである場合、第2基材材料はポリエステル樹脂であることが好ましい。第2基材材料が第1基材材料と同種の樹脂材料であることにより、成型加工後の反り量をより低減させやすくなる。
 第2基材層6の厚さは第2基材材料の塗布層の乾燥厚さと略同一であり、成型性、絶縁性及び水蒸気バリア性等の観点から、5μm以上30μm以下であることが好ましく、8μm以上25μm以下であることがより好ましく、8μm以上20μm以下であることがさらに好ましく、8μm以上15μm以下であることが特に好ましい。第2基材層6の厚さが5μm以上であれば、成型性、耐ピンホール性及び絶縁性が向上する傾向がある。一方、第2基材層6の厚さが30μm以下であれば、電池製造時に端部から浸入する水蒸気量を低減し、水蒸気バリア性が向上する傾向がある。
 第1基材層1と第2基材層6の厚さの差は15μm以下であることが好ましく、10μm以下であることがより好ましい。第1基材層1と第2基材層6の膜厚の差が15μm以下であれば成型加工時の反りを低減しやすくなる。
(接着樹脂層7)
 接着樹脂層7は、熱融着樹脂層8と、第2基材層6とを接着する層である。第2基材層6、接着樹脂層7及び熱融着樹脂層8の構成は、接着樹脂層7を構成する接着樹脂とともに、熱ラミネート構成とドライラミネート構成に大きく分類される。
 熱ラミネート構成では、押出ラミネートにより第2基材層6上に接着樹脂が導入される。熱ラミネート構成における上記接着樹脂は、熱可塑性樹脂であることが好ましい。熱ラミネート構成における上記接着樹脂としては、例えば、ポリオレフィン樹脂、エラストマー樹脂、ポリオレフィン樹脂を酸変性させた酸変性ポリオレフィン樹脂が挙げられる。
 ポリオレフィン樹脂としては、例えば、低密度、中密度及び高密度のポリエチレン;エチレン-αオレフィン共重合体;ポリプロピレン;並びに、プロピレン-αオレフィン共重合体等が挙げられる。共重合体である場合のポリオレフィン樹脂は、ブロック共重合体であってもよく、ランダム共重合体であってもよい。
 酸変性ポリオレフィン樹脂としては、例えば、上記ポリオレフィン樹脂が不飽和カルボン酸及びその誘導体により変性(酸変性)されたもの等が挙げられる。不飽和カルボン酸としては、例えば、アクリル酸、メタクリル酸、マレイン酸、フマル酸、クロトン酸及びイタコン酸等が挙げられる。不飽和カルボン酸の誘導体としては、不飽和カルボン酸の無水物、モノ及びジエステル、アミド化物並びにイミド化物等が挙げられる。不飽和カルボン酸及びその誘導体は、アクリル酸、メタクリル酸、マレイン酸、又は無水マレイン酸であることが好ましく、無水マレイン酸であることがより好ましい。酸変性ポリオレフィン樹脂は、不飽和カルボン酸、その誘導体、及びその他の単量体等を共重合することによって得ることができる。上記共重合は、ブロック共重合、ランダム共重合及びグラフト共重合のいずれであってもよい。これら不飽和カルボン酸及びその誘導体は、1種単独で用いてもよく、2種以上を併用してもよい。ポリオレフィン系樹脂及び酸変性ポリオレフィン系樹脂は電解液耐性に優れている。
 エラストマー樹脂としては、SEBS(スチレン/エチレン/ブチレン/スチレン)共重合体、SBS(スチレン/ブタジエン/スチレン)共重合体、SEPS(スチレン/エチレン/プロピレン/スチレン)共重合体、SEP(スチレン/エチレン/プロピレン)共重合体、及び、SIS(スチレン/イソプレン/スチレン)共重合体等が挙げられる。接着樹脂として、上記エラストマー樹脂と酸変性ポリオレフィン系樹脂とを併用することにより、冷間成型時のクラックによる延伸白化耐性を改善し、濡れ性向上によって密着力を改善し、異方性低減によって成膜性を改善し、熱融着強度等の特性を改善するこができる傾向がある。
 ドライラミネート構成では、第2基材層6上に接着樹脂が導入(例えば、塗布)される。ドライラミネート構成における上記接着樹脂としては、例えば、酸変性ポリオレフィン樹脂が挙げられる。酸変性ポリオレフィン樹脂としては、熱ラミネート構成において例示した酸変性ポリオレフィン樹脂が挙げられる。
 接着樹脂層7の厚さは接着樹脂の導入層の乾燥厚さと略同一である。接着樹脂層7の厚さは、熱ラミネート構成の場合、8μm以上30μm以下であることが好ましく、10μm以上20μm以下であることがより好ましい。接着樹脂層7の厚さが8μm以上であれば、第2基材層6と熱融着樹脂層8との十分な接着強度が得られやすくなる。接着樹脂層7の厚さが30μm以下であれば、外装材端面から電池内部に透過する水分量を低減しやすくなる。また、接着樹脂層7の厚さは、ドライラミネート構成の場合、1μm以上5μm以下であることが好ましい。接着樹脂層7の厚さが1μm以上であれば、第2基材層6と熱融着樹脂層8との密着力が向上し、十分なラミネート強度が得られやすくなる。一方、接着樹脂層7の厚さが5μm以下であれば、膜割れの発生を抑制しやすくなる。ドライラミネート構成における接着樹脂層7の膜厚が1μm以上5μm以下の範囲内にあることで、熱融着樹脂層8と第2基材層6とをより強固に密着させることができる。
(熱融着樹脂層8)
 熱融着樹脂層8は、第2基材層6上に接着樹脂層7を介して形成される。熱融着樹脂層8は、ドライラミネーション及びサンドイッチラミネーション等によって積層されてもよく、接着樹脂層7とともに共押出し法によって積層されてもよい。接着樹脂層7上に熱融着樹脂層8を積層し、2枚の外装材の熱融着樹脂層8同士を向かい合わせにし、熱融着樹脂層8の融解温度(融点)以上で外装材の端部を加圧熱融着することにより、上記2枚の外装材内に電池内容物を密閉することができる。熱融着樹脂層8は熱融着樹脂から形成される。熱融着樹脂としては、ポリオレフィン樹脂が挙げられる。上記ポリオレフィン樹脂としては、例えば、低密度、中密度及び高密度のポリエチレン、並びにポリプロピレン等が挙げられる。上記ポリオレフィン樹脂は共重合体であってもよく、ブロック共重合体であってもよく、ランダム共重合体であってもよい。また、上記ポリオレフィン樹脂はアクリル酸及びメタクリル酸等の極性単量体を共重合した共重合体であってもよく、架橋ポリオレフィン等のポリマー等を分散又は共重合させた樹脂であってもよい。上記ポリオレフィン樹脂は、1種類を単独で使用してもよく、2種類以上を併用してもよい。熱融着樹脂層8は熱融着樹脂フィルムから形成されていてもよい。熱融着樹脂層8を形成する熱融着樹脂フィルムは上記ポリオレフィン樹脂が混合されたフィルムであってもよく、無延伸ポリオレフィン樹脂フィルムであることが好ましく、無延伸ポリプロピレンフィルムであることがより好ましい。また、熱融着樹脂層8を形成する上記熱融着樹脂フィルムは、単層フィルムであってもよく、多層フィルムであってもよい。
 熱融着樹脂層8は、上記熱融着樹脂とともに、滑剤、アンチブロッキング剤、帯電防止剤、造核剤、顔料及び染料等の各種添加剤を含む熱融着樹脂組成物から形成されていてもよい。上記添加剤は、1種を単独で使用してもよく、2種以上を併用してもよい。また、上記添加剤(好ましくは、滑材)を含む塗布層が熱融着樹脂層8(金属箔層4側と反対側の表面)上に形成されていてもよい。滑剤としては、第1基材層で挙げた滑剤を使用することができる。熱融着樹脂層8が滑材を含む熱融着樹脂組成物から形成される、又は、滑材を含む塗布層が熱融着樹脂層8上に塗布されることにより、外装材10の成型性が向上する傾向がある。
 熱融着樹脂層8の厚さは、熱融着樹脂層8を形成する樹脂フィルムの厚さと略同一であり、20μm以上90μm以下であることが好ましい。熱融着樹脂層8の厚さが20μm以上であれば、十分なラミネート強度を確保しやすくなる。また、熱融着樹脂層8の厚さが90μm以下であれば、水蒸気の透過量が多くなることを抑制しやすくなる。
[二次電池用外装材20]
 次に、本発明の別の実施形態に係る二次電池用外装材20(以下、単に「外装材20」とも記す。)について説明する。外装材20は、図2に示すように、第1基材層1、第1接着剤層2、腐食防止処理層3、金属箔層4、腐食防止処理層5、第2基材層6、接着樹脂層7、及び熱融着樹脂層8がこの順に順次積層されてなる積層構造を有する。外装材20が外装材10と異なる点は、第1接着剤層2と金属箔層4との間にさらに腐食防止処理層3を備える点である。外装材20が腐食防止処理層3を備えることにより、金属箔層4の第1基材層1側の面の腐食を防止することができる。腐食防止処理層3は、外装材10において上述した腐食防止処理層5と同様の腐食防止処理剤等により、同様の方法により形成することができる。
[二次電池用外装材30]
 次に、本発明の別の実施形態に係る二次電池用外装材30(以下、単に「外装材30」とも記す。)について説明する。外装材30は、図3に示すように、第1基材層1、金属箔層4、腐食防止処理層5、第2基材層6、接着樹脂層7、及び熱融着樹脂層8がこの順に順次積層されてなる積層構造を有する。外装材30が外装材10と異なる点は、第1接着剤層2を備えない点である。外装材30では、金属箔層4が第1基材層1の一方の面上に直接積層されている。すなわち、第1基材層1は金属箔層4の腐食防止処理層5が形成されていない側の面上に接着剤層を介さずに形成されている。このため、外装材全体の厚さを小さくし、二次電池をより薄型化及び小型化することができ、接着剤層を介して第1基材層1が形成される場合と比べて工程数及び製造コストを削減することができる。この場合、第1基材層1は第1基材材料を金属箔層4上に塗布又は塗工することにより形成されることが好ましい。なお、第2基材層6が腐食防止機能を付与可能な上述の特定の熱硬化性樹脂を含む樹脂組成物から形成される場合、外装材30は腐食防止処理層5を備えていなくてもよい。
 外装材30の製造において第1基材材料は、外装材10において第2基材材料が腐食防止処理層5上に塗布されたときと同様にして、金属箔層4上に塗布される。外装材30の製造において、上記第1基材材料は熱硬化性樹脂又は熱可塑性樹脂を含む樹脂組成物である。第1基材層1は第1基材材料の硬化物又は固化物であるということができる。熱硬化性樹脂又は熱可塑性樹脂としては、例えば、ポリエステル樹脂、ポリウレタン樹脂、ポリアミド樹脂、ポリイミド樹脂、フッ素樹脂、ポリ塩化ビニリデン樹脂及びアクリル樹脂等が挙げられる。外装材30の製造における第1基材材料としては、より具体的には、第2基材材料として挙げた材料を使用できる。上記第1基材材料には、さらにイソシアネート樹脂、メラミン樹脂及びエポキシ樹脂等の硬化剤が添加されていてもよい。第1基材層1に用いる樹脂材料は、第2基材層6に用いる樹脂材料と同じであることが好ましい。第1基材層1に用いる樹脂材料は、第2基材層6に用いる樹脂材料と同種にすることによって成型加工後の反り量を低減させやすい。
[二次電池60]
 次に、上記外装材を備える二次電池について説明する。本実施形態の二次電池は、電池要素と、上記外装材とを備える。詳細には、二次電池は、電極を含む電池要素と、上記電極から延在するリード(金属端子)と、電池要素を収容する容器とを備え、上記容器は上記外装材から、熱融着樹脂層8が内側となるように形成される。上記容器は、2つの外装材を熱融着樹脂層8同士を対向させて重ね合わせ、重ねられた上記外装材の周縁部を熱融着して得られてもよく、また、1つの外装材を折り返して重ね合わせ、同様に上記外装材の周縁部を熱融着して得られてもよい。二次電池としては、例えば、リチウムイオン電池、ニッケル水素電池、及び鉛蓄電池等が挙げられる。
 リード58は、熱融着樹脂層8を内側として容器を形成する上記外装材によって挟持され、密封されている。リード58は、タブシーラントを介して、上記外装材によって挟持されていてもよい。
[二次電池の製造方法]
 次に、上記外装材を用いて二次電池を製造する方法について説明する。なお、ここでは、エンボスタイプ外装材50を用いて二次電池60を製造する場合を例に挙げて説明する。図4は上記エンボスタイプ外装材50を示す図である。図4の(a)~(d)は、上記外装材を用いた片側成型加工電池の製造工程を示す斜視図である。二次電池60としては、エンボスタイプ外装材50のような外装材を2つ設け、このような外装材同士を、アライメントを調整しつつ、貼り合わせて製造される、両側成型加工電池であってもよい。
 片側成型加工電池である二次電池60は、例えば、以下の工程S1~S5により製造することができる。
工程S1:外装材(例えば、外装材10、外装材20又は外装材30)、電極を含む電池要素56、並びに上記電極から延在するリード58を準備する工程。
工程S2:外装材の片面に電池要素56を配置するための凹部52を形成する工程(図4(a)及び図4(b)参照)。
工程S3:エンボスタイプ外装材50の成型加工エリア(凹部52)に電池要素56を配置し、凹部52を蓋部54が覆うようにエンボスタイプ外装材50を折り返し重ねて、電池要素56から延在するリード58を挟持するようにエンボスタイプ外装材50の一辺を加圧熱融着する工程(図4(b)及び図4(c)参照)。
工程S4:リード58を挟持する辺以外の一辺を残し、他の辺を加圧熱融着し、その後、残った一辺から電解液を注入し、真空状態で残った一辺を加圧熱融着する工程(図4(c)参照)。
工程S5:リード58を挟持する辺以外の加圧熱融着辺端部をカットし、成型加工エリア(凹部52)側に折り曲げる工程(図4(d)参照)。
(工程S1)
 工程S1では、上記外装材、電極を含む電池要素56、並びに上記電極から延在するリード58を準備する。上記外装材は、上述した実施形態に基づき準備する。電池要素56及びリード58としては特に制限はなく、公知の電池要素56及びリード58を用いることができる。
(工程S2)
 工程S2では、上記外装材の熱融着樹脂層8側に電池要素56を配置するための凹部52が形成される。凹部52を形成する方法としては、金型を用いた成型加工(深絞り成型)が挙げられる。成型方法としては、上記外装材の厚さ以上のギャップを有するように配置された雌型と雄型の金型を用い、雄型の金型を上記外装材とともに雌型の金型に押し込む方法が挙げられる。雄型の金型の押込み量を調整することで、凹部52の深さ(深絞り量)を所望の量に調整できる。上記外装材に凹部52が形成されることにより、エンボスタイプ外装材50が得られる。
(工程S3)
 工程S3では、エンボスタイプ外装材50の成型加工エリア(凹部52)内に、正極、セパレータ及び負極等から構成される電池要素56が配置され。また、電池要素56から延在し、正極と負極にそれぞれ接合されたリード58が成型加工エリア(凹部52)から外に引き出される。その後、エンボスタイプ外装材50は、長手方向の略中央で折り返され、熱融着樹脂層8同士が内側となるように重ねられ、エンボスタイプ外装材50のリード58を挟持する一辺が加圧熱融着される。加圧熱融着は、温度、圧力及び時間の3条件で制御され、適宜設定される。加圧熱融着の温度は、熱融着樹脂層8が融解する温度(融点)以上、第2基材層6の融解する温度(融点)未満であることが好ましい。上記温度範囲で加圧熱融着することにより、熱融着樹脂層8を十分に溶融させることができ、且つ、第2基材層6を溶融させずに厚さを保持できる。このため、融着の機能と絶縁性とを両立することができる。
 なお、熱融着樹脂層8の熱融着前の厚さは、リード58の厚さに対し40%以上80%以下であることが好ましい。熱融着樹脂層8の厚さが上記下限値以上であることにより、熱融着樹脂がリード58端部を十分充填できる傾向があり、上記上限値以下であることにより、二次電池60の上記外装材端部の厚さを適度に抑えることができ、外装材10、外装材20又は外装材30端部からの水分の浸入量を低減することができる。
(工程S4)
 工程S4では、リード58を挟持する辺以外の一辺を残し、他の辺の加圧熱融着が行われる。その後、残った一辺から電解液を注入し、残った一辺が真空状態で加圧熱融着される。加圧熱融着の条件は工程S3と同様である。
(工程S5)
 リード58を挟持する辺以外の周縁加圧熱融着辺端部がカットされ、端部からははみだした熱融着樹脂層8が除去される。その後、周縁加圧熱融着部を成型加工エリア52側に折り返し、折り返し部62を形成することで、二次電池60が得られる。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
[使用材料]
 実施例及び比較例に係る外装材の第1基材層、第1接着剤層、金属箔層、腐食防止処理層、第2接着層、第2基材層、接着樹脂層及び熱融着樹脂層を形成するために使用した材料を以下に示す。
(第1基材層)
 第1基材材料A-1:ポリアミド樹脂フィルム(厚さ:15μm)。
 第1基材材料A-2:アミノ基を有するポリアミド樹脂及びイソシアネート系硬化剤の混合物。
 第1基材材料A-3:水酸基を有するポリエステル樹脂及びイソシアネート系硬化剤の混合物。
 第1基材材料A-4:水酸基を有するポリウレタン樹脂及びイソシアネート系硬化剤の混合物。
 第1基材材料A-5:カルボキシ基を有するポリアミドイミド樹脂及びエポキシ系硬化剤の混合物。
(第1接着剤層)
 第1接着剤B-1:2液硬化型ポリエステルウレタン接着剤([NCO/OH]=5)。
(金属箔層)
 金属箔C-1:焼鈍処理した軟質アルミニウム箔8079材(厚さ:40μm)。
(腐食防止処理層)
 処理剤D-1:酸化セリウム、リン酸、及びアクリル系樹脂を主体とした塗布型セリアゾール処理剤。
(第2接着剤層)
 第2接着剤E-1:2液硬化型ポリエステルウレタン接着剤。
(第2基材層)
 第2基材材料F-1:水酸基を有するポリエステル樹脂及びイソシアネート系硬化剤の混合物(硬化後の樹脂膜(第2基材層)融点:230℃)。
 第2基材材料F-2:水酸基を有するポリウレタン樹脂及びイソシアネート系硬化剤の混合物(硬化後の樹脂膜融点:250℃)。
 第2基材材料F-3:カルボキシ基を有するポリアミドイミド樹脂及びエポキシ系硬化剤の混合物(硬化後の樹脂膜融点:290℃)。
 第2基材材料F-4:水酸基を有するポリエステル樹脂及びイソシアネート系硬化剤の混合物(硬化後の樹脂膜融点:200℃)
 第2基材材料F-5:ポリプロピレン樹脂フィルム(厚さ:10μm、融点:160℃)。
 第2基材材料F-6:ポリエステル樹脂フィルム(厚さ:25μm、融点:240℃)。
 第2基材材料F-7:水酸基を有するポリエステル樹脂及びイソシアネート系硬化剤の混合物(硬化後の樹脂膜融点:190℃)
(接着樹脂層)
 接着樹脂G-1:無水マレイン酸変性ポリプロピレン系樹脂(商品名:アドマー、三井化学社製)。
(熱融着樹脂層)
 熱融着樹脂H-1:無延伸ポリプロピレンフィルム(厚さ:40μm、融点:160℃)。
[外装材の作製]
(実施例1)
 金属箔C-1の一方の面上に処理剤D-1を塗布し、焼付け処理を施し、乾燥厚さ100nmの腐食防止処理層を形成した。続いて、金属箔C-1の腐食防止処理層を形成した面の反対面上に、第1接着剤B-1を乾燥厚さ4μmになるように塗工し、第1基材材料A-1を40℃でドライラミネート法により貼り付けた。その後、得られた積層体に対し、40℃7日間エージングを行った。次に、エージング後の積層体の腐食防止処理層側の面上に、第2基材材料F-1を乾燥厚さ8μmになるように塗工した。その後、40℃7日間エージングをすることで第2基材材料中の硬化剤を架橋させた。次に、第2基材材料F-1を塗布した面上に、接着樹脂G-1を乾燥厚さ3μmになるように塗工し、熱融着樹脂H-1を100℃でドライラミネート法により貼り合せ、外装材を作製した。
(実施例2)
 金属箔C-1の一方の面上に処理剤D-1を塗布し、焼付け処理を施し、乾燥厚さ100nmの腐食防止処理層を形成した。続いて、金属箔C-1の腐食防止処理層を形成した面の反対面上に、第1基材材料A-2を乾燥厚さ8μmになるように塗工した。次に、腐食防止処理層上に、第2基材材料F-1を乾燥厚さ8μmになるように塗工した。その後、40℃7日間エージングをすることで第2基材材料中の硬化剤を架橋させた。次に、第2基材材料F-1を塗布した面上に、接着樹脂G-1を乾燥厚さ3μmになるように塗工し、熱融着樹脂H-1を100℃でドライラミネート法により貼り合せ、外装材を作製した。
(実施例3)
 第1基材材料A-2に代えて第1基材材料A-3を用いたこと以外は実施例2と同様に外装材を作製した。
(実施例4)
 第1基材材料A-2に代えて第1基材材料A-4を、第2基材材料F-1に代えて第2基材材料F-2を、用いたこと以外は実施例2と同様に外装材を作製した。
(実施例5)
 第1基材材料A-2に代えて第1基材材料A-5を、第2基材材料F-1に代えて第2基材材料F-3を、用いたこと以外は実施例2と同様に外装材を作製した。
(実施例6)
 第2基材材料F-1に代えて第2基材材料F-4を用いたこと以外は、実施例3と同様に外装材を作製した。
(実施例7)
 第2基材材料F-1に代えて第2基材材料F-7を用いたこと以外は、実施例3と同様に外装材を作製した。
(比較例1)
 金属箔C-1の一方の面上に処理剤D-1を塗布し、焼付け処理を施し、乾燥厚さ100nmの腐食防止処理層を形成した。続いて、金属箔C-1の腐食防止処理層を形成した面の反対面上に、第1接着剤B-1を乾燥厚さ4μmになるように塗工し、第1基材材料A-1を40℃でドライラミネート法により貼り付けた。次に、腐食防止処理層上に、第2接着剤E-1を乾燥厚さ4μmになるように塗工し、第2基材材料F-5を40℃でドライラミネート法により貼り合せた。その後、40℃7日間エージングを行った。次に、第2基材材料F-5上に、接着樹脂G-1を乾燥厚さ3μmになるように塗工し、熱融着樹脂H-1を100℃でドライラミネート法により貼り合せ、外装材を作製した。
(比較例2)
 金属箔C-1の一方の面上に処理剤D-1を塗布し、焼付け処理を施し、乾燥厚さ100nmの腐食防止処理層を形成した。続いて、金属箔C-1の腐食防止処理層を形成した面の反対面上に、第1接着剤B-1を乾燥厚さ4μmになるように塗工し、第1基材材料A-1を40℃でドライラミネート法により貼り付けた。その後、得られた積層体に対し、40℃7日間エージングを行った。次に、エージング後の積層体の腐食防止処理層側の面上に、接着樹脂G-1を乾燥厚さ3μmになるように塗工し、熱融着樹脂H-1を100℃でドライラミネート法により貼り合せ、外装材を作製した。
(比較例3)
 金属箔C-1の一方の面上に処理剤D-1を塗布し、焼付け処理を施し、乾燥厚さ100nmの腐食防止処理層を形成した。次いで、腐食防止処理層上に、第2基材材料F-1を乾燥厚さ8μmになるように塗工した。その後、40℃7日間エージングをすることで第2基材層の硬化剤を架橋させた。次に、第2基材材料F-1を塗布した面上に、接着樹脂G-1を乾燥厚さ3μmになるように塗工し、熱融着樹脂H-1を100℃でドライラミネート法により貼り合せた、外装材を作製した。
(比較例4)
 第2基材材料F-5に代えて第2基材材料F-6を用いたこと以外は、比較例1と同様に外装材を作製した。
[評価方法]
(耐熱性)
 実施例及び比較例で作製した外装材を、温度190℃、面圧0.5MPa、時間3秒で加熱加圧し、第2基材層の形状の変化を目視で観察した。また、加熱加圧前後の外装材の断面を顕微鏡で観察し、加熱加圧前後の第2基材層の膜厚を測定した。耐熱性の評価は、以下の基準に従って行った。なお、比較例2では第2基材層を設けていないため、評価しなかった。耐熱性の評価結果を表1に示す。
「優」:熱融着による第2基材層の形状変化が認められず、且つ、加熱加圧前後の第2基材層の膜厚の変化が10%未満。
「良」:熱融着による第2基材層の形状変化が認められず、且つ、加熱加圧前後の第2基材層の膜厚の変化が10%以上20%未満。
「可」:熱融着による第2基材層の形状変化が僅かに認められる、又は、加熱加圧前後の第2基材層の膜厚の変化が20%以上30%未満。
「不可」:熱融着による第2基材層の形状変化が認められる、又は、加熱加圧前後の第2基材層の膜厚の変化が30%以上。
(成型深さ)
 実施例及び比較例で作製した外装材を、150mm×190mmの形状に切り取り、熱融着樹脂層が上方を向くように成型装置内に配置した。成型装置の成型深さを1mmごとに1~10mmに設定し、室温23℃、露点温度-35℃の環境下で外装材を冷間成型し、各成型深さにおける成型性を下記基準に従って評価した。なお、パンチ金型には、100mm×150mmの長方形の横断面を有し、底面に0.75mmのパンチラジアス(RP)を有し、側面に1.5mmのパンチコーナーラジアス(RCP)を有するものを使用した。また、ダイ金型には、開口部上面に0.75mmのダイラジアス(RD)を有するものを使用した。パンチ金型とダイ金型との間のクリアランス0.20mmとした。成型深さの評価結果を表1に示す。
「優」:破断又はクラックを生じずに、成型深さ6mm以上の深絞り成型が可能である。
「良」:破断又はクラックを生じずに、成型深さ4mm以上6mm未満の深絞り成型が可能である。
「不可」:成型深さ4mm未満の深絞り成型で破断又はクラックが生じる。
(絶縁性)
 実施例及び比較例で作製した外装材を、240mm×70mmの形状に切り取りとった。切り取った外装材を長辺の中間で熱融着樹脂層が対向するように折り返し、折り返した長辺2辺の縁を幅3mm、温度190℃、面圧0.5MPa、時間3秒で加圧熱融着した。その後、開口している短辺側から、含有水分量を20ppm以下に抑えたエチレンカーボネート(EC)、ジメチルカーボネート(DMC)、及びジエチルカーボネート(DEC)をEC:DMC:DEC=1:1:1(重量比)で混合した電解液を3mg注入した。続いて、対向する短辺にアルミニウム製金属端子(厚さ:50μm、幅:12mm、長さ:50mm)を挟持させた状態で、幅3mm、温度190℃、面圧0.5MPa、時間3秒で加圧熱融着し、120mm×70mmの形状の絶縁性評価用サンプルを作製した。作製した絶縁性評価用サンプルの金属端子と、外装材の金属箔層との間の短絡の有無を、テスターにより確認し、以下の基準に従って絶縁性の評価を行った。絶縁性の評価結果を表1に示す。
「良」:サンプル20個中、抵抗値が低下したサンプル及び短絡したサンプルが0個。
「可」:サンプル20個中、抵抗値が僅かに低下したサンプルが1個以上、短絡したサンプルが0個。
「不可」:サンプル20個中、短絡したサンプルが1個以上。
(成型加工後の反り)
 実施例及び比較例で作製した外装材を、120mm×260mmのブランク形状に切り取り、熱融着樹脂層が上方を向くように成型装置内に配置した。室温23℃、露点温度-35℃の環境下で、成型深さを3mmに設定し、外装材の冷間成型を行った。なお、パンチ金型には、70mm×80mmの長方形の横断面を有し、底面に0.75mmのパンチラジアス(RP)を有し、側面に1.5mmのパンチコーナーラジアス(RCP)を有するものを使用した。また、ダイ金型には、開口部上面に0.75mmのダイラジアス(RD)を有するものを使用した。パンチ金型とダイ金型との間のクリアランス0.20mmとした。成型エリアは切り取った外装材の長手方向の略中央で分けた半面の略中央とし、成型エリアの3辺が、切り取った外装材の短手方向の両端及び長手方向の一端からそれぞれ25mmの位置となるように、成型エリアを配置した。成型加工された外装材を熱融着樹脂層が下方に向くように、室温23℃、露点温度-35℃の環境に60分静置させ、成型されていないエリア側の短辺の反り量(短辺中央と静置面との距離)を測定した。反りの評価は、以下に基準に従って行った。成型加工後の反りの評価結果を表1に示す。
「優」:反り量が50mm未満。
「良」:反り量が50mm以上100mm未満。
「不可」:反り量が100mm以上。
(水蒸気バリア性)
 実施例及び比較例で作製した外装材を、240mm×70mmの形状に切り取り、切り取った外装材を長辺の中間で熱融着樹脂層が対向するように折り返し、折り返した長辺2辺の縁を幅3mm、温度190℃、面圧0.5MPa、時間3秒で加圧熱融着した。その後、開口している短辺側から、含有水分量を20ppm以下に抑えたエチレンカーボネート(EC)、ジメチルカーボネート(DMC)、及びジエチルカーボネート(DEC)をEC:DMC:DEC=1:1:1(重量比)で混合した電解液を3mg注入した。続いて、開口している短辺の縁を幅3mm、温度190℃、面圧0.5MPa、時間3秒で加圧熱融着し、120mm×70mmの形状の水分透過測定用サンプルを作製した。作製した水分透過測定用サンプルを温度60℃、湿度90%の環境下に4週間保管させた。保管後の電解液中の水分含有量をカールフィッシャー試験機で測定し、実施例1の水分含有量を基準(100%)としたときの実施例及び比較例の水分含有量の値を算出した。水蒸気バリア性の評価は、以下の基準に従って行った。水蒸気バリア性の評価結果を表1に示す。
「良」:水分含有量が実施例1に対して110%未満。
「不可」:水分含有量が実施例1に対して110%以上。
Figure JPOXMLDOC01-appb-T000001
 実施例1~6及び比較例3~4では良好な耐熱性が得られていたのに対し、比較例1では十分な耐熱性が得られなかった。比較例1では第2基材層が熱硬化性樹脂を含む樹脂組成物から形成されていないことから、熱融着により形状が大きく変化したと考えられる。なお、実施例7では、第2基材層の融点が低いことから、熱融着により形状が僅かに変化したものの、その程度は許容可能であると判断した。
 また、実施例1~7、比較例1~2及び比較例4では十分な成型深さが得られたのに対し、比較例3では十分な成型性は得られなかった。比較例3では第1基材層が設けられておらず、金属箔層を保護できなかったと考えられる。
 また、実施例1~6及び比較例3~4では良好な絶縁性が得られていたのに対し、比較例1~2では十分な絶縁性は得られなかった。比較例1では第2基材層が熱硬化性樹脂を含む樹脂組成物から形成されておらず、熱融着時に金属箔層の内側の層が薄くなったことから、金属端子と金属箔層との間で短絡したものと考えられる。比較例2では第2基材層が設けられておらず、熱融着時に金属箔層の内側の層が薄くなったことから、金属端子と金属箔層との間で短絡したと考えられる。なお、実施例7では、第2基材層の融点が低く、熱融着時に金属箔層の内側の層が僅かに薄くなったことから、抵抗値が一部低下したものの、金属端子と金属箔層との間の短絡には至らなかったと考えられる。
 また、実施例1~7、比較例1、及び比較例4では反り量を抑えられたことに対し、比較例2及び3では、成型加工後の反り量を十分抑えられなかった。比較例2及び3では外装材の金属箔層に対し片側にのみ基材層が積層されているため、成型加工後に反りが生じたと考えられる。
 また、実施例1~7及び比較例1~3では高い水蒸気バリア性が得られていたことに対し、比較例4では十分な水蒸気バリア性は得られなかった。比較例4では第2基材層が厚く、さらに第2接着剤層が設けられているため、外装材端部からの水蒸気浸入量が増したと考えられる。なお、金属箔C-1の一方の面上に処理剤D-1を塗布しなかった(腐食防止処理層を形成しなかった)こと以外は実施例1~7と同様にして作製した外装材においても、対応する実施例と同様の評価結果が得られた。
1…第1基材層、2…第1接着剤層、3,5…腐食防止処理層、4…金属箔層、6…第2基材層、7…接着樹脂層、8…熱融着樹脂層、10,20,30…(二次電池用)外装材、50…エンボスタイプ外装材、52…成型加工エリア(凹部)、54…蓋部、56…電池要素、58…リード(金属端子)、60…二次電池。

Claims (8)

  1.  第1基材層の一方の面上に、少なくとも金属箔層、第2基材層及び熱融着樹脂層がこの順で積層された二次電池用外装材であって、
     前記第2基材層が前記金属箔層上に、直接又は腐食防止処理層のみを介して、積層されており、
     前記第1基材層は熱硬化性樹脂又は熱可塑性樹脂を含む樹脂組成物から形成され、
     前記第2基材層は熱硬化性樹脂を含む樹脂組成物から形成される、二次電池用外装材。
  2.  前記金属箔層が前記第1基材層の一方の面上に直接積層されている、請求項1に記載の二次電池用外装材。
  3.  前記第1基材層の厚さが5μm以上30μm以下であり、前記第2基材層の厚さが5μm以上30μm以下である、請求項1又は2に記載の二次電池用外装材。
  4.  前記第1基材層及び前記第2基材層の厚さの差が15μm以下である、請求項1~3のいずれか一項に記載の二次電池用外装材。
  5.  前記第1基材層及び前記第2基材層が互いに同種の樹脂材料から形成される、請求項1~4のいずれか一項に記載の二次電池用外装材。
  6.  前記金属箔層の厚さが20μm以上80μm以下である、請求項1~5のいずれか一項に記載の二次電池用外装材。
  7.  前記第1基材層の他方の面上又は前記熱融着樹脂層上に、脂肪酸アミドからなる滑剤を含む塗布層が形成されている、請求項1~6のいずれか一項に記載の二次電池用外装材。
  8.  電池要素と、請求項1~7のいずれか一項に記載の二次電池用外装材とを備える、二次電池。
PCT/JP2016/054955 2015-02-23 2016-02-19 二次電池用外装材及び二次電池 WO2016136640A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017502336A JPWO2016136640A1 (ja) 2015-02-23 2016-02-19 二次電池用外装材及び二次電池
EP16755386.6A EP3264487A4 (en) 2015-02-23 2016-02-19 External equipment for secondary cell and secondary cell
KR1020177022474A KR20170118072A (ko) 2015-02-23 2016-02-19 이차 전지용 외장재 및 이차 전지
US15/681,838 US10418600B2 (en) 2015-02-23 2017-08-21 Secondary battery packaging material and secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015033268 2015-02-23
JP2015-033268 2015-02-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/681,838 Continuation US10418600B2 (en) 2015-02-23 2017-08-21 Secondary battery packaging material and secondary battery

Publications (1)

Publication Number Publication Date
WO2016136640A1 true WO2016136640A1 (ja) 2016-09-01

Family

ID=56744406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054955 WO2016136640A1 (ja) 2015-02-23 2016-02-19 二次電池用外装材及び二次電池

Country Status (6)

Country Link
US (1) US10418600B2 (ja)
EP (1) EP3264487A4 (ja)
JP (1) JPWO2016136640A1 (ja)
KR (1) KR20170118072A (ja)
CN (2) CN105914306A (ja)
WO (1) WO2016136640A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019145754A (ja) * 2018-02-23 2019-08-29 Tdk株式会社 電気化学デバイス
JPWO2020004412A1 (ja) * 2018-06-27 2021-08-02 凸版印刷株式会社 端子用樹脂フィルム及びこれを用いた蓄電装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170118072A (ko) 2015-02-23 2017-10-24 도판 인사츠 가부시키가이샤 이차 전지용 외장재 및 이차 전지
CN107851769B (zh) * 2015-08-31 2021-06-18 松下知识产权经营株式会社 非水电解质二次电池
CN110462873B (zh) * 2017-03-31 2023-10-10 株式会社村田制作所 二次电池
KR102334019B1 (ko) * 2017-10-17 2021-12-02 주식회사 엘지에너지솔루션 다종 금속 차단층을 포함하는 전지케이스 및 이를 포함하고 있는 전지셀
WO2019164369A1 (ko) * 2018-02-23 2019-08-29 주식회사 엘지화학 개스킷용 방청제, 이를 포함하는 이차전지용 개스킷, 상기 이차전지용 개스킷을 포함하는 이차전지
KR102335697B1 (ko) 2018-02-23 2021-12-07 주식회사 엘지에너지솔루션 개스킷용 방청제, 이를 포함하는 이차전지용 개스킷, 상기 이차전지용 개스킷을 포함하는 이차전지

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10261386A (ja) * 1997-03-19 1998-09-29 Asahi Chem Ind Co Ltd 電池用外装体および電池
JP2000268787A (ja) * 1999-03-19 2000-09-29 Hitachi Maxell Ltd 薄型電池用外装材
JP2000334891A (ja) * 1999-05-25 2000-12-05 Dainippon Printing Co Ltd 包装材料
JP2000340186A (ja) * 1999-05-25 2000-12-08 Dainippon Printing Co Ltd 包装材料
JP2001222982A (ja) * 2000-02-10 2001-08-17 Tokai Rubber Ind Ltd 薄型電池用袋体
JP2002050325A (ja) * 2000-08-01 2002-02-15 Dainippon Printing Co Ltd 電池外装用積層体及びその製造方法
JP2002298801A (ja) * 2001-03-29 2002-10-11 Tokai Rubber Ind Ltd 薄型電池用袋体
JP2004139749A (ja) * 2002-10-15 2004-05-13 Sony Corp 二次電池および外装材ならびに積層フィルム
JP2011142092A (ja) * 2011-01-21 2011-07-21 Dainippon Printing Co Ltd 電池用積層フィルムおよびそれを用いた電池用容器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100628581B1 (ko) * 1998-02-05 2006-09-27 다이니폰 인사츠 가부시키가이샤 전지케이스용 시트 및 전지장치
DE60036354T2 (de) 1999-04-08 2008-05-29 Dai Nippon Printing Co., Ltd. Laminierte Mehrschichtstruktur für eine Lithiumbatterieverpackung
JP4736146B2 (ja) * 1999-05-26 2011-07-27 大日本印刷株式会社 ポリマー電池用包装材料
JP5205691B2 (ja) * 2005-09-28 2013-06-05 大日本印刷株式会社 リチウムイオン電池
JP5408707B2 (ja) 2009-05-08 2014-02-05 徹 増澤 ポンプ装置
JP5708110B2 (ja) * 2011-03-23 2015-04-30 凸版印刷株式会社 リチウムイオン電池用外装材
CN103518272B (zh) * 2011-05-11 2017-02-15 凸版印刷株式会社 锂离子电池用外包装材料、锂离子电池及锂离子电池的制造方法
JP2014086135A (ja) 2012-10-19 2014-05-12 Daiwa Can Co Ltd 非水電解質二次電池外装材用積層体及びこれにより外装されてなる非水電解質二次電池
JP5914380B2 (ja) 2013-02-18 2016-05-11 大日本印刷株式会社 電池用包装材料
US10236479B2 (en) * 2013-02-18 2019-03-19 Dai Nippon Printing Co., Ltd. Power-cell packaging material
KR20170118072A (ko) 2015-02-23 2017-10-24 도판 인사츠 가부시키가이샤 이차 전지용 외장재 및 이차 전지

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10261386A (ja) * 1997-03-19 1998-09-29 Asahi Chem Ind Co Ltd 電池用外装体および電池
JP2000268787A (ja) * 1999-03-19 2000-09-29 Hitachi Maxell Ltd 薄型電池用外装材
JP2000334891A (ja) * 1999-05-25 2000-12-05 Dainippon Printing Co Ltd 包装材料
JP2000340186A (ja) * 1999-05-25 2000-12-08 Dainippon Printing Co Ltd 包装材料
JP2001222982A (ja) * 2000-02-10 2001-08-17 Tokai Rubber Ind Ltd 薄型電池用袋体
JP2002050325A (ja) * 2000-08-01 2002-02-15 Dainippon Printing Co Ltd 電池外装用積層体及びその製造方法
JP2002298801A (ja) * 2001-03-29 2002-10-11 Tokai Rubber Ind Ltd 薄型電池用袋体
JP2004139749A (ja) * 2002-10-15 2004-05-13 Sony Corp 二次電池および外装材ならびに積層フィルム
JP2011142092A (ja) * 2011-01-21 2011-07-21 Dainippon Printing Co Ltd 電池用積層フィルムおよびそれを用いた電池用容器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3264487A1 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019145754A (ja) * 2018-02-23 2019-08-29 Tdk株式会社 電気化学デバイス
JPWO2020004412A1 (ja) * 2018-06-27 2021-08-02 凸版印刷株式会社 端子用樹脂フィルム及びこれを用いた蓄電装置
JP7415921B2 (ja) 2018-06-27 2024-01-17 Toppanホールディングス株式会社 端子用樹脂フィルム及びこれを用いた蓄電装置

Also Published As

Publication number Publication date
US10418600B2 (en) 2019-09-17
EP3264487A1 (en) 2018-01-03
KR20170118072A (ko) 2017-10-24
JPWO2016136640A1 (ja) 2017-11-30
CN105914306A (zh) 2016-08-31
EP3264487A4 (en) 2019-02-20
US20170346047A1 (en) 2017-11-30
CN205752264U (zh) 2016-11-30

Similar Documents

Publication Publication Date Title
WO2016136640A1 (ja) 二次電池用外装材及び二次電池
WO2015141772A1 (ja) 二次電池
JP5633157B2 (ja) リチウムイオン電池用包装材
KR102118939B1 (ko) 축전 장치용 외장재, 축전 장치, 및 엠보싱 타입 외장재의 제조 방법
JP6102083B2 (ja) リチウムイオン電池用外装材の基材層、リチウムイオン電池用外装材の基材層を用いたリチウムイオン電池の製造方法、及びリチウムイオン電池用外装材
WO2016181867A1 (ja) 蓄電デバイス用外装材、及び当該外装材を用いた蓄電デバイス
JP6458338B2 (ja) 二次電池用外装材、二次電池、及び二次電池用外装材の製造方法
JP6990972B2 (ja) 蓄電装置用外装材、及びそれを用いた蓄電装置
JP6003170B2 (ja) 二次電池
WO2015072451A1 (ja) リチウムイオン電池用外装材
JP5569065B2 (ja) リチウムイオン電池用容器、これを備えたリチウムイオン電池、およびリチウムイオン電池用容器の製造方法
JP2017152092A (ja) 蓄電デバイス用外装材、及び当該外装材を用いた蓄電デバイス
JP5983699B2 (ja) リチウムイオン電池用包装材
JP2016195132A (ja) リチウムイオン電池用包装材の製造方法
JP6492526B2 (ja) 蓄電装置用外装材及び蓄電装置
JP2002279968A (ja) 電池のリード線用フィルム及びそれを用いた電池用包装材料及びその製造方法
JP2017208172A (ja) 蓄電デバイス用外装材及び蓄電デバイス
JP2002093389A (ja) リチウム電池タブ部に用いる接着性樹脂物
JP2014132539A (ja) リチウムイオン電池用外装材及びこれを用いたリチウムイオン電池
JP2017126491A (ja) アルミニウム箔積層体および蓄電装置用外装材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755386

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017502336

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016755386

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177022474

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE